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ABSTRACT 

Logical dependencies are implicit relationships established 

between software artifacts that have evolved together. Software 

engineering researchers have investigated this kind of dependency 

to assess fault-proneness, detect design issues, infer code decay, 

and predict likely changes in code. Despite the acknowledged 

relation between logical dependencies and software quality, the 

nature of the logical dependencies is unknown in the literature. 

Most authors hypothesize about their origins, but no empirical 

study has been conducted to investigate the real nature of these 

dependencies. In this paper, we investigated the origins of logical 

dependencies by means of a case study involving a Java FLOSS 

project. We mined the project repository, filtered out irrelevant 

data based on statistical analyses, and performed a manual 

inspection of the logical dependencies to identify their origins 

using information from the revision comments, code diffs, and 

informal interviews held with the developers of the analyzed 

project. Preliminary results showed that logical dependencies 

involved files that changed together for a series of different 

reasons, which ranged from changing software license to 

refactoring classes that belonged to the same semantic class. 

Categories and Subject Descriptors 

D.2.7 [Software Engineering]: Distribution, Maintenance, and 

Enhancement – reestructuring, reverse engineering, and 

reengineering; version control. 

General Terms 

Measurement, Design, Experimentation. 

Keywords 

Software evolution, mining software repositories, logical 

dependencies, logical coupling, change coupling, empirical 

software engineering, case study. 

1. INTRODUCTION 
Software Engineering researchers have long recognized the 

relationship between code structural dependencies, or static 

dependencies, and software failures [1, 2, 3, 4]. Recently, research 

on software evolution has introduced a novel approach for 

dependency identification that reveals new and more subtle 

relationships between software artifacts. The concept underlying 

this notion is known as logical dependencies [5, 6], which refers 

to evolutionary dependencies that are established among source-

code files that are frequently changed together (although not 

necessarily structurally related). Graves et al. [7] showed that past 

changes are good predictors of future faults. Mockus and Weiss 

[8] found out that the spread of a change over subsystems and 

files is a strong indicator that the change will contain a defect. 

Cataldo and colleagues [9] reported through a detailed empirical 

study that the effect of logical dependencies on fault proneness 

was complementary and significantly more relevant than the 

impact of structural dependencies in two software projects from 

different companies. Logical dependencies have also been 

employed to detect design issues [10], infer code decay [11], and 

predict changes in software artifacts [12]. 

While it seems clear that logical dependencies play a major role in 

software reliability and in other software properties (such as 

maintainability and evolvability), no empirical examinations have 

been undertaken to reveal the origins of these dependencies. 

According to Cataldo et al. [9], a more detailed understanding of 

the origins of logical dependencies is an important future research 

direction with implications in research areas such as software 

quality. In particular, among different studies with varying 

purposes, authors have formulated a series of informal hypotheses 

regarding these origins: cascading function calls [9], semantic 

dependencies [9], platform evolution [9], code duplication [13], 

and the use of dependency injection and reflection techniques 

[14].  

The main goal of this paper is exactly to investigate the origins of 

logical dependencies. This is achieved through a case study [15, 

16, 17] involving a project entitled Groupware Workbench1 (GW) 

[18], which offers a component-based toolkit for the development 

of Web 2.0 collaborative systems. The project is written in Java 

and it has received contribution from twelve developers from 

different academic institutions. GW has been active since 2008 

and it has been distributed as Free Software by IME-USP FLOSS 

Competence Center2 since December of the same year.  

We mined the GW Subversion (SVN) repository with the XFlow 

tool [19] and identified all existing logical dependencies between 

software artifacts. Subsequently, we filtered out data and manually 

investigated the origins of logical dependencies by reading 

commit comments, looking at code diffs and validating our results 

with GW developers. Preliminary results showed that the analyzed 

logical dependencies involved files that changed together for 

                                                                 

1 http://www.groupwareworkbench.org.br/ 

2 http://ccsl.ime.usp.br/en 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

IWPSE-EVOL’11, September 5–6, 2011, Szeged, Hungary. 

Copyright 2011 ACM 978-1-4503-0848-9/11/09...$10.00. 

 

 

 



different reasons, which ranged from changing software license to 

refactoring classes that belonged to a same semantic class. 

Our main contributions include (i) a systematic approach for 

logical dependencies identification, grouping, and classification 

that can be reused and adapted for future research, (ii) a 

classification of the origins of logical dependencies of a real 

system, (iii) the identification of research opportunities based on 

such classification, and (iv) the implementation of a modified 

version of the sliding time window algorithm in XFlow. 

The rest of this paper is organized as follows. In Section 2, we 

introduce logical dependencies and related metrics. In Section 3, 

we describe the research method used as well as its planning. In 

Section 4, we present the study results including the classification 

of logical dependencies. In Section 5, we present the threats to the 

validity of this study. In Section 6, we present the related work. In 

Section 7, we state our conclusions and ideas for future work. 

2. LOGICAL DEPENDENCIES 
Logical dependencies (a.k.a., change dependencies, evolutionary 

dependencies, and co-changes) are implicit dependencies that 

happen between software artifacts that evolved together [5, 6]. 

