N

N

Periodic register saturation in innermost loops
Sid Touati, Zsolt Mathe

» To cite this version:

Sid Touati, Zsolt Mathe. Periodic register saturation in innermost loops. Parallel Computing, 2009,
35 (4), pp-239-254. 10.1016/j.parco.2008.12.001 . inria-00636073

HAL Id: inria-00636073
https://inria.hal.science/inria-00636073
Submitted on 3 Feb 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00636073
https://hal.archives-ouvertes.fr

Periodic Register Saturation in Innermost Loops

Sid-Ahmed-Ali TOUATI - University of Versailles Saint-Quentin en Yvelines, Fzan
Zsolt MATHE - INRIA-Saclay Laboratory, France

February 3, 2009

Abstract

This article treats register constraints in high perforceembedded VLIW
computing, aiming to decouple register constraints frostrirction scheduling. It
extends the register saturation (RS) concept to periogictuntion schedules, i.e.,
software pipelining (SWP). We formally study an approaclhichitonsists in com-
puting the exact upper-bound of the register need for aliviiiel SWP schedules
of an innermost loop (without overestimation), indepertyesf the functional unit
constraints. We call this upper-limit theeriodic register saturatiofPRS) of the
data dependence graph (DDG). PRS is well adapted to sitisatibere spilling is
not a favourite solution for reducing register pressure parad to ILP scheduling:
spill operations request memory data with a higher energgamption. Also, spill
code introduces unpredictable cache effects and makest\Wase-Execution-
Time (WCET) estimation less accurate. PRS is a computenseieoncept that
has many possible applications. First, it provides compiésigners new ways to
generate better codes regarding register optimisationvbigeng useless spilling.
Second, its computation can help architectural desigrmedectide about the most
suitable number of available registers inside an embedddW\processor; such
architectural decision can be done with full respect torirgton level parallelism
extraction, independently of the chosen functional undsfiguration. Third, it
can be used to verify prior to instruction scheduling thabdecdoes not require
spilling. In this paper, we write an appropriate mathenatformalism for the
problem of PRS computation and reduction in the case of lodpere data de-
pendence graphs may be cyclic. We prove that PRS reductidR-kard and we
provide optimal and approximate methods. We have impleeteatir methods,
and our experimental results demonstrate the practiclinsss and efficiency of
the PRS approach.

1 Introduction

The register saturation is a computer science concepdligistudied in [17], intended

for decoupling register constraints from resource colvssaln that paper, the author
considers basic blocks only where data dependence graphsstruction schedules
are acyclic. In the current article, we extend the concepttiodic schedules of cyclic

data dependence graphs (innermost loops), which is a maergend complex prob-

lem.

Register saturation (RS) is a formal solution to decoupigster constraints from
instruction scheduling concerns. It is well adapted toagitins where spilling is not a
favourite or a possible solution for reducing register ptee compared to ILP schedul-
ing: spill operations request memory data with a higher gneonsumption. Also,
spill code introduces unpredictable cache effects: it mAMEET estimation less ac-
curate and add difficulties to ILP scheduling (because spi#irations latencies are
unknown). Register Saturation (RS) is concerned aboustexginaximisation not min-
imisation, and has some major proved mathematical chaistate [17]:

e As in the case of WCET research, the RS is an exact upper-bafuthe regis-
ter requirement of all possible valid instruction schedul&his means that the
register requirementis not over-estimated. RS should eaMverestimated, oth-
erwise it would waste hardware registers for embedded VL&Sighers, and
would produce useless spilling strategies for compileigtess. Contrary to
WCET where an exact estimation is hard to model, the RS caatipatand
reduction are exactly modelled problems and can be optysalived.

e The RS is areachableexact upper-bound of the register requirement for any
functional units configuration. This means that, for anyotese constraints of
the underlying processor (even sequential ones), thersvesya an instruction
schedule that requires RS registers: this is a matheméicgdroved by Lemma
3in[17]. Thisis contrary to the well known register suffieay, which is a mini-
mal bound of register requirement. Such minimal bountbigalways reachable,
since it is tightly correlated to the resource constraidtgractical demonstra-
tion is provided in chapter 5 of [16] proving that the regissefficiency is not
a reachable lower bound of register need, and hence canmuseto decouple
register constraints from functional units constraints.

Currently, register saturation (RS) is not only intendedgeneral purpose interac-
tive compilers such agccoricc. We are also targeting embedded systems, where com-
pilation time is allowed to last longer in order to producghiy optimised codes. Our
target applications are codes where the core of computstgpent irsmallinnermost
one-dimensional loops (DSP filters, multimedia applicatioBLAS codes, vectorial
loops, etc.): optimising compilers in this area are allowedse more aggressive code
optimisation techniques (either with static or iterativempilation). Currently, we are
not interested yet in studying multidimensional schedu(inop nests), we discuss this
issue in a further section.

There are many practical motivations that convince us toycan fundamental
studies on RS:

e High performance VLIW computingmbedded systems in general cover a wide
area of activities which differ in terms of stakes and ohbjed. In particular,
embedded high performance VLIW computing requires cheapfast VLIW
processors to cover the computation budget of telecomratiaits, video and
audio processing, with a tight energy consumption. Suchesldéd VLIW pro-
cessors are designed to execute a typical set of applisatidaually, the con-
sidered set of typical applications is rarely representgdhe set of common

benchmarks (mibench, spec, mediabench, BDTI, etc.), lgivén by the indus-
trial client. Then, the constructor of the embedded pramessnsiders only such
applications (which are not public) for the hardware desiffjowadays, some
embedded VLIW processors (such as ST2xx family) have 32 oe@iéters, and
the processor designers have no idea whether such numbaedsiae or not.
Computing the RS of the considered embedded codes allowsatiolvare de-
signers to precisely gauge with a static method the maximalent of required
registers without worrying about how much functional uritey should put on
the VLIW processor. RS provides the mathematical guarahteehis maximal
register need limit is reachable for any VLIW configuration.

e Circuit SynthesisAs studied in [14], optimal cyclic scheduling under resmur
constraints is currently used to design dynamic reconfiglergircuits with FPGA.
In that study, storage and registers are not consideredibea# practical reso-
lution complexity. Thanks to the RS concept, register aamsts can be satisfied
prior to the cyclic scheduling problem, with a formal guaes of providing
enough registers for any cyclic schedule.

e Embedded code optimisation and verificatigks done in [17], computing RS
allows to guide instruction scheduling heuristics insiéehkend compilers. For
instance, if RS is belowR the number of available registers, then we can guaran-
tee that the instruction scheduling process can be carriedthout considering
register constraints. If RS is greater th&nthe number of available registers,
then RS reduction methods could be used.

e High Performance ComputingRS may be used to control high-level loop trans-
formations such as loop unrolling without causing low leregister spilling. In
practice, this means that the unrolling degree is choselnetdrS remains below
R.

e Just-in-time (JIT) compilation The compiler can generate a bytecode with a
bounded RS. This means that the generated bytecode holdeRiSsas static
annotations, providing information about the maximal ségji need for any un-
derlying processor characteristics. At program executwmimen the processor
is known, the JIT can access such static annotations (graséime bytecode)
and eventually schedule operations at run-time under @dgurce constraints
without worrying about registers and spilling.

