
HAL Id: inria-00638221
https://inria.hal.science/inria-00638221

Submitted on 4 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Markov Nets: Probabilistic Models for Distributed and
Concurrent Systems.

Albert Benveniste, Eric Fabre, Stefan Haar

To cite this version:
Albert Benveniste, Eric Fabre, Stefan Haar. Markov Nets: Probabilistic Models for Distributed
and Concurrent Systems.. IEEE Transactions on Automatic Control, 2003, 48 (11), pp.1936-1950.
�10.1109/TAC.2003.819076�. �inria-00638221�

https://inria.hal.science/inria-00638221
https://hal.archives-ouvertes.fr

1

Markov Nets: Probabilistic Models for distributed
and concurrent systems

Albert Benveniste, Fellow, IEEE, Eric Fabre, Stefan Haar

Abstract—For distributed systems, i.e., large complex net-
worked systems, there is a drastic difference between a lo-
cal view and knowledge of the system, and its global view.
Distributed systems have local state and time, but do not
possess global state and time in the usual sense. In this pa-
per, motivated by the monitoring of distributed systems and
in particular of telecommunications networks, we develop a
generalization of Markov chains and hidden Markov models
(Hmm) for distributed and concurrent systems. By a con-
current system, we mean a system in which components may
evolve independently, with sparse synchronizations. We fol-
low a so-called true concurrency approach, in which neither
global state nor global time are available. Instead, we use
only local states in combination with a partial order model
of time. Our basic mathematical tool is that of Petri net
unfoldings.

Keywords: distributed discrete event systems, Petri nets, proba-

bilistic models, unfoldings.

I. Motivations

The difference between a local view and knowledge of a
distributed system and its global view is considerable. As
an example, it is simply not possible to observe or deter-
mine the global state of a telecommunications network. In

totally ordered local time

communications

distant times:
ordering given by

Fig. 1. The structure of time in a networked system.

a networked system, each node possesses its own local state
and time. Local time is totally ordered as usual. However,
this no longer holds for global time. Sharing time between
distant nodes requires explicit synchronization actions and
is certainly not instantaneous (see Fig. 1). Hence, events

This paper is dedicated to Alain Bensoussan, for his 60th birth-
day. This work was supported by the RNRT projects MAGDA and
MAGDA2, funded by the Ministère de la Recherche; other partners
of the project are France Telecom R&D, Alcatel, Ilog, and Paris-Nord
University.

IRISA/INRIA, Campus de Beaulieu, 35042 Rennes cedex, France.
Corresponding author Albert.Benveniste@irisa.fr; this work was
started while S.H. was with Ecole normale supérieure, Département
d’Informatique / LIENS, 45 Rue d’Ulm, 75230 Paris Cedex 05, and
supported by EU project ALAPEDES (TMR).

from different nodes are only partially ordered. Similarly,
building a global state requires gathering a consistent set
of local states, which is not easy (see [27] for this topic).
To summarize, networked systems possess local state and
totally ordered local time. Global time, however, is only
partially ordered, and it is preferred not to consider the
global state.

In this paper, motivated by the monitoring of distributed
systems and in particular of telecommunications networks,
we develop a generalization of stochastic automata, Markov
chains, or Hidden Markov Models (Hmm), for distributed
and concurrent systems having local states and partially
ordered time.

As we shall see, a natural model for systems with local
states and partially ordered time is that of safe Petri nets.
These are introduced in Section II, where the associated
structure of runs is also presented, using so-called net un-
foldings. Overall, the material of Section II offers nothing
new. All this is folklore of computer science but is little
known outside. Section III is the core of our contribution.
We show how to naturally equip Petri nets with probabili-
ties, in a way compatible with their partial order semantics.
In particular, we require that two firing sequences that dif-
fer only via their interleaving have identical likelihood. We
then introduce Markov nets, a probabilistic extension of
Petri nets in which both states and the progress of time
are local. Markov nets also have the nice property that,
informally said, concurrent choices are stochastically inde-
pendent. We show that Markov nets satisfy some special
kind of Markov property, which appears as the right gener-
alization of the strong Markov property for classical Hmm’s
or Markov chains. Our construction does not work for gen-
eral Petri nets, however. It requires some structural condi-
tions that are in particular satisfied by free choice nets, but
are in fact more general. Handling general (safe) Petri nets
is investigated in section IV. Related work is discussed in
Section V. Finally, Section VI outlines some conclusions
and perspectives.

