Skip to Main content Skip to Navigation
Journal articles

A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks.

Benoit Siri 1 Hugues Berry 2, 1 Bruno Cessac 3, 4, 5 Bruno Delord 6 Mathias Quoy 7
1 ALCHEMY - Architectures, Languages and Compilers to Harness the End of Moore Years
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
4 ODYSSEE - Computer and biological vision
DI-ENS - Département d'informatique de l'École normale supérieure, CRISAM - Inria Sophia Antipolis - Méditerranée , ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, ENPC - École des Ponts ParisTech
Complete list of metadatas

https://hal.inria.fr/inria-00633582
Contributor : Hugues Berry <>
Submitted on : Tuesday, October 18, 2011 - 9:37:50 PM
Last modification on : Tuesday, September 22, 2020 - 3:57:54 AM

Identifiers

  • HAL Id : inria-00633582, version 1

Citation

Benoit Siri, Hugues Berry, Bruno Cessac, Bruno Delord, Mathias Quoy. A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks.. Neural Computation, Massachusetts Institute of Technology Press (MIT Press), 2008, 20, pp.2937-2966. ⟨inria-00633582⟩

Share

Metrics

Record views

691