For all the above applications, we can have many solutiodsstrategies, and the
literature is rich with many articles about the topics. TH& ¢ncept is not the unique
and main strategy. It is a concept that may be used in conpunmahd complementary
with other strategies. RS is helpful thanks to two charasties:

1. The RS concept can givd@mal guarantee of avoiding useless spilling in some
codes (case when RSR). Avoiding useless spilling allows to reduce the amount
of memory requests and cache effects, which may save powénarease per-
formance.

2. Since RS is ataticmetric, it does not require program execution or simulation
Usually, the results provided with such methods are not &lsnguaranteed and
always depend on input data, on functional units configonation the precision
of the simulator, on the presence or not of a processor pregoetc. Also, such
dynamic techniques are usually demonstrated for a set afitvearks only, and
such benchmarks are not really representative in sometisitisa Since RS is
a mathematically proved static metric, it can be safely aad it is correct and
valid for all possible codes meeting the model (not only benchmarks)fand
all possible program executions (not only for a subset of in@a)] and this
independently of the functional units configuration.

In this article, background and notations refer directlpto previous results published
in[18]. We assume that the reader is familiar with [18]. Qthiee, we strongly suggest
a first reading of sections 2 and 3 of [18], since they areeel&d many notions in the
current contributions.

Our current article focus on PRS, which is the specialisediotRS in the context of
periodic schedules. Our paper is organised as follows.i@e2tstudies the problem of
PRS computation. If PRS is R, Section 3 studies the problems of PRS reductions:
we prove that this problem is NP-hard and we provide exactgptdoximate solutions.
We present our experimental results in Section 4. Thiseeetiso presents some new
experiments related to [18]. Section 5 discusses sometledrk, then we conclude.

2 Computing the Optimal Periodic Register Saturation

LetG = (V, E, 0, \) be aloop. The periodic register saturation (PRS) is the maki
register requirement for all valid software pipelined sthles:

PRS(G) = max RN,(G)
ceX(G)

where RN, (G) is the periodic register need for the SWP scheduleA software
pipelined schedule which needs the maximum number of mgi& called saturating
SWP scheduleNote that it may not be unique.

In this section, we show that our new method of compufiig, (G) [18] is useful
to write an exact modelling of PRS computation. In the curease, we are faced
with a difficulty: for computing the periodic register suféacy as done in[18], we are
requested to minimisemaximunm(minimise MAXLIVE), which a common optimisa-
tion problem in operational research; however, PRS contiputaequires tanaximise
a maximum, namely to maximise MAXLIVE. Maximising a maximusna less con-
ventional linear optimisation problem. It requires thetimg of an exact equation of
the maximum, which has been defined by Equation (1) in [18].

In practice, we need to consider loops with a bounded code Fizat is, we should
bound the duratiorl.. This yields to computing the PRS by considering a subset
of possible SWP schedulé$, (G) C X(G): we compute the maximal register re-
quirement in the set of all valid software pipelined schedukith the property that
the duration does not exceed a fixed limitand M 1 > 1. Bounding the schedule

space has the consequence to bound the values of the scigefduction as follows:
Vu e V,0 <o(u) < L.

Computing the optimal register saturation is proved as arcbiAplete problem in
[17]. Now, let’'s study how we exactly compute the periodigiséer saturation using
integer linear programming (intLP). Our intLP formulatierpresses the logical op-
erators &, V, <) and the max operatorn{az(z, y)) by introducing extra binary
variables. However, expressing these additional opesaimuires that the domain of
the integer variables should be bounded, as explained &ilslet [17].

Next, we present our intLP formulation that computes a sdituy scheduler €
Y 1(G) considering dixed . Fixing a value for the initiation interval is necessary to
have linear constraints in the intLP system. As far as we krmmmputing the exact
periodic register need (MAXLIVE) of a SWP schedule with a rfixed /7 is not a
mathematically defined problem (because a SWP scheduldiieedeaccording to a
fixed I'T).

Basic Integer Variables
1. For the lifetime intervals, we define:

e one schedule variable, > 0 for eachu € V;
e one variable which contains the killing datg > 0 for each statement
u € Vg.
2. For the periodic register need, we define:

e p, > 0the number of the instancesofe Vi simultaneously alive, which
is the number of complete periods around the circle prodbgdtie cyclic
lifetime interval ofu € Vg;

e [, > 0 andr, > 0the left and the right of the cyclic lifetime interval of
u e VR;

e the two acyclic fractional interval$, =la,,b,] andI;, =]al, V] after
unrolling the kernel once.

3. For a maximal clique in the interference graph of the foawl acyclic intervals,
we define:

o interference binary variables; ; for all the fractional acyclic intervals
1,J: s; = 1iff I andJ interfere with each other;

e a binary variabler; for each fractional acyclic intervalt; = 1 iff I be-
longs to a maximal clique.

Linear Constraints

1. Periodic scheduling constraintge = (u,v) € E, ou — 0y < +A(e) x
II—4(e)

. The killing dates are computed by:
Vu € Vg, k,= max (o, +6,(v) 4+ Ae) x IT)

veCons(u)

e=(u,v)EER
We use the linear constraints of timeax operator as defined in [17]%, is
bounded by, andk, where:

° ﬁ = minUECons(u) (5T(v) + MaXe=(u,v)eER)\(6) X II)
hd k_u = IMaXyeCons(u) (L + (57-(’()) + MaXe—(u,v)EER /\(6) X II)

. The number of interfering instances of a value (complatest around the circle)
is the integer division of its lifetime byI. We introduce an integer variable
a,, > 0 which holds the rest of the division:

kuy — 0w — 0w(u) = 11 X py + ay,
Q, < I1
a, € NT

. The lefts [18] of the circular intervals are the rest of thieger division of the
birth date by/I. We introduce an integer variablé, > 0 which holds the
integral quotient of the division:

Oy + 511;(”) =11 x ﬁu + lu
ly < II
By € NT

. The rights [18] of the circular intervals are the rest af thteger division of the
killing date by 7/. We introduce an integer variabtg, > 0 which holds the
integer quotient of the division:

ku =1Ix Yu + 7y
Ty < 1T
Yu € Nt

. The fractional acyclic intervals are computed by congiaean unrolled kernel
once (they are computed depending on whether the cyclicvaiterosses the
kernel barrier):

Ay = lu

Ty = lu — bu =Ty

case when the cyclic interval crossis
ry <ly=0b,=1r,+1I

al, =ay, + 11

b, =b, + 11

Since the variable domains are bounded, we can use the loeatraints of
implication defined in [17]: we know thdt < [, < I1, so0 < a, < I] and
IT <a, <2xII.Also,0<1,<IIso0<b,<2xITandIl <¥b) <3xII.

