
HAL Id: inria-00637224
https://hal.inria.fr/inria-00637224

Submitted on 31 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Practical Precise Evaluation of Cache Effects on Low
Level Embedded VLIW Computing
Samir Ammenouche, Sid Touati, William Jalby

To cite this version:
Samir Ammenouche, Sid Touati, William Jalby. Practical Precise Evaluation of Cache Effects on
Low Level Embedded VLIW Computing. 22nd European Conference on Modelling and Simulation
(ECMS 2008), Jun 2008, Nicosia, Cyprus. ECMS, pp.75-81, 2008, High Performance Computing and
Simulation (HPCS 2008). <inria-00637224>

https://hal.inria.fr/inria-00637224
https://hal.archives-ouvertes.fr


PRACTICAL PRECISE EVALUATION OF CACHE EFFECTS ON LOW LEVEL
EMBEDDED VLIW COMPUTING

Samir Ammenouche, Sid-Ahmed-Ali Touati, William Jalby
University of Versailles St-Quentin en Yvelines, France

Email: saam@prism.uvsq.fr, Sid.Touati@uvsq.fr, William.Jalby@uvsq.fr

KEYWORDS

non-blocking cache, load-use distance, ILP.

ABSTRACT

The introduction of caches inside high performance pro-
cessors provides technical ways to reduce the memory
gap by tolerating long memory access delays. While such
intermediate fast caches accelerate program execution in
general, they have a negative impact on the predictabil-
ity of program performances. This lack of performance
stability is a non-desirable characteristic for embedded
computing. We will present the progress of our experi-
mental study about the influence of cache effects on em-
bedded VLIW processors (ST2xx processors). We are
trying to understand qualitatively and quantitatively the
interactions between cache effects (Data cache) and in-
struction level parallelism at different granularities: ap-
plications and functions (coarse grain), program regions
(medium grain) and instructions (fine grain). Our aim is
to come up with experimental arguments helping to de-
cide whether non-blocking caches would be areasonable
architectural design choice for embedded VLIW proces-
sors. By reasonable, we mean bringing opportunities at
two levels: 1) program execution acceleration with tol-
erable performance predictability, and 2) active interac-
tions with compiler optimization techniques. Our study
is based on many months of full-time simulations on tens
of workstations producing many terabytes of data to anal-
yse.

Introduction

Cache effects permit to hide the existing gap be-
tween memories and processors performances. How-
ever, caches have a negative impact on loads latency pre-
dictability, depending on dynamic data location in the
memory hierarchy. Our goal is to understand the execu-
tion behaviour by taking into account the cache effects;
we measure the impact of different cache architectures
and also the impact of the compiler. We follow a prac-
tical approach with common benchmarks (mediabench)
and less common applications(ffmpeg) This is a typical
embedded multimedia application used by STmicroelec-
tronics to design their chips. It a video compression
basing on h263 standard which are precisely simulated.
The used industrial simulator (implemented by STmicro-
electronics) models an embedded processor which is the

ST231 of STMicroelectronics. We are targeting reduc-
ing memory cache penalty. Reducing processors stalls
due to memory access latencies is an old goal for the
community. Some software techniques are available,
like tiling (2), loop permutation, loop fusion, loop un-
rolling, loops jam, software prefetching (3). Hardware
techniques are also available such as hardware prefetch-
ing and non blocking caches (4).

The authors in (1) explain the interest of non-blocking
cache architecture for the Out-Of-Order processor. We
try to measure the benefit of such cache architecture for
an In-Order processor. To achieve that, we used an em-
bedded VLIW processor, theST231. We have collected
the simulation results of the benchmarks on theST231
using two cache architectures: a blocking cache archi-
tecture and a non blocking one. We make comparison of
obtained results, and we proposed a compilation method
to better exploit the non-blocking cache feature.

Current commercial and academic backend compilers
schedule all loads using the cache hit latency. That is,
cache misses latencies are not used during instruction
scheduling. Assuming statically that all data reside in
low level caches involves a great difference between real
and expected execution times. Current compilers do not
schedule the loads operations using a miss latency be-
cause: 1) The benefit of the cache would disappear. 2)
The register pressure would increase. 3) It is not always
possible to schedule operations to hide such long load la-
tencies (ILP extraction is limited in some applications).
So, when a Dcache miss occurs, the VLIW processor
stalls completely if the cache is blocking. If the cache
is non-blocking, the VLIW processor continues to exe-
cute other pending operations but stalls quickly because
the compiler schedule loads with short latencies (the dis-
tance between the issued load and the first reader is equal
to a cache hit latency). We consider this gain too slen-
der. We propose to adjust the load latencies in order to
improve the gain of the non-blocking caches.

