
HAL Id: inria-00638071
https://inria.hal.science/inria-00638071

Submitted on 3 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Classification of Logical Dependencies
Origins: A Case Study

Gustavo Oliva, Francisco W. S. Santana, Marco Aurelio Gerosa, Cleidson R.
B. de Souza

To cite this version:
Gustavo Oliva, Francisco W. S. Santana, Marco Aurelio Gerosa, Cleidson R. B. de Souza. Towards
a Classification of Logical Dependencies Origins: A Case Study. ESEC/FSE - 12th International
Workshop on Principles of Software Evolution and the 7th annual ERCIM Workshop on Software
Evolution, Sep 2011, Szeged, Hungary. pp.31–40, �10.1145/2024445.2024452�. �inria-00638071�

https://inria.hal.science/inria-00638071
https://hal.archives-ouvertes.fr

Towards a Classification of Logical

Dependencies Origins: A Case Study
Gustavo A. Oliva

Comp. Science Dept./IME
University of São Paulo

CEP: 05508-090
São Paulo – SP – Brazil

goliva@ime.usp.br

Francisco W.S. Santana
Computing Department

Federal University of Pará
CEP: 66075-100

Belém – PA – Brazil

wertherjr@gmail.com

 Marco Aurélio Gerosa
Comp. Science Dept./IME

University of São Paulo
CEP: 05508-090

São Paulo – SP – Brazil

gerosa@ime.usp.br

Cleidson R.B. de Souza
IBM Research
CEP: 04007-05

São Paulo – SP – Brazil

cleidson.desouza@acm
.org

ABSTRACT

Logical dependencies are implicit relationships established

between software artifacts that have evolved together. Software

engineering researchers have investigated this kind of dependency

to assess fault-proneness, detect design issues, infer code decay,

and predict likely changes in code. Despite the acknowledged

relation between logical dependencies and software quality, the

nature of the logical dependencies is unknown in the literature.

Most authors hypothesize about their origins, but no empirical

study has been conducted to investigate the real nature of these

dependencies. In this paper, we investigated the origins of logical

dependencies by means of a case study involving a Java FLOSS

project. We mined the project repository, filtered out irrelevant

data based on statistical analyses, and performed a manual

inspection of the logical dependencies to identify their origins

using information from the revision comments, code diffs, and

informal interviews held with the developers of the analyzed

project. Preliminary results showed that logical dependencies

involved files that changed together for a series of different

reasons, which ranged from changing software license to

refactoring classes that belonged to the same semantic class.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and

Enhancement – reestructuring, reverse engineering, and

reengineering; version control.

General Terms

Measurement, Design, Experimentation.

Keywords

Software evolution, mining software repositories, logical

dependencies, logical coupling, change coupling, empirical

software engineering, case study.

1. INTRODUCTION
Software Engineering researchers have long recognized the

relationship between code structural dependencies, or static

dependencies, and software failures [1, 2, 3, 4]. Recently, research

on software evolution has introduced a novel approach for

dependency identification that reveals new and more subtle

relationships between software artifacts. The concept underlying

this notion is known as logical dependencies [5, 6], which refers

to evolutionary dependencies that are established among source-

code files that are frequently changed together (although not

necessarily structurally related). Graves et al. [7] showed that past

changes are good predictors of future faults. Mockus and Weiss

[8] found out that the spread of a change over subsystems and

files is a strong indicator that the change will contain a defect.

Cataldo and colleagues [9] reported through a detailed empirical

study that the effect of logical dependencies on fault proneness

was complementary and significantly more relevant than the

impact of structural dependencies in two software projects from

different companies. Logical dependencies have also been

employed to detect design issues [10], infer code decay [11], and

predict changes in software artifacts [12].

While it seems clear that logical dependencies play a major role in

software reliability and in other software properties (such as

maintainability and evolvability), no empirical examinations have

been undertaken to reveal the origins of these dependencies.

According to Cataldo et al. [9], a more detailed understanding of

the origins of logical dependencies is an important future research

direction with implications in research areas such as software

quality. In particular, among different studies with varying

purposes, authors have formulated a series of informal hypotheses

regarding these origins: cascading function calls [9], semantic

dependencies [9], platform evolution [9], code duplication [13],

and the use of dependency injection and reflection techniques

[14].

The main goal of this paper is exactly to investigate the origins of

logical dependencies. This is achieved through a case study [15,

16, 17] involving a project entitled Groupware Workbench1 (GW)

[18], which offers a component-based toolkit for the development

of Web 2.0 collaborative systems. The project is written in Java

and it has received contribution from twelve developers from

different academic institutions. GW has been active since 2008

and it has been distributed as Free Software by IME-USP FLOSS

Competence Center2 since December of the same year.

We mined the GW Subversion (SVN) repository with the XFlow

tool [19] and identified all existing logical dependencies between

software artifacts. Subsequently, we filtered out data and manually

investigated the origins of logical dependencies by reading

commit comments, looking at code diffs and validating our results

with GW developers. Preliminary results showed that the analyzed

logical dependencies involved files that changed together for

1 http://www.groupwareworkbench.org.br/

2 http://ccsl.ime.usp.br/en

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

IWPSE-EVOL’11, September 5–6, 2011, Szeged, Hungary.

Copyright 2011 ACM 978-1-4503-0848-9/11/09...$10.00.

different reasons, which ranged from changing software license to

refactoring classes that belonged to a same semantic class.

Our main contributions include (i) a systematic approach for

logical dependencies identification, grouping, and classification

that can be reused and adapted for future research, (ii) a

classification of the origins of logical dependencies of a real

system, (iii) the identification of research opportunities based on

such classification, and (iv) the implementation of a modified

version of the sliding time window algorithm in XFlow.

The rest of this paper is organized as follows. In Section 2, we

introduce logical dependencies and related metrics. In Section 3,

we describe the research method used as well as its planning. In

Section 4, we present the study results including the classification

of logical dependencies. In Section 5, we present the threats to the

validity of this study. In Section 6, we present the related work. In

Section 7, we state our conclusions and ideas for future work.