These artifacts are not necessarily structurally related, since they 

are connected from an evolutionary point of view, i.e. they have 

often changed together in the past, so they are likely to change 

together in the future. Unlike structural dependencies analysis 

(a.k.a., static analysis), this technique spots dependencies between 

any kind of artifact that composes a system, including 

configuration files (such as XML and property files) and 

documentation. The identification of logical dependencies is 

usually performed by parsing and analyzing the logs of a version 

control system (VCS). 

Logical dependencies are defined for pairs of files and are 

commonly treated as data mining association rules [12]. Formally, 

an association rule is an implication of the form X1⇒X2, meaning 

that when X1 occurs, X2 also occurs. In this notation, X1 and X2 

are two disjoint sets of items. Furthermore, X1 and X2 are called 

the antecedent (a.k.a, left-hand-side, LHS) and the consequent 

(a.k.a., right-hand-side, RHS) of the rule respectively. For 

example, the rule {A, B}⇒C found in the sales data of a 

supermarket would indicate that if a customer buys A and B 

together, he or she is also likely to buy C. In the context of our 

study, a logical dependency from a file f2 to another file f1 is 

denoted by F1⇒F2, i.e. an association rule in which the antecedent 

and consequent are both singleton sets containing f1 and f2 

respectively. 

Measures of interest and significance for association rules are 

usually given by support and confidence thresholds. In our study, 

the support measure denotes the number of times two artifacts 

were changed together. The confidence measure defines the 

degree to which artifacts are logically connected, thus 

characterizing the strength of the relation. These concepts have 

been formalized by Zimmerman et al. [12] and we have adapted 

them for atomic-commit featured VCSs as follows: 

 Frequency of a set F in a set of commits C as frq(C, F) = |{c 

| c ∈ C, F ⊆ c}|.  

 Support of a rule X1⇒X2 by a set of commits C as supp(C, 

F1⇒F2) = frq(C, F1∪F2) = P(F1∩F2), i.e. the probability of 

finding both antecedent and consequent in the set of commits C. 

 Confidence of a rule F1⇒F2 as conf(C, F1⇒F2) = 

frq(C,F1∪F2) / frq(C,F1) = P(F2|F1), i.e. the probability of 

finding the consequent of the rule in commits under the 

condition that these commits also contain the antecedent. 

It should be noted that the confidence values for F1⇒F2 and 

F2⇒F1 are different. In the first case, the confidence value 

determines (by definition) the degree to which file f2 is a client of 

file f1. Analogously, in the second case, the confidence value 

determines the degree to which file f1 is a client of file f2. To 

illustrate this subtle difference, consider the example shown in 

Figure 1. 

 

Figure 1. Association rule example 

Most of the time, when f1 is commited, f2 is also commited. 

Therefore, the rule F1⇒F2 (which states that f2 depends on f1) has 

a high confidence value of 4/5 = 0.8 = 80%. In contrast, the rule 

F2⇒F1 (which states that f1 depends on f2) has a much lower 

confidence value of 4/10 = 0.4 = 40%. 

3. RESEARCH METHOD 
Case study is a well-established empirical method aimed at 

investigating contemporary phenomena in their natural context 

[15]. The case study reported in this paper aims to identify and 

categorize the origins of logical dependencies in the GW project 

by mining its SVN repository. Our motivation primarily derives 

from previous studies that have stressed the interplay between 

logical dependencies and software quality [7, 8, 9, 10, 11, 12]. 

In the next subsections, we present the case study design and 

planning. We describe the characteristics of the case, the rationale 

for choosing this particular case, the data collection instruments 

and methods, the data filtering techniques used and their reasons, 

and the data analysis instruments and methods. 

3.1 The case study 
We conducted an explanatory case study, in which the researcher 

seeks an explanation of a situation or a problem [16]. In contrast 

to embedded case studies, where multiple units of analysis are 

studied within a case, our case study is essentially holistic, i.e. the 

case is studied “as a whole”. 

According to Seaman [20], a combination of quantitative and 

qualitative data (a.k.a., “mixed methods” [15]) often provides 

deeper understanding of the phenomenon of interest. Our case 

study relies on both quantitative data (file types, size of revisions, 

developers’ contribution level, and logical dependency metrics) 

and qualitative data (revision comments, code diffs, and informal 

interviews with the developers). In particular, the quantitative data 

was primarily employed to filter out the qualitative data to be 

subsequently analyzed. 

3.1.1 The case choice 
For the case study, we needed a software project that satisfied the 

following requirements: (i) open-source software hosted on a 

SVN repository with anonymous read access, since our mining 

tool only supported SVN (see Section 3.2); (ii) availability of its 



developers to gather information about the project during the 

process of classification of logical dependencies; (iii) rather small 

version history (500 to 1k revisions), as this study assumes a 

manual classification of logical dependencies; and (iv) code 

written in an object-oriented language (such as C++, C#, or Java), 

as this would enable us to investigate reflection and dependency 

injection techniques in the context of logical dependencies. 

