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Abstract. Quantitative, deformable mappings between images are in-
creasingly important as measurement tools in biology and medicine. The
theory of diffeomorphisms (smooth differentiable bijections with differen-
tiable inverse) provides a mathematical foundation for the computation
and interpretation of these maps. Miller, in particular, has used this the-
ory to develop image normalization techniques that rely on a distance
measurement as a regularizer. Here, we use this metric within a gen-
eral transformation framework that explicitly parameterizes the image
to image mapping as a symmetric geodesic path in the space of diffeo-
morphisms. The key difference between our approach and Miller’s is that
ours does not choose a single end-point (or template image) from which
to measure the map. Rather, we search for the shortest diffeomorphism
(smallest deformation) between images by optimizing the transformation
with respect to both of its end-points. This algorithm, geodesic normal-
ization, provides solutions that are invariant to which of the input coor-
dinate systems (images) is chosen as a reference. This allows the method
to compute metric distances, have truly symmetric performance and to
give full space-time solutions that are invertible and diffeomorphic in the
discrete domain. Finally, our algorithm guarantees that our solutions and
their inverses are consistent to a sub-pixel level.

1 Introduction

Computational anatomy (CA) uses imaging to make quantitative measurements
of the natural world. One may view CA as the science of biological shape and its
variation, with roots in the work of Charles Darwin and D’Arcy Thompson [1, 2].
The wide availability of high resolution in vivo functional and structural imag-
ing has caused a rapid increase in CA’s relevance and prominence. Currently,
this developing science’s primary tools are the topology preserving diffeomorphic
transformations. These transformations are used to map an individual image J
into the space of a template image, Ī, which serves as a common coordinate
system. When a population of images is mapped together by these transforma-
tions, each voxel in individual space corresponds smoothly with a single voxel in
the reference space. This process creates a continuous spatial map of population
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information detailing, for example, the relative volume, functional activation or
diffusion at a given anatomical position, such as the anterior hippocampus or
occipital lobe gray matter. Topology preserving transformation (TPT) are of
special interest for this technology as they will introduce neither folds nor tears
in this map and will preserve the continuity of curves and surfaces.

Topology preserving normalization permits comparisons to be made across
time points in an individual’s disease process or to study development patterns
across a large population [3–6]. Miller, et al. showed that Large Deformation
Diffeomorphic Metric Matching (LDDMM) is able to localize hippocampal acti-
vation to provide increased statistical significance in functional imaging studies
[7]. Avants et al used a Lagrangian diffeomorphic normalization technique to
map and statistically differentiate functionally homologous structures between
species [8]. Furthermore, large deformation mappings are better able to separate
structural and signal (intensity) differences in population studies, particularly
in the presence of atrophy or high shape variation. Diffeomorphic methods may
also be extended to normalize vector or tensor images [9].

The CA studies cited above were enabled by recently developed, theoretically
well-founded methods for studying topology preserving variation. The major
advancement in this aspect of CA technology is to base the work in the space
of diffeomorphisms. The diffeomorphic space is the broadest smooth, topology
preserving space and allows one to very accurately capture both large and small
deformation differences in shape. The collection of these transformations forms a
mathematical group. Grenander [10], Mumford [11], Miller [12], Trouve [13] and
Younes [14] have studied this group space in the context of computer vision and
deformable image transformation and have derived Euler-Lagrange equations for
CA [15].

Our approach to image normalization is based upon Arnol’d’s definition of a
symmetric, time-parameterized shortest path (geodesic) between two diffeomor-
phic configurations of a domain [16]. We argue that this view is fundamental
to the theoretical foundation of diffeomorphic normalization, essential for com-
puting true metric distances and desirable for its symmetry properties. Our
algorithm will satisfy desirable continuity, anonymity and unanimity conditions
[17] as well as the metric measurement properties needed for geodesics. This
yields a new algorithm, geodesic normalization (GN), that parameterizes the
deformation between an image pair with respect both ends of a geodesic path.