7. Forany pair of distinct fractional acyclic intervdls/, the binary variable; ; €
{0,1} is setto 1 if the two intervals are non empty and interferde#ch other.
Itis expressed in the intLP by adding the following consttsui

v acyclic intervalsl, J:

sr,y =1<= [(length(I) > 0)
A (length(J) > 0)
A=(I=J Vv J=<I)]

where < denotes the usual relatidreforein the interval algebra. Assuming
thatI =]as,bs] andJ =Jay,by], I < J means thab; < a;, and the above
constraints are written as follows.acyclic intervaldl, .J,

br —ar >0 (i.e., length(I) > 0)
by—ay >0 (ie., length(J) > 0)
br > ay (i.e., ﬂ([< J))
by >ar (i.e., ﬂ(J < I))

8. A maximal clique in the interference graph is an independet in the comple-
mentary graph. Then, for two binary variablesandz ;, only one is set to 1 if
the two acyclic intervalg and.J do not interfere with each other:

S[’J=1<:>

V acyclic intervalsl, J : s;gy=0= a5 +a2;<1

9. In order to guarantee that our objective function maxasithe interferences
between the non-zero length acyclic intervals, we add thewWong constraint:

V acyclic intervals/, length(I) = 0= z; =0
Sincelength(I) = by — ay, it amounts to:

v acyclic intervals/, br—ar=0=2xz;=0
Linear Objective Function A saturating SWP schedule can be obtained by max-

imising the value of:
>, wmt Y

acyclic fractional interval ueVr

Solving the above intLP model yields a solutignfor the scheduling variables,
which define a saturating SWP, such tiaR.S(G) = RN+(G). Onceg computed by
intLP, thenRN#(G) is equal to the value of the objective function. FinalRRS =
maxyrr<rr<r RN#(G).

The size of our intLP model i©(|Vz|?) variables and)(|E| + |[Vz|?) constraints.
The coefficients of the constraints matrix are all boundeetlbyx \,,.. x I, where
Amaz 1S the maximal dependence distance in the loop. To compatBRS, we scan
all the admissible values df/, i.e., we iterate/ I the initiation interval fromM 1 to
L and then we solve the intLP system for each valud iof The PRS is finally the
maximal register need among of all the ones computed by alintiP systems. As
can be remarked, the size of out intLP model is polynomiahyatic) on the size of
the input DDG.

3 Reducing Periodic Register Saturation

This section studies how to build an extended DD&how to add serial edges to a
given DDGG = (V, E, 4, A) such that its periodic register saturation is limited by a
strictly positive integefR under a desired minimal initial interval (critical cycledm-
straintM 1. This allows us to guarantee that any software pipeliningnefnew graph
does not require more registers than those available. Qoesdly, we can always
build a valid register allocation without spilling afterglsWP process.

Problem 1 (ReducePRS) Given a DDGG = (V, E, 4,), is there an extended DDG
G of G such thatPRS(G) < RandMII < MII?

The following theorem has two main practical implicatiorfsrst, it proves that we
cannot have optimal solutions in practice unless we userexgal algorithms, or un-
lessP = N P. Thatis, the usage of a sub-optimal heuristics in praciecenavoidable.
Second, its formal proof gives us key hints about buildingjropl and approximate
methods for PRS reduction.

Theorem 1 Reducing the Periodic Register Saturation is NP-hard.

Proof:

We prove that ReducePRS can be reduced from the problemtaiétien scheduling
under register constraints (SRC). We take the same instanbeth problems. Let us
start by defining the latter problem.

Problem 2 (SRC problem) LetG = (V, E,d,\) be aDDG,R and M I1 two positive
integers. Does it exist a valid SWP schedule ¥ (G) such that:

RN, (G) <R AN II <MII
where! is the initiation interval ofz?

The SRC problem is proved NP-hard [5].

1. ReducePRS = SRC
Let G be a solution for the ReducePRS problem. Then, we can buiM/R Sched-

uleo € ¥ (G) in polynomial time complexity under only the serial consita with
II=MII < MII.

2. SRC — ReducePRS
Let o be a solution for SRC, i.eBN,(G) < R andII < MII. As an example, let
us consider the DDG example of [18], that we redraw in Figyeg.1The PRS of this
DDG has been computed as a practical example in [16] (Ch&ptnd is equal to 8
registers. We would like to reduce the PRS to 4 registerschasehe cyclic schedule
of Figure 1(b). That schedule has 4 simultaneously aliveesl

We have to build an extended DDGsuch that we guarantee that any SWP sched-

ule ¢’ € 3(G) produces the same cyclic relative order between the cirdifddime
intervals as defined by. If a lifetime interval LT, (u(7)) is before lifetime interval

©@

(2,0

o

(a) the DDG
Iterationi-2
0| va
1 v3 N
5 H=4
3 Iteration i-1
4 vl
5| v2 v3
6 =4
. 7 Iterationi
T & 1
cs 8 vl °
2 %’ 9 v2 v3 =4
% S 10 2
v 1n 3
12
13 V2
14
15

=
(o)

[
J

=
o]

[y
©

Time
(b) Software Pipelining

Figure 1: The DDG Example of [18]

LT, (v(i + «)), then we must guarantee that any SWP schedutaakesL T, (u(i))
beforeLT, (v(i + «)), v is a distance to be defined.

