
�>���G �A�/�, �B�M�`�B���@�y�y�e�j�9�8�k�k

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�B�M�`�B���@�y�y�e�j�9�8�k�k

�a�m�#�K�B�i�i�2�/ �Q�M �k�R �P�+�i �k�y�R�R

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�o�B�`�i�m���H �J���+�?�B�M�2 �_�2�b�Q�m�`�+�2 ���H�H�Q�+���i�B�Q�M �7�Q�` �a�2�`�p�B�+�2
�>�Q�b�i�B�M�; �Q�M �>�2�i�2�`�Q�;�2�M�2�Q�m�b �.�B�b�i�`�B�#�m�i�2�/ �S�H���i�7�Q�`�K�b

�>�2�M�`�B �*���b���M�Q�p���- �J���`�F �a�i�B�H�H�r�2�H�H�- �6�`�û�/�û�`�B�+ �o�B�p�B�2�M

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�>�2�M�`�B �*���b���M�Q�p���- �J���`�F �a�i�B�H�H�r�2�H�H�- �6�`�û�/�û�`�B�+ �o�B�p�B�2�M�X �o�B�`�i�m���H �J���+�?�B�M�2 �_�2�b�Q�m�`�+�2 ���H�H�Q�+���i�B�Q�M �7�Q�` �a�2�`�p�B�+�2
�>�Q�b�i�B�M�; �Q�M �>�2�i�2�`�Q�;�2�M�2�Q�m�b �.�B�b�i�`�B�#�m�i�2�/ �S�H���i�7�Q�`�K�b�X �(�_�2�b�2���`�+�? �_�2�T�Q�`�i�) �_�_�@�d�d�d�k�- �A�L�_�A���X �k�y�R�R�X �I�B�M�`�B���@
�y�y�e�j�9�8�k�k�=



appor t  
de recherche 

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
77

72
--

F
R

+
E

N
G

Distributed and High Performance Computing

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Virtual Machine Resource Allocation
for Service Hosting on

Heterogeneous Distributed Platforms

Henri Casanova — Mark Stillwell — Frédéric Vivien

N° 7772

October 2011





Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l'Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Virtual Machine Resource Allocation
for Service Hosting on

Heterogeneous Distributed Platforms

Henri Casanova, Mark Stillwell, Fréd́eric Vivien

Theme : Distributed and High Performance Computing
Équipe-Projet GRAAL

Rapport de recherche n° 7772 — October 2011 —44pages

Abstract: We propose algorithms for allocating multiple resources to competing services running in virtual
machines on heterogeneous distributed platforms. We develop a theoretical problem formulation and
compare these algorithms via simulation experiments based in part on workload data supplied by Google.
Our main �nding is that vector packing approaches proposed in the homogeneous case can be extended
to provide high-quality solutions in the heterogeneous case, and combined to provide a single ef�cient
algorithm. We also consider the case when there may be errors in estimates of performance-related resource
needs. We provide a resource sharing algorithm and prove that for the single-resource, single-node case,
when there is no bound on the error, its performance ratio relative to an omniscient optimal algorithm
is 2J � 1

J 2 , whereJ is the number of services. We also provide a heuristic approach for compensating for
bounded errors in resource need estimates that performs well in simulation.

Key-words: scheduler, virtual machines, heterogeneous vector bin packing, grid computing, cloud
computing



Allocation de ressources pour l'h́ebergement de services sur
machines virtuelles d́eployées sur plates-formes h́etérog�enes

distribu ées

Résuḿe : Nous proposons des algorithmes pour l'allocation des ressources aux services concurrents
s'exécutant dans des machines virtuelles déploýees sur des syst�emes h́et́erog�enes et distribúees. Nous
développons une formulation théorique du probl�eme et comparons les algorithmes proposés via des simula-
tions baśees en partie sur des traces mises�a disposition par Google. Notre principale conclusion est que les
approches debin packingvectoriel propośees pour le cas homog�ene peuvent̂etreétendues a�n de fournir
des solutions de qualité dans le cas h́et́erog�ene. Ces approches peuventégalement̂etre combińees entre
elles pour fournir un seul algorithme ef�cace. Nous considéronségalement le cas o�u les estimations des
besoins en ressources sont connus de mani�ere imparfaite. Nous montrons, quand il y a un unique nœud
et une unique ressource, et quand l'erreur maximale sur l'estimation des besoins en ressource n'est pas
borńee, que l'on peut d́e�nir un algorithme avec un facteur de compétitivité de2J � 1

J 2 , o�u J est le nombre de
services. Quand il existe une borne sur l'erreur maximale sur l'estimation des besoins, nous dé�nissons une
heuristique qui obtient de tr�es bonnes performances même en pŕesence de telles erreurs.

Mots-clés : ordonnancement, machines virtuelles, bin packing vectoriel hét́erog�ene



Resource Allocation on Heterogeneous Platforms 3

1 Introduction

The trend toward increasing use of virtual machine technology in the data center, both leading to and
reinforced by recent innovations in the private sector aimed at providing low-maintenance cloud computing
services, has driven a great deal of research into developing algorithms for automatic instance placement
and resource allocation on virtualized platforms [1,2], including our own previous work [3]. Most of this
research has assumed a platform consisting of homogeneous nodes connected by a fast local network, e.g., a
cluster. However, there is a need for algorithms that are applicable to heterogeneous platforms.

Heterogeneity comes about when collections of homogeneous resources formerly under different
administrative domains arefederated, leading to a set of resources that belong to one of several classes. This
is the case when federating multiple clusters at one or more geographical locations (e.g., grid computing,
sky computing). There is some concern that, in these scenarios, slow communication links between sites
could lead to degraded performance. However studies have shown that multi-cluster scheduling can improve
performance at the workload level, even for workloads that contain parallel applications with communicating
tasks [4]. The production cycle is also a common source of heterogeneity –when the time comes to purchase
new machines, it generally makes more economic sense to purchase a more powerful machine than was
used previously. An initially homogeneous platform thus can evolve to eventually comprise an arbitrary
number of different classes of machines. Finally, in budget shops or when a large collection of individually
owned (desktop) machines is assembled, one obtains a highly heterogeneous environment in which no two
machines may even share the same hardware speci�cation.

In this work we propose virtual machine placement and resource allocation algorithms that, unlike
previous proposed algorithms, are applicable to virtualized platforms that comprise heterogeneous physical
resources. More speci�cally, our contributions are:

• We give a formulation of the service placement and resource allocation problem in heterogeneous
virtualized platforms. This formulation is in fact more general, even for homogeneous platforms,
than our previously proposed formulation in [3], and allows for specifying minimum allocations of
arbitrary resources to satisfy Quality-of-Service (QoS) constraints.

• Using this problem formulation, we extend previously proposed algorithms to the heterogeneous case.
• We evaluate these algorithms via extensive simulation experiments, using statistical distributions of

application resource requirements based on a real-world dataset provided by Google. We �nd that
combining heterogeneous vector bin packing approaches leads to a practical and ef�cient solution.

• Most resource allocation algorithms rely on estimates regarding the resource needs of virtual machine
instances. We study the impact of estimation errors, propose different approaches to mitigate these
errors, and identify a strategy that works well empirically.

This paper is organized as follows. In Section2 we formalize the resource allocation problem. In
Section3 we provide an overview of our heuristic algorithms. We describe our experimental procedure
for evaluating these algorithms in Section4 and present the obtained results in Section5. In Section6 we
discuss the problem of scheduling in the presence of errors in estimated needs, and provide theoretical and
experimental results. Section7 discusses related work. Section8 concludes the paper with a summary of
our results and a discussion of future directions.

2 Problem Statement

We consider a service hosting platform composed ofH heterogeneous hosts, ornodes. Each node comprises
D types of different resources, such as CPUs, network cards, hard drives, or system memory. For each type
of resource under consideration a node may have one or more distinct resourceelements(e.g., a single real
CPU, hard drive, or memory bank). In this work we assume that all resource elements of the same type on a
given host are homogeneous. That is, we do not consider resources that comprise heterogeneous sub-units,
such as the Cell™ processor [5].