2 Mathematical Background on Diffeomorphisms

We now discuss some basic facts from the theory of diffeomorphisms, the math-
ematical underpinnings of GN. This section is derived from Arnol’d [18] and
Marsden and Ratiu [19]. In this section, we will refer to φ as a geodesic in the
space of diffeomorphisms and φ1 and φ2 as the components of φ, as described
below. We also assume that the images and velocity fields referred to below are
sufficiently differentiable and that we are only interested in transformations that
visibly change the image. For example, a diffeomorphism of a constant image will
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Fig. 1. A diffeomorphism is used to map image I into image J (left to center) via
coordinate transformation. Composing two diffeomorphisms φ1 and the inverse
of φ2 enables us to use the maps from K to J and from I to J to make a
coordinate transformation from I to K.

Fig. 2. An illustration of the geodesic path taken, in time, by the particle at
position x in domain Ω. The path is geodesic if the diffeomorphism associated
with the domain minimizes the distance metric in equation 2. The geodesic, φ
is the whole path. Its points are traversed via φ1 and φ2.

be reduced to the identity. Image differentiability is required for the derivative
computations necessary in the normalization method. Velocity field regularity
guarantees the integrability necessary for generating diffeomorphisms. Typically,
convolution with a Gaussian ensures image differentiability while a linear oper-
ator, L, induces sufficient smoothness on the velocity field. See Dupuis [20] for a
discussion of regularity requirements on images and velocity field and the well-
posedness given by diffeomorphic regularization.

Recall that a diffeomorphism is a smooth one-to-one and onto map with
a smooth inverse. We always index diffeomorphisms with a spatial coordinate
(x, y or z) and, if necessary, a time variable, t. However, we drop the spatial
and temporal indexes for brevity where the meaning is clear. We define the
diffeomorphic operations that we need as,

1. Coordinate transformation: this operation changes the coordinate system
in which an object (image, vector field) is represented. The operation φI
transforms the image I(x) into the deformed image Ĩ(y) = I(φ(x, t)) where
the intensity I(x) is equivalent to the intensity Ĩ(y). We may also apply this
operation to vector (or velocity) fields.

2. Transformation composition: this operation links diffeomorphisms together,
generating a new map via φ2(φ1(x, t1), t2).

Understanding these operations are essential in image normalization. We illus-
trate them in figure 1.
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Families of diffeomorphisms can be generated by integrating time-dependent
velocity (vector) fields through an ordinary differential equation [18],

dφ(x, t)
dt

= V (x, t). (1)

This differential equation defines the change of the map, φ, by the value of a
velocity field which is a smooth vector field. Velocities tell us how particles are
moving through space: V assigns motion to a specific material point while v
defines motion in a fixed coordinate system. The V in equation 1 is a material
velocity in the Lagrangian frame. The spatial velocity is computed at the tangent
space to the diffeomorphism at time, t, such that v(y, t) = V (x, t) where the
change in coordinates is indicated by the use of x in V and y in v. We may also
explicitly indicate the change in coordinates by using the map between the two
coordinate systems, denoted by φ(x, t) = y, with inverse φ−1(y, t) = x. Then,
V (x, t) = v(φ(x), t).

Deformable diffeomorphisms commonly used in image registration map do-
main Ω to itself. The map at the boundary, ∂Ω, may also be defined as the
identity, φ(∂Ω) = ∂Ω. This boundary constraint assumes that rigid motion has
been factored out of the transformation between images. It also guarantees the
transformation is everywhere one-to-one and onto and restricts the solution space
to the diffeomorphic subgroup, G0.

G0 is a Frechet Lie group [21] when G0 is C∞. The length of a diffeomorphic
path between elements in this space is similar to the length of a curve, C, con-
necting two points in Euclidean space, l(C) =

∫ 1

0
‖dC/dt‖dt, where the Euclidean

length of the curve’s tangent vector is integrated over its parameterization. Dis-
tances in the space of diffeomorphisms are infinite-dimensional analogies of curve
length, where the infinitesimal increment in distance is given by a Sobolev norm,
‖·‖, operating on the tangent to the diffeomorphism (the spatial velocity) [20]. A
geodesic between ψ1 and ψ2, two elements of G0, is defined by taking the infimum
over all such paths [15],

D(φ(0), φ(1)) = inf
φ

∫ 1

0

‖v(φ(x, t))‖Ldt, (2)

φ(0) = ψ1 and φ(1) = ψ2,

where ‖ · ‖L is the Sobolev norm with respect to linear operator, L. Taking the
infimum guarantees that we have a geodesic between the elements in G0. The
length of the geodesic gives a metric distance, does not depend on the origin
of its measurement (it has right invariance) and is the basis for GN as well as
Miller, Trouve and Younes’s work.

