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cLIFL (UMR 8022 CNRS – Université Lille 1), INRIA Lille-Nord Europe, France

Abstract

Recently new algorithms appeared for updating the Burrows-Wheeler transform or
the suffix array, when the text they index is modified. These algorithms proceed by
reordering entries and the number of such reordered entries may be as high as the
length of the text. However, in practice, these algorithms are faster for updating
the Burrows-Wheeler transform or the suffix array than the fastest reconstruction
algorithms.

In this article we focus on the number of elements to be reordered for real-life
texts. We show that this number is related to LCP values and that, on average,
Lave entries are reordered, where Lave denotes the average LCP value, defined as the
average length of the longest common prefix between two consecutive sorted suffixes.
Since we know little about the LCP distribution for real-life texts, we conduct
experiments on a corpus that consists of DNA sequences and natural language texts.
The results show that apart from texts containing large repetitions, the average LCP
value is close to the one expected on a random text.
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1 Introduction

The Burrows-Wheeler Transform [1,7], BWT, is a very interesting block-
sorting algorithm that reorders the letters of a text T of length n over an
alphabet of size σ for easing its compression. It is used as a preprocessor by
some of the most popular lossless text compression tools (such as bzip) that
chain it to Run-Length Encoding, entropy encoding or Prediction by Partial
Matching methods [3,2].

Conceptually speaking, the suffix array [17,9] is very close to the text produced
by the BWT. Due to its intrinsic structure and its similarity with the suffix
array, it has also been used for advanced compressed index structures [5,6],
such as FM-index, that authorize approximate pattern matching [14,15], and
therefore can be used by search engines.

The FM-index is based on the close relationship between the Burrows-Wheeler
Transform and the suffix array. It is therefore a sort of compressed suffix array
that takes advantage of the compressibility of the indexed text in order to
reduce space occupancy with respect to the entropy of the text.

Recently algorithms that update BWT [21], corresponding enhanced/extended
suffix array [8] or FM-index [22] appeared when edit operations transform the
text T into a text T ′ of length n′. At first sight, the overall complexity of
such algorithms is bounded by O(n log n log σ) for [21,22], and O(n2) for [8]
making them slower than known linear-time suffix array construction algo-
rithms [11,13].

Nevertheless, practical experiments conducted in the past (see [8,21,22]) have
shown that they globally outperform the quickest known suffix array construc-
tion algorithm [20] for a reasonable number of edit operations.

The time consuming part when one wants to update a suffix array-related
structure is to reorder suffixes. In the worst case a linear number of suffixes
can be reordered. In this article, we show that the average time complexity
is strongly connected to the average LCP , the longest common prefix. For
various texts, such as repetitive genomic sequences or natural language texts,
these values are surprisingly small.

In section 2 we briefly sketch properties of the suffix array and the Burrows-
Wheeler Transform, we identify four types of suffixes (or cyclic shifts) and,
based on that, characterize the number of elements to reorder on average.
In section 3 we present the sets of data that have been used for the tests,
explain their relevance. In section 4 we present practical results together with
discussions and finally we conclude in section 5.
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2 Preliminaries and Algorithms

We consider the text T = T [0 . . n], a word of length n + 1 over Σ, a finite
ordered alphabet of size σ. The last letter of T is a sentinel letter $, that has
been added to the alphabet Σ and is smaller than any other letter of Σ. A
factor starting at position i and ending at position j is denoted by T [i . . j]
and a single letter is denoted by T [i] (or Ti to facilitate the reading). We add
that when i > j, T [i . . j] is the empty word. A factor starting at position 0 is
a prefix of T while a factor ending at position n is a suffix of T .

We briefly recall well-known definitions that will be used throughout the doc-
ument.

The cyclic shift of order i of T is T [i] = T [i . . n]T [0 . . i − 1] for 0 ≤ i ≤ n.
The Burrows-Wheeler Transform of T , denoted BWT (T ), is the text of length
n+1 corresponding to the last column L of the conceptual matrix whose rows
are the lexicographically sorted cyclic shifts T [i] (see Fig. 1(b)). The suffix
array of T , denoted by SA(T ), or simply SA, is the list of starting positions of
lexicographically sorted suffixes of T (or cyclic shifts of T ). That is SA[j] = i if
and only if T [i . . n] is the (j + 1)th suffix of T in ascending order. The inverse
of SA, denoted by ISA(T ), indicates for each suffix of T its corresponding
position in SA. For each i ∈ [0, n − 1], LCP [i] is the length of the Longest
Common Prefix between suffixes starting at positions SA[i] and SA[i + 1] in
the text.

