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Abstract

This article treats register constraints in high performance embedded VLIW
computing, aiming to decouple register constraints from instruction scheduling. It
extends the register saturation (RS) concept to periodic instruction schedules, i.e.,
software pipelining (SWP). We formally study an approach which consists in com-
puting the exact upper-bound of the register need for all thevalid SWP schedules
of an innermost loop (without overestimation), independently of the functional unit
constraints. We call this upper-limit theperiodic register saturation(PRS) of the
data dependence graph (DDG). PRS is well adapted to situations where spilling is
not a favourite solution for reducing register pressure compared to ILP scheduling:
spill operations request memory data with a higher energy consumption. Also, spill
code introduces unpredictable cache effects and makes Worst-Case-Execution-
Time (WCET) estimation less accurate. PRS is a computer science concept that
has many possible applications. First, it provides compiler designers new ways to
generate better codes regarding register optimisation by avoiding useless spilling.
Second, its computation can help architectural designers to decide about the most
suitable number of available registers inside an embedded VLIW processor; such
architectural decision can be done with full respect to instruction level parallelism
extraction, independently of the chosen functional units configuration. Third, it
can be used to verify prior to instruction scheduling that a code does not require
spilling. In this paper, we write an appropriate mathematical formalism for the
problem of PRS computation and reduction in the case of loopswhere data de-
pendence graphs may be cyclic. We prove that PRS reduction isNP-hard and we
provide optimal and approximate methods. We have implemented our methods,
and our experimental results demonstrate the practical usefulness and efficiency of
the PRS approach.

1 Introduction

The register saturation is a computer science concept initially studied in [17], intended
for decoupling register constraints from resource constraints. In that paper, the author
considers basic blocks only where data dependence graphs and instruction schedules
are acyclic. In the current article, we extend the concept toperiodic schedules of cyclic
data dependence graphs (innermost loops), which is a more general and complex prob-
lem.
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Register saturation (RS) is a formal solution to decouple register constraints from
instruction scheduling concerns. It is well adapted to situations where spilling is not a
favourite or a possible solution for reducing register pressure compared to ILP schedul-
ing: spill operations request memory data with a higher energy consumption. Also,
spill code introduces unpredictable cache effects: it makes WCET estimation less ac-
curate and add difficulties to ILP scheduling (because spilloperations latencies are
unknown). Register Saturation (RS) is concerned about register maximisation not min-
imisation, and has some major proved mathematical characteristics [17]:

• As in the case of WCET research, the RS is an exact upper-boundof the regis-
ter requirement of all possible valid instruction schedules. This means that the
register requirement is not over-estimated. RS should not be overestimated, oth-
erwise it would waste hardware registers for embedded VLIW designers, and
would produce useless spilling strategies for compiler designers. Contrary to
WCET where an exact estimation is hard to model, the RS computation and
reduction are exactly modelled problems and can be optimally solved.

• The RS is areachableexact upper-bound of the register requirement for any
functional units configuration. This means that, for any resource constraints of
the underlying processor (even sequential ones), there is always an instruction
schedule that requires RS registers: this is a mathematicalfact proved by Lemma
3 in [17]. This is contrary to the well known register sufficiency, which is a mini-
mal bound of register requirement. Such minimal bound isnotalways reachable,
since it is tightly correlated to the resource constraints.A practical demonstra-
tion is provided in chapter 5 of [16] proving that the register sufficiency is not
a reachable lower bound of register need, and hence cannot beused to decouple
register constraints from functional units constraints.

Currently, register saturation (RS) is not only intended for general purpose interac-
tive compilers such asgccor icc. We are also targeting embedded systems, where com-
pilation time is allowed to last longer in order to produce highly optimised codes. Our
target applications are codes where the core of computationis spent insmallinnermost
one-dimensional loops (DSP filters, multimedia applications, BLAS codes, vectorial
loops, etc.): optimising compilers in this area are allowedto use more aggressive code
optimisation techniques (either with static or iterative compilation). Currently, we are
not interested yet in studying multidimensional scheduling (loop nests), we discuss this
issue in a further section.

There are many practical motivations that convince us to carry on fundamental
studies on RS:

• High performance VLIW computing. Embedded systems in general cover a wide
area of activities which differ in terms of stakes and objectives. In particular,
embedded high performance VLIW computing requires cheap and fast VLIW
processors to cover the computation budget of telecommunications, video and
audio processing, with a tight energy consumption. Such embedded VLIW pro-
cessors are designed to execute a typical set of applications. Usually, the con-
sidered set of typical applications is rarely represented by the set of common
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benchmarks (mibench, spec, mediabench, BDTI, etc.), but isgiven by the indus-
trial client. Then, the constructor of the embedded processor considers only such
applications (which are not public) for the hardware design. Nowadays, some
embedded VLIW processors (such as ST2xx family) have 32 or 64registers, and
the processor designers have no idea whether such number is adequate or not.
Computing the RS of the considered embedded codes allows thehardware de-
signers to precisely gauge with a static method the maximal amount of required
registers without worrying about how much functional unitsthey should put on
the VLIW processor. RS provides the mathematical guaranteethat this maximal
register need limit is reachable for any VLIW configuration.

