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SIRALINA: Efficient two-steps heuristic for storage optimisation

in single period task scheduling

Karine Deschinkel and Sid-Ahmed-Ali Touati and Sébastien Briais
University of Versailles Saint-Quentin-en-Yvelines, France.

Abstract. In this paper, we study the general problem of one-dimensional periodic task

scheduling under storage requirement, irrespective of machine constraints. We have already

presented in (Touati and Eisenbeis, 2004) a theoretical framework that allows an optimal opti-

misation of periodic storage requirement in a cyclic schedule. Since our optimization problem

is NP-hard (Touati, 2002), solving an exact integer linear programming formulation is too

expensive in practice. In this article, we propose an efficient two-steps heuristic using model’s

properties that allows fast computation times while providing highly satisfactory results. This

method includes the solution of an integer linear program with a totally unimodular con-

straints matrix in first step, then the solution of a linear assignment problem. Our heuristic is

implemented for an industrial compiler for embedded VLIW processors.

Keywords: Cyclic Scheduling, Storage Requirement, Repetitive Tasks

1. Introduction

This article addresses the problem of storage optimisation in cyclic data de-

pendence graphs (DDG), which is for instance applied in the practical prob-

lem of periodic register allocation for innermost loops on modern Instruction

Level Parallelism (ILP) processors(Touati and Eisenbeis, 2004). The massive

introduction of ILP processors since the last two decades makes us re-think

better ways of optimising register/storage requirement in assembly codes be-

fore starting the instruction scheduling process under resource constraints.

In such processors, instructions are executed in parallel thanks to the ex-

istence of multiple small computation units (adders, multipliers, load-store

units, etc.). The exploitation of this fine grain parallelism (at the assembly

code level) asks to revisit the old classical problem of register allocation ini-

tially designed for sequential processors. Nowadays, register allocation has

not only to minimise the storage requirement, but has also to take care of

parallelism and total schedule time. In this research article, we do not assume

any resource constraints (except storage requirement); Our aim is to opti-

mise storage requirement (registers) with a fixed period value in a cyclic task

scheduling problem, or to minimise the period value given a bounded storage

requirement. Note that our problem of storage optimisation is abstract enough

to be considered in other scheduling disciplines that worry about conjoint

storage and time optimisation in repetitive tasks (manufacturing, transport,

networking, etc.).
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2 K. Deschinkel and S. Touati and S. Briais

This article is a continuation of our previous work on register allocation

(Touati and Eisenbeis, 2004). In that paper, we provided an exact model and

preliminary heuristics. Our previous heuristics were based on fixing reuse

arcs (to be explained later) then to minimise the storage requirement. This

way of approximating the exact model did not provide satisfactory results

because: 1) Starting by first fixing reuse arcs before minimising the storage

requirement seems an efficienct choice. 2) Although the reuse arcs are fixed,

the problem remains combinatorial. So the current paper is an abstraction of

our previous results on register optimisation. Furthermore, it extends it with a

new efficient polynomial heuristic with full experimental results and analysis.

Our article is organised as follows. Section 2 presents some related work

on the topic of register optimisation. Section 3 presents our task model and

notations. Section 4 recalls the problem of periodic task scheduling with stor-

age minimisation and writes an exact model with integer linear programming:

our detailed experimental results on the optimal solution of this problem

have been presented in (Touati and Eisenbeis, 2004; Touati, 2002). Since the

exact model is not practical (too expensive in terms of computation time),

our current article provides a new look by writing an efficient approximate

method in Section 5, that we call SIRALINA. Sometimes, for engineering or

copyright purposes, it is not allowed to have a linear solver inside a software.

Thus, it is necessary to have a full algorithmic method (not based on linear

programming). Consequently, we provide in Section 6 a network flow solu-

tion for SIRALINA. Before concluding, Section 7 presents the results of our

experimental evaluation of SIRALINA, providing practical evidence of its

efficiency and effectiveness.

Note that an initial version of this work has previously been published in

(Deschinkel and Touati, 2008), the current article is an extended journal ver-

sion: in addition to (Deschinkel and Touati, 2008), we provide more detailed

explanations, a min-cost solution for our linear problem, a publicly released

software and full experimental study on more than 9000 graph instances

extracted from well known benchmarks (LAO, MEDIABENCH, SPEC2000

and SPEC2006).

2. Related Work

Register allocation in optimising compilers for instruction-level parallelism

processors is an old important topic. Existing techniques in this field usu-

ally apply a periodic instruction scheduling under resource constraints that is

sensitive to register/storage requirement. Therefore a great amount of work

tries to schedule the instructions of a loop (under resource and time con-

straints) such that the resulting code does not use more than R values si-

multaneously alive. Usually they look for a schedule that minimises the stor-
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SIRALINA 3

age requirement under a fixed scheduling period while considering resource

constraints (Eichenberger et al., 1996; Fimmel and Muller, 2001; Janssen,

2001; de Dinechin, 1996). Some fundamental results that analyse the trade-

off between memory (register pressure) and parallelism in one-dimensional

cyclic instruction schedules are published in (Touati, 2007).

The problem of considering resource constraints in conjunction with regis-

ter constraints is the handling of spilling. Spilling is the process used when the

number of existing storage locations (registers) is not sufficient. Then, some

external additional storage (main memory) may be used by introducing new

tasks (instructions) to make such data transfers. When we combine register

constraints with resource constraints, spilling becomes a problem for which

no satisfactory solution exists until now: this is because spilling may dynam-

ically modify the DDG (by inserting new nodes) that is under scheduling

process. Consequently, it is not guaranteed that the inserted spilling tasks can

be scheduled under resource constraints, yielding to an iterative process of

spilling followed by scheduling. Furthermore, in some embedded systems,

spilling is not possible simply because no additional memory is present and

all program variables should reside inside local registers.

In our approach, based on the theoretical framework presented in (Touati

and Eisenbeis, 2004; Touati, 2002), we handle register constraints separately

from resource constraints for one main reason: to efficiently control the regis-

ter pressure in order to avoid spilling. In this paper, we satisfy register/storage

constraints before instruction scheduling under resource constraints: we di-

rectly handle and modify the DDG in order to limit the storage requirement

of any further subsequent periodic scheduling pass while taking care of not

altering parallelism exploitation if possible. This idea uses the concept of

reuse vector used for multi-dimensional scheduling (Strout et al., 1998; Thies

et al., 2001).

Our theoretical framework (Touati and Eisenbeis, 2004) defines what we

call a reuse graph. It is general enough to allow many variants for register

optimisation methods: for instance, a variant may correspond to a particular

shape of the reuse graph, or to a specific technique for computing it. It allows

to model buffer optimisation problem (Ning and Gao, 1993), as well as rotat-

ing register files (Rau et al., 1992). Later, these two variants have been studied

in (Touati and Eisenbeis, 2004) and will be compared to our new heuristic.

Compared to the existing work in the field of register optimisation on

innermost loops, as far as we know, our research result holds all the following

characteristics that are not present conjointly in previous articles:

1. We handle register optimisation independently of one-periodic task sched-

ules.

2. We consider explicit delay access to registers.
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4 K. Deschinkel and S. Touati and S. Briais

3. Proved polynomial heuristics based on both linear programming and min

cost network flow.

4. Full experiments on MEDIABENCH, LAO, SPEC2000 and SPEC2006

benchmarks, based on the rigorous performance evaluation methodology

recommended in (Jain, 1991).

