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Abstract—We present a Horn-clause-based framework for
analysing security protocols that use platform configuration
registers (PCRs), which are registers for maintaining state
inside the Trusted Platform Module (TPM). In our model, the
PCR state space is unbounded, and our experience shows that
a naı̈ve analysis using ProVerif or SPASS does not terminate.
To address this, we extract a set of instances of the Horn
clauses of our model, for which ProVerif does terminate on our
examples. We prove the soundness of this extraction process: no
attacks are lost, that is, any query derivable in the more general
set of clauses is also derivable from the extracted instances.
The effectiveness of our framework is demonstrated in two
case studies: a simplified version of Microsoft Bitlocker, and a
digital envelope protocol that allows a user to choose whether
to perform a decryption, or to verifiably renounce the ability
to perform the decryption.

I. INTRODUCTION

The Trusted Platform Module (TPM) is a security chip

with a tamper resistant memory included in most modern

laptops and many desktops and servers. The purpose of the

TPM is to enable applications to achieve higher levels of

security than can be ensured by software alone. To this

end the TPM offers an application program interface (API)

providing operations related to:

∙ secure key management and storage: the TPM can

generate new keys, and impose restrictions on their use.

∙ platform configuration registers (PCRs): the TPM con-

tains several PCRs in its shielded memory. The only

operation for changing the value u of a PCR is to

extend it by a value v, resulting in the PCR value

h(u, v). Some PCRs can also be reset to their initial

values, while others can only be reset by rebooting the

machine. Keys can be locked to a particular value of

a PCR, i.e. key usage commands can only be executed

if the PCR’s current value is the one specified by the

key.

These operations allow the TPM to provide a root of

trust for a variety of applications involving secure stor-

age, platform authentication, and platform measurement and

reporting. For example, Microsoft’s hard drive encryption

system ‘BitLocker’ relies on the secure storage and platform

measurement capabilities of the TPM to ensure that the drive

is decrypted only if the machine boots in a particular state,

guaranteeing that the expected OS is going to be loaded.

However, despite this rich functionality, and the fact that

there are now over 300 million TPMs deployed, the take-

up remains rather low. There are at least two reasons for

this: one is that the specification of the API, which is an

ISO/IEC standard [1] coordinated by the Trusted Computing

Group [2], is very large and complex. Another is that several

security vulnerabilities have been discovered in the API, (see

e.g., [3], [4], [5]). Both reasons make a strong case for a

rigorous formal analysis of the TPM API, in order to check

it for vulnerabilities, and to better understand how to build

secure applications with it.

Related work: Much previous formal work on the

TPM treats the API in an abstract way, giving a logical

characterisation of its security properties [6], a logic for

reasoning about secure systems built on TPMs [7], or a

compiler for turning programs annotated with information

flow labels to distributed code to run on TPM enabled

machines [8]. There have also been several previous attempts

to formally analyze the TPM API itself. Lin described

an analysis of various fragments of the TPM API using

the theorem prover Otter and the model finder Alloy [9].

He modelled several subsets of the API commands in a

model which omits low level details. His results included a

possible attack on the delegation model of the TPM, though

experiments with a real TPM have shown that the attack is

not possible [10]. Lin does discuss modelling PCR state but

was unable to construct a satisfactory model for Otter [9,

p. 82]. Gürgens et al. [3] describe an analysis of the TPM

API using finite state automata, but details of their model

are difficult to infer from the paper. In particular, the model

fragments given do not seem to include PCR state. Coker et

al. [11] discuss TPM API analysis work, but the details of

the model have not been published. We have also recently

analyzed a fragment of the TPM [12], using the applied pi

calculus as a modelling language and using the ProVerif tool

to automate our verification, but ignoring PCRs. In short, no

previous analysis covers the verification of protocols which

rely on the PCRs.

Developing a model which accounts for PCRs and related

commands is challenging: one must model the state of the

TPM, which can be updated, and can influence the execution

of future commands. In terms of protocol analysis, one can

think of the PCRs as a global state which can be read

and updated by different sessions. This notion of state was

already identified by Herzog [13] as a major barrier to

the application of security protocol analysis tools to the



verification of APIs. In a different context, Mödersheim [14]

developed a protocol analysis tool which takes global state

into account. However, his notion of state considers an

unbounded number of stores which take a value chosen

from a predetermined finite domain. In the case of PCRs

we have a bounded number of stores which may take

values from an unbounded domain and his techniques do

not immediately apply. To be able to analyze optimistic

fair exchange protocols, Guttman extended the strand space

model with a notion of state [15]. However, this extended

model does currently not have tool support. In parallel with

the work described here, Arapinis, Ritter and Ryan [16]

have extended the process language of ProVerif to allow

one to model global state. Their work would allow us to

describe the TPM in a process language, and derive clauses

automatically. However, ProVerif will not terminate on the

clauses they produce, for reasons that we identify and solve

in this paper.

Our approach and contributions: We model a fragment

of the TPM including key management and key usage

commands, taking into account operations for setting and

reading PCRs, in first-order logic. Our modelling and ver-

ification techniques follow previous work by Weidenbach

using SPASS [17] and in particular Blanchet using the tool

ProVerif [18]. In this approach one generally considers a

unary predicate att(m) for modelling that the adversary has

knowledge of message m. To allow ourselves to model a

PCR, we consider a binary predicate att; the fact att(u,m)
means that the attacker can reach a state where the PCR has

value u and where the attacker knows message m. Unfor-

tunately, the resolution algorithms of SPASS and ProVerif

quickly encounter non-termination problems when we run

them on a model of the TPM using such binary predicates.

We therefore prove that for a class of k-stable clauses,

we can safely bound the number of times a PCR may be

extended between two resets: we show that if there exists an

attack then there exists also an attack which only considers

such “small” PCR values. This allows us to specialise the

clauses of our model in a way such that ProVerif terminates.

We also give syntactic conditions which are sufficient to

show that the clauses in the two case studies we consider are

k-stable. Our first case study is a simplified version of the

BitLocker protocol [19], focusing on the usage of the PCR

to build a chain of trust. The second protocol is a secure

envelope protocol [20]. Both protocols crucially rely on the

use of the PCR and we are able to prove their correctness

using ProVerif.

Outline of the paper: In Section II, we give the

formal grammar, and some intuitions about how we use it

to represent protocols involving the platform configuration

registers (PCRs) of the TPM. We also develop a simple

running example. Section III is devoted to our theoretical

result, which says that ProVerif need only to consider some

instances of the clauses we use to model the TPM. We prove

that this is a sound abstraction, that is, that no attacks are

lost. Section IV develops in more detail the rules we use

to model the TPM (these are seen to satisfy the conditions

for our theoretical result). Section V and VI present our two

case studies. Conclusions are in Section VII.

II. PROTOCOL REPRESENTATION

We use first-order Horn clauses to model the attacker

and the functionality offered by the TPM, following the

work of Weidenbach [17] and Blanchet [18]. To motivate

and illustrate our model, we first introduce a simple PCR-

based protocol. Then we formally define our model, using

the simple protocol of Section II-A as a running example.

A. An introductory example

Assume that Alice has two secrets s1 and s2. The protocol

should ensure that:

∙ Bob can learn one of the secrets, but not both.

∙ Alice commits to the secrets before knowing Bob’s

choice, i.e. Alice cannot change the secrets according

to Bob’s decision.

∙ Once Alice has committed to the secrets, Bob can open

one of them without any interaction with or help from

Alice.

Designing such a protocol using a TPM is rather easy.

For the sake of simplicity, we assume that two key

pairs (k1, pk(k1)) and (k2, pk(k2)) are already loaded in

the TPM: one of them is locked to h(u0, a1), i.e. the initial

PCR value u0 which has been extended with the constant a1,

whereas the other key is locked to h(u0, a2).

By using a TPM command called CertifyKey, Bob can

obtain certificates for these keys and their lock values.

When Alice receives these certificates, she uses the first

public key pk(k1) to encrypt s1 and the second public key

pk(k2) to encrypt s2 and sends both ciphertexts to Bob.

