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Figure 1: In this example, a caustic is created using a curved re�ector. We estimate conservative density estimation kernels
using frequency information. That permits to speed-up the convergence of the progressive photon mapping algorithm.

Abstract

We present an extension to Hachisukaet al.'s Progres-
sive Photon Mapping (orPPM) algorithm [Hachisuka et al.
2008] in which we estimate the radius of the density estima-
tion kernels using frequency analysis of light transport [Du-
rand et al. 2005]. We predict the local radiance frequency
at the surface of objects, and use it to optimize the size of
the density estimation kernels, in order to accelerate conver-
gence. The key is to add frequency information to a small
proportion of photons:frequency photons. In addition to
contributing to the density estimation, they will provide fre-
quency information.

1 Algorithm Overview

Our algorithm works as illustrated in Figure 2: First, we
ray tracehitpoints in the scene from the camera. Second,
we iteratively trace a proportion offrequency photonsand
”classical” photonsin the scene (Section 1.1). These fre-
quency photons are used to update the frequency estimate at
hitpoints(Section 1.2).

Figure 2: Our algorithm overview. The blue part repre-
sent the original progressive photon mapping algorithm, the
green part highlight our contributions.

Classical progressive photon mapping progressively reduces
the size of the density estimation kernel to cancel the bias
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of density estimation, at the expense of increasing variance.
However, if the radiance is smooth enough, this size can
be kept constant, and additional photons will only decrease
variance of the estimate. The role of frequency photons is
precisely to conservatively predict this phenomenon.

Consequently, we update the hitpoints' collecting size using
the following heuristic: if the kernel size of classical PPM
is greater than our prediction we decrease the radius just
as the standard progressive photon mapping method does.
Otherwise, we don't decrease the kernel size. We make this
process iterative by always using a �xed proportion of fre-
quency photons to update the desired size of all hitpoints.

1.1 Tracing Frequency Photons

Durand [2005] presents a Fourier analysis of the light trans-
port in 4D. For ef�ciency reasons, we assume the radiance
function to be isotropic in space and isotropic in angle, re-
ducing the dimensionality of the spectrum of the radiance
function to 2. We also approximate this spectrum by a
Gaussian̂l (
 x ; 
 � ) ' e� ( a 
 2

x +2 c
 x 
 � + b
 2
� ) whose com-

pact representation(a; b; c) is stored per photon and per hit-
point. Thea coef�cient denotes the spread in space of the
radiance spectrum (e.g. accounting for occlusions or tex-
tures), theb coef�cient denotes its spread in angle (e.g. due
to re�ectance properties), and thec coef�cient allows for
exact computation of the travel shear. At light sources, fre-
quency photons are initialized with(a; b; c) values corre-
sponding to the local radiance spectrum of the light source.
When a photon is traced in the scene, we update these co-
ef�cients for each light transport atomic operation (travel in
free space, partial occlusion, and re�ection). Indeed, each
of these atomic operation translates into a simple arithmetic
operator on(a; b; c). The derivation of the different opera-
tions are described in the appendix A.

Occlusion For occlusion detection, we precompute into a
regular voxel grid the distance between the closest occluder
and the voxels's centers. When testing for an occlusion



Figure 3: When testing for an
occlusion, we use a symmetrical
bi-cone approximating the nor-
mal distribution in the voxel. We
only have to test for the intersec-
tion between the bi-cone and the
ray's orthogonal plane.

along a ray, we ray march the voxel grid and test whether the
distance to the closest occluder is below a threshold holding
for locality. Once an occluder is found, we convolve the
photon's Gaussian with a Gaussian approximating the oc-
cluder's isotropic spectrum. For that aim, we assume that
the visibility function is a Gaussian of width equal to the
distance to the object.

Distinguishing re�ections When looking to voxels
close to a surface, the distance test is not able to distin-
guish between an occluding surface and a re�ecting one. To
avoid false positives in this scenario, we store an estimate
of the normals distribution inside each voxel as a symmet-
rical bi-cone, whose direction is the mean normal direction
and extent is the extent of the normals distribution. Dur-
ing occlusion detection, we test for the intersection between
the bi-cone and the plane orthogonal to the ray as shown in
�gure 3.

Frequency computation cost Since we need to update
only three variables(a; b; c) for each transport operation,
the cost overhead for frequency estimation if dominated by
the occlusion ray marching's cost. For a643 grid, we mea-
sured the time overhead to compute a frequency photon
around25%. Using no more than25% of frequency pho-
tons leads to a total overhead of6% in the photon tracing
computation.

Accumulating Frequency Information At each re�ec-
tion of a frequency photon we query for neighboring hit-
points and update each hitpoint's spectrum with the pho-
ton's spectrum if the latter falls in the hitpoint's kernel. We
update the hitpoint's coef�cients using its assigned(a; b; c)
coef�cients. To ensure a conservative frequency kernel size,
for each coef�cient, we take the max value across collected
frequency photons.

1.2 Updating the Hitpoint's Kernel Size

Figure 4: At pass
n, we update the
Gaussian using
the photons inside
the radius r n � 1

x of
the hitpoint x. We
then compute the
new spatial radius
using the updated
Gaussian in the
primal space.

To estimate the kernel size from the frequency estimation,
we take as new radius the min between the radii estimated
from the spatial and the angular frequencies. The spatial ra-
dius equals the abscissa corresponding to 95 percent of the
total energy of the Gaussian in ordinate:r x = �

p
a � 95% ,

where� 95% = � log (0:95). Figure 4 illustrate this equa-
tion.

