On the number of elements to reorder when updating a suffix array

Abstract : Recently new algorithms appeared for updating the Burrows-Wheeler transform or the suffix array, when the text they index is modified. These algorithms proceed by reordering entries and the number of such reordered entries may be as high as the length of the text. However, in practice, these algorithms are faster for updating the Burrows-Wheeler transform or the suffix array than the fastest reconstruction algorithms. In this article we focus on the number of elements to be reordered for real-life texts. We show that this number is related to LCP values and that, on average, L_ave entries are reordered, where L_ave denotes the average LCP value, defined as the average length of the longest common prefix between two consecutive sorted suffixes. Since we know little about the LCP distribution for real-life texts, we conduct experiments on a corpus that consists of DNA sequences and natural language texts. The results show that apart from texts containing large repetitions, the average LCP value is close to the one expected on a random text.
Liste complète des métadonnées


https://hal.inria.fr/inria-00636066
Contributeur : Mikaël Salson <>
Soumis le : mercredi 26 octobre 2011 - 16:19:04
Dernière modification le : vendredi 8 janvier 2016 - 01:07:15
Document(s) archivé(s) le : jeudi 15 novembre 2012 - 10:35:57

Fichier

LMS10.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Martine Léonard, Laurent Mouchard, Mikaël Salson. On the number of elements to reorder when updating a suffix array. Journal of Discrete Algorithms, Elsevier, 2012, 11, pp.87-99. <10.1016/j.jda.2011.01.002>. <inria-00636066>

Partager

Métriques

Consultations de
la notice

276

Téléchargements du document

149