We selected the Groupware Workbench (GW) software, which is 

a FLOSS project developed in partnership between three Brazilian 

universities: USP, UFES, and PUC-Rio. GW satisfies all of the 

previously stated requirements, since (i) it is hosted at Google 

Code and stored in a SVN repository; (ii) it is highly active and 

most developers remain at the university working on it; and (iv) it 

is entirely written in Java. Regarding (iii), we decided to analyze 

only the project’s trunk folder in SVN, since it accounted for 727 

(47%) of all 1541 project revisions. This analysis relies on all GW 

history in SVN, which corresponds to a development period of 

two years and three months. 

The GW project is supported by the IME-USP FLOSS 

Competence Center and its project manager is one of the authors 

of this study. This author was not interviewed for the purposes of 

this paper. GW is written in Java (approximately 40k lines of 

code) and it aims to offer a component-based toolkit for the 

development of Web 2.0 collaborative systems. GW consists of 

two parts: the kernel and the component kits. The workbench 

kernel (component frameworks) supports the installation, update, 

grouping, customization, reuse, and life cycle management of the 

components. The component kits support the development of 

collaborative tools. The components are manipulated by file 

system operations and customized by descriptor files. A mobile 

version of GW is being developed for Android-based devices. 

Currently, GW is being used in the development of three projects: 

a social network site focused on the sharing of Brazilian 

architecture images, a collaborative platform for news publishing, 

and an online FAQ about FLOSS software in general. 

3.2 Data collection instruments and methods 
Empirical studies that mine software repositories usually require 

extensive tool support due to the large and complex data that need 

to be collected, processed, and analyzed [21]. In this study, we 

employed XFlow [19], an extensible interactive tool we have 

developed and whose general goal is to provide a comprehensive 

analysis of software projects evolution by mining software 

repositories and taking into account both technical and social 

aspects of the development process. As illustrated in Figure 2, 

XFlow collects and parses the log messages of revisions from 

version control systems (data collection phase), identifies 

dependencies from the extracted data (processing phase), 

evaluates metrics over the collected data (metrics phase), and 

finally presents interactive visualizations depicting the entire 

software project (visualization phase). Currently, only SVN 

repositories are supported by XFlow. 

In this study, we initially used XFlow to obtain GW basic 

information, such as the size of revisions, developers’ 

contribution level, and the distribution of file types. After that, we 

used the tool to identify logical dependencies from source code 

files in the GW repository. 

 

Figure 2. XFlow processing phases 

Based on initial interviews with GW developers, we identified the 

need to implement a modified version of the original sliding time 

window algorithm [22], since some developers reported checking-

in code related to the same task in different (but also close) 

moments. The sliding time window is a technique proposed by 

Zimmerman and colleagues [22] to reconstruct change transaction 

in VCSs that do not support atomic commits (most notably, 

CVS). This algorithm, which is an improvement over the fixed 

time window algorithm, restricts the maximal gap between two 

subsequent commits of a transaction (Figure 3), i.e. the beginning 

of the time interval is shifted to the most recent commit. We 

adapted the sliding time window algorithm to group SVN 

revisions from an author within a specified time window and 

implemented it on XFlow. This procedure refined the process of 

logical dependencies identification, in the sense that new 

dependencies between files were captured. To the best of our 

knowledge, this is the first time that the algorithm has been 

adapted and applied to an atomic commit featured VCS, such as 

SVN.  

In interviews with GW developers, they recommended a time 

window of 2 to 3 minutes. Values from the literature [12, 21] 

converge to a window of 200 seconds. Therefore, based on both 

the information provided by GW developers and previous work, 

we decided to apply a time window of 200 seconds. 

 

Figure 3. Sliding time window algorithm [21] 

To cope with possible remote repository instability, we built a 

local mirror of the GW SVN repository. After mirroring the 

repository, we executed the data collection and processing phases 

of XFlow (Figure 2), which resulted in the identification of “raw” 

logical dependencies. The method used by the tool relies on the 

construction of the task dependency matrix proposed by Cataldo 

and colleagues [9, 23].  Finally, we used the tool again to apply 

the sliding time algorithm and to obtain the new set of logical 

dependencies derived from grouped revisions. The results of data 

collection are given in Section 4.1. 

3.3 Data filtering 
Support and confidence thresholds are commonly used to filter 

logical dependencies and it is done in a project to project basis 

[12, 22]. We applied a simple statistical analysis to choose 

appropriate threshold values for our study. We first analyzed the 

confidence measure, which gives the strength of the logical 

dependencies (association rules). The goal was to filter out 

dependencies whose value of confidence was too low based on a 

cumulative line graph. Subsequently, we analyzed the support 

measure for the remaining logical dependencies. Since we 

intended to perform a manual analysis of dependencies, we 

wanted to limit the number of logical dependencies based on their 

relevance. Therefore, we performed a quartile analysis on the 

distribution of the number of logical dependencies per support 



value variable and selected only dependencies whose support 

value was high (outlier values). The results of data filtering, as 

well as the chosen thresholds, are given in Section 4.2. 