We model the cyclic ordering between the circular lifetimméervals by a graph
O = (Vg,E<,a): e = (u,v) € E- means that the value produced by the operation
u(7) is killed before the definition of the valugi + a(e)) (It is not necessary to have
u distinct fromwv). «(e) is chosen so that the killing date ofi) is as close as possible
to the definition date of (i + «(e)), i.e., both of the two dates must be inside a window
of sizell. Since the schedule times of the distinct instances of thiersienty are
separated by clock cycles, there is a unique distancé¢hat defines the cyclic order
betweenLT, (u(i)) and LT, (v(i + «)) in a window of sizelI. The constraints that
define such distance betweenu(i) andv(i + «) are:

LT,(u(i)) < LT, (v(i + «)) Q)
o(v(i 4+ a)) + 0w(v) = kyuy < I1 (2)

wherek,, ;) is the killing date ofu(i). Since

(1) = kuu <o+ a)) +0w(v)
< ky <o, +IIXa+d,()

and
Q)<= o, +II xa+,() =k, <II

(1) and (2) amount to:
0<o,+IIxXa+d,w) —k,<II
Then,«a is the unique integer that belongs to the interval:

ku — Oy — 511; (’U) ku — Oy — 511;(71)
— - @I 1 - - 7
11 sesi 11

— _ ku — Oy — 511;(71)
‘= 17

Now, we have completely defined the cyclic ordering gréapbh- (Viz, E~, «). Note
that the edges belonging 6~ are defined from each valueto v (u not necessarily
distinct fromu), since a periodic schedule makes circular all the lifetintervals: for
any (u,v) € V3, there exists a unique (under the constraints just defined above)
such thatL T, (u(i)) < LT,(v(i+ «)). As an illustration, Figure 2(b) shows the cyclic
relative ordering between the values deduced from the sd@exd Figure 1(b). For
instance, LT, (v2(i)) < LT,(vi(i + 2)), thus there is a cyclic ordering edge=
(v2,v1) in Figure 2(a) witha(e) = 2. Also, LT, (v1(i)) < LT, (v1(i 4+ 1)), thus there
is a cyclic ordering edge = (v1,v1) in Figure 2(a) witha(e) = 1.

Now, let us see how to build an extended DDased on this cyclic ordering, i.e.,
how to report cyclic precedence relations between the lardifetime intervals. For
each ordee = (u,v) € E_ between two values andv, we must guarantee that the
killing date ofu is always performed before the definition dateyof + «(e)):

ky <o (i +ale))) + 6u(v)
This means thatu’ € Cons(u),
o (u'(i + A((u, ') +0,(u') < 0o (v(i + ale))) + duw(v)

= o (W (i) + 6 () — 6w (v) < o (v(i + ale) = A((u,u')))

in which A ((u, u")) is the distance of the flow dependence betweand its consumer
u’. This is done by adding a serial edgeo G from each consumer’ € Cons(u) to
v with:

5(e) = 6,(u') — 6y (v) and (€)= ale) — A((u,u))

Figure 2(b) is the extended graph that has a periodic regsteration equal to 4. In
that figure, the added serial edges appear with dashed lintesrdy tagged with the

10

(a) The Circular Ordering between Circular Lifetime Intel

BN ()

- - T TTT T

:, () ; J(o) © O

@ \
O ’@ (1) R
Y N

1 ‘,’ 0 Te-ollizzzie
® o o

(b) Reducing the Periodic Register Saturation

Figure 2: Cyclic Ordering

distances. As an example, there is an order betweemdwv; with a distancex = 1.
Sincev, consume®; with distance\ = 0, we add a serial edge from to vo with a
distancen — A = 1.

Note that some added serial edges may be redundant and dauset any typical
restriction for instruction scheduling. As an illustratidhere is an order between
and itself with a distance = 2. Sincevs consumes itself with a distanee= 2, this
produces a serial edge @ from v3 to itself witha — A = 0. This serial edge is always
satisfied by any schedule and can always be safely removeddo

By adding all these serial edges, we build an extended BDiGat has the follow-
ing characteristics.

e Any SWP schedule’ of G produces a circular order between the circular life-
time intervals as defined by. So,0’ cannot need more registers thanThis is
because if two lifetime intervals do not interfere with eather according ta
, they cannot interfere with each other accordingto

1. The number of distinct interfering instances (turns awthe circle) of
each statementswith o’ cannot exceed the numbey of distinct interfer-
ing instances witlr. This is because we have, accordingtd. 7, (u(i)) <
LT,(v(i + p, + 1)). Since we report the cyclic order = (u,) with
pu < ale) = p, + 1in the extended DDG, at mostp,, instances of:

11

may interfere according to a scheduteof G.

2. The fractional intervals inside the SWP kernel are caiséd to satisfy
the same precedence relation as defined byf two fractional intervals
(I,7) and(!, ") do not interfere with each other accordingdtpthen they
cannot interfere according td. Otherwise it means that violates one of
the added serial edges.

e o is a valid software pipelined schedule fGrsince it satisfies all the introduced
serial edges. Then, the extended DDG remains schedulable.

e Since the initiation interval I of o is lower than or equal td/11, a possible
introduced critical cycle irz is not greater thad/ /1. Otherwise it means that
o is not a valid software pipelined schedule t&r

From above, we deduces ¢ X1 (G), RN#(G) < RN,(G) and henc’RS(G) <
RN.(G) <R

J

From the previous proof, we deduce that the optimal redaaifperiodic register
saturation is equivalent to finding a software pipelinedesithe with a minimal initi-
ation interval which does not require more thRnregisters (but without considering
any resource constraints). There exist many algorithmsr{@b or heuristics) in the
literature that compute a SWP schedule minimising MAXLIVEder a fixed/I (a
complete survey is done in [16]), any such method is suittdl@se in this context.
However, they would not bring efficient solutions for PRSuetibn, since the pur-
pose here is not to necessarily minimise the register rement, but to not exceed
the limit R. So, we should use a SWP scheduling method that does notsaeites
minimise the register requirement at the lowest possiblelleAs far as we know, the
only method that allows this opportunity is the SIRA SWP td@gle presented in [19].
However, other SWP scheduling techniques under registestraints (without consid-
ering resources) may be used if they do not minimise the tegisquirement at the
lowest possible value. We can then assume that we have sudhlendf the module
computes an optimal SWP under register constraints (andiplete problem), then
the PRS reduction solution is necessarily optimal. If thedale is a heuristic, then
the PRS reduction provides a sub-optimal solution. In bages, using such module
yields two possible situations for PRS reduction:

1. If the module computes a SWP schedalsuch thatRN,(G) < R, then, we
add serial edges to the DDG as described in the previous.prbefcritical cycle
of the extended DDG is lower than or equallth

2. If the module fails to find a SWP schedule of initiatibhwith RN, (G) < R,
then we cannot reduce the periodic register saturationm@gpect to the critical
cycle MII < II. We have to increment/ (in binary search betweel,,,;,, =
1I andI1,,., = L), until reaching a solution or not. If no solution existsillsp
code must be introduced. Introducing spill code is anothearésting problem
which is outside the scope of the paper. Introducing andmiging spill code

12

is indeed an NP-complete problem studied in the literatii®g, out it is still not
well understood in case of ILP scheduling (because of caffeets).