5. Source codes and data will be delivered publicly in (Briais and Touati,

2009).

Our current contribution adresses the problem of register minimisation

in cyclic scheduling. There exists a dual problem called periodic register

saturation (Touati and Mathe, 2009). Periodic register saturation tackles the

problem of register maximisation instead of minimisation, which defines a

distinct mathematical problem. In (Touati and Mathe, 2009), we provided

the exact integer linear program that maximises the register requirement, but

we did not succeed in defining an efficient polynomial algorithmic heuris-

tic for cyclic register saturation. The current articles deals with an efficient

polynomial heuristic for register minimisation, not maximisation.

3. Tasks Model

Our tasks model is similar to (Hanen and Munier, 1995). We consider a set of

l generic tasks (instructions inside a program loop) T0, . . . , Tl−1. Each task

Ti is executed n times, where n is the number of loop iterations. n is an

unknown, unbounded, but finite integer. This means that each task Ti has n
instances. The kth occurrence of task Ti is noted T 〈i, k〉, which corresponds

to task i executed at the kth iteration of the loop, with 0 ≤ k < n.

The tasks (instructions) may be executed in parallel. Each task may pro-

duce a result that is read (i.e. consumed) by other tasks. The considered loop

contains some data dependences represented with a graph G(V,E) such that:

− V is the set of the generic tasks of the loop body, V = {T0, . . . , Tl−1}.

− E is the set of arcs representing precedence constraints (flow depen-

dences or other serialisation constraints). Any arc e = (Ti, Tj) ∈ E
has a latency δ(e) ∈ N in terms of processor clock cycles and a distance

λ(e) ∈ N in terms of number of loop iterations. The distance λ(e) means

that the arc e = (Ti, Tj) is a dependence between the task T 〈i, k〉 and

T 〈j, k + λ(e)〉 for any k = 0, . . . , n − 1 − λ(e).

When dealing with storage constraints, we must make a difference between

tasks and precedence constraints depending whether they refer to data to be

stored into registers or not:
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SIRALINA 5

− V R ⊆ V is the set of tasks producing data to be stored into registers.

− ER ⊆ E is the set of flow dependence arcs through registers. An arc e =
(Ti, Tj) ∈ ER means that the task T 〈i, k〉 produces a result stored into

a register and read (consumed) by T 〈j, k + λ(e)〉. The set of consumers

(readers) of a generic task Ti is then the set:

Cons(Ti) = {Tj ∈ V | e = (Ti, Tj) ∈ ER}

Note that a data dependence graph (DDG) is indeed a multi-graph; this means

that more than one arc may exist between two tasks. Figure 1 is an example

of a data dependence graph (DDG) where bold circles represent V R, the set

of generic tasks producing data to be stored into registers. Bold arcs represent

flow dependences (each sink of such arc reads/consumes the data produced

by the source and stored in a register). Tasks that are not in bold circles are

instructions that do not write into registers (write the data into memory or

simply do not produce any data to store). Non-bold arcs are other data or

precedence constraints different from flow dependences. Every arc e in the

DDG is labeled by the pair (δ(e), λ(e)).

(2,2)
(2,1)(1,0) (1,0)

(5,0)

iteration 0 iteration 1 iteration 2

(b) Loop Iterations and Instructions/Tasks Instances(a) Example of a DDG with Generic Tasks

is labeled withEach edge e

T3

T1

T 〈4, 0〉

T 〈3, 0〉T2

T4

T 〈1, 0〉

T 〈2, 0〉

T 〈4, 1〉 T 〈4, 2〉

T 〈2, 2〉 T 〈3, 2〉

T 〈1, 2〉T 〈1, 1〉

T 〈2, 1〉 T 〈3, 1〉

(δ(e), λ(e))

Figure 1. Example of Data Dependence Graphs with Repetitive Tasks

In our generic processor model, we assume that the reading and writing

from/into registers may be delayed from the starting time of task execution.

Let assume σ(T 〈i, k〉) ∈ N as the starting execution time of task T 〈i, k〉. We
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thus define two delay functions δr and δw in which:

δw : V R → N

Ti 7→ δw(Ti)| 0 ≤ δw(Ti)
the writing time of data produced by T 〈i, k〉
is σ(T 〈i, k〉) + δw(Ti)

δr : V → N

Ti 7→ δr(Ti)| 0 ≤ δr(Ti)
the reading time of the data consumed by T 〈i, k〉
is σ(T 〈i, k〉) + δr(Ti)

These two delays functions depend on the target processor and model al-

most all regular hardware architectures (VLIW, EPIC/IA64 and superscalar

processors).

In our task model, the number of task occurrences is unknown and un-

bounded. We could not easily consider any shape of scheduling functions,

even if they meet the precedence constraints defined above. We should only

look for periodic schedules since our aim is to generate a final compact

code (a loop). A periodic scheduling function σ is associated with a unique

integral period p (to be computed). The execution period p is integral and

common to all generic tasks because it simplifies the code generation of

the final loop. Other multi-dimensional periodic scheduling functions may

be employed (with multiple periods, or with rational periods), but at the

expense of an unbounded code size. In our scope, a periodic scheduling

function with a unique period p assigns to each generic task Ti an inte-

gral execution date for only the first task occurrence T 〈i, 0〉 that we denote

σi = σ(T 〈i, 0〉). The execution date of any other occurrence T 〈i, k〉 becomes

equal to σ(T 〈i, k〉) = σi+k×p. The classical periodic scheduling constraints

that should be satisfied by σ are:

∀e = (Ti, Tj) ∈ E : σi + δ(e) ≤ σj + λ(e) × p (1)

Classically, by adding all such inequalities over any circuit C of the DDG

G, we find that p must be greater than or equal to maxC

⌈∑

e∈C
δ(e)

∑

e∈C
λ(e)

⌉

, that we

will denote in the sequel as the absolute Minimal Execution Period MEP .

Computing MEP of a cyclic graph is a well known polynomial problem

(Hanen and Munier, 1995; Lawler, 1972): since a DDG is computed by a

dataflow analysis method, ı.e. by the compiler, and since a DDG represents

data dependences between the instructions of a program, the value of MEP
always exists and is of positive value.

The usual problem of periodic instruction scheduling looks for a sched-

ule with a minimal period which satisfies additional constraints (resources,

bounded storage requirement, etc.). In this article, we study the problem of
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SIRALINA 7

periodic scheduling under data dependence and storage constraints, explained

in the next section.

4. Recalls on the Exact Problem

In (Touati and Eisenbeis, 2004; Touati, 2002), we have introduced a graph

theoretical framework that allows us to bound the storage requirement of

any cyclic schedule of a DDG. This theoretical framework has multiple fun-

damental results on register allocation. In this section, we recall the notion

of reuse graphs. Then we show the exact integer linear model for our main

problem, that will be used later to provide an efficient heuristic.

4.1. REUSE GRAPHS

A simple way to explain and recall the concept of reuse graphs is to pro-

vide an example. For formal definitions and results, please refer to (Touati

and Eisenbeis, 2004; Touati, 2002). Figure 2(a) provides an initial DDG.

The tasks producing results to be stored inside registers are in bold circles.

Flow dependence through storage locations are in bold arcs. As an example,

Cons(T2) = {T1, T4}. Each arc e in the DDG is labeled with the pair of

values (δ(e), λ(e)). In this simple example, we assume that the delay of ac-

cessing registers is zero (δw = δr = 0). Now, the question is how to optimise

the storage requirement for the repetitive tasks in Figure 2(a).