If Bob decides to open the first secret, he extends the PCR

with a1 and uses a TPM command called Unbind to decrypt

the first ciphertext. Similarly, if Bob decides to open the

second ciphertext, he extends the PCR with a2. Because an

extension of a PCR cannot be undone, Bob is indeed unable

to retrieve both secrets.

If Bob were able to reboot the TPM, he could obtain

both secrets as follows: first he extends the PCR with a1
and uses Unbind with k1, then he reboots, and extends

the PCR with a2 allowing him to use Unbind with k2. In

this example, we suppose that Bob cannot reboot the TPM

(perhaps because it is located on a server, out of his reach).

In Section VI, we will see a more advanced protocol which

allows rebooting and nevertheless avoids the problem of Bob

being able to return to a given PCR value.



B. Terms

Terms represent messages that are exchanged. These terms

are built inductively over a finite set of variables X =
{x, y, . . .}, and two finite sets of function symbols Σn =
{a, s, nil, u0, k, . . .} and Σf = {h, aenc, pk, . . .}. Variables

can represent any term. Names are used to represent atomic

values, such as keys and nonces. Following [18], we suppose

that names are parametrized by terms: we model names as

functions of messages previously received by the principal

that generates the name, enriched with some additional

parameters (such as some information on the current state

of the principal). This is similar to the abstraction proposed

in [18], and like that abstraction, it is weaker than generating

a new name for each run of the protocol. Function symbols

in Σf are used to model cryptographic primitives.

The terms are defined by the following grammar:

M,N := terms

x variables (x ∈ X )
a[M1, . . . ,Mk] name (a ∈ Σn)
f(M1, . . . ,Mk) function application (f ∈ Σf)

A term is ground if it does not contain any variables.

We represent public key encryption by the binary function

symbol aenc. The term aenc(pk(k),m) models the encryp-

tion of message m with the public key pk(k). Additionally,

we use the unary function pk to associate a public key to a

secret key given as argument.

To extend a PCR the TPM applies a hash function to the

concatenation of the current value and the new value which

extends the register (see Section IV-A). We model this hash

function by the binary symbol h: if u is the current value of

the PCR then h(u, v) is the extension of the PCR with the

value v.

A substitution is a function from variables to terms, which

we extend homomorphically to terms as usual. We use post-

fix notation and write the application of the substitution �

to the term t as t�. A substitution is grounding for t if t�

is ground.

C. Facts

In order to represent facts about the messages, we consider

a finite set of predicate symbols Σp.

F := facts

p(M1, . . . ,Mn) predicate application (p ∈ Σp)

In this paper, we consider two predicates, att and key. In

most research building on a Horn clause representation of

protocols, the attacker predicate att(v) simply models that

the attacker knows the term v. In our work, we add another

parameter to this predicate: informally, att(u, v) means that

there is a reachable state in which the PCR has value u and

the attacker knows v. The predicate key is used to model

the content of the key table: the fact key(u, sk, pubk, v)
means that there is a reachable state in which the PCR has

value u, and the key table has an entry for secret key sk, with

corresponding public key pubk, locked to the PCR value v.

For our introductory example, we assume that the follow-

ing facts hold:

∙ key(u0[], k1[], pk(k1[]), h(u0[], a1[])) (F1)
∙ key(u0[], k2[], pk(k2[]), h(u0[], a2[])) (F2)
∙ att(u0[], a1[]) (F3)
∙ att(u0[], a2[]) (F4)

The two first facts model that the private keys k1[] and k2[]
are stored on the device and locked respectively to the PCR

value h(u0[], a1[]) and h(u0[], a2[]). The two last facts model

that the values a1[] and a2[] are public values known by the

attacker in the initial state u0[].

D. Rules

Rules are used to model the attacker capabilities, the

functionality offered by the TPM, and the protocol.

R := rules

F1 ∧ . . . ∧ Fn → F implication

Intuitively, the implication F1 ∧ . . . ∧ Fn → F means that

if all facts F1, . . . , Fn are true, then F is also true. We

sometimes write H → F where H = {F1, . . . , Fn} is the

set of hypotheses of the rules. A rule with no hypothesis

→ F is written F . A rule R = F1 ∧ . . . ∧ Fn → C is

a tautology if C = Fi for some i ∈ {1, . . . n}. We now

give examples of rules for modelling attacker capabilities

and TPM functionalities. The actual set of rules used in our

analysis will be given in Section IV.

1) Attacker rules: As usual we assume that protocols are

executed in the presence of an attacker that can intercept all

messages, compute new messages from the messages it has

received, and send any message it can build. Therefore we

have a set of rules which reflect the attacker’s capabilities

of manipulating messages. For instance, for public key

encryption, we have the following rules:

att(xp, x) → att(xp, pk(x)) (R1)
att(xp, x) ∧ att(xp, y) → att(xp, aenc(x, y)) (R2)
att(xp, aenc(pk(x), y)) ∧ att(xp, x) → att(xp, y) (R3)

2) TPM rules: We are interested in analyzing protocols

which use the TPM, thus we need to model the actions

performed by the TPM.

CertifyKey. This command allows one to obtain a certificate

on a key that is stored in the device. In our example, we

suppose that such a certificate is signed using a particular

key aik[]. This certificate contains the public part of the key

pair (xsk, xpk) and also its lock value xpcr.

key(xp, xsk, xpk, xpcr) →
att(xp, certkey(aik[], xpk, xpcr)) (R4)



Unbind. This command allows one to retrieve the content of

an encryption provided that the decryption key is stored in

the key table of the TPM. Note that this command can only

be executed if the PCR’s current value is the one specified

in the key table.

att(xp, aenc(xpk, xdata)) → att(xp, xdata) (R5)∧ key(xp, xsk, xpk, xp)

Extend. The TPM rule for extending the PCR is treated in a

particular way. We have a dedicated set of inheritance rules

for transferring the key table and the attacker knowledge

when the PCR is extended.

att(xp, xv) ∧ att(xp, x) → att(h(xp, xv), x) (R6)

key(xp, xsk, xpk, xpcr) ∧ att(xp, xv) →
key(h(xp, xv), xsk, xpk, xpcr) (R7)

The first rule can be intuitively explained as follows: when-

ever the attacker is able to extend the PCR with value xv in

state xp (att(xp, xv)) and the attacker knows some term in

state xp (att(xp, x)), then the attacker still knows that term

after having extended the PCR with xv (att(h(xp, xv), x)).
The second rule expresses in a similar way that the key table

is maintained when the PCR is extended.

3) Protocol rules: The protocol actions are modelled in a

similar way to the TPM commands. Considering our running

example, the role of Alice can be described by the following

two rules:

att(xp, certkey(aik[], xpk, h(u0[], a1[]))) →
att(xp, aenc(xpk, s1[])) (R8)

att(xp, certkey(aik[], xpk, h(u0[], a2[]))) →
att(xp, aenc(xpk, s2[])) (R9)

The first rule can be read as: if the attacker can provide

a certificate of a key bound to the PCR value h(u0[], a1[])
then Alice will encrypt the first secret s1[] using this key.

The second rule is similar for the secret s2[].

E. Query

Our goal is to analyse reachability properties such as

secrecy: for instance, can the attacker learn s1[] and s2[],
i.e. does there exist a term u such that the facts att(u, s1[])
and att(u, s2[]) can be derived from a given set of rules?

Definition 1 (valid derivation): Let ℛ be a set of rules

and � = F1, . . . , Fn be a finite sequence of ground facts.

We say that � is a valid derivation w.r.t. ℛ if for each i ∈
{1, . . . , n}, we have that either Fi = Fj for some j < i,

or there exists a rule (H → C) ∈ ℛ and a substitution �

grounding for H → C such that

∙ H� ⊆ {F1, . . . , Fi−1}, and

∙ Fi = C�.

Definition 2 (query): A query Q = {F1, . . . , Fn} is a set

of facts. We say that Q is satisfiable w.r.t. ℛ if there exists

a substitution �, and a valid derivation � w.r.t. ℛ such that

Q� ⊆ �, i.e., F1�, . . . , Fn� occur in �.