This paper is organized as follows. Sect. 1 first
presents some related work. Our target embedded pro-
cessor is described in Sect. 2. Sect. 3 presents the col-
lected simulation results of the blocking cache architec-
ture. Sect. 4 presents the collected results on the non-
blocking cache architecture. Before concluding, we also
present our proposal for a compile-time pre-loading tech-
nique to generate better embedded VLIW codes in pres-
ence of a non-blocking cache.



1 Related Work

Several research on cache effects at fine grain level have
been carried out. Touati included the impact of the com-
pulsory misses in an optimal acyclic scheduling prob-
lem (6) in a single basic block. He models the exact
scheduling problem by including the constraint of data
dependences, functional units, registers and compulsory
misses. Our current work is different because we try to
cover all the kinds of misses (compulsory, capacity and
conflict). Also, we do not focus in a single DAG (basic
block) only, we are interested in optimising of whole ap-
plication. Tienet al. studied the effects of non-blocking
loads and the prefetch in MIPS3000 processor (7), and
tried some compiler optimisation adapting loads to have
more gain with the non-blocking loads. Whereas in our
work, we study the cache effects for a VLIW (multiple
issue) processor. We also use two phases compilation to
adapt latencies to loads operations (as we will explain
later). Oneret al. made a study of kernel scheduling over
a MIPS processor (8). They increased the load-use de-
pendency distance in loop kernel using loop pipelining.
Ding et al. (9) made a static analysis of code to deter-
minate which is a cache hit and which is a cache miss
load instruction, this technique is called selective sched-
ule. Abrahamet al. (10) made a profiling of the load in-
structions, then the step of selecting loads which misses
the cache. The final state is the prefetching of these delin-
quent loads. Our study is also based into profiling and
analysis of trace, but we change the load-use distance
rather than adding prefetch instructions. Furthermore, we
aim to propose a pre-loading technique in conjunction
with global scheduler (handling a whole function), and
such scheduler does not necessarily target regular codes
such as loop nests.

As far as we know, this is the first study demonstrat-
ing the practical effectiveness (or not) of a non-blocking
cache inside an embedded VLIW processor. The next
section presents our processor model.

2 ST231 Processor Description

The ST231 (5) is the latest processor of theST2xx in
the market of embedded VLIW computing. It is a in-
teger 32bits VLIW processor, 3 stages pipelined, which
contains 4 integers units, 2 multiplications units and 1
load/store unit. It has a 64KB L1 cache. The latency of
the L1 cache is 3 cycles. The cache is blocking,i.e. in
the case of load cache-miss, the pipeline stalls until the
commit of the pending load. The cache is separated Data/
Instruction. The Data cache is 4 way associative. It oper-
ate with write back no allocate policy. A 128 bytes write
buffer is associated with the Dcache.

The next formula describes the execution time of a
VLIW code on anST231 in function of different stalls
sources resulted from dynamic hardware mechanisms:

T = Calc + DC + IC + InterS + Br

Figure 1: Mediabench Execution Time Distribution

where:T : is the total execution time in processor clock
cycles,Calc : is the effective computation time in cycles,
DC is the number of stall cycles due to Dcache misses,
IC is the number of stall cycles due to instruction cache
misses,InterS is the number of stall cycles due to the in-
terlock mechanism and finallyBr is the number of taken
branch (for each branch, there is one penalty cycle).

STmicroelectronics provided us a precise pipeline ac-
curate simulator of theST231. Our approach does not
focus on benchmark’s kernel only, we want to study
and improve performance of application benchmarks us-
ing full precise, but long, simulation. The next section
presents our performance analysis study ofST231 using
a regular blocking cache.

3 Blocking Cache Architecture Results

For a coarse grain profiling we use a simulator named
ST200run with the simulator option -a statistics. It prints
precise and detailed execution statistics. We collect sim-
ulation results of themediabench and ffmpeg execution.