Due to lack of space, some interesting aspects are omit-
ted, and the reader is referred to an earlier extended version
of this paper [1].

II. Petri nets and unfoldings, as partial order

models of distributed systems

A. From concurrent automata to partial order models and
Petri nets: an informal discussion

In this subsection we discuss informally why Petri nets
are an adequate framework to model distributed systems
with local states and partial order model of time. We con-

2

sider automata A = (X,Σ, δ, x0), where X and Σ are the
sets of states and events, δ is the transition relation, and
x0 is the initial state. Two such automata A′, resp. A′′,
can either perform private actions, or can synchronize by
emitting identical labels belonging to Σ′′ ∩ Σ′. This is il-
lustrated in Fig. 2 where we show a run for a pair A′ ×A′′

2’ 3’ 1’3’ 1’ 4’

3" 1" 2" 2" 3" 1"

Fig. 2. A run for a pair A′ ×A′′ of concurrent automata.

of concurrent automata. In this figure, local states are rep-
resented by circles (with their names, primed and double
primed for the first and second automaton, respectively)
and transitions are shown as rectangles (their labels are
omitted). States of A′ × A′′ are pairs of local states, de-
picted by two local states linked by a grey zone. Arrows
and rectangles can be solid or dashed. Dashed arrows and
rectangles depict “silent” transitions, in which the consid-
ered automaton does not change its state and emits nothing
(these dummy transitions have only the purpose of letting
the other automaton progress). Solid arrows and rectan-
gles depict effective transitions in which some move is per-
formed and a label is emitted. A long rectangle indicates
a synchronizing transition. Between their synchronizing
transitions, the two components evolve independently and
concurrently, and therefore it is advisable not to distin-
guish between the above run and the one shown in Fig. 3,
as these differ only in the way concurrent transitions in-

3" 1" 2" 3" 1"

2’ 3’ 3’ 1’ 4’

3"

3’

Fig. 3. A different interleaving of the run of Fig. 2.

terleave. This defines, informally, an equivalence relation
on times. Therefore, in randomizing runs of automata,
one should rather randomize equivalence classes modulo
the above equivalence relation, not the runs themselves.

Hence the alternative picture for the runs of our con-
current automata, shown in Fig. 4, should be preferred in-
stead. In this picture, transitions are not linearly ordered

3" 1" 3" 1"

2’ 3’ 1’ 4’

2"

Fig. 4. A common partial oder view of the two runs of Fig. 2 and
Fig. 3.

any more as a global sequence of events, and the grey zones
indicating global states have disappeared. Instead, states
become local and events are only partially ordered as spec-
ified by the bipartite directed graph shown. A quick exam-
ination of this figure reveals that the right way to repre-
sent transitions should be in fact the one shown in Fig. 5.

(2)

(1)
(3)

Fig. 5. The generic transitions of Fig. 4.

Transition of type (1) depicts a generic private transition
of A′, transition of type (2) depicts a generic private tran-
sition of A′′, and transition of type (3) depicts a generic
synchronizing transition of A′ and A′′. But transition of
type (3) can be regarded as a transition of a Petri net, with
its pre- and post-set of places.

Extending this discussion to several concurrent au-
tomata, we naturally arrive at considering Petri nets [9],
[28] instead of automata and their products 1. For our pur-
pose, the important facts about nets are the following: 1/
states are local; referring to our example above, the final
picture involves only states x′ and x′′ of the components,
but not states of the product automaton A′ × A′′, which
are pairs (x′, x′′); 2/ time is local too, as it is only partially
ordered; referring to our example above, each component
has a totally ordered time, but the global system has not.