Example 1: Continuing our introductory example, we

have that the query Q1 = {att(x, s1[])} is satisfiable (with

�1 = {x 7→ h(u0[], a1[])}). To see this, consider the

following derivation.

key(u0[], k1[], pk(k1[]), h(u0[], a1[])) (F1)
att(u0[], a1[]) (F3)
att(u0[], certkey(aik[], pk(k1[]), h(u0, a1[]))) (R4)
att(u0[], aenc(pk(k1[]), s1[])) (R8)
key(h(u0[], a1[]), k1[], pk(k1[]), h(u0[], a1[])) (R7)
att(h(u0[], a1[]), aenc(pk(k1[]), s1[])) (R6)
att(h(u0[], a1[]), s1[]) (R5)

This is actually a valid derivation w.r.t. the sets of rules

Fi (1 ≤ i ≤ 4) and Rj (1 ≤ j ≤ 9). In the same way, we can

show that the query Q2 = {att(x, s2[])} is also satisfiable

w.r.t. the same set of rules (with �2 = {x 7→ h(u0[], a2[])}).

However, the query

Q = {att(x, s1[]), att(x, s2[])}

is not satisfiable. Intuitively, this means that Bob can learn

one of the secrets, but not both.

F. The ProVerif tool

In this paper we will rely on Blanchet’s ProVerif tool [18]

to automate our analysis. ProVerif takes protocols described

in the applied pi calculus [21] as input and translates them

into Horn clauses. ProVerif then applies a dedicated reso-

lution algorithm to verify security properties. Alternatively,

one can directly give the Horn clauses as input, as we do

here. The reason for this is that the standard translation

from the applied pi calculus would generate a unary attacker

predicate, not encoding the PCR value. We may note that for

some more sophisticated properties, e.g., equivalence prop-

erties or when reasoning about successive global stages of

a protocol, ProVerif considers more complicated predicates.

Unfortunately, even on simple examples, such as the pro-

tocol presented in Section II-A, the predicates we consider

do not allow ProVerif to conclude. Manually changing res-

olution strategies resulted in non-termination and ProVerif’s

default strategy resulted in (false) hypotheses that the tool

was unable to discharge. We therefore show in the following

section how to restrict the state space, without losing any

attacks and which allowed ProVerif to conclude on our

examples.

III. BOUNDING THE LENGTH OF THE PCR

In this section, we first introduce the notion of k-stable

rules. We show that for this class of rules, when checking the

satisfiability of a query, it is sound to restrict the search space



by only considering PCR values of a bounded length, i.e.,

having a bounded number of nested extends (Proposition 1).

Note that the problem of deciding the satisfiability of a

query is still undecidable in this setting. Next, we provide

a syntactic criterion (Lemma 2) to ensure k-stability of a

rule. This criterion allows us to conclude k-stability for all

the rules we encountered in our case studies. Finally, we

describe a transformation we apply to a set of k-stable rules

in order to obtain an equivalent (for satisfiability of queries)

set of rules on which the ProVerif tool manages to terminate

on our case studies.

A. k-stability

Let u be a term (not necessarily ground). We define the

PCR length of u as follows:

∙ lengthpcr(h(u1, u2)) = lengthpcr(u1) + 1, and

∙ lengthpcr(u) = 0 otherwise.

Let � be a finite sequence of ground facts. We define the

set Pcr(�) as follows:

Pcr(�) = {u ∣ p(u, . . .) ∈ � with p ∈ Σp}.

Moreover, we say that a derivation � is k-bounded if

lengthpcr(u) ≤ k for any u ∈ Pcr(�).

Definition 3 (PCR value): A PCR value is either u0[] or

a ground term of the form h(u′, v) where u′ a PCR value.

Given a term t we denote by t[u1 → u2] the replacement

of u1 by u2 in t, i.e., the term obtained by replacing all the

occurrences of u1 by u2 in t. This notion is extended as

expected to facts, rules, derivations, and also to sets of facts

and sets of rules.

Definition 4 (k-stable): Let k be an integer such that

k ≥ 0.

A fact F is k-stable if for any substitution � ground-

ing for F , for any PCR value u = h(u1, u2) such that

lengthpcr(u) > k we have that:

(F�)[h(u1, u2) → u1] = F (�[h(u1, u2) → u1]).

A rule R is k-stable if for any substitution � ground-

ing for R, for any PCR value u = h(u1, u2) such that

lengthpcr(u) > k we have that:

∙ either (R�)[h(u1, u2) → u1] = R(�[h(u1, u2) → u1]),

∙ or (R�)[h(u1, u2) → u1] is a tautology.

This notion is extended as expected to sets of facts and

sets of rules. It follows directly from the definition that

whenever a fact or a rule is k-stable it is also (k+1)-stable.

Example 2: Consider the rule (R8) of our introductory

example. This rule is not 0-stable. Consider the substitu-

tion � = {xp 7→ u0[], xpk 7→ pk(k1[])}, and the term

u = h(u0[], a1[]). First, the rule (R8�)[h(u0[], a1[]) → u0[]],
i.e.

att(u0[], certkey(aik[], pk(k1[]), u0[])) →
att(u0[], aenc(pk(k1[]), s1[]))

is not a tautology. Moreover,

(R8�)[u → u0[]] ∕= R8(�[u → u0[]])(= R8�).

The rule R8 is however 1-stable. (As we will see, this

will directly follow from Lemma 1.) As another example

consider the inheritance rule

att(xp, xv) ∧ att(xp, x) → att(h(xp, xv), x)

This rule is 1-stable (as a direct consequence of Lemma 2)

and hence, k-stable for any k ≥ 1.

Proposition 1: Let ℛ be a finite set of rules and Q be

a query such that ℛ and Q are k-stable. If Q is satisfiable

then there exists a k-bounded derivation witnessing this fact.

Proof: Let � be a derivation witnessing the fact that Q

is satisfiable such that the multiset

S(�) = {lengthpcr(u) ∣ u ∈ Pcr(�)}

is minimal w.r.t. the multiset inclusion. If s ≤ k for any

s ∈ S(�), then we easily conclude. Otherwise, let umax ∈
Pcr(�) be such that lengthpcr(umax) is maximal. Note that

lengthpcr(umax) > k and thus there exist u1, u2 such that

umax = h(u1, u2).
We show that �′ = �[h(u1, u2) → u1] is a valid derivation

witnessing the fact that Q is satisfiable. Moreover, we

have that S(�′) is smaller than S(�) which contradicts the

minimality of S(�).

First, we show that �′ is a valid derivation. We show this

result by induction on the length ℓ of the derivation �.

Base case: ℓ = 0. In such a case, the result trivially holds.

Induction step: ℓ ≥ 1. In such a case, we have that:

∙ � = �0;Fℓ, and

∙ �′ = �0[umax → u1];Fℓ[umax → u1].

By induction hypothesis, we know that

�′0 = �0[umax → u1]

is a valid derivation. Moreover, we know that there exist

H → C ∈ ℛ, and a substitution � such that H� ⊆ �0 and

Fℓ = C�. Let � = [umax → u1] and �′ = ��. Since ℛ is

k-stable, we are in one of the following cases:

1) (R�)� = R(��);
2) (R�)� is a tautology, i.e. (C�)� ∈ (H�)�.

In Case 1, we have that H�′ = (H�)� ⊆ �′0 and C�′ =
Fℓ�. This allows us to conclude that �′ = �′0;Fℓ� is a valid

derivation. In Case 2, we have that

Fℓ� = (C�)� ∈ (H�)� ⊆ �′0.



Thus, in both cases, we conclude.

Second, we show that �′ satisfies the query Q. Let Q =
{F1, . . . , Fn} where F1, . . . , Fn are facts. Since � is a

derivation witnessing the fact that Q is satisfiable, there

exists a substitution � grounding for Q such that Q� ⊆ �.