Figure 5: To estimate the angular ra-
dius, we look at the case where the re�ec-
tion to the camera is along the normal di-
rection. Using the alternate angles law,
estimating the hitpoint's minimum radius
r � so that any contributive photon' an-
gular region [0; � 95% ] contain the pro-
jected camera point boils down to �nd-
ing the radius value using the same an-
gle � 95% from the projected camera. We
chose� 95% so that each photon's contri-
bution remains above95% of its max re-
�ected intensity.

The angular radius is conservatively estimated as the radius
such that the angle from the hitpoint's center to its border
viewed by the camera projected on the hitpoints's normal
equals the abscissa corresponding to 95 percent of the Gaus-
sian's energy ordinate in the primal space along the angular
direction: r � = tan

�
�

p
b � 95%

�
z, wherez is the distance

from the hitpoint center to the camera projected on the hit-
point's normal. We illustrate this equation in �gure 5.

2 Results

As shown in the �gure 6 our algorithm converges faster for
low frequency parts such as diffuse non-occluded regions
or indirectly lit diffuse regions. The frequency analysis en-
ables us to detect speci�c lighting situations, such as a caus-
tic's focus point, which corresponds to a frequency spectrum
with no energy along the angular axis. Figure 1 is an exam-
ple of a caustic produced by a curved re�ector. As expected,
the high frequency content in the spatial domain at the focus
point causes smaller reconstruction kernels.

Figure 6: In this �gure we compare against progressive
photon mapping with our algorithm for the convergence of
an indirectly lit part of the scene. In the closeup, we show
that our algorithm produces a lower varying estimate at an
earlier stage of its execution.The images where produced
using100:000photons per pass and25%of frequency pho-
tons to make timing comparable.

3 Ongoing works

Due to the presence of outliers mostly caused by occlusion
testing, our frequency estimation is somewhat conservative
in certain regions such as the diffuse part in the top of Fig-
ure 1. This leads to reduced convergence rate of the density



estimate compared to regions without outliers. One solution
to this issue would be the use of a histogram for the param-
eters(a; b; c) based on the photon contribution at a given
hitpoint. Such a method would exclude outliers, but would
require additional memory space per hitpoint.
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A Approximation of the Light�eld

We approximate the frequency light�eld function as a Gaus-
sian. It carries the occupation in the Fourier space of the
spectrum, with the knowledge of the spread of the Gaussian.
This is a crucial information since our goal is to determine
the minimum area around the central ray with no variation
of the primal function.

Since most of the light sources we handle are planar and
of a �xed size, their representation in the Fourier space is
approximatively a cardinal sinus. We can map a Gaussian on
the power spectrum of this function while preserving both
the energy and the predominant shape: the lobe. The �gure
7 shows the Gaussian application.
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(a) A simple 2D Gaussian
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(b) A sheared 2D Gaussian

Figure 7: In this setting the 2D-Gaussian capture the en-
velop of the signal. We keep track of this envelop by apply-
ing all operations to the Gaussian like the shear on the left
(b)

.

As we force the signal to be of a certain shape, this affect
the different operations it will undergo. We must then give
an analytical versions of each operator. For this, we model
the Gaussian using its polynomial:

G(
 x ; 
 � ) = Ee� ( a 
 2
x +2 c� 
 x 
 � + b
 2

� )

In the following lines, we present how we translated the dif-
ferent operations on the Gaussian model.

A.1 Light sources:

Based on the type of light sources, we �t the spatiala and
angularb coef�cients to ensure that the Gaussian matched
the local spectrum at the starting position.

A.2 Transport:

A travel in space is a shear in the Fourier space. It means
that the angular component of the function is shifted linearly
with respect to the spatial axis and to a factord: the distance
of the shear.

With a Gaussian, we update our three parameters using the
following equations:

a0 = a � 2cd + bd2

c0 = c � bd
b0 = b

A.3 Occlusion :

An occlusion in space is a convolution in Fourier space.
Soleret al. [2009] showed that it can be well approximated
using the following function as the occluder power spectrum
in the Fourier space:

f (
 x ; 
 � ) = � (
 x )
1


 �

We cannot use this model since the inverse function has an
in�nite bandwidth. Instead, we approximate the visibility
function as a zero centered Gaussian in the primal which
spread is the distance to the blocker. The associated Gaus-
sian in Fourier has a spread proportional to the inverse of
the primal one.

Using this approximation we can use the formula on cen-
tered Gaussians convolution to get the new coef�cients:

a0 =
a � aocc

a + aocc

c0 = c
b0 = b

A.4 Re�ection :

A re�ection on a surface is a complex operation. The most
important part of it is the multiplication of the signal by the
BRDF transform.

To compute the attenuation of the signal on the surface, we
need to project our orthogonal plane to the surface plane
(de�ne by the normal of the surface) and then apply the de-
formation of the surface (simpli�ed to a �rst order curvature
in Durandet al. [2005] model).

We use the local incoming angle to perform the
reparametrization to the tangent plane of the surface. We
only have to scale our signal bycos(� i ) in the spatial di-
mension.

a0 = a cos2(� i )
c0 = ccos(� i )
b0 = b

We assume here that the BRDF Fourier transform can be
mapped onto a Gaussian. With this assumption done, the
result of the operation is a multiplication by a 1D-Gaussian
in angle. That means we have a single addition to perform.



a0 = a
c0 = c
b0 = b+ bbrdf

Where the transform of the BRDF isF
�

brfd
	

(
 � ) =

e� bbrdf 
 2
� . We use the same notation as previously.

When the light leave the surface, we have to reparametrize
our light plane to the orthogonal plane of the ray. This is
done by scaling the power spectrum by1

cos( � o ) .

a0 =
a

cos2(� i )

c0 =
c

cos(� i )

b0 = b

For this transformation to be effective, we need to estimate
the parameterbbrdf . We used Ramamoorthiet al. [2004]
approach and converted all materials to frequency equiva-
lent Phong lobes.
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