Services are instantiated within virtual machines that provide analogousvirtual elements. For some types
of resources, like system memory or hard disk space, it is relatively easy to pool distinct elements together
at the hypervisor or operating system level so that hosted virtual machines can effectively interact with only
a single larger element. For other types of resources, like CPU cores, the situation is more complicated.

RR n° 7772



Resource Allocation on Heterogeneous Platforms 4

These resources can be partitioned arbitrarily among virtual elements, but they cannot be effectively pooled
together to provide a single virtual element with a greater resource capacity than that of a physical element.
For example, with current technology, a virtual machine instance with 3 virtual processors can run on a
dual-core system with each of the virtual CPUs receiving 66.6% of the processing power of a single physical
CPU [6], but it is impossible to pool two physical CPUs together to provide a single virtual CPU that is
more powerful than the individual physical CPUs. For these types of resources, it is necessary to consider
the maximum capacity allocated to individual virtual elements, as well as the aggregate allocation to all
virtual elements of the same type.

Thus, each node is represented by an ordered pair ofD -dimensional vectors. Theelementary capacity
vector gives the capacity of a single element in each dimension while theaggregate capacityvector gives
the total resource capacity counting all elements. In practice, each value of the aggregate capacity vector
is expected to be an integer multiple of the corresponding value in the elementary capacity vector, but our
proposed approach does not rely on this assumption.

An allocation of resources to a virtual machine speci�es the maximum amount of each individual
element of each resource type that will be utilized, as well as the aggregate amount of each resource of each
type. Expectedly, an allocation is thus represented by two vectors, amaximum elementary allocationvector
and anaggregate allocationvector. Note that in a valid allocation it is not necessarily the case that each
value in the second vector is an integer multiple of the corresponding value in the �rst vector, as resource
demands may be unevenly distributed across virtual resource elements. For example, consider an application
that uses two virtual CPUs: The application consists of one CPU-bound process that can utilize 100% of a
physical CPU, and of one I/O-bound process that uses at most 10% of a physical CPU. The aggregate CPU
resource allocation needed to run this service without degrading performance would then be 110% (easily
achieved on a dual-core system), which is not an integer multiple of the maximum elementary resource
allocation of 100%.

When determining how much of each resource to allocate to a virtual machine it is necessary to consider
both the rigidrequirementsof the service as well as its �uidneeds. The requirements for servicej are
given by an ordered vector pair(r e

j ; r a
j ) that represents the resource allocation needed to run the service

at the minimum acceptable service level. If this requirement cannot be met, then resource allocation fails.
The needs of the service are given by a second ordered vector pair(ne

j ; na
j ) that represents theadditional

resources required to run the service at its maximum level of performance when it is by itself on a reference
machine. While in general the most sensible reference machine is the best one for running the service on the
target platform, this is not imposed. There are situations where it may make sense to set the needs based on
some other criteria: the system or pricing structure may impose maximum virtual machine allocations that
are less than the maximum of what is physically available, or it may be desirable to compare the relative
performance of the same workload across a variety of platforms.

In this formulation of the problem, rather than attempting to maximize the performance of individual
applications we choose to focus on maintaining an appropriate proportional allocation of resources, as
resource allocations are known to be transformable into higher level service objectives [7]. Toward this end,
we de�ne theyield of a service to be a value between 0 and 1, representing the relative performance of that
service. A service with an assigned yield of 0 would be running at the lowest acceptable rate of service for
a resource allocation to not be considered a failure, while a service with an assigned yield of 1 would be
running at the maximum performance possible on the reference machine. The allocation needed to run a
servicej with yield yj is then de�ned by the couple(r e

j + yj ne
j ; r a

j + yj na
j ). This linear correlation between

resource consumption levels in different dimensions is established in the literature [8] and easily justi�ed
for a wide class of applications. Benchmarking studies have validated the approach for scienti�c workload
applications [9].

We can now de�ne the service placement and resource allocation problem precisely:maximize the
minimum yield over all services. This amounts to making the least satis�ed service as satis�ed as possible,
thus promoting both performance and fairness. This objective is directly motivated by known results derived
in the context of stretch optimization [10,11]. In particular, it is well known that simply minimizing the
average stretch (and thus maximizing the average yield) is prone to starvation. For the single-node case
maximizing the minimum yield addresses the problem of fair-sharing of multiple resources, potentially
in the presence of multiple bottlenecks as discussed in Dolev et al. [8], though we choose to focus on

RR n° 7772



Resource Allocation on Heterogeneous Platforms 5

maximizing the performance of the most-penalized service, rather than ensuring that services receive their
fair share of bottleneck resources.

RAM

#1 #2 #3 #4

Node A: Node B:

#1

RAM

#1

0.8  3.2

1.0  1.0

elt   agg

CPU

RAM

1.0  2.0

0.5  0.5

elt   agg

CPU

RAM

0.5  1.0

0.5  0.5

requirements

0.5  1.0

0.0  0.0

needs

Service:

Resource allocation on

0.8  1.6

0.5  0.5

CPU

RAM

Node A:

1.0  2.0

0.5  0.5

CPU

RAM

Node B:

yield = (1.6 - 1.0) / 1.0 yield = 2.0 / 2.0

Figure 1: Example problem instance with two nodes and one service, showing two possible resource
allocations.

Figure1 illustrates the above for a simple example with two nodes and one service. Node A comprises 4
cores and a large memory. Its resource capacity vectors show that each core has elementary capacity 0.8
for an aggregate capacity of 3.2. Its memory has capacity 1.0, with no difference between elementary and
aggregate values because the memory, unlike cores, can be partitioned arbitrarily (e.g., no single virtual
CPU can run at 0.9 CPU capacity on this node). Node B has two cores, more powerful, cores, each of
elementary capacity 1.0, and a smaller memory. The service has a 0.5 elementary CPU requirement, and a
1.0 aggregate CPU requirement. For instance, it could contain two threads that must each saturate a core
with 0.5 capacity. The memory requirement is 0.5. The elementary CPU need is 0.5 and the aggregate is
1.0. The memory need is 0.0, meaning that the service simply requires a 0.5 memory capacity. The �gure
shows two resource allocations one on each node. On both nodes the service can be allocated the memory
it requires. If the service is placed on Node A, then the elementary requirements and needs can be fully
satis�ed as they are both 0.5 and this is less than the elementary allocation of 0.8. However, since the

RR n° 7772



Resource Allocation on Heterogeneous Platforms 6

aggregate capacity is 1.6 and the service has a CPU requirement of 1.0 that must be fully satis�ed in order
for the resource allocation to be successful, only 0.6 of the aggregate CPU capacity can be used to satisfy
needs and improve performance. As the aggregate CPU need is 1.0, the maximum yield possible for the
service with this allocation is0:6=1:0 = 0:6. On Node B, the service can fully saturate two cores, leading to
an aggregate CPU allocation of 2.0. The service's yield is then(2:0 � 1:0)=1:0 = 1:0. If there is only one
service to consider, then placing this service on Node B maximizes the (minimum) yield.

3 Algorithms

The minimum yield maximization problem de�ned in the previous section is NP-hard in the strong sense
via a straightforward reduction to vector-packing (in fact, the reduction to vector packing also denies the
existence of an asymptotic polynomial-time approximation scheme) [12]. We therefore seek heuristic
algorithms that work well in practice for a wide range of relevant scenarios.

