
HAL Id: inria-00632842
https://hal.inria.fr/inria-00632842v2

Submitted on 10 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A semi-intrusive deterministic approach to uncertainty
quantifications in non-linear fluid flow problems

Remi Abgrall, Pietro Marco Congedo

To cite this version:
Remi Abgrall, Pietro Marco Congedo. A semi-intrusive deterministic approach to uncertainty quan-
tifications in non-linear fluid flow problems. [Research Report] RR-7820, INRIA. 2011, pp.26. <inria-
00632842v2>

https://hal.inria.fr/inria-00632842v2
https://hal.archives-ouvertes.fr


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
78

20
--

F
R

+
E

N
G

RESEARCH
REPORT

N° 7820
Octobre 2011

Project-Teams Bacchus

A semi-intrusive
deterministic approach to
uncertainty
quantifications in
non-linear fluid flow
problems
Rémi Abgrall, Pietro-Marco Congédo,





RESEARCH CENTRE
BORDEAUX – SUD-OUEST

351, Cours de la Libération

Bâtiment A 29

33405 Talence Cedex

A semi-intrusive deterministic approach to

uncertainty quantifications in non-linear fluid

flow problems

Rémi Abgrall∗, Pietro-Marco Congédo†, ‡

Project-Teams Bacchus

Research Report n° 7820 — Octobre 2011 — 34 pages

∗ Equipe-projet Bacchus, Institut de Mathématiques, INRIA et Université de Bordeaux,

33 405 Talence cedex
† Equipe-projet Bacchus, Institut de Mathématiques, INRIA et Université de Bordeaux,

33 405 Talence cedex
‡ Equipe-projet Bacchus, Institut de Mathématiques, INRIA et Université de Bordeaux,

33 405 Talence cedex



Abstract: This paper deals with the formulation of a semi-intrusive (SI) method allowing the
computation of statistics of linear and non linear PDEs solutions. This method shows to be very
efficient to deal with probability density function of whatsoever form, long-term integration and
discontinuities in stochastic space.
Given a stochastic PDE where randomness is defined on Ω, starting from (i) a description of the
solution in term of a space variables, (ii) a numerical scheme defined for any event ω ∈ Ω and (iii)
a (family) of random variables that may be correlated, the solution is numerically described by its
conditional expectancies of point values or cell averages and its evaluation constructed from the
deterministic scheme. One of the tools is a tessellation of the random space as in finite volume
methods for the space variables. Then, using these conditional expectancies and the geometrical
description of the tessellation, a piecewise polynomial approximation in the random variables is
computed using a reconstruction method that is standard for high order finite volume space, except
that the measure is no longer the standard Lebesgue measure but the probability measure. This
reconstruction is then used to formulate a scheme on the numerical approximation of the solution
from the deterministic scheme. This new approach is said semi-intrusive because it requires only a
limited amount of modification in a deterministic solver to quantify uncertainty on the state when
the solver includes uncertain variables.
The effectiveness of this method is illustrated for a modified version of Kraichnan-Orszag three-
mode problem where a discontinuous pdf is associated to the stochastic variable, and for a nozzle
flow with shocks. The results have been analyzed in terms of accuracy and probability measure
flexibility. Finally, the importance of the probabilistic reconstruction in the stochastic space is
shown up on an example where the exact solution is computable, the viscous Burgers equation.

Key-words: Uncertainty quantification, continuous and discontinuous pdf, finite volume method,
long time integration, nozzle flow, shocked flows.



Une approche déterministe et semi-intrusive pour

la quantification d’incertitude en mécanique des

fluides

Résumé : Ce rapport propose une approche semi-intrusive permettant le
calcul de paramètres statistiques pour des EDP linéaire ou non linéaire. Cette
méthode permet de considérer très efficacement des densités de probabilité de
tout type, des simulation en temps long ou encore des variables aléatoires à
valeurs discontinues.

Le principe de la méthode est le suivant. Etant donné un espace Ω où vit
l’aléa, partant (i) d’une description des variables dans l’espace physique, (ii)
une méthode numérique permettant d’approcher le problème continu pour tout
aléa ω ∈ Ω et (iii) une famille de variable aléatoire, pouvant être corrélées, la
solution est décrite par les espérances conditionnelles des valeurs ponctuelles où
des valeurs moyennes dans des cellules de contrôle et de leur évaluation à partir
du schéma déterministe.

Le rapport décrit et analyse plusieurs façons de procéder, et valide l’approche
sur des exemples pour lesquelles d’autres approches plus classiques ont pu ren-
contrer des difficultés: le problème de Kraichnan Orszag, une tuyère avec choc,
un exemple où la solution exacte est calculable afin de quantifier l’erreur et enfin
un problème bidimensionnel de mécanique des fluides.

Mots-clés : Quantification des incertitudes, pdf continues et discontinues,
méthodes volumes fini, intégration en temps long, écoulement avec choc, écoule-
ment en tuyère.
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line numbering here if you want

1 Introduction

There are many situations where one wants to estimate some statistics on the
solution of a PDE. Consider the flow around an aircraft for example. The
boundary conditions (inflow Mach number, Reynolds number, some geometrical
parameters) may only be known approximately either in a nozzle flow or a
true flight. In hypersonic, the equation of state or the viscous model play an
important role and they are sometimes known very approximately. The same
is true for multiphase flows. One may also wish to “extrapolate” experimental
results which are partially known to flow conditions that are not contained in
the experimental data base: what is the confidence one may have ? The question
is not only to know the sensitivity of the solution, but also to to understand
the importance (i.e. the weight) of these variations. In other terms, assuming
the likely-hood of relative variations, how can we weight their influence on the
solution ?

Several stochastic methods have been proposed in literature. The Monte
Carlo method (MCM) and its variants [16] are the most popular approach to
model uncertainty because of its versatility, but it is too expensive in order to
be used in CFD stochastic computations: each sample corresponds to a full
CFD run ! It becomes competitive with respect to other methods only if high
dimensional probability space is considered since the order of convergence is in-
dependent of the number of independent random parameters. Several stochastic
methods are based on dividing probability space into multiple sub-domains and
by using a polynomial approximation of the response surface [24, 33]. Other
approaches are the intrusive [15, 34, 7, 10] and non-intrusive [22, 23, 27] formu-
lations relying on Polynomial Chaos expansion of the random variables. Poly-
nomial Chaos methods, first introduced by Ghanem and Spanos [15] appear
to be a good alternative to statistical methods for uncertainty quantification.
In 2002, Xiu and Karniadakis [34] introduced Generalized Polynomial Chaos.
It was demonstrated that in order to achieve optimal convergence, the type of
orthogonal polynomials in the chaos expansion should correspond to the prop-
erties of the stochastic process based on the association between probability
density functions (pdf) and weighting functions. In [30], Wan and Karniadakis
have developed a multi-element polynomial chaos method. The main idea is to
adaptively decompose the space of random inputs into multiple elements and
employ polynomial chaos expansion at element level.

