
Design-driven Development of Safety-critical Applications:

A Case Study In Avionics

Julien Bruneau, Quentin Enard, Stéphanie Gatti, Emilie Balland, Charles Consel
Thales Airborne Systems, INRIA / University of Bordeaux, France

Email: first.last@inria.fr

Abstract—Safety-critical applications have to ful-
fill stringent requirements, both functional and non-
functional. These requirements have to be coherent
with each other and must be preserved throughout
the software development process. In this context,
a design-driven development approach can play a
critical role. However existing design-driven develop-
ment approaches are often general purpose, providing
little, if any, conceptual framework to guide the de-
velopment. The resulting design scope thus becomes
largely unpredictable, leading to inconsistencies.

In this paper, we propose a design-driven method-
ology that relies on a specific development paradigm.
This development paradigm provides a conceptual
framework that guides the stakeholders at each de-
velopment stage. Based on this paradigm, a tool
suite provides development support dedicated to each
development stage. We demonstrate the benefits of
this methodology with a realistic case study in the
avionics domain.

I. Introduction

Safety-critical applications are pervasive in domains
like railway, avionics and automotive. Development of
such applications is constrained by both functional and
non-functional requirements, resulting in a strict certifica-
tion process. The certification consists in demonstrating
that the development of the application is compliant
with the rules defined by standards such as DO-178B [1].
In particular, the stakeholders have to demonstrate the
coherence of the requirements and their conformance at
each stage of the development process.

Coherence of the requirements. Functional and non-
functional aspects of an application are inherently
coupled. For example, dependability mechanisms can
potentially deteriorate the overall performance of the
application. The coherence of the requirements is par-
ticularly critical when the software evolves: even minor
modifications to one aspect may tremendously impact
the others, leading to unpredicted failures [2].

Conformance across the development stages. To avoid
requirements to be partially or totally ignored along
the development process, their conformance has to be
ensured at each stage. This is generally done manually
by tracing their propagation throughout the software
development process. In the avionics certification process,
traceability (i.e., the ability to trace all the requirements

throughout the development process) is mandatory for
both functional and non-functional requirements [1].

Certifying a development process requires a variety
of activities. In industry, the usual procedures involve
holding peer review sessions for coherence verification
and writing traceability documents for conformance
certification. In this context, design-driven development
approaches are paramount because the design drives the
development of the application according to the speci-
fication of high-level requirements [3]. Such approaches
facilitate the traceability of the requirements. However,
because most existing approaches are general purpose,
they provide no conceptual framework for guiding the
development, potentially leading to inconsistencies. This
situation calls for an integrated development process that
provides such conceptual framework, allowing to auto-
mate as much verification as possible towards software
certification.

In this paper, we propose an integrated design-driven
development methodology for safety-critical applications.
This methodology relies on a development paradigm and
a tool suite. The paradigm provides a design framework to
express both functional and non-functional requirements.
As demonstrated by Shaw, the use of a specific paradigm
allows a more disciplined engineering process [4]. In par-
ticular, this approach enables to focus on domain-specific
problems and safety issues in the early development
stages. To support this development paradigm, we rely
on an existing tool suite that provides support for both
functional and non-functional development aspects [5]–[7].
The paradigm is enforced by a unique design language,
ensuring the coherence of functional and non-functional
specifications. From the design, a compiler generates
a dedicated programming and testing support; they
both contribute to enforcing the conformance with the
specifications at each development stage.

Contributions

So far, the benefits of our design-driven development
approach has been demonstrated in isolation, that is,
with respect to individual functional and non-functional
aspects [5]–[7]. Coherence and conformance remain to
be addressed in an integrated manner, and validated in
the context of realistic applications. This paper takes up
these challenges, making the following contributions.

An automated approach to preserving coherence. We pro-
pose an approach that relies on a dedicated paradigm to
design both functional and non-functional specifications
of safety-critical applications. This paradigm takes the
form of a design language named DiaSpec [8].

An automated approach to ensuring conformance. A
DiaSpec specification is used to generate a dedicated
programming framework and a related testing frame-
work. By construction, we ensure the conformance of
the requirements between each stage of the software
development process, achieving the traceability of the
requirements throughout the development process.

An integrated approach. While the coherence of functional
and non-functional specifications is ensured by the design
framework, the conformance between the development
stages is realized by guiding the development process,
generating traceable programming and testing support.
This integrated approach automates the verification of
coherence, and traceability throughout the development
process, reducing the amount of efforts required for the
development of safety-critical applications.

Validation in avionics. We have validated our develop-
ment approach by developing flight guidance applications
for avionics and drone systems. We deployed the avionics
flight guidance application on a realistic flight simula-
tor [9], and the drone flight guidance application on a
commercial vehicule [10].

II. Case Study: Flight Guidance

This section presents the functional and non-functional
requirements of the flight guidance application of a plane.
This safety-critical application is the case study used
throughout this paper.

A. Functional Requirements

The flight guidance application is in charge of the plane
navigation and is under the supervision of the pilot. For
example, the pilot can directly specify parameters during
the flight (e.g., the altitude) or define a flight plan that
is automatically followed.

Each parameter is handled by a specific navigation
mode (e.g., altitude mode, heading mode). Once a mode
is selected by the pilot, the flight guidance application is
in charge of operating the ailerons and the elevators to
reach the target position [11]. For example, if the pilot
specifies a heading to follow, the application compares
it to the current heading, sensed by devices such as
the Inertial Reference Unit, and maneuvers the ailerons
accordingly. In the avionics domain, each of these modes
is generally associated to a functional chain [12], repre-
senting a chain of computations, from sensors to actuators.

1The Air Data Inertial Reference Unit (ADIRU) is a component
that supplies air data and inertial reference.

Requirement Description
Req1. The execution time of
the heading mode must not
exceed 650 ms.