3.1 Linear Program Formulation

Our problem can be framed as a linear program (LP) with both integer and rational variables, i.e., a Mixed
Integer Linear Program (MILP). Using0 � j < J to index the services,0 � h < H to index the nodes, and
0 � d < D to index the resource dimensions, we de�ne the following variables:ejh is set to1 if servicej
is placed on nodeh, or 0 otherwise; andyjh is the yield of servicej on hosth. We user e

jd (resp.r a
jd ) to

denote the elementary (resp. aggregate) resource requirement of servicej for resourced, ne
jd (resp.na

jd ) to
denote the elementary (resp. aggregate) resource need of servicej for resourced, andce

hd (resp.ca
hd ) to

denote the elementary (resp. aggregate) resource capacity of nodeh for resourced. Given these notations,
the constraints of the MILP are given by Equations1-7.

8j; h e jh 2 f 0; 1g; (1)

8j; h y jh 2 [0; 1]; (2)

8j
P H

h=1 ejh = 1 ; (3)

8j; h y jh � ejh (4)

8j; h; d e jh r e
jd + yjh ne

jd � ce
hd (5)

8h; d
P J

j =1 (ejh r a
jd + yjh na

jd ) � ca
hd (6)

8j
P H

h=1 yjh � Y (7)

Constraints1 and2 de�ne the ranges of the variables. Constraint3 states that a service must be placed
on exactly one node. Constraint4 states that a service has a non-zero yield only on the node on which it
is placed. Constraint5 states that the elementary resource capacities of the nodes are not overcome, and
Constraint6 states that the aggregate resource capacities of the nodes are not overcome. Finally, Constraint7
de�nes variableY as the minimum of the yields of all services. The optimization objective is thus to
maximizeY .

3.2 Exact and Relaxed Solutions

We have implemented a resource allocation problem solver that can use either the Gnu Linear Programming
Toolkit (GLPK) [13] or the IBM iLog CPLEX Optimization Studio [14] as back-end MILP solvers. Since
solving a MILP takes exponential time, for large instances we relax the problem by assuming that all
variables are rational. The MILP becomes a rational LP, which can be solved in polynomial time in practice.
The solution of the rational LP may be infeasible but has two important uses. First, the achieved minimum
yield is an upper bound on the solution of the MILP. Second, the rational solution may point the way toward
good feasible solutions as seen in the next section.

RR n° 7772



Resource Allocation on Heterogeneous Platforms 7

3.3 Algorithms Based on Relaxed Solutions

We propose two algorithms, RRND and RRNZ, that use a solution of the rational LP as a basis and then
round off rationaleij values. Due to licensing restrictions, we could not run large numbers of CPLEX
solvers. Consequently, we use the solutions produced by GLPK.

3.3.1 Randomized Rounding (RRND)

For each servicej (taken in an arbitrary order), this algorithm allocates it to nodeh with probabilityejh . If
the service cannot �t on the selected node because of memory constraints, then probabilities are adjusted
and another attempt is made. If all services can be placed in this manner then the algorithm succeeds. Such
a probabilistic approach has been used successfully in previous work [15].

3.3.2 Randomized Rounding with No Zero probabilities (RRNZ)

One problem with RRND is that a service,j , may not �t (in terms of resource requirements) on any of the
nodes,h, for whichejh > 0, in which case the algorithm would fail to generate a solution. To remedy this
problem, we �rst set each zeroejh value to� , where� << 1 (we use� = 0 :01). For those problem instances
for which RRND provides a solution RRNZ should provide nearly the same solution, but RRNZ should also
provide a solution for some instances for which RRND fails.

3.4 Greedy Algorithms

In general greedy algorithms operate by making a series of fast, locally-optimal decisions. They run quickly,
but may provide poor results for some problem instances. One way to deal with this issue is to run several
greedy algorithms and choose the best solutions from those computed. In our previous paper [3], in the
context of homogeneous platforms, we proposed a family of greedy algorithms that �rst sort the services
under consideration and then go through the list in sorted order, selecting the best node for each item by
various criteria. We considered the following service sorting strategies: S1: no sorting; S2: decreasing order
by maximum need; S3: decreasing order by sum of needs; S4: decreasing order by maximum requirement;
S5: decreasing order by sum of requirements; S6: decreasing order by the maximum of sum of requirements
and sum of needs; and S7: decreasing order by the sum of requirements and needs. We also proposed a
number of strategies for selecting a node from the set of those capable of running the current service: P1:
choose the node with the most available resource capacity in the dimension of maximum need; P2: choose
the node with the minimum ratio of sum of loads over all dimensions to sum of resource capacities over all
dimensions after service placement, P3: choose the node with the least remaining capacity in dimension
of largest requirement (best �t), P4: choose the node with the least aggregate available capacity (best �t),
P5: choose the node with the most capacity remaining in dimension of largest requirement (worst �t),
P6: choose the node with the most total available resource (worst �t), P7: choose the �rst node (�rst �t).
Each sorting strategy can be paired with any selection strategy to obtain a greedy algorithm, for a total of
7 � 7 = 49 combinations. Given that these49 algorithms can be executed quickly, we simply de�ne the
METAGREEDY algorithm which runs all 49 greedy algorithms and pick the solution that results in the
largest minimum yield.

3.5 Vector-Packing (VP) Algorithms

As has been noted in the literature, resource allocation is closely related to bin packing [16]. Bin-packing
can be extended to vector-packing [17], also called multi-capacity bin-packing by some authors [18], in
the case where multiple resource dimensions are under consideration. In our previous work we discussed a
straightforward method of applying any vector packing heuristic to our resource allocation problem with the
objective of maximizing the minimum yield: Since the amount of each resource that needs to be allocated to
a given service is �xed for a particular yield value, it is possible to determine whether or not a given heuristic
can �nd a solution for that yield value. Since we seek to maximize the minimum yield value, without loss of
generality we can assume that all services have the same yield. Thus, we perform a binary search for the

RR n° 7772



Resource Allocation on Heterogeneous Platforms 8

largest yield for which the heuristic can �nd a solution. We stop when the upper and lower bounds of the
binary search are within some threshold distance of each other (0:0001in our simulation experiments).

The largest source of dif�culty in designing vector-packing heuristics is that there is no single unam-
biguous de�nition of vector “size” or “order”. Any mapping from vectors to a scalar metric can be used,
and the use of different metrics must be evaluated in simulation as analytical comparison is typically not
feasible. We consider the following metrics: size of maximum dimension (MAX), sum of all dimensions
(SUM), ratio of maximum and minimum dimension (MAXRATIO), and the difference between maximum
and minimum dimensions (MAXDIFFERENCE). We also consider ordering the vectors lexicographically
(LEX), though the ordering of the dimensions is necessarily arbitrary. Some strategies may also specify
NONE, to leave items in their natural order and not attempt sorting. Since there are 5 mappings of vectors to
scalars under consideration that can be used to sort vectors in either ascending or descending order, and
one option to not sort vectors, we consider 11 distinct strategies for vector sorting. In general, we should
expect algorithms that sort items in decreasing order by size and bins in increasing order by capacity (e.g.,
algorithms that �rst try to put the largest items into the smallest bins) to have the best performance. For each
of the sorting options, we can now de�ne vector packing algorithms as follows.

3.5.1 First and Best Fit

Once the items are sorted using one of the sorting strategies, the First Fit algorithm places each item in this
order in the �rst bin in which it �ts using an arbitrary bin order. The Best Fit algorithms considers bins in
descending order of the sum of their loads across all dimensions.

3.5.2 Permutation-Pack and Choose-Pack

The Permutation-Pack and Choose-Pack heuristics for multi-capacity bin packing, also known as vector-
packing, were �rst proposed by Leinberger et al. [18] The basic strategy used by these algorithms is to
go bin-by-bin and select items that go against the current “capacity imbalance” in the �rstw most-loaded
dimensions. The idea behind this strategy is to keep a bin from becoming full in one dimension while it still
has remaining capacity available in other dimensions. The value ofw is called the “window size” for the
algorithm.