For long integration problems, non-intrusive methods shows very good re-
sults [11]. Intrusive formulations, like Polynomial Chaos, can suffer of loss of
accuracy for longer time [24, 18, 31]. A possible cure has been proposed by
Gerristma et al. in [13], where adaptation of the set of orthogonal polynomials
with respect to the changing pdf removes the error with respect to long time
integration.

Another important point in UQ community is the possibility to have a nu-
merical method allowing to treat any form of the pdf, aiming at using exper-
imental pdf taken directly from the experience. In the case of non-intrusive
methods, the idea is to sample the input random space by very specific random
events that are associated to the Gaussian points of the integration formulation

RR n° 7820



A semi-intrusive deterministic approach to uncertainty quantification 5

that corresponds to the expectancy. This indicates that one can consider a pri-

ori any type of pdf and the only thing to do is to evaluate these quadrature
points. In practice this means that one has to compute an orthogonal (with
respect to the pdf) polynomial basis, and to evaluate the zeros of the highest
degree polynomial. Unfortunately, this can be a very tricky and difficult task
in many circumstances: if it is known that the zeros of these polynomials are
distinct, it is not at all easy to accurately compute the roots of a polynomial in
general, and here accuracy is a must. Moreover, this strategy assumes that the
input random variables are independent.

For shock-dominated flows, oscillations due to Gibbs phenomenon can ap-
pear close to the discontinuities. Several formulations have been introduced
to solve this problem, see for example [26] for a detailed review, where a new
method has been proposed by using the entropy variables which is developed
on the polynomial basis by performing a Galerkin projection.

In this paper, we present a new approach, particularly suited for flow prob-
lems, proposing possible cures for several important aspects in uncertainty quan-
tification, as long-time integration problems, flexibility with respect to the form
of the pdf, the independence of the random variables and stochastic shock dis-
continuity.

The outline of this paper is as follows. In section 2, the basic idea of semi-
intrusive method is explained. Moreover, error analysis is shown up and imple-
mentation details are given. In section 3, the SI method is applied to Kraichnan-
Orszag problem, to a nozzle flow with discontinuity and to the viscous Burgers
equation. Finally, in section 4, conclusions are drawn.

2 Principles of the method

2.1 General formulation of the method

Let us start from some model represented by a PDE, say

L(u) = 0, (1)

defined in a domain K of Rd subjected to boundary conditions, and if needed
initial conditions. Since the discussion of this section is formal, we put the
different initial and boundary conditions of the problem in the symbol L. The
operator L depends in some way on parameters1, that in many cases are not well
known. Hence we assume they are random variables defined on some universe
Ω equipped with a family B of measurable sets and a measure dµ. We assume
that these random variables are measurable with respect to the measure dµ.
Hence our problem can formally be seen as a “stochastic” PDE of the type

L(u,X) = 0, (2)

defined in a domain K of Rd, subjected to initial and boundary conditions, and
where X is a random variable defined on Ω. By abuse of language, we use the
same notation L for the problem. The operator L depends on u := u(x, t,X)
or u := u(x,X), depending whether the problem is time dependent or not, and

1for example the equation of state, or the parameters of a turbulent model, to give examples

in fluids

RR n° 7820



A semi-intrusive deterministic approach to uncertainty quantification 6

X := X(ω). Here, x ∈ R
d for s ∈ {1, 2, 3}, t ∈ R

+ are the usual space and
time parameters, and the event ω belongs to Ω. The random variable may also
depend on space and time, as well as the measure dµ. The technique we develop
in this paper could in principle be extended to this case but the discussion is
beyond the scope of this paper, for simplicity of exposure.

We identify Ω to some subset of Rs, s being the number of random parameter
to define X. Hence, for any measurable real valued function,

E(f(X)) =

∫

Rs

f(x1, . . . , xs)dµ(x1, . . . , xs)

or more simply

E(f(X)) =

∫

Rs

f(x1, . . . , xs)dµ.

This does not mean that the measure dµ is obtained by tensorisation, the com-
ponents xj can be correlated. Thus we can also see (2) as a problem defined on
a subset K ′ of Rd × R

s.
For any realization of Ω, we assume to be able to solve the following ap-

proached deterministic form of (2) in space and time, by some numerical method:

Lh(uh, X(ω)) = 0. (3)

Our approach to approximating the solution of (2) starts with discretizing the
probability space Ω. We construct a partition of Ω, i.e. a set of Ωj , j = 1, . . . , N
that are mutually independent

µ(Ωi ∩ Ωj) = 0 for any i 6= j (4)

and that cover Ω
Ω = ∪N

i=1Ωi. (5)

We assume µ (Ωi) =
∫

Ωj
dµ > 0 for any i. We wish to approximate the solution

of (2) by the average conditional expectancies E(uh|Ωj)

E (uh | Ωj) =

∫

Ωj
uhdµ

∫

Ωj
dµ

(6)

from the knowledge of the operator Lh.
Let us illustrate how this idea can be made effective. If an iterative technique

is used to solve (3), as it is often the case, a deterministic solution can be written
as

un+1
h = ℑ (un

h) (7)

where the operator ℑ is a succession of additions, multiplications and function
evaluations. In (7), the index n can be the index of the iteration stricto sensu, or
the index of the time step in the case of an explicit method for a time dependent
problem, etc. This leads to

E
(

un+1
h | Ωj

)

= E (ℑ (un
h) | Ωj) . (8)

This scheme is fully defined if E (ℑ (un
h) | Ωj) can be evaluated. We show

how to do that in sections 2.2 and 2.3. Thus we are able to construct a sequence

RR n° 7820



A semi-intrusive deterministic approach to uncertainty quantification 7

(

E
(

un+1
h | Ωj

))

n≥0
. If the problem is steady and if this sequence converges in

some sense, the limit is the sought solution. In the case of time dependent
problems, (8) represents an approximation of the conditional expectancy at
time tn+1. In the case of explicit/implicit methods, as for dual time stepping,
the interpretation of (8) can easily be done in the relevant context.

Once, conditional expectancy is computed, it is possible to compute mean
and variance by means of the following definitions :

Mean =
∑

Ωj

un
h, Variance =

∑

Ωj

∫

Ωj

(Mean − un
h)

2dµ

and even an approximation of the pdf of un
h.

2.2 Consistency of the method

Given the conditional expectancies E (X | Ωj), can we estimate for a given f ,
E(f(X)) ?

The idea is the following: For each Ωj , we first define a stencil, i.e. a set Si =
{Ωj}j∈Ii with Ωi ∈ Si and we wish to evaluate a polynomial Pi ∈ R [x1, · · · , xn]
of degree p such that

E (X | Ωj) =

∫

Rn 1Ωj
(x1, · · · , xn)P (x1, · · · , xn) dµ

µ (Ωi)
for j ∈ Si. (9)

This problem is reminiscent of what is done in finite volume schemes to
compute a polynomial reconstruction in order to increase the accuracy of the
flux evaluation thanks the MUSCL reconstruction. Among the many references
that have dealt with this problem, with the Lebesgue measure dx1 . . . dxn, one
may quote [17] and for general meshes [8, 2]. A systematic method for computing
the solution of problem (9) is given in [5].