Let � = [umax → u1] and �′ = ��. Since Q is k-stable, we

have that (Q�)� = Q�′. Hence, we easily deduce that �′ is a

derivation witnessing the fact that the query Q is satisfiable.

B. Syntactic criteria

In this section, we give syntactic criteria that allow us to

conclude the k-stability of all of the rules we encountered

during our case studies. The first criterion (see Lemma 1)

allows us to show that a fact (or a rule) is k-stable and

conclude also that most of our clauses are k-stable. However,

this simple criterion is not satisfied by the inheritance rules.

Hence we develop further criteria (see Lemma 2) which

allow us to accommodate these rules. Proofs of these two

lemmas are available in Appendix.

We denote by st(t) the set of subterms of a term t. This

notation is extended as expected to a fact.

Lemma 1: Let F be a fact and k ≥ 0 be an integer such

that for any subterm v = h(v1, v2) ∈ st(F ), we have that

lengthpcr(v) ≤ k and v1 ∕∈ X , i.e., v1 is not a variable. Then

the fact F is k-stable.

However, this simple criterion is not satisfied by the

inheritance rules. Hence we develop a further criteria which

allow us to accommodate these rules.

Lemma 2: Let k ≥ 0 be an integer and R = H → C be

a rule such that:

1) for all h(v1, v2) ∈ st(R), lengthpcr(v1, v2) ≤ k;

2) for all h(v1, v2) ∈ st(H), we have that v1 ∕∈ X ;

3) for all h(v1, v2) ∈ st(C) such that v1 ∈ X , we have

that C[h(v1, v2) → v1] ∈ H .

Then, we have that the rule R is k-stable.

Example 3: Thanks to Lemma 2, we can easily deduce

that the facts Fi (1 ≤ i ≤ 4), the rules Rj (1 ≤ j ≤ 9),

and the query Q = {att(x, s1[]), att(x, s2)} are 1-stable.

Hence, when checking the satisfiability of the query Q, it is

sufficient to consider 1-bounded derivations.

C. Transformations

We explain how a set of k-stable rules can be transformed

into another equivalent set of rules that is more suitable for

analysis with a tool such as ProVerif. We first introduce the

notion of a k-complete set of rules. Intuitively, each rule can

be replaced by a k-complete set of rules, while allowing the

same set of k-bounded derivations.

Definition 5 (k-complete set of instances): Let ℛ′ be a

finite set of rules. We say that ℛ′ is a k-complete set of

instances of a rule R if each rule in ℛ′ is an instance of R,

and for any substitution � grounding for R such that

Pcr(R�) ⊆ {u ∣ u is a PCR value and lengthpcr(u) ≤ k}

we have that there exists R′ ∈ ℛ′ and a substitution �′

grounding for R′ such that R′�′ = R�.

We extend this definition in a natural way to queries and

finite sets of rules.

Example 4: Going back to our introductory example, we

will replace the inheritance rules by the following instances

of them:

att(u0[], xv) ∧ att(u0[], x) → att(h(u0[], xv), x) (R′
6)

key(u0[], xsk, xpk, xpcr) ∧ att(u0[], xv) →
key(h(u0[], xv), xsk, xpk, xpcr) (R′

7)

Theorem 1: Let ℛ be a finite set of rules and Q be a query

that are both k-stable and such that in any valid derivation �

w.r.t. ℛ, for any u ∈ Pcr(�), we have that u is a PCR value.

Let Q̃ (resp. ℛ̃) be a finite and k-complete set of instances

of Q (resp. ℛ).

We have that Q is satisfiable w.r.t. ℛ if, and only if, there

exists Q′ ∈ Q̃ such that Q′ is satisfiable w.r.t. ℛ̃.

Proof: We show the two directions separately.

(⇒) By hypothesis, we know that Q is satisfiable w.r.t. ℛ.

Moreover, Q and ℛ are both k-stable. Thanks to Propo-

sition 1, we know that there exists a valid k-bounded

derivation witnessing this fact. Let � be such a deriva-

tion. Moreover, by hypothesis, we know that Pcr(�) ⊆
{u ∣ u is a PCR value}. Hence, we have that

Pcr(�) ⊆ {u ∣ u is a PCR value and lengthpcr(u) ≤ k}

Hence, we know that any instance R� of a rule in ℛ that is

involved in this derivation is such that

Pcr(R�) ⊆ {u ∣ u is a PCR value and lengthpcr(u) ≤ k}

Since ℛ̃ is a k-complete set of instances of ℛ, we easily

deduce that there exists R′ ∈ ℛ̃ and a substitution �′

grounding for R′ such that R� = R′�′ and thus this allows

us to mimic this step. The same reasoning can be applied

to deal with the query. Hence, the result.

(⇐) Assume that there exists Q′ ∈ Q̃ such that Q′ is

satisfiable w.r.t. ℛ̃. Let � be a derivation witnessing this

fact. Since all the rules in ℛ̃ are instances of the rules in ℛ,

we deduce that � is also a valid derivation w.r.t. ℛ. Lastly,

by hypothesis, we have that there exists �′ grounding for Q′

such that Q′�′ ⊆ �. Since by definition of an instance, we

have that Q′ = Q� for some substitution � , we easily deduce



that � = �′ ∘ � is a grounding substitution for Q such that

Q� ⊆ �. This allows us to conclude.

Example 5: Continuing our example, consider the substi-

tutions

∙ �0 = {xp 7→ u0[]}, and

∙ �1 = {xp 7→ h(u0[], x1)}.

Let ℛ be the set of rules consisting of Fi for 1 ≤ i ≤ 4,

and Rj for 1 ≤ j ≤ 9. Let ℛ′ be the set of rules consisting

of:

∙ the facts Fi for 1 ≤ i ≤ 4;

∙ the rules R′
6, and R′

7;

∙ the rules Rj�0 for j ∈ {1, 2, 3, 4, 5, 8, 9}; and

∙ the rules Rj�1 for j ∈ {1, 2, 3, 4, 5, 8, 9}.

It is easy to check that ℛ′ only contains instances of rules

in ℛ. Moreover, we have that ℛ′ is a 1-complete set of

instances of ℛ.

As we will see in the following sections, in our case

studies it is clear from inspection of the rules that for any

valid derivation �, the set Pcr(�) only contains PCR values.

Hence we apply the following specific transformation: we

replace each rule R = H → C by a set of rules defined as

{R[x 7→ u] ∣ x ∈ X , p(x, t1, . . . , tℓ) ∈ H ∪ {C}, u ∈ Uk}

where Uk = {u0[],
h(u0[], x1),
. . . ,

h(...h(u0[], x1), ..., xk)}.

This transformation effectively bounds the PCR length of

possible PCR values that may appear as the first argument

of a predicate. It follows from Theorem 1 that if the initial

set of rules is k-stable then the initial and transformed set

of rules are equivalent w.r.t. satisfiability of queries.

This theorem allows us to run ProVerif on the rules ℛ̃
instead of ℛ and restrict the search space to k-bounded

derivations. ProVerif is indeed capable of terminating on ℛ̃
in our case studies, while it does not succeed on ℛ. To

further help ProVerif terminate, we use a selection function

obtained by adding the instruction “nounif att(∗u, x).” This

corresponds to the usual selection function specified by

“nounif att(x)” which ProVerif uses to avoid resolving on

hypotheses of the form att(x) for variable x. (Note that

ProVerif is sound for any “nounif”, so we are free to use

any one that helps termination.)

IV. MODELLING THE TPM

A. Overview of the TPM

The TPM provides a command-based API. A software

process can call commands of the TPM to create and use

keys, and perform other tasks related to secure reporting of

the platform configuration and platform authentication. A

TPM has 24 160-bit registers called platform configuration

registers that are used to record the state of the platform.

On boot, the PCRs are set to an initial value (all zeros, or

all ones, depending on the PCR). PCRs are updated with

the Extend command, which takes as arguments a PCR

name and a value. The effect of Extend(p, x) is to effect

the assignment p := SHA1(p∣∣x), that is, the old value of

the PCR is concatenated with the supplied value, and the

SHA1 hash of the result is assigned as the new value of the

PCR.