4 Experiments

We have developed a complete tool based on the researctsnemdented in this arti-
cle. Itimplements the integer linear program that comptiteperiodic register satura-
tion of a DDG, and reduces its PRS if it exce&tisWe use a PC under linux, equipped
with a dual core Pentium D (3.4 Ghz), and 1 GB of memory. We kalisands of ex-
periments on several DDGs extracted from different bencke¢SPEC, Whetstone,
Livermore, Linpac, DSP filters). The size of our DDG goes frdmodes and 2 edges,
to 20 nodes and 26 edges. They represent the typical smab iotended to be anal-
ysed and optimised using the PRS concept. However, we afsrienent larger DDGs
produced by loop unrolling, resulting in DDGs with sidé| + |E| reaching 460.

4.1 Computing RN

In [18], we provided method for RN computation of alreadyesdhled loops i) (| V] x
In(]V])), which is a good complexity in theory. Here, we provide expents to
demonstrate its efficiency in practice. For each DDG, we astegh a valid loop
schedule and we measure the time spent to compute its MAXKINEnS). We re-
port here the speedup of RN computation (compilation timeedpp, do not confuse
with speedup of benchmarks), measured as the integralbatveeen RN computation
time using the existing pseudo-polynomial method and RNpmdaation time using our
O(]V|1In|V]) algorithm. Figure 3 plots the speedup of RN computationiabthwith
our method: we plot here few DDG examples with various uimigltiegrees. As can
be seen, wher ! increases our method is faster and scales better since itdtas
pseudo-polynomial complexity (ti 70x faster at best case). Even when we vary the
DDG size (measured as the number of nodes and edges), Figh@v our method
is still faster and scales in a better way (il 70 x faster at best case). In this figure,
we plot the maximal speedup obtained for any valuéofAll these first experiments
show that, when compilation time is an important issue, @w method of RN com-
putation exhibits better execution times, especially wbempiling large loops with
big I1.

4.2 Optimal PRS Computation

From the theoretical perspective, PRS is unbounded. Hawaseshown in Table 1,
the PRS is bounded and finite, because the durdtimbounded in practice: in our
experiments, we took = > __ ., which is a convenient upper bound. Figure 5 pro-
vides some plots on maximal periodic register need vs. aitiith intervals of many
DDG examples. These curves have been computed using ojntitn@lresolution us-
ing CPLEX. The plots do not start nor end at the same pointalsscthe parameters
MIT (starting point) and. (ending point) differ from one loop to another. Given a
DDG, its PRS is equal to the maximal value of RN for @iy As can be seen, this

13

Speedup of RN computation vs. I

S 40 ——
E= lin-ddot (U=10) —— |
@ 35 f _ sl
= liv-loopl (U=1) -- f
S 5ot spec-dod-loop3 (U=3 -
g spec-spice-loop3 (Ug:
O 25¢ e 1
z i
x 20r
©
s 15+
3 10 +
8 51
n et
Oo O ©O O O O © © © © ©
o O O O O ©O ©O O O o
o O O O O O O O O +
o O O O O O O O o]
S &6 © &6 & & 6 © & «
— N MO < IO ©O© N~ 0 O
1l
Speedup of RN computation vs. I
70 ———————
spec-spice-loop6 (U=7)——"
60 f spec-spice-loop9 (U=10} B
whet-cycle4_1 (U=10)
50 r whet-cycle4_8 (U=4) 1

Speedup of RN Computation

800000+
900000+
1le+06

Figure 3: Speedup of RN Computation vs. Initiation Intei(/dl)

14

40
35
30
25
20
15
10

Speedup of RN Computation

70
c
S
g 60
=}
o
§ 50
O
Z
x 40
G
S 30
he]
o
(% 20

10

Speedup of RN computation vs. DDG size

50

‘ ‘ ‘

o o o o

S Iyt S 0

=1 — I R4
V| +|E|

Speedup of RN computation vs. DDG size

‘ spec-‘spice-l‘oop3‘—

spec-spice-loop9--------
whet-cycle4_ 1
whet-cycle4_8

100

‘ ‘ ‘
o o o o
Iyt S 0 S
— I N ™

V| + |E|

Figure 4: Speedup of RN Computation vs. DDG si@é|(+ | E|)

15

g‘zlj " spec-dod-loop7——] 24+ " " gpec-spice-loopb——
T 30t spec-dod-loop3----- T 22 whet-loop2 - 1
g 28 liv-loop3 - B g 20 1
s o4l] 5 B8]
o 22] 5 16 |
%] | 54]
T 16t] oz 12]
8 14 . g 10 1
E 12+ . E 8 1
s 0r 1 3 6 B 1
= 6 r i = 4 + XX%\X—*—xfxﬁxfxﬁx—x——x\

4 L X*** RHHRIHHRHAHHRHHHAK i 2 L He KX e K=K]

2 1 L L L L L L L L L L O L L L L L L L L L L L

0 3 6 9121518212427303336 2 4 6 8101214161820222426
II (Initiation Interval) II (Initiation Interval)

14 ——— 12 — ‘

. example-loop—+— spec-spice-loop8——
1ol lin-ddot -~ | D whet-cycle4_8-----
2 | spec-spice-loop4---=--- 2 10 pec-spice-loop10-—=-- A
S 10t 1 ks
%2} Heo KKK 2 8 r T
5 R
14 8 T 14
®] 6 r 1
E 6F X 1 E
3 3
= g4l] = 45 1

2 1 1 1 1 1 1 2 1 1
0 2 4 6 8 10 12 14 0 2 4 6
Il (Initiation Interval) Il (Initiation Interval)

Figure 5: Maximal Periodic Register Need vs. Initiationelval

maximal value of RN always holds fdil = M 1. This result is intuitive, since the
lower is thell, the higher is ILP degree, and consequently the higher igdagis-

ter need. The asymptotic plots of Figure 5 show that maxim&\R. 17 describe
non-increasing functions. Indeed, the maximal RN is eitheonstant or a decreasing
function. Depending ofR the number of available registers, PRS computation allows
to deduce that register constraints are irrelevant in masgs (wheP RS < R)

We should recall an interesting mathematical property gfster saturation [17]:
for each computed maximal RN, there is a formal guaranteeitathe existence of
at least one valid SWP schedule requiring that maximum, laasl for any functional
units or ILP constraints. For instance, the case of specloopg7 has a PRS equal to
35. It means that there is always a SWP requiring exactly 8ters, for any ILP
or sequential processor. And, there is not another SWP sideelquiring more than
35 registers, unless the parameters larger. This is an interesting property which
does not hold for the usual register sufficiency concepteaa as shown in [17],
the register sufficiency (the minimal register need) istlighelated to the underlying
resource constraints.