A geodesic in the space of diffeomorphisms thus defines the shortest route be-
tween two diffeomorphic transformations. Each transformation defines a single,
unique configuration of the coordinate system. The length of the path itself is
(trivially) symmetric, that is, D(φ(0), φ(1)) = D(φ(1), φ(0) and satisfies metric
properties. Furthermore, for all time t ∈ [0, 1], we have φ−1

2 (φ1(x, t), 1 − t) =
φ1(x, 1) = z. Rearranging this equation, we gain intermediate points along the
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geodesic from φ2(z, 1 − t) = φ2(φ1(x, 1), 1 − t) = φ1(x, t). In this way, we see
that points along the geodesic are parameterized equivalently from coordinates at
either end-point. We will now introduce this coordinate system invariant param-
eterization into our normalization technology.

3 Geodesic Image Normalization

The goal of image registration, in general, is to find, for each x in I, the z
in J that gives I(x) = J(z) or, alternatively, f(J(z)) where f is an intensity-
space transformation. If f is the identity, then the intensity at x in I should be
equivalent to the intensity from coordinate z in J . The mapping from x to z
may be written φ(x) = z, from image I to image J such that points in I are in
one-to-one correspondence with points in J .

When such maps are diffeomorphisms, we include a time parameter, t, that
indexes the temporal evolution of φ. We refer to coordinates x in the time zero
I domain, z in the time zero J domain and y in a common coordinate system
that moves along the curve connecting I(x) and J(z). If this curve is a geodesic,
then it is symmetric and will follow the same path whether starting from I or J .
This symmetry means our time parameterized maps may be viewed from either
endpoint at I or J such that φ1(x, t) = y = φ2(z, 1− t). This formulation allows
us to deform I and J such that, for any t ∈ [0, 1] I(φ1(x, t)) = J(φ2(z, 1 −
t)). Such a motion gives a dense map in both space and time and is shown in
figure 2 for one point in the image domain. The total mapping between the
images is gained through the composition of these two components, φ(x, 1) =
φ−1

2 (φ1(x, t), 1 − t). GN will exploit this geodesic view to gain symmetry. The
algorithm will thus be able to compute the distance between two images, whereas
previous algorithms computed asymmetric distance (not symmetric, therefore
not a metric distance), due to a biased gradient descent approach that originates
in a parameterization of the geodesic with respect to only one endpoint.

Let us now consider the case when we are given two images, I and J , of the
same class, known to be (approximately) diffeomorphic. Here, we know neither
the path in time nor which image should be considered as the template or ref-
erence image. We make the identification of I(0) with I and I(1) with J . We
now seek to find the shortest diffeomorphism between these images such that
φ1(t)I = φ2(1− t)J .

We now translate this example into a variational optimization problem. The
variational energy for geodesic normalization therefore seeks φ1 and φ2 in order
to locate the geodesic connecting I and J . Then, φ1(x, t)I = φ2(z, 1− t)J, gives
the similarity term, |φ1(t)I − φ2(1− t)J |2. The forward and backward energy is
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then, using t as a parameter and solving to time t = t̄,

EGN (I, J) = inf
φ1

inf
φ2

∫ t̄

t=0

ω{ ‖v1‖2
L + ‖v2‖2

L}dt+∫
Ω

|φ1(t̄)I − φ2(1− t̄)J |2dΩ. (3)

Subject to:
each φi ∈ G0 the solution of:

dφi/dt = vi(φi(t)) with φi(0) = Id. (4)

Minimization with respect to φ1 and φ2, upholding the arc length constraint,
provides the geodesic normalization. Landmarks may also be included in this
energy, as in our previous work [8], by dividing the similarity term, as done with
the image match terms above. A similar image matching equation appeared in
[22] and [23] as part of a derivation for template generation.