Periodic storage allocation is modeled thanks to reuse graphs: our purpose

is to decide for storage location sharing, that is, which tasks share which

registers. An example of a reuse graph Greuse is given in Figure 2(b). A reuse

graph Greuse contains V R, i.e., only the nodes writing inside registers. These

nodes are connected by reuse arcs. For instance, in Greuse, there is a reuse

arc (T2, T4). Each reuse arc (Ti, Tj) is labeled by an integral distance µi,j .

The existence of a reuse arc (Ti, Tj) of distance µi,j means that the two task

instances T 〈i, k〉 and T 〈j, k +µi,j〉 share the same register as destination for

holding their respective results. Hence, reuse graphs allow us to completely

define a periodic storage allocation for a given DDG.

In order to be valid, reuse graphs should satisfy two main constraints

(Touati and Eisenbeis, 2004; Touati, 2002): 1) They must describe a bijection

between the nodes; that is, they must be composed of elementary and disjoint

circuits. 2) The associated DDG must be schedulable, i.e., it has at least one

valid cyclic schedule with a period p.

Now, let us describe what we mean by the DDG associated with a reuse

graph. Once a reuse graph is fixed, say the reuse graph in Figure 2(b), the

periodic storage allocation creates new scheduling constraints between tasks.

These new scheduling constraints result from the fact that some tasks share
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(1,0)

(3,2)
(3, 1)

(1,1)
(2,0)

(1,2)

(0,3)

(0,3)

(0,0)

(0,−1)

(a) Initial DDG (b) Example of a Reuse Graph

=3
=2

=3

(0,−2)

(0,−1)

(0,2)

(c) DDG with Killing Nodes (d) DDG Associated with Reuse Graph

K2

T3 T4

T2

T4T3

T1 T2

T1

T4T3

T1
K4

T2

K1

T4

T2

T1

µ1,1

µ2,4
µ4,2

K1

K2

K4

Figure 2. Reuse Graphs and DDG Associated to Them

the same storage unit (register). Since each reuse arc (Ti, Tj) in the reuse

graph Greuse describes a register sharing between T 〈i, k〉 and T 〈j, k + µi,j〉,
we must guarantee that T 〈j, k +µi,j〉 writes inside the same register after the

killing of the result of T 〈i, k〉. We say that the task of a result is killed when

all their consumers have already read that data, consequently it is no longer

necessary to hold it inside a register. Any last reader of a data is called as its

killer. If the DDG is already scheduled, then it is easy to compute the killing

date of each data (the killing date is the date when a date is killed, when it

is read by all the consumers). However, if the DDG is not already scheduled

as in our case, then the killing date is not known and hence we must be able

to guarantee the validity of the storage allocation for all possible periodic

schedules. This is done by creating the associated DDG with the reuse graph.

This DDG is an extension of the initial one, done in two steps:

1. Firstly, we introduce dummy nodes representing the killing dates of all

values (de Dinechin, 1996): the killing node Ki for a task Ti ∈ V R repre-

sents the virtual last consumer of Ti. The killing node Ki must always be

scheduled after all Ti’s consumers. Consequently, we add the set of arcs

{(Tj , Ki)|Tj ∈ Cons(Ti)}. Figure 2(c) illustrates the DDG after adding

all the killing nodes. For each added arc e = (Tj , Ki), we set its latency
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SIRALINA 9

to δ(e) = δr(Tj) and its distance to −λ, where λ is the distance of the

arc (Ti, Tj) ∈ ER. As explained in (Touati and Eisenbeis, 2004; Touati,

2002), this negative distance is a mathematical convention, it simplifies

our mathematical formula and does not influence the fundamental results

on reuse graphs.

2. Secondly, once all killing nodes are inserted, we are able to introduce

new reuse arcs resulted by periodic register allocation. For each reuse

arc (Ti, Tj) in Greuse, we add a reuse arc e = (Ki, Tj) in the associated

DDG. This added arc has a latency equal to δ(e) = −δw(Tj) and has a

distance equal to λ(e) = µi,j . Figure 2(d) illustrates the DDG associated

with the reuse graphs of Figure 2(b), where the introduced reuse arcs

are in dashed lines. The reader may notice that the critical circuits of the

DDG in Figure 2(a) and (d) are identical and equal to MEP = 4
2 = 2 (a

critical circuit is (T1, T2)).

As explained above, computing a reuse graph implies the creation of new

arcs with µ distances. We proved in (Touati and Eisenbeis, 2004; Touati,

2002) that if a reuse graph Greuse is valid, then it describes a periodic register

allocation with exactly
∑

µi,j registers. The reverse is also true: if a cyclic

schedule is fixed with a minimal
∑

µi,j , then it has been proved in (de Werra

et al., 1999) that a valid periodic register allocation exists with
∑

µi,j regis-

ters. Now the central storage optimisation problem is to compute a valid reuse

graph with a minimal
∑

µi,j , with a minimal period p = MEP . This is an

NP-hard problem (Touati, 2002). Minimising the storage requirement while

guaranteeing a minimal period p allows for instance to decide the number of

registers to put inside a processor. In some cases, the number R of available

registers has already been decided by processor designers. The problem be-

comes then to find a valid reuse graph such that
∑

µi,j ≤ R with a minimal

period. Our method becomes then iterative: we solve the following integer

linear problem for a fixed period (starting from p = MEP ) and we increment

it iteratively until we get
∑

µi,j ≤ R. If the value of the period hits an upper

limit p = L without having
∑

µi,j ≤ R, then we say that no solution is found

with R the number of available registers. Introducing spilling tasks to use an

external memory is outside the scope of our study. Note that a binary search

of p (between MEP and L) can also be used instead of an iterative search,

but upon the condition that
∑

µi,j must be minimal (Touati, 2007). This is

fortunately the case if we solve the exact integer formulation to optimality,

but may not be the case if we use a heuristic or an approximate solution. In

this situation, an iterative search on p is recommended.
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4.2. EXACT PROBLEM FORMULATION

This section recalls the exact integer linear model for solving the problem of

periodic scheduling with storage minimisation. It is built for a fixed desired

period p ∈ N.

4.2.1. Basic Variables

− A schedule variable σi ∈ N for each task Ti ∈ V , including σKi
for each

killing node Ki. We assume a finite upper bound L for such schedule

variables (L sufficiently large, for instance L =
∑

e∈E δ(e)); As our

scheduling is periodic, we only consider the integer execution date of

the first task occurrence σi = σ(T 〈i, 0〉) and the execution date of any

other occurrence T 〈i, k〉 becomes equal to σ(T 〈i, k〉) = σi + k × p.

− A binary variable θi,j for each pair of tasks (Ti, Tj) ∈ V R × V R. It is

set to 1 iff (Ti, Tj) is a reuse arc;

− A reuse distance µi,j ∈ N for each pair of tasks (Ti, Tj) ∈ V R × V R;

4.2.2. Linear Constraints

− Data dependences

The schedule must at least satisfy the precedence constraints defined by

the DDG.