T = C
0

T
1

A
2

G
3

T
4

T
5

A
6

G
7

$
8

T [0] C T A G T T A G $

T [1] T A G T T A G $ C

T [2] A G T T A G $ C T

T [3] G T T A G $ C T A

T [4] T T A G $ C T A G

T [5] T A G $ C T A G T

T [6] A G $ C T A G T T

T [7] G $ C T A G T T A

T [8] $ C T A G T T A G

(a) Cyclic shifts

F L

T [8] $ C T A G T T A G

T [6] A G $ C T A G T T

T [2] A G T T A G $ C T

T [0] C T A G T T A G $

T [7] G $ C T A G T T A

T [3] G T T A G $ C T A

T [5] T A G $ C T A G T

T [1] T A G T T A G $ C

T [4] T T A G $ C T A G

(b) Sorted cyclic shifts

SA ISA LCP
0 8 3 0
1 6 7 2
2 2 2 0
3 0 5 0
4 7 8 1
5 3 6 0
6 5 1 3
7 1 4 1
8 4 0

(c) SA, ISA, LCP

Fig. 1. BWT (CTAGTTAG$)=GTT$AATCG and corresponding SA, ISA, LCP.

It is clear that BWT , SA and ISA are strongly related, even if BWT is made
of letters, with potential multiplicity, while SA and ISA are made of unique
consecutive integers.
In [21,22] we explained how the FM-index, which is based on these three
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data structures, can be updated rather than entirely reconstructed when the
text T is edited (insertion, deletion or substitution of a letter or a factor).
Gallé et al. [8] explained how a suffix array can be updated when indexing for
grammatical inference purposes.

In the following we consider indifferently cyclic shifts or suffixes. When a text
is updated, in both cases, some suffixes (or cyclic shifts) have to be moved
to take into account their new lexicographical order. We will use the word
“reordering” whenever a new order has to be assigned (insertion of a new
position that shifts everything by one position, rotation, ...).

In this article, we focus on the number of elements that have to be reordered
when one wants to update a Burrows-Wheeler Transform or a suffix array.
This analysis mainly applies to [21,22] but are of interest for any algorithm
that updates dynamically a BWT, a suffix array [8] or a more complex stucture
such as FM-indexes. Moreover, it greatly helps in understanding the behavior
of several SACA, as presented in [20].

SA

8 T [8] $ C T A G T T A G

6 T [6] A G $ C T A G T T

2 T [2] A G T T A G $ C T

0 T [0] C T A G T T A G $

7 T [7] G $ C T A G T T A

3 T [3] G T T A G $ C T A

5 T [5] T A G $ C T A G T

1 T [1] T A G T T A G $ C

4 T [4] T T A G $ C T A G
F L

(a) BWT (CTAGTTAG$)

SA Type

$ C T A C G T T A G T ′[9] 9 1

A C G T T A G $ C T T ′[2] 2 4

A G $ C T A C G T T T ′[7] 7 1

C G T T A G $ C T A T ′[3] 3 3

C T A C G T T A G $ T ′[0] 0 4

G $ C T A C G T T A T ′[8] 8 1

G T T A G $ C T A C T ′[4] 4 2

T A C G T T A G $ C T ′[1] 1 4

T A G $ C T A C G T T ′[6] 6 1

T T A G $ C T A C G T ′[5] 5 1
F L

(b) BWT (CTACGTTAG$)

Fig. 2. T , T ′ and their respective SA and BWT

Without loss of generality we will consider the insertion of a single letter in T
at position i. Let T ′ be the final text obtained after modifying T .

For updating the suffix array or the Burrows-Wheeler Transform, we need to
differentiate four types of rows in the conceptual matrix. They correspond to
the position of the inserted letter in the cyclic shifts.

During the updating phase, the cyclic shifts are processed from Type 1 to
Type 4.

Type 1 the inserted letter appears after $ and before L. The number of these
rows is variable: the closer to the beginning of the text the edit operation
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occurs, the larger this number is. We showed in [21,22] that the respective
order of these rows is preserved, they are only subject to implicit reordering.
See dashed arrows in Fig. 2.
It corresponds to all cyclic shifts T ′[n+1] to T ′[i+2] in decreasing order.

Type 2 the inserted letter appears in L. An existing row is modified, the
letter appearing in L is stored (in our example A) and replaced by the new
letter (in our example C). See dotted arrow in Fig. 2.
It corresponds to the unique cyclic shift T ′[i+1].

Type 3 the inserted letter appears in F . A new row is inserted, the new letter
is inserted in column F (in our example C) and previously stored letter in
column L (in our example A). Since a new row is inserted, indices of all
shifted rows are incremented.
It corresponds to the unique cyclic shift T ′[i].

Type 4 the inserted letter appears after F and before $. Each row has a
potential impact on the respective order of the other cyclic shifts. It induces
a partial reordering of these cyclic shifts that should be performed if needed.
See plain arrows in Fig. 2.
It corresponds to all cyclic shifts T ′[i−1] to T ′[0] in decreasing order.

We already proved ([21]) that only rows of Type 4 are subject to direct re-
ordering, playing a central role in the overall time complexity. The main rea-
son is that the modification appears before $ in those cyclic shifts. Hence that
may modify their lexicographical ranking. Since we focus on the number of
reorderings, we restrict our study to Type 4 cyclic shifts.

For a given modification, directly reordered cyclic shifts are either moved up
or down. Without loss of generality, we consider the case where cyclic shifts
are moved up.

We consider the j-th cyclic shift of Type 4, that is T ′[i−j]. We denote by k the
position of this cyclic shift in the conceptual matrix and ℓ the corresponding
LCP value, that is ℓ = LCP[k − 1].

