Numerical simulation of the general dynamic equation (GDE) for aerosols with two collocation methods

Abstract : This paper presents two algorithms for solving the general dynamic equation for aerosols. Coagulation and condensation are solved simultaneously without using splitting. The first method is based on a collocation method for size discretization and a Rosenbrock solver for time integration. In the second method, time discretization is first performed. This leads to a Volterra equation of first kind, which is solved with cubic splines. Both methods are compared to a reference solution for constant coagulation and linear condensation.
Type de document :
Article dans une revue
Applied Numerical Mathematics, Elsevier, 2007, 57 (8), pp.885-898. 〈10.1016/j.apnum.2006.08.002〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00633766
Contributeur : Nathalie Gaudechoux <>
Soumis le : mercredi 19 octobre 2011 - 12:54:14
Dernière modification le : vendredi 25 mai 2018 - 12:02:03

Identifiants

Citation

Edouard Debry, Bruno Sportisse. Numerical simulation of the general dynamic equation (GDE) for aerosols with two collocation methods. Applied Numerical Mathematics, Elsevier, 2007, 57 (8), pp.885-898. 〈10.1016/j.apnum.2006.08.002〉. 〈inria-00633766〉

Partager

Métriques

Consultations de la notice

220