Let us useD to denote the number of dimensions of bin and item vectors. To select an item to put into
the current bin, the Permutation Pack algorithm ranks the dimensions of the current bin in ascending order
by their load and ranks the dimensions of each of the items in descending order by their size. The items
are then ordered by how well their dimension ranking matches against that of the current bin in the �rstw
dimensions. An item that has a permutation matching that of the bin will have its largest requirement in
the dimension where the load on the bin is smallest and its smallest requirement in the dimension where
the load on the bin is largest. The Choose Pack algorithm relaxes this ordering slightly and only considers
which dimensions �t within the window, but not their relative ordering. It should be noted that when the
window size is 1, the Permutation Pack and Choose Pack algorithms operate identically.

The implementation proposed by Leinberger et al. in [18] separates the items intoD ! lists–one for each
potential permutation of item dimensions imposed by ordering the dimensions in descending order by their
size. The items in these lists are further sorted by one of the vector sorting criteria discussed previously. For
each bin it selects items by going through these lists in a lexicographic order determined by the permutation
imposed on the bin dimensions by sorting them in ascending order by their current load. That is, it �rst
looks for an item in the list with a permutation matching that of the current bin. If no such item can be found
then it looks for an item in the list where the positions of the two least important dimensions are reversed.
This continues until an item that �ts in the current bin is found, with items whose dimensional permutation
is opposite of the current bin considered last. If the algorithm cannot �nd any item that �ts in the current bin,
then it moves on to the next one.

In the case thatD ! � J (i.e., for smallD ) the algorithm essentially makes multiple passes through all of
the items, selecting one to place in the current bin at each step, and so is orderO(J 2). For the case when
D! >> J , Leinberger et al. note that searching for the matching list can requireO(D !) operations; In fact, if
these permutations are not �rst mapped into an easily comparable set then each comparison of permutations
is anO(D) operation, potentially leading to an overall cost ofO(J 2 + JDD !) operations for this heuristic.

RR n° 7772



Resource Allocation on Heterogeneous Platforms 9

Their proposal to use a window to check only the �rst few, most important, dimensions reduces the cost of
the search toO(DD !=(D � w)!) , for an overall complexity ofO(J 2 + JDD !=(D � w)!) .

To reduce the high complexity of this algorithm, we have made the following improvement. Instead of
needlessly splitting the items intoD ! lists, many of which may be empty whenD is large, and checking
each list in order, we simply assign each item a sorting key by mapping its dimension permutation into the
permutation space de�ned by the bin's dimensional ordering, aO(JD ) operation. For example, consider a
bin with dimensional ordering is(4; 2; 3; 1) in a 4-dimensional case (meaning that its largest capacity is its
4th dimension, the next largest capacity is its 2nd dimension, etc.), and an item with ordering(3; 1; 4; 2)
(i.e., its largest requirement is its 3rd dimension, its next largest demand is its 1st dimension, etc.). The key
assigned to this item is then(3; 4; 1; 2) (the 1st dimension of the item ordering is the 3rd dimension of the
bin ordering, the 2nd dimension of the item ordering is the 4th dimension of the bin ordering, etc.). Once
these permutations are computed for each item, we simply chose the �rst item in the lexicographic order of
the permutations. In our example, an item with permutation(1; 2; 3; 4) would be perfectly �tted for the bin.
No sorting of the services is involved and a single scan through the list is necessary, orO(JD ) operations.
Thus, our implementation isO(J 2D), which is a signi�cant improvement whenD is large, orO(J 2w) if a
window is used.

3.5.3 METAVP

At each step of the binary search, this algorithm iteratively applies all of the above vector packing strategies
until a solution is found, including all of the options for sorting items–3 � 11 = 33 strategies overall for
each step of yield optimization. METAVP necessarily performs at least as well as all previously discussed
algorithms, but also has much longer run time.

3.5.4 Heterogeneous Vector-Packing (HVP) Algorithms

These algorithms explicitly consider the heterogeneity of the platform and try to sort the vector bins. The
Best-�t, Permutation-Pack algorithm is also modi�ed to consider total remaining capacity rather than total
load.

3.5.5 METAHVP

This algorithm tries all of the above heterogeneous bin-packing heuristics at each step of the binary search.
Since Best-Fit and Permutation-Pack can consider bins in sorted order, but Best-Fit imposes its own criteria
on bin selection, this is is11 + 2 � 11� 11 = 253 strategies overall. METAHVP necessarily performs at
least as well as any of the HVP algorithms, but its run time can be high.

4 Simulation Experiments

Though we provide a general framework capable of representing an arbitrary number of resource constraints,
in practice the two most important resources to consider are processing power (CPU) and memory. Often,
these are the only resources with consumption levels reported in log �les, and thus the only ones for which
it is possible to build reasonable statistical models of demand. These are also resources for which current
virtualization technology provides accurate performance throttling and isolation. For these reasons in
our simulation experiments we choose to focus on the two-dimensional problem with one CPU resource
dimension and a memory resource dimension.

In order to control the relative levels of node heterogeneity, rather than re�ecting the statistics of any
actual set of machines we draw aggregate CPU and memory capacities from a normal distribution with a
median value of0:5, limited to minimum values of0:001and maximum values of1:0. The coef�cient of
variation is varied from0:0 (completely homogeneous) to1:0. To generate consistent elementary capacities,
we assume that despite differences in total computational power all machines are quad core, and therefore
have CPU elements with1=4 the aggregate machine power.

To instantiate service resource requirements and needs, we use a production dataset provided by Google
Inc. [19]. As this dataset only provides information about the number of requested cores and the percentage

RR n° 7772



Resource Allocation on Heterogeneous Platforms 10

Table 1: Major Heuristics, ordered pairs of(YA;B ; SA;B ), with A given by the row and B by the column.
100 services

A/B RRND RRNZ METAGREEDY METAVP METAHVP
RRND (66.7%, -19.7%) (-41.8%, -22.2%) (-71.6%, -22.2%) (-71.6%, -22.2%)
RRNZ (-40.0%, 19.7%) (-69.7%, -2.5%) (-85.2%, -2.5%) (-85.3%, -2.5%)
METAGREEDY (71.7%, 22.2%) (230.3%, 2.5%) (-50.9%, 0.0%) (-51.0%, 0.0%)
METAVP (252.4%, 22.2%) (577.6%, 2.5%) (103.6%, 0.0%) (-0.2%, 0.0%)
METAHVP (252.4%, 22.2%) (578.9%, 2.5%) (104.0%, 0.0%) (0.2%, 0.0%)

250 services
A/B RRND RRNZ METAGREEDY METAVP METAHVP
RRND (76.9%, -41.3%) (-38.2%, -52.8%) (-73.3%, -52.4%) (-73.3%, -52.9%)
RRNZ (-43.5%, 41.3%) (-69.4%, -11.5%) (-86.5%, -11.1%) (-86.7%, -11.6%)
METAGREEDY (61.7%, 52.8%) (227.2%, 11.5%) (-55.4%, 0.4%) (-56.4%, -0.1%)
METAVP (273.9%, 52.4%) (643.0%, 11.1%) (124.3%, -0.4%) (-2.1%, -0.4%)
METAHVP (275.2%, 52.9%) (652.6%, 11.6%) (129.5%, 0.1%) (2.1%, 0.4%)

500 services
A/B RRND RRNZ METAGREEDY METAVP METAHVP
RRND (74.5%, -49.2%) (-32.7%, -59.6%) (-69.0%, -59.6%) (-69.3%, -59.6%)
RRNZ (-42.7%, 49.2%) (-62.8%, -10.4%) (-82.3%, -10.4%) (-83.0%, -10.4%)
METAGREEDY (48.6%, 59.6%) (168.6%, 10.4%) (-51.5%, 0.0%) (-54.1%, 0.0%)
METAVP (222.9%, 59.6%) (464.7%, 10.4%) (106.3%, 0.0%) (-5.2%, 0.0%)
METAHVP (226.0%, 59.6%) (489.1%, 10.4%) (117.7%, 0.0%) (5.5%, 0.0%)

of system memory used, we assume that aggregate CPU needs of services are proportional to the number of
requested cores, while elementary CPU requirements are equal to the same reference value for all services.