• Circuit Synthesis. As studied in [14], optimal cyclic scheduling under resource
constraints is currently used to design dynamic reconfigurable circuits with FPGA.
In that study, storage and registers are not considered because of practical reso-
lution complexity. Thanks to the RS concept, register constraints can be satisfied
prior to the cyclic scheduling problem, with a formal guarantee of providing
enough registers for any cyclic schedule.

• Embedded code optimisation and verification. As done in [17], computing RS
allows to guide instruction scheduling heuristics inside backend compilers. For
instance, if RS is belowR the number of available registers, then we can guaran-
tee that the instruction scheduling process can be carried on without considering
register constraints. If RS is greater thanR the number of available registers,
then RS reduction methods could be used.

• High Performance Computing. RS may be used to control high-level loop trans-
formations such as loop unrolling without causing low levelregister spilling. In
practice, this means that the unrolling degree is chosen so that RS remains below
R.

• Just-in-time (JIT) compilation. The compiler can generate a bytecode with a
bounded RS. This means that the generated bytecode holds RS metrics as static
annotations, providing information about the maximal register need for any un-
derlying processor characteristics. At program execution, when the processor
is known, the JIT can access such static annotations (present in the bytecode)
and eventually schedule operations at run-time under only resource constraints
without worrying about registers and spilling.

For all the above applications, we can have many solutions and strategies, and the
literature is rich with many articles about the topics. The RS concept is not the unique
and main strategy. It is a concept that may be used in conjunction and complementary
with other strategies. RS is helpful thanks to two characteristics:

1. The RS concept can give aformalguarantee of avoiding useless spilling in some
codes (case when RS≤ R). Avoiding useless spilling allows to reduce the amount
of memory requests and cache effects, which may save power and increase per-
formance.
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2. Since RS is astaticmetric, it does not require program execution or simulation.
Usually, the results provided with such methods are not formally guaranteed and
always depend on input data, on functional units configurations, on the precision
of the simulator, on the presence or not of a processor prototype, etc. Also, such
dynamic techniques are usually demonstrated for a set of benchmarks only, and
such benchmarks are not really representative in some situations. Since RS is
a mathematically proved static metric, it can be safely saidthat it is correct and
valid for all possible codes meeting the model (not only benchmarks), andfor
all possible program executions (not only for a subset of input data), and this
independently of the functional units configuration.

In this article, background and notations refer directly toour previous results published
in [18]. We assume that the reader is familiar with [18]. Otherwise, we strongly suggest
a first reading of sections 2 and 3 of [18], since they are related to many notions in the
current contributions.

Our current article focus on PRS, which is the specialisation of RS in the context of
periodic schedules. Our paper is organised as follows. Section 2 studies the problem of
PRS computation. If PRS is≥ R, Section 3 studies the problems of PRS reductions:
we prove that this problem is NP-hard and we provide exact andapproximate solutions.
We present our experimental results in Section 4. This section also presents some new
experiments related to [18]. Section 5 discusses some related work, then we conclude.

2 Computing the Optimal Periodic Register Saturation

Let G = (V, E, δ, λ) be a loop. The periodic register saturation (PRS) is the maximal
register requirement for all valid software pipelined schedules:

PRS(G) = max
σ∈Σ(G)

RNσ(G)

whereRNσ(G) is the periodic register need for the SWP scheduleσ. A software
pipelined schedule which needs the maximum number of registers is called asaturating
SWP schedule. Note that it may not be unique.

In this section, we show that our new method of computingRNσ(G) [18] is useful
to write an exact modelling of PRS computation. In the current case, we are faced
with a difficulty: for computing the periodic register sufficiency as done in[18], we are
requested to minimise amaximum(minimise MAXLIVE), which a common optimisa-
tion problem in operational research; however, PRS computation requires tomaximise
a maximum, namely to maximise MAXLIVE. Maximising a maximumis a less con-
ventional linear optimisation problem. It requires the writing of an exact equation of
the maximum, which has been defined by Equation (1) in [18].

In practice, we need to consider loops with a bounded code size. That is, we should
bound the durationL. This yields to computing the PRS by considering a subset
of possible SWP schedulesΣL(G) ⊆ Σ(G): we compute the maximal register re-
quirement in the set of all valid software pipelined schedules with the property that
the duration does not exceed a fixed limitL andMII ≥ 1. Bounding the schedule
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space has the consequence to bound the values of the scheduling function as follows:
∀u ∈ V, 0 ≤ σ(u) ≤ L.

Computing the optimal register saturation is proved as an NP-complete problem in
[17]. Now, let’s study how we exactly compute the periodic register saturation using
integer linear programming (intLP). Our intLP formulationexpresses the logical op-
erators (=⇒, ∨, ⇐⇒) and the max operator (max(x, y)) by introducing extra binary
variables. However, expressing these additional operators requires that the domain of
the integer variables should be bounded, as explained in details in [17].

Next, we present our intLP formulation that computes a saturating scheduleσ ∈
ΣL(G) considering afixedII. Fixing a value for the initiation interval is necessary to
have linear constraints in the intLP system. As far as we know, computing the exact
periodic register need (MAXLIVE) of a SWP schedule with a nonfixed II is not a
mathematically defined problem (because a SWP schedule is defined according to a
fixedII).