Lemma 1 When j > ℓ, T ′[i−j] is not directly reordered and the reordering
stage ends.

PROOF. When we are processing the j-th cyclic shift of Type 4, T ′[i−j], all
the cyclic shifts T ′[r] such that r > i− j have already been ordered. Suppose
that j > ℓ.

Let p = SA[k − 1], we also know that SA[k] = i − j. For the sake of clarity,
we also note c = T ′[p][ℓ] and c′ = T ′[i−j][ℓ].
The modification appears at position j in T ′[i−j], hence:
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T ′[i−j][0 . . ℓ] = T [i−j][0 . . ℓ], since j > ℓ (1)

Following the definitions of LCP and BWT, T [i−j] and T ′[p] share a common
prefix of length ℓ and T [i−j][ℓ] > c. Using (1), we also know that this relation
still holds for T ′[i−j]: prefixes of length ℓ of T ′[i−j] and T ′[p] are equal and c′ > c
(see Fig. 3).

i SA

k − 1 p c

ℓ <
T ′[p]

k i− j c′
0 j n′

Modification

T ′[i−j]

Fig. 3. T ′[i−j] does not have to be reordered.

We showed that T ′[i−j] is correctly ordered and has not to be reordered. We
proved [21, Lemma 3] that if T ′[i−j] is correctly ordered then all the cyclic
shifts T ′[q], q < i − j are correctly ordered as well. Finally, if j > LCP[k − 1]
then the reordering ends.

�

It gives us a very interesting upper bound on the number of reorderings that
should be performed after a given edit operation.

Lemma 2 The average number of elements to be reordered, after one given
edit operation, is at most equal to Lave, the average LCP value.

PROOF. For a modification occurring at position i in T , we denote by ri the
number of elements to be reordered and by r the array of all ri, for 0 ≤ i ≤ n.
We also denote by PLCP the array which is the permuted LCP array where
values appear in position order rather than lexicographical order. PLCP array
has the following property [12]: PLCP[i− 1]− 1 ≤ PLCP[i], ∀i ∈ [0 . . n− 1].
We insert a 0 at the beginning of the array such that PLCP[−1] = 0. By
definition PLCP[n− 1] = 0. We will show that r is a permutation of PLCP.

From the previous lemma, PLCP[i] = 0 ⇐⇒ ri+1 = 0. Let us consider
PLCP[j . . j′], where for any k such that j ≤ k ≤ j′, we have PLCP[k] > 0,
and PLCP[j − 1] = 0, PLCP[j′ + 1] = 0.

Let PLCP[j] = L1, L1 > 0 and the next values in the PLCP array decrease
one by one until a value ℓ1 at position j1. Then we have PLCP[j1 + 1] = L2,
with L2 ≥ ℓ1, and again the values decrease, one by one, until a value ℓ2 ≤ L2.
And so forth until PLCP[j′] = 1.
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Finally, we have PLCP[j . . j′] = [L1, L1−1, . . , ℓ1, L2, L2−1, . . , ℓp−1, Lp, . . , 1].

Lemma 1 can be rewritten as follows:

ri =











0 if PLCP[i− 1] = 0
d otherwise, with 1 ≤ k ≤ d, PLCP[i− k] ≥ k

and PLCP[i− (d+ 1)] < d+ 1
(2)

j − 1 j + L1 − ℓ1

L1

ℓ3

ℓ2

L1

ℓ1

L2

ℓ2

L3

ℓ3

L4

ℓ4

i

d+ 1

k

Fig. 4. Computation of ri = d using the PLCP array, we have ℓ3 ≥ k and ℓ2 < d+1.

Indeed, a suffix might be reordered whenever the modification belongs to a
prefix which appears more than once. When it is not the case anymore (ie.
PLCP[i− (d+ 1)] < d+ 1, see Fig. 4), the corresponding suffix does not have
to be reordered.

Since PLCP[j − 1] = 0, rj = 0. By definition ri+1 ≤ ri + 1, hence rj+1 = 1,
rj+2 = 2 and so forth until position j + L1, where rj+L1

= L1.

The next value rj+L1+1 is ℓ1 (if ℓ1 6= L1) since PLCP[j + L1 + 1− (ℓ1 + 1)] =
PLCP[j+L1−ℓ1] = ℓ1 < ℓ1+1 (see equation (2)). Then the sequence increases
again until reaching L2 and so forth.

In the special case where ℓi = Li (the decreasing sequence is therefore of length
1), with 1 ≤ i < p, let rk = Li, then rk+1 = Li + 1 and the sequence keeps
increasing until Li+1.

Finally r[j+1 . . j′+1] = [1, . . , L1, ℓ1, . . , L2, ℓ2, . . , Lp] and it is a permutation
of PLCP[j . . j′]. We have shown this, considering a 0-free factor of PLCP .
Therefore this is true for each such factor. Moreover using the definition of
ri, we know that we have as many 0’s in r than in PLCP. Hence, r is a
permutation of PLCP and the average number of elements to be reordered is
equal to Lave.