3.4 Data analysis instruments and methods 
We created a spreadsheet containing the antecedent (LHS) and 

consequent (RHS) files of every logical dependency. Afterwards, 

for each dependency, we identified all associated revision 

numbers and authors’ comments. All this information was 

obtained by querying the project’s database generated by XFlow. 

Data triangulation, which involves taking different angles of 

observation towards the studied object, is an important technique 

used to increase the precision of empirical research [17]. The 

conclusions regarding the origins of logical dependencies were 

reached based on such technique, since we counted on (i) the 

revision comments, (ii) the 7-year software development 

experience of the first author of this study to examine code that is 

changed together, and (iii) the feedback from GW active 

developers. In particular, for every non-trivial classification, we 

involved GW developers and asked for their support. The results 

of data analysis are given in Section 4.3. 

4. RESULTS 
In the next subsections, we present the results of data collection, 

the results of data filtering, and the classification of logical 

dependencies’ origins. 

4.1 Results of Data Collection 
In the next subsections, we present information related to the size 

of revisions, developers’ contribution levels and file types 

distribution in GW. 

4.1.1 Revisions Size 
The size of revisions provides insights about commit habits in the 

project. We analyzed the size of project revisions by calculating 

basic descriptive statistics for the number of files per revision 

variable (see Table 1 and Table 2). A graphical summary showing 

the variable distribution (A) and the associated boxplot (B) is 

given in Figure 4.  

Table 1. Number of Files per Revision – Descriptive Statistics 

N Sum Mean StDev Skewness Kurtosis 

692.0 9,536.0 13.78 43.16 8.16 83.75 

 

Table 2. Number of Files per Revision – Quartile Analysis 

Min Q1 Median Q3 Max IQR Up. Whisker 

1.0 1.0 3.0 10.0 612.0 9.0 23.0 

 

Number of revisions and number of files. Executing the first 

phase of data analysis resulted in 692 grouped revisions (out of 

the 727 initial revisions). The sum of number of files per revision 

was 9,536 files. 

Mean and Standard deviation. The mean value indicates that 

revisions contain approximately 14 files in average. Standard 

deviation value shows that the dispersion is high, i.e. there were 

revisions that involved very few files and there were revisions that 

involved a reasonably large number of files. The following 

descriptive statistics measures were employed to better understand 

this dispersion value. 

Skewness and Kurtosis. The positive skewness value (8.16) 

indicates that the data-set is right-skewed, i.e. the tail of the 

distribution points to the right. The high kurtosis value (83.75) 

indicates that the data-set has a distinct peak near the mean, 

declines rather rapidly, and has heavy tails. 

Test for normality. Analysis of skewness, kurtosis, and 

frequency histogram showed that data is not normally distributed. 

In fact, we conducted the Kolmogorov-Smirnov normality test 

and obtained a p-value < 0.010. 

Quartile analysis. The boxplot gives another view on the 

distribution of the data-set, by showing its shape, central 

tendency, and variability. Since the interquartile value is 9, the 

lower and upper whiskers reveal that “usual” revisions encompass 

1 to 23 files. The largest revision in GW included 612 files, which 

corresponds to GW version 0.1 being moved from a branch to the 

trunk folder of SVN. 

 

Figure 4. Graphical summary of number of files per revision 

4.1.2 Developers’ Contribution 
We computed the number of worked files per developer (Figure 5) 

and the number of commits per developer (Figure 6) in order to 

identify main developers whom we would interview during the 

study. 

 

Figure 5. Number of worked files per developer 

 

Figure 6. Number of (grouped) commits per developer 

Developers D1 and D2 have already left the project and were not 

available anymore, thus they have been excluded from our 

analysis. Developers D3 and D4 were our main contacts, since 

they worked with a high number of files (1159 and 419, 

respectively) and performed the highest number of commits (246 



and 90, respectively) throughout the development of GW. In 

particular, D3 is responsible for approximately a third of the total 

number of commits. 

4.1.3 File Types 
In order to recognize the artifacts that composed the GW 

throughout its development, we computed the distribution of file 

types (number of files with a particular file type) by mining its 

SVN repository with XFlow (Figure 7). 

 

Figure 7. File type distribution 

Approximately 33% of all files are Java classes. Other relevant 

file types include jar, jsp, js, png, xml, class, css, prefs, tag, tld, 

and xsd. 

4.2 Results of Data Filtering 
We used the XFlow tool and it identified 1,237,128 logical 

dependencies (based on grouped revisions) in GW. As stated in 

Section 3.1.1, we analyzed the project’s trunk folder only, which 

accounts for 727 revisions. In this section, we report the results of 

the application of the data filtering techniques described in 

Section 3.3. 

Setting a threshold for the confidence measure. We set the 

threshold for the confidence measure by evaluating the cumulative 

confidence line graph in Figure 8. The horizontal axis denotes the 

confidence values, while the vertical axis denotes the cumulative 

percentage of covered logical dependencies. We concluded that 

confidence values greater than or equal to 50% covered 

approximately 78% of all logical dependencies. Therefore, we 

selected logical dependencies whose confidence value was at least 

50%. 