Basic Integer Variables

1. For the lifetime intervals, we define:

• one schedule variableσu ≥ 0 for eachu ∈ V ;

• one variable which contains the killing dateku ≥ 0 for each statement
u ∈ VR.

2. For the periodic register need, we define:

• pu ≥ 0 the number of the instances ofu ∈ VR simultaneously alive, which
is the number of complete periods around the circle producedby the cyclic
lifetime interval ofu ∈ VR;

• lu ≥ 0 andru ≥ 0 the left and the right of the cyclic lifetime interval of
u ∈ VR;

• the two acyclic fractional intervalsIu =]au, bu] and I ′u =]a′
u, b′u] after

unrolling the kernel once.

3. For a maximal clique in the interference graph of the fractional acyclic intervals,
we define:

• interference binary variablessI,J for all the fractional acyclic intervals
I, J : sI,J = 1 iff I andJ interfere with each other;

• a binary variablexI for each fractional acyclic interval:xI = 1 iff I be-
longs to a maximal clique.

Linear Constraints

1. Periodic scheduling constraints:∀e = (u, v) ∈ E, σu − σv ≤ +λ(e) ×
II − δ(e)
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2. The killing dates are computed by:

∀u ∈ VR, ku = max
v∈Cons(u)

e=(u,v)∈ER

(

σv + δr(v) + λ(e) × II
)

We use the linear constraints of themax operator as defined in [17].ku is
bounded byku andku where:

• ku = minv∈Cons(u)

(

δr(v) + maxe=(u,v)∈ER
λ(e) × II

)

• ku = maxv∈Cons(u)

(

L + δr(v) + maxe=(u,v)∈ER
λ(e) × II

)

3. The number of interfering instances of a value (complete turns around the circle)
is the integer division of its lifetime byII. We introduce an integer variable
αu ≥ 0 which holds the rest of the division:







ku − σu − δw(u) = II × pu + αu

αu < II
αu ∈ N

+

4. The lefts [18] of the circular intervals are the rest of theinteger division of the
birth date byII. We introduce an integer variableβu ≥ 0 which holds the
integral quotient of the division:







σu + δw(u) = II × βu + lu
lu < II
βu ∈ N

+

5. The rights [18] of the circular intervals are the rest of the integer division of the
killing date byII. We introduce an integer variableγu ≥ 0 which holds the
integer quotient of the division:







ku = II × γu + ru

ru < II
γu ∈ N

+

6. The fractional acyclic intervals are computed by considering an unrolled kernel
once (they are computed depending on whether the cyclic interval crosses the
kernel barrier):































au = lu
ru ≥ lu =⇒ bu = ru

case when the cyclic interval crossesII:
ru < lu =⇒ bu = ru + II
a′

u = au + II
b′u = bu + II

Since the variable domains are bounded, we can use the linearconstraints of
implication defined in [17]: we know that0 ≤ lu < II, so0 ≤ au < II and
II ≤ a′

u < 2×II. Also,0 ≤ lu < II so0 ≤ bu < 2×II andII ≤ b′u < 3×II.
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7. For any pair of distinct fractional acyclic intervalsI, J , the binary variablesI,J ∈
{0, 1} is set to 1 if the two intervals are non empty and interfere with each other.
It is expressed in the intLP by adding the following constraints.

∀ acyclic intervalsI, J :

sI,J = 1 ⇐⇒
[

(length(I) > 0)
∧ (length(J) > 0)
∧ ¬(I ≺ J ∨ J ≺ I)

]

where≺ denotes the usual relationbefore in the interval algebra. Assuming
that I =]aI , bI ] andJ =]aJ , bJ ], I ≺ J means thatbI ≤ aJ , and the above
constraints are written as follows.∀ acyclic intervalsI, J ,

sI,J = 1 ⇐⇒















bI − aI > 0 (i.e., length(I) > 0)
bJ − aJ > 0 (i.e., length(J) > 0)
bI > aJ (i.e., ¬(I ≺ J))
bJ > aI (i.e., ¬(J ≺ I))

8. A maximal clique in the interference graph is an independent set in the comple-
mentary graph. Then, for two binary variablesxI andxJ , only one is set to 1 if
the two acyclic intervalsI andJ do not interfere with each other:

∀ acyclic intervalsI, J : sI,J = 0 =⇒ xI + xJ ≤ 1

9. In order to guarantee that our objective function maximises the interferences
between the non-zero length acyclic intervals, we add the following constraint:

∀ acyclic intervalsI, length(I) = 0 =⇒ xI = 0

Sincelength(I) = bI − aI , it amounts to:

∀ acyclic intervalsI, bI − aI = 0 =⇒ xI = 0

Linear Objective Function A saturating SWP schedule can be obtained by max-
imising the value of:

∑

acyclic fractional intervalI

xI +
∑

u∈VR

pu

Solving the above intLP model yields a solutionσ for the scheduling variables,
which define a saturating SWP, such thatPRS(G) = RNσ(G). Onceσ computed by
intLP, thenRNσ(G) is equal to the value of the objective function. Finally,PRS =
maxMII≤II≤L RNσ(G).