Optimal PRS computation using intLP resolution may be stttble because the

16

underlying problem is NP-complete. In order to be able to pota an approximate
PRS for larger DDGs, we use a heuristics with the CPLEX soliredeed, the oper-
ational research community brings efficient ways to dedwaeiktics based on exact
intLP formulation. When using CPLEX, we can use a generiatiand bound heuris-
tics for intLP resolution, tuned with many CPLEX parametdnshe current paper, we
choose a first satisfactory heuristic by bounding the regmiuwith a real time limit
(say 5 or 1 seconds). The intLP resolution stops when time gaéand returns the
best feasible solution found. Of course, in some cases ifjithen time limit is not suf-
ficiently high, the solver may not find a feasible solutionifaany heuristic targeting
an NP-complete problem). Using such CPLEX generic heasdgtr intLP resolution
avoids the need of designing new heuristics. Table 1 showsetbults of PRS com-
putation in both the case of optimal PRS, and approximate @RS time limits of
5 and 1 seconds). As can be seen, in most cases, this simplsticecomputes the
optimal results. The more time we give to CPLEX computattbe,closer it will be to
the optimal one.

Benchmark Loop PRS | PRS(5s)| PRS(15s)
SPEC- SPICE loopl 4 4 4
loop2 28 28 28
loop3 2 2 2
loop4 9 9 NA
loop5 1 1 1
loop6 23 23 23
loop8 11 11 11
loop9 21 21 NA
loop10 3 3 3
tom-loopl 11 NA NA
SPEC - DODUC loopl 11 NA NA
loop2 6 6 5
loop3 5 5 5
loop7 35 35 35
SPEC - FPPP fp-loopl 4 4 4
Linpac ddot 13 13 NA
Livermoore loopl 8 8 NA
loop5 5 5 5
loop23 31 NA NA
Whetstone loopl 6 5 NA
loop2 5 5 5
loop3 4 4 4
cycle4-1 1 1 1
cycle4-2 2 2 2
cycle4-4 4 4 4
cycle4-8 8 8 8
Figure 1 DDG loopl 6 6 6
TORSHE van-Dongen|| 10 10 9
DSP filter WDF 6 6 6

Table 1: Optimal vs. Approximate PRS

We will use this kind of heuristics in order to compute appnoate PRS for larger
DDGs in the next section.

17

130

s B spec-fp-loopl——] § 12l linddot ——
s 32 spec-spice-loop10-——- 8 110!l liv-loop5 "]
5 30°r spec-spice-loopt-*-— .4 5 1ot i
T 287 A o
) %6 F 1 %) 90 + J
A T 1 3 8oy -
L 20+ 2 70 1
g 18 g 60f 1
c 13t @ 50t A
5 12 + = 40 F <
o 10t o 30+]
5 B 8 20
6L ’ 1
a ‘21 v a 0F 1
2 4 6 8 10 1 2 3 456 7 8 910
Unrolling Factor Unrolling Factor
1100 — 10 ————
_5 1000 - spec-dod-loop7—— | _5 9 spec-spice-loop3——
® spec-spice-loop8-—-x-- / ® i whet-cycle4_1---
S 900f e 5 8¢t whet-loop3 -x- 1
L x4
s 800 s 41 4
5 00f e 5 6l |
@ 600 1 2 |
© 400 o 3l]
_'8 300 r E 5
o 200 ©
& 100 , - e
0 - L L L L L L L 0 L L L L L L L L
1 23 456 7 8 910 1 2 3 45 6 7 8 910

Unrolling Factor Unrolling Factor

Figure 6: Periodic Register Saturation in Unrolled Loops

4.3 Approximate PRS Computation with Heuristic

We use loop unrolling to produce larger DDGs (up to 200 noaek260 edges). As
can be seen in some cases (spec-spice-loop3, whet-loogt3oytie-4-1), the PRS
stays constant because the cyclic data dependence limihhieent ILP, and hence
PRS remains constant irrespective of unrolling degreesthar cases (lin-ddot, spec-
fp-loop1, spec-spice-loopl), PRS increases as a subrfimeetion of unrolling degree.
In other cases (spec-dod-loop7), PRS increases as a suparfunction of unrolling
degree. This is because unrolling degree produces biggatidasZ, which increase
the PRS with a factor greater than the unrolling degree.

4.4 Optimal PRS Reduction

If PRS is used in the context of code optimisation, we may neegduce it when
it exceedsk. We developed PRS reduction (optimal and approximate)dharehe
SIRA framework [19]. SIRA gives us the opportunity to rediriRS belowR without

minimising it at the lowest possible level. This is useful $aving ILP. We did hun-

18

Benchmark Loop PRS (R=16) | PRS (R=32)
SPEC - SPICE loopl 4 (0%) 4 (0%)
loop2 16 (0%) 28 (0%)
loop3 2 (0%) 2 (0%)
loop4 9 (0%) 9 (0%)
loop5 1 (0%) 1 (0%)
loop6 16 (0%) 23 (0%)
loop8 11 (0%) 11(0%)
loop9 16 (0%) 21 (0%)
loop10 3 (0%) 3 (0%)
tom-loopl 11 (0%) 11 (0%)
SPEC - DODUC loopl 11 (0%) 11 (0%)
loop2 6 (0%) 6 (0%)
loop3 5 (0%) 5 (0%)
loop7 16 (66.66%) 32 (50%)
SPEC - FPPP fp-loopl 4 (0%) 4(0%)
Linpac ddot 13 (0%) 13 (0%)
Livermoore loopl 8 (0%) 8 (0%)
loop5 5 (0%) 5 (0%)
loop23 16 (0%) 32 (0%)
Whetstone loopl 6 (0%) 6 (0%)
loop2 5 (0%) 5 (0%)
loop3 4 (0%) 4 (0%)
cycle4-1 1 (0%) 1 (0%)
cycle4-2 2 (0%) 2 (0%)
cycle4-4 4 (0%) 4 (0%)
cycle4-8 8 (0%) 8 (0%)
DDG of Figure 1 loopl 6 (0%) 6 (0%)
TORSHE van-Dongen 10 (0%) 10 (0%)
DSP filter WDF 6 (0%) 6 (0%)

Table 2: Optimal PRS Reduction

dreds of experiments on hundreds of DDGs, with many value®Rf(8,16,32,64,128)
and/I. In all cases, the PRS approach allows to check whether a BD®ticon-
strained by registers. IPRS < R, no edge is introduced in the DDG, resulting in a
maximal ILP extraction under resource constraints. Whe8 BRteed®, some edges
are introduced to reduce PRS to a new values with taking care ofM/ I I if possible.
As in [17], we measure the ILP loss after PRS reduction aslequa— M I1/MI1,
where M I1 is the initial critical cycle, and\/ 11 is the new critical cycle after PRS
reduction. Table 2 shows the results of optimal PRS rednatiben considering 16
and 32 available registers. The ILP loss is expressed instefmpercentage (numbers
between brackets). As can be seen, if PRS exc@&dsptimal PRS reduction can
always reduce it t&R. The ILP loss is almost equal to zero, except in the case @fspe
dod-loop7, because of large static operation latenciesytlés), which yields higher
register pressure.