It ensures that the frequency
of computation of the head-
ing mode does not lead to an
unexpected behavior of the
plane.

Req2. The freshness of the
navigation data used by the
application must be less than
200 ms.

The use of an outdated navi-
gation data can lead to erro-
neous decisions.

Req3. The ADIRU 1 must be
replicated twice to tolerate at
least one crash failure.

It ensures the availability of
navigation data, despite the
loss of a sensor.

Req4. Any malfunctioning or
lost sensor must be signaled to
the pilot, with identification
of the probable cause.

Decisions taken by the pi-
lot are based on information
about the sensors’ state.

Req5. A navigation mode
must be deactivated if the
required data is unavailable.

Without appropriate data, a
navigation mode cannot safely
control the plane.

Req6. Information related to
the activation/deactivation of
navigation modes must be
logged.

Application monitoring is
used for maintenance.

Figure 1: Extract of the safety requirements of the flight
guidance application.

B. Non-Functional Requirements

To identify hazardous situations, safety analyses are
conducted [13], resulting in safety requirements. Grunske
presents safety requirements as a formal description of a
hazard, combined with the tolerated probability of this
hazard [14]. Then, he classifies hazard description in three
categories: (1) the system is not available, (2) the system
generates an incorrect output, and (3) the system misses
a hard deadline. The tolerated probability of the hazard,
depending on its effect on the passengers and the flight
crew, leads to the attribution of a Design Assurance Level
(DAL) [1]. For example, the flight guidance application
has the highest DAL (A level) as a failure may cause
a crash. Assigning a DAL to an application results in
defining a set of non-functional requirements for this
application to avoid or minimize the identified hazardous
situations [15]. Figure 1 gives a representative subset of
the non-functional requirements for the flight guidance
application, as defined by domain experts. These require-
ments define constraints to several non-functional aspects
of the application. The Req1 and Req2 requirements
define constraints on the application performance. The
Req3, Req4 and Req5 requirements define constraints
on its reliability. The Req6 requirement corresponds to
maintenance constraints.

In practice, there exist dependencies between func-
tional and non-functional requirements. The coherence
and the traceability of these requirements thus become
critical, strongly suggesting a global approach to software
design and development.

III. Methodology

Our development methodology relies on both a develop-
ment paradigm and a tool suite. The paradigm provides
a conceptual framework that guides the stakeholders at
each development stage. Based on this paradigm, the
tool suite provides an integrated development environment
that provides specific support for each development stage.

We first present the development paradigm, abstracting
over tool support. Then, we examine how our tool suite
supports the development paradigm.

A. A paradigm-based methodology

Our methodology relies on the Sense/Compute/Con-
trol (SCC) paradigm [7]. This paradigm orginates from
the sense/compute/control architectural pattern, pro-
moted by Taylor et al. [16]. This paradigm applies to
applications that interact with an external environment.
Such applications are typical of domains such as building
automation, robotics, and autonomic computing.

As depicted in Figure 2, the underlying design pattern
consists of context components fueled by sensing entities.
These components refine (aggregate and interpret) the
information given by the sensors. These refined data
are then passed to controller components that trigger
actions on entities. For example, in the heading mode,
the flight guidance application senses the environment to
acquire heading data (i.e., magnetic and/or gyroscopic
heading measurements). Then, the application uses this
raw data to compute information needed to control the
plane heading (i.e., the differential angle to apply on
ailerons to reach a target heading).

Environment

act on

sensed by

context
data

raw data

orders

Contexts

Controllers

Sources

Actions

Entities

Figure 2: The SCC paradigm

Compute

Control

Sense

Non-functional

Functional

Environment

Compute

Control

Sense

Figure 3: Layered view of the SCC paradigm

Like a programming paradigm, the SCC paradigm
provides concepts and abstractions to solve a software
engineering problem. However, these concepts and ab-
stractions are dedicated to a design style, raising the
level of abstraction above programming. Because of its
dedicated nature, such a development paradigm allows
a more disciplined engineering process, as advocated by
Shaw [4], [17].

As shown in Figure 3, the SCC paradigm can be used to
describe both the functional and non-functional aspects
of the application, using several SCC layers. For example,
the Req5 requirement entails the deactivation of the
navigation modes that rely on defective sensors. In this
case, the functional part of the flight guidance application
becomes the environment for a monitoring SCC loop.
This SCC loop senses the state of the navigation sensors
and computes refined information to determine whether
data sources have become unavailable. If so, the control
consists in reconfiguring the application to deactivate the
dependent modes.

To benefit from the SCC paradigm throughout the
development process, we propose the following method-
ology:

Step 1: Design.

• Step 1.1: Taxonomy. The domain expert describes
classes of entities, modeling the environment. An
entity is defined as a set of data sources and actu-
ating capabilities, abstracting over devices, whether
hardware or software.

• Step 1.2: Application Data Flow. The designer de-
composes an application into functional components
with respect to the SCC style. This decomposition
takes the form of a data-flow directed graph, where
a node is an SCC component (entity, context and
controller) and the edges indicate data exchange
between the components.

• Step 1.3: Application Control Flow. The designer
specifies what interaction a given component can
perform, expressing in high-level terms control-flow
constraints dedicated to the SCC paradigm [7].
These control-flow constraints are used to enrich
the data-flow graph by refining the edges to make
the interaction types explicit. These interaction
specifications allow the designer to verify at design
time a range of properties, such as the failure impact
of a sensor.

• Step 1.4: Non-Functional Specification. The func-
tional design obtained in the previous steps is refined
with non-functional requirements. For example, the
taxonomy is enriched with information about entity
failures, and the component graph is leveraged to
express timing constraints. Moreover, non-functional
treatments are specified alongside the application
logic, introducing a separation of concerns at the

design level. For example, the deactivation of naviga-
tion modes is a non-functional treatment expressed
as a dedicated SCC specification, consuming non-
functional inputs (e.g., errors). We rely on the SCC
paradigm to provide a uniform approach to integrat-
ing functional and non-functional treatments.