To store data using a TPM, one creates TPM keys and

uses them to encrypt the data. TPM keys are arranged

in a tree structure, rooted in a permanently loaded key

called the Storage Root Key (SRK). A user process can

call CreateWrapKey to create a child key of any existing

key. Once a key has been created, it may be loaded using

LoadKey2, and then can be used in an operation requiring

a key (e.g. Seal command). To each TPM key is associated

some data that specifies the circumstances in which the key

can be used:

∙ Authdata is a kind of password that authorises use of

the key. In order to use a key, a user process must

prove knowledge of the relevant authdata by means of

an HMAC when it calls a command. The authdata is

set when the key is created.

∙ PCR values constrain the state of the TPM. The TPM

will use a key only if certain PCRs currently have

certain values. The set of affected PCRs and values

are stipulated at the time the key is created.

We illustrate these mechanisms by explaining a few TPM

commands. The CreateWrapKey command takes argu-

ments that include the parent key of the key to be created,

new encrypted authdata and a set of PCRs and values to be

associated with the key to be created, and other information

such as the key type (sealing, binding, signature, etc.). It

returns a blob consisting of the public part of the new key

and an encrypted package; the package is encrypted with the

parent key and contains the private part, the authdata of the

new key, and the PCR names and associated values. Thus,

the command creates the key but does not store it; it simply

returns it to the user process (protected by an encryption).

The newly created key is not yet available to the TPM for

use.

The TPM supports several types of asymmetric key pairs.

The ones we use in this paper are bind keys, storage keys,

and attestation identity keys (AIKs). A bind key allows data

to be encrypted outside of the TPM using the public part of

the key. The private decryption part of the key can be used

only by the TPM. A storage key is more restricted: even the

encryption must be done inside the TPM. An AIK is a key

used for signing.

To use a TPM key, it must be loaded. LoadKey2 takes as

argument the key blob, and returns a handle, that is, a pointer

to the key stored in the TPM memory. Commands that use



the loaded key refer to it by this handle. Since LoadKey2
involves a decryption by the parent key, it requires the parent

key to be loaded and it requires an authorisation HMAC that

proves knowledge of the parent key authdata. It also requires

the PCRs to match the state stipulated at the time the parent

key was created. SRK is permanently loaded and has a well-

known handle value, and therefore never needs to be loaded.

SRK has no PCR constraints (and therefore can be used in

all states).

Once the key is loaded, an encryption command such

as Seal can be used. It takes arguments including the

handle of the encrypting key, the data to be encrypted,

information about PCRs to which the seal should be bound,

and encrypted authdata for the sealed blob. It returns a sealed

blob. Unseal works the other way; it requires arguments

including the handle and the sealed blob, and it returns the

original data. It requires HMACs that prove knowledge of

the relevant authdata, and it requires the current PCRs to

match the constraints that were stipulated when the sealed

blob was created, and when the sealing key was created.

B. Simplifications and abstractions

In our model, we make three main simplifications of the

TPM. The first one is that we do not consider authdata

in this paper. Authdata is used to prove authorisation of

commands, and to authenticate the responses as coming from

the TPM. In a previous paper [12], we gave a model for a

fragment of the TPM API focusing on authdata issues, using

the applied-pi calculus, and we mechanised the analysis

using ProVerif. Here we omit authdata completely, because

(informally) it is orthogonal to the state-based properties we

wish to prove. This simplification may be considered as an

abstraction: allowing commands to proceed without authdata

is equivalent to giving all the authdata to the attacker. In

other words, the security properties that we consider in this

paper do not rely on the secrecy of authdata.

The second simplification concerns attestation identity

keys that may be used to sign PCR values by the TPM.

To make this work securely, the TPM user must create an

attestation identity key (AIK), obtain a certificate on it using

a trusted party known as a Privacy CA (or using the DAA

protocol), and then load it. The commands MakeIdentity

and ActivateIdentity are provided for this purpose. If the

TPM is rebooted, AIKs that are still needed must be

reloaded. We make the simplification that the relevant AIK

is initially and permanently loaded in the TPM, and the user

already has a certificate for it. This simplification may also

be seen as an abstraction: we give the intruder more power,

since the key is always available to him.

The third simplification is that we consider only one PCR,

instead of 24. We believe all of the methods we propose will

work for any number of PCRs, but the clauses will become

greater in size and more unwieldy. The real Bitlocker

protocol uses several PCRs, and we have simplified it to

use only one of them. The envelope protocol only uses one

PCR.

C. Modelling with Horn clauses

We now describe our modelling of the TPM commands.

1) TPM rules: As an example consider the CreateWrap-
Key command. This command creates a new key pair

and outputs a wrap of this key under a given parent key.

Moreover, the new key can be locked to a given PCR value,

i.e. the key can only be used when the current PCR value

is equal to this value. We model this command as follows:

att(xp, xpcr) ∧ key(xp, xsk, xpk, xp) →
att(xp, ⟨pk(bindk[xpcr ]),

wrap(xpk, bindk[xpcr], tpmpf[], xpcr)⟩)

The secret key being created is bindk[xpcr], which in this

example is a TPM “bind” key. The CreateWrapKey com-

mand returns a pair consisting of the public part (in the

clear), and the private part along with the tpmpf[] secret,

used to identify keys created by this TPM, and PCR value

to which the key is locked, all wrapped in an encrypted

blob. We use the function wrap() for such key blobs. An

analogous clause for creating seal storage keys (sealk[xpcr])
is included in Figure 1.

In the rule for CreateWrapKey above, xp and xpcr

denote the PCR value to which the old and new keys

(respectively) are locked. The requirement that the parent

key is loaded is modelled by the fact key(xp, xsk, xpk, xp).
Note that the first and the last argument of the key

predicate are required to be identical: the parent key

may only be used if its lock value corresponds to the

current PCR value. We also model a variant of this rule

where the last argument of key is nil[] modelling that

the key is not locked to any value. The conclusion

of the rule models that the attacker learns a pair

⟨pk(bindk[xpcr]),wrap(xpk, bindk[xpcr], tpmpf[], xpcr)⟩.
The first component of this pair is the public part of the

freshly generated key. The second component is the wrap

containing the freshly generated secret key, the secret

constant tpmpf[] and the PCR value to which this key is

locked.

We use the functions wrap() and seal() for the encrypted

blobs produced by CreateWrapKey and Seal, respectively;

and we use aenc() for arbitrary encryptions done in soft-

ware. In reality, they are all encryptions under public keys.

Our use of different function names corresponds to the fact

that the first two have constant-value tags inserted with

the plain text, in order that the TPM can check that they

were formed in the correct way (and refuse to return the

decrypted value if they were not). Note that if the attacker

has the relevant secret keys, he can decrypt them all (see

Section IV-C4).



Read: att(xp, x) → att(xp, xp)

Quote: att(xp, x) → att(xp, certpcr(aik[], xp, x))

CreateWrapKey:

att(xp, xpcr) ∧ key(xp, xsk, xpk, nil[]) → att(xp, ⟨pk(bindk[xpcr]),wrap(xpk, bindk[xpcr], tpmpf[], xpcr)⟩)
att(xp, xpcr) ∧ key(xp, xsk, xpk, xp) → att(xp, ⟨pk(bindk[xpcr]),wrap(xpk, bindk[xpcr], tpmpf[], xpcr)⟩)

att(xp, xpcr) ∧ key(xp, xsk, xpk, nil[]) → att(xp, ⟨pk(sealk[xpcr]),wrap(xpk, sealk[xpcr], tpmpf[], xpcr)⟩)
att(xp, xpcr) ∧ key(xp, xsk, xpk, xp) → att(xp, ⟨pk(sealk[xpcr]),wrap(xpk, sealk[xpcr], tpmpf[], xpcr)⟩)