2. LOGICAL DEPENDENCIES
Logical dependencies (a.k.a., change dependencies, evolutionary

dependencies, and co-changes) are implicit dependencies that

happen between software artifacts that evolved together [5, 6].

These artifacts are not necessarily structurally related, since they

are connected from an evolutionary point of view, i.e. they have

often changed together in the past, so they are likely to change

together in the future. Unlike structural dependencies analysis

(a.k.a., static analysis), this technique spots dependencies between

any kind of artifact that composes a system, including

configuration files (such as XML and property files) and

documentation. The identification of logical dependencies is

usually performed by parsing and analyzing the logs of a version

control system (VCS).

Logical dependencies are defined for pairs of files and are

commonly treated as data mining association rules [12]. Formally,

an association rule is an implication of the form X1⇒X2, meaning

that when X1 occurs, X2 also occurs. In this notation, X1 and X2

are two disjoint sets of items. Furthermore, X1 and X2 are called

the antecedent (a.k.a, left-hand-side, LHS) and the consequent

(a.k.a., right-hand-side, RHS) of the rule respectively. For

example, the rule {A, B}⇒C found in the sales data of a

supermarket would indicate that if a customer buys A and B

together, he or she is also likely to buy C. In the context of our

study, a logical dependency from a file f2 to another file f1 is

denoted by F1⇒F2, i.e. an association rule in which the antecedent

and consequent are both singleton sets containing f1 and f2

respectively.

Measures of interest and significance for association rules are

usually given by support and confidence thresholds. In our study,

the support measure denotes the number of times two artifacts

were changed together. The confidence measure defines the

degree to which artifacts are logically connected, thus

characterizing the strength of the relation. These concepts have

been formalized by Zimmerman et al. [12] and we have adapted

them for atomic-commit featured VCSs as follows:

 Frequency of a set F in a set of commits C as frq(C, F) = |{c

| c ∈ C, F ⊆ c}|.

 Support of a rule X1⇒X2 by a set of commits C as supp(C,

F1⇒F2) = frq(C, F1∪F2) = P(F1∩F2), i.e. the probability of

finding both antecedent and consequent in the set of commits C.

 Confidence of a rule F1⇒F2 as conf(C, F1⇒F2) =

frq(C,F1∪F2) / frq(C,F1) = P(F2|F1), i.e. the probability of

finding the consequent of the rule in commits under the

condition that these commits also contain the antecedent.

It should be noted that the confidence values for F1⇒F2 and

F2⇒F1 are different. In the first case, the confidence value

determines (by definition) the degree to which file f2 is a client of

file f1. Analogously, in the second case, the confidence value

determines the degree to which file f1 is a client of file f2. To

illustrate this subtle difference, consider the example shown in

Figure 1.

Figure 1. Association rule example

Most of the time, when f1 is commited, f2 is also commited.

Therefore, the rule F1⇒F2 (which states that f2 depends on f1) has

a high confidence value of 4/5 = 0.8 = 80%. In contrast, the rule

F2⇒F1 (which states that f1 depends on f2) has a much lower

confidence value of 4/10 = 0.4 = 40%.

3. RESEARCH METHOD
Case study is a well-established empirical method aimed at

investigating contemporary phenomena in their natural context

[15]. The case study reported in this paper aims to identify and

categorize the origins of logical dependencies in the GW project

by mining its SVN repository. Our motivation primarily derives

from previous studies that have stressed the interplay between

logical dependencies and software quality [7, 8, 9, 10, 11, 12].

In the next subsections, we present the case study design and

planning. We describe the characteristics of the case, the rationale

for choosing this particular case, the data collection instruments

and methods, the data filtering techniques used and their reasons,

and the data analysis instruments and methods.

3.1 The case study
We conducted an explanatory case study, in which the researcher

seeks an explanation of a situation or a problem [16]. In contrast

to embedded case studies, where multiple units of analysis are

studied within a case, our case study is essentially holistic, i.e. the

case is studied “as a whole”.

According to Seaman [20], a combination of quantitative and

qualitative data (a.k.a., “mixed methods” [15]) often provides

deeper understanding of the phenomenon of interest. Our case

study relies on both quantitative data (file types, size of revisions,

developers’ contribution level, and logical dependency metrics)

and qualitative data (revision comments, code diffs, and informal

interviews with the developers). In particular, the quantitative data

was primarily employed to filter out the qualitative data to be

subsequently analyzed.

3.1.1 The case choice
For the case study, we needed a software project that satisfied the

following requirements: (i) open-source software hosted on a

SVN repository with anonymous read access, since our mining

tool only supported SVN (see Section 3.2); (ii) availability of its

developers to gather information about the project during the

process of classification of logical dependencies; (iii) rather small

version history (500 to 1k revisions), as this study assumes a

manual classification of logical dependencies; and (iv) code

written in an object-oriented language (such as C++, C#, or Java),

as this would enable us to investigate reflection and dependency

injection techniques in the context of logical dependencies.

We selected the Groupware Workbench (GW) software, which is

a FLOSS project developed in partnership between three Brazilian

universities: USP, UFES, and PUC-Rio. GW satisfies all of the

previously stated requirements, since (i) it is hosted at Google

Code and stored in a SVN repository; (ii) it is highly active and

most developers remain at the university working on it; and (iv) it

is entirely written in Java. Regarding (iii), we decided to analyze

only the project’s trunk folder in SVN, since it accounted for 727

(47%) of all 1541 project revisions. This analysis relies on all GW

history in SVN, which corresponds to a development period of

two years and three months.