∀e = (Ti, Tj) ∈ E : σj − σi ≥ δ(e) − p × λ(e) (2)

− Flow dependences

Each flow dependence e = (Ti, Tj) ∈ ER means that the task oc-

currence T 〈j, k + λ(e)〉 reads the data produced by T 〈i, k〉 at time

σj +δr(Tj)+(λ(e)+k)×p. Then, we must schedule the killing node Ki

of the task Ti after all Ti’s consumers. ∀Ti ∈ V R, ∀Tj ∈ Cons(Ti)|e =
(Ti, Tj) ∈ ER :

σKi
≥ σj + δr(Tj) + p × λ(e) (3)

− Storage dependences

There is a storage dependence between Ki and Tj if (Ti, Tj) is a reuse

arc. ∀(Ti, Tj) ∈ V R × V R :

θi,j = 1 =⇒ σKi
− δw(Tj) ≤ σj + p × µi,j

This involvement can result in the following inequality: ∀(Ti, Tj) ∈
V R × V R,

σj − σKi
+ p × µi,j + M1 × (1 − θi,j) ≥ −δw(Tj) (4)
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SIRALINA 11

where M1 is an arbitrarily large constant.

If there is no register reuse between two tasks Ti and Tj , then θi,j = 0
and the storage dependence distance µi,j must be set to 0 in order to not

be accumulated in the objective function.

∀(Ti, Tj) ∈ V R × V R : µi,j ≤ M2 × θi,j (5)

where M2 is an arbitrarily large constant.

− Reuse Relations

The reuse relation must be a bijection from V R to V R. A register can be

reused by one task and a task can reuse one released register:

∀Ti ∈ V R :
∑

Tj∈V R

θi,j = 1 (6)

∀Tj ∈ V R :
∑

Ti∈V R

θi,j = 1 (7)

4.2.3. Objective Function

As proved in (Touati and Eisenbeis, 2004), the storage requirement has a

reachable upper limit equal to
∑

µi,j . In our periodic scheduling problem,

we want to minimise the storage requirement:

Minimise z =
∑

(Ti,Tj)∈V R×V R

µi,j

Using the above integer linear program to solve our NP-hard problem is

not efficient in practice. With a classical Branch and Bound method, we are

only able to solve small instances (DDG sizes), in practice around 12 nodes.

For this reason, we suggest to make use of the problem structure to propose

an efficient heuristic as follows.

5. SIRALINA : A Two Steps Heuristic

Our solution strategy is based on the analysis of the model constraints. As the

problem involves scheduling constraints and assignment constraints, and the

reuse distances are the link between these two sets of constraints, we attempt

to decompose the problem into two sub-problems :

− A schedule problem : to find a scheduling for which the potential reuse

distances are as small as possible.
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− An assignment problem : to select which pairs of tasks do share the same

register.

5.1. PRELIMINARIES

If a pair of tasks (Ti, Tj) ∈ V R×V R represents a reuse arc, its reuse distance

must satisfy the inequality given by (4), where θi,j = 1. This inequality gives

a lower bound for each reuse distance. If (Ti, Tj) ∈ V R × V R is a reuse arc

(Ereuse denotes the set of reuse arcs) then :

∀(Ti, Tj) ∈ Ereuse, µi,j ≥
1

p
(σKi

− δw(Tj) − σj) (8)

If (Ti, Tj) ∈ V R × V R is not a reuse arc then µi,j = 0 according to the

inequality (5).

∀(Ti, Tj) /∈ Ereuse : µi,j = 0

The aggregation of constraints (8) for each reuse arc provides a lower bound

of the objective function value

z =
∑

(Ti,Tj)∈V R×V R

µi,j ≥
1

p
(

∑

(Ti,Tj)∈Ereuse

σKi
− δw(Tj) − σj)

As the reuse relation is a bijection from V R to V R, the sum in the right hand

side of the above inequality can be separated into two parts as follows:
∑

(Ti,Tj)∈Ereuse

σKi
− δw(Tj) − σj

=
∑

i∈V R

σKi
−

∑

j∈V R

(δw(Tj) + σj)

=





∑

i∈V R

σKi
−

∑

j∈V R

σj



 −
∑

j∈V R

δw(Tj)

We deduce from this inequality a lower bound on the number of required

registers. In this context, it may be useful to find an appropriate schedule

for which this value is minimum. As
∑

j∈V R δw(Tj) is a constant for the

problem, we can ignore it in the following optimisation problem. We consider

the schedule problem (P):















min
∑

i∈V R σKi
−

∑

j∈V R σj

subject to :

σj − σi ≥ δ(e) − p × λ(e), ∀e = (Ti, Tj) ∈ E
σKi

− σj ≥ δr(Tj) + p × λ(e), ∀e = (Ti, Tj) ∈ ER

(9)
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The constraints matrix of System (9) is clearly an incidence matrix (Schri-

jver, 1987) of the DDG augmented with killing nodes (see Figure 2(c)). The

number of integer variables is O(|V |) and the number of linear constraints

is O(|E|). Since it is an incidence matrix, System (9) is totally unimodular,

i.e., the determinant of each square sub-matrix is equal to 0 or to ± 1. Con-

sequently we can use polynomial algorithms to solve this problem (Schrijver,

1987). For instance, the ellipsoid method can compute the optimal feasible

integral solution in O(|V |3(|V |2 + |E|)). However, in practice, the simplex

method can also be applied for totally unimodular constraints matrix, since it

computes optimal values σ∗
i for each task Ti ∈ V R and the optimal values

σ∗
Ki

for each killing node Ki. While it is a pseudo-polynomial method in

theory, it is really fast in practice (a well known observation). We will confirm

this fact later in our experimental section, and we will show that it is even

faster than a polynomial network-flow implementation.

Once the scheduling variables have been fixed, the minimal value of each

potential reuse distance would be equal to µi,j = ⌈
σ∗

Ki
−δw(Tj)−σ∗

j

p
⌉ according

to inequality (8). Knowing the reuse distance values µi,j if Tj reuses the

register freed by Ti, the storage allocation which consists of choosing which

task reuses which released register can be modeled as a linear assignment

problem. We consider the linear assignment problem (A):



























min
∑

(Ti,Tj)∈V R×V R µi,j × θi,j

Subject to
∑

Tj∈V R θi,j = 1, ∀Ti ∈ V R

∑

Ti∈V R θi,j = 1, ∀Tj ∈ V R

θi,j ∈ {0, 1}

(10)

where µi,j is a fixed value for each arc e = (Ti, Tj) ∈ V R × V R.

5.2. SUMMARY OF SIRALINA HEURISTIC

Given a fixed period p, we suggest to solve the storage minimisation problem

with the following heuristic:

− Solve the problem (P) to deduce the optimal values σ∗
i for each task

Ti ∈ V R and the optimal values σ∗
Ki

for each killing node Ki.

− Compute the cost µi,j =

⌈

σ∗

Ki
−δw(Tj)−σ∗

j

p

⌉

for each pair of tasks (Ti, Tj) ∈

V R × V R.

− Solve the linear assignment problem (A) with the Hungarian algorithm

(Kuhn, 1955) which solves assignment problems in polynomial time

(O(|V R|3)) to deduce the optimal values θ∗i,j .
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14 K. Deschinkel and S. Touati and S. Briais

− If θ∗i,j = 1 for the pair (Ti, Tj) ∈ V R × V R, then (Ti, Tj) becomes a

reuse arc with a reuse distance equal to µi,j = µi,j .

This section presented a two steps heuristic for the storage minimisation

problem with a fixed period p. The first step requires to solve a linear program.

However, in practice, some compilers are not allowed to embed a linear solver

for engineering or copyright reasons. So, it is important to provide appropriate

algorithms that we can implement independently of a linear solver. The next

section shows how to write our schedule problem as a network flow problem

in order to use an algorithmic method.