We can easily derive a technical condition that guaranties that the prob-
lem (9) has a unique solution. We can index the set of multi-indices {α =
(α1, · · · , αn)}|α|≤p with |α| :=

∑n
i=1 αi as α1, . . . , αNp

. Then we can define,
for x = (x1, . . . , xn), the monomial xα := xα1

1 . . . xαn
n . The technical condi-

tion that ensure a unique solution to problem (9) is that the Vandermonde–like
determinant

∆ = det

(

E(xαi |Ωj)

)

0≤i≤Np,j∈Si

. (10)

is non zero. A necessary condition, in 1D, is that #Si ≥ p(p+1)
2 . Similar, but

more complex expressions of this type exist for multivariate polynomials.
Once the solution of (9) is known, we can estimate

E (f(X)) ≈
N
∑

j=1

∫

Ωj

f (P (x1, · · · , xn)) dµ (11a)

by using a relevant quadrature formula in each Ωj . For example, if dµ has a
density in Ωi, we can do

∫

Ωj

f
(

P (x)
)

dµ ≈
mi
∑

k=1

wi
kf

(

P (xi
k)
)

(11b)

RR n° 7820
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where the weights are the wi
k and the quadrature points are the xi

k. If dµ has
no density, some the formula, depending on the structure of dµ, must be used,
but the principle stays the same.

We have the following approximation results : if f ∈ C1(Rn)∩L1(Ω, µ) and
X of classCr, r ≥ p+ 1 then

∣

∣

∣

∣

E (f(X))−
N
∑

j=1

∫

Rn

1Ωj
(x1, · · · , xn) f (P (x1, · · · , xn)) dµ̃

∣

∣

∣

∣

≤ max ||Dp+1X||∞ max
Ωi

min
ωi∈Ωi

E(||(ω − ωi)
p+1|| |Ωi).

for a set of regular stencils. The proof of this results is given in the appendix
A.

Remark 2.1. We notice that we never need to make any additional assumption

on the structure of X to evaluate P in (9). In particular, its components can

be correlated.

2.3 Polynomial reconstruction

In this section, we provide explicit examples and applications of the reconstruc-
tion technique that we have abstractly sketched in the previous paragraph. Let
us subdivide the space Ω into non overlapping measurable subsets. For the sim-
plicity of exposure we will consider one source of uncertainty, thus the subsets
can be identified to N intervals of R which are denoted by Ωj = [ωj−1/2, ωj+1/2]
. The case of multiple sources can be considered in a similar way, for example
as what is done for the ENO or WENO reconstruction methods. Examples of
such methods are given in [2, 12, 19], among other references. Note that the
subsets Ωj , seen as subsets of R

n may well be unbounded, the only relevant
information is that their measure µ(Ωj) is bounded. This is obviously the case
because µ is a probability measure.

Let us describe in details what is done for one source of uncertainties. In
the cell Ωi, the polynomial Pi ∈ P

p(R) of degree p is fully described by a stencil
Si = {Ωi,Ωi1 , . . . ,Ωip} where the indices i1, . . . ip are all different and different
of i. We have, by definition,

E(Pi|[ωj−1/2, ωj+1/2]) = E(u|[ωj−1/2, ωj+1/2]), for any j ∈ {i, i1, . . . , ip}..
(12)

It is easy to see that there is a unique solution to that problem provided that
the cells of Si do not overlap, which is the case here.In the numerical examples,
we consider three reconstruction mechanisms :

• a first order reconstruction: we simply take Si = {Ωi} and the reconstruc-
tion is piecewise constant,

• An ENO reconstruction: The construction is done in two steps. We first
evaluate two linear polynomials, and take the least oscillatory one. We
introduce the average mid-points

ωl = E(ξ|Ωl).

RR n° 7820
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1. For the cell Ωi, we first evaluate two polynomials of degree 1. The
first one, p−i , is constructed using the cells {Ωi−1,Ωi]} and the second
one, p+i , on {Ωi,Ωi+1}. The polynomial of degree 1 p+i can be written
as

p+i (ξ) = a+i
( ξ − ωi

ωi+1 − ωi

)

+ b+i .

It has to satisfy the relations

E(p+i |Ωi) = E(u|Ωi) and E(p−i |Ωi−1) = E(u|Ωi−1).

This leads to a 2 × 2 system that can be solved. Thanks to the
definition of ωi, we have E(x − ωi|Ωi) = 0 and thus it has a very
simple structure:

(

1 0
1 1

)(

b+i
a+i

)

=

(

E(u|Ωi)
E(u|Ωi+1

)

(13)

that can be solved immediately. Similarly, the polynomial p−i (ξ) =

a−i
( ξ − ωi

ωi+1 − ωi

)

+ b−i can be evaluated by solving (13) where the in-

dices have been shifted of −1.

2. We choose the least oscillatory one, i.e. the one which realizes the
oscillation min(|a+i |, |a−i |).

• a centered reconstruction: the stencil is Si+1/2 = {Ωi−1,Ωi,Ωi+1) and the
reconstruction is piecewise quadratic. At the boundary of Ω, we reduce to
degree one: we use the reduced stencils S1/2 = {Ω1/2,Ω3/2} for the first
cell Ω0 and SN−1/2 = {ΩN−1/2,ΩN−3/2} for the last cell ΩN−1.

For the internal cells, let us describe the computational algorithm. We
chose to write the polynomials with the expansion

p(ξ) = a+ b
ξ − ωi

ωi+1 − Ωi
+ c

(

ξ − ωi

ωi+1 − Ωi

)2

.

We first compute the polynomial of degree 1 that matches E(u|Ωi) and
E(u|Ωi+1) in average, i.e we solve the system (13). Let us denote by p+i
this polynomial. Then, instead of evaluating p directly, we evaluate

q = p− p+i = a′ + b′
ξ − ωi

ωi+1 − Ωi
+ c′

(

ξ − ωi

ωi+1 − Ωi

)2

.

The linear system has a nice structure


















1 0 E

((

ξ − ωi

ωi+1 − Ωi

)2

|Ωi

)

1 1 E

((

ξ − ωi

ωi+1 − Ωi

)2

|Ωi+1

)

1 E

(

ξ − ωi

ωi+1 − Ωi
|Ωi−1

)

E

((

ξ − ωi

ωi+1 − Ωi

)2

|Ωi−1

)























a′

b′

c′



 =





0
0

E(u|Ωi−1)− E(p+i |Ωi−1)





which can easily be solved using the block structure, see [5]. This method
is reminiscent of the Newton algorithm for lagrange interpolation.

RR n° 7820
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Other choices are possible such as WENO-like interpolants. Again, these al-
gorithms can be extended to several stochastic dimensions, the main step is to
define a family of stencils. This can be carried out by defining a tessellation of
cells as this has been done for ENO methods on unstructured meshes, see [2, 1]
for example.