The GW project is supported by the IME-USP FLOSS

Competence Center and its project manager is one of the authors

of this study. This author was not interviewed for the purposes of

this paper. GW is written in Java (approximately 40k lines of

code) and it aims to offer a component-based toolkit for the

development of Web 2.0 collaborative systems. GW consists of

two parts: the kernel and the component kits. The workbench

kernel (component frameworks) supports the installation, update,

grouping, customization, reuse, and life cycle management of the

components. The component kits support the development of

collaborative tools. The components are manipulated by file

system operations and customized by descriptor files. A mobile

version of GW is being developed for Android-based devices.

Currently, GW is being used in the development of three projects:

a social network site focused on the sharing of Brazilian

architecture images, a collaborative platform for news publishing,

and an online FAQ about FLOSS software in general.

3.2 Data collection instruments and methods
Empirical studies that mine software repositories usually require

extensive tool support due to the large and complex data that need

to be collected, processed, and analyzed [21]. In this study, we

employed XFlow [19], an extensible interactive tool we have

developed and whose general goal is to provide a comprehensive

analysis of software projects evolution by mining software

repositories and taking into account both technical and social

aspects of the development process. As illustrated in Figure 2,

XFlow collects and parses the log messages of revisions from

version control systems (data collection phase), identifies

dependencies from the extracted data (processing phase),

evaluates metrics over the collected data (metrics phase), and

finally presents interactive visualizations depicting the entire

software project (visualization phase). Currently, only SVN

repositories are supported by XFlow.

In this study, we initially used XFlow to obtain GW basic

information, such as the size of revisions, developers’

contribution level, and the distribution of file types. After that, we

used the tool to identify logical dependencies from source code

files in the GW repository.

Figure 2. XFlow processing phases

Based on initial interviews with GW developers, we identified the

need to implement a modified version of the original sliding time

window algorithm [22], since some developers reported checking-

in code related to the same task in different (but also close)

moments. The sliding time window is a technique proposed by

Zimmerman and colleagues [22] to reconstruct change transaction

in VCSs that do not support atomic commits (most notably,

CVS). This algorithm, which is an improvement over the fixed

time window algorithm, restricts the maximal gap between two

subsequent commits of a transaction (Figure 3), i.e. the beginning

of the time interval is shifted to the most recent commit. We

adapted the sliding time window algorithm to group SVN

revisions from an author within a specified time window and

implemented it on XFlow. This procedure refined the process of

logical dependencies identification, in the sense that new

dependencies between files were captured. To the best of our

knowledge, this is the first time that the algorithm has been

adapted and applied to an atomic commit featured VCS, such as

SVN.

In interviews with GW developers, they recommended a time

window of 2 to 3 minutes. Values from the literature [12, 21]

converge to a window of 200 seconds. Therefore, based on both

the information provided by GW developers and previous work,

we decided to apply a time window of 200 seconds.

Figure 3. Sliding time window algorithm [21]

To cope with possible remote repository instability, we built a

local mirror of the GW SVN repository. After mirroring the

repository, we executed the data collection and processing phases

of XFlow (Figure 2), which resulted in the identification of “raw”

logical dependencies. The method used by the tool relies on the

construction of the task dependency matrix proposed by Cataldo

and colleagues [9, 23]. Finally, we used the tool again to apply

the sliding time algorithm and to obtain the new set of logical

dependencies derived from grouped revisions. The results of data

collection are given in Section 4.1.

3.3 Data filtering
Support and confidence thresholds are commonly used to filter

logical dependencies and it is done in a project to project basis

[12, 22]. We applied a simple statistical analysis to choose

appropriate threshold values for our study. We first analyzed the

confidence measure, which gives the strength of the logical

dependencies (association rules). The goal was to filter out

dependencies whose value of confidence was too low based on a

cumulative line graph. Subsequently, we analyzed the support

measure for the remaining logical dependencies. Since we

intended to perform a manual analysis of dependencies, we

wanted to limit the number of logical dependencies based on their

relevance. Therefore, we performed a quartile analysis on the

distribution of the number of logical dependencies per support

value variable and selected only dependencies whose support

value was high (outlier values). The results of data filtering, as

well as the chosen thresholds, are given in Section 4.2.

3.4 Data analysis instruments and methods
We created a spreadsheet containing the antecedent (LHS) and

consequent (RHS) files of every logical dependency. Afterwards,

for each dependency, we identified all associated revision

numbers and authors’ comments. All this information was

obtained by querying the project’s database generated by XFlow.

Data triangulation, which involves taking different angles of

observation towards the studied object, is an important technique

used to increase the precision of empirical research [17]. The

conclusions regarding the origins of logical dependencies were

reached based on such technique, since we counted on (i) the

revision comments, (ii) the 7-year software development

experience of the first author of this study to examine code that is

changed together, and (iii) the feedback from GW active

developers. In particular, for every non-trivial classification, we

involved GW developers and asked for their support. The results

of data analysis are given in Section 4.3.

4. RESULTS
In the next subsections, we present the results of data collection,

the results of data filtering, and the classification of logical

dependencies’ origins.

4.1 Results of Data Collection
In the next subsections, we present information related to the size

of revisions, developers’ contribution levels and file types

distribution in GW.

4.1.1 Revisions Size
The size of revisions provides insights about commit habits in the

project. We analyzed the size of project revisions by calculating

basic descriptive statistics for the number of files per revision

variable (see Table 1 and Table 2). A graphical summary showing

the variable distribution (A) and the associated boxplot (B) is

given in Figure 4.

Table 1. Number of Files per Revision – Descriptive Statistics

N Sum Mean StDev Skewness Kurtosis

692.0 9,536.0 13.78 43.16 8.16 83.75

Table 2. Number of Files per Revision – Quartile Analysis

Min Q1 Median Q3 Max IQR Up. Whisker

1.0 1.0 3.0 10.0 612.0 9.0 23.0

Number of revisions and number of files. Executing the first

phase of data analysis resulted in 692 grouped revisions (out of

the 727 initial revisions). The sum of number of files per revision

was 9,536 files.