Step 2: Implementation.
The design obtained in Step 1 systematically guides
and constrains the implementation process. The SCC
paradigm separates the functional and non-functional
specifications, allowing their implementation to be per-
formed independently. For example, safety experts can
concentrate their development efforts on critical sub-
systems exposed at the design level (e.g., monitoring
and reconfiguration), instead of inspecting the code for
such operations as exception handling. This separation of
concerns is essential to open safety-critical domains, such
as avionics, to modular software engineering where a plat-
form is assembled from software components involving a
range of stakeholders.

Step 3: Testing.
Like the earlier development stages, testing relies on the
SCC paradigm.

• Step 3.1: Early Validation of the Specifications.
Given the design of an application, verifications are
performed to ensure the conformance between the
specification and the requirements. For example, the
QoS specification allows to validate the performance
for a specific deployment configuration, using pre-
diction tool and deterministic QoS characteristics
of the execution platform (e.g., the deterministic
performance of the AFDX network [18]).

• Step 3.2: Implementation Testing. The implementa-
tion of each SCC layer can be tested independently.
For example, the functional aspect of the application
can be tested using a simulated external environment.
The taxonomy definition allows to validate the
functional implementation using mock-up entities
that rely on the simulated environment, without any
impact on the rest of the application.

Our methodology provides a paradigm that guides the
stakeholders all along the development. They have to
express the functional and non-functional aspects of the
application according to the paradigm rules.

Although our paradigm-based methodology introduces
a disciplined and systematic development process, the
quality of the resulting software system is still unknown
because the process relies on the developers’ rigor to
apply our guidelines.

B. A tool-based methodology

To change the contemplative nature of our approach,
we introduce a design language and a suite of tools that

guide, assist and verify the development process. Our
design language provides the developers with syntax and
semantic concepts dedicated to SCC applications [8]. The
tool-based version of our methodology revolves around
the functional and non-functional specification of an
application; it is named DiaSuite2 and is depicted in
Figure 4.

Functional &SafetyRequirements Execution platformback-end

Programmingframework

TestingSupport

Designers

Testers

DevelopersDiaSpecCompiler
ApplicationDesign

GeneratedSupport

1

2

3

Figure 4: The DiaSuite tool-based methodology

1) The design stage: This stage is now concretized with
a design language, named DiaSpec, dedicated to speci-
fying SCC applications. DiaSpec provides the designer
with syntactic constructs to express SCC concepts in
response to functional and non-functional requirements.
These constructs allow to declare an entity taxonomy as
well as the functional and non-functional specification
of an application (stage ➀). More precisely, DiaSpec
includes design constructs to declare interaction contracts
between SCC components, error handling aspects and
QoS constraints [5]–[7]. Functional and non-functional
declarations are uniformely integrated in a design lan-
guage, ensuring their coherence. For example, DiaSpec
includes error handling declarations; when an entity is
declared as raising a type of error, the dependent SCC
components are required to declare a type of treatment.

2) The implementation stage: Leveraging a DiaSpec
description, the DiaSuite compiler generates a dedicated
programming framework that provides high-level pro-
gramming support (stage ➁), guiding the implementation
stage. Moreover, the code resulting from the data-flow
and control-flow declarations of the DiaSpec description
ensures the conformance between the implementation
and the design [8], whether functional or non-functional.
For example, declaring an SCC component as treating
an error type forces the implementer to write handling
code.

3) The testing stage: As the taxonomy abstracts over
the heterogeneity of hardware and software entities, the
application can be simulated for the early validation of
functional and safety requirements. In the context of
the avionics domain, we validated the behavior of our
flight guidance application in a simulated environment,
leveraging both the DiaSuite-generated programming
framework and an existing, realistic flight simulator,
namely FlightGear [9] (stage ➂). Moreover, the tool suite
provides testing support to customize the non-functional

2http://diasuite.inria.fr

http://diasuite.inria.fr

properties of the application during the simulation,
allowing the verification of the application behavior in
exceptional conditions.

Let us now present in detail each stage of our tool-
based methodology, illustrated with our case study of
flight guidance.

IV. Design

This section presents the design stage of our tool-based
methodology. This stage is illustrated with the design
of the heading mode of the flight guidance application,
expressed in DiaSpec 3.

A. Taxonomy

We first identify the entities that interact with the
environment and are required to control the heading.
The plane heading is provided by Inertial Reference
Units (IRUs). These units encapsulate accelerometers,
gyroscopes, and GPS sensors, and provide navigation
data. To allow the pilot to set a heading, we define a
user-interaction entity, namely Man-Machine Interface
(MMI). Finally, controlling the plane heading requires to
act on the plane ailerons. These entities are specified
in the taxonomy presented in Figure 5. Entities are
declared using the device keyword. The IRU entity senses
the position and the heading of the plane from the
environment as indicated by the source keyword. The
NavigationMMI entity abstracts over the pilot interaction
and directly provides the target heading. The Aileron

entity provides the Control interface to the application
as indicated by the action keyword.

The high-level nature of the taxonomy definitions
facilitates the integration of Commercial Off-The-Shelf
(COTS) components: any implementation complying with
an entity declaration can be used by an application.

B. Application Data Flow

Using the taxonomy, the designer then specifies the
application data flow by declaring context and controller
components. Figure 8 presents the design fragment of the
flight guidance application related to the heading mode.
From bottom to top, the process can be summarized as
follows. The IntermediateHeading context component
computes an intermediate heading from the current plane
heading and the target heading. Given this heading
and the current plane roll (i.e., its rotation on the
longitudinal axis), the TargetRoll context component
computes a target roll. This target roll is used by
AileronController to control the ailerons and reach
the target heading.