We consider scenarios with 64 hosts, 100, 250 and 500 services and coef�cient of variation values0:0 to
1:0 in increments of 0.025 For each scenario we generate 100 random instances, for a total of 12,300 base
instances. Each base instance is then use to generate a family of scaled problem instances with speci�ed
memory slack, de�ned at the fraction of total memory that would remain free in a successful resource
allocation. The memory slack is a value between0 and1 that quanti�es the hardness of the instance in terms
of memory bin packing, with a low value corresponding to a more dif�cult instance. We experiment with
slack values between0:1 and0:9, in 0:1 increments. We also scale CPU needs so that the sum of all service
CPU needs is equal to the sum of all CPU resources available.

5 Experimental Results

We evaluate a large number of algorithms over a large dataset, and these algorithms can vary both in terms
of how often they are able to �nd solutions to problem instances (success rate) and how good their solutions
are when found (minimum yield). It is thus dif�cult to provide a single metric that can be used as a basis for
determining an overall winner. For this reason we �rst perform pairwise comparisons of the algorithms using
the following metrics: (i)YA;B : the average percent minimum yield difference betweenA andB , relative
to the minimum yield achieved byB , computed on instances for which both algorithms succeed. (ii)SA;B :
the percentage of instances for whichA succeeds andB fails, minus the percentage of instances where
B succeeds andA fails; and For both measures, a positive value means an advantage ofA overB . Since
no single simple vector packing heuristic can perform as well as the aggregate METAVP and METAHVP
algorithms in terms of either failure rate or achieved minimum yield, for now we only consider the RRND,
RRNZ, METAGREEDY, METAVP, and METAHVP algorithms.

Pairwise comparisons of the major heuristics under consideration are given by Table1. Perhaps
surprisingly, RRND can lead to much better performance than RRNZ, but it has an extremely low success
rate relative to the other algorithms, so is dropped from further consideration. METAGREEDY widely
outperforms RRNZ both in terms of success rate and minimum yield, but is in turn beaten my METAVP.
The METAVP algorithm is itself outperformed by METAHVP.

While not large, the advantage of METAHVP over METAVP becomes more pronounced as the number of
services per node increases. METAVP solves 15,376 of the 36,000 100-service instances, while METAHVP

RR n° 7772



Resource Allocation on Heterogeneous Platforms 11

only solves 1 additional instance (METAVP does not solve any instances not solved by METAHVP).
METAHVP achieves yield values more than 0.002 greater than METAVP on 311 instances, while METAVP
beats METAHVP by the same margin on only 1. The average yield values on instances solved by both
algorithms are close together: 0.504 for METAHVP and 0.503 for METAVP. METAVP solves 30,596 of
the 36,900 250-service instances, while METAHVP solves an additional 162 instances (METAVP does not
solve any instances not solved by METAHVP). METAHVP achieves yield values at least 0.002 higher on
17,256 of those instances, while METAVP beats METAHVP by at least the same amount on 86 instances.
The average yield values on instances solved by both algorithms is larger (0.820 for METAHVP and 0.803
for METAVP). Both algorithms solve 36,844 of the 36,900 500-task instances (neither algorithm solves
any instances not solved by the other). METAHVP achieves yield values that are at least 0.002 higher on
28,680 of these instances, compared to the 44 where METAVP achieves a higher yield value by the same
margin. METAHVP achieves an average yield of 0.897, compare to 0.850 for METAVP. While there is no
commonly accepted target for virtual machines per node, 8 is probably reasonable in current production
platforms, which corresponds to our 500-service instances. Higher levels of consolidation are likely to be
expected, thus increasing the advantage of METAHVP over METAVP.

To gain more insight into our results, Figure2 shows results for instances with 500 services and a
memory slack of 0.3. Each data point(x; y) corresponds to one problem instance and one of RRNZ,
METAGREEDY, or METAVP.x is the coef�cient of variance of the CPU and memory capacities of the
nodes in the platform, andy is the difference between the achieved yield and that achieved by METAHVP.
Points on thex = 0 axis are for perfectly homogeneous platforms. Points below they = 0 axis correspond
to instances in which METAHVP does not achieve the best yield. Figure3 shows the same information
for problem instances where the CPU was held homogeneous (i.e., all servers have a CPU resource of 0.5),
while Figure4 does the same for memory. As expected based on our previous set of results, METAGREEDY
never outperforms METAHVP, and is generally worse than METAVP. RRNZ is never a contender and leads
to markedly poorer performance than the other algorithms on most instances, without ever outperforming
METAHVP. METAHVP is the best algorithm in all three �gures. The interesting observation is that while
METAVP performs close to METAHVP over a wide range of problem instances, its performance relative to
METAHVP decreases as the platform becomes more heterogeneous.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

m
in

im
um

 y
ie

ld
 d

iff
er

en
ce

coefficient of variation

RRNZ
METAGREEDY

METAVP

RRNZ (avg.)
METAGREEDY (avg.)

METAVP (avg.)

Figure 2: Difference in Achieved Minimum Yield from METAHVP vs Coef�cient of Variation on problem
instances with 64 hosts, 500 services, memory slack = 0.3

Table2 shows algorithm run times averaged over all instances. Expectedly, the RRNZ algorithm has
high run times because it solves a linear program (albeit rational). The main observation is that METAHVP
leads to higher run time than METAVP by a factor 3 on the average, requiring more than 6 seconds to solve
problem instances with 500 tasks. Recall that these results are for “only” 64 nodes. Given that production
cloud platforms comprise orders of magnitude more nodes, and thus hosts orders of magnitude more services,
using METAHVP in production systems is likely impractical. For example, METAHVP requires an average
of 134.52 seconds when run on a 2.27 Ghz Intel Xeon processor with 512 hosts and 2000 services.

RR n° 7772



Resource Allocation on Heterogeneous Platforms 12

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

m
in

im
um

 y
ie

ld
 d

iff
er

en
ce

coefficient of variation

RRNZ
METAGREEDY

METAVP

RRNZ (avg.)
METAGREEDY (avg.)

METAVP (avg.)

Figure 3: Difference in Achieved Minimum Yield from METAHVP vs Coef�cient of Variation on problem
instances with 64 hosts, 500 services, memory slack = 0.3, CPU held homogeneous

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

m
in

im
um

 y
ie

ld
 d

iff
er

en
ce

coefficient of variation

RRNZ
METAGREEDY

METAVP

RRNZ (avg.)
METAGREEDY (avg.)

METAVP (avg.)

Figure 4: Difference in Achieved Minimum Yield from METAHVP vs Coef�cient of Variation on problem
instances with 64 hosts, 500 services, memory slack = 0.3, Memory held homogeneous

Table 2: Algorithm run times in seconds when run on an Intel Xeon 2.27Ghz processor, averaged over all
instances.

Algorithm 100 tasks 250 tasks 500 tasks
RRNZ 4.855 45.782 270.245
METAGREEDY 0.014 0.061 0.154
METAVP 0.142 0.564 1.715
METAHVP 0.514 1.943 6.432

5.1 METAHVPLIGHT

Given the high run time of METAHVP, in this section we design a version of METAHVP called METAHVP-
LIGHT that includes only a subset of the HVP algorithms.

An exploration of our results shows that no single (small) group of algorithms emerges as a clear
winner, and in fact every single algorithm is best on some instances. To �lter out the worst performing

RR n° 7772



Resource Allocation on Heterogeneous Platforms 13

algorithms, we sorted the basic HVP algorithms �rst by success rate, then by average achieved minimum
yield. Looking at the top 50 algorithms for each dataset, some trends are clear. 1) The Best-Fit, First-Fit,
and Permutation-Pack approaches all perform well when paired with appropriate item and (except in the
case of Best-Fit) bin sorting strategies, and each outperforms the others on a small subset of the instances.
2) The descending by MAX, SUM, and MAXDIFFERENCE item sorting strategies are those used by most
of the high-performing algorithms, and MAXRATIO can also be a good item sorting strategy for some
algorithms. 3) The ascending by LEX (considering CPU needs before memory), MAX, and SUM bin
sorting strategies were unsurprisingly among the most successful, but also present were descending by MAX,
MAXDIFFERENCE, and MAXRATIO, and the option to not sort bins (NONE), which was somewhat of a
surprise.