The size of our intLP model isO(|VR|
2) variables andO(|E|+ |VR|

2) constraints.
The coefficients of the constraints matrix are all bounded by±L × λmax × II, where
λmax is the maximal dependence distance in the loop. To compute the PRS, we scan
all the admissible values ofII, i.e., we iterateII the initiation interval fromMII to
L and then we solve the intLP system for each value ofII. The PRS is finally the
maximal register need among of all the ones computed by all the intLP systems. As
can be remarked, the size of out intLP model is polynomial (quadratic) on the size of
the input DDG.

7



3 Reducing Periodic Register Saturation

This section studies how to build an extended DDG,i.e how to add serial edges to a
given DDGG = (V, E, δ, λ) such that its periodic register saturation is limited by a
strictly positive integerR under a desired minimal initial interval (critical cycle) con-
straintMII. This allows us to guarantee that any software pipelining ofthe new graph
does not require more registers than those available. Consequently, we can always
build a valid register allocation without spilling after the SWP process.

Problem 1 (ReducePRS) Given a DDGG = (V, E, δ, λ), is there an extended DDG
G of G such thatPRS(G) ≤ R andMII ≤ MII?

The following theorem has two main practical implications.First, it proves that we
cannot have optimal solutions in practice unless we use exponential algorithms, or un-
lessP = NP . That is, the usage of a sub-optimal heuristics in practice is unavoidable.
Second, its formal proof gives us key hints about building optimal and approximate
methods for PRS reduction.

Theorem 1 Reducing the Periodic Register Saturation is NP-hard.

Proof:
We prove that ReducePRS can be reduced from the problem of instruction scheduling
under register constraints (SRC). We take the same instancefor both problems. Let us
start by defining the latter problem.

Problem 2 (SRC problem) LetG = (V, E, δ, λ) be a DDG,R andMII two positive
integers. Does it exist a valid SWP scheduleσ ∈ ΣL(G) such that:

RNσ(G) ≤ R ∧ II ≤ MII

whereII is the initiation interval ofσ?

The SRC problem is proved NP-hard [5].

1. ReducePRS =⇒ SRC
Let G be a solution for the ReducePRS problem. Then, we can build a SWP sched-
ule σ ∈ ΣL(G) in polynomial time complexity under only the serial constraints with
II = MII ≤ MII.

2. SRC =⇒ ReducePRS
Let σ be a solution for SRC, i.e.,RNσ(G) ≤ R andII ≤ MII. As an example, let
us consider the DDG example of [18], that we redraw in Figure 1(a). The PRS of this
DDG has been computed as a practical example in [16] (Chapter8) and is equal to 8
registers. We would like to reduce the PRS to 4 registers based on the cyclic schedule
of Figure 1(b). That schedule has 4 simultaneously alive values.

We have to build an extended DDGG such that we guarantee that any SWP sched-
ule σ′ ∈ Σ(G) produces the same cyclic relative order between the circular lifetime
intervals as defined byσ. If a lifetime intervalLTσ(u(i)) is before lifetime interval
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Figure 1: The DDG Example of [18]

LTσ(v(i + α)), then we must guarantee that any SWP scheduleσ′ makesLTσ′(u(i))
beforeLTσ′(v(i + α)), α is a distance to be defined.

We model the cyclic ordering between the circular lifetime intervals by a graph
O = (VR, E≺, α): e = (u, v) ∈ E≺ means that the value produced by the operation
u(i) is killed before the definition of the valuev(i + α(e)) (It is not necessary to have
u distinct fromv). α(e) is chosen so that the killing date ofu(i) is as close as possible
to the definition date ofv(i+α(e)), i.e., both of the two dates must be inside a window
of sizeII. Since the schedule times of the distinct instances of the statementv are
separated byII clock cycles, there is a unique distanceα that defines the cyclic order
betweenLTσ(u(i)) andLTσ(v(i + α)) in a window of sizeII. The constraints that
define such distanceα betweenu(i) andv(i + α) are:

LTσ(u(i)) ≺ LTσ(v(i + α)) (1)

σ(v(i + α)) + δw(v) − ku(i) < II (2)
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whereku(i) is the killing date ofu(i). Since

(1) ⇐⇒ ku(i) ≤ σ(v(i + α)) + δw(v)
⇐⇒ ku ≤ σv + II × α + δw(v)

and
(2) ⇐⇒ σv + II × α + δw(v) − ku < II

(1) and (2) amount to:

0 ≤ σv + II × α + δw(v) − ku < II

Then,α is the unique integer that belongs to the interval:

ku − σv − δw(v)

II
≤ α < 1 +

ku − σv − δw(v)

II

=⇒ α =

⌈

ku − σv − δw(v)

II

⌉

Now, we have completely defined the cyclic ordering graphO = (VR, E≺, α). Note
that the edges belonging toE≺ are defined from each valueu to v (u not necessarily
distinct fromv), since a periodic schedule makes circular all the lifetimeintervals: for
any (u, v) ∈ V 2

R, there exists a uniqueα (under the constraints just defined above)
such thatLTσ(u(i)) ≺ LTσ(v(i+α)). As an illustration, Figure 2(b) shows the cyclic
relative ordering between the values deduced from the schedule of Figure 1(b). For
instance,LTσ(v2(i)) ≺ LTσ(v1(i + 2)), thus there is a cyclic ordering edgee =
(v2, v1) in Figure 2(a) withα(e) = 2. Also,LTσ(v1(i)) ≺ LTσ(v1(i + 1)), thus there
is a cyclic ordering edgee = (v1, v1) in Figure 2(a) withα(e) = 1.