The SCC paradigm facilitates the evolution. For exam-
ple, as depicted in Figure 8, the IntermediateHeading

context component abstracts over the computation

3The full DiaSpec specification can be found at http://diasuite.
inria.fr/avionics/51

device IRU {
source heading as Float [frequency 200ms] ;
source p o s i t i o n as Coordinates ;
. . .
action Deact ivate ;
raises F a i l u r e E x c e p t i o n ;

}
device NavigationMMI {

source targetHeading as Float ;
. . .
action DisableMode ;

}
action Control {

i n c l i n e (t a r g e t R o l l as Float) ;
}
device A i l e r o n {

action Control ;
}

Figure 5: Extract of the flight guidance taxonomy

context IntermediateHeading as Float {
source heading from IRU ;
source targetHeading from NavigationMMI ;
context HeadingToWaypoint ;
interaction {

when provided heading from IRU ;
get targetHeading from NavigationMMI ,

HeadingToWaypoint ;
always publish ;

}
}

Figure 6: Specification of IntermediateHeading

context IntermediateHeading as Float {
source heading from IRU ;
source targetHeading from NavigationMMI ;
context HeadingToWaypoint ;
interaction {

when provided heading from IRU ;
get targetHeading from NavigationMMI in 100ms

[mandatory catch] ,
HeadingToWaypoint ;

always publish ;
}

}

Figure 7: Refinement of IntermediateHeading

of the target heading. Indeed, it can be com-
puted either from targetHeading directly provided by
NavigationMMI or from the target heading computed by
HeadingToWaypoint. The HeadingToWaypoint context
component computes a target heading to reach the next
waypoint provided by the route manager.

C. Application Control Flow

In DiaSpec, the control flow of the application com-
ponents is expressed with interaction contracts [7]. The
specification of an SCC component with its interaction
contract is illustrated in Figure 6. This DiaSpec fragment
declares the IntermediateHeading context component
as producing an intermediate heading of a Float type
from three inputs: two are entities, declared with the
source keyword, and one is a context component, de-
clared with the context keyword. The control flow of

http://diasuite.inria.fr/avionics/51
http://diasuite.inria.fr/avionics/51

this process is specified by the interaction contract intro-
duced by the interaction clause. It declares that, when
IntermediateHeading receives a heading information
from the IRU entity, it may access the targetHeading

value provided by the NavigationMMI entity and the
information provided by the HeadingToWaypoint con-
text. The always publish clause specifies that the
context systematically publishes a value once it receives a
heading information. Alternatively, a context component
can be declared as either maybe or never publishing a
result, by including the maybe publish or no publish

clause, respectively.

D. Non-functional Specification

The non-functional specification refines the design of
the application produced by steps (1.1) to (1.3) of our
methodology. Moreover, additional SCC layers may be
specified to deal with the non-functional aspects of the
application (e.g., reconfiguration).

1) Taxonomy: The designer defines the potential
failures of entities. This is realized by declaring the errors
an entity can raise. These errors are associated with an
entity (a source or an action). In the specification of IRU

presented in Figure 5, this entity is declared as raising
an error of type FailureException. Handling an error
may require declaring treatment alongside the functional
specification, as described in Section IV-D3.

The designer may also refine the taxonomy with timing
constraints. Examples include the frequency at which
an entity source produces data, or the response time
of data access. Figure 5 illustrates the specification of
the frequency of data production. In this example, it
is specified that the IRU entity produces the heading

information with a frequency of 200 milliseconds. This
constraint is derived from the safety requirement Req2

presented in Figure 1.
2) Application design: The application design (steps

(1.2) and (1.3)) is also refined to integrate non-
functional specifications. For example, the refine-
ment of the IntermediateHeading context specifi-
cation is illustrated in Figure 7. In the interac-
tion contract of IntermediateHeading, the response
time of NavigationMMI has to be at most 100 ms.
The [mandatory catch] annotation indicates that the
IntermediateHeading context must compensate the er-
rors when accessing targetHeading data. In contrast, the
[skipped catch] annotation indicates that a context is
not allowed to handle the errors. In Figure 8, these non-
functional specifications are indicated in brackets.

3) Non-functional SCC layers: Alongside the applica-
tion logic, non-functional treatments can be specified in
DiaSpec as depicted by the right part of Figure 8. In the
avionics domain, these treatments typically involve mon-
itoring the application and triggering reconfigurations,
as required by Req4 and Req5 and Req6 in Figure 1.
Specifically, these non-functional treatments allow to (1)

Figure 8: Extract of the flight guidance application design

inform the pilot in case of a device failure or unavailable
data, (2) deactivate the modes that depend of unavailable
data, and (3) log information for maintenance purposes.

Non-functional treatments are specified with respect
to non-functional information defined in the taxonomy
and the application design. For instance, errors raised by
entities or the violation of timing constraints are used as
sources of information for the non-functional treatments.
In Figure 8, the availability of IRU data is checked
through the DataAvailability context component and
is then used by the ModeController component to
enable/disable navigation modes and inform the pilot.

V. Implementation

When developing safety-critical applications, a key
goal is to preserve the functional and non-functional
requirements throughout the development process. To
do so, the DiaSuite approach relies on a compiler that
generates a dedicated programming framework from a
DiaSpec design. This generative approach ensures the
conformance between the design and the implementation
stages, while offering high-level programming support to
the developers.

A. Functional Programming Support

As depicted in Figure 4, the compiler takes as input the
DiaSpec specification of the application and generates
a dedicated Java programming framework that ensures
the conformance between the design and the implemen-
tation [8].