LoadKey2:

att(xp, pk(xkey)) ∧ att(xp,wrap(xpk, xkey , tpmpf[], xpcr)) ∧ key(xp, xsk, xpk, nil[]) → key(xp, xkey , pk(xkey), xpcr)
att(xp, pk(xkey)) ∧ att(xp,wrap(xpk, xkey , tpmpf[], xpcr)) ∧ key(xp, xsk, xpk, xp) → key(xp, xkey , pk(xkey), xpcr)

CertifyKey:

key(xp, xsk, xpk, y) → att(xp, certkey(aik[], xpk, y))

UnBind:
att(xp, aenc(xpk, xdata)) ∧ key(xp, xsk, xpk, nil[]) → att(xp, xdata)
att(xp, aenc(xpk, xdata)) ∧ key(xp, xsk, xpk, xp) → att(xp, xdata)

Seal:

att(xp, xdata) ∧ att(xp, xpcr) ∧ key(xp, sealk[x], pk(sealk[x]), nil[]) → att(xp, seal(pk(sealk[x]), xdata, tpmpf[], xpcr))
att(xp, xdata) ∧ att(xp, xpcr) ∧ key(xp, sealk[x], pk(sealk[x]), xp) → att(xp, seal(pk(sealk[x]), xdata, tpmpf[], xpcr))

Unseal:

att(xp, seal(pk(sealk[x]), xdata, tpmpf[], nil[])) ∧ key(xp, sealk[x], pk(sealk[x]), nil[]) → att(xp, xdata)
att(xp, seal(pk(sealk[x]), xdata, tpmpf[], nil[])) ∧ key(xp, sealk[x], pk(sealk[x]), xp) → att(xp, xdata)
att(xp, seal(pk(sealk[x]), xdata, tpmpf[], xp)) ∧ key(xp, sealk[x], pk(sealk[x]), nil[]) → att(xp, xdata)
att(xp, seal(pk(sealk[x]), xdata, tpmpf[], xp)) ∧ key(xp, sealk[x], pk(sealk[x]), xp) → att(xp, xdata)

Figure 1. Rules for modelling TPM commands

Some more rules used to model the TPM are in Figure 1.

The full set of rules can be found in the code provided online

to support this paper (see Section VII).

2) PCR extension and reboot: As already explained in

Section II, we have a dedicated set of inheritance rules for

transferring the key table and the attacker knowledge when

the PCR is extended.

att(xp, xv) ∧ att(xp, x) → att(h(xp, xv), x)

key(xp, xsk, xpk, xpcr) ∧ att(xp, xv) →
key(h(xp, xv), xsk, xpk, xpcr)

It is also possible to reboot the TPM, thereby reverting to

the initial PCR state u0[]. In that case the attacker knowledge

is preserved. We therefore have the rule:

att(xp, x) → att(u0[], x)

3) Initial state: A set of rules provides the initial state

of the attacker’s knowledge, taking the form att(u0[], u) for

a variety of terms u including pk(srk[]), u0[], and a range

of other constant values. There are also the following rules

initialising the table of loaded keys:

key(u0[], srk[], pk(srk[]), nil[])
key(u0[], aik[], pk(aik[]), nil[])

The nil[] value in the key table indicates that these keys can

be used no matter what the current PCR value is.

4) Equational theory: The usual Horn clauses exist for

modelling the attacker’s ability to apply constructors and

destructors, for example:

att(xp, x1) ∧ att(xp, x2) ∧ att(xp, x3) ∧ att(xp, x4)
→ att(xp, seal(x1, x2, x3, x4))

att(xp, x1) ∧ att(xp, seal(pk(x1), x2, x3, x4)) → att(xp, x2)
att(xp, x1) ∧ att(xp, seal(pk(x1), x2, x3, x4)) → att(xp, x3)
att(xp, x1) ∧ att(xp, seal(pk(x1), x2, x3, x4)) → att(xp, x4)

V. THE BITLOCKER PROTOCOL

In this section we present the details of our first example,

which is a ‘trusted boot’ protocol for use with full disk

encryption. It is based Microsoft Bitlocker, though we make

several simplifications to the protocol as we explain below.



After describing the protocol, we present our model, and

then the results we obtained using ProVerif and the method

of Section III.

A. Description

Microsoft’s Bitlocker [19] can operate in various modes

involving the use of passwords, USB tokens and the TPM.

We will model the mode that just uses the TPM. The

hard drive of our machine is assumed to be encrypted

under a volume encryption key (VEK), which is in turn

encrypted with the volume master key (VMK). At boot

time, an immutable section of firmware called the pre-

BIOS takes control. It measures (i.e., takes a hash of) the

BIOS, and extends the hash value into a PCR. The BIOS

similarly measures and extends into the PCR the values of

other components before passing control to them. Those

components repeat the process, resulting in a “trust chain”.

The TPM manages access to the VMK by sealing it against

PCR values corresponding to the correct boot state of the

machine. If the correct boot state is achieved, the active

component can retrieve the VMK by unsealing it. To prevent

future unauthorised retrievals, it extends a further “deny”

value into the PCR. An attacker can replace components

such as the BIOS and the bootloader, but in doing so he in

theory destroys the ability to achieve the correct boot state,

and the VMK remains inaccessible.

We will model the correct boot state as being determined

by the combination of the BIOS and the bootloader, and we

will assume a single PCR is used, though the real Bitlocker

measures several other components of the OS and uses

multiple PCRs. There are some further details we ignore

in our modelling. There are protocols for key management

and recovery that we don’t model. Finally we simplify the

setup process to a single command executed by our honest

user Alice, who seals the VMK while the machine is in a

“trusted state”, i.e., with the correct BIOS and bootloader.

B. Modelling

The attacker may tamper with the BIOS or the bootloader,

but we assume that the TPM will correctly measure a

tampered BIOS and extend the PCR as appropriate before

executing it - there is no way for the attacker to tamper

between measurement and execution. Similarly, the attacker

can tamper with the bootloader, but if the correct BIOS

has been loaded, the BIOS will measure the bootloader

before executing it. If the correct BIOS and bootloader are

loaded, the attacker cannot interfere until they have stopped

executing. Our model contains constants bios[] and loader[]
for the correct BIOS and bootloader and bios rogue[] and

loader rogue[] representing code controlled by the attacker.

We then model the attackers access to the boot process by

the first three rules described in Figure 2. The constant u0[]
is assumed to be the reset value of the PCR. One can read,

for example, the second rule as stating that if the attacker

know the term x in any PCR state xp, then he can reboot the

machine with the correct BIOS but with a rogue bootloader,

and so obtain the same term x in a state where the PCR

contains the hash of the correct BIOS extended with the

rogue bootloader. Note that we do not allow him to use the

reboot rule:

att(xp, x) → att(u0[], x),

since this corresponds to rebooting the machine without

running the BIOS, which is not possible. The additional rule

described in Figure 2 allows us to model Alice setting up

the drive encryption in a trusted state.

In addition to these rules, the attacker is able to use the

commands of the TPM given in Figure 1, and the extension

rules (see Section IV-C2).

Our security property is posed as the reachability of a

state in which the attacker knows the volume master key

VMK (the PCR may have any value):

att(xp, vmk[x])

C. Results of our analysis

Using the syntactic criteria from Section III-B we observe

that all rules and queries are 3-stable. Hence, by Theorem 1

it is sound to replace the rules by a set of 3-complete

rules which only yield 3-bounded derivations. We illustrate

our transformation on one rule (see Figure 2). On the

resulting set of rules ProVerif quickly concludes that the

protocol is safe, giving that the VMK remains secret for

unbounded reboots and PCR extends. If we change the

model to additionally allow the attacker to reboot into a

‘clean’ PCR state by adding the rule

att(xp, x) → att(u0[], x)

we obtain an attack as would be expected.

VI. THE ENVELOPE PROTOCOL

A. Description

We analyse the envelope protocol from [20] which allows

Alice to provide digital data to Bob in such a way that Bob

has only one of two possible actions available to him:

∙ He can access the data without any further action from

Alice.

∙ Alternatively, he can revoke his right to access the data,

and in this case he is able to prove to Alice that he did

not and can no longer obtain access to the data.