Now, let us see how to build an extended DDGG based on this cyclic ordering, i.e.,
how to report cyclic precedence relations between the circular lifetime intervals. For
each ordere = (u, v) ∈ E≺ between two valuesu andv, we must guarantee that the
killing date ofu is always performed before the definition date ofv(i + α(e)):

ku ≤ σ (v(i + α(e))) + δw(v)

This means that∀u′ ∈ Cons(u),

σ (u′(i + λ ((u, u′))) + δr(u
′) ≤ σ (v(i + α(e))) + δw(v)

⇐⇒ σ (u′(i)) + δr(u
′) − δw(v) ≤ σ (v(i + α(e) − λ ((u, u′)))

in whichλ ((u, u′)) is the distance of the flow dependence betweenu and its consumer
u′. This is done by adding a serial edgee′ to G from each consumeru′ ∈ Cons(u) to
v with:

δ(e′) = δr(u
′) − δw(v) and λ(e′) = α(e) − λ ((u, u′))

Figure 2(b) is the extended graph that has a periodic register saturation equal to 4. In
that figure, the added serial edges appear with dashed lines and only tagged with the
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distances. As an example, there is an order betweenv1 andv3 with a distanceα = 1.
Sincev2 consumesv1 with distanceλ = 0, we add a serial edge fromv2 to v2 with a
distanceα − λ = 1.

Note that some added serial edges may be redundant and do not cause any typical
restriction for instruction scheduling. As an illustration, there is an order betweenv3

and itself with a distanceα = 2. Sincev3 consumes itself with a distanceλ = 2, this
produces a serial edge inG from v3 to itself withα−λ = 0. This serial edge is always
satisfied by any schedule and can always be safely removed from G.

By adding all these serial edges, we build an extended DDGG that has the follow-
ing characteristics.

• Any SWP scheduleσ′ of G produces a circular order between the circular life-
time intervals as defined byσ. So,σ′ cannot need more registers thanσ. This is
because if two lifetime intervals do not interfere with eachother according toσ
, they cannot interfere with each other according toσ′.

1. The number of distinct interfering instances (turns around the circle) of
each statementsu with σ′ cannot exceed the numberpu of distinct interfer-
ing instances withσ. This is because we have, according toσ, LTσ(u(i)) ≺
LTσ(v(i + pu + 1)). Since we report the cyclic ordere = (u, u) with
pu ≤ α(e) = pu + 1 in the extended DDGG, at mostpu instances ofu

11



may interfere according to a scheduleσ′ of G.

2. The fractional intervals inside the SWP kernel are constrained to satisfy
the same precedence relation as defined byσ. If two fractional intervals
(l, r) and(l′, r′) do not interfere with each other according toσ, then they
cannot interfere according toσ′. Otherwise it means thatσ′ violates one of
the added serial edges.

• σ is a valid software pipelined schedule forG since it satisfies all the introduced
serial edges. Then, the extended DDG remains schedulable.

• Since the initiation intervalII of σ is lower than or equal toMII, a possible
introduced critical cycle inG is not greater thanMII. Otherwise it means that
σ is not a valid software pipelined schedule forG.

From above, we deduce:∀σ ∈ ΣL(G), RNσ(G) ≤ RNσ(G) and hencePRS(G) ≤
RNσ(G) ≤ R

y

From the previous proof, we deduce that the optimal reduction of periodic register
saturation is equivalent to finding a software pipelined schedule with a minimal initi-
ation interval which does not require more thanR registers (but without considering
any resource constraints). There exist many algorithms (optimal or heuristics) in the
literature that compute a SWP schedule minimising MAXLIVE under a fixedII (a
complete survey is done in [16]), any such method is suitablefor use in this context.
However, they would not bring efficient solutions for PRS reduction, since the pur-
pose here is not to necessarily minimise the register requirement, but to not exceed
the limit R. So, we should use a SWP scheduling method that does not necessarily
minimise the register requirement at the lowest possible level. As far as we know, the
only method that allows this opportunity is the SIRA SWP technique presented in [19].
However, other SWP scheduling techniques under register constraints (without consid-
ering resources) may be used if they do not minimise the register requirement at the
lowest possible value. We can then assume that we have such module. If the module
computes an optimal SWP under register constraints (an NP-complete problem), then
the PRS reduction solution is necessarily optimal. If the module is a heuristic, then
the PRS reduction provides a sub-optimal solution. In both cases, using such module
yields two possible situations for PRS reduction:

1. If the module computes a SWP scheduleσ such thatRNσ(G) ≤ R, then, we
add serial edges to the DDG as described in the previous proof. The critical cycle
of the extended DDG is lower than or equal toII.

2. If the module fails to find a SWP schedule of initiationII with RNσ(G) ≤ R,
then we cannot reduce the periodic register saturation withrespect to the critical
cycleMII ≤ II. We have to incrementII (in binary search betweenIImin =
II andIImax = L), until reaching a solution or not. If no solution exists, spill
code must be introduced. Introducing spill code is another interesting problem
which is outside the scope of the paper. Introducing and minimising spill code
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is indeed an NP-complete problem studied in the literature [15], but it is still not
well understood in case of ILP scheduling (because of cache effects).