For example, Figure 9 shows the abstract class gener-
ated from the specification of the IntermediateHeading

context component. This abstract class guides the devel-
oper by providing high-level operations for entity binding
and component interactions. Additionally, our generation
strategy of an abstract class leverages the Java language
and its type system to enforce the declared interaction

contracts. Concretely, when extending the Abstract-

IntermediateHeading abstract class, the developer is
required to implement the onHeadingFromIRU abstract
method to receive a value published by this device. In
addition to this value, this method is passed support
objects to request data from a device (binding) and a
context component (getContext).

public abstract class
AbstractIntermediateHeading {

public abstract Float onHeadingFromIRU (
Float heading ,
Binding binding ,
GetContext getContext) ;

. . .
}

Figure 9: Extract of the AbstractIntermediateHeading

class

public c lass IntermediateHeading extends
AbstractIntermediateHeading {

public Float onHeadingFromIRU (
Float heading , Binding binding , GetContext

getContext) {
NavigationMMI mmi = binding . navigationMMI () ;
Float heading = mmi . getTargetHeading (

new TargetHeadingContinuation () {
public Float onError () { return

DEFAULT_VALUE; }
}

) ;
}
. . .

}

Figure 10: Extract of the IntermediateHeading context
implementation

The control inversion principle is uniformly applied to
an SCC-generated programming framework to guarantee
that the interaction between the components are conform
to the design. Specifically, the abstract methods to be
implemented by the developer are only called by the
framework, ensuring that a DiaSpec software system is
compliant with its DiaSpec design.

B. Non-Functional Programming Support

The non-functional specifications are preserved
throughout the implementation stage by generating a
dedicated programming framework [5], [6]. For example,
the IRU entity was declared in the taxonomy (Figure 5)
as raising FailureException errors. Consequently, a
specific method is generated in the corresponding entity
abstract class to allow error signaling to be introduced
by the developer when implementing an instance of this
entity [5]. Another example is the mandatory catch

declaration in the IntermediateHeading interaction
contract presented in Figure 7. This declaration imposes
the IntermediateHeading implementation to handle
potential errors when requesting the targetHeading

data from NavigationMMI. As shown in Figure 10, this
mandatory error handling is enforced by introducing
a continuation parameter in the method supplied to
the developer to request the targetHeading data (i.e.,
getTargetHeading). This continuation provides a de-
fault value in case of an error.

Timing constraints specified at design time are also
preserved in the generated programming framework.
These constraints are automatically monitored in the
generated programming framework. For instance, it
monitors the time spent by the IntermediateHeading

context to retrieve the targetHeading data. If this time
is greater than 100 ms (as specified in Figure 7), an error
is automatically raised by the framework. This approach
allows the developer to focus on the code to handle the
violation of timing constraints.

Non-functional treatments are handled independently
from the application logic. This separation of con-
cerns allows a developer to focus on a specific non-
functional aspect. For example, the developer of the
DataAvailability context can concentrate on imple-
menting algorithms to detect data availability. Because
of the programming framework support, the developer
does not need to mix detection and error handling code
with the application logic, keeping separate the functional
and non-functional treatments.

VI. Testing

This section presents the support provided by our
tool-based methodology for the testing stage. First,
we illustrate the early validation of the application,
leveraging design-time verifications. Then, we show the
simulation support provided by our tool suite for testing
the implementation.

A. Early Validation

Because the DiaSpec design language makes flow
information explicit, a range of properties can be checked
at design time.

In previous works, we have shown how to verify
properties such as interaction invariants using model-
checking techniques [7]. For example, in our flight guid-
ance application, we can verify that the failure of an
IRU always results in a warning message on the pilot’s
display unit. As this invariant results directly from
the requirement Req4 (Section II-B), its validation at
design time ensures the conformance of the specification
with this requirement. Moreover, the generation of the
programming framework ensures that this property is
preserved at the implementation level [7].

Early validation also applies to time-related require-
ments. From the timing constraints defined in the
design, we can generate a set of equations [6]. For
example, the execution time of the heading mode can
be decomposed into: (1) a communication time between
context and controller components, defined by the type

of communication and the media used (e.g., AFDX is a
commonly used network in avionics with a deterministic
communication time [18]), (2) a computation time of
context and controller components, and (3) a time to
acquire data from the sensing devices. As established by
Req1, the execution time of the heading mode must
not exceed 650 ms. By injecting timing constraints
such as distributed systems technologies, platform and
hardware characteristics, we can check whether a given
deployment configuration is in conformance with the QoS
specifications.

B. Simulation Support

The implementation of each SCC part can be tested
independently. For example, the functional aspect of the
application can be tested using a simulated external
environment. The taxonomy definition allows to validate
the functional implementation using mock-up entities
that rely on the simulated environment, without any
impact on the rest of the application.

Figure 11: Screenshot of a simulated flight

public c lass SimulatedIRU extends AbstractIRU
implements S i m u l a t o r L i s t e n e r {

public SimulatedIRU (FGModel model) {
model . addLis tener (this) ;

}

public void s imulationUpdated (FGModel model) {
p u b l i s h P o s i t i o n (model . g e t I n e r t i a l P o s i t i o n ()) ;

}

}

Figure 12: Extract of the simulated IRU class

For example, in avionics, it is required to verify the
behavior of the application in specific environmental
conditions. Because some scenarios are difficult to create
(e.g., extreme flight conditions), we provide a testing
support that relies on a flight simulator, namely Flight-
Gear [9], to simulate the external environment.

Using a Java library that interfaces with FlightGear,
the testers can easily implement simulated versions of

entities. Figure 12 presents an extract of the implemen-
tation of a simulated IRU.

The SimulatedIRU entity is implemented by inheriting
the AbstractIRU class provided by the programming
framework. To interact with the simulated environment,
the entity implements the SimulatorListener interface.
This interface defines a method named simulation-

Updated, which is called periodically by the simulation
library. The model parameter allows to read/write the
current state of the FlightGear simulator. In Figure 12,
the position of the plane is published by calling the
publishPosition method of the AbstractIRU class.