 

Figure 8. Cumulative confidence 

Setting a threshold for the support metric. After applying the 

confidence filter, we analyzed the remaining set of dependencies 

to define the support threshold. At first, we excluded logical 

dependencies with support value equal to 1, as they are clearly not 

relevant. We then calculated the number of logical dependencies 

per support value (Table 3). 

Table 3. Number of logical dependencies per support value 

Support Number of Logical Dependencies 

22 1 

16 2 

15 1 

14 3 

11 3 

9 17 

8 35 

7 82 

6 42 

5 100 

4 778 

3 2801 

2 9778 

 

Afterwards, we performed a quartile analysis (Table 4 and Figure 

9) in order to select only the outlier values. This guaranteed that 

the manual inspection would be focused on relevant logical 

dependencies only. Therefore, after conducting such analysis, we 

picked only the dependencies whose support value was higher 

than 4. 

Table 4. Support of logical dependencies - Quartile Analysis 

Min Q1 Median Q3 Max IQR Up. Whisker 

1.0 2.0 2.0 3.0 22.0 1.0 4.0 

 

 

Figure 9. Boxplot for support values 

As a final result, we obtained a set of 286 relevant logical 

dependencies. 



4.3 Logical Dependencies Origins 
We began our analysis by investigating the distribution of logical 

dependencies according to file types of LHS and RHS (Table 5). 

Values in parenthesis in the last column refer to a normalized 

total3 based on file type distribution (Figure 7). 

The horizontal lines of the table present the total of logical 

dependencies according to file types of LHS and RHS. We 

noticed that approximately three quarters of logical dependencies 

were established between Java files (row 1). However, in terms of 

normalized totals, logical dependencies involving Property files 

(row 13) were the most frequent ones. Also, logical dependencies 

whose LHS and RHS are of types XSD and XML respectively 

(row 5), also presented a high normalized total. This last situation 

seems plausible, since XSD files express a set of rules to which an 

XML document must conform, i.e. XML files depend on XSD 

files. Furthermore, we noticed that the established logical 

dependencies involve only a small subset of GW file types. 

The columns of Table 5 present the number of logical 

dependencies per support value. The first top five support values 

have a similar number of logical dependencies. In particular, this 

support interval accounts for only 3.5% of all logical 

dependencies. Therefore, we conclude that there are a small 

number of highly logically coupled files in the system. 

Interestingly, this is also true for Java logical dependencies. The 

other five support values have a much higher number of logical 

dependencies. In particular, the lowest support value roughly 

accounts for one third of the logical dependencies. 

In the next subsection, we discuss the preliminary results of the 

manual inspection of logical dependencies origins. 

4.3.1 Manual Inspection 
We manually investigated the origins of 75 logical dependencies, 

which correspond to approximately one quarter of the total 

number of relevant logical dependencies (Section 4.2). These 

                                                                 

3   Total*10000/(type(LHS)*type(RHS)), when file types of 

LHS and RHS are different. 

  Total*10000/(type(LHS)*(type(RHS)–1)), otherwise. 

  type({LHS, RHS}) refer to the number of files whose type is equal 

to that of  LHS or RHS. 

logical dependencies encompass all GW Java classes from the 

reflection package (.../commonswidgets/reflection), the 

upload package (.../communic/upload), and database 

package (.../bd/jpa/entities). Dependencies among some 

Java test classes also took part in the analyzed set. As stated in 

Section 3.4, the manual investigation comprised evaluating 

revision comments and code diffs, as well as holding informal 

interviews with the developers.  

From the results of our inspection, we concluded that the 

established logical dependencies involved files that changed 

together for different reasons. A real example involving a logical 

dependency with a support value of 9 is shown in Table 6. 

Table 6. Real example of logical dependency in GW depicting 

different reasons for joint change 

LHS RHS 

…/UploadMgrInstance.java … /CommentMgrInstance.java 

Joint-change 

# 

Revision Origin of change 

1 1172 Java packages renamed 

2 1186 Applying software license to 

Java files 

3 1203 Structural dependency on a 

third element 

4 1220 
Refactoring elements pertaining 

to a same semantic class 

5 1224 Refactoring elements pertaining 

to a same semantic class 

6 1245 Refactoring elements pertaining 

to a same semantic class 
7 1307 Annotations package created 

8 1507 Changes in header of Java files 

9 1508 Changes in header of Java files 

 

Based on the individual analysis of 408 joint-changes, we 

conceived the categorization listed in Table 7. 