6. Network Flow Formulation of SIRALINA

The first step of SIRALINA solves the schedule problem (P), a problem of

linear programming to get the values for the σ variables and potential values

for the µ variables. The second step executes the Hungarian algorithm to get

the assignment of reuse arcs. The second method is already an algorithmic

one, we focus in this section on writing an algorithmic method for the first

step only. For the purpose of this section, we note by Ek the set of all arcs

going from consumers to killing nodes:

Ek = {e = (Tj , Ki)|Tj ∈ Cons(Ti)}

Let us consider the schedule problem (P) formally written by System (9). In

order to write the dual problem of (P), let name the right hand sides of the

inequalities:

a(e) = δ(e) − p × λ(e), ∀e = (Ti, Tj) ∈ E
b(e) = δr(Tj) + p × λ(e), ∀e = (Tj , Ki) ∈ Ek

For the purpose of writing the dual problem, we assume that σ variables are of

arbitrary sign, that is σ ∈ Z. Since σ defines a periodic scheduling function,

its sign is not important since we can always shift the scheduling date with a

constant factor. This allows us to write the schedule problem as:











































min (
∑

i∈V R 1 × σKi

−
∑

j∈V R 1 × σj

−
∑

j∈V \V R 0 × σj)

subject to:

σj − σi ≥ a(e), ∀e = (Ti, Tj) ∈ E
σKi

− σj ≥ b(e), ∀e = (Tj , Ki) ∈ Ek

σ ∈ Z

(11)

This system defines the classical periodic scheduling problem with only prece-

dence constraints: it is feasible if and only if p ≥ MEP (Hanen and Munier,

main_siralina.tex; 19/12/2011; 10:42; p.14
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1995). Assuming that σ ∈ Z simplifies the writing of the dual problem of P

since we can now have a dual problem with equalities instead of inequalities.

We declare an integral dual variable f(e) ∈ N for each linear constraint on

e ∈ E ∪ Ek in the primal problem. The coefficients of the primal objective

function become the right hand sides of the equalities in the dual problem.

The right hand sides of the primal problem become the coefficients of the dual

objective function. And for each primal variable σ ∈ Z, we have a constraint

in the dual problem as follows1 :

− Dual constraints for primal variables σKi
(Ti ∈ V R):

∀Ti ∈ V R,
∑

?
e∈Ek
−→ Ki

f(e) = 1

− Dual constraints for primal variables σj (Tj ∈ V R):

∀Tj ∈ V R,
∑

?
e∈E
−→j

f(e) −
∑

j
e∈E
−→?

f(e) −
∑

j
e∈Ek
−→ K?

f(e) = −1

− Dual constraints for primal variables σj (Tj ∈ V \ V R):

∀Tj ∈ V \ V R,
∑

?
e∈E
−→j

f(e) −
∑

j
e∈E
−→?

f(e) −
∑

j
e∈Ek
−→ K?

f(e) = 0

− The dual objective function is:

max
∑

e∈E

a(e) × f(e) +
∑

e∈Ek

b(e) × f(e)

In the following section, we prove that this dual problem can be solved as a

min-cost-flow problem.

6.1. MINIMAL COST NETWORK FLOW SOLUTION FOR THE DUAL

PROBLEM

In this section, we prove that the dual problem defined above represents a

network flow problem. The network is simply the initial data dependence

graph (DDG) augmented with the killing nodes Ki and the killing arcs Ek.

Note that in the initial DDG, there is no arc exiting from the killing nodes Ki.

Now, let us examine each constraint of the dual problem to check whether it

represents flow constraints:

1 In these constraints, we use the notation of ’?’ used in graph theory to note an arbitrary

node or value: for instance ?
e
→ j means any arc named e finishing at node j.
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16 K. Deschinkel and S. Touati and S. Briais

6.1.1. Dual constraints for primal variables σKi
(Ti ∈ V R)

∀Ti ∈ V R,
∑

?
e∈Ek
−→ Ki

f(e) = 1

This set of constraints imposes that the input flow to any node Ki must be

equal to 1. Figure 3(a) illustrates this fact in the network. In order to satisfy

this constraint, we add a fictitious arc (that we remove afterwards) between

Ki and Ti ∈ V R. Then, we can put a minimal and a maximal flow capacity

to this arc as equal to 1, see Figure 3(b). Note that this added arc (Ki, Ti)
becomes the unique arc exiting from Ki in the network. The cost of this arc is

set to zero. Thanks to the set of new arcs, that we note by Ef , the constraints

for primal variables σKi
represent network flow constraints by writing:

∀Ti ∈ V R,
∑

?
e∈Ek
−→ Ki

f(e) −
∑

Ki
e∈Ef
−→ ?

f(e) = 0

ucap=lcap=1

consumers

the sum of entry flow

f(e)=1

(b) Adding fictitious arcs to impose the flow to  be equal to 1

C2

Ti

C?C2

Ti

C?

to Ki should be 1 Ki Ki

C1 C1of Ti

(a) Constraints on entry flow to Ki

Figure 3. Flow Constraints on Killing Nodes

6.1.2. Dual constraints for primal variables σj (Tj ∈ V R)

∀Tj ∈ V R,
∑

?
e∈E
−→j

f(e) −
∑

j
e∈E
−→?

f(e) −
∑

j
e∈Ek
−→ K?

f(e) = −1

=⇒
∑

?
e∈E
−→j

f(e) + 1 −
∑

j
e∈E
−→?

f(e) −
∑

j
e∈Ek
−→ K?

f(e) = 0

For the node Tj ∈ V R, we know that the flow between Kj and Tj is equal

to one (see the previous paragraph, Figure 3(b)). Thus, we can write the

following flow constraints:
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∀Tj ∈ V R,
∑

?
e∈E∪Ef∪Ek

−→ j

f(e) −
∑

j
e∈E∪Ef∪Ek

−→ ?

f(e) = 0

6.1.3. Dual constraints for primal variables σj (Tj ∈ V \ V R)

∀Tj ∈ V \ V R,
∑

?
e∈E
−→j

f(e) −
∑

j
e∈E
−→?

f(e) −
∑

j
e∈Ek
−→ K?

f(e) = 0

Since no arcs belonging to Ef is entering to Tj , we can write as the following

flow constraints:

∀Tj ∈ V \ V R,
∑

?
e∈E∪Ef∪Ek

−→ j

f(e) −
∑

j
e∈E∪Ef∪Ek

−→ ?

f(e) = 0

6.1.4. Objective function

Since we added a set Ef = {e = (Ki, Ti)|Ti ∈ V R} of fictitious arcs, the

objective function becomes

max
∑

e∈E

a(e) × f(e) +
∑

e∈Ek

b(e) × f(e) +
∑

e∈Ef

0 × f(e)

In order to have a min-cost-flow problem, it is sufficient to invert the signs of

the costs as:

min
∑

e∈E

(−a(e)) × f(e) +
∑

e∈Ek

(−b(e)) × f(e) +
∑

e∈Ef

0 × f(e)

From above, we deduce that our dual problem is a min-cost-flow problem.