Once the simulated entities are implemented, the flight
guidance application is tested by controlling a simulated
plane within FlightGear. Figure 11 presents a screenshot
of our testing environment. In the main window, the
FlightGear simulator allows to control and visualize the
simulated plane. In the top-left corner, the autopilot
interface allows testers to select a navigation mode. In this
case, the "Route Manager" mode is selected to follow the
flight plan defined via the map displayed in the bottom-
left corner. This simulated environment is also useful to
the non-functional SCC layers. Instrument failures can
be directly simulated using FlightGear. We also provide
a simple simulation support to inject errors from the
simulated entities as illustrated by the FaultInjector

window in the top-right corner. Then, the window in
the bottom-right of the screenshot displays the errors
monitored by the application.

Finally, it is required to realize integration testing
on a test bench to ensure that the application behaves
correctly for a specific deployment configuration. An
advantage of our simulation support is that simulated
and real entities can be combined in a hybrid environment.
Indeed, as both real and simulated versions of an entity
extend the same abstract class, the nature of an entity
has no impact for the rest of the application. Deploying
an application on a test bench is a daunting task that
has to be repeated each time an error is detected. Testing
by simulation the most unreliable components prior to a
test bench may avoid unnecessary deployments.

VII. Assessment

We now outline the benefits of our methodology,
focusing on the coherence and conformance requirements.
These benefits are illustrated by the flight guidance case
study. Then, we mention the benefits of our approach for
reuse by briefly describing the development of a flight
guidance application for a commercial drone.

A. Coherence

The DiaSpec language has been designed to enable
the coherence checking of a specification. In the spirit
of a type checker, the DiaSpec compiler checks that the
design respects the SCC paradigm. For example, a context
component cannot act on an entity; as well, the activation

condition of an interaction contract cannot be a context
that never publishes.

Moreover, uniformly integrating functional and non-
functional aspects in a design language prevents most
inconsistencies that occur when these aspects belong to
independent views (e.g., the collection of UML diagrams).
For example, the coherence between timing constraints
can be statically checked as they directly refine the
interaction contracts describing the control flow [6]. If
the designer declares a component as requiring a specific
data freshness, compile-time verifications ensure that this
component can only be fueled by entities providing data
in a shorter time.

The coherence is preserved at the implementation level
thanks to the generated programming framework. A com-
ponent can only communicate with the other components
in conformance with its interaction contracts, ensuring
communication integrity [19]. Similarly, the generated
support for the non-functional specification preserves the
coherence. For example, the support generated for error
handling, such as in the DataAvailability context com-
ponent, prevents developers from implementing ad-hoc
code for the propagation of errors between components.
This separation of concerns in the programming frame-
work allows developers to focus on their area of expertise
without introducing unintentional inconsistencies.

B. Conformance

The generation of a programming framework relies on
the control inversion principle presented in Section V,
enforcing the conformance with the design. Indeed,
the developers have to extend the abstract classes of
the framework to implement the application logic and
thus cannot introduce inconsistencies with respect to
the design. For example, the interaction contract of
IntermediateHeading (see Figure 7) results in the
generation of an abstract method (see Figure 9) that
will be automatically called each time the IRU entity
publishes heading data. As the programming support for
getting targetHeading data is only provided through
parameters of this method, developers can only access it
once the method is called by the framework [7]. Similarly,
we have shown how the non-functional specifications
were preserved by generating dedicated mechanisms (e.g.,
continuations that enforce error handling code to be
provided by the developer).

As the generated programming framework ensures the
conformance with the design throughout the software
development, we claim that such generative approach
could greatly facilitate the traceability burden of the
certification process.

C. Design-driven Reuse

The development paradigm proposed in this paper
promotes reuse. For example, a taxonomy abstracts
over the variability of the concrete entities; thus, the

same taxonomy can be reused for all the applications
that interact with a similar external environment. More
generally, the decomposition of the SCC pattern in layers
facilitates the reuse of components. To evaluate the
benefits of our approach in terms of reuse, we propose to
adapt the avionics flight guidance application to a drone
platform. We consider that the drone is composed of an
accelerometer, two gyrometers and a front-facing camera.
This configuration is standard in commercial drones such
as the Parrot A.R. Drone [10].

In commercial drones, the control is generally realized
by the user through a smartphone. The goal of our flight
guidance application is to make the drone autonomous
by following a flight plan similar to the one in avionics.
In the resulting design, the avionics taxonomy can be
partially reused. For example, the entities related to
the flight plan (e.g., the RouteManager entity) and the
entities used for logging and displaying information have
been reused. Most of the navigation data provided by the
drone are easily convertible into high-level information
usable by the avionics application, allowing to reuse most
of the context and controller components. For example,
the heading of the drone can be calculated from the angle
of rotation around the vertical axis. Concerning the non-
functional aspects, the SCC layer dedicated to the control
of the failures has been enriched with drone-specific
constraints such as battery handling. In total, the drone
application consists of 5 reused entities out of 7, and 18
reused SCC components out 30. This application has been
successfully deployed on the Parrot’s A.R. Drone [10].
The full DiaSpec specification and a video demonstrating
this application are available online 4.

VIII. Related Work

Several design-driven development approaches are
dedicated to applications with stringent non-functional
requirements.

In the domain of architecture description languages,
the Architecture Analysis & Design Language (AADL) is
a standard dedicated to real-time embedded systems [20].
AADL provides language constructs for the specification
of software systems (e.g., component, port) and their
deployment on execution platforms (e.g., thread, process,
memory). Using AADL, designers specify non-functional
aspects by adding properties on language constructs (e.g.,
the period of a thread) or using language extensions such
as the Error Model Annex 5. The software design concepts
of AADL are still rather general purpose and gives little
guidance to the designer. At the expense of generality, our
approach makes explicit domain-specific concepts in the
design specification of a software system, namely sensors,
contexts, controllers, actuators. This approach enables

4http://diasuite.inria.fr/avionics/52
5The Error Model Annex is a standardized AADL extension for

the description of errors [21].

http://diasuite.inria.fr/avionics/52

further development support for design, programming,
verification and deployment.