 

 

 

 

 

Row # LHS RHS Sup.22 Sup.16 Sup.15 Sup.14 Sup.11 Sup.9 Sup.8 Sup.7 Sup.6 Sup.5 Total Total% 

1 Java Java 0 1 0 1 1 10 7 72 33 89 214 74.8% (1.83) 

2 Java JSP 0 0 0 0 0 0 0 0 0 1 1 0.3% (0.03) 

3 XML XML 0 0 0 0 2 6 3 0 0 2 13 4.5% (3.40) 

4 XSD XSD 0 0 0 0 0 0 6 3 0 0 9 3.1% (2.10) 

5 XSD XML 0 0 0 0 0 0 9 5 0 0 14 4.9% (10.82) 

6 XML XSD 0 0 0 0 0 0 0 1 0 0 1 0.3% (0.77) 

7 XML Props 0 0 1 0 0 0 0 0 0 1 2 0.7% (6.00) 

8 JSP JSP 0 1 0 2 0 0 2 0 2 3 10 3.5% (0.12) 

9 JS Java 0 0 0 0 0 0 0 0 1 0 1 0.3% (0.03) 

10 JS JSP 0 0 0 0 0 0 0 0 2 0 2 0.7% (0.26) 

11 Tag Tag 0 0 0 0 0 0 0 1 1 4 6 2.1% (1.36) 

12 Prefs Prefs 0 0 0 0 0 1 8 0 0 0 9 3.1% (1.26) 

13 Props Props 1 0 0 0 0 0 0 0 3 0 4 1.4% (14.71) 

 Total 1 2 1 3 3 17 35 82 42 100 286  

 Total (%) 0.3% 0.7% 0.3% 1.0% 1.0% 5.9% 12.2% 28.7% 14.7% 35.0%  100,0% 

Table 5. Logical dependencies per file type 



Table 7. Origins of joint-changes 

Category Joint-changes Total % 

Refactoring elements that belong to 

a same semantic class 
80 19.6% 

Structural dependencies on a 

changing semantic class 
9 2.2% 

Cross-cutting concerns 165 40.4% 

Overloaded revision 60 14.7% 

Repository operations 21 5.1% 

Structural dependencies on specific 

elements 
66 16.2% 

Other reasons 7 1.7% 

Total 408  

 

In the following, we describe each category, providing illustrative 

examples, and pointing research opportunities. 

Refactoring elements that belong to a same semantic class. We 

noticed that artifacts changed together due to refactoring actions 

made upon a semantic class. We denote by semantic class the 

group of software artifacts that intrinsically share a same basic 

functionality or architectural role (e.g., entity classes, test classes, 

controller classes, and persistency layer classes). In GW, some 

actions that resulted in this kind of joint change were, for 

instance, changing the default runner of Java test classes and 

including a specific method in all controller elements. Therefore, 

we believe that designing software architectures where semantic 

classes are easily identifiable should improve software 

evolvability. Moreover, identifying such semantic classes should 

also enable and support planned maintenance, since the set of 

naturally impacted classes would be known prior to applying a 

change. 

Structural dependencies on a changing semantic class. This 

category is a special case of the previous one. The logical 

relations are characterized as a side-effect of refactoring actions 

made upon a semantic class. An illustrative example is given in 

Figure 10, which depicts four classes that changed together in a 

specific revision. 

 

Figure 10. Example of a structural dependency on a changing 

semantic class (entity) 

Classes A, B, and C belong to a semantic class (entity) that went 

through a change (changing id attribute type from int to long). 

Although class D structurally depends on class A only, the logical 

dependency involving files D and B (or D and C) gains one joint-

change, since these two files also changed together. Hence, 

structural dependencies on an element belonging to a semantic 

class potentially originate different logical dependencies. 

Cross-cutting concerns. Cross-cutting concerns refer to non-core 

concerns (e.g., logging, transaction management, concurrency 

control) that are spread among a significant amount of modules of 

a software system (Figure 11).  

 

Figure 11. Cross-cutting concerns in a software system 

Examples found in GW include applying a software license in 

Java files, changing the header of Java files, and implementing the 

Java Serializable interface (for saving and restoring the 

current state of an object to a stream). This provides some 

evidence that a cross-cutting concern tends to form logical 

dependencies among the large number of elements that rely on 

such concern. 

Therefore, we believe that examining logical dependencies may 

serve as an effective way to identify cross-cutting concerns that 

can be further encapsulated into aspects [24, 25] in order to 

improve system modularity [26]. In fact, this category 

corroborates the results found in [27, 28]. 

Overloaded revisions. Surprisingly, we noticed that pairs of files 

changed together simply by chance or by convenience. We 

identified the particular situations: 

(i) Multi-action revisions. This occurs when an author modifies 

different files for different reasons and commits them all together, 

as illustrated in Figure 12. Occasionally, an author also performs 

actions that are not explicitly documented in the revision 

comments. Therefore, during our analysis, revision comments 

only served as general guidelines for identifying the reasons of 

joint-changes. 

This kind of revision leads to the establishment of unexpected 

logical dependencies between files. A real example is given by 

revision 1276, which incorporated six completely different 

actions: improving three non-related classes, fixing a bug, 

excluding a jsp page, implementing transaction support, creating a 

test class, and changing the order of tasks in ant scripts. 