We summarise it as follows. The network is the initial DDG augmented with

killing nodes Ki, killing arcs Ek = {e = (Tj , Ki)|Tj ∈ Cons(Ti)} and

fictitious arcs Ef = {e = (Ki, Ti)|Ti ∈ V R}. We declare an integral flow

f(e) on each arc e ∈ E ∪ Ek ∪ Ef . The lower flow capacities of all arcs are

equal to zero, except those of the arcs in Ef . The upper flow capacities of

all arcs are unbounded, except for the arcs in Ef . For the set Ef , lower and

upper flow capacities are set to 1. This min-cost network flow problem can

be solved by many polynomial algorithms (Ahuja and ans James B. Orlin,

1993).

Once the flow with minimal cost computed, we should be able to compute

the values of the primal variable, as explained in the next section.
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6.2. BACK SUBSTITUTION TO THE INITIAL SCHEDULING PROBLEM (P)

Applying a min-cost flow algorithm computes optimal flow values f∗(e),∀e ∈
E ∪ Ek (the arcs in Ef can be removed now). In order to retrieve the values

of the σ variables in the primal scheduling problem, we use the primal-dual

relationship as follows:

− If f∗(e) > 0 then the corresponding constraint in the primal scheduling

problem becomes an equality constraint.

− If f∗(e) = 0 then the corresponding constraint in the primal scheduling

problem becomes an inequality constraint.

Formally, it yields the following solutions:

− If e = (Tj , Tj) ∈ E then:

• If f∗(e) > 0 then σj − σi = δ(e)− p× λ(e) =⇒ σj = σi + a(e).

• If f∗(e) = 0 then σj − σi ≥ δ(e) − p × λ(e).

− If e = (Ki, Tj) ∈ Ek then:

• If f∗(e) > 0 then σKi
− σj = δr(Tj) + p × λ(e) =⇒ σKi

=
σj + b(e).

• If f∗(e) = 0 then σKi
− σj ≥ δr(Tj) + p × λ(e).

The above set of equalities describes a simple potential problem on the

DDG (page 316 of (Ahuja and ans James B. Orlin, 1993)). Here, the potential

function is perfectly defined by the function σ. Recall that the potential of a

graph is equivalent to computing the longest path between a single source

to the remaining nodes. It can be solved by Bellman-Ford algorithm with a

complexity equal to O(|E| × |V |) (Cormen et al., 1990).

7. Experimental Evaluation

In this section, we present the results of extensive computational experiments

conducted on thousands of DDG extracted from many well known bench-

marks. Our benchmarks are a selection of five applications families: two

families of embedded applications (MEDIABENCH and LAO) and three

families of general purpose and intensive computations(SPEC2000-CINT,

SPEC2000-CFP and SPEC2006). These applications consist of many pro-

gram files written in C and C++ languages to be optimised by compilation.

The SIRALINA method has been incorporated within an industrial compila-

tion framework from STmicroelectroncis. We extract all the loop (DDG) of
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the benchmarks to optimise their storage requirement with SIRALINA. This

section describes our experimental environment, then presents the evaluation

results.

7.1. FRAMEWORK

In order to evaluate SIRALINA, we compare it with two existing well known

heuristics (named as Method 3 and Method 5), already studied in (Touati and

Eisenbeis, 2004):

− Method 3 is a variant of buffer optimisation as studied in (Ning and Gao,

1993). It starts by first pre-fixing reuse arcs (Ki, Ti), ∀Ti ∈ V R, then

it minimises
∑

µi,i. That is, this method sets that each task reuses the

register freed by itself (no register sharing between distinct tasks). The

date dependence constraints of the DDG always guarantees that µi,i ≥
1, ∀Ti ∈ V R, then

∑

µi,i ≥ |V R|. We clearly see that the minimal

storage requirement of method 3 is always limited by the size of V R,

but method 3 executes faster than method 5 explained below.

− Method 5 is a variant of (Rau et al., 1992). It starts by first pre-fixing

an arbitrary Hamiltonian reuse circuit, then it minimises
∑

µi,j . This

method allows register sharing between the tasks, yielding a lower reg-

ister requirement than that found by method 3, but requires higher com-

putation times in practice.

We also compare SIRALINA results against the ones obtained by the solution

of the exact integer linear model with a branch and bound method. Since

computing an optimal periodic storage allocation is intractable for large DDG

(larger than 12 nodes), we have limited the computation time of the exact

method by 10 seconds: this time can be chosen by the user of the compiler; in

our case, we select 10 seconds because it is a maximal time allowed for com-

piling a single loop as usually done in embedded systems area in an offline

compilation process. The value of the solution is then the best solution of

the objective function found within 10 seconds: this defines a naive heuristic

based on the optimal integer linear model. This naive heuristic, that we call

Method 1, is the least competitor that any new clever heuristic should beat.

Note that our SIRALINA heuristic always succeed in finishing less than 1

second without fixing any timeout.

We have done extensive set of experiments on both high performance and

embedded benchmarks. The total number of experimented DDG is 6748. The

sizes of the DDG (counted as the number of nodes and arcs) are illustrated by

boxplots in Figure 4. A boxplot (Crawley, 2007) is a convenient way to graph-

ically depict group of numerical data through their five-number summaries

(the smallest data, lower quartile(Q1 = 25%), median(Q2 = 25%), upper
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Figure 4. DDG Sizes

quartile(Q3 = 75%), and largest data). The left part of Figure 4 represents

the numbers of nodes per benchmark family, whereas the right part represents

the numbers of arcs. In the x-axis, we plot each benchmark family (LAO,

MEDIABENCH, SPEC, etc.); the y-axis presents the data where: 1) the first

small horizontal line is the minimal value, 2) the rectangle represents the

first and the third quartiles, 3) the small horizontal line cutting the rectangle

represents the median, 4) the last upper point represents the maximal value.

We can remark for instance that 50% of the experimented DDG have between

15 and 30 nodes, and between 50 and 100 arcs. We also remark that the size

of extreme DDG is greater than 500 nodes and 2000 arcs.

Our experiments are conducted to optimise registers (storage locations)

inside a VLIW embedded processor (ST231 processor family). This family of

processors have two types of registers BR and GR. Registers of type BR hold

branch results (boolean data of the program) and registers of type GR hold

other numerical data (integers). SIRALINA is able to optimise each register

type separately. For instance, when considering GR, the set of tasks V R of

the DDG becomes the set of tasks producing results of type GR. For BR, we

consider then that V R is the set of tasks writing inside registers of type BR.

Statistical distribution of number of nodes and arcs for each type (BR or GR)

are displayed by the different boxplots in Figure 5. The average number of

tasks producing results of type BR is around 4, and the average number of

main_siralina.tex; 19/12/2011; 10:42; p.20



SIRALINA 21
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Figure 5. |V R| and |ER| Sizes for Register Types BR and GR

flow dependence arcs through registers of type BR is 5, whereas these values

are multiplied by more than 5 for registers of type GR (around 20 nodes and

30 arcs).

We use the ILOG CPLEX 10.2 to solve the integer linear programs. The

experiments were running on a linux workstation, equipped with a Pentium

Xeon 2.33 Ghz processor, and 4 Giga bytes of main memory.

7.2. COMPARATIVE ANALYSIS AGAINST PREVIOUS HEURISTICS

In this section we first present a summary for an experimental comparison

of the three methods (Method 1, Method 3 and Method 5) with our SIR-

ALINA heuristic. Method 3 and method 5 are previous heuristics (Touati and

Eisenbeis, 2004) based on simplified integer linear programs. These previous

heuristics are not polynomial but allowed us to solve medium size instances

(which was impossible with the exact method). In our experiments, we limit

the computation time of these heuristics to one second for a given period

value, otherwise the computation time becomes high (few minutes or hours):

for interactive compilation, we are asked to not exceed one second for opti-

mising a given loop (DDG) with a given period2. SIRALINA is a polynomial

2 One second is the time limit for interactive compilation (devoted to methods 3 and 5),

while 10 seconds is a time limit for offline compilation (devoted to method 1).
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heuristic, we are able to solve all problems within one second for a given

period without limiting the computation time.