Mean and Standard deviation. The mean value indicates that

revisions contain approximately 14 files in average. Standard

deviation value shows that the dispersion is high, i.e. there were

revisions that involved very few files and there were revisions that

involved a reasonably large number of files. The following

descriptive statistics measures were employed to better understand

this dispersion value.

Skewness and Kurtosis. The positive skewness value (8.16)

indicates that the data-set is right-skewed, i.e. the tail of the

distribution points to the right. The high kurtosis value (83.75)

indicates that the data-set has a distinct peak near the mean,

declines rather rapidly, and has heavy tails.

Test for normality. Analysis of skewness, kurtosis, and

frequency histogram showed that data is not normally distributed.

In fact, we conducted the Kolmogorov-Smirnov normality test

and obtained a p-value < 0.010.

Quartile analysis. The boxplot gives another view on the

distribution of the data-set, by showing its shape, central

tendency, and variability. Since the interquartile value is 9, the

lower and upper whiskers reveal that “usual” revisions encompass

1 to 23 files. The largest revision in GW included 612 files, which

corresponds to GW version 0.1 being moved from a branch to the

trunk folder of SVN.

Figure 4. Graphical summary of number of files per revision

4.1.2 Developers’ Contribution
We computed the number of worked files per developer (Figure 5)

and the number of commits per developer (Figure 6) in order to

identify main developers whom we would interview during the

study.

Figure 5. Number of worked files per developer

Figure 6. Number of (grouped) commits per developer

Developers D1 and D2 have already left the project and were not

available anymore, thus they have been excluded from our

analysis. Developers D3 and D4 were our main contacts, since

they worked with a high number of files (1159 and 419,

respectively) and performed the highest number of commits (246

and 90, respectively) throughout the development of GW. In

particular, D3 is responsible for approximately a third of the total

number of commits.

4.1.3 File Types
In order to recognize the artifacts that composed the GW

throughout its development, we computed the distribution of file

types (number of files with a particular file type) by mining its

SVN repository with XFlow (Figure 7).

Figure 7. File type distribution

Approximately 33% of all files are Java classes. Other relevant

file types include jar, jsp, js, png, xml, class, css, prefs, tag, tld,

and xsd.

4.2 Results of Data Filtering
We used the XFlow tool and it identified 1,237,128 logical

dependencies (based on grouped revisions) in GW. As stated in

Section 3.1.1, we analyzed the project’s trunk folder only, which

accounts for 727 revisions. In this section, we report the results of

the application of the data filtering techniques described in

Section 3.3.

Setting a threshold for the confidence measure. We set the

threshold for the confidence measure by evaluating the cumulative

confidence line graph in Figure 8. The horizontal axis denotes the

confidence values, while the vertical axis denotes the cumulative

percentage of covered logical dependencies. We concluded that

confidence values greater than or equal to 50% covered

approximately 78% of all logical dependencies. Therefore, we

selected logical dependencies whose confidence value was at least

50%.

Figure 8. Cumulative confidence

Setting a threshold for the support metric. After applying the

confidence filter, we analyzed the remaining set of dependencies

to define the support threshold. At first, we excluded logical

dependencies with support value equal to 1, as they are clearly not

relevant. We then calculated the number of logical dependencies

per support value (Table 3).

Table 3. Number of logical dependencies per support value

Support Number of Logical Dependencies

22 1

16 2

15 1

14 3

11 3

9 17

8 35

7 82

6 42

5 100

4 778

3 2801

2 9778

Afterwards, we performed a quartile analysis (Table 4 and Figure

9) in order to select only the outlier values. This guaranteed that

the manual inspection would be focused on relevant logical

dependencies only. Therefore, after conducting such analysis, we

picked only the dependencies whose support value was higher

than 4.

Table 4. Support of logical dependencies - Quartile Analysis

Min Q1 Median Q3 Max IQR Up. Whisker

1.0 2.0 2.0 3.0 22.0 1.0 4.0

Figure 9. Boxplot for support values

As a final result, we obtained a set of 286 relevant logical

dependencies.

4.3 Logical Dependencies Origins
We began our analysis by investigating the distribution of logical

dependencies according to file types of LHS and RHS (Table 5).

Values in parenthesis in the last column refer to a normalized

total3 based on file type distribution (Figure 7).

The horizontal lines of the table present the total of logical

dependencies according to file types of LHS and RHS. We

noticed that approximately three quarters of logical dependencies

were established between Java files (row 1). However, in terms of

normalized totals, logical dependencies involving Property files

(row 13) were the most frequent ones. Also, logical dependencies

whose LHS and RHS are of types XSD and XML respectively

(row 5), also presented a high normalized total. This last situation

seems plausible, since XSD files express a set of rules to which an

XML document must conform, i.e. XML files depend on XSD

files. Furthermore, we noticed that the established logical

dependencies involve only a small subset of GW file types.

The columns of Table 5 present the number of logical

dependencies per support value. The first top five support values

have a similar number of logical dependencies. In particular, this

support interval accounts for only 3.5% of all logical

dependencies. Therefore, we conclude that there are a small

number of highly logically coupled files in the system.

Interestingly, this is also true for Java logical dependencies. The

other five support values have a much higher number of logical

dependencies. In particular, the lowest support value roughly

accounts for one third of the logical dependencies.

In the next subsection, we discuss the preliminary results of the

manual inspection of logical dependencies origins.

4.3.1 Manual Inspection
We manually investigated the origins of 75 logical dependencies,

which correspond to approximately one quarter of the total

number of relevant logical dependencies (Section 4.2). These

3 Total*10000/(type(LHS)*type(RHS)), when file types of

LHS and RHS are different.

 Total*10000/(type(LHS)*(type(RHS)–1)), otherwise.

 type({LHS, RHS}) refer to the number of files whose type is equal

to that of LHS or RHS.

logical dependencies encompass all GW Java classes from the

reflection package (.../commonswidgets/reflection), the

upload package (.../communic/upload), and database

package (.../bd/jpa/entities). Dependencies among some

Java test classes also took part in the analyzed set. As stated in

Section 3.4, the manual investigation comprised evaluating

revision comments and code diffs, as well as holding informal

interviews with the developers.