 

Figure 12. Multi-action revision 

(ii) Convenience. Under some circumstances, a class is changed 

simply by convenience. For instance, while a developer was 

searching for entity classes to have their id type changed from 

int to long, he came across a class whose code was not well-

formatted (bad layout). Therefore, he decided to fix the formatting 



of such class. Another example included a developer fixing text 

encoding of a class while implementing the Serializable 

interface in all appropriate classes. 

Hence, the joint-changes resulting from overloaded revisions 

(including those with undocumented actions) leaded to the 

establishment of “fake” logical dependencies among files, which 

hinders the effectiveness of maintenance techniques and tools 

based on this kind of dependency (such as file change prediction 

[12], or defining coordination requirements among developers 

[23]). By inspecting logical dependencies, we concluded that the 

high average number of files per revision (13.78) in GW partially 

derives from these overloaded revisions. 

Mechanisms could be developed for measuring the degree of 

“overloadness” of revisions. A naïve approach could consist in 

counting the number of periods (‘.’) in comments in order to 

recognize the number of different actions taken by the author. 

Repository operations. Repository operations usually involve 

moving a large number of files across folders. In revision 722, 

327 files were moved from a branch to the trunk folder of the 

project in SVN. Although only one repository operation was 

identified in GW, it generated a great number of joint-changes and 

contributed to the establishment of logical dependencies (since 

many pairs of files ended up being changed together at least 

once). 

Structural dependencies on specific elements. Software artifacts 

changed together due to structural dependencies from clients to 

specific suppliers. Although this phenomenon was somehow 

expected, non-structurally related subclasses also changed 

together due to a replacement of their corresponding supertype 

class. Architectural changes, like reorganizing classes in new 

packages and renaming existing packages, also contributed to the 

establishment of logical dependencies among the affected 

elements. 

Classic Software Engineering literature has long stated that 

structural coupling should be minimized because every time a 

supplier class changes, its clients are also likely to change [26, 29, 

30]. Interestingly, only a small amount of joint-changes (16.2%) 

was directly associated with structural dependencies. This 

corroborates the results of previous work on the topic [31]. 

Other reasons. We noticed that classes changed together due to 

an internal functionality being implemented in GW. This is 

different from the “overloaded” category, where files changed 

together for distinct purposes that are not connected to the 

implementation of a specific functionality. We also noticed that a 

few classes changed together because they undergone code 

formatting. 

5. THREATS TO VALIDITY 
There are some factors that may have influenced the validity of 

the study. 

Internal validity. The subset of analyzed logical dependencies 

involved files that changed together for various reasons. In 

particular, this subset encompassed logical dependencies whose 

support value was no larger than 9. It is thus possible that logical 

dependencies with top support values (i.e., 22, 16, 15, 14, 11) 

may reveal a single distinguished origin for the dependency. 

We contacted and interviewed developer D3 in order to gather his 

impressions against data in Table 5. Developer D3 stated that he 

expected a higher amount of logical dependencies involving Java 

and JSP files.  We tried to identify these dependencies by mining 

XFlow repository with different confidence and support 

thresholds, but we did not succeed. We plan to interview other 

developers to gather their impressions about this same 

phenomenon (since developer D3 could be simply wrong). In case 

the problem is confirmed, we will investigate alternative 

techniques for grouping transactions, such as those evaluated by 

Pirklbauer [32]. 

External validity. Commit habits of developers in GW may have 

influenced the generalizability of the results of this study. In order 

to have a baseline to compare to, we computed the same 

descriptive statistics shown in Section 4.1 for the first 100k 

revisions of the Apache Software Foundation (ASF) SVN 

repository4. In this repository, the mean number of files per 

revision is 5.38 (versus 13.78) and “usual” revisions encompass 1 

to 6 files (versus 1 to 23). Therefore, in average, GW developers 

commit much more files per revision than other developers from a 

random ASF project. As noted in Section 5, this phenomenon was 

partially explained by overloaded revisions. Although we have 

carefully analyzed such kind of revisions, other software projects 

with more focused revisions could possibly yield a smaller 

number of logical dependencies. In addition, the intrinsic logical 

relation between LHS and RHS files would be stronger in such 

projects. 

Threats to the generalizability of this study are given by the very 

nature of the employed research design. McGrath states that 

research methods can be evaluated on three dimensions 

(generalizability, realism, and precision) and he argues that no 

method is able to satisfy all dimensions at the same time. In 

particular, case studies naturally maximize realism, but seldom 

fully satisfy generalizability (since they involve a small number of 

non-randomly selected situations) or precision (because there is a 

low level of control over influencing factors). Hence, we leverage 

the realism of our results and conclusions. Nevertheless, given 

common knowledge in software engineering and current research 

in mining software repositories area [27, 28, 33], we believe that 

at least some of the categories listed in Table 7 (such as “cross-

cutting concerns”, “refactoring elements that belong to a same 

semantic class”, and “repository operations”) should occur in 

other software projects with similar characteristics. Therefore, we 

also consider that our taxonomy might be used as a basis for a 

more comprehensive and detailed classification of logical 

dependencies in other software projects. 

6. RELATED WORK 
In the following, we discuss related work regarding the unveiling 

of the origins of logical dependencies, as well as tool support for 

mining software repositories. 