Table I (respectively III) gives the number of problems (in percentage) for

which the number of registers of type BR (resp. GR) computed by SIRALINA

for the minimal period is strictly lower than the number of registers computed

by the other three methods. Table II (respectively IV) gives the percentage of

cases where SIRALINA provides the same result as the other method. As

can be seen, in most cases, SIRALINA computes at least the same solution

as the methods 1, 3 and 5. SIRALINA always outperforms the heuristic 3.

For registers of type BR there are few instances where SIRALINA is strictly

better than method 1. When the number of nodes of V R is higher, namely for

registers of type GR, SIRALINA is superior. We expected this observation:

instances with registers of type BR can be solved to optimality with method

1 because the number of nodes V R and arcs ER is relatively weak. But for

large instances, with registers of type GR, SIRALINA produces substantially

better results.

Table I. SIRALINA vs. Other Methods (Register Type BR) - %

of instances where SIRALINA is strictly better

Family of Benchmarks #benchmarks M1 M5 M3

LAO 286 2% 27% 56%

MEDIABENCH 1168 0% 19% 41%

SPEC2000-CINT 2297 1% 24% 63%

SPEC2000-CFP 293 0% 15% 48%

SPEC2006 2704 0% 29% 67%

Table II. SIRALINA vs. Other Methods (Register Type BR) - % of

instances where SIRALINA provides the same result

Family of Benchmarks #benchmarks M1 M5 M3

LAO 286 63% 53% 44%

MEDIABENCH 1168 81% 69% 59%

SPEC2000-CINT 2297 69% 55% 37%

SPEC2000-CFP 293 78% 71% 52%

SPEC2006 2704 68% 49% 33%
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Table III. SIRALINA vs. Other Methods (Register GR)- % of

instances where SIRALINA is strictly better

Family of Benchmarks #benchmarks M1 M5 M3

LAO 286 49% 68% 86%

MEDIABENCH 1168 34% 67% 87%

SPEC2000-CINT 2297 37% 74% 90%

SPEC2000-CFP 293 31% 55% 82%

SPEC2006 2704 36% 80% 92%

Table IV. SIRALINA vs. Other Methods (Register GR)-% of

instances where SIRALINA provides the same result

Family of Benchmarks #benchmarks M1 M5 M3

LAO 286 33% 19% 14%

MEDIABENCH 1168 54% 28% 13%

SPEC2000-CINT 2297 50% 22% 10%

SPEC2000-CFP 293 54% 35% 18%

SPEC2006 2704 52% 16% 8%

For each group of instances we examine the mean percentage deviation

in terms of number of required registers between SIRALINA and another

method x (x = 1, 3 or 5). The mean percentage deviation is calculated as:

∑

DDG(SR(x) − SR(SIRALINA))
∑

DDG SR(x)
× 100%

where SR(x) =
∑

µi,j designs the storage requirement (i.e. number of

required registers) for the minimal period (p = MEP ) computed by the

method x. This percentage allows us to quantify the overall improvement in

terms of storage requirement computed by SIRALINA. The results of the

mean percentage deviation are summarised in Table V and Table VI for reg-

isters of type BR and registers of type GR. The following observations are

made:

− For the register type GR, SIRALINA clearly outperforms all the meth-

ods. The method 1 that solves the exact integer model (limited to 10

seconds) fails to provide better solutions than SIRALINA. This is be-
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cause the mean number of tasks of type GR is more than 12, which is

significant for our exact model (see Figure 4).

− For the register type BR, SIRALINA outperforms methods 3 and 5, but

not method 1. This is because the mean number of tasks of type BR is

less than 5, which allows to solve the exact model to optimality in most

cases within the limit of 10 seconds, while SIRALINA executes in less

than one second.

Table V. Mean Storage Requirement Improvement

of SIRALINA Compared to Combinatorial Methods

(Register Type BR)

Family of Benchmarks M1 M5 M3

LAO -25% +8% +65%

MEDIABENCH -17% +23% +44%

SPEC2000-CINT -25% +23% +49%

SPEC2000-CFP -20% +24% +47%

SPEC2006 -27% +26% +52%

Table VI. Mean Storage Requirement Improvement

of SIRALINA Compared to Combinatorial Methods

(Register Type GR)

Family of Benchmarks M1 M5 M3

LAO +27% +47% +75%

MEDIABENCH +13% +35% +65%

SPEC2000-CINT +7% +33% +62%

SPEC2000-CFP +7% +29% +61%

SPEC2006 +8% +34% +63%

All the previous statistics use a sample of 6748 representative DDG ex-

tracted from many benchmarks. Now, we want to compute the confidence

level of our statistics. According to (Jain, 1991), having a statistical guaran-

tee of comparison between two methods asks us to compute the confidence

intervals of the paired observations SR(x) v.s.

SR(SIRALINA). This is done by performing a t-test on the set of all
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differences (SR(x) − SR(SIRALINA)) and to check if the value zero

is inside the confidence interval. If zero is inside the confidence interval,

we cannot have a statistical guarantee that SIRALINA would always out-

perform the other method if we consider another set of benchmarks. In our

study, we choose a high confidence level equal to 99%, i.e., our statistics

have 1% of chance to be wrong if we take another set of benchmarks. Ta-

bles VII and VIII report the mean and the confidence intervals of the differ-

ences (SR(x) − SR(SIRALINA)) for all DDG and methods. As we can

see, the value zero is outside all confidence intervals. Consequently, we assert

with a confidence level of 99% that:

− SIRALINA outperforms in average all the other methods for any register

type except the method 1 for register type BR.

− Method 1 for register type BR always outperforms SIRALINA in aver-

age for the reasons explained before.

Table VII. Register Type GR: Confidence

Intervals (t-test) with 99% Confidence

Level

Method Mean Confidence Interval

M1 0.66 [0.56; 0.76]

M5 3.52 [3.19; 3.50]

M3 11.20 [10.72; 11.69]

Table VIII. Register Type BR: Confidence

Intervals (t-test) with 99% Confidence

Level

Method Mean Confidence Interval

M1 -0.36 [-0.39; -0.32]

M5 0.57 [0.51; 0.63]

M3 1.89 [1.79; 1.99]

In the current section, we studied the problem of minimising the storage

requirement for a fixed period p = MEP . In the next section, we consider a
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fixed available number of storage locations (registers) and we study the period

increase.

7.3. STUDY OF THE LOSS OF TASK PARALLELISM

Our storage optimisation methodology tries to minimise
∑

µi,j for a fixed

period p. When we consider R a fixed number of available registers, the

problem becomes to find a solution
∑

µi,j ≤ R with a minimal period p.

If
∑

µi,j > R, then we should try with another higher period. Increasing the

period for getting
∑

µi,j ≤ R leads to a task parallelism loss that we study

in this section. We distinguish three cases:

− Case 1 (
∑

µi,j > R): the storage requirement is strictly greater than the

number of available registers regardless of the period p (MEP ≤ p ≤
L). We say that the storage allocation problem has no solution in this

case.