2.3.1 Numerical integration

Once the polynomial is reconstructed, we need to evaluate conditional expectan-
cies. This amounts to perform numerical integrations over Ωj . If dµ = µ(ω)dω,
this can be done thanks to a classical quadrature method, as the following third
order Gaussian quadrature:

∫ b

a

h(ω)dω ≈ b− a

2
(h(ξ1) + h(ξ2)), (14)

where ξ1 =
a+ b

2
− b− a

2

√
3

3
and ξ2 =

a+ b

2
+

b− a

2

√
3

3
.

In all the practical illustrations, we will use only one or two sources of un-
certainty even though the method can be used for any number of uncertain
parameters, this leading to other known problems such that the curse of dimen-
sionality. Using classical quadrature formulas in multi-dimensional stochastic
problem, the computational cost can increase exponentially [29], and others
methods, as the sparse grid methods must be used [14, 21]. These methods are
based on a linear combination of tensor product of one dimensional quadrature
formulas.

Remark 2.2. Of course, the structure of the quadrature formula depends on

the measure dµ and the structure of the cells Ωi. In all our computations, we

are using cells that either intervals, quadrangles, or tensor products of interval

more generally speaking. This does not mean that the measure needs a product of

1D measures. However, if the measure has a density, the most straightforward

quadrature formula are those obtained by tensorisation of 1D formulas.

2.4 1D-1D Discretization

Fundamental concepts have been introduced in the previous sections, and we
will now focus on a detailed discretization of an 1D-1D PDE. By “1D-1D”, we
mean one dimension in the geometric space and one dimension in probabilistic
space. Let us consider the following equation

∂u

∂t
+

∂f(u)

∂x
= S,

Initial and/or boundary conditions,

(15)

defined in a domain K = D × Ω ⊂ R
2, where u := u(x, t,X(ω)), S :=

S(x, t,X(ω)) is a source term and t > 0. The space parameter x is defined on
D ⊂ R, ω and X are respectively a random parameter and a random variable,
defined on the probability space (Ω, dµ) where dµ is the probability measure
and Ω ⊂ R. The initial conditions, boundary conditions and the domain D may
be random.

RR n° 7820



A semi-intrusive deterministic approach to uncertainty quantification 11

As explained previously in section 2.1, the discretization of (15) is based
on two steps, the integration of the deterministic part of the system and the
integration of the probabilistic part.

2.4.1 Deterministic formulation

We consider a spatial discretization for (15) with nodes points xi = i∆x where
i belongs to some subset of Z, a time step ∆t > 0 and a set tn = n∆t, n ∈ N.
The control volume is as usual the intervals Ci = [xi−1/2, xi+1/2] with xi+1/2 =
(xi + xi+1)/2. We start from a finite volume scheme, and for the simplicity of
exposure, we only consider a first order in time.

Thus we define the deterministic scheme (i.e. for any fixed ω) as

un+1
i (X(ω)) = un

i (X(ω))

− ∆t

|Ci|

(

F (un
i+1(X(ω)), un

i (X(ω)))− F (un
i (X(ω)), un

i−1(X(ω)))

)

+

∫

Ci

S(x, tn, X(ω)) dx,

(16)

where F is a consistent approximation of the continuous flux f . The cell-
averaged quantity is defined as

un
i (X(ω)) =

1

|Ci|

∫

Ci

u(x, tn, X(ω))dx. (17)

2.4.2 Probabilistic formulation

The next step is the discretization of the probabilistic part of the equation, where
the variables must be represented by their conditional expectancies. We consider
a probabilistic discretization for (16) with nodes points ωj+1/2 = (j + 1/2)∆ω
where j belongs to some subset of Z. The control volume is the intervals Ωj =
[ωj−1/2, ωj+1/2].

Thus we define the probabilistic scheme as

un+1
i,j = un

i,j −
∆t

|Ci|

(

E(F (un
i+1, u

n
i )|Ωj)− E(F (un

i , u
n
i−1)|Ωj)

)

+
∆t

|Ci|
E

(∫

Ci

S(x, tn, X(ω))dx

∣

∣

∣

∣

Ωj

) (18)

where the cell-averaged conditional expectancy is defined as

un
i,j = E(un

i (X)|Ωj) =
1

µ(Ωj)

∫

Ωj

un
i (X(ω))dµ(ω). (19)

2.4.3 Numerical flux evaluation

The expectancy of the numerical flux can be approximated as it is shown in
section 2.2 by

E(F (un
i+1, u

n
i )|Ωj) ≈

1

µ(Ωj)

∫

Ωj

F (Pn
i+1,j , P

n
i,j) dµ, (20)
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where Pi,j is a piecewise polynomial reconstruction of the probabilistic solution.
Assuming that we require all polynomial reconstructions Pi,j to have the correct
cell average, we have

E(Pi,j |Ωj) = E(ui|Ωj). (21)

To achieve the second order accuracy, there are many reconstruction methods
as it is shown in section 2.3.

Once reconstructed, the polynomial is injected in the numerical flux F . For
the simplicity of the exposure let’s formulate F thanks to the Roe’s method:

F (Pn
i+1,j , P

n
i,j) =

1

2

(

f(Pn
i+1,j) + f(Pn

i,j)− |A(Pn
i+1,j , P

n
i,j)|(Pn

i+1,j − Pn
i,j)

)

(22)

where |A(un
i+1,j , u

n
i,j)| is the Jacobian matrix evaluated at the Roe’s average,

see [28] for details. Of course other methods are applicable.

2.4.4 Time stepping procedure

To finish with the discretization, the time step evolution is evaluated taking
into account ∆tΩj

for any realization Ωj , which is obtained under classical CFL
stability conditions. Thus the general time step is evaluated as

∆t = min
Ωj

∆tΩj
. (23)

2.4.5 Implementation issues

The deterministic scheme is sketched in algorithm 1 so that we can better see,
by contrast, what are the modifications to introduced the semi-intrusive method
sketched in algorithm 2. The algorithm 3 shows how to implement the stochastic
resolution of the system (15).

As indicated, the modifications to the deterministic code are rather small.
The first loop, on top of all the others, is a loop over the iterative parameter
introduced in (8). It already exists in the deterministic method, see algorithm
1. The second loop, enclosed by the previous one, is a loop over the subsets Ωj

which also does not induce any modification of the code. In this loop, we first
evaluate the reconstruction polynomials (in the stochastic direction), and for
each quadrature points in (11), we evaluate the relevant data to be sent to the
deterministic solver. Then we apply the deterministic solver ℑ on this datum.
Once this loop is done, we evaluate Un+1 the vector made of {E(Un|Ωj)}Ωj

as
in the quadrature formula (11). This method is further exemplified for (15) in
algorithm 3.