Once this problem is solved, the total symmetric normalization transforma-
tion from I to J is φ1(x, 1) = φ−1

2 (φ1(x, 0.5), 0.5) and from J to I, φ2(z, 1) =
φ−1

1 (φ2(z, 0.5), 0.5). This is distinct from inverse consistent image registration
[24] in which a variational term is used to estimate “inverse consistency” and
symmetry and invertibility are not guaranteed. The inverse consistency is in-
herent to our method and is shown for synthetic data in figure 3 and for real
data in figure 4. The algorithm is useful for generating shape means as well as
symmetric geodesic image interpolation, formulated in [25].

We will show below that the maps computed by this algorithm satisfy Eck-
mann’s continuity, symmetry (anonymity) and unanimity conditions. Eckmann
and Weinberger discuss the existence of such maps [17, 26] and note the connec-
tion with the generalized mean. Denote a symmetric map, φ, connecting I and
J . Eckmann’s properties, adapted for image normalization, are then

1. Continuity: the map should vary continuously with the inputs I, J .
2. Symmetry / Anonymity: φ does not depend on permutations of I, J . This is

verified if A(I, J) = φ then A(J, I) = φ−1.
3. Unanimity [17]: the map should output φ = Id if I = J .

A map that violates anonymity (2 above) is labeled asymmetric. We now argue
that GN satisfies the three conditions given above.

Theorem 1. The solutions, φ1(x, t) and φ2(y, s), found by GN satisfy the three
generalized mean axioms above.

Continuity. Continuity was shown in Dupuis’s proof of well-posedness for the
diffeomorphic variational image matching problem [20]. As our problem is, in a
global sense, identical, continuity is inherited.
Unanimity. The unanimity condition is also satisfied as all velocities will be 0 if
all images are identical.
Anonymity. We prove anonymity by simply checking that permuting the labels
in the variational energy produces an identical optimization problem, which
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visual inspection confirms. Furthermore, the Euler-Lagrange equations depend
symmetrically on gradients of both I and J . �.
Geodesic Normalization Implementation: Algorithm 1 states the locally optimal
GN algorithm without landmarks, as described in previous sections. A similar
approach can be used for landmark matching. The input to the algorithm is a pair
of images and a user set number of time interpolation points, {ti}, where t0 = 0
and tn = 0.5 and n is even. The output is φ1, φ2 defined on Ω× [0, 0.5] and their
inverses. These define the full φi mappings and their inverses at (deformation)
time 1.

Algorithm 1 : Geodesic Normalization (GN)
The algorithm notation is the same as in the body of the paper. We compute
φ−1

1 and φ−1
2 with the inversion method used in our Lagrangian Push Forward

(LPF) method [8].
1: ∀ti Initialize φ1(ti) = φ2(ti) = Id.
2: while ∆EGN > ε1 do
3: Set Eold = Enew.
4: Compute φ1(x, 0.5)I and φ2(x, 0.5)J .
5: Compute velocities from the symmetric Euler-Lagrange equations of 3.
6: Set ‖v1‖ = ‖v2‖ = min(‖v1‖, ‖v2‖).
7: Update φ1(0.5) and φ2(0.5) by gradient descent such that, for i = 1, 2,

φi(x, 0.5) = φi(x, 0.5) + λV i(x, 0.5) where V (x, 0.5) = v(φi(x, 0.5)) and
λ is a gradient step length.

8: Starting at time 0.5 and going backwards toward 0, for all time points, ti
where 0 < ti < 0.5, update φ1, φ2 by gradient descent on the length of φ1

and φ2. Note that φi(0) = Id and φi(0.5) does not change in this step.
9: Use the inversion method (below) to find φ−1

1 and φ−1
2 over all time.

10: Compute Enew from equation 3.
11: ∆EGN = Eold − Enew.
12: end while

Symmetry (guaranteed sub-pixel invertibility and algorithmic independence
to input permutations) is built into GN and allows us to symmetrically match
images to the degree that discrete diffeomorphisms are invertible. An example
of a symmetric image registration when large deformations are present is shown
in figure 3. Here, we use GN to find spatial correspondences by deforming a half
C to a full C. We also illustrate GN for normalizing severely atrophied brains,
some of which also suffer from the presence of lesions, in figure 4.