As AADL is a standard, a lot of research has been
devoted to provide it with analysis and development tool
support. For example, Dissaux et al. present performance
analysis of real-time architectures [22]. They propose a set
of AADL design patterns to model real-time issues, such
as thread synchronization. For each pattern, they list a
set of performance criteria (e.g., the bounds on a thread
waiting time due to access data) that can be checked with
a performance analysis tool [23]. In contrast, our design
framework allows higher-level specifications and analysis
of timing constraints, abstracting over real-time systems
issues [6]. As AADL mainly focuses on deployment
concerns, it is complementary to our approach and could
be used for the deployment specification and analysis of
DiaSpec applications. While most ADLs provide little
or no implementation support, the Ocarina environment
allows the generation of programming support dedicated
to an AADL description [24]. However, this programming
support consists of glue code for a real-time middleware
and does not guide nor constrain the application logic
implementation.

In model-driven engineering, several approaches focus
on safety-critical applications. For example, Burmester
et al. propose a development approach dedicated to
mechatronic systems [25]. This approach is based on a
domain-specific extension of UML for real-time systems.
To allow the formal verification of a whole mechatronic
system, the authors propose to develop a library of
coordination patterns that define specific component
roles, their interactions and real-time constraints. Then,
the components of the application are built using this
library of patterns by specifying their roles and additional
behavior details. The approach comprises tool support for
the specification, verification and source code synthesis
as a plug-in for the Fujaba tool suite. The use of
coordination patterns can be seen as a paradigm that
guides the design of mechatronic systems. Thus, this
approach is similar to ours, while focusing on a different
application domain. Another example of model-driven
approaches for safety-critical application is the work
of Faugere et al. where a UML profile dedicated to
real-time systems, named MARTE [26], is used to
specify and verify applications. MARTE is viewed as
a high-level specification language to allocate software
applications to hardware resources and verify real-time
properties, such as timeliness and schedulability. Then, a
MARTE design is translated into an AADL specification
to take advantage of the AADL tool support. MARTE
leverages AADL to provide specification support for the
deployment stage; it is complementary to our work.

SCADE (Safety Critical Application Development
Environment) is the development methodology that is
the most similar to ours [27]. SCADE is based on a

synchronous language and relies on hierarchical state
machines for the specification of safety-critical applica-
tions. Non-functional aspects are specified using state
machines and their coherence is verified at design time.
The synchronous paradigm ensures by construction the
determinism of a specification, and thus eases these
verifications. The approach abstracts over physical time
allowing real-time properties to be verified at the code
level. Our design methodology is similar to this approach
but lifts constraints inherent to the determinism of
the specification for promoting reuse. SCADE could be
used to specify more precisely the internal behavior of
critical DiaSpec components. The SCADE tools preserve
determinism from the specification to the implementation
via code generation. Indeed, these tools have been
certified to ensure the conformance between the design
and a generated implementation. While not certified, the
DiaSpec compiler generates a programming framework
and leverages the type checker of the host language
to ensure such conformance. Instead of proving the
correctness of the DiaSpec compiler, one solution could
be to generate certifiable code similarly to the approach
proposed by Denney et al.. Their approach is based
on the automatic annotation of generated code with
safety proofs under the form of pre/post conditions and
invariants [28].

IX. Conclusion and future works

In this paper, we have presented a design-driven
methodology for the development of safety-critical appli-
cations. This methodology relies on a specific develop-
ment paradigm, the Sense-Compute-Control paradigm,
that provides a conceptual framework guiding the stake-
holders at each stage. In contrast with general-purpose
design driven approaches, such as UML, the SCC pattern
guides the development rigorously for both functional and
non-functional specifications. Based on this paradigm,
DiaSuite provides specific support for each development
stage while guaranteeing the conformance with the
specifications. We have demonstrated the benefits of our
methodology by developing a flight guidance application
that has been deployed in a simulated environment and
in a commercial drone platform.

We are currently working on the specification of fault
tolerance strategies at the design level to generate more
support for error handling. Another direction concerns
the deployment stage. We would like to rely on existing
avionics deployment technologies to provide deployment
support guided by the design.

References

[1] “DO-178B, Software Considerations in Airborne Systems
and Equipment Certification (RTCA, Inc.),” 1992.
[Online]. Available: http://www.rtca.org/

http://www.rtca.org/

[2] B. Littlewood and L. Strigini, “Software Reliability and
Dependability: a Roadmap,” in ICSE’00: Proceedings of
the Conference on The Future of Software Engineering.
New York, NY, USA: ACM, 2000, pp. 175–188.

[3] M. Volter, T. Stahl, J. Bettin, A. Haase, and S. Helsen,
Model-driven Software Development: Technology, Engi-
neering, Management. John Wiley and Sons Ltd, 2006.

[4] M. Shaw, “Beyond Objects: A Software Design Paradigm
Based on Process Control,” SIGSOFT Software Engi-
neering Notes, vol. 20, pp. 27–38, January 1995.

[5] J. Mercadal, Q. Enard, C. Consel, and N. Loriant,
“A Domain-Specific Approach to Architecturing Error
Handling in Pervasive Computing,” in OOPSLA’10:
Proceedings of the Conference on Object Oriented Pro-
gramming Systems Languages and Applications, Reno
United States, 10 2010.

[6] S. Gatti, E. Balland, and C. Consel, “A Step-wise
Approach for Integrating QoS throughout Software Devel-
opment,” in FASE’11: Proceedings of the 14th European
Conference on Fundamental Approaches to Software
Engineering, Sarrebruck Germany, 03 2011.