19

Reduced PRS

Reduced PRS

25

20

15

10

80
70

R=16 R=32

— ——— 45 ——— ———
lin-ddot —— lin-ddot ——
liv-loop5 -~ liv-loop5 1
L spec-dod-loop7-—*-- | spec-dod-loop7--*--
%]
s 4
L 1 o
ko] Ve 4
Q
2 .
LS] 3 e]
s 0: 4
5 f 1
1 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1
1 2 3 45 6 7 8 910 1 2 3 45 6 7 8 910
Unroll Factor Unroll Factor
R=64 R=128
T Tlin-ddot ——] w60 ~ linddot —— |
liv-loop5 _—-—- liv-loop5 _—-—-
r spec-dod-loop7--*- 1 140 | spec-dod-loop7--*- 1
] %]
% 120
1 < 100
X Q
= 1 S 80
- 3
o 1 @ 60
1 40
1 20
L L L L L L L L 0 _ L L L L L L L
1 2 3 45 6 7 8 910 1 2 3 456 7 8 910
Unroll Factor Unroll Factor

Figure 7: Approximate PRS Reduction in Unrolled Loops

20

% of ILP Loss

% of ILP Loss

R=16

100

80 r

60

40

20

"lin-ddot ——
liv-loop5 -
spec-dod-loop7-—*- -

¥]

100

80

60

40

20

2 3 4 5 6 7 8 9 10
Unroll Factor

R=64

"lin-ddot ———
liv-loop5 -
spec-dod-loop7-—*-- -

2 3 4 5 6 7 8 9 10
Unroll Factor

% of ILP Loss

% of ILP Loss

R=32

100

80 r

60

40

20

"lin-ddot ——
liv-loop5

spec-dod-loop7-—x -

100

80

60

40

20

2 3

4 5 6 7 8 9
Unroll Factor

R=128

"lin-ddot ——
liv-loop5 -
spec-dod-loop7-—x -

2 3

456789

Unroll Factor

Figure 8: Percentage of ILP Loss in Unrolled Loops

21

10

45 PRSReduction with Heuristic

Since PRS reduction is NP-hard, we cannot use optimal mstfowdarger DDG. So
we use our heuristic based on SIRA. We have used loop urngditirproduce larger
DDGs. Figure 7 plots the reduced PRS of many DDG with variouslling (from 1
to 10) degrees and various numbers of available registers-(16, 32, 64, 128). As
can be seen, our heuristic succeeds in reducing PRS Beldwgure 8 shows that the
ILP loss is saved. Itis equal to zero in most cases, while it beamuch greater if the
register pressure is high.

5 Related Work

The introduction of instruction level parallelism (ILP)s$wendered inadequate the clas
sical techniques of register allocation (RA) for sequdnt@de semantics. As well
known in backend compilation, there is a phase orderinglprlbetween classical
register allocation techniques and instruction schedulitf a classical RA is done
early, the introduced false dependences inhibit instoucsicheduling from extracting
a schedule with high amount of ILP. However, this conclusioas not prevent a com-
piler from effectively performing an early RA, with the caitidn that the allocator is
sensitive to the scheduler. Such schedule sensitive eegifibcation methods have
been studied in [8, 11, 13]. Until now, the problem of optirsplll insertion in ILP
codes is not understood yet: the cache effects of memorgatpes on ILP scheduling
are still not understood. However, optimal spill code itiserinside static issue slots
can be applied [15], but the generated code is not necgseptimal because memory
operations have unknown static latencies (cache effects).

ILP scheduling is a special case of the general k-periodiddimensional schedul-
ing problem. Indeed, researchers in this area studied #dazase when the schedul-
ing period is unique and integral as done in [12] improvecndly in [7]. In case of
cyclic scheduling under register constraints, most of hygr@aches try to build a SWP
schedule with a minimised MAXLIVE, see [4, 6, 22]. Then, inexsnd step, cyclic
register allocation can be applied using the methods desttin [9] improved later in
[3]. We can also do a cyclic register allocation sensitiv&WP as done in [19]. All
these previous techniques try to minimise the registerirement, not to maximise it
as in the PRS approach.

The case of multidimensional memory storage optimisatioal$o interesting if
we target regular loop nests for high performance codes(122]. A heuristic in
case of registers is presented in [10]. However, such appesaare not considered
yet in our specific embedded computing for many reasons: dfaoget loops are one-
dimensional 2) our one-dimensional embedded loops coetadugh ILP, so we do
not need to optimise the whole loop nest 3) exploiting ILP aggisters in multidi-
mensional loop nests requires larger code size [2] tharoékpd the ILP in innermost
loops, while code size is an important optimisation aspe@&mbedded codes 4) the
problem of optimal register allocation in multidimensibtwops is still an open prob-
lem; a sub-optimal heuristic for this problem is presentef.D].

22

6 Conclusion

The register saturation is the exact maximal register néadyovalid instruction sched-
ule of a data dependence graph. If such DDG represents at@irédcyclic Graph
(DAG) of a basic block, then this study has been done in [fdut¢h DDG represents
the data dependences of an innermost loop (with possiblerestces), then our cur-
rent article shows how do we extend the theoretical studgiedd, the case of loops
is more complex since it requires to consider periodic ingion scheduling (software
pipelining).

Many practical applications may profit from PRS computatidh for compiler
technology, PRS calculation provides new opportunitieafmiding and/or verifying
useless spilling; 2) for JIT compilation, PRS metrics mayeb@edded in the gener-
ated byte-code as static annotations, which may help theaJtiynamically sched-
ule instructions without worrying about register consttaj 3) for helping hardware
designers, PRS computation provides a static analysiseoétlact maximal register
requirement.