We can observe in Fig. 1 that a mean of 3,5% of time
is lost in stalls due to Dcache misses. We focus onpeg-
wit and jpeg benchmarks while Dcache miss represent
96.91% and 15.66% resp.

Fig. 2 shows that 33.34% of execution time is wasted
in Dcache stalls. We calculate another parameter to quan-
tify the Dcache misses, this parameter is the distance be-
tween aload operation and the first load’s costumer op-
eration. We call this distance as theload-use distance.
There are two kinds ofload-use distances. The first one
is the load-use distance in cycles (Dynamic), which ex-
presses the effective dynamic distance including all the
stalls. The second one is the static distance set by com-
piler in the generated code (it is resulted from the static
instruction scheduler).

Through several experiences, we observed a great dif-
ference between measured static distances and the dy-



Figure 2: Ffmpeg Execution Time Distribution

namic ones. The mean of static distance values is around
three bundles. This demonstrated that the compiler
makes an optimistic load latency, it assumes that all data
reside in the L1 cache (since the cache latency is 3 cy-
cles). The dynamic load-use distances measured at the
simulation time. Its mean value is around thirty cycles,
which is far from the three optimistic cycles. The gap
is due to Dcache misses. In the next section, we will
see the contribution of a hardware mechanism (lock-up-
free caches) generally designed for reducing stalls due to
cache misses.

4 Non-blocking Cache Simulation Results

Kroft (11) defined the lock-up-free (non-blocking)
caches. The interesting aspect of this architecture is
the ability to overlap the execution and the memory
data loading. When a cache miss occurs, the proces-
sor continues its execution of independent operations.
This produces an overlap between bringing up the data
from memory and the execution of independent instruc-
tions. In (1), the authors show that a non blocking cache
can significantly improve the performances of an out-
of-order (OoO) processor. So, many high performance
OoO currently adopted this cache architecture. Embed-
ded processors do not have non-blocking caches yet be-
cause: its cost is not negligible (energy consumption and
price), and its benefit in cache of in-order processors is
not demonstrated.

In order to make a full exploitation of non blocking,
the memory architecture should also be improved. In-
deed, memory must now become fully pipelined and
multi-ported (These architectural enhancements are not
an obligation in case of blocking cache). This improve-
ment allows memory to serve multiple pending cache
misses in a pipelined way. These cache misses are stored
inside a queue (calledpending load queue). The size of
this queue, that we noteSPQ, is a micro-architectural pa-

Figure 3: Execution Time Distribution of ffmpeg Differ-
ent Sizes of Pending Load Queues (0, 1, 8, 16, 32)

rameter which defines the number of concurrent loads
waiting for memory service. Intuitively, when SPQ is
large, more pending cache misses can be concurrent re-
sulting in better load overlap. This section makes a
precise performance evaluation resulting from adding a
non-blocking cache inside an embedded VLIW proces-
sor (ST231). We also study the influence of SPQ, and the
influence of the instruction schedules generated by the
compiler.

In the first step, we collect the same execution statis-
tics of the blocking cache experiences i.e. the number
of cycles of effective calculation, the stall cycles due to
Dcache misses, the stall cycles due to instruction cache
misses, the cycle lost in branch and the interlock stalls.
The used binary codes are the same used in Sect. 3.

Fig. 3 shows execution distribution time of theffm-
peg benchmark. We made distinct simulations, changing
each time the size of the pending load queue size (SPQ)
from 0 to 32 entries. A pending load queue equal to zero
means that the architecture implements a blocking cache.
A pending load queue withn entries means that at most
n cache misses can be issued concurrently by the non-
blocking cache.

For a pending load size equal to zero, Fig. 3 shows that
the results are similar to the simulation results obtained
with the blocking cache simulator (in Sect. 3, Fig. 2). The
surprise is that there is a negligible performance improve-
ment whatever the SPQ size. The performance improve-
ment is 1.62% for the wholeffmpeg application with a
SPQ equal to one! The result is similar in case ofmedi-
abench applications. Contrary to OoO processors, intro-
ducing a non-blocking cache in a VLIW in-order proces-
sor does not provide a performance gain, unless the codes
are recompiled with some special instruction scheduling
techniques (shown later).