From the results of our inspection, we concluded that the

established logical dependencies involved files that changed

together for different reasons. A real example involving a logical

dependency with a support value of 9 is shown in Table 6.

Table 6. Real example of logical dependency in GW depicting

different reasons for joint change

LHS RHS

…/UploadMgrInstance.java … /CommentMgrInstance.java

Joint-change

Revision Origin of change

1 1172 Java packages renamed

2 1186 Applying software license to

Java files

3 1203 Structural dependency on a

third element

4 1220
Refactoring elements pertaining

to a same semantic class

5 1224 Refactoring elements pertaining

to a same semantic class

6 1245 Refactoring elements pertaining

to a same semantic class
7 1307 Annotations package created

8 1507 Changes in header of Java files

9 1508 Changes in header of Java files

Based on the individual analysis of 408 joint-changes, we

conceived the categorization listed in Table 7.

Row # LHS RHS Sup.22 Sup.16 Sup.15 Sup.14 Sup.11 Sup.9 Sup.8 Sup.7 Sup.6 Sup.5 Total Total%

1 Java Java 0 1 0 1 1 10 7 72 33 89 214 74.8% (1.83)

2 Java JSP 0 0 0 0 0 0 0 0 0 1 1 0.3% (0.03)

3 XML XML 0 0 0 0 2 6 3 0 0 2 13 4.5% (3.40)

4 XSD XSD 0 0 0 0 0 0 6 3 0 0 9 3.1% (2.10)

5 XSD XML 0 0 0 0 0 0 9 5 0 0 14 4.9% (10.82)

6 XML XSD 0 0 0 0 0 0 0 1 0 0 1 0.3% (0.77)

7 XML Props 0 0 1 0 0 0 0 0 0 1 2 0.7% (6.00)

8 JSP JSP 0 1 0 2 0 0 2 0 2 3 10 3.5% (0.12)

9 JS Java 0 0 0 0 0 0 0 0 1 0 1 0.3% (0.03)

10 JS JSP 0 0 0 0 0 0 0 0 2 0 2 0.7% (0.26)

11 Tag Tag 0 0 0 0 0 0 0 1 1 4 6 2.1% (1.36)

12 Prefs Prefs 0 0 0 0 0 1 8 0 0 0 9 3.1% (1.26)

13 Props Props 1 0 0 0 0 0 0 0 3 0 4 1.4% (14.71)

 Total 1 2 1 3 3 17 35 82 42 100 286

 Total (%) 0.3% 0.7% 0.3% 1.0% 1.0% 5.9% 12.2% 28.7% 14.7% 35.0% 100,0%

Table 5. Logical dependencies per file type

Table 7. Origins of joint-changes

Category Joint-changes Total %

Refactoring elements that belong to

a same semantic class
80 19.6%

Structural dependencies on a

changing semantic class
9 2.2%

Cross-cutting concerns 165 40.4%

Overloaded revision 60 14.7%

Repository operations 21 5.1%

Structural dependencies on specific

elements
66 16.2%

Other reasons 7 1.7%

Total 408

In the following, we describe each category, providing illustrative

examples, and pointing research opportunities.

Refactoring elements that belong to a same semantic class. We

noticed that artifacts changed together due to refactoring actions

made upon a semantic class. We denote by semantic class the

group of software artifacts that intrinsically share a same basic

functionality or architectural role (e.g., entity classes, test classes,

controller classes, and persistency layer classes). In GW, some

actions that resulted in this kind of joint change were, for

instance, changing the default runner of Java test classes and

including a specific method in all controller elements. Therefore,

we believe that designing software architectures where semantic

classes are easily identifiable should improve software

evolvability. Moreover, identifying such semantic classes should

also enable and support planned maintenance, since the set of

naturally impacted classes would be known prior to applying a

change.

Structural dependencies on a changing semantic class. This

category is a special case of the previous one. The logical

relations are characterized as a side-effect of refactoring actions

made upon a semantic class. An illustrative example is given in

Figure 10, which depicts four classes that changed together in a

specific revision.

Figure 10. Example of a structural dependency on a changing

semantic class (entity)

Classes A, B, and C belong to a semantic class (entity) that went

through a change (changing id attribute type from int to long).

Although class D structurally depends on class A only, the logical

dependency involving files D and B (or D and C) gains one joint-

change, since these two files also changed together. Hence,

structural dependencies on an element belonging to a semantic

class potentially originate different logical dependencies.

Cross-cutting concerns. Cross-cutting concerns refer to non-core

concerns (e.g., logging, transaction management, concurrency

control) that are spread among a significant amount of modules of

a software system (Figure 11).

Figure 11. Cross-cutting concerns in a software system

Examples found in GW include applying a software license in

Java files, changing the header of Java files, and implementing the

Java Serializable interface (for saving and restoring the

current state of an object to a stream). This provides some

evidence that a cross-cutting concern tends to form logical

dependencies among the large number of elements that rely on

such concern.

Therefore, we believe that examining logical dependencies may

serve as an effective way to identify cross-cutting concerns that

can be further encapsulated into aspects [24, 25] in order to

improve system modularity [26]. In fact, this category

corroborates the results found in [27, 28].

Overloaded revisions. Surprisingly, we noticed that pairs of files

changed together simply by chance or by convenience. We

identified the particular situations:

(i) Multi-action revisions. This occurs when an author modifies

different files for different reasons and commits them all together,

as illustrated in Figure 12. Occasionally, an author also performs

actions that are not explicitly documented in the revision

comments. Therefore, during our analysis, revision comments

only served as general guidelines for identifying the reasons of

joint-changes.

This kind of revision leads to the establishment of unexpected

logical dependencies between files. A real example is given by

revision 1276, which incorporated six completely different

actions: improving three non-related classes, fixing a bug,

excluding a jsp page, implementing transaction support, creating a

test class, and changing the order of tasks in ant scripts.

