Learning Hierarchical and Topographic Dictionaries with Structured Sparsity

Julien Mairal 1, * Rodolphe Jenatton 2, 3 Guillaume Obozinski 2, 3 Francis Bach 2, 3
* Auteur correspondant
3 SIERRA - Statistical Machine Learning and Parsimony
DI-ENS - Département d'informatique de l'École normale supérieure, ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, CNRS - Centre National de la Recherche Scientifique : UMR8548
Abstract : Recent work in signal processing and statistics have focused on defining new regularization functions, which not only induce sparsity of the solution, but also take into account the structure of the problem. We present in this paper a class of convex penalties introduced in the machine learning community, which take the form of a sum of l_2 and l_infinity-norms over groups of variables. They extend the classical group-sparsity regularization in the sense that the groups possibly overlap, allowing more flexibility in the group design. We review efficient optimization methods to deal with the corresponding inverse problems, and their application to the problem of learning dictionaries of natural image patches: On the one hand, dictionary learning has indeed proven effective for various signal processing tasks. On the other hand, structured sparsity provides a natural framework for modeling dependencies between dictionary elements. We thus consider a structured sparse regularization to learn dictionaries embedded in a particular structure, for instance a tree or a two-dimensional grid. In the latter case, the results we obtain are similar to the dictionaries produced by topographic independent component analysis.
Type de document :
Communication dans un congrès
Manos Papadakis and Dimitri Van De Ville and Vivek K. Goyal. SPIE Wavelets and Sparsity XIV, Aug 2011, San Diego, United States. SPIE, 8138, 2011, Proceedings of SPIE. 〈http://spiedigitallibrary.org/proceedings/resource/2/psisdg/8138/1/81381P_1〉. 〈10.1117/12.893811〉
Liste complète des métadonnées

Littérature citée [51 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00633983
Contributeur : Julien Mairal <>
Soumis le : jeudi 20 octobre 2011 - 01:37:52
Dernière modification le : jeudi 11 janvier 2018 - 06:23:26
Document(s) archivé(s) le : samedi 21 janvier 2012 - 02:22:09

Fichiers

wavelets.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Julien Mairal, Rodolphe Jenatton, Guillaume Obozinski, Francis Bach. Learning Hierarchical and Topographic Dictionaries with Structured Sparsity. Manos Papadakis and Dimitri Van De Ville and Vivek K. Goyal. SPIE Wavelets and Sparsity XIV, Aug 2011, San Diego, United States. SPIE, 8138, 2011, Proceedings of SPIE. 〈http://spiedigitallibrary.org/proceedings/resource/2/psisdg/8138/1/81381P_1〉. 〈10.1117/12.893811〉. 〈inria-00633983〉

Partager

Métriques

Consultations de la notice

331

Téléchargements de fichiers

347