4 Experiments

We have developed a complete tool based on the research results presented in this arti-
cle. It implements the integer linear program that computesthe periodic register satura-
tion of a DDG, and reduces its PRS if it exceedsR. We use a PC under linux, equipped
with a dual core Pentium D (3.4 Ghz), and 1 GB of memory. We did thousands of ex-
periments on several DDGs extracted from different benchmarks (SPEC, Whetstone,
Livermore, Linpac, DSP filters). The size of our DDG goes from2 nodes and 2 edges,
to 20 nodes and 26 edges. They represent the typical small loops intended to be anal-
ysed and optimised using the PRS concept. However, we also experiment larger DDGs
produced by loop unrolling, resulting in DDGs with size|V | + |E| reaching 460.

4.1 Computing RN

In [18], we provided method for RN computation of already scheduled loops inO(|V |×
ln(|V |)), which is a good complexity in theory. Here, we provide experiments to
demonstrate its efficiency in practice. For each DDG, we computed a valid loop
schedule and we measure the time spent to compute its MAXLIVE(in ms). We re-
port here the speedup of RN computation (compilation time speedup, do not confuse
with speedup of benchmarks), measured as the integral ratiobetween RN computation
time using the existing pseudo-polynomial method and RN computation time using our
O(|V | ln |V |) algorithm. Figure 3 plots the speedup of RN computation obtained with
our method: we plot here few DDG examples with various unrolling degrees. As can
be seen, whenII increases our method is faster and scales better since it hasnot a
pseudo-polynomial complexity (till≈ 70× faster at best case). Even when we vary the
DDG size (measured as the number of nodes and edges), Figure 4shows our method
is still faster and scales in a better way (till≈ 70× faster at best case). In this figure,
we plot the maximal speedup obtained for any value ofII. All these first experiments
show that, when compilation time is an important issue, our new method of RN com-
putation exhibits better execution times, especially whencompiling large loops with
big II.

4.2 Optimal PRS Computation

From the theoretical perspective, PRS is unbounded. However, as shown in Table 1,
the PRS is bounded and finite, because the durationL is bounded in practice: in our
experiments, we tookL =

∑

e∈E , which is a convenient upper bound. Figure 5 pro-
vides some plots on maximal periodic register need vs. initiation intervals of many
DDG examples. These curves have been computed using optimalintLP resolution us-
ing CPLEX. The plots do not start nor end at the same points because the parameters
MII (starting point) andL (ending point) differ from one loop to another. Given a
DDG, its PRS is equal to the maximal value of RN for anyII. As can be seen, this
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Figure 5: Maximal Periodic Register Need vs. Initiation Interval

maximal value of RN always holds forII = MII. This result is intuitive, since the
lower is theII, the higher is ILP degree, and consequently the higher is theregis-
ter need. The asymptotic plots of Figure 5 show that maximal RN vs. II describe
non-increasing functions. Indeed, the maximal RN is eithera constant or a decreasing
function. Depending onR the number of available registers, PRS computation allows
to deduce that register constraints are irrelevant in many cases (whenPRS ≤ R)

We should recall an interesting mathematical property of register saturation [17]:
for each computed maximal RN, there is a formal guarantee about the existence of
at least one valid SWP schedule requiring that maximum, and thus for any functional
units or ILP constraints. For instance, the case of spec-dod-loop7 has a PRS equal to
35. It means that there is always a SWP requiring exactly 35 registers, for any ILP
or sequential processor. And, there is not another SWP schedule requiring more than
35 registers, unless the parameterL is larger. This is an interesting property which
does not hold for the usual register sufficiency concept: indeed, as shown in [17],
the register sufficiency (the minimal register need) is tightly related to the underlying
resource constraints.

Optimal PRS computation using intLP resolution may be intractable because the
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underlying problem is NP-complete. In order to be able to compute an approximate
PRS for larger DDGs, we use a heuristics with the CPLEX solver. Indeed, the oper-
ational research community brings efficient ways to deduce heuristics based on exact
intLP formulation. When using CPLEX, we can use a generic branch and bound heuris-
tics for intLP resolution, tuned with many CPLEX parameters. In the current paper, we
choose a first satisfactory heuristic by bounding the resolution with a real time limit
(say 5 or 1 seconds). The intLP resolution stops when time goes out and returns the
best feasible solution found. Of course, in some cases, if the given time limit is not suf-
ficiently high, the solver may not find a feasible solution (asin any heuristic targeting
an NP-complete problem). Using such CPLEX generic heuristics for intLP resolution
avoids the need of designing new heuristics. Table 1 shows the results of PRS com-
putation in both the case of optimal PRS, and approximate PRS(with time limits of
5 and 1 seconds). As can be seen, in most cases, this simple heuristic computes the
optimal results. The more time we give to CPLEX computation,the closer it will be to
the optimal one.

