Numerical Construction of LISS Lyapunov Functions under a Small Gain Condition

Abstract : In the stability analysis of large-scale interconnected systems it is frequently desirable to be able to determine a decay point of the gain operator, i.e., a point whose image under the monotone operator is strictly smaller than the point itself. This decay point plays a crucial role in numerically checking small gain conditions that guarantee the local input-to-state stability of an interconnected system and in the numerical construction of a LISS Lyapunov function. We provide a homotopy algorithm that computes a decay point of a monotone operator. For this purpose we use a fixed point algorithm and provide a function whose fixed points correspond to decay points of the monotone operator. The advantage to an earlier algorithm due to Eaves is demonstrated. Furthermore an example is given which shows how to analyze a given perturbed interconnected system.
keyword : sadco
Type de document :
Article dans une revue
Mathematics of Control, Signals, and Systems, Springer Verlag, 2012, 24 (1-2), pp.3-32. 〈10.1007/s00498-012-0082-2〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00636097
Contributeur : Estelle Bouzat <>
Soumis le : mercredi 26 octobre 2011 - 16:50:46
Dernière modification le : mercredi 27 juillet 2016 - 14:48:48

Lien texte intégral

Identifiants

Collections

Citation

Roman Geiselhart, Fabian R. Wirth. Numerical Construction of LISS Lyapunov Functions under a Small Gain Condition. Mathematics of Control, Signals, and Systems, Springer Verlag, 2012, 24 (1-2), pp.3-32. 〈10.1007/s00498-012-0082-2〉. 〈inria-00636097〉

Partager

Métriques

Consultations de la notice

154