Another result is shown in Fig. 3: when the SPQ is
changed from 1 to 8, 16 and 32, we obtain the same per-



formance gain 1.66% for the whole application. Contrary
to OoO processors, increasing the SPQ size has little im-
pact (unless we re-optimise the VLIW code as we will
show later).

The mediabench benchmark simulation gives similar
results,i.e. a weak performance improvement. this is
shown in Fig. 4.

All the observed small speed-ups are due only to
Dcache stall reduction. When considering exactly the
same binary codes as in Sect. 3, executing them on
the same VLIW processor but with changing the block-
ing cache non a non blocking one seems to do not al-
ter other dynamic performance metrics: Icache stalls,
branch penalties ans interlock stalls remain the same ex-
cept Dcache stalls. This would improve the predictability
of the execution time.

The experimental results of this section can be sum-
marized as follows:

1. A disappointing cache stall reduction when chang-
ing cache configuration from blocking to non-
blocking ones. The maximum obtained perfor-
mance gain is 2.62% in the pegwit application and
the worst one is less than 0.1% in MPEG2.

2. All the performance gains are calculated in the
whole applications, not just in functions which
make numerous Dcache misses. The performance
improvement is of course better when the amount
of Dcache misses is important.

3. The codes were not changed or tuned for the new
cache architecture, the same binaries were executed
over the two cache platforms.

4. We do not observe any speed-down due to the non-
blocking cache.

5. The negligible speed-up is observed as maximal
with a pending load queue size of 8 entries only.

All the negligible speed-ups obtained with a non-
blocking cache architecture are disappointing but can be
explained: when a Dcache miss occurs, the processor
does not stall, it still execute the next bundle (VLIW)
thanks to the non-blocking cache opportunity. However,
the consumer of the loaded data is too close (three bun-
dles later). Thus, the processor stalls too early and the
benefit of the non-blocking cache is limited. We believe
that the in-order architecture can better exploit the non-
blocking cache architecture as well as the out of order
does. However, the binary codes must be adapted to take
in consideration the cache model. To avoid the poor per-
formance improvement of the non-blocking cache archi-
tecture, we propose to reschedule the instructions by in-
creasing the static load-use distance. We change the load
instruction latency, and adapt its to each code. We must
calculate for each load instruction the most suitable la-
tency whatever it hits or misses the Dcache. For the loads
that hit the cache, we do not need to change their latency.

Figure 5: the used methodology

For the other loads, the static latency must be changed.
For instance, the latency of the delinquents loads must be
adapted.

In this section, we consider load-use intervals, where:
load-use interval = [cycle of load , cycle of the user].
Thanks to the non-blocking cache, load-use intervals
may overlap.

In order to compute a new metric each load capturing
load-use intervals overlap, we propose the next formula:

NormalizedDistance =

⌈

C2 − C1

L

⌉

(1)

whereC1 andC2 are cycles when load or consumer load
instruction occurs andL is the number of overlapped
loads.

Thisnormalized distance is our new metric that we use
as a parameter to a new static compiler optimisation op-
tion. It sets a new static load latency in whole function
scope: the normalized distance represents the number of
additional static cycles to a cache hit latency. That is, a
load that was initially scheduled with a cache hit latency
by the compiler, becomes scheduled with a new latency
equal to the cache hit plus the normalized distance. The
overlap parameterL in Equ. 1 shows that whenL is high
then the normalized distance tends to zero. So, the static
distance tends to a cache hit latency. This means that
the compiler does not change its initial latency because
a good machine usage (sufficient overlapped memory re-
quests). If the value ofL is low, the static load distance
is increased to allow more pending loads to be executed
in parallel during cache miss.

We have calculated this new normalized distance met-
ric for all themediabench and also forffmpeg functions.
We also experimented some regular usual codes such as,
matrix-vector multiplication and matrix-matrix multipli-
cation.