�

Hence, when modifying T at position i, we have at most k reordered elements
if PLCP[i−(k+1)] < k+1. Therefore LCP values can be used for determining
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an upper bound of the number of elements to directly reorder for updating a
suffix array.

3 Materials and methods: experimental data and their relevance

Based on Lemma 2, we conduct experiments on various texts. Our purpose is
to determine the distribution of LCP values and give a better insight of the
average number of reorderings when one of the studied texts is updated.

In what follows:

• the percentile LCP value, denoted by Lperc, is an upper bound of the number
of elements to reorder in 99% of the cases;

• the average LCP value, denoted by Lave, is an upper bound of the number
of elements to reorder on average;

• the maximal LCP value, denoted by Lmax, is an upper bound of the number
of elements to reorder, in any case.

Note that these values are upper-bounds since the number of elements to
reorder also depends on the inserted (or deleted) letters. For instance, let us

consider T = A
0

A
1

A
2

A
3

$
4

, we have SA(T ) = 4 3 2 1 0. If one inserts a A
at position 4 in T , the resulting suffix array is 5 4 3 2 1 0, no element was
reordered. On the opposite if one inserts a G at position 4, the resulting suffix
array is 5 0 1 2 3 4, which denotes that many elements were reordered.

We subsequently define Rn = Lave/n as the ratio between the average LCP
value and the length of the text. In the worst case, for T=An, Lave=n/2 and
Rn=0.5.

Remark 3 This analysis is of interest for all algorithms that update BWT or
SA by reordering elements. It is also of importance for understanding the be-
havior of suffix array construction algorithms as described by Puglisi et al. [20].
For two texts having the same length, Seward’s algorithm [23] is slower when
processing the text with the largest Lave. For solving the problem that arises
while considering large LCP values, Manzini and Ferragina’s algorithm [19]
performs a special processing for LCP values that are larger than a threshold
chosen by the user. In order to determine that appropriate threshold, one needs
to use the distribution of LCP values for various texts, with respect to their
length.

In what follows, we consider two different classes of texts: genomic sequences
(unstructured texts) and natural language texts (structured texts). Each stud-
ied text possesses specific properties such as number and length of repeats,
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entropy and alphabet size.

These texts can be classified according to a measure of repetitiveness, such
as the one introduced by Haubold and Wiehe [10]. This measure is based
on the length of the shortest unique substring. They define their index of
repetitiveness, denoted by Ir, as the logarithm of the ratio of the sum of
the shortest unique substring lengths at each position, and the theoretical
expectation for a random text having the same composition (as described
in [10]). We note that Ir can be computed in a simpler way than the one
described in their article, based on suffix trees: compute the LCP array for
the original text (concatenated to its reverse complement in the case of a DNA
sequence); traverse the array top to bottom; for each two consecutive values,
pick the largest one and add it to the final result. In a similar manner, compute
the sum for the randomly shuffled original text. The logarithm of the ratio of
the two sums corresponds to the Ir value. The authors mention they used a
suffix tree, which is a very space-consuming structure, we instead consider the
natural inherent LCP values extending the traditional suffix array. It permits
a faster computation of the Ir values for genome sequences they were not able
to handle, due to memory limitations.

In [4], Fayolle and Ward showed that the average LCP value, under a Marko-
vian model of order one, is (log n)/H1(T ) + C, where H1(T ) is the first-order
entropy of T and C is a constant. In order to study if our practical val-
ues are diverging significantly from the theoretical values, we are defining
RFW = Lave ×H1(T )/ log n. It is clearly a measure of proximity between the
number of direct reorderings that should be performed on average and Fayolle
and Ward’s theoretical value.

We know that Lave ranges from O(log n) to n/2 depending on the texts. On
one hand many articles show that on a randomly generated text, the average
LCP is O(log n), on the other hand one can easily build a text whose Lave

is n/2 (e.g. An). Since the texts we chose are neither random nor composed
of a single letter, we only know that their Lave is between O(log n) and n/2.
In this section, we want to determine the LCP distribution and, among that,
the average LCP value on different classes of text containing different types of
repetition. This will allow us to evaluate how far typical texts are from the two
extremes and how many elements have to be reordered at most for updating
a suffix array for these classes of text.

3.1 Genomic Sequences

More and more complete genome sequences are available [16], Haubold and
Wiehe selected a subset of 336 organisms (330 prokaryotes and 6 eukaryotes)
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and computed Ir values for each genome sequence. They ranked the genome
sequences, from the most repeated to the least repeated sequence 1 .
Following this study, we focus on the five most repeated among the 330
prokaryote genomes (whose sequence lengths are close to 2 Mbp). The cor-
responding Ir values range from 6.34 to 3.84, and are related to organisms:
M. flagellatus, S. agalactiae, D. ethenogenes, F. tularensis, N. meningitidis.

We extended our study to encompass the six eukaryote organisms consid-
ered in [10]: mouse-ear cress (A. thaliana), nematode (C. elegans), fruit fly
(D. melanogaster), yeast (S. cerevisiae), human (H. sapiens) and mouse (M.
musculus). The genome sequences are longer: the largest chromosome (chr. 1)
of H. sapiens contains more than 200 Mbp, and are usually sheltering shorter
repeats. These eukaryote organisms have been extensively studied, are well
documented and annotated, being part of a larger set of eight model organ-
isms.