Benchmark Loop PRS PRS (5 s) PRS (1 s)
SPEC- SPICE loop1 4 4 4

loop2 28 28 28
loop3 2 2 2
loop4 9 9 NA
loop5 1 1 1
loop6 23 23 23
loop8 11 11 11
loop9 21 21 NA
loop10 3 3 3

tom-loop1 11 NA NA
SPEC - DODUC loop1 11 NA NA

loop2 6 6 5
loop3 5 5 5
loop7 35 35 35

SPEC - FPPP fp-loop1 4 4 4
Linpac ddot 13 13 NA

Livermoore loop1 8 8 NA
loop5 5 5 5
loop23 31 NA NA

Whetstone loop1 6 5 NA
loop2 5 5 5
loop3 4 4 4

cycle4-1 1 1 1
cycle4-2 2 2 2
cycle4-4 4 4 4
cycle4-8 8 8 8

Figure 1 DDG loop1 6 6 6
TORSHE van-Dongen 10 10 9
DSP filter WDF 6 6 6

Table 1: Optimal vs. Approximate PRS

We will use this kind of heuristics in order to compute approximate PRS for larger
DDGs in the next section.
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Figure 6: Periodic Register Saturation in Unrolled Loops

4.3 Approximate PRS Computation with Heuristic

We use loop unrolling to produce larger DDGs (up to 200 nodes and 260 edges). As
can be seen in some cases (spec-spice-loop3, whet-loop3,whet-cycle-4-1), the PRS
stays constant because the cyclic data dependence limit theinherent ILP, and hence
PRS remains constant irrespective of unrolling degrees. Inother cases (lin-ddot, spec-
fp-loop1, spec-spice-loop1), PRS increases as a sub-linear function of unrolling degree.
In other cases (spec-dod-loop7), PRS increases as a super-linear function of unrolling
degree. This is because unrolling degree produces bigger durationsL, which increase
the PRS with a factor greater than the unrolling degree.

4.4 Optimal PRS Reduction

If PRS is used in the context of code optimisation, we may needto reduce it when
it exceedsR. We developed PRS reduction (optimal and approximate) based on the
SIRA framework [19]. SIRA gives us the opportunity to reducePRS belowR without
minimising it at the lowest possible level. This is useful for saving ILP. We did hun-
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Benchmark Loop PRS (R=16) PRS (R=32)
SPEC - SPICE loop1 4 (0%) 4 (0%)

loop2 16 (0%) 28 (0%)
loop3 2 (0%) 2 (0%)
loop4 9 (0%) 9 (0%)
loop5 1 (0%) 1 (0%)
loop6 16 (0%) 23 (0%)
loop8 11 (0%) 11(0%)
loop9 16 (0%) 21 (0%)
loop10 3 (0%) 3 (0%)

tom-loop1 11 (0%) 11 (0%)
SPEC - DODUC loop1 11 (0%) 11 (0%)

loop2 6 (0%) 6 (0%)
loop3 5 (0%) 5 (0%)
loop7 16 (66.66%) 32 (50%)

SPEC - FPPP fp-loop1 4 (0%) 4(0%)
Linpac ddot 13 (0%) 13 (0%)

Livermoore loop1 8 (0%) 8 (0%)
loop5 5 (0%) 5 (0%)
loop23 16 (0%) 32 (0%)

Whetstone loop1 6 (0%) 6 (0%)
loop2 5 (0%) 5 (0%)
loop3 4 (0%) 4 (0%)

cycle4-1 1 (0%) 1 (0%)
cycle4-2 2 (0%) 2 (0%)
cycle4-4 4 (0%) 4 (0%)
cycle4-8 8 (0%) 8 (0%)

DDG of Figure 1 loop1 6 (0%) 6 (0%)
TORSHE van-Dongen 10 (0%) 10 (0%)
DSP filter WDF 6 (0%) 6 (0%)

Table 2: Optimal PRS Reduction

dreds of experiments on hundreds of DDGs, with many values for R (8,16,32,64,128)
andII. In all cases, the PRS approach allows to check whether a DDG is not con-
strained by registers. IfPRS ≤ R, no edge is introduced in the DDG, resulting in a
maximal ILP extraction under resource constraints. When PRS exceedsR, some edges
are introduced to reduce PRS to a new valuePRS with taking care ofMII if possible.
As in [17], we measure the ILP loss after PRS reduction as equal to 1 − MII/MII,
whereMII is the initial critical cycle, andMII is the new critical cycle after PRS
reduction. Table 2 shows the results of optimal PRS reduction when considering 16
and 32 available registers. The ILP loss is expressed in terms of percentage (numbers
between brackets). As can be seen, if PRS exceedsR, optimal PRS reduction can
always reduce it toR. The ILP loss is almost equal to zero, except in the case of spec-
dod-loop7, because of large static operation latencies (17cycles), which yields higher
register pressure.