We show that our formula of computing the MAXLIVE (Equationiri[18]) is
useful to compute the register sufficiency (minimise of main [18]) and to compute
the register saturation (maximise a maximum) in this ati€lurthermore, our current
experiments demonstrate that our formula of MAXLIVE congtign is more efficient,
and scales better than the commonly used technique.

If the computed register saturation exceeds the numberaifadle registers, we
can bring a method to reduce this maximal register need inffeciemt way to just
bring it below the limit without minimising it at the lowestogsible level. Register
saturation reduction must take care &f/1, i.e., it should not increase the critical
cycle if possible. We proved that this problem is NP-hardj s provided optimal
and approximate methods.

In theory, and contrary to the acyclic case [17], the pedaggister saturation
can be unbounded when dealing with loops scheduled witlvgierschedules without
resource constraints. However, in practice, experimetitts 8WP and many DDGs
show that the register saturation is bounded. Consequérilyuseful and efficient to
decouple register constraints from resource constra®us.methods of PRS reduction
do not introduce new edges in many cases. When edges aréuogd to reduce PRS,
our method takes care of not increasiiky 7, because it does not minimise PRS at its
lowest possible value.

Acknowledgement

This research result has been partially funded by the ANR MORP project (ANR
number 05-JCJC-0039) and the European HIPEAC network adliexcy. We would
like to thank Alain DARTE from ENS-Lyon for his helpful remarks. This research
result would not succeed without the valuable support ofuh&ersity of Versailles
Saint-Quentin en Yvelines, INRIA-Rocquencourt and INRBAelay in France.

23

References

[1]

(2]

3]

[4]

[5]

[6]

[7]

(8]

9]

(10]

(11]

(12]

(13]

Alain Darte and Robert Schreiber and Gilles Villard . tie¢-Based Memory
Allocation . IEEE Transactions on Computersages 1242-1257, October 2005.

Cédric Bastoul. Code Generation in the Polyhedral MddeEasier Than You
Think. In PACT, pages 7-16. IEEE Computer Society, 2004.

Dominique de Werra, Christine Eisenbeis, Sylvain Lgland Bruno Marmol.
On a Graph-Theoretical Model for Cyclic Register Allocatidiscrete Applied
Mathematics93(2-3):191-203, July 1999.

Alexandre E. Eichenberger, Edward S. Davidson, and &miG. Abraham.
Minimizing Register Requirements of a Modulo Schedule vigi@um Stage
Scheduling. International Journal of Parallel Programming24(2):103-132,
April 1996.

Christine Eisenbeis, Franco Gasperoni, and Uwe Scheisdghn. Allocating
Registers in Multiple Instruction-Issuing ProcessorsPtaceedings of the IFIP
WG 10.3 Working Conference on Parallel Architectures andh@itation Tech-
niques, PACT'95pages 290-293. ACM Press, June 27-29, 1995.

D. Fimmel and J. Muller. Optimal Software Pipelining WsrdResource Con-
straints. International Journal of Foundations of Computer ScientH-CS)
12(6):697-718, 2001.

Florent Blachot and Benot Dupont-de-Dinechin and Guithe Huard. SCAN: A
Heuristic for Near-Optimal Software Pipelining. Euro-Par, 2006.

Ramaswamy Govindarajan, Hongbo Yang, José N. Amatah@éhg Zhang, and
Guang R. Gao. Minimum Register Instruction Sequencing tduke Register
Spills in Out-of-Order Issue Superscalar ArchitecturieEE Transactions on
Computers pages 4-20, 2003.

Laurie J. Hendren, Guang R. Gao, Erik R. Altman, and ChizadViukerji. A
Register Allocation Framework Based on Hierarchical Qytliterval Graphs.
Lecture Notes in Computer Scienéd1:176—??, 1992.

Hongbo Rong and Alban Douillet and Guang R. Gao. Registcation
for Software Pipelining Multi-dimensional Loops.ACM SIGPLAN Notices
40(6):154-167, June 2005.

Johan JansseiCompilers Strategies for Transport Triggered ArchiteetuPhD
thesis, Delft University, Netherlands, 2001.

Monica S. Lam. Software Pipelining: An Effective Scludidg Technique for
VLIW Machines. InPLDI, pages 318-328, 1988.

Schlomit S. Pinter. Register Allocation with Instrigt Scheduling: A New Ap-
proach.SIGPLAN Notices28(6):248-257, June 1993.

24

[14] Premysl Sucha and Zdenek Hanzalek. Scheduling ofsTadtk Precedence De-
lays and Relative Deadlines - Framework for Time-optimahByic Reconfigu-
ration of FPGAs. INPDPS pages 1-8. IEEE, 2006.

[15] Santosh G. Nagarakatte and R. Govindarajan. Regidtecation and Optimal
Spill Code Scheduling in Software Pipelined Loops Using Dykger Linear
Programming Formulation. I&€C’07, volume 4420 ofLNCS pages 126-140.
Springer, 2007.

[16] Sid-Ahmed-Ali Touati. Register Pressure in Instruction Level Paral-
lelisme PhD thesis, Universitt de Versailles, France, June 2002.
ftp.inria.fr/INRIA/Projects/a3/touati/thesis.

[17] Sid-Ahmed-Ali Touati. Register Saturation in Insttien Level Parallelism.In-
ternational Journal of Parallel Programmin@3(4), August 2005. 57 pages.

[18] Sid-Ahmed-Ali Touati. On the Periodic Register NeedSaftware Pipelining.
IEEE Transactions on Computes6(11), November 2007.

[19] Sid-Ahmed-Ali Touati and Christine Eisenbeis. Earlgriddic Register Alloca-
tion on ILP ProcessorsParallel Processing Lettersl4(2), June 2004. World
Scientific.

[20] Michelle Mills Strout, Larry Carter, Jeanne Ferrardad Beth Simon. Schedule-
Independent Storage Mapping for Loop&CM SIG-PLAN Notices33(11):24—
33, November 1998.

[21] William Thies, Frederic Vivien, Jeffrey Sheldon, andrBan Amarasinghe. A
Unified Framework for Schedule and Storage Optimizat®@@M SIGPLAN No-
tices 36(5):232-242, May 2001.

[22] Jian Wang, Andreas Krall, and M. Anton Ertl. DecompoSeditware Pipelining
with Reduced Register Requirement. Rroceedings of the IFIP WG10.3 Work-
ing Conference on Parallel Architectures and Compilati@chihiques, PACT95
pages 277 — 280, Limassol, Cyprus, June 1995.

25