In addition we also consider a set of 398 virus genomes (whose sequence length
are between 1 kb and 1 Mb). We will study in details two representatives of
this set: G. fumiferanae ichnovirus and C. herpesvirus.

To avoid biased results due to unsequenced portions of genomes, we remove
all runs of N’s from the sequences. It explains why, for H. sapiens, chr1 is
shorter than chr2: we had to remove large runs of N’s from chr1, while chr2
was not containing that many.

3.2 Natural Language Texts

In addition to these large DNA sequences, we retrieve natural language texts
from project Gutenberg 2 (plain ASCII texts, no extra tags). We also re-
trieved some corpora 3 of the Wikipedia encyclopedia (XML document, Wiki
tags, plagiarism) in various languages 4 (Afrikaans, Basque, Bosnian, Esto-
nian, Latin, Occitan).
From project Gutenberg, we obtained a single file of size 91,070,340 bytes by
concatenating 224 files from which we removed specific Gutenberg headers and
footers. Due to this processing, the size of the alphabet and the type of text
considered, we do not expect to see large LCP values since authors are usually
trying to avoid as much as possible repeats and plagiarism. In the following

1 http://ncbi.nlm.nih.gov/pmc/articles/PMC1769404/bin/1471-2105-7-541-S1.pdf
2 Downloaded from http://www.gutenberg.org
3 Downloaded on March 30th 2009 at http://download.wikimedia.org
4 The Wikipedia languages have been selected because of the length of the corpora
which can fit within our computer main memory, each of them representing more
than 70,000,000 bytes.
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we refer to this text as “etext”.
Regarding Wikipedia, each corpus for a given language is stored as a XML
document and the content of the encyclopedia is written using the wiki lan-
guage. The underlying XML structure implies more redundancy, compared
to plain natural language texts, namely several predefined templates that are
specific to the wiki language for displaying information in a standard format.
These templates are often large duplicated pieces of codes, explaining a lot of
redundancy that directly impacts LCP values. To evaluate the effect of the
templates on the LCP values, we considered two versions of the Afrikaans cor-
pus: the original one and the one from which we removed the most repeated
template (see Fig. 6).
Moreover Wikipedia is known to be a cooperative encyclopedia. Some people
creates redundant articles and start by filling them using the content of a pre-
vious article (e.g. content of “People’s Republic of China” is used in “History
of China”, in the Basque version) leading to larger expected LCP values.

We compute suffix arrays and LCP tables for all the texts, using Manzini
and Ferragina’s algorithms [19,18] and implementation 5 . These algorithms are
chosen for their low space-consumption properties. For each text, we calculate
the values Lmax, Lave, Lperc as defined previously (see Sect. 3, page 8). We
also compute Rn, RFW and Ir. In the next section we will also plot curves
corresponding to Lave and the actual number of reorderings with respect to
suffix lengths, for several texts after the insertion of a single letter. We will
use these graphs for studying how these values are correlated and are affected
by repetitions.

4 Results

In this section we present experimental results obtained from the sets of se-
quences we previously described. For each set of texts we compute their charac-
teristics and the actual number of reorderings that are needed for maintaining
the associated dynamic suffix array. Furthermore we compare the computed
Lave value with the real number of reorderings that had to be performed dur-
ing our experiments on various texts, with various edit operations. We show
that they are strongly correlated for all studied texts.

5 http://web.unipmn.it/∼manzini/lightweight/
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4.1 Genomic Sequences

We are here presenting two analyses which are based on the values we com-
pute from the LCP array or on the curves we plot from the experiments we
conducted.

4.1.1 LCP values analysis

The characteristics for the five most repeated prokaryote genomes are pre-
sented in Table 1. These short genome sequences have been extensively studied
and are well known for containing a lot of short repeats as well as very large
repeated regions with a small number of copies. It is therefore unsurprising to
observe very large Lmax relatively to their length. As an example, in M. flagel-
latus 5% of the genome corresponds to a single repeat. The longest repeated
region is 143 Kbp long while the second longest is less than 1 Kbp long. For
M. flagellatus, the Lave value is artificially large because of the Lmax value. The
largest Ir value is achieved for M. flagellatus although it possesses only one
huge repeat. Therefore we can wonder if a text having a unique huge repeat
has to be considered as “more repeated” than a text having many medium-
size repeats. Since the average complexity of our algorithm depends on Lave,
and we want to test its efficiency in the worst conditions, it is nevertheless
pertinent to consider most-repeated texts in the sense of the Ir definition.

Organism Seq. Len. Lmax Lave Lperc Rn RFW Ir

M. flagellatus 2,971,519 143,034 3,452 113,320 1.16 · 10−3 315.49 6.34
S. agalactiae 2,211,485 47,068 546 24,954 2.47 · 10−4 50.02 4.84

D. ethenogenes 1,469,720 21,106 377 11,918 2.56 · 10−4 36.41 4.03
F. tularensis 1,892,775 33,912 336 14,984 1.78 · 10−4 30.49 3.96

N. meningitidis 2,272,360 32,158 261 9,435 1.15 · 10−4 24.22 3.84

Table 1
Values for the five most repeated prokaryote genomes.