2.5 Error analysis and estimated convergence

A discussion over the error analysis and the estimated convergence in reported in
the appendix B. We consider two examples: the heat equation and the Burgers
equations. The main lesson is that the error in evaluating E(f(X)) for smooth
enough f and X is the sum of an error on the deterministic solver and an
reconstruction error in the stochastic space,
∣

∣E(f(X))− ˜E(f(R))
∣

∣ ≤ approximation error on L+ reconstruction error. (24)

where ˜E(f(R)) represents the numerical approximation of E(f(R)) along the
lines of (11).
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3 Results

3.1 Kraichnan-Orszag problem

The Kraichnan Orszag (KO) three-modes problem has been introduced by
Kraichnan [20] and Orszag [25]. It has been intensively studied to study the
loss of accuracy of gPC expansion for problems involving long time integration.
In [30], the exact solution is given, and different computations have been per-
formed in [30, 32, 11, 13, 6, 21]. This problem is defined by the following system
of nonlinear ordinary differential equations

dy1
dt

= y1y3,

dy2
dt

= −y2y3,

dy3
dt

= −y21 + y22

(25a)

subject to stochastic initial conditions

y1(0) = y1(0;ω), y2(0) = y2(0;ω), y3(0) = y3(0;ω). (25b)

In general, uniform distributions are considered, except in [32] where beta and
Gaussian distributions are also taken into account. The computational cost of
SI method for the K-O problem is compared to that of other methods, namely a
quasi-random Sobol (MC-SOBOL) sequence with 8 106 iterations, and a Poly-
nomial Chaos Method (PC) with Clenshaw-Curtis sparse grid. The error in
variance of y1 is considered at a final time tf of 50. We define the L2 error
between two numerically integrated functions f1 (tj) and f2 (tj), j = 1, · · · , nt,
as:

ǫL2 =

1
nt

√

∑nt

j=1 (f1 (tj)− f2 (tj))
2

1
nt

√

∑nt

j=1 (f1 (tj))
2

,

where f1 is considered the Monte Carlo converged solution. Similarly, the L∞

error is defined by

ǫL∞ =

max
j=1,...,nt

∣

∣f1(tj)− f2(tj)
∣

∣

max
j=1,...,nt

∣

∣f1(tj)
∣

∣

.

For different error levels, corresponding computational cost is given.

3.1.1 1D KO problem

First, we study the 1D problem corresponding to initial conditions of the form

y1(0) = 1.0, y2(0) = 0.1ξ, y3(0) = 0.0,

where ξ is a uniformly distributed random variable varying in [−1, 1]. We use
SI, MC-SOBOL and PC method to compute the variance of y1. In Table 2, we
show the results in terms of number of samples required to reach a prescribed
error ǫL2 . The performance of the SI method are comparable and even better
than PC method, at least on this problem.
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Then, the same problem described previously has been considered. The
probability distribution for y2(0) is however different. In particular, ξ is discon-
tinuous on [a, b] = [−1, 1] with a density defined by:

f(ξ) =
1

M
×



















1 + cos(πξ)

2
if ξ ∈ [−1, 0]

10 +
1 + cos(πξ)

2
if ξ ∈ [0, 1]

0 else

(26a)

and M = 11/2 to ensure normalization.
Because of the discontinuous pdf, only MC-SOBOL and SI solutions can be

compared, showing the great flexibility given by SI method with respect to the
form of the pdf. In figure 2, variance of y1(t) is reported for the converged solu-
tions obtained with MC-SOBOL and SI. The SI method permits to reproduce
exactly MC-SOBOL solution. In figure 3, a consistency study for SI is reported
by using an increasing number of points in the stochastic space. In Table 3, we
reported number of samples required to reach a prescribed error in the L2 and
L∞ norms. The SI method shows to be very competitive in terms of efficiency
and computational cost with respect to MC-SOBOL method when whatever
form of pdf is used (a discontinuous pdf in this case), at least for this problem.
Let us remark that a uniform grid is used in the stochastic plane: no type of
mesh adaptation is considered here. This displays the great potentiality of this
method if coupled with an adaptive methods.

3.1.2 2D KO problem

Then, we use SI method to study the K-O problem with two-dimensional random
inputs:

y1(0) = 1.0, y2(0) = 0.1ξ1, y3(0) = ξ2,

where ξ1 is discontinuous on [a, b] = [−1, 1] with a density defined by (26) and
ξ2 is a uniform random variable in [-1,1].

In Figure 4, the SI capability to reproduce exactly MC-SOBOL solution
is represented. The SI and MC-SOBOL solutions are nearly coincident also
for long time (t = 50). The mesh convergence study in the stochastic space
for SI is reported in figure 5 showing that the solution obtained with a mesh of
320×320 is well converged. In Table 4, the computational cost required to reach
a prescribed error of ǫL2 is reported. In this particular example, reductions from
50% to 66% are obtained using SI with respect to MC-SOBOL solutions. Once
again, let us emphasis that these results have been obtained without any mesh
adaptation, contrarily to [13]. In our case, adaptivity is doable and certainly
much better results in term of cost could be obtained in that case. Our emphasis
here is to show the potential of the method without any fancy subtilities and
improvements.

3.2 Nozzle flow with shock

The steady shocked flow in a convergent-divergent nozzle is taken into account
with a fixed (deterministic) geometry:

A(x) =

{

1 + 6(x− 1
2 )

2 for 0 < x ≤ 1
2

1 + 2(x− 1
2 )

2 for 1
2 < x ≤ 1
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The outlet pressure (subsonic outlet flow with pe = 1.6529 bar) is chosen in
order to have a compression shock in the divergent part of the nozzle, exactly
located at x = 0.75. For the other boundary conditions, a subsonic inlet flow
with a stagnation pressure p0 = 2 bar and a stagnation temperature T0 = 300 K
are considered. The mean value of the ratio of specific heats γ is 1.4. Two test-
cases are considered. First, an uncertain heat coefficient ratio γ is assumed.
The random parameter ω = γ varies within the range [1.33, 1.47], following
various choices of pdf (uniform and discontinuous) described below. In the
second test-case, two-uncertainties stochastic problem is solved where γ follows
a discontinuous pdf and the subsonic outlet flow varies uniformly within the
range 1.6529± 2%.

The random parameter ω (defining either the heat ratio or the subsonic
outlet flow) ranges between ωmin and ωmax; the interval [ωmin, ωmax] is mapped
onto [a, b] by a linear transformation and the pdf on [a, b] is either:

• uniform with ω ∈ [a, b] = [0, 1],

• discontinuous on [a, b] = [0, 1] with the density defined in relation (26).

Again, various stochastic methods are used to compute statistics of the su-
personic nozzle. In a first step, a uniform pdf on γ is used in order to compare
MC-SOBOL, PC and SI. In a second step, γ follows (26) and we compare MC-
SOBOL and SI to demonstrate the flexibility, and the accuracy, offered by the
SI method.