Figure 12. Multi-action revision

(ii) Convenience. Under some circumstances, a class is changed

simply by convenience. For instance, while a developer was

searching for entity classes to have their id type changed from

int to long, he came across a class whose code was not well-

formatted (bad layout). Therefore, he decided to fix the formatting

of such class. Another example included a developer fixing text

encoding of a class while implementing the Serializable

interface in all appropriate classes.

Hence, the joint-changes resulting from overloaded revisions

(including those with undocumented actions) leaded to the

establishment of “fake” logical dependencies among files, which

hinders the effectiveness of maintenance techniques and tools

based on this kind of dependency (such as file change prediction

[12], or defining coordination requirements among developers

[23]). By inspecting logical dependencies, we concluded that the

high average number of files per revision (13.78) in GW partially

derives from these overloaded revisions.

Mechanisms could be developed for measuring the degree of

“overloadness” of revisions. A naïve approach could consist in

counting the number of periods (‘.’) in comments in order to

recognize the number of different actions taken by the author.

Repository operations. Repository operations usually involve

moving a large number of files across folders. In revision 722,

327 files were moved from a branch to the trunk folder of the

project in SVN. Although only one repository operation was

identified in GW, it generated a great number of joint-changes and

contributed to the establishment of logical dependencies (since

many pairs of files ended up being changed together at least

once).

Structural dependencies on specific elements. Software artifacts

changed together due to structural dependencies from clients to

specific suppliers. Although this phenomenon was somehow

expected, non-structurally related subclasses also changed

together due to a replacement of their corresponding supertype

class. Architectural changes, like reorganizing classes in new

packages and renaming existing packages, also contributed to the

establishment of logical dependencies among the affected

elements.

Classic Software Engineering literature has long stated that

structural coupling should be minimized because every time a

supplier class changes, its clients are also likely to change [26, 29,

30]. Interestingly, only a small amount of joint-changes (16.2%)

was directly associated with structural dependencies. This

corroborates the results of previous work on the topic [31].

Other reasons. We noticed that classes changed together due to

an internal functionality being implemented in GW. This is

different from the “overloaded” category, where files changed

together for distinct purposes that are not connected to the

implementation of a specific functionality. We also noticed that a

few classes changed together because they undergone code

formatting.

5. THREATS TO VALIDITY
There are some factors that may have influenced the validity of

the study.

Internal validity. The subset of analyzed logical dependencies

involved files that changed together for various reasons. In

particular, this subset encompassed logical dependencies whose

support value was no larger than 9. It is thus possible that logical

dependencies with top support values (i.e., 22, 16, 15, 14, 11)

may reveal a single distinguished origin for the dependency.

We contacted and interviewed developer D3 in order to gather his

impressions against data in Table 5. Developer D3 stated that he

expected a higher amount of logical dependencies involving Java

and JSP files. We tried to identify these dependencies by mining

XFlow repository with different confidence and support

thresholds, but we did not succeed. We plan to interview other

developers to gather their impressions about this same

phenomenon (since developer D3 could be simply wrong). In case

the problem is confirmed, we will investigate alternative

techniques for grouping transactions, such as those evaluated by

Pirklbauer [32].

External validity. Commit habits of developers in GW may have

influenced the generalizability of the results of this study. In order

to have a baseline to compare to, we computed the same

descriptive statistics shown in Section 4.1 for the first 100k

revisions of the Apache Software Foundation (ASF) SVN

repository4. In this repository, the mean number of files per

revision is 5.38 (versus 13.78) and “usual” revisions encompass 1

to 6 files (versus 1 to 23). Therefore, in average, GW developers

commit much more files per revision than other developers from a

random ASF project. As noted in Section 5, this phenomenon was

partially explained by overloaded revisions. Although we have

carefully analyzed such kind of revisions, other software projects

with more focused revisions could possibly yield a smaller

number of logical dependencies. In addition, the intrinsic logical

relation between LHS and RHS files would be stronger in such

projects.

Threats to the generalizability of this study are given by the very

nature of the employed research design. McGrath states that

research methods can be evaluated on three dimensions

(generalizability, realism, and precision) and he argues that no

method is able to satisfy all dimensions at the same time. In

particular, case studies naturally maximize realism, but seldom

fully satisfy generalizability (since they involve a small number of

non-randomly selected situations) or precision (because there is a

low level of control over influencing factors). Hence, we leverage

the realism of our results and conclusions. Nevertheless, given

common knowledge in software engineering and current research

in mining software repositories area [27, 28, 33], we believe that

at least some of the categories listed in Table 7 (such as “cross-

cutting concerns”, “refactoring elements that belong to a same

semantic class”, and “repository operations”) should occur in

other software projects with similar characteristics. Therefore, we

also consider that our taxonomy might be used as a basis for a

more comprehensive and detailed classification of logical

dependencies in other software projects.

6. RELATED WORK
In the following, we discuss related work regarding the unveiling

of the origins of logical dependencies, as well as tool support for

mining software repositories.

Origins of logical dependencies. Cataldo et al. conjectured that

logical dependencies origins could be related to cascading

function calls, semantic dependencies, and platform evolution.

Although the meaning of “semantic dependencies” is not clearly

given by the authors, we believe that it might be associated with

the categories “refactoring elements that belong to a same

semantic class” and “structural dependencies on a changing

4 ASF has a single SVN repository that hosts all its projects. This

repository owns more than 1.1 million revisions.

semantic class” that were conceived during our logical

dependencies origins analysis.

Hanakawa studied the relation between sets of highly structurally

coupled elements (M) and sets of highly logically coupled

elements (L) throughout time [13]. The hypothesis stated by the

author is that the average intersection between M and L tends to

decrease throughout time due to an increase in "copy and paste"

actions (leading to logical coupling only), and developers

forgetting to commit structurally related classes at once (leading

to structural coupling only). We plan to run PMD5 copy and paste

detector module on GW and then check whether framed classes

originated logical dependencies.