Although we have large LCP values on average, they are still far from the
average number of reorderings in the worst case: n/2. Values Rn show that on
average 0.116% (M. flagellatus) to 0.0115% (N. meningitidis) elements have
to be reordered instead of 50% (the worst case one could expect). RFW values
are above 20, meaning that they are significantly different from the theoretical
values one can expect from [4] showing that a Markovian model of order one
is not suitable for such sequences.

Since we selected the five most repeated prokaryote genome sequences, we do
not expect to deal with sequences having larger Ir values. Hence, the RFW

values which appear to be significantly larger than 1 are the maximal values
one can possibly expect. Consequently, since Lave is much closer to log n than
n, according to RFW and Rn values, maintaining the dynamic suffix array
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Organism Seq. Len. Lmax Lave Lperc Rn RFW Ir

A. thaliana 86,188,477 39,960 53 188 6.13 · 10−7 3.9 1.87
C. elegans 100,269,917 38,987 45 196 4.47 · 10−7 3.2 1.73

D. melanogaster 120,290,946 30,892 66 1,655 5.47 · 10−7 4.8 1.89
S. cerevisiae 12,156,679 8,375 43 922 3.53 · 10−6 3.6 1.74

Table 2
Values for eukaryote genomes

Chromosome Length Lmax Lave Lperc Rn RFW Ir

1 226,212,984 67,631 40 171 1.77 · 10−7 2.8 1.61
2 237,898,220 43,034 26 86 1.09 · 10−7 1.8 1.76
9 120,983,611 51,976 76 688 6.28 · 10−7 5.4 2.82

10 131,735,771 30,751 32 208 2.43 · 10−7 2.3 1.60
14 88,290,585 1,292 16 68 1.81 · 10−7 1.2 0.41
15 81,920,097 25,713 41 369 5 · 10−7 3 1.88
17 79,601,503 15,692 32 302 4.02 · 10−7 2.4 2.41
19 56,037,509 3,412 21 88 3.75 · 10−7 1.6 0.67
20 59,505,253 866 15 57 2.52 · 10−7 1.2 0.53
22 35,058,629 2,331 19 114 5.42 · 10−7 1.5 0.84
X 152,538,530 51,821 52 215 3.41 · 10−7 3.7 2.40
Y 25,652,954 11,501 98 2,598 3.82 · 10−6 7.7 4.31

Table 3
Values for selected chromosomes from human genome.

Chromosome Length Lmax Lave Lperc Rn RFW Ir

1 191,477,429 7,279 28 345 1.49 · 10−7 2 0.85
2 178,392,072 137,338 154 508 8.64 · 10−7 10.8 3.22
7 141,878,210 77,175 167 1,755 1.18 · 10−6 11.9 3.67
9 120,720,222 8,705 24 237 1.97 · 10−7 1.7 0.74

12 117,459,310 90,253 123 623 1.05 · 10−6 8.8 2.92
14 121,635,309 79,256 158 1,539 1.3 · 10−6 11.3 3.13
15 100,439,974 6,418 25 267 2.5 · 10−7 1.8 0.78
17 91,898,202 26,807 35 310 3.78 · 10−7 2.5 2.23
19 58,142,230 4,368 20 167 3.52 · 10−7 1.5 0.67
X 162,080,892 82,006 219 2,680 1.35 · 10−6 15.4 3.64
Y 2,702,555 16,589 192 3,303 7.09 · 10−5 17.2 3.72

Table 4
Values for selected chromosomes from mouse genome.

still costs less than rebuilding the entire new suffix array using a linear time
construction algorithm.

The eukaryote genomes like the ones considered in Table 2 (A. thaliana, C.
elegans, D. melanogaster, S. cerevisiae), Table 3 (several chromosomes from
H. sapiens) and Table 4 (several chromosomes from M. musculus), generally
contain a smaller percentage of repeats than prokaryote genomes but they are
representative among the different species. Hence, on average, LCP values are
much smaller than for the five most repeated prokaryote genome sequences.
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We still observe some large values for Lmax but Lave and Lperc are smaller,
reflecting a different distribution of the LCP values. In this case, we have a
very limited number of large repeats: as an example for H. sapiens chr. 1,
Lperc that corresponds to the percentile LCP value is equal to 171 while Lmax

is equal to 67,631. All values between 171 and 67,631 are representing only 1%
of all the LCP values. The remainder mostly consists in small repeats such as
Short Tandem Repeats, micro and minisatellites or other well known biological
structures. Once again, the large RFW values for several chromosomes confirm
that a Markovian model of order one is not suitable for every DNA sequences.
However, for some other chromosomes, RFW values are close to 1, indicating
that despite the low Markovian model, the theoretical value can be a pretty
good approximation for less repetitive texts.

We remark that for the most repeated chromosome sequence from M. mus-
culus, that is chr. Y, only 0.00709% elements might be reordered on average,
while in the worst case only 16, 589/2, 702, 555× 100 = 0.61% might be.

