Multi-Atlas Tensor-Based Morphometry and its Application to a Genetic Study of 92 Twins

Abstract : Here we develop a multi-template analysis for tensor-based morphometry (TBM) which aims to reduce error from the registration step. In conventional TBM, a single template is nonlinearly registered to all images in the study, and the deformation field statistics are computed from the transformations. Using an MRI dataset from 23 monozygotic and 23 dizygotic twin pairs, we instead registered each individual twin image to 9 additional brain templates using a Riemannian fluid algo- rithm [3]. Average deformation tensors from multiple registrations were computed within each image, using a log-Euclidean framework [1]. To quantify improvements as the number of registration templates increased from 1 to 9, sequential t-tests assessed the significance of any error re- duction, as each new template was added. For each number of templates, we also computed two tensor-derived metrics, and maps of the intraclass correlation of local volume differences, to evaluate any power advantages of multi-atlas TBM.
Type de document :
Communication dans un congrès
Xavier Pennec. 2nd MICCAI Workshop on Mathematical Foundations of Computational Anatomy, Oct 2008, New-York, United States. pp.48-55, 2008
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00632873
Contributeur : Alain Monteil <>
Soumis le : dimanche 16 octobre 2011 - 21:42:49
Dernière modification le : vendredi 30 mars 2018 - 14:46:01
Document(s) archivé(s) le : jeudi 15 novembre 2012 - 09:45:52

Fichier

mfca08_2_2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00632873, version 1

Collections

Citation

Natasha Leporé, Caroline Brun, Yi-Yu Chou, Agatha Lee, Marina Barysheva, et al.. Multi-Atlas Tensor-Based Morphometry and its Application to a Genetic Study of 92 Twins. Xavier Pennec. 2nd MICCAI Workshop on Mathematical Foundations of Computational Anatomy, Oct 2008, New-York, United States. pp.48-55, 2008. 〈inria-00632873〉

Partager

Métriques

Consultations de la notice

964

Téléchargements de fichiers

358