− Case 2 (
∑

µi,j ≤ R): the storage requirement is less or equal than the

number of available registers for the minimal period (p = MEP ).

− Case 3: the storage requirement is greater than the number of available

registers for the minimal period (p = MEP ), but there exists a period

p′ (the smallest p) for which the storage requirement is less than the

the number of available registers. In this case, we express the loss of

parallelism by the deviation: p′−MEP
MEP

× 100%.

As a concrete example, we consider the number of available registers

in the ST231 VLIW processor from STmicroelectroncis. The numbers of

available registers of type GR and BR are 61 and 8 respectively.

Tables IX and X indicate the number of benchmarks in each benchmark

family which belongs to the Case 1 for register types BR and GR. We remark

that the number of SIRALINA cases without solution is rare, consequently 61

GR registers and 8 BR registers seem to be a sufficient architectural choice to

avoid using the main memory as external storage location. Hence, in most

cases, increasing the period value allows to use the available registers as

storage locations.

Now, we study the loss of parallelism due to the increase of the period. We

observed a loss of parallelism with SIRALINA for only five instances with

type BR (the parallelism loss is equal to 5.6%, 544%, 526%, 255%, 255%).

For these five instances, methods 1 and 5 compute a number of required

registers below the number of available registers for the minimal period. The

reported loss of parallelism is considerable but we should be aware that: 1)

SIRALINA is a polynomial heuristic while method 1 and 5 are not. Since the

number of tasks of type BR is reduced, the aggressiveness of methods 1 and 5

outperforms SIRALINA in some cases. 2) SIRALINA leads to a parallelism
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Table IX. Number of Problems with No Solution (8 Available

Registers of Type BR)

Family of Benchmarks SIRALINA M1 M5 M3

LAO 2 5 11 24

MEDIABENCH 0 1 2 29

SPEC2000-CINT 0 0 0 4

SPEC2000-CFP 0 0 0 2

SPEC2006 0 0 0 25

Table X. Number of Problems with No Solution (61 Available

Registers of Type GR)

Family of Benchmarks SIRALINA M1 M5 M3

LAO 4 2 3 69

MEDIABENCH 0 0 3 34

SPEC2000-CINT 1 0 3 62

SPEC2000-CFP 0 0 0 8

SPEC2006 0 0 10 95

loss for register type BR in only 5 DDG within 6748 instances. That is, in

6743 instances, we did not iterate on p to reduce the storage requirement,

since a solution is found with p = MEP .

For registers of type GR, we identify only three instances with a loss of

parallelism within 6748; That is, 6745 instances does not require to iterate

on p, since a solution is found with p = MEP . These three instances are

interesting to summarise in Table XI. The parallelism loss is given between

parentheses. The table shows that when SIRALINA computes a solution in

Case 3 (with a parallelism loss), other methods do not provide a solution

(Case 1). Even in the last instance, SIRALINA finds a solution without paral-

lelism loss (Case 2) whereas method 1 leads to a parallelism loss and method

3 and 5 lead to no solution.

7.4. ABOUT THE MIN-COST NETWORK FLOW IMPLEMENTATION

We have made a min-cost network flow implementation based on Section 6.

While many interesting polynomial algorithms exist for min-cost flow with
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Table XI. Parallelism Loss (61 Available Registers of Type GR)

Instance Name SIRALINA M1 M5 M3

LAO-polysyn Case 3 (642%) No sol No sol No sol

MEDIABENCH-gsm-long-term Case 3 (162%) No sol No sol No sol

MEDIABENCH-ghostscript Case 2 Case 3 (5.6%) No sol No sol

different complexity formulas (Ahuja and ans James B. Orlin, 1993), it is not

clear which algorithm will always be the faster one in practice1. Implement-

ing all the existing algorithms is fastidious. Consequently, we have chosen

the cost scaling algorithm of Goldberg and Tarjan (Goldberg and Tarjan,

1990) for its experimental evidence of efficiency (Goldberg, 1992). It runs

in O(n3 log(n.C)), where n is the size of the network and C is the maximal

cost. In addition to the experimental conclusions made by the authors, we

think that implementing the algorithm of Goldberg and Tarjan is easier than

other existing algorithms; compared to the double scaling algorithm for in-

stance, this later requires to build another network flow while the cost scaling

works on the initial network (DDG).

In order to compare the execution times of the two implementations of

SIRALINA (linear programming vs. min-cost network flow), we conducted

30 runs for each problem instance, all executed on the same machine: these

30 runs are recommended by the test of student (Jain, 1991) to handle the

variability of execution times because when we run the same program with

the same input data multiple times, we do not always get the same execution

times. Based on the 30 runs of each instance, we have made a test of student

on all the numerical data. We are then able to assert with confidence level of

90% that the speed of SIRALINA using simplex method is better in average

than SIRALINA using network flow implementation. In average, we found

that SIRALINA based on simplex method is 70% faster than SIRALINA

based on min-cost network flow algorithm.

These results were unexpected because the simplex algorithm has a pseudo-

polynomial complexity whereas cost scaling algorithm is a polynomial algo-

rithm. However, it may be possible that another implementation of the min

cost flow algorithm gives better results. Indeed, initially we used the mini-

mum mean cycle cancelling algorithm to solve the min cost flow problem

and the results were at least ten times worse than the actual ones!
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8. Conclusion

This article proposes an efficient heuristic for the periodic task scheduling

problem under storage constraints. Our model is based on the theoretical ap-

proach of reuse graphs studied in (Touati and Eisenbeis, 2004; Touati, 2002).

Storage allocation is expressed in terms of reuse arcs and reuse distances to

model the fact that two tasks use the same storage location. This problem is

used in practice to optimise the number of registers to put inside a processor

given a set of benchmarks, or to optimise the register requirement inside

programs (loops) if the number of available registers is fixed.

Computing an optimal periodic storage allocation is intractable in practice

(NP-hard), we identified a two steps heuristic that we name SIRALINA. A

first step computes scheduling variables and allows us to compute the poten-

tial reuse distances if the corresponding reuse arc is added. Then a second step

solves a linear assignment problem using the Hungarian method in order to

select the appropriate reuse arcs. This two steps heuristic greatly improve our

ability to solve the problem for large instances in faster times. The improve-

ment comes basically from the fact that SIRALINA starts by first computing

minimal µ values before fixing reuse arcs, while the previous methods did the

contrary.

SIRALINA has been implemented inside a framework based on the in-

dustrial compiler of STmicroelectronics for embedded code generation and

optimisation. Practical experiments on well known benchmarks (SPEC2000,

MEDIABENCH, LAO, SPEC2006) show that SIRALINA provides satisfac-

tory solutions with fast computation times (less than one second). In almost

all cases, SIRALINA succeeds in limiting the register requirement of all

innermost loop programs under the number of available registers in ST231

embedded processor. And this without any parallelism loss, i.e., the computed

period is in almost all DDG is equal to p = MEP . In some critical cases,

SIRALINA leads to a parallelism loss while previous methods do not provide

solutions.

Finally our future work will concentrate on two main research subjects.

Firstly, we aim to study the particular structure of the exact model constraints

to consider the application of Lagrangian relaxation. Secondly, we are willing

to consider special shapes for the reuse graph because some processor char-

acteristics impose particular reuse graph structures; For instance, the use of a

rotating register file (present inside some processors) implies the presence of

a unique Hamiltonian reuse circuit in the reuse graph.
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