Origins of logical dependencies. Cataldo et al. conjectured that 

logical dependencies origins could be related to cascading 

function calls, semantic dependencies, and platform evolution. 

Although the meaning of “semantic dependencies” is not clearly 

given by the authors, we believe that it might be associated with 

the categories “refactoring elements that belong to a same 

semantic class” and “structural dependencies on a changing 

                                                                 

4 ASF has a single SVN repository that hosts all its projects. This 

repository owns more than 1.1 million revisions. 



semantic class” that were conceived during our logical 

dependencies origins analysis. 

Hanakawa studied the relation between sets of highly structurally 

coupled elements (M) and sets of highly logically coupled 

elements (L) throughout time [13]. The hypothesis stated by the 

author is that the average intersection between M and L tends to 

decrease throughout time due to an increase in "copy and paste" 

actions (leading to logical coupling only), and developers 

forgetting to commit structurally related classes at once (leading 

to structural coupling only). We plan to run PMD5 copy and paste 

detector module on GW and then check whether framed classes 

originated logical dependencies. 

Costa et al. developed a tool called RaisAware, which aims at 

supporting the relationship between software architecture and the 

coordination of software development activities [14]. While 

defining logical dependencies (co-changes), the authors stated that 

the uses of reflection and dependency injection techniques can be 

detected by logical dependencies analysis. In GW, although we 

examined the reflection package, we were not able to find any 

joint-change that was caused by reflection mechanisms. 

During our analysis, we noticed that the establishment of some 

logical dependencies was connected to the existence of cross-

cutting concerns in the system. In fact, Breu et al. developed a 

mining technique that relies on both formal concept analysis 

(algebraic theory) and a more specific notion of logical 

dependencies to identify the introduction of cross-cutting 

concerns [27]. Adams et al. developed a more powerful concern 

mining technique named COMMIT that addresses three common 

shortcomings found in related work: the inability to merge seeds 

with variations, the tendency to ignore important facets of 

concerns, and the lack of information about the relation between 

seeds [28]. 

Tool support for mining software repositories. Zimmerman et 

al. developed a tool called eRose, which is an Eclipse plugin that 

mines CVS repositories to identify logical dependencies and 

guide developers along related changes [12]. In eRose, the project 

preprocessing phase is time-consuming and cannot be interrupted. 

In turn, XFlow supports incremental preprocessing, which enables 

the analysis of projects with a large number of commits [31]. 

Furthermore, XFlow is able to preprocess projects residing on a 

remote SVN. 

As acknowledged by Bevan et al. in the development of the 

Kenyon tool, software repositories offer several challenges for 

data mining due to the large amount of computational resources 

required to handle them [34]. To address such problem, XFlow 

counts on data filters and an efficient data structure to map 

dependencies. For a more thorough comparison between XFlow 

and other software evolution supporting tools, we recommend 

[19]. 

Other work. Finally, there is also a considerable amount of less 

related work that employed logical dependencies to different 

purposes, such as to detect design issues [10] and software 

instabilities [35], infer code decay [11], predict changes in 

software artifacts [12], establish coordination requirements among 

developers [22], and support software evolution exploratory 

studies [19]. 

                                                                 

5 http://pmd.sourceforge.net/cpd.html 

7. CONCLUSION AND FUTURE WORK 
Cataldo et al. suggest that a better understanding of the nature of 

logical dependencies has implications in diverse areas, such as in 

software quality and in the enhancement of development tools [9]. 

In this paper, we have investigated the origins of logical 

dependencies by means of a case study involving a Java FLOSS 

project. We conducted a manual inspection of logical 

dependencies origins by reading revision comments, looking at 

code diffs, and holding informal interviews with the project 

developers. Preliminary results showed that there was no distinct 

underlying reason behind the establishment of the analyzed 

logical dependencies, since they involved pairs of files that 

changed together for different reasons. We then conceived a 

categorization for the joint-changes involved in the establishment 

of such dependencies. We believe that our approach for logical 

dependencies identification, grouping, and classification can also 

be reused and adapted for future research in the same domain. 

As future work, we plan to inspect a larger set of dependencies 

from GW, so that we can broaden our results and conclusions. As 

stated in Section 5, we also plan to investigate other strategies for 

grouping transactions [32] and compare them to our modified 

sliding time window algorithm. We also believe that the proposed 

taxonomy could be validated in other software projects by 

conceiving and developing automated mechanisms to check joint-

changes against each one of the categories listed in Table 7. 

Investigating the origins of logical dependencies from other 

software projects should also improve and extend our taxonomy. 

We also envision large-scale quantitative experiments aimed at 

unveiling the origins of logical dependencies. For instance, one 

could investigate the relation between logical dependencies and 

file types by analyzing a large quantity of FLOSS projects written 

in a specific programming language. Finally, investigating the 

interplay between the different kinds of dependency [31] (e.g. 

structural [29, 30], logical [5, 6], data-flow/hidden [33]) should 

be a fertile research topic with implications in software 

maintenance and evolution areas. 
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