From these observations we built a simple METAHVPLIGHT algorithm that uses essentially the same
procedure as METAHVP, but only considers the descending by MAX, SUM, MAXDIFFERENCE and
MAXRATIO item sorting strategies and the ascending by LEX, MAX, SUM, and descending by MAX,
MAXDIFFERENCE and MAXRATIO bin sorting strategies, as well as the option to not sort bins. This
reduces the number of heterogeneous vector packing heuristics considered at each step of yield optimization
from 253to 4 + 2 � 4 � 7 = 60.

We ran METAHVPLIGHT on all our problem instances and observed the following. Both METAHVP
and METAHVPLIGHT successfully solve the same set of 100-service instances (15,377 out of 36,900) and
achieve the same average minimum yield of 0.504. METAHVPLIGHT solves 30,737 of the 250-service
instances, and METAHVP solves an addition 21 instances that METAHVPLIGHT does not solve. On the
instances that both algorithms solve METAHVP achieves an average minimum yield value of 0.817 versus
0.814 for METAHVPLIGHT. Finally, both algorithms solve the exact same 36,844 (out of 36,900) 500-task
instances. On these instances both algorithms achieve an average minimum yield of 0.897 .

These results show that METAHVPLIGHT expectedly achieves slightly lower solution quality on a
few instances, but the overall performance is quite Importantly, its run time is drastically lower than that
of METAHVP. For instance, on the 512-node and 2000-service instance reported in the previous section,
METAHVPLIGHT runs in 15.25 seconds as compared to the 134.52 needed by METAHVP.

5.2 Results Conclusion

• Algorithms based on vector packing, known to work well in homogeneous settings, can be adapted to
handle heterogeneity and outperform linear programming and greedy approaches.

• These algorithms do much better than other approach for tightly constrained and highly heterogeneous
problem instances. No single algorithm, however, emerges as the best. This motivates a “brute-force”
approach that runs many of the algorithms and selects the best solution among those produced.

• The brute-force approach leads to unreasonably high times to solution, but one can engineer a “light”
algorithm that only runs a smaller subset of the base algorithms. This solution improves the runtime
by nearly a factor 10 while leading to solutions of sensibly equivalent quality.

6 The Effects of Error in CPU needs estimates

An important consideration for any scheduling algorithm is how well the resource requirements and needs
are known. Although some work has been done with regards to memory consumption [20], it is in general
dif�cult if not impossible to know all of a service's resource requirements before it is run. One option is
to rely on benchmark results for services that comprise the workload [21]. But any service that performs
data-dependent computations or reacts to a user-dependent workload will necessarily have variations in
moment-to-moment requirements each time it runs. CPU needs estimation in particular can be problematic,
as the use of this resource tends to be “noisy” and/or “spikey” and prone to varying over time [22].

An interesting question is, given a set of erroneous CPU need estimates, how do errors affect the
minimum yield achieved by our algorithms. In particular, how would our algorithms compare to a baseline
algorithm that assumes no knowledge of CPU needs? In the total absence of knowledge the best policy is
likely to distribute services as evenly as possible across the available nodes (as done in the “scheduling in

RR n° 7772



Resource Allocation on Heterogeneous Platforms 14

the dark” approach [23]) and then use a work-conserving scheduler that makes some effort to distribute
available cycles fairly (for some de�nition of fairness) among processes. It is common for modern virtual
machine CPU scheduling systems to offer a work-conserving mode in which processes are given access
to the CPU in proportion to administrator-assigned weights. For instance, two CPU intensive competing
virtual instances would be initially restricted to using at most 50% of the available CPU cycles, but if one of
the instances reduced its CPU consumption, then the other would be allowed to use the unused portion of
the CPU resource [6].

We propose an iterative algorithm for determining the CPU consumption of competing services when
their needs are not known precisely by the scheduler. First, each service is allocated a portion of the node
relative to its weight (e.g., if the weights of all currently active services sum up to 100, and a given service
is assigned a weight of 30, then it will initially be able to use up to 30% of the CPU). Any service with
actual needs that are less than or equal to its initial allocation is considered “satis�ed” and any portions of
the CPU that are left unused (because some services have needs strictly less than their initial allocation)
are pooled together and redistributed to remaining unsatis�ed services again by their weight. This process
continues until either all of the services are satis�ed or there is no more CPU available. We assume that CPU
allocations cannot be smaller than some epsilon (0:0001in our simulations) in order to avoid potentially
in�nite recursion. we consider three methods for allocating CPU (or other dynamic) resources to competing
tasks once they are assigned to a particular node. The �rst, ALLOCCAPS, simply assigns limitations on
CPU utilization based on the proportion required to maximize the minimum yield on the current node, given
known estimates of CPU utilization. The second, ALLOCWEIGHTS, uses the values computed to maximize
the minimum yield on the current node as weights, assuming the use of a work conserving scheduler. The
third, EQUALWEIGHTS, assumes a work-conserving scheduler as well, but simply assigns equal weights to
all competing services.

6.1 A Theoretical Result

It turns out that, for the EQUALWEIGHTS algorithm, one can quantify how far the obtained solution is from
the optimal, as stated in the following theorem.

Theorem 1. In the on-line minimum-yield maximization resource allocation problem for a single dimension,
EQUALWEIGHTS is 2J � 1

J 2 competitive in the worst case, and there is an instance that achieves exactly this
performance ratio.

Proof. Let f na
j gJ

j =1 be a one-dimensional set of aggregate service needs (we do not consider elementary
needs in this proof). By an abuse of notation, let us assume that the values in this set represent scalar values
rather than one-dimensional vectors. As the scheduler is work-conserving, for any resource allocation whereP J

j =1 na
j � 1, no service will have a yield of less than 1, therefore let us assume the opposite, that is,

P J
j =1 na

j > 1. Since the EQUALWEIGHTSalgorithm does not take needs into consideration when allocating
resources to unsatis�ed services, the services with the minimum yield will necessarily be those with the
maximum need. Let us denotêna = maxf na

j gJ
j =1 , and let̂j be an arbitrary service with need̂na . Clearly

na
ĵ

= n̂a > 1
J .

Case 1: All of the services in the system have needs of at least1
J . The allocation to the service with need

n̂a is thus 1
J and the minimum yield achieved by EQUALWEIGHTS is no less than 1

J n̂ a . The yield achieved
by the optimal algorithm is 1P J

j =1
n a

j

.

We compute the lower bound on the competitive ratio of EQUALWEIGHTS as follows:
1

J ^n a
1P J

j =1
n a

j

=

P J

j =1
n a

j

J n̂ a �
J � 1

J + n̂ a

J n̂ a �
J � 1

J +1
J = 2J � 1

J 2

Case 2: There is at least one service (clearly notĵ ) with a need of less than1J . Denote the fraction of the
resource consumed by services other thanĵ asS. As ĵ will consume at least1J of the resource,S � J � 1

J .
Since the scheduler is work conserving and the sum of the resource needs is greater than 1, it must be the
case that1 � S � n̂a . The allocation to the servicêj is thus1 � S and the minimum yield achieved by
EQUALWEIGHTS is 1� S

n̂ a . The lower bound on the ratio to the optimal is is thus:

RR n° 7772



Resource Allocation on Heterogeneous Platforms 15

1 � S
^n a
1P J

j =1
n a

j

= ( n̂ a + S)(1 � S)
n̂ a � (1 + S)(1 � S) = 1 � S2 � 1 � ( J � 1

J )2 = 2J � 1
J 2

A problem instance that achieves this ratio isna
1 = 1 , na

j = 1
J for j = 2 ; :::; J .

