Exploratory Analysis of Time-series with ChronoLenses - Archive ouverte HAL Access content directly
Journal Articles IEEE Transactions on Visualization and Computer Graphics Year : 2011

Exploratory Analysis of Time-series with ChronoLenses

(1) , (2) , (3) , (1)
1
2
3
Fanny Chevalier
Emmanuel Pietriga

Abstract

Visual representations of time-series are useful for tasks such as identifying trends, patterns and anomalies in the data. Many techniques have been devised to make these visual representations more scalable, enabling the simultaneous display of multiple variables, as well as the multi-scale display of time-series of very high resolution or that span long time periods. There has been comparatively little research on how to support the more elaborate tasks associated with the exploratory visual analysis of time- series, e.g., visualizing derived values, identifying correlations, or discovering anomalies beyond obvious outliers. Such tasks typically require deriving new time-series from the original data, trying different functions and parameters in an iterative manner. We introduce a novel visualization technique called ChronoLenses, aimed at supporting users in such exploratory tasks. ChronoLenses perform on-the-fly transformation of the data points in their focus area, tightly integrating visual analysis with user actions, and enabling the progressive construction of advanced visual analysis pipelines.
Fichier principal
Vignette du fichier
chronolenses-infovis2011.pdf (1.94 Mo) Télécharger le fichier
Vignette du fichier
chronolenses-teaser.png (405.06 Ko) Télécharger le fichier
Vignette du fichier
chronolenses-alma.png (162.13 Ko) Télécharger le fichier
Vignette du fichier
chronolenses.mp4 (36.27 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Format : Figure, Image
Format : Figure, Image

Dates and versions

inria-00637082 , version 1 (30-10-2011)

Identifiers

Cite

Jian Zhao, Fanny Chevalier, Emmanuel Pietriga, Ravin Balakrishnan. Exploratory Analysis of Time-series with ChronoLenses. IEEE Transactions on Visualization and Computer Graphics, 2011, 17 (12), pp.2422-2431. ⟨10.1109/TVCG.2011.195⟩. ⟨inria-00637082⟩
637 View
795 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More