Running example: stating our objectives. Fig. 6–left
introduces our running example, which is discussed in de-

5

32 4

71

iiii ii

iv v vi

6

32

71

iiii ii

iv

5

4

v vi

6

iv’

Fig. 6. Running example (top), and its split version (bottom). Rout-
ing choices occur at places 1 and 4.

tail in [8] to illustrate asynchronous fault diagnosis of dis-
crete event systems. It represents the evolution of the
failed/safe status of two components interacting via their
shared places 3,7. The first component possesses places
1,2,3,7 and transitions i,ii,iii and the second component
possesses places 3,7,4,5,6 and transitions iv,v,vi. Although
simple, this example is meaningful and rich. Thick circles

1 More precisely, we consider Petri nets as a model of distributed
automata, i.e., nets in which the status of a place is boolean—the
only token is either absent or present. This is known as safe Petri
nets.

3

indicate an initial token. Our objective is twofold:

to equip with a probability the set of all runs,
seen as partial orders,
by only randomizing routing choices, locally.

(1)

Now, Fig. 6–right shows a split version of the former, in
which transition iv has been duplicated; this results in a
Petri net made of two noninteracting components. For this
case, we shall require that its two components are proba-
bilistically independent:

probabilistic independence shall respect concurrency. (2)

Discussing some previous approaches relating Petri nets
and probabilities. Note first that requirements (1,2) are
not suited to models involving physical time. The latter
are frequently used (with good reasons) for performance
evaluation studies. Stochastic timed Petri net models for
performance evaluation belong to these class. They give
raise to Markov chains which do not obey our above re-
quirements. In fact, for timed models, the physical time
itself is global and results in an implicit coupling between
all components, should they interact or not. In our work
we consider untimed models, because the timing informa-
tion regarding the events collected at a network supervisor
is not accurate enough to fix nondeterminism due to in-
terleaving (requirement(1)). And we want to prepare for
distributed supervision: two supervisors dealing with non-
interacting domains should be allowed to ignore each other
(requirement (2)).

A detailed discussion of this topic is found in [2], we give
only an outline here. Randomizing Petri nets is performed,
for Stochastic Petri nets (SPN) [21][6], by applying race
policies in which exponential waiting times are allocated to
enabled transitions and only the earliest one fires. The use
of race policies involves global time and violates our pre-
vious two requirements. As an alternative, we can choose
to fire only maximal sets of enabled transitions. This way,
Petri net executions become independent from the nonde-
terminism due to the interleaving of concurrent transitions
in a firing sequence. Unfortunately, such a policy is not
local, and does not satisfy our second requirement. Other
approaches have been proposed as well. However, as ex-
plained in [2], Generalized Stochastic Petri nets (GSPN)
[3][4] and Probabilistic Petri nets (PPN) [10] do not satisfy
these requirements either. In this paper, we develop an
approach that meets requirements (1,2).

B. Background notions on Petri nets and their unfoldings

Basic references are [28][9][11]. Homomorphisms, con-
flict, concurrency, and unfoldings, are the essential con-
cepts on which a true concurrency and fully asynchronous
view of Petri nets is based. In order to introduce these
notions, it will be convenient to consider general “nets” in
the sequel.

Nets, homomorphisms, and labelings. A net is a triple
N = (P, T,→), where P and T are disjoint sets of places
and transitions, and → ⊆ (P × T) ∪ (T × P) is the flow

relation. The reflexive transitive closure of the flow rela-
tion → is denoted by �, and its irreflexive transitive clo-
sure is denoted by ≺. Places and transitions are called
nodes, generically denoted by x. For x ∈ P ∪ T , we de-
note by •x = {y : y → x} the preset of node x, and by
x• = {y : x → y} its postset. For X ⊂ P ∪ T , we write
•X =

⋃
x∈X

•x and X• =
⋃

x∈X x•. A homomorphism
from a net N to a net N ′ is a map ϕ : P ∪ T 7→ P ′ ∪ T ′

such that: 1/ ϕ(P) ⊆ P ′, ϕ(T) ⊆ T ′, and 2/ for every
transition t of N , the restriction of ϕ to •t is a bijection
between •t and •ϕ(t), and the restriction of ϕ to t• is a
bijection between t• and ϕ(t)•. For N = (P, T,→) a net,
a labeling is a map λ : T 7→ A, where A is some finite al-
phabet. A net N = (P, T,→, λ) equipped with a labeling
λ is called a labeled net.