To achieve this, Bob is required to have a TPM. Alice gives

Bob the data, encrypted with a key on Bob’s TPM. The TPM

allows Bob to decrypt the data, or to prove to Alice that he

did not and can no longer do so.

The protocol works as follows.



PCR reboot rules:
att(xp, x) → att(h(h(h(u0[], bios[]), loader[]), deny[]), x)
att(xp, x) → att(h(h(u0[], bios[]), loader rogue[]), x)
att(xp, x) → att(h(u0[], bios rogue[]), x)

Alice’s role setting up the drive encryption in a trusted state:

key(xp, sealk[x], pk(sealk[x]), xpcr) → att(xp, seal(pk(sealk[x]), vmk[xpcr], tpmpf, h(h(u0[], bios[]), loader[])))

A 3-complete set for the att(xp, x) → att(h(u0[], bios rogue[]), x)

att(u0[], x) → att(h(u0[], bios rogue[]), x)
att(h(u0[], x1), x) → att(h(u0[], bios rogue[]), x)
att(h(h(u0[], x1), x2), x) → att(h(u0[], bios rogue[]), x)
att(h(h(h(u0[], x1), x2), x3), x) → att(h(u0[], bios rogue[]), x)

Figure 2. Rules for modelling the Bitlocker protocol

1) Sealing the envelope: Alice asks Bob to reboot his

platform, so that the PCR is in the initial state. Next, Alice

creates an encrypted transport session with Bob’s TPM and

uses it to extend that PCR with a random nonce n that she

has created. She keeps the value of n secret. The transport

session is then closed.

Bob reads the value of the given PCR, finding it to be

h(u0[], n) (although he does not know the value n). Then,

Bob creates a bind key (sk, pk(sk)), locked to the PCR

value h(h(u0, n), obtain[]), as well as a certificate attesting

that this key is locked to the expected PCR value. The public

key and certificate are sent to Alice. The chosen lock value

ensures that the key can be used only if the PCR is extended

by the value obtain[]. Alice encrypts her data with pk(sk),
and sends it to Bob. This protocol is illustrated in Figure 3.

2) Opening the envelope: Bob can use Extend to extend

obtain[] into the relevant PCR. He can then use UnBind
to decrypt the ciphertext sent to him by Alice, in order to

obtain the data.

3) Returning the envelope: Alternatively, Bob can

demonstrate that he has given up that possibility. To do that,

he extends an agreed value, called deny[], into the TPM and

requests a PCR quote, i.e., a signature of the TPM attesting

that the current value of the PCR is h(h(u0, n), deny[]). Bob

can use this quote as a proof that he can never use the key sk

to decrypt the ciphertext.

B. Model

The model is built around the predicates att and key, as

before. The attacker is able to use the commands of the

TPM.

The security of the envelope protocol relies on the at-

tacker’s inability to achieve in subsequent reboots certain

PCR values achieved in the boot in which Alice establishes

her secret. Specifically, the nonce n is kept secret, and a

fresh nonce n is chosen in each session of Alice’s protocol.

Therefore the attacker can’t obtain a PCR value that involves

the same n in future boots.

However, simply using clauses as presented before will

result in a false attack. The attacker can reboot the TPM and

reach the PCR value u0[]. With the current nonce abstraction

(where nonces are parameterized) executing Alice’s protocol

several times in the state u0[] will yield the same nonce n

instead of different ones allowing the attacker to trivially

both open and return the envelope. This is a well-known

source of false attacks in models based on Horn clauses. To

avoid this kind of false attacks we add an additional boot

parameter to the att and key predicates. The sole role of this

boot parameter is to add freshness to the nonce n which can

be parameterized with the boot parameter. For example, the

clause for CertifyKey becomes

key(xb, xp, xsk, xpk, y) → att(xb, xp, certkey(aik[], xpk, y))

If the TPM is rebooted, the PCR value is reset, and the boot

parameter is updated. Attacker knowledge is preserved, as

are the loaded keys srk[] and aik[]. Therefore, we consider

the clauses given in Figure 4 for rebooting the TPM. Alice’s

role is represented by three clauses (see Figure 4). The

first two clauses allow the protocol to be started in any

boot b, by creating a secret nonce n[xb] and extending it

into the PCR. Attacker knowledge and keys are preserved

through this process. Note that with this modelling, where n

is parameterized by xb, we will have different nonces for

each session of the protocol and avoid the above discussed

false attack. In the third clause, Alice verifies a TPM key

certificate (including information about the PCR values the

key is bound to) before using the key to encrypt her secret.

C. Results of our analysis

We formulate the desired security property as a query

containing the two following facts:



Alice Bob’s TPM

create nonce n reboot TPM

encrypted session

Extend (n)

create bind key (sk, pk(sk))
locked to h(h(u0, n), obtain[])

pk(sk) and certificate

aenc(pk(sk), secret)

Figure 3. Sealing the envelope

PCR reboot rules:

att(xb, xp, x) → att(boot(xb, xp), u0[], x)
key(xb, xp, srk[], pk(srk[]), nil[]) → key(boot(xb, xp), u0[], srk[], pk(srk[]), nil[])
key(xb, xp, aik[], pk(aik[]), nil[]) → key(boot(xb, xp), u0[], aik[], pk(aik[]), nil[])

Alice’s role:

att(xb, u0[], x) → att(xb, h(u0[], n[xb]), x)

key(xb, u0[], xsk, xpk, xpcr) → key(xb, h(u0[], n[xb]), xsk, xpk, xpcr)

att(xb, h(u0[], n[xb]), certkey(aik[], pk(bindk[yb, yp]), h(h(u0[], n[xb]), obtain[]))) →
att(xb, h(u0[], n[xb]), aenc(pk(bindk[yb, yp]), secret[xb]))

Figure 4. fig:Rules for modelling the envelope protocol

∙ att(xb, xp, secret[y]), and

∙ att(xb, xp, certpcr(aik[], h(h(u0[], n[y]), deny[]), x)).

It asks if Bob can obtain both Alice’s secret and a

certificate showing that he denied himself the secret by

extending deny[] into the PCR. As for the Bitlocker protocol,

we may use the results of Section III-B to show that the

envelope protocol is 2-stable and apply our transformation.

However, due to the additional, unbounded boot parameter,

ProVerif encounters similar termination problems as for the

PCR parameter in the untransformed model. Unfortunately,

we are yet unable to show the soundness of a bound on

the number of reboots. We nevertheless bound the number

of reboots in a similar way than the depth of the PCR

parameter, but the security guarantees we obtain only hold

for a bounded number of reboots. We consider multiple

sequential sessions of the protocol, but at most one per

boot. (In our model, the TPM must be rebooted between

sessions.) When we restrict the number of boot values to 3,

ProVerif confirms that the above query is unsatisfiable. In

the security property, the secret corresponding to boot y is

paired with a certificate showing that deny[] was extended

in the session involving the nonce from boot y. For larger

number of possible boot values, ProVerif is unable to finish

in a reasonable amount of time.

As an additional sanity check, we also considered a

version where the nonce n is known to Bob. In that case,

ProVerif finds the attack in which Bob first obtains the secret,

then resets the PCR value, extends it with n and then deny[],
and obtains the desired certificate.



VII. CONCLUSIONS

We have given a formal Horn-clause-based framework for

modelling protocols of the TPM that use platform configura-

tion registers (PCRs), giving a sound (i.e. attack preserving)

transformation on the clause set that helps to address non-

termination issues when using ProVerif on such models.

We have presented two successful case studies: a simplified

version of Microsoft Bitlocker, and the envelope protocol.

In both cases, we submit a variety of queries in a variety

of different configurations of the protocol, to show that it

accords with intuition. The ProVerif files corresponding to

our experiments are available at the url

http://www.lsv.ens-cachan.fr/∼delaune/TPM-PCR/

As future work, we intend to generalise our method to

analyse other stateful aspects of the TPM, such as the

monotonic counters, and perhaps also saved contexts. We

will also experiment with our method on other stateful APIs.
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APPENDIX

We say that a term t is headed with f if t = f(t1, . . . , tn)
for some terms t1, . . . , tn.