6.2 Error Experiments

Starting from the same data set as in Section5, we selected those problems with slack values of 0.2, 0.4, 0.6,
and 0.8 and COV values of 0.0, 0.5 and 1.0. We then speci�ed maximum error values from 0.0 to 0.3 in
increments of 0.02. For each of these problems and maximum error values we perturbed the CPU needs
by selecting values between the negative and positive maximum value from a uniform random distribution
and adding this error to the true total CPU needs (to a minimum of 0.001). Elementary CPU needs were
perturbed so as to maintain the same proportion with the aggregate needs are before the error was applied. It
should be noted that an average node in our simulations has an aggregate CPU power of 0.5. Services in the
100-service case have a mean CPU need of 0.317, while those in the 250-service case have a mean CPU
need of 0.127, and those in the 500-service case have mean CPU need of 0.063. Thus, errors can be large in
proportion to average service needs.

These modi�ed values were then used by the METAHVP algorithm to assign nodes and CPU allocations
to the services. After the services were mapped to nodes we assessed performance based on the following
criteria: 1) theexpectedyield for each, assuming the estimates had been completely correct; 2) the minimum
actual yield, if the output of METAHVP was used used to allocate CPU using the ALLOCCAPS algorithm;
3) the minimum actual yield, if the output of METAHVP was used as input to the ALLOCWEIGHTS

algorithm; and 4) the minimum actual yield, assuming that after services are assigned to nodes CPU
allocations were determined using the EQUALWEIGHTS algorithm.

Unsurprisingly, using the ALLOCCAPS algorithm is a losing proposition in the presence of errors, and
we found that it consistently leads to poor performance (worse than the zero-knowledge case) when the
error exceeded approximately 30% of the average service need (i.e., 0.08 in the 100-service case, 0.04 in
the 250-service case, 0.02 in the 500-service case). Initially, simply switching to the ALLOCWEIGHTS

or EQUALWEIGHTS algorithm can help for some instances, but the average-case performance of AL-
LOCWEIGHTS closely tracks that of ALLOCCAPS, while EQUALWEIGHTS gives initially worse results, but
can often remains better than zero-knowledge until the maximum error exceeds the average service need.

A likely reason for poor performance under these circumstances is underestimating the needs of relatively
small services. To combat this problem we propose rounding up the estimate of each CPU need to a minimum
threshold value. Estimates larger than this threshold are not affected. This allows the algorithm to use some
of the information about relative service sizes to make placement decisions, while effectively holding some
of the CPU resource in reserve in order to avoid penalizing those services that are the most vulnerable. This
strategy necessarily requires the use of ALLOCWEIGHTS or EQUALWEIGHTS rather than ALLOCCAPS to
be successful, as it can result in allocating small services more CPU than they need.

Figures5, 6 and7 plot the average minimum achieved yield vs. the maximum estimation error for
100-service, 250-service, and 500-services instances, respectively, on moderately heterogeneous platforms
(speci�ed coef�cient of variation = 0.5). Our results are broadly consistent across all datasets, and we point
the interested reader tohttp://perso.ens-lyon.fr/mark.stillwell/ipdps12/ , where the
rest of the graphs, as well as problem sets and raw results �les, are available.

The main conclusion from these results is that our proposed strategy is effective. Algorithms that must
contend with error cannot perform as well as the perfect-knowledge algorithm. But the key observation
is that our algorithms perform better than the zero-knowledge algorithm over a wide error range. As the
minimum threshold used by the algorithms increases, the sensitivity of the algorithm to increasing error
diminishes. That is, the curves becomes �atter, but the performance of the algorithm becomes worse on the
average, decreasing toward the zero knowledge case.

RR n° 7772



Resource Allocation on Heterogeneous Platforms 16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

m
in

im
um

 a
ch

ie
ve

d 
yi

el
d

maximum error

avg. ideal
avg. zero-knowledge

avg. weight, min = 0.00
avg. equal, min = 0.00

avg. weight, min = 0.10
avg. equal, min = 0.10

avg. weight, min = 0.30
avg. equal, min = 0.30

Figure 5: Achieved Minimum Yield from Baseline vs Maximum Speci�ed Error on problem instances with
64 hosts, 100 services, memory slack = 0.4, coef�cient of variation = 0.5; values given are averages over
successful instances.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

m
in

im
um

 a
ch

ie
ve

d 
yi

el
d

maximum error

avg. ideal
avg. zero-knowledge

avg. weight, min = 0.00
avg. equal, min = 0.00

avg. weight, min = 0.10
avg. equal, min = 0.10

avg. weight, min = 0.30
avg. equal, min = 0.30

Figure 6: Achieved Minimum Yield from Baseline vs Maximum Speci�ed Error on problem instances with
64 hosts, 250 services, memory slack = 0.4, coef�cient of variation = 0.5; values given are averages over
successful instances.

7 Related Work

Resource allocation for distributed cluster platforms is currently an active area of research, with application
placement [24], load balancing [1,25], and avoiding QoS constraint violations [26,27] being primary areas
of concern. Some authors have also chosen to focus on optimizing fairness or other utility metrics [28]. Most
of this work focuses on homogeneous cluster platforms, i.e., platforms where nodes have identical available
resources. Two major research areas that consider heterogeneity are embedded systems and volunteer
computing.

In the embeded systems arena, the authors of [29] also employ heterogeneous vector packing algorithms
for scheduling, with many of the underlying heuristics being similar to what we propose in this paper. This
work is not directly relevant as their solutions are tightly constrained by the data bus, and they consider
a narrower range of algorithms. They do show that bin packing by decreasing item size as measured by
maximum vector dimension is important.

Most of the existing theoretical research on multi-capacity bin packing has focused on the off-line
version of the problem with homogeneous bins. Epstein considers allowing a limited number of different

RR n° 7772



Resource Allocation on Heterogeneous Platforms 17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

m
in

im
um

 a
ch

ie
ve

d 
yi

el
d

maximum error

avg. ideal
avg. zero-knowledge

avg. weight, min = 0.00
avg. equal, min = 0.00

avg. weight, min = 0.10
avg. equal, min = 0.10

avg. weight, min = 0.30
avg. equal, min = 0.30

Figure 7: Achieved Minimum Yield from Baseline vs Maximum Speci�ed Error on problem instances with
64 hosts, 500 services, memory slack = 0.4, coef�cient of variation = 0.5; values given are averages over
successful instances.

classes of bins, though with the objective [30] of minimizing the total cost of the bins, which is a slightly
different problem. There are obvious connections to multiple-choice multi-dimensional vector bin packing
as explored by Patt-Shamir and Rawitz [31], but our version of the problem is more constrained since we
cannot choose the types of the available bins, and must also contend with elementary requirements and
needs. The authors of [32] consider a dynamic programming approach for when tasks fall into one of a �nite
number of types.

As stated previously, the problem of properly modeling resource needs is a challenging one, and it
becomes even more challenging with the introduction of error. To date we are not aware of other studies that
systematically consider the issues of errors in CPU needs estimates.

8 Conclusion

In this paper we have considered the problem of off-line resource allocation on heterogeneous platforms,
with the explicit goal of maximizing the minimum task performance. We have de�ned the problem to allow
for multiple resource dimensions and for discrete resource elements, such as CPUs, that cannot be pooled
together arbitrarily. We have provided a MILP that can be solved in a reasonable amount of time for small
instances, and heuristic algorithms that perform well in practice for solving larger problem instances. We
have also considered the problem of inaccurate CPU needs estimates, and developed an effective strategy
for minimizing the worst-case penalty imposed while still taking advantage of some of the improvements in
resource allocation offered by aggressive heuristic algorithms.