Occurrence nets, conditions and events. Two nodes x, x′ of
a net N are in conflict, written x#x′, if there exist distinct
transitions t, t′ ∈ T , such that •t ∩ •t′ 6= ∅ and t � x, t′ �
x′. A node x is in self-conflict if x#x. An occurrence net
is a net O = (B,E,→), satisfying the following additional
properties:

∀x ∈ B ∪E : ¬[x#x] (no node is in self-conflict)

∀x ∈ B ∪ E : ¬[x ≺ x] (� is a partial order)

∀x ∈ B ∪E : |{y : y ≺ x}| <∞ (� is well founded)

∀b ∈ B : |•b| ≤ 1
(each place has at most
one input transition)

We will assume that the set of minimal nodes of O is con-
tained in B, and we denote by min(B) or min(O) this min-
imal set. Specific terms are used to distinguish occurrence
nets from general nets. B is the set of conditions, E is the
set of events, ≺ is the causality relation. Nodes x and x′

are concurrent, written x⊥⊥x′, if neither x � x′, nor x′ � x,
nor x#x′ hold. A co-set is a set c of concurrent conditions.
A maximal (for set inclusion) co-set is called a cut. A con-
figuration κ is a sub-net of O, which is conflict-free (no two
nodes are in conflict), causally closed (if x′ � x and x ∈ κ,
then x′ ∈ κ), and contains min(O).

Occurrence nets are useful to represent executions of
Petri nets. They form a subclass of nets in which essential
properties are visible via the topological structure of the
bipartite graph.

Petri nets. For N a net, a marking of N is a multiset M
of places, i.e., a map M : P 7→ {0, 1, 2, . . .}. A Petri net
is a pair P = (N ,M0), where N is a net having finite sets
of places and transitions, and M0 is an initial marking. A
transition t ∈ T is enabled at marking M if M(p) > 0 for
every p ∈ •t. Such a transition can fire, leading to a new
marking M ′ = M − •t + t•; we denote this by M [t〉M ′.
The set of reachable markings of P is the smallest (w.r.t.
set inclusion) set M0[〉 containing M0 and such that M ∈
M0[〉 and M [t〉M ′ together imply M ′ ∈ M0[〉. Petri net P
is safe if M(P) ⊆ {0, 1} for every reachable marking M .
Throughout this paper, we consider only safe Petri nets,
hence marking M can be regarded as a subset of places.
A finite occurrence net B can be regarded as a Petri net,
where the initial marking is M0 = min(B).

4

In this paper, we restrict ourselves to the class of safe nets
satisfying the additional condition: for every transition t,
•t 6= ∅ ∧ t• 6= ∅. Note that a safe Petri net such that each
transition has one place in its preset and one in its postset,
can be seen as an automaton.

Branching processes and unfoldings. A branching process of
Petri net P is a pair B = (O, ϕ), where O is an occurrence
net, and ϕ is a homomorphism from O to P regarded as
nets, such that: 1/ the restriction of ϕ to min(O) is a bijec-
tion between min(O) and M0 (the set of initially marked
places), and 2/ for all e, e′ ∈ E, •e = •e′ and ϕ(e) = ϕ(e′)
together imply e = e′. By abuse of notation, we shall some-
times write min(B) instead of min(O). For B a branching
process of P , and e an event not belonging to B but having
its preset contained in B, we call e a possible continuation
of B, written B � e. Furthermore, we denote the corre-
sponding extended branching process by B • e, and call it
an extension of B.