4 Discussion

A common problem with image normalization algorithms, in general, is asym-
metry. Registering image I to J may not produce the same correspondences as
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(a) (b) (c)

(d) (e) (f)

Fig. 3. The 1
2C (a) is registered to the full C (d). The grid of the deformation

from (a) to (d) is shown in figure (b). The Jacobian of the transformation from
C to 1

2C is in (c) while its histogram is in (f). The 1
2C to C result is in (e).

registering J to I. This problem has been addressed by methods that compute
mappings in both directions. Thirion developed such an approach for Demons im-
age registration [27]. Christensen’s inverse consistent image registration (ICIR)
[28] uses a similar idea. Both algorithms rely upon estimating a measure of
“consistency”, defined as the difference between the mapping from I to J and
the mapping from J to I. Define x in image I, its displacement u(x) and their
sum as y = x + u(x). Similarly, define z in image J and its displacement w(z).
Consistency at x is C(x) = ‖y + w(y)− x‖ = ‖u(x) + w(y)‖. Both algorithms
attempt to minimize C(x) and, similarly, C(z). However, neither method guar-
antees the inverse’s existence nor gives a well-defined numerical method for its
computation.

Geodesic image normalization subsumes the above approaches by formulat-
ing the normalization process in space and time with a diffeomorphic parame-
terization. We do not have to “check” the consistency as (via Theorem 1) the
consistency is guaranteed by the sub-pixel invertibility of φ1 and φ2 and the fact
that these transformations may be composed together. Furthermore, our meth-
ods explicitly optimize these transformations in the large deformation space.

5 Conclusion

We explicitly optimize the length of φ, parameterized symmetrically by its com-
ponents, φ1, φ2. Optimizing the length of a diffeomorphism is an alternative to
finding a geodesic by solving the Euler equations [29]. Our method is shown
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to satisfy the axioms of continuity, symmetry and unanimity. Satisfying these
properties eliminates problems of algorithmic asymmetry. Finally, GN gives a
robust estimate to geodesic distance that is invariant to which image, of a pair,
is selected as template. Future work will focus on empirically demonstrating im-
proved performance due to symmetrically parameterizing the large deformation
image normalization problem.

References

1. C. Darwin, Origin of Species, John Murray: London, UK, 1856.
2. D. W. Thompson, On Growth and Form, Cambridge University Press, England,

1917.
3. A. M. Dale, B. Fischl, and M. I. Sereno, “Cortical surface-based analysis i: Seg-

mentation and surface reconstruction,” Neuroimage, vol. 9, no. 2, pp. 179–194,
1999.

4. P. Thompson and A. Toga, “A surface-based technique for warping 3-dimensional
images of the brain,” IEEE Trans. Medical Imaging, vol. 15, no. 4, pp. 402–417,
1996.

5. J. G. Csernansky, S. Joshi, L. Wang, J. W. Haller, M. Gado, J. P. Miller, U. Grenan-
der, and M. I. Miller, “Hippocampal morphometry in schizophrenia by high di-
mensional brain mapping,” Proc. Natl. Acad. Sci. (USA), vol. 95, no. 19, pp.
11406–11411, 1998.

6. C. Studholme, V. Cardenas, R. Blumenfeld, N. Schuff, H. J. Rosen, B. Miller,
and M. Weiner, “Deformation tensor morphometry of semantic dementia with
quantitative validation,” Neuroimage, vol. 21, no. 4, pp. 1387–1398, 2004.

7. M. I. Miller, M. F. Beg, C. Ceritoglu, and C. Stark, “Increasing the power of func-
tional maps of the medial temporal lobe by using large deformation diffeomorphic
metric mapping,” PNAS, vol. 102, no. 27, pp. 9685–9690, 2005.

8. B. Avants, P. T. Schoenemann, and J. C. Gee, “Landmark and intensity-driven
lagrangian frame diffeomorphic image registration: Application to structurally and
functionally based inter-species comparison,” Medical Image Analysis, vol. 10, pp.
397–412, 2006.

9. C. Yan, M. I. Miller, R. L. Winslow, and L. Younes, “Large deformation dif-
feomorphic metric mapping of vector fields,” tmi, vol. 24, no. 9, pp. 1216–1230,
2005.