Costa et al. developed a tool called RaisAware, which aims at

supporting the relationship between software architecture and the

coordination of software development activities [14]. While

defining logical dependencies (co-changes), the authors stated that

the uses of reflection and dependency injection techniques can be

detected by logical dependencies analysis. In GW, although we

examined the reflection package, we were not able to find any

joint-change that was caused by reflection mechanisms.

During our analysis, we noticed that the establishment of some

logical dependencies was connected to the existence of cross-

cutting concerns in the system. In fact, Breu et al. developed a

mining technique that relies on both formal concept analysis

(algebraic theory) and a more specific notion of logical

dependencies to identify the introduction of cross-cutting

concerns [27]. Adams et al. developed a more powerful concern

mining technique named COMMIT that addresses three common

shortcomings found in related work: the inability to merge seeds

with variations, the tendency to ignore important facets of

concerns, and the lack of information about the relation between

seeds [28].

Tool support for mining software repositories. Zimmerman et

al. developed a tool called eRose, which is an Eclipse plugin that

mines CVS repositories to identify logical dependencies and

guide developers along related changes [12]. In eRose, the project

preprocessing phase is time-consuming and cannot be interrupted.

In turn, XFlow supports incremental preprocessing, which enables

the analysis of projects with a large number of commits [31].

Furthermore, XFlow is able to preprocess projects residing on a

remote SVN.

As acknowledged by Bevan et al. in the development of the

Kenyon tool, software repositories offer several challenges for

data mining due to the large amount of computational resources

required to handle them [34]. To address such problem, XFlow

counts on data filters and an efficient data structure to map

dependencies. For a more thorough comparison between XFlow

and other software evolution supporting tools, we recommend

[19].

Other work. Finally, there is also a considerable amount of less

related work that employed logical dependencies to different

purposes, such as to detect design issues [10] and software

instabilities [35], infer code decay [11], predict changes in

software artifacts [12], establish coordination requirements among

developers [22], and support software evolution exploratory

studies [19].

5 http://pmd.sourceforge.net/cpd.html

7. CONCLUSION AND FUTURE WORK
Cataldo et al. suggest that a better understanding of the nature of

logical dependencies has implications in diverse areas, such as in

software quality and in the enhancement of development tools [9].

In this paper, we have investigated the origins of logical

dependencies by means of a case study involving a Java FLOSS

project. We conducted a manual inspection of logical

dependencies origins by reading revision comments, looking at

code diffs, and holding informal interviews with the project

developers. Preliminary results showed that there was no distinct

underlying reason behind the establishment of the analyzed

logical dependencies, since they involved pairs of files that

changed together for different reasons. We then conceived a

categorization for the joint-changes involved in the establishment

of such dependencies. We believe that our approach for logical

dependencies identification, grouping, and classification can also

be reused and adapted for future research in the same domain.

As future work, we plan to inspect a larger set of dependencies

from GW, so that we can broaden our results and conclusions. As

stated in Section 5, we also plan to investigate other strategies for

grouping transactions [32] and compare them to our modified

sliding time window algorithm. We also believe that the proposed

taxonomy could be validated in other software projects by

conceiving and developing automated mechanisms to check joint-

changes against each one of the categories listed in Table 7.

Investigating the origins of logical dependencies from other

software projects should also improve and extend our taxonomy.

We also envision large-scale quantitative experiments aimed at

unveiling the origins of logical dependencies. For instance, one

could investigate the relation between logical dependencies and

file types by analyzing a large quantity of FLOSS projects written

in a specific programming language. Finally, investigating the

interplay between the different kinds of dependency [31] (e.g.

structural [29, 30], logical [5, 6], data-flow/hidden [33]) should

be a fertile research topic with implications in software

maintenance and evolution areas.

8. ACKNOWLEDGMENTS
We thank Mauricio F. Aniche and Mauricio de Diana for

insightful contribution to the design of this study. We thank the

anonymous reviewers for their valuable comments. We thank

Felipe P. Breda for the text review. Marco Gerosa receives

individual grant from CNPq. This work is also partially supported

by HP (Baile project), CHOReOS, and FAPESP.

9. REFERENCES
[1] Briand, L. C., Wust, J., Daly, J. W. and Porter, D. V. 2000.

Exploring the Relationships between Design Measures and

Software Quality in Object-Oriented Systems. J. Systems and

Software, vol. 51, pp. 245- 273, 2000.

[2] Hutchens, D. H. and Basili, V. R. 1985. System Structure

Analysis: Clustering with Data Bindings. IEEE Trans.

Software Eng., vol. 11, no. 8, pp. 749-757, Aug. 1985.

[3] Selby, R. W. and Basili, V. R. 1991. Analyzing Error-Prone

System Structure. IEEE Trans. Software Eng., vol. 17, no. 2,

pp. 141-152, Feb. 1991.

[4] Yau, S. S., Collofello, J. S. and MacGregor, T. 1978. Ripple

effect analysis of software maintenance. Computer Software

and Applications Conference, 1978. COMPSAC '78. The

IEEE Computer Society's Second International, pp. 60- 65,

1978.

[5] Gall, H., Hajek, K. and Jazayeri, M. 1998. Detection of

logical coupling based on product release history. In

Proceedings of the International Conference on Software

Maintenance (ICSM '98). IEEE Computer Society,

Washington, DC, USA, 190.

[6] Ball, T., Kim, J.M., Porter, A. A. and Siy, H. P. 1997. If your

version control system could talk. In ICSE Workshop on

Process Modeling and Empirical Studies of Software

Engineering.

[7] Graves, T. L., Karr, A.F., Marron, J. S. and Siy, H. 2000

Predicting Fault Incidence Using Software Change History.

IEEE Trans. Software Eng., vol. 26, no. 7, pp. 653-661.