Organism Seq. Len. Lmax Lave Lperc Rn RFW Ir

G. f. ichnovirus 291,597 1,622 22.42 501 7.69 · 10−5 3.46 1.47
C. herpesvirus 241,087 297 8.77 13 3.64 · 10−5 1.38 1.26

Table 5
Values for virus genomes

Similarly to what we observed for the bacteria and the eukaryotes, in Table 5,
we remark that for G. fumiferanae ichnovirus, only 0.00769% elements might
be reordered on average, while in the worst case only 0.56% might be.

On average a very limited number of reorderings have to be performed with
respect to the length of the genomic sequences. Even for the most repeated
sequence (M. flagellatus) a maximal 5% of the whole sequence should be
reordered if needed.

4.1.2 Curves analysis

In Fig. 5 we trace graphs that study how many reorderings are needed to
update the indexes with respect to the length of the texts. For this purpose,
we compute Lave for each text length and we count the number of reorderings
after the insertion of a single letter for each chosen suffix length. A random
letter is inserted at random positions 100,000 times and the average number
of reorderings is computed over those insertions.

We choose to plot Lave and the actual number of reorderings for the most
repeated prokaryote genome, M. flagellatus, whose sequence contains one huge
repeated region. We focus on this specific genome that is a representative of
all the other prokaryote genomes we mentioned. They all contain several large
repeated regions, their curves are similar to Fig. 5. We also consider the two
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Fig. 5. Theoretical and actual number of reorderings for inserting a single letter in
suffixes of DNA sequences.
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largest chromosome sequences fromM. musculus as well as the two viruses that
have been reported in Table 5. In both cases sizes are similar but sequences
have totally different LCP distribution.

We remark that, since we consider suffixes, when a repetition appears at the
beginning of the text, a peak will appear at the end of the graph. The M.
flagellatus genome sequence, that possesses a single large repeat in the first
Mbp, illustrates what has been described before (Fig. 5, whole sequence).

Moreover, when a repeat is close to the end, the number of LCP values that
have to be considered is small, and therefore the Lave value will be larger
compared to the same repeat closer to the start. Hence, two peaks of the same
height, one at the beginning another at the end of a graph, represent two
different repeat lengths. When necessary, we also provide the graph for the
reversed text so that we can appreciate the bias due to a repeat at the end of
a text (Fig. 5, M. musculus, chr. 2, reversed). The curve we obtain shows the
same behavior for the peak while it reveals a slightly different aspect for the
rest of the values.

Due to the length of chr. 1 from M. musculus, the respective values for Lmax

and Lave (see Table 4), we are not expecting steep slopes or noticeable peaks.
The curve that has been computed confirms our expectations. Contrarily, for
chr. 2, Lmax is twenty times larger than Lmax for chr. 1 while Lave of chr. 2 is
only six times larger than Lave of chr. 1. We are expecting one or several signif-
icant peaks. They are confirmed by the curves: it appears that one huge peak
(corresponding to a large repeated region located at the end of the sequence)
is masking the remaining LCP values.

4.2 Natural Language Texts

Similarly to the study we conducted for genome sequences, we now focus on
both LCP values and curves analyses.

4.2.1 LCP values analysis

For etexts, we have very small LCP values as shown in Table 6. Lperc is as low
as 32 meaning that updating the suffix array is done by reordering at most 32
elements in 99% of the cases.

On the contrary, we have much larger LCP values with Wikipedia corpora. It
was also expected, mainly because of inherent duplicates as explained in sub-
section 3.2. Moreover, removing a single duplicated template in the Afrikaans
corpus makes Lmax, Lave or RFW values drop drastically.
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Text Length Lmax Lave Lperc Rn RFW Ir

etexts 91,070,340 1,727 12 32 1.32 · 10−7 1.7 0.82

Afrikaans 68,989,658 34,205 66 383 9.57 · 10−7 10.1 3.00
Af. (cleaned) 68,743,934 6,831 31 295 4.5 · 10−7 4.7 1.98

Basque 139,868,091 13,879 45 406 3.22 · 10−7 6.3 2.16
Bosnian 122,215,463 18,314 40 318 3.27 · 10−7 5.9 2.28
Estonian 213,877,916 26,119 39 284 1.82 · 10−7 5.4 2.16

Latin 85,735,379 8,099 38 346 4.43 · 10−7 5.6 2.15
Occitan 70,250,160 11,003 64 914 9.11 · 10−7 9.4 2.64

Table 6
Values for various natural language texts. etexts is a concatenation of several texts
from Gutenberg project. The other texts correspond to the Wikipedia corpus in the
given language.

The Lave and Ir values are significantly smaller for etexts than for Wikipedia
texts. The redundant templates inserted in the latter being absent from the
former, it reduces automatically these values. Nevertheless, even for the most
repeated text, Afrikaans, we observe that less than 0.000 1% elements should
be reordered on average and at most 0.05% in the worst case.

4.2.2 Curves analysis

For etexts we are expecting the Lave to quickly grow until it stabilizes. Doubling
the size of the text will not have a significant impact on the Lave value. The
curve clearly follows [4], the RFW value indicating that it is close to their
theoretical result.