One next step in this research is to implement our METAHVPLIGHT algorithm in combination with
our strategy to mitigate estimate errors as part of the resource management component of an open cloud
computing infrastructure. This infrastructure, once deployed on a testbed, will allow for an evaluation of our
results with both synthetic and production workloads. One interesting problem will be to develop a method
for determining and adapting the threshold used to mitigate estimate errors.

Acknowledgment

Simulations presented in this paper were carried out using the Grid'5000 experimental testbed, being
developed under the INRIA ALADDIN development action with support from CNRS, RENATER and
several Universities as well as other funding bodies (seehttps://www.grid5000.fr ).

RR n° 7772



Resource Allocation on Heterogeneous Platforms 18

References

[1] M. Andreolini, S. Casolari, M. Colajanni, and M. Messori, “Dynamic load management of virtual
machines in a cloud architectures,” inCLOUDCOMP, 2009.

[2] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Agile dynamic provisioning of multi-tier
internet applications,”ACM TAAS, vol. 3, no. 1, pp. 1–39, 2008.

[3] M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova, “Resource allocation algorithms for
virtualized service hosting platforms,”JPDC, vol. 70, no. 9, pp. 962–974, 2010.

[4] S. Banen, A. I. Bucur, and D. H. Epema, “A measurement-based simulation study of processor
co-allocation in multicluster systems,” inJSSPP, 2003, pp. 184–204.

[5] A. Buttari, J. Kurzak, and J. Dongarra, “Limitations of the PlayStation 3 for high performance cluster
computing,” U Tenn., Knoxville ICL, Tech. Rep. UT-CS-07-597, Apr. 2007.

[6] D. Gupta, L. Cherkasova, and A. M. Vahdat, “Comparison of the three CPU schedulers in Xen,”ACM
SIGMETRICS Perf. Eval. Rev., vol. 35, no. 2, pp. 42–51, 2007.

[7] Y. Chen, S. Iyer, X. Liu, D. Milojicic, and A. Sahai, “Translating service level objectives to lower level
policies for multi-tier services,”Cluster Computing, vol. 11, no. 3, pp. 299–311, 2008.

[8] D. Dolev, D. G. Feitelson, J. Y. Halpern, R. Kupferman, and N. Linial, “No justi�ed complaints: On
fair sharing of multiple resources,” arXiv:1106.2673v1, Jun. 2011.

[9] Y. Becerra, D. Carrera, and E. Ayguadé, “Batch job pro�ling and adaptive pro�le enforcement for
virtualized environments,” inPDP, 2009, pp. 414–418.

[10] M. A. Bender, S. Chakrabarti, and S. Muthukrishnan, “Flow and stretch metrics for scheduling
continuous job streams,” inACM-SIAM SODA, 1998, pp. 270–279.

[11] A. Legrand, A. Su, and F. Vivien, “Minimizing the stretch when scheduling �ows of divisible requests,”
J. Scheduling, vol. 11, no. 5, pp. 381–404, 2008.

[12] G. J. Wöginger, “There is no asymptotic PTAS for two-dimensional vector packing,”IPL, vol. 64,
no. 6, pp. 293–297, 1997.

[13] “GLPK.” [Online]. Available: http://www.gnu.org/s/glpk/

[14] “CPLEX.” [Online]. Available:http://www.ilog.com/products/cplex/

[15] L. Marchal, Y. Yang, H. Casanova, and Y. Robert, “Steady-state scheduling of multiple divisible load
applications on wide-area distributed computing platforms,”Intl. J. HPC Apps., vol. 20, no. 3, pp.
365–381, 2006.

[16] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, “An application of bin-packing to multiprocessor
scheduling,”SIAM J. Computing, vol. 7, pp. 1–17, 1978.

[17] J. Csirik, J. B. G. Frenk, M. Labbe, and S. Zhang, “On multidimensional vector bin packing,”Acta
Cybernetica, vol. 9, no. 4, pp. 361–369, 1990.

[18] W. J. Leinberger, G. Karypis, and V. Kumar, “Multi-capacity bin packing algorithms with applications
to job scheduling under multiple constraints,” inICPP, 1999, pp. 404–412.

[19] “Google cluster data archive.” [Online]. Available:http://code.google.com/p/googleclusterdata/

[20] A. Batat and D. G. Feitelson, “Gang scheduling with memory considerations,” inIPDPS, 2000, pp.
109–114.

RR n° 7772



Resource Allocation on Heterogeneous Platforms 19

[21] B. Urgaonkar, P. Shenoy, and T. Roscoe, “Resource overbooking and application pro�ling in shared
hosting platforms,”ACM SIGOPS OS Rev., vol. 36, pp. 239–254, 2002.

[22] B. Abrahao and A. Zhang, “Characterizing application workloads on CPU utilization for utility
computing,” HP Labs, Tech. Rep. HPL-2004-157, Sep. 2004.

[23] J. Edmonds, “Scheduling in the dark,” inSTOC, 1999, pp. 179–188.

[24] J. Rolia, A. Andrzejak, and M. Arlitt, “Automating enterprise application placement in resource
utilities,” in DSOM, ser. LNCS, 2003, vol. 2867, pp. 118–129.

[25] H. Nguyen Van, F. Dang Tran, and J.-M. Menaud, “Autonomic virtual resource management for service
hosting platforms,” inICSE-CLOUD, 2009.

[26] M. Hoyer, Schr̈oder, and W. Nebel, “Statistical static capacity management in virtualized data centers
supporting �ne grained QoS speci�cation,” inE-ENERGY, 2010, pp. 51–60.

[27] V. Petrucci, O. Loques, and D. Mossé, “A dynamic optimization model for power and performance
management of virtualized clusters,” inE-ENERGY, 2010, pp. 225–233.

[28] D. Carrera, M. Steinder, I. Whalley, J. Torres, and E. Ayguadé, “Utility-based placement of dynamic
web applications with fairness goals,” inNOMS, 2008, pp. 9–16.

[29] J. E. Beck and D. P. Siewiorek, “Modeling multicomputer task allocation as a vector packing problem,”
in ISSS, 1996, pp. 115–120.

[30] L. Epstein, “On variable-sized vector packing,”Acta Cybernetica, vol. 16, pp. 47–56, 2003.

[31] B. Patt-Shamir and D. Rawitz, “Vector bin packing with multiple-choice,” arXiv:0910.5599, 2009.

[32] S. Baruah and N. Fisher, “A dynamic programming approach to task partitioning upon memory-
constrained multiprocessors,” inRTCSA, 2004.

[33] E-ENERGY, 2010.

Additional Graphs

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

m
in

im
um

 y
ie

ld
 d

iff
er

en
ce

coefficient of variation

Figure 8: Difference in Achieved Minimum Yield from METAHVP vs Coef�cient of Variation on problem
instances with 64 hosts, 100 services, memory slack = 0.1

RR n° 7772



Resource Allocation on Heterogeneous Platforms 20

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

m
in

im
um

 y
ie

ld
 d

iff
er

en
ce

coefficient of variation

Figure 9: Difference in Achieved Minimum Yield from METAHVP vs Coef�cient of Variation on problem
instances with 64 hosts, 100 services, memory slack = 0.2

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

m
in

im
um

 y
ie

ld
 d

iff
er

en
ce

coefficient of variation

METAGREEDY
METAVP

METAGREEDY (avg.)

METAVP (avg.)

Figure 10: Difference in Achieved Minimum Yield from METAHVP vs Coef�cient of Variation on problem
instances with 64 hosts, 100 services, memory slack = 0.3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

m
in

im
um

 y
ie

ld
 d

iff
er

en
ce

coefficient of variation

RRNZ
METAGREEDY

METAVP

RRNZ (avg.)
METAGREEDY (avg.)

METAVP (avg.)

Figure 11: Difference in Achieved Minimum Yield from METAHVP vs Coef�cient of Variation on problem
instances with 64 hosts, 100 services, memory slack = 0.4

RR n° 7772




















































	1 Introduction

