Approximation of Reachable Sets using Optimal Control Algorithms

Abstract : Numerical experiences with a method for the approximation of reachable sets of nonlinear control systems are reported. The method is based on the formulation of suitable optimal control problems with varying objective functions, whose discretization by Euler's method lead to finite dimensional non-convex nonlinear programs. These are solved by a sequential quadratic programming method. An efficient adjoint method for gradient computation is used to reduce the computational costs. The discretization of the state space is more efficiently than by usual sequential realization of Euler's method and allows adaptive calculations or refinements. The method is illustrated for two test examples. Both examples have non-linear dynamics, the first one has a convex reachable set, whereas the second one has a non-convex reachable set.
keyword : sadco
Type de document :
Article dans une revue
Numerical Algebra, Control and Optimization, AIMS, 2013, 3 (3), pp.519 - 548. 〈10.3934/naco.2013.3.519〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00637880
Contributeur : Estelle Bouzat <>
Soumis le : jeudi 3 novembre 2011 - 11:11:38
Dernière modification le : vendredi 13 octobre 2017 - 17:08:16

Lien texte intégral

Identifiants

Citation

Robert Baier, Matthias Gerdts, Ilaria Xausa. Approximation of Reachable Sets using Optimal Control Algorithms. Numerical Algebra, Control and Optimization, AIMS, 2013, 3 (3), pp.519 - 548. 〈10.3934/naco.2013.3.519〉. 〈inria-00637880〉

Partager

Métriques

Consultations de la notice

257