19



 0

 5

 10

 15

 20

 25

 1  2  3  4  5  6  7  8  9  10

R
ed

uc
ed

 P
R

S

Unroll Factor

R=16

lin-ddot
liv-loop5

spec-dod-loop7

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1  2  3  4  5  6  7  8  9  10
R

ed
uc

ed
 P

R
S

Unroll Factor

R=32

lin-ddot
liv-loop5

spec-dod-loop7

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1  2  3  4  5  6  7  8  9  10

R
ed

uc
ed

 P
R

S

Unroll Factor

R=64

lin-ddot
liv-loop5

spec-dod-loop7

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1  2  3  4  5  6  7  8  9  10

R
ed

uc
ed

 P
R

S

Unroll Factor

R=128

lin-ddot
liv-loop5

spec-dod-loop7

Figure 7: Approximate PRS Reduction in Unrolled Loops
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Figure 8: Percentage of ILP Loss in Unrolled Loops

21



4.5 PRS Reduction with Heuristic

Since PRS reduction is NP-hard, we cannot use optimal methods for larger DDG. So
we use our heuristic based on SIRA. We have used loop unrolling to produce larger
DDGs. Figure 7 plots the reduced PRS of many DDG with various unrolling (from 1
to 10) degrees and various numbers of available registers (R = 16, 32, 64, 128). As
can be seen, our heuristic succeeds in reducing PRS belowR. Figure 8 shows that the
ILP loss is saved. It is equal to zero in most cases, while it may be much greater if the
register pressure is high.

5 Related Work

The introduction of instruction level parallelism (ILP) has rendered inadequate the clas-
sical techniques of register allocation (RA) for sequential code semantics. As well
known in backend compilation, there is a phase ordering problem between classical
register allocation techniques and instruction scheduling. If a classical RA is done
early, the introduced false dependences inhibit instruction scheduling from extracting
a schedule with high amount of ILP. However, this conclusiondoes not prevent a com-
piler from effectively performing an early RA, with the condition that the allocator is
sensitive to the scheduler. Such schedule sensitive register allocation methods have
been studied in [8, 11, 13]. Until now, the problem of optimalspill insertion in ILP
codes is not understood yet: the cache effects of memory operations on ILP scheduling
are still not understood. However, optimal spill code insertion inside static issue slots
can be applied [15], but the generated code is not necessarily optimal because memory
operations have unknown static latencies (cache effects).

ILP scheduling is a special case of the general k-periodic multidimensional schedul-
ing problem. Indeed, researchers in this area studied the special case when the schedul-
ing period is unique and integral as done in [12] improved recently in [7]. In case of
cyclic scheduling under register constraints, most of the approaches try to build a SWP
schedule with a minimised MAXLIVE, see [4, 6, 22]. Then, in a second step, cyclic
register allocation can be applied using the methods described in [9] improved later in
[3]. We can also do a cyclic register allocation sensitive toSWP as done in [19]. All
these previous techniques try to minimise the register requirement, not to maximise it
as in the PRS approach.

The case of multidimensional memory storage optimisation is also interesting if
we target regular loop nests for high performance codes [1, 20, 21]. A heuristic in
case of registers is presented in [10]. However, such approaches are not considered
yet in our specific embedded computing for many reasons: 1) our target loops are one-
dimensional 2) our one-dimensional embedded loops containenough ILP, so we do
not need to optimise the whole loop nest 3) exploiting ILP andregisters in multidi-
mensional loop nests requires larger code size [2] than exploiting the ILP in innermost
loops, while code size is an important optimisation aspect in embedded codes 4) the
problem of optimal register allocation in multidimensional loops is still an open prob-
lem; a sub-optimal heuristic for this problem is presented in [10].
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6 Conclusion

The register saturation is the exact maximal register need of any valid instruction sched-
ule of a data dependence graph. If such DDG represents a Directed Acyclic Graph
(DAG) of a basic block, then this study has been done in [17]. If such DDG represents
the data dependences of an innermost loop (with possible recurrences), then our cur-
rent article shows how do we extend the theoretical study. Indeed, the case of loops
is more complex since it requires to consider periodic instruction scheduling (software
pipelining).

Many practical applications may profit from PRS computation: 1) for compiler
technology, PRS calculation provides new opportunities for avoiding and/or verifying
useless spilling; 2) for JIT compilation, PRS metrics may beembedded in the gener-
ated byte-code as static annotations, which may help the JITto dynamically sched-
ule instructions without worrying about register constraints; 3) for helping hardware
designers, PRS computation provides a static analysis of the exact maximal register
requirement.

We show that our formula of computing the MAXLIVE (Equation 1in [18]) is
useful to compute the register sufficiency (minimise of maximum [18]) and to compute
the register saturation (maximise a maximum) in this article. Furthermore, our current
experiments demonstrate that our formula of MAXLIVE computation is more efficient,
and scales better than the commonly used technique.

If the computed register saturation exceeds the number of available registers, we
can bring a method to reduce this maximal register need in a sufficient way to just
bring it below the limit without minimising it at the lowest possible level. Register
saturation reduction must take care ofMII, i.e., it should not increase the critical
cycle if possible. We proved that this problem is NP-hard, and we provided optimal
and approximate methods.

In theory, and contrary to the acyclic case [17], the periodic register saturation
can be unbounded when dealing with loops scheduled with periodic schedules without
resource constraints. However, in practice, experiments with SWP and many DDGs
show that the register saturation is bounded. Consequently, it is useful and efficient to
decouple register constraints from resource constraints.Our methods of PRS reduction
do not introduce new edges in many cases. When edges are introduced to reduce PRS,
our method takes care of not increasingMII, because it does not minimise PRS at its
lowest possible value.
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