After a study on the grid convergence, the 1D physical space is divided
in 201 points (with the normalized geometric domain that varies from 0 to 1).
The base scheme is a standard TVD scheme using MUSCL extrapolation on the
characteristic variables with Roe flux and Harten-Yee entropy fix. The scheme is
implicit to speed up the convergence to steady state. The code has been modified
along the lines of the algorithm 2. A preliminary convergence study with respect
to the stochastic estimation has been realized, by using an increasing refinement
of the probabilistic space discretization in the case of the SI method, and an
increasing polynomial order in the case of PC method. The probabilistic space
discretization varies from 5 to 160 points (in practice: 5, 10, 20, 40, 80, 160
points). For the PC expansion, the polynomial order varies from 2 to 100.
For that problem, we have observed that convergence for the mean is already
reached at order 10. Next, the stochastic solutions are compared computing the
mean and the variance of the Mach number and pressure distributions along
the nozzle using various choices of pdf for γ. Finally, a comparison in terms of
computational cost is performed by computing error ǫL2 with respect to x. In
Figure 6, the mean solutions of Mach number and the pressure along the 1D
nozzle are reported, where the mean stochastic solutions are computed with the
SI method using 10 points in the probabilistic space and the PC method using
a 10th order polynomial, with γ described by a uniform pdf (γ varying between
1.33 and 1.47). As can be observed in Figure 6, the mean flow is characterized
by an isentropic region of increasing speed or Mach number between x = 0 and
the mean shock location in the divergent (the flow becoming supersonic at the
nozzle throat located in x = 0.5), followed by a subsonic flow behind the shock
with decreasing speed. The mean solutions computed by the two UQ methods
are coincident. Next the standard deviation of the Mach number is computed
along the nozzle by using different refinement levels for the probabilistic space
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in the case of the SI method and different polynomial order in the case of the
PC method, always keeping a uniform pdf for γ. In Table 5, the number of
samples required to reach a prescribed error ǫL2 is reported for each strategy.
The SI method needs fewer points in the stochastic space for a given level of
error.

Then, a discontinuous pdf is considered for the stochastic γ. It is interest-
ing to show the kind of innovative contribution the SI method can bring with
respect to the PC method (in its classical version). To this end, in Figure 7, the
standard deviation of Mach is reported along the nozzle when the discontinu-
ous pdf defined in equation (26) is considered. Note that choosing the relation
(26) to describe the random variable γ introduces no change whatsoever in the
application of the SI method while the PC method can no longer be used. The
standard deviation of the Mach number distribution computed for this discon-
tinuous pdf is plotted in Figure 7 for several levels of discretization refinement
in the probabilistic space: here again the result can be considered as almost
converged with no more than a 40-point discretization and fully converged with
a 80-point discretization. In Figure 8, the standard deviation of the Mach is
reported along the nozzle for the discontinuous pdf by using SI and MC-SOBOL
methods. The standard deviation distributions computed by means of the SI
and MC-SOBOL methods are coincident, even for the maximal standard de-
viation. The stochastic estimation remains globally very similar for the newly
proposed SI approach and the well-established MC-SOBOL method, which al-
lows to validate the SI method results for the case of a discontinuous pdf on γ.
Let us estimate the respective computational cost of SI, MC-SOBOL for this
case. In Table 6, the number of samples required to reach a prescribed error
in the L2 and L∞ norms is reported for the SI and MC-SOBOL methods. A
drastic reduction of the computational cost is obtained by using the SI method
with respect to MC-SOBOL solutions, again for that particular problem.

Next, a two-uncertainties stochastic problem is considered by assuming a
discontinuous pdf for γ and a uniform pdf for pe. In Figure 9, the standard
deviation of the Mach is reported along the nozzle for SI and MC-SOBOL. The
standard deviation distributions computed by means of SI and MC-SOBOL are
identical. As shown in Table 7, the SI method allows strongly reducing the
computational cost until six times with respect to MC-SOBOL method.

3.3 Viscous Burgers equation

In this section, we show how higher order reconstruction techniques affect the
accuracy of the numerical solution with respect to a reference analytical solution.
The aim is to check the inequality (24). Let us consider the viscous Burger’s
equation

1

2

∂u2

∂x
= ν

∂2u

∂x2
, (27)

where x ∈ [0, 1] and u(0) = 1 and u(1) = −1. We take

ν = 0.1 + 0.2
(

cos(2πω) + 1.
)

(28)

with a uniform ω ∈ [0, 1].
The computation is initialized by using u0 = 1 − 2x and run up to con-

vergence. For this equation, it is possible to compute exactly the solution
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uν(x) = tanh

(

x
2ν

)

and the associated variance.

Several probabilistic reconstructions have been used, here are our notations
for the Figures 10 and 11:

• O3 and centered five points: for the cell j, use the cells j − 2, j − 1, j + 1
and j + 2 (probabilistic indices).

• O2 and centered 3 points : for the cell j, use the cells j − 1 and j + 1
(probabilistic indices).

• ENO : ENO reconstruction using the cells j j − 1 and j + 1 for the cell j,

• O1 : use the cell j only.

The figure 10 displays the solution (with a zoom on the right) for ∆x = 1
41 ,

δω = 1
11 .

As expected higher is the formal accuracy, better are the results. In partic-
ular, the centered 3 points reconstruction gives the best results with respect to
the exact solution while the less accurate solution have been obtained by using
the first order reconstruction.

These behavior is confirmed by a convergence analysis, as shown in figure
11, where the L2 and L∞ norms of the variance have been reported for several
spatial resolutions. Remark that the error saturates (i.e. if δω is too large,
the main error is the spatial error), and this error decreases when ∆x decreases.
Finally, these results show how the statistics accuracy can be improved by using
an higher reconstruction order in the stochastic space.

3.4 Inviscid airfoil simulation.

We report this example not because the results have a real physical meaning
(the simulations are done with an Euler solver) but to show the versatility of the
method: the CFD solver is a second order Residual distribution scheme using
hybrid unstructured meshes, see e.g. [3, 4]. The geometry is that of a RAE
2822 airfoil. The mesh is quite coarse (3800 vertices). The inflow average Mach
number is M∞ = 0.8. The norm of velocity at infinity Uinf is random with a
fluctuation of ±2% around its average value. The pdf are uniform or Gaussian.
The Figure 12 displays the pressure coefficient.

4 Summary

This paper deals with the formulation of a semi-intrusive (SI) method allow-
ing the computation of statistics of linear and non linear PDEs solutions. This
method is said semi-intrusive because it requires only a limited amount of mod-
ifications in a deterministic flow solver to quantify uncertainty on the flow state
when the flow solver includes uncertain variables. Then, it can be considered as
very easy to implement in comparison with other intrusive methods, like as Poly-
nomial Chaos. This method shows to be very efficient to deal with probability
density function of whatsoever form, long-term integration and discontinuities
in stochastic space. Several test cases have been considered. First, a modified
version of the Kraichnan Orszag three-modes problem has been taken into ac-
count by considering a discontinuous pdf for the stochastic variable. This test
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is very challenging seeing that other intrusive methods well known in litera-
ture can suffer of long time integration problems even for uniform pdf. The SI
method displays good results and a drastic improvement in computational time
with respect to Monte Carlo solutions. Secondly, a stochastic nozzle flow has
been considered with discontinuous pdf again, where SI shows large reduction
of computational cost with respect to Monte Carlo solution. Then, SI has been
applied to solve the viscous Burgers equation with several probabilistic recon-
struction of stochastic space. As expected, higher order reconstruction allow to
reduce the error by using the same number of points in the stochastic space,
displaying the interest to use more accurate reconstruction in order to improve
numerical accuracy of statistic properties. The last example, aimed at showing
the versatility of the method, is a compressible flow simulation over an airfoil.