In Fig. 6, the graph for etexts also confirms that we have very short repeats in
natural language texts: we do not observe any significant peak. On the other
hand, Afrikaans corpus in Wikipedia possesses some large repeats that can be
observed with the rapid growth of Lave around 60MB.
In Fig. 6 (1), original Afrikaans is plotted and a peak clearly appears on the
right. It corresponds to one single repeat of length 34,205 within a template
of length 245,724. We then removed that particular template from Afrikaans,
suppressing the corresponding peak in Fig. 6 (2). Similarly to what we did
for M. musculus, we reversed the cleaned Afrikaans in order to attenuate the
leftmost peak. We observe that Fig. 6 (3) is rather close to the etexts curve
and that globally these two curves are following [4].

We showed that Lave is an upper bound of the number of elements to reorder
on average. We can observe that the actual number of reorderings is very
close to the Lave for the texts we studied. It confirms that computing Lave

gives some precious information about the expected number of reorderings
that might be performed. It therefore permits to select a dynamic method or
another strategy depending on Lave.
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Fig. 6. Actual and theoretical number of reorderings for inserting a single letter in
suffixes of natural language texts.

4.3 Studying Lave over a collection of texts

In the previous examples, we saw that Lave is always small with respect to n.
In order to confirm this assertion, we consider the Lave of a larger set of texts
(bacteria, eukaryotes, viruses, etexts and Wikipedia corpora). More precisely
for one given type we have a specific graph where each plot corresponds to
one text, its length on the x-axis and its Lave on the y-axis. We also plot a
logarithmic function computed using non-linear regression, denoted by NLR,
that fits best to the data.
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Results for genome sequences are given in Fig. 7 (bacteria), 8 (eukaryotes), 9
(viruses) and for natural language texts in Fig. 10 (etexts) and 11 (wikipedia).

Apart from few outliers, we observe that in all cases Lave values are at most
about 100, and mainly concentrated around NLR. This tends to show that Lave

is logarithmic not only for random texts, as shown by Fayolle and Ward [4],
among others, but also for more specific texts such as genome sequences and
natural language texts.

Now, let us focus on each figure and on the few outliers that can be observed. In
Fig. 7, a dozen of bacteria have a Lave larger than 100. Their genome sequences
contain very large duplicated regions that create a bias in the computation of
the Lave (as presented in Table 1).

In Fig. 8, a majority (62 out of 78) of chromosome sequences have a Lave

value below 50. However there is clearly a little number of chromosomes that
are not so close to NLR. Indeed the eukaryotic sequences are well known for
containing numerous repeats, as an example, more than 80% of the human
genome sequence is made of repeats. Moreover there exists a high variability
between chromosomes, as shown in Table 2. The maximal Lave value in Table 3
is smaller than 100 while the Lave values in Table 4 are larger, these values are
still very modest with respect to the length of the chromosomes. The largest
values can be observed for sexual chromosomes in both cases. They are due
to the recombination rate that usually affects these chromosomes, mainly due
to evolution.

In Fig. 9, apart from eight virus sequences whose Lave values are above 30, all
the other values are mainly located between 5 and 20.
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In Fig. 10, only 31 texts have a Lave above 15. These are all relatively small
texts and can be classified in two categories. The first one consists in very
small texts (around a thousand letters) which contain lyrics of English tra-
ditional songs. For instance one of them is “Heave Away”, its refrain is 110
letters long and is repeated twice in this song which is 1,020 letters long. This
repetition is not very large but it represents an important ratio of the text
(about 20%), which explains that Lave is 32.74.
The second category consists in larger texts (about a hundred thousand let-
ters) where the content is centered using spaces, leading to large repetition of
spaces.

In Fig. 11 plots are more scattered than in the other figures. However still a
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limited number of texts have a quite large Lave value. Namely, 26 texts out of
151 have a Lave value larger than 200. We already explained why Wikipedia
corpora contain more repetitions. This is mainly due to “copy and paste” of
article content and template duplication. However these duplications appear
in large corpora and therefore Lave is generally not much affected. Even in
the worst case, Lave is 8,238 for a corpus of size 6,826,160. That means Lave

represents only 0.12% of the total size.
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5 Conclusions

We studied in this article the average number of reorderings when updating a
suffix array-related structure. We showed the correlation between theory and
practice, in Lemma 1 and showed in Lemma 2 that Lave is an upper-bound
for the number of elements to reorder on average. We conducted experiments
on very different types of texts: several DNA sequences of various repetitive-
ness and natural language texts. These experiments confirmed the correlation
between the number of reorderings and Lave.

We furthermore studied the distribution of Lave when the size of the text grows
and we have seen that it follows a logarithmic function not only for random
texts but also for the texts we mentioned above.

We conclude that the number of elements to be reordered when updating a
suffix array-related structure is small and generally logarithmic even on DNA
sequences or natural language texts. It is therefore reasonable to update the
index rather than building a new one when insertion, deletion or substitution
operations occur with the frequencies we measured for both natural language
texts and genomic sequences (eg. see Fig. 6 in [21]).
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