10. U. Grenander, General Pattern Theory, Oxford University Press, New York, 1993.
11. D. Mumford, “Pattern theory and vision,” Questions Matheematiques En Traite-

ment Du Signal et de L’Image, vol. 3, pp. 7–13, 1998.
12. F. Beg, M. Miller, A. Trouve, and L. Younes, “Computing large deformation metric

mappings via geodesic flows of diffeomorphisms,” Int. J. Comp. Vision, vol. 61,
pp. 139–157, 2005.

13. A. Trouve, “Diffeomorphism groups and pattern matching in image analysis,” Intl.
J. Comp. Vis., vol. 28, no. 3, pp. 213–221, 1998.

14. A. Trouve and L. Younes, “On a class of diffeomorphic matching problems in
one dimension,” SIAM Journal on Control and Optimization, vol. 39, no. 4, pp.
1112–1135, 2000.

15. M. Miller, A. Trouve, and L. Younes, “On the metrics and Euler-Lagrange equa-
tions of computational anatomy,” Annu. Rev. Biomed. Eng., vol. 4, pp. 375–405,
2002.

Mathematical Foundations of Computational Anatomy (MFCA'06) 133



Fig. 4. We volumetrically map an average image template to a set of lesioned
and/or atrophied brains using GN. The left column shows a slice of the original
subject image. The second column shows the template mapped to the subject
space. The center column shows the subject mapped to template space. The
second to last column shows the grid deformation from template to subject.
The final column shows the original template slice. Asymmetric methods do
not perform as well for normalizing this dataset, particularly in the presence of
difficult and unpredictable lesions.

134 Mathematical Foundations of Computational Anatomy (MFCA'06)



16. V. I. Arnold, “Sur la gomtrie direntielle des groupes de lie de dimension innie et ses
applications l’hydrodynamique des uides parfaits,” Ann. Inst. Fourier (Grenoble),
vol. 16, no. 1, pp. 319–361, 1966.

17. S. Weinberger, “On the topological social choice model,” J. Econom. Theory, vol.
115, no. 2, pp. 377–384, 2004.

18. V. I. Arnold, Ordinary Differential Equations, Springer-Verlag: Berlin, 1991.
19. J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, Springer-

Verlag: New York., 1999.
20. P. Dupuis, U. Grenander, and M. I. Miller, “Variational problems on flows of

diffeomorphisms for image matching,” Quarterly of Applied Mathematics, vol. 56,
no. 3, pp. 587–600, 1998.

21. R. Schmid, “Infinite dimensional Lie groups with applications in mathematical
physics,” Journal of Geometry and Symmetry in Physics, vol. 1, pp. 1–67, 2004.

22. S. Joshi, B. Davis, M. Jomier, and G. Gerig, “Unbiased diffeomorphic atlas con-
struction for computational anatomy,” Neuroimage, vol. Suppl. 1, pp. S151–S160,
September 2004.

23. B. Avants and J.C. Gee, “Geodesic estimation for large deformation anatomical
shape and intensity averaging,” Neuroimage, vol. Suppl. 1, pp. S139–150, 2004.

24. H. J. Johnson and G. E. Christensen, “Consistent landmark and intensity-based
image registration,” IEEE Trans. Med. Imaging, vol. 21, no. 5, pp. 450–461, 2002.

25. B. Avants, C. L. Epstein, and J. C. Gee, “Geodesic image interpolation: Parameter-
izing and interpolating spatiotemporal images,” in ICCV Workshop on Variational
and Level Set Methods, 2005, pp. 247–258.

26. B. Eckmann, “Social choice and topology,” lecture notes, 2003.
27. J. Thirion, “Image matching as a diffusion process: an analogy with maxwell’s

demons,” Medical Image Analysis, vol. 2, no. 3, pp. 243–260, 1998.
28. G. Christensen and H. Johnson, “Consistent image registration,” IEEE Transac-

tions on Medical Imaging, vol. 20, no. 7, pp. 568–582, 2001.
29. V. I. Arnold and B. A. Khesin, “Topological methods in hydrodynamics,” Ann.

Rev. Fluid Mech., vol. 24, pp. 145–166, 1992.

Mathematical Foundations of Computational Anatomy (MFCA'06) 135