To decrease the Dcache stall penalty by adapting the
static loads latencies. We use an on-the-fly trace analyser



Figure 4: Execution Time Distribution of Mediabench with Distinct Pending Load Queue Sizes (0, 1, 8, 16, 32)



during the simulation to calculate the dynamic load-use
intervals, and the number overlapped loads at each pro-
cessor clock cycle. With Equ. 1, we manage to compute
the new static load distance that we should apply in a
re-compilation process. For this purpose, the regular op-
timising compiler of STmicroelectronics has been modi-
fied by the vendor to allow us such low level code opti-
misation. A new compiler version has been designed for
our study. We can now adjust load latency by a special
compiler option. Simply increasing the static load laten-
cies without careful attention may produce many impacts
in the final generated code:

Fig. 5 shows all steps of our methodology to decrease
the data cache stall penalty by adapting the static loads
latencies. We use an on-the-fly trace analyser during the
simulation to calculate the dynamic load-use distances
each processor clock cycle. With Equ. 1, we manage to
compute the adapted load distance that should be applied
in a re-compilation process. For this purpose, the regu-
lar optimising compiler of STmicroelectronics has been
modified by the vendor to allow us such low level code
optimisation. A new compiler version has been designed
for our study. We can now adjust load latency by a spe-
cial compiler option.

1. When instruction rescheduling, the code size may
increase and consequently may have negative ef-
fects on instruction cache misses. So for some
short loop, we force compiler to unroll it rather than
pipeline it. In case of pipelined loop, increasing load
latency can increase the II, however, in some case
greater II can gives better performances than smaller
one (due to cache effects which are not considered
at scheduling time).

2. For the non-loop code, if the new latencies are too
long, the compiler may not find enough ILP. To
avoid that, several methods can be applied as tail
duplication, region scheduling, Super-block instruc-
tion scheduling, trace scheduling, scheduling non-
loop code with prologue/epilogue of loop blocks.

3. Increasing load latency increases the register pres-
sure; the compiler can introduce spill code to reduce
simultaneously alive variables. So, when schedul-
ing, we must take care about register pressure.

Our normalized distance as proposed in Equ. 1 aims to re-
duce the negative impact described above. Furthermore,
we should be aware that modifying a load latency may
considerably modify the cache effects of a code: Since
load operations are reschedule, some initial cache misses
may become hits andvice-versa, because of the instruc-
tion rescheduling that modifies the spacial/temporal lo-
cality of the code. In order to guarantee that the cache
effects stay the same before and after static load modifi-
cation, we impose to the compiler (via a special pragma)
to keep the same order for the loads before and after la-
tency modification. Consequently, applying a new la-
tency to loads does not modify the relative order between

the loads, keeping the same cache effects (and thus, our
normalised distances computed via an initial program
simulation remains valid).

Also, we can see that the distance decreases while the
size of the pending load queue increases until a limit
where increasing the size of the pending load has no ef-
fect on the normalised. Not all functions are candidate
for our code optimisation methodology. We consider the
function that has two properties : 1) a considerable frac-
tion of Dcache stall in the execution time of the func-
tion, and 2) the normalised distance should be larger that
the cache hit latency (3 cycles). When we look for these
two parameters (Dcache fraction plus considerable nor-
malised calculated distance), we find that few functions
in ffmpeg andmediabench are candidate to our optimisa-
tion. For ffmpeg application, we obtained 28.28% whole
application speed-up using adapted loads latencies.

Figure 6: Original vs Optimized ffmpeg & Matrix-
Matrix Multiplication Benchmarks Results

We can now apply our optimisation method in case
of more well known benchmark such as square Matrix-
Matrix (512*512) multiplication: we use a non-naive im-
plementation, produced by ATLAS (“best” loop tiling,
each tile contains 64 * 64 elements = 16KB which are
kept by the Dcache). The obtained results are promising
and conclusive. In Fig. 6, we can observe the positive ef-
fects of using the normalized distances. The main advan-
tage of this optimisation is that it can be applied to any
control flow graph, not necessary to loops. Finally the
speed-up obtained thanks to Preloading and non blocking
cache hides the cost of the added hardware (non-blocking
cache)

5 Conclusion

Our study was based on precise full simulation of whole
embedded applications (mediabench and ffmpeg ). Our
experimental study consumed many months of full sim-
ulation on tens of workstations producing tera-bytes of
data to collect and analyse. We precisely measured the
impact of a non-blocking cache inside a VLIW embed-
ded processor (ST231) compared to a blocking cache
architecture. As shown in our experimental results, if



the binary codes are not modified, the performance im-
provement is poor (program acceleration less than 3% in
the best case!). This situation has a concrete explana-
tion. Many current compilers schedule load instruction
too close to their consumers: this is a common heuris-
tics to decrease the register pressure. Such scheduling
heuristics assume that data reside in L1 cache, and conse-
quently loads are scheduled as cache hits. Such schedul-
ing heuristics reduces the benefit of a non-blocking cache
in case of in-order and VLIW embedded processors. This
situation is not altered when increasing the size of the
hardware pending queue associated to the non-blocking
cache.