Let us emphasis that the results presented in this work have been obtained
by using always a uniform grid in the stochastic space without any kind of
adaptivity according to the probability density function, showing an interesting
potentiality for further improvements.

Adaptivity of the stochastic grid and the coupling with sparse-grid based
methods for multi-dimensional problems will be implemented in a future work.
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A Error estimate on the recovery step

In this section, we systematicaly identify the subsets Ωj ⊂ Ω to subsets of Rs

that are still denoted by Ωj . We pick one (arbitrary) point ωi in the convex
hull of ∪Ωl∈Si

Ωl that we denote by convex (Si). We first notice that the recon-
struction problem (9) keep the polynomials of degree less than p invariant, i.e.
given Y a polynomial of degree p, the unique P ∈ R [x1, · · · , xn] such that

E (X | Ωj) =

∫

Rn 1Ωj
(x1, · · · , xn)P (x1, · · · , xn) dµ̃

µ (Ωi)
for j ∈ Si
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holds true is P = X. Then following [9], if X is of class Cr with r ≥ p+ 1, we
have, in Ωi

X − P =

∫ 1

0

(1− t)pDp+1X(ωi + t(ω − ωi)) · (ω − ωi)
p+1dt.

Here, Dp+1X is the p+ 1-th derivative of X with repect to the random param-
eters.

Then, using the regularity of f , we take the expectancies and get

∣

∣E(f(X)|Ωi)− E(f(P )|Ωi)
∣

∣ ≤ max ||Dp+1X||∞E(||(ω − ωi)
p+1|| |Ωi).

In this inequality and from the results in [9], the point ωi, as well as ω belongs
to the convex hull of ∪Ωl∈Si

Ωl. Hence,

∣

∣

∣

∣

E(f(X))−E(f(P ))

∣

∣

∣

∣

≤ max ||Dp+1X||∞ max
Ωi

min
ωi∈convex(Si)

E(||(ω−ωi)
p+1|||Ωi).

(29)
We have thus the following result:

Proposition A.0.1. If X is of class Cr with r ≥ p+1 and if f is a real valued

function of class C1, then (29) holds true.

Remark A.1. A rough estimation of maxΩi
minωi∈convex(Si) E(||(ω−ωi)

p+1|||Ωi)
is

max
Ωi

min
ωi∈convex(Si)

E(||(ω − ωi)
p+1|||Ωi) ≤

(

diameter (convex
(

Si

)

)p+1

.

However, this estimate assumes implicitely that each event occur with more or

less the same probability. In the case of tails of probability, think of a Gaussian

for example, this estimate overestimate the weight of rare events. Hence (A.0.1)
contains more information than a rough estimate that is reminiscent of standard

interpolation.

B Some error estimates about the SI algorithm

We consider the example of an elliptic problem (O ⊂ R
n

−∇ ·
(

K(x, ω)∇u
)

= f(x, ω) x ∈ O, ω ∈ Ω
u = 0 on ∂O.

(30)

Again, Ω is the set of random variables. It is equipped with a family of mea-
surable sets and a measure µ. In (30), we assume that the problem is uniformly
coercive: there exist α0 > 0 independent of (x, ω) ∈ O × Ω such that for any
x ∈ R

n,

xT

(

K(x, ω)x

)

≥ α0||x||2.

We also assume that there exist a constant M independent of (x, ω) such that

∫

O

f(x, ω)2dx ≤ M.
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Under these assumptions, for any event ω, the solution of (30) belongs to H1
0 (O),

satisfies the variational principle: for any v ∈ H1
0 (O),

∫

O

∇vT
(

K(x, ω)∇u(x, ω)

)

dx =

∫

O

f(x, ω)v(x)dx,

and there exist a (uniformly) bounded operator A(ω) such that

u( . , ω) = A(ω)f( . , ω)

To make things easier, O is assumed to have a polygonal boundary. The
domain O is discretized by a conformal triangulation Th, and the approximation
space Vh is

Vh = H1
0 (O) ∩ {v continuous, v|T ∈ P

1(T )}
Then using the previous assumptions, there exist a constant C, independent of
Ω such that the numerical solution uh satisfies

||uh − u||2H1

0
(O) :=

∫

O

(

∇uh −∇u
)2
dx ≤ Ch2.

From this, we have

∫

O

(

∇E(uh|Ωi)−∇E(u|Ωi)

)2

dx =

∫

O

E
(

∇(uh − u|Ωi)
)2
dx

≤
∫

O

E

(

(

∇(uh − u)
)2|Ωi

)

dx by Cauchy- Schwartz inequality and E(1|Ωi) = 1

=

∫ (∫

O

(

∇(uh − u)

)2

dx

)

dµ(|Ωi) by Fubini

≤ Ch2

(31)

One can show similar error estimates on the L2 norm.
Unfortunately, one does not solve (30) in one shot, but with an iterative

method. Setting Un the vector of components un
j , the iterative method (for the

deterministic solver) writes

Un+1 = JUn + b

where the iteration matrix J will depend on the finite element space and the
matrix K. We assume here that ||J ||Lp < 1 uniformly in ω for some p. Let
us give the example of the Jacobi method. From the variational formulation of
(30), we have for any vertex

∑

j∈O

cij(ui − uj) = Fj (32)

with

cij =

∫

O

∇ϕT
i

(

K∇ϕj

)

dx, Fj =

∫

O

fϕi dx

where the ϕj are the standard piecewise linear shape functions. The Dirichlet
boundary conditions are automaticaly satisfied if the index j corresponds to
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interior nodes only. It is well known that for any i only a finite number of cij
are non zero, they correspond to the vertices j connected to i by an edge. Under
geometrical conditions, one can show that cij ≥ 0. In the case of the Jacobi
method, we have

Jij =

{

0 if j = i
cij∑
k
cik

else.

We have ||J ||∞ ≤ 1−α where α is independent of ω under standard assumptions
on the mesh. The right hand side b is given by bi = Fi/

∑

k cik. To study the
effect of this algorithm on the method, we see that with exact integration, we
would have

for all i, E(un+1
i |Ωk) =

∑

j

E(ciju
n+1
j |Ωk) + E(bi|Ωk).

This algorithm converges to E(ui|Ωk) where ui(ω) is the limit of the Jacobi
algorithm for ω frozen because the error enik = E(un

i |Ωk)− E(ui|Ωk) satisfies

en+1
i =

∑

j

E(Jije
n
j |Ωk)

and then

||E(en+1|Ωk)||L1 =
∑

j

|E((Jen)i|Ωk)| ≤ (1− α)||en||

since |E(enj |Ωk)| ≤ E(|enj | |Ωk).
In the case of approximate integration, the terms E(ciju

n
j |Ωk) are evaluated

by quadrature formula from a reconstruction of un as explained in the main
section of the paper. Since the number of j for which cij 6= 0 is bounded
above uniformly if the mesh is regular, we see that the error is bounded by
ǫℓ := C(u) ×maxΩi

minxi∈convex(Si) E(||(x − xi)
ℓ+1|||Ωi) where ℓ is the degree

of the polynomial reconstruction, ∆ω is the mesh size in the random direction
and C is a constant that depends on the regularity of ω 7→ uj(ω), see appendix
A. This means that

E(un+1
i |Ωk) =

∑

j

E(ciju
n
j |Ωk) + bj + ǫℓ.