Lemma 1: Let F be a fact and k ≥ 0 be an integer such

that for any subterm v = h(v1, v2) ∈ st(F ), we have that

lengthpcr(v) ≤ k and v1 ∕∈ X , i.e., v1 is not a variable. Then

the fact F is k-stable.

Proof: First, we show that if t = h(t1, t2) is a

term such that for any subterm h(v1, v2) ∈ st(t) we

have that v1 ∕∈ X , then for any substitution � , we have

that lengthpcr(t�) = lengthpcr(t). We show this claim by

induction on lengthpcr(t).

Base case: lengthpcr(t) = 1. Since lengthpcr(t) = 1, we have

that t1 is not headed with h. As t1 ∕∈ X we also have that t1�

is not headed with h. Hence, we have that lengthpcr(t�) =
lengthpcr(t) = 1.

Induction step: lengthpcr(t) > 1. In this case we have

that t = h(h(t11, t12), t2) with lengthpcr(h(t11, t12)) =
lengthpcr(t) − 1. By induction hypothesis, we have that

lengthpcr(t1�) = lengthpcr(t1). Hence, we easily deduce that

lengthpcr(t) = lengthpcr(t�).

Now, let F be a fact and k ≥ 0 be an integer such

that for any subterm v = h(v1, v2) ∈ st(F ), we have that

lengthpcr(v) ≤ k and v1 ∕∈ X , i.e. v1 is not a variable. Let

� be a substitution grounding for F and u = h(u1, u2) be a

PCR value such that lengthpcr(u) > k. Thanks to the above

result, we know that lengthpcr(v�) = lengthpcr(v) ≤ k for

any v = h(v1, v2) ∈ st(F ). Since lengthpcr(u) > k, we

easily deduce that u ∕= v� for any v = h(v1, v2) ∈ st(F ).
Hence, we have that:

(F�)[h(u1, u2) → u1] = F (�[h(u1, u2) → u1]).

This allows us to conclude.

Lemma 2: Let k ≥ 0 be an integer and R = H → C be

a rule such that:

1) for all h(v1, v2) ∈ st(R), lengthpcr(v1, v2) ≤ k;

2) for all h(v1, v2) ∈ st(H), we have that v1 ∕∈ X ;

3) for all h(v1, v2) ∈ st(C) such that v1 ∈ X , we have

that C[h(v1, v2) → v1] ∈ H .

Then, we have that the rule R is k-stable.

Before we prove this result, we need to introduce the

notion of positions of a term. A position is a finite sequence

of positive integers. The empty sequence is denoted �. The

set of positions Pos(t) of a term t is defined inductively as

∙ Pos(u) = {�} for u ∈ X ,

∙ Pos(f(t1, . . . , tn)) = {�} ∪
∪

1≤i≤n i ⋅ Pos(ti) for

f ∈ Σf ,

∙ Pos(a[t1, . . . , tn]) = {�} ∪
∪

1≤i≤n i ⋅ Pos(ti) for

a ∈ Σn.

If p is a position of t then the expression t∣p denotes the

subterm of t at the position p, i.e.,

∙ t∣� = t,

∙ f(t1, . . . , tn)∣i⋅p = ti∣p, and

∙ a[t1, . . . , tn]∣i⋅p = ti∣p.

We denote by Pos
∗(t) the positions of t that do not

correspond to a variable, i.e.,

Pos
∗(t) = {p ∣ p ∈ Pos(t) and t∣p ∕∈ X}.

Proof: Let � be a substitution, u = h(u1, u2) be a PCR

value such that lengthpcr(u) > k, and � = [h(u1, u2) → u1]
be a replacement. It directly follows from Lemma 1 that the

facts in H are k-stable, i.e., (F�)� = F (��) for any fact

F ∈ H .

Let P = {p ∈ Pos(C�) ∣ (C�)∣p = u}. We distinguish

two cases. Either for all p ∈ P , we have that p ∕∈ Pos
∗(C).

In such a case, we have that (C�)� = C(��), and thus we

conclude that (R�)� = R(��), i.e., R is k-stable. Otherwise,

let p1, . . . , pn be the positions in Pos
∗(C) ∩ P (note there

exists at least one such position). For any i ∈ {1, . . . , n},

we have that C∣pi
= h(vi, v

′
i) for some terms vi, v

′
i.

First, we show that v1, . . . , vn are variables and

h(v1, v
′
1) = . . . = h(vn, v

′
n).

Claim: Let w = h(w1, w2) be a term such that

lengthpcr(w) = ℓ and � be a substitution grounding for w

such that lengthpcr(w�) > ℓ. We have that either w1 is a

variable; or there exists h(h(t1, t2), t3) ∈ st(w) such that

t1 ∈ X .

We show this result by induction on ℓ.

Base case: ℓ = 1. In such a case, we necessarily have that

w1 ∈ X .

Induction case: ℓ ≥ 2. In such a case, we have that w =
h(h(w11, w12), w2). Let w′ = h(w11, w12). We have that

lengthpcr(w
′) = ℓ − 1 and lengthpcr(w

′�) > ℓ − 1. We can

apply our induction hypothesis and we conclude that either

w11 ∈ X or there exists h(h(t′1.t
′
2), t

′
3) ∈ st(w′) such that

t′1 ∈ X . In both case, we easily conclude that there exists

h(h(t1, t2), t3) ∈ st(w) such that t1 ∈ X .

Then applying this claim when w = h(vi, v
′
i) for any

i ∈ {1, . . . , n}, and � = � allows us to conclude that vi
is either a variable or there exists h(h(t1, t2), t3) ∈ st(w)
such that t1 ∈ X . The second case is however impossible:

by Hypothesis 3 we would have that h(t1, t2) ∈ st(H) and

t1 ∈ X contradicting Hypothesis 2. Hence, v1, . . . , vn are

variables. Moreover, we have that C∣pi
= C∣pj

for any

i, j ∈ {1, . . . , n}. Indeed, otherwise, we again contradict

Hypothesis 2. Hence, �′ = [h(vi, v
′
i) → vi] is uniquely

defined.

Claim: We have that (C�)� = (C�′)(��).



Let t be a term in st(C). We show that (t�)� = (t�′)(��)
by structural induction on t. From this, it is then easy to

conclude that (C�)� = (C�′)(��).

Base case: t is a variable, say x. In such a case, we have that

(x�)� = x(��) and x�′ = x. This allows us to conclude.

Induction step: t = f(t1, . . . , tm) for some function sym-

bol f ∈ Σf . (The case where t = a[t1, . . . , tm] for some

symbol a ∈ Σn can be done in a similar way but Case 2 will

be impossible in such a situation). We have to distinguish

two cases:

∙ Case 1: t� ∕= h(u1, u2). In such a case, by relying on

our induction hypothesis, we have that

(t�)� = (f(t1, . . . , tm)�)�
= f(t1�, . . . , tm�)�
= f((t1�)�, . . . , (tm�)�)
= f((t1�

′)(��), . . . , (tm�′)(��))
= f(t1�

′, . . . , tm�′)(��)
= (t�′)(��).

The last equality comes from the fact that t ∕= h(vi, v
′
i).

Indeed, otherwise we would have that t� = h(u1, u2).
This contradicts our hypothesis.

∙ Case 2: t� = h(u1, u2). First, it is easy to see that

(t�)� = u1. Let p′ ∈ Pos
∗(C) such that C∣p′ = t. We

have that t = h(vi, v
′
i), and thus t�′ = vi. Moreover,

we have seen that vi is a variable, and thus vi(��) =
(vi�)� = u1� = u1. This allows us to conclude.

Since vi is a variable, thanks to Hypothesis 3, we know

that C�′ = F for some F ∈ H . Hence, we easily deduce

that (C�′)(��) = F (��) = (F�)�. The last equality comes

from the fact that F is k-stable. Lastly, we have also that

(C�)� = (C�′)(��). Hence, altogether, we deduce that

(C�)� ∈ (H�)�, i.e. (R�)� is a tautology.