[8] Mockus, A. and Weiss, D. 2000. Predicting Risk of Software

Changes. 2000. Bell Labs Technical J., vol. 5, pp. 169-180.

[9] Cataldo, M., Mockus, A., Roberts, J. A. and Herbsleb, J. D.

2009. Software Dependencies, Work Dependencies, and

Their Impact on Failures. IEEE Trans. Software Eng.,

vol.35, no. 6, pp. 864-878, 2009.

[10] D'Ambros, M., Lanza, M. and Lungu, M. 2009. Visualizing

Co-Change Information with the Evolution Radar. IEEE

Trans. Software Engineering, vol. 99, pp. 720-735, 2009.

[11] Eick, S. G., Graves, T. L., Karr, A. F., Mockus, A., and

Schuster, P. 2002. Visualizing Software Changes. IEEE

Trans. Software Eng., vol. 28, no. 4, pp. 396-412, Apr. 2002.

[12] Zimmermann, T., Weissgerber, P., Diehl, S. and Zeller, A.

2005. Mining Version Histories to Guide Software Changes.

IEEE Trans. Software Engineering, pp. 429-445, June, 2005.

[13] Hanakawa, N. 2007. Visualization for Software Evolution

Based on Logical Coupling and Module Coupling. Software

Engineering Conference, 2007. APSEC 2007. 14th Asia-

Pacific, pp. 214-221, 4-7 Dec. 2007 doi: 10.1109/ASPEC.2007.36.

[14] Costa, J., Feitosa, R., and de Souza, C. R. B. 2009.

RaisAware: uma ferramenta de auxílio à Engenharia de

Software. Scientia, pp. 12-24, 2009.

[15] Robson, C. 2002. Real World Research. Blackwell, (2nd

edition).

[16] Yin, R. K. 2003. Case study research: Design and methods,

3rd ed. London, Sage, 2003.

[17] Runeson P, Höst M. 2009. Guidelines for conducting and

reporting case study research in software engineering.

Empirical Software Engineering. 14(2):131-164.

[18] Gerosa, M. A. and Fuks, H. 2008. A Component Based

Workbench for Groupware Prototyping. Proceedings of the

1st Workshop on Software Reuse Efforts, 2nd Rise Summer

School – RISS 2008, Recife, Brazil.

[19] Santana, F., Oliva, G., de Souza, C. R. B. and Gerosa, M.

2011. XFlow: An Extensible Tool for Empirical Analysis of

Software Systems Evolution. Proceedings of the VIII

Experimental Software Engineering Latin American

Workshop (ESELAW 2011), Rio de Janeiro, Brazil.

[20] Seaman, C. 1999. Qualitative methods in empirical studies of

software engineering. IEEE Trans Soft Eng. 25(4):557-572.

[21] D’Ambros M., Lanza M. and Lungu M. 2009. Visualizing

co-change information with the evolution radar. IEEE Trans.

Software Eng. 2009;35(5):720–735.

[22] Zimmermann T. and Weißgerber P. 2004. Preprocessing

CVS data for fine-grained analysis. In Proceedings of the 1st

International Workshop on Mining Software Repositories

(MSR 2004): 2-6.

[23] Cataldo, M., Wagstrom, P. A., Herbsleb, J.D. and Carley, K.

2006. Identification of Coordination Requirements:

Implications for the Design of Collaboration and Awareness

Tools. Proceedings of the 20th Anniversary Conference on

Computer Supported Cooperative Work, ACM, New York,

NY, pp. 353-362, 2006.

[24] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,

C.V., Loingtier J.M. and Irwin, J. 1997. Aspect-Oriented

Programming. Proceedings of the 11th European Conference

on Object-Oriented Programming (ECOOP 1997),

Jyväskylä, Finland 220–242.

[25] Laddad, R. 2003. AspectJ in Action, Practical Aspect-

Oriented Programming, Manning Publications Co.

[26] Parnas, David L. 1972. On the Criteria To Be Used in

Decomposing Systems into Modules. Communications of the

ACM 15 (12): 1053–1058.

[27] Breu, S., Zimmermann, T. and Lindig, C. 2006. Mining

eclipse for cross-cutting concerns. In Proceedings of the

International Workshop on Mining Software Repositories

(MSR 2006): 94-97

[28] Adams, B., Jiang, Z. M. and Hassan A. E. 2010. Identifying

crosscutting concerns using historical code changes. In

Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering (ICSE '10), Vol. 1.

ACM, New York, NY, USA, 305-314.

[29] Booch, G. 2007. Object-Oriented Analysis and Design with

Applications, 3rd ed. Addison-Wesley, 2007.

[30] Larman, C. 2004. Applying UML and Patterns: An

Introduction to Object-Oriented Analysis and Design and

Iterative Development, 3rd ed.: Prentice Hall, 2004.

[31] Oliva, G. A. and Gerosa, M. A. 2011. On the Interplay

between Structural and Logical Dependencies in Open-

Source Software. In Proceedings of the 25th Brazilian

Symposium on Software Engineering (SBES 2011), São

Paulo, Brazil.

[32] Pirklbauer, G. 2010. Empirical Evaluation of Strategies to

Detect Logical Change Dependencies. SOFSEM 2010:

Theory and Practice of Computer Science. pp. 651–662.

[33] Vanciu, R. and Rajlich, V. 2010. Hidden Dependencies in

Software Systems. In Proceedings of the IEEE International

Conference on Software Maintenance (ICSM2010),

Timisoara, Romania.

[34] Bevan, J., Whitehead, J. E., Kim, S. Jr. and Godfrey, M.

2005. Facilitating Software Evolution Research With

Kenyon. In SIGSOFT Softw. Eng. Notes 177-186.

[35] Bevan, J. and Whitehead, J. E. 2003. Identification of

Software Instabilities. In Proceedings of the 10th Working

Conference on Reverse Engineering (WCRE '03). IEEE

Computer Society, Washington, DC, USA.