From this we get estimates

E(||en+1||L1 |Ωk) ≤ (1− α)E(||en||L1 |Ωk) + Cǫℓ,

and then by induction

E(||en+1||L1 |Ωk) ≤ (1− α)nE(||e0||L1 |Ωk) + C

( n
∑

j=1

(1− α)j
)

ǫℓ.

This shows that numerical integration only add an C(u)×maxΩi
minxi∈convex(Si) E(||(x−

xi)
ℓ+1|||Ωi) error and explain the observation of section 3.3, though it is not the

same PDE.
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Figure 2: Variance of y1 computed by means of SI and MC-SOBOL methods.
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Figure 3: Variance of y1 computed by means of SI for different meshes in the
stochastic space.
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Figure 4: Variance of y1 computed by means of SI and MC-SOBOL methods.
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Figure 5: Variance of y1 computed by means of SI for different meshes in the
stochastic space.
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Figure 6: Nozzle flow with uncertain γ (uniform pdf). Computed mean dis-
tribution for the Mach number (left) and the static pressure (right) using the
semi-intrusive method with 10 points in the probabilistic space and the PC
method with a 10th order polynomial.
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Figure 7: Nozzle flow with uncertain γ (discontinuous pdf). Convergence study
for the standard deviation on the Mach number distribution computed using
the SI method.
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Figure 8: Nozzle flow with uncertain γ (discontinuous pdf). Standard deviation
for the Mach number distribution for MC-SOBOL and SI methods. Left : global
view; right : close-up on the shock region.
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Figure 9: Nozzle flow with uncertain γ (discontinuous pdf) and pe (uniform
pdf). Standard deviation for the Mach number distribution for MC-SOBOL
and SI methods. Left : global view; right : close-up on the shock region.
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Figure 10: For a fixed spatial resolution and a fixed “probabilistic” resolution,
comparison of the O3,O2,ENO and first order reconstructions. The exact vari-
ance is obtained from the exact solution with ∆x = 1/160 and ∆ω = 1/40.
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Figure 11: For the O3,O2,ENO and first order reconstruction, evaluation of
the (spatial) L2 and L∞ norms of the variance for the spatial resolutions of
∆x = 1/40, 1/80, 1/160. Left : L2 norm, right :L∞ norm
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Figure 12: Pressure coefficient of the deterministic solution with M∞ = 0.8,
and when a Gaussian or a uniform law is applied on the inflow velocity.
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Tables

Error level ǫL2 MC-SOBOL PC SI Error level ǫL∞ MC-SOBOL PC SI
10−1 20 12 5 10−1 75 24 24
10−2 240 19 10 10−2 520 37 36
10−3 2200 23 20 10−3 4500 85 82

Table 2: Number of samples required for the 1D K-O problem for time t ∈
[0, 10]. The errors are given in the L2 (left) and L∞ (right) norms.

Error level ǫL2 MC-SOBOL SI Error level ǫL∞ MC-SOBOL SI
10−1 35 7 10−1 60 15
10−2 250 160 10−2 450 240
10−3 2500 900 10−3 3500 1400

Table 3: Number of samples required for the 1D-discontinuous K-O problem for
time t ∈ [0, 50]. The errors are given in the L2 (left) and L∞ (right) norms.

Error level ǫL2 MC-SOBOL SI Error level ǫL∞ MC-SOBOL SI
10−1 160 81 10−1 400 170
10−2 10000 2500 10−2 18000 4000
10−3 300000 102400 10−3 400000 160000

Table 4: Number of samples required for the 2D-discontinuous K-O problem for
time t ∈ [0, 50]. The errors are given in the L2 (left) and L∞ (right) norms.
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Error level ǫL2 MC-SOBOL PC SI
10−1 5 6 5
10−2 24 19 10
10−3 70 59 40

Table 5: Number of samples required for the 1-uncertainty nozzle problem,
uniform pdf.

Error level ǫL2 MC − SOBOL SI
10−1 4 5
10−2 42 20
10−3 250 40

Table 6: Number of samples required for the 1-uncertainty nozzle problem,
discontinuous pdf.
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Error level ǫL2 MC-SOBOL SI
10−1 35 25
10−2 1000 400
10−3 20000 3600

Table 7: Number of samples required for the 2-uncertainties nozzle problem,
discontinuous pdf .

Algorithms

Algorithm 1 Flow chart for the deterministic scheme (7).

Initialize U0

for n:= 1 to nmax: Deterministic loop do

From Un, evaluate the relevant parameters V n for the solver ℑ,
Evaluate ℑ(V n) = Un+1.

end for

Algorithm 2 Flow chart for the system (15). The deterministic sequence are
underlined, they corresponds to the steps of the deterministic algorithm 1.

for j:=1 to jmax : Probabilistic loops do

Evaluate U0
j , the initial condition.

end for

for n := 1 to nmax: Deterministic loop do

for j:=1 to jmax : Probabilistic loops do

For each Ωi, evaluate the reconstruction polynomial R(Un)i(x, ω).
for jquad := 1 to jquadmax : Quadrature loop: do

Evaluate the relevant parameters V n
jquuad = R(Un)i(x, ωjquad)

Evaluate ℑ(V n
jquad) = Un+1

jquad .

end for

From the {Un+1
jquad}jquad , evaluate Un+1 from the quadrature formula (11).

end for

end for
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Algorithm 3 Flow chart for the system (15). The deterministic steps are
underlined

for n:= 1 to nmax: Deterministic loop do

for j:=1 to jmax : Probabilistic loops: do

for jquad := 1 to jquadmax : Quadrature loop: do

Reconstruct a piecewise polynomial un
jquad

(x) of un(x,X(ω)) in each
cell Ωj

for i := 1 to imax : Deterministic loop do

reconstruct a piecewise polynomial un
i,jquad of un

jquad(x) in each cell Ci

Compute fluxes F (un
i+1,jquad

, un
i,jquad

), . . . using deterministic solver

Control time step ∆tΩjquad

end for

end for

compute expectancies E(F (un
i+1, u

n
i )|Ωj), . . . using quadrature formula

update probabilistic time step ∆tΩj
= minΩjquad

(∆tΩjquad
)

end for

update total time step ∆t = minΩj
(∆tΩj

)
for j := 1 to jmax : Probabilistic loop do

for i := 1 to imax : Deterministic loop do

update values

un+1
i,j = un

i,j +
∆t

|Ci|

(

E(F (un
i+1, u

n
i )|Ωj)− E(F (un

i , u
n
i−1)|Ωj)

)

end for

end for

end for
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