A New Closed-Form Information Metric for Shape Analysis

Abstract : Recently, a unifying framework was introduced for shape matching that uses mixture-models and the Fisher-Rao metric to couple both the shape representation and deformation. A fundamental drawback of the Fisher-Rao metric is that it is NOT available in closed-form for the mixture models making shape comparisons computationally very expensive. Here, we propose a new Riemannian metric based on generalized Á- entropy measures. In sharp contrast to the Fisher-Rao metric, our new metric is available in closed-form.
Type de document :
Communication dans un congrès
Xavier Pennec and Sarang Joshi. 1st MICCAI Workshop on Mathematical Foundations of Computational Anatomy: Geometrical, Statistical and Registration Methods for Modeling Biological Shape Variability, Oct 2006, Copenhagen, Denmark. pp.100-101, 2006
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00635898
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mercredi 26 octobre 2011 - 11:38:16
Dernière modification le : mercredi 26 octobre 2011 - 12:56:36
Document(s) archivé(s) le : dimanche 4 décembre 2016 - 15:50:03

Fichier

Peter_MFCA06.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00635898, version 1

Collections

Citation

Adrian Peter, Anand Rangarajan. A New Closed-Form Information Metric for Shape Analysis. Xavier Pennec and Sarang Joshi. 1st MICCAI Workshop on Mathematical Foundations of Computational Anatomy: Geometrical, Statistical and Registration Methods for Modeling Biological Shape Variability, Oct 2006, Copenhagen, Denmark. pp.100-101, 2006. 〈inria-00635898〉

Partager

Métriques

Consultations de la notice

80

Téléchargements de fichiers

112