[7] D. Cassou, E. Balland, C. Consel, and J. Lawall, “Lever-
aging Software Architectures to Guide and Verify the
Development of Sense/Compute/Control Applications,”
in ICSE’11: Proceedings of the 33rd International Confer-
ence on Software Engineering. Honolulu United States:
ACM, 2011.

[8] D. Cassou, B. Bertran, N. Loriant, and C. Consel,
“A Generative Programming Approach to Developing
Pervasive Computing Systems,” in GPCE’09: Proceed-
ings of the 8th International Conference on Generative
Programming and Component Engineering. Denver, CO,
USA: ACM Press, 2009, pp. 137–146.

[9] A. R. Perry, “The FlightGear Flight Simulator,” in
Proceedings of the USENIX Annual Technical Conference,
2004.

[10] “Parrot AR.Drone,” 2010. [Online]. Available: http:
//ardrone.parrot.com/

[11] S. Miller, “Specifying the Mode Logic of a Flight
Guidance System in CoRE and SCR,” in FMSP’98:
Proceedings of the Second Workshop on Formal Methods
in Software Practice. ACM, 1998, pp. 44–53.

[12] J. Windsor and K. Hjortnaes, “Time and Space Partition-
ing in Spacecraft Avionics,” in SMC-IT’09: Proceedings of
the 3rd IEEE International Conference on Space Mission
Challenges for Information Technology. IEEE, 2009, pp.
13–20.

[13] “ARP-4761, Guidelines and Methods for Conducting the
Safety Assessment Process on Civil Airborne Systems
and Equipment (SAE),” 1996. [Online]. Available:
http://standards.sae.org/arp4761

[14] L. Grunske, “Transformational Patterns for the Improve-
ment of Safety Properties in Architectural Specifications,”
VikingPLoP’03: Proceedings of the Nordic Conference on
Pattern Languages of Programs, vol. 3, pp. 3–5, 2003.

[15] A. Tribble, D. Lempia, and S. Miller, “Software Safety
Analysis of a Flight Guidance System,” in DASC’02: Pro-
ceedings of the 21st Digital Avionics Systems Conference,
vol. 2. IEEE, 2002, pp. 13C1–1.

[16] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software
Architecture: Foundations, Theory, and Practice. Wiley,
2009.

[17] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese,
H. Kienle, M. Litoiu, H. Müller, M. Pezzè, and M. Shaw,
“Engineering Self-Adaptive Systems through Feedback
Loops,” in Software Engineering for Self-Adaptive Sys-
tems, B. H. Cheng, R. Lemos, H. Giese, P. Inverardi,
and J. Magee, Eds. Berlin, Heidelberg: Springer-Verlag,
2009, pp. 48–70.

[18] “ARINC 664, AFDX: Avionics Full DupleX Switched
Ethernet (Aeronautical Radio, Inc.),” 2005. [Online].
Available: http://www.arinc.com/

[19] D. Luckham and J. Vera, “An Event-Based Architecture
Definition Language,” IEEE Transactions on Software
Engineering, vol. 21, no. 9, 1995.

[20] P. Feiler, “The Architecture Analysis & Design Language
(AADL): An Introduction,” DTIC Document, Tech. Rep.,
2006.

[21] S. Vestal, “An Overview of the Architecture Analysis
& Design Language (AADL) Error Model Annex,” in
AADL Workshop, 2005.

[22] P. Dissaux and F. Singhoff, “Stood and Cheddar: AADL
as a Pivot Language for Analysing Performances of Real
Time Architectures,” in Proceedings of the European Real
Time System conference. Toulouse, France, 2008.

[23] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar:
a Flexible Real Time Scheduling Framework,” ACM
SIGAda Ada Letters, vol. XXIV, pp. 1–8, November 2004.

[24] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From
the Prototype to the Final Embedded System Using
the Ocarina AADL Tool Suite,” ACM Transactions on
Embedded Computing Systems, vol. 7, pp. 42:1–42:25,
August 2008.

[25] S. Burmester, M. Tichy, and H. Giese, “Modeling Recon-
figurable Mechatronic Systems with Mechatronic UML,”
in Proceedings of Model-Driven Architecture: Foundations
and Applications. Citeseer, 2004.

[26] M. Faugere, T. Bourbeau, R. d. Simone, and S. Gerard,
“MARTE: Also an UML Profile for Modeling AADL Ap-
plications,” in Proceedings of the 12th IEEE International
Conference on Engineering Complex Computer Systems.
Washington, DC, USA: IEEE Computer Society, 2007,
pp. 359–364.

[27] B. Dion, “Correct-By-Construction Methods for the
Development of Safety-Critical Applications,” SAE trans-
actions, vol. 113, no. 7, pp. 242–249, 2004.

[28] E. Denney and B. Fischer, “Certifiable Program Genera-
tion,” in GPCE’05: Proceedings of the 4th International
Conference on Generative Programming and Component
Engineering. Springer, 2005, pp. 17–28.

http://ardrone.parrot.com/
http://ardrone.parrot.com/
http://standards.sae.org/arp4761
http://www.arinc.com/

	Introduction
	Case Study: Flight Guidance
	Functional Requirements
	Non-Functional Requirements

	Methodology
	A paradigm-based methodology
	A tool-based methodology
	The design stage
	The implementation stage
	The testing stage

	Design
	Taxonomy
	Application Data Flow
	Application Control Flow
	Non-functional Specification
	Taxonomy
	Application design
	Non-functional SCC layers

	Implementation
	Functional Programming Support
	Non-Functional Programming Support

	Testing
	Early Validation
	Simulation Support

	Assessment
	Coherence
	Conformance
	Design-driven Reuse

	Related Work
	Conclusion and future works
	References