Our experimental results are in opposition with the
case of high performance out-of-order processors, where
non-blocking caches provide positive effects in execution
performance without changing program binaries. High
performance out-of-order processors contain much more
hardware mechanisms (resulting in higher costs) that al-
low program acceleration without instruction reschedul-
ing at compile time. In the case of an embedded VLIW
processor, we showed that if the code is not re-optimised
in order to take into account the non-blocking cache, the
benefit is negligible.

Our code optimisation methodology is based on data
pre-loading. Our method performs in two steps. The first
step computes normalised load-use distances using exe-
cution trace analysis. Then, this distance is used in the
second step to reschedule the code at instruction level,
while keeping the same loads order as the one analysed
in the first step. Keeping the same loads order in the sec-
ond step guarantees that the cache effects analysed in the
first step are not altered in the second step. Our results
on matrix-matrix multiply and ffmpeg show respectively
a speed-up of 267.61% and 28.28% for the whole pro-
gram execution. This provides us promising demonstra-
tion of the effectiveness of our ideas. In the future, we
will combine pre-loading with data prefectching in order
to optimise memory requests for both regular and irregu-
lar embedded VLIW codes.

REFERENCES

[1] John L. Hennessy and David A. Patterson.Com-
puter Architecture: A Quantitative Approach, Mor-
gan Kaufman, CA, 1996.

[2] Michael E. Wolf and Monica S. Lam.A Data Lo-
cality Optimizing Algorithm . PLDI’91, pages 30 –
44, 1991.

[3] Randy Allen and Ken Kennedy.Optimizing Compil-
ers for Modern Architectures. Morgan and Kauf-
man, 2002.

[4] James Edward Sicolo.A Multiported Nonblocking
Cache for a Superscalar Uniprocessor B.S. State
University of New York at Buffalo, 1989.

[5] STMicroelectronics ADCS 7645929F ST231 Core
and Instruction Set Architecture Manual, 2005.

[6] S.-A.-A. Touati. Optimal Acyclic FineGrain
Scheduling with Cache Effects for Embedded and
Real Time Systems. ACM Proceedings of the Ninth
International Symposium on Hardware/Software
Codesign. Copenhagen, Denmark, April 25-27,
2001, IEEE.

[7] Tien-Fu Chen and Jean-Loup Baer.Reducing Mem-
ory Latency via Non-blocking and Prefetching
Caches. Proceedings of the fifth international con-
ference on Architectural support for programming
languages and operating systems. Boston, Mas-
sachusetts, United States. 1992.

[8] Koray Öner and Michel Dubois.Effects of Memory
Latencies on Non-Blocking Processor Cache Archi-
tecture. Proceedings of the 7th international confer-
ence on Supercomputing ICS. 1993.

[9] Chen Ding and Steve Carr and Phil Sweany.Modulo
Scheduling with Cache Reuse Information. Euro-
pean Conference on Parallel Processing. 1997.

[10] Abraham Sugumar, Windheiser, Rau, Gupta.Pre-
dictability of Load/Store Instruction Latencies. Pro-
ceedings of the 26th annual international sympo-
sium on Microarchitecture. Austin Texas. 1993.

[11] David Kroft. Lockup-free Instruction
Fetch/Prefetch Cache Organization . Proc. 8th
International Symposium on Computer Architec-
ture, Minneapolis, MN, May 1981, p. 81-85.

Acknowledgements

This research result has been supported by the ANR
MOPUCE project (ANR number 05-JCJC-0039) and
the French Ministry of Industry. We would like to
greatly thank Francesco PAPARIELLO and Giuseppe
DESOLI from STMicroelectronics-Milano for their valu-
able effort in implementing the non-blocking cache sim-
ulator. We would also like to greatly thank Benoit
DUPONT-DE-DINECHIN and Christophe GUILLON from
STMicroelectronics-Grenoble for their valuable effort in
implementing our pre-loading technique in the ST VLIW
compiler.