The set of all branching processes of Petri net P is
uniquely defined, up to an isomorphism (i.e., a renaming
of the conditions and events), and we shall not distinguish
isomorphic branching processes. For B,B′ two branching
processes, B′ is a prefix of B, written B′vB, if there exists
an injective homomorphism ψ from B′ into B, such that
ψ(min(B′)) = min(B), and the composition ϕ ◦ψ coincides
with ϕ′, where ◦ denotes the composition of maps.

By theorem 23 of [13], there exists (up to an isomor-
phism) a unique maximal branching process with respect
to v, we call it the unfolding of P , and denote it by ΩP .
The unfolding of P possesses the following universal prop-
erty. For every occurrence net O, and every homomor-
phism φ : O 7→ P , there exists an injective homomorphism
ι : O 7→ ΩP , such that φ = ϕ ◦ ι, where ϕ denotes the
homomorphism associated to ΩP ; this decomposition ex-
presses that ΩP “maximally unfolds” P . If P is itself an
occurrence net and M0 = min(P) holds, then ΩP identifies
with P .

Configurations of the unfolding ΩP are adequate repre-
sentations of the firing sequences of P . LetM0,M1,M2, . . .
be a maximal firing sequence of P , and let Mk−1[tk〉Mk be
the associated sequence of fired transitions. Then there
exists a unique maximal (for set inclusion) configuration κ
of ΩP having the following properties: κ is the union of a
sequence e1, e2, . . . of events and a sequence c0, c1, c2, . . .
of cuts, such that, for each k > 0, ϕ(ck) = Mk, ϕ(ek) = tk,
and ck−1 ⊇ •ek, e

•
k ⊆ ck. Conversely, each maximal con-

figuration of ΩP defines a maximal firing sequence, which is
unique up to the interleaving of consecutive structurally in-
dependent transitions—transitions t and t′ are structurally
concurrent iff •t′ ∩ (•t ∪ t•) = ∅ and •t ∩ (•t′ ∪ t′•) = ∅.

Maximal configurations of ΩP are called runs of P and
are generically denoted by ω (and sometimes by v or w).
By abuse of notation, we write ω ∈ ΩP to express that ω
is a run of P .

Running example, continued. Fig. 7 shows again our run-
ning example. The Petri net P is shown on the top
left. Its places are 1,2,3,4,5,6,7, and its transitions are

5

32 4

71

iiii ii

iv v vi

6

2

i

1 7

43

57

43
11

iii

iv

ii

11 7 5 6

44

657

432

11

i

1 7

2

11

2 3

ii

2 3

iii iv v

vi

iii iv v

iii

Fig. 7. Running example (top left), a configuration (bottom left), and
a branching process (right). For this and subsequent examples, we
take the following convention for drawing Petri nets and occurrence
nets. In Petri nets, the flow relation is depicted using directed arrows.
In occurrence nets, since no cycle occurs, the flow relation progresses

downwards, and therefore there is no need to figure them via directed
arrows, standard solid lines are used instead.

i, ii, iii, iv, v, vi. Places constituting the initial marking are
encircled in thick. A branching process B = (O, ϕ) of P is
shown on the right. Its conditions are depicted by circles,
and its events are figured by boxes. Each condition b of B
is labeled by the place ϕ(b) of P . Each event e of B is la-
beled by the transition ϕ(e) of P . A configuration of Petri
net P is shown in grey. Note that the minimal condition
labeled by 7 is branching in B, although it is not branch-
ing in P itself. The reason is that, in P , the token can
freely move along the circuit 1 → ii → 2 → iii → 1, and
resynchronize afterwards with the token sitting in 7. The
mechanism for constructing the unfolding of Petri net P
is illustrated in the bottom left, it is informally explained
as follows. Put the three conditions labeled by the initial
marking of P , this is the minimal branching process of P .
Then, for each constructed branching process B, select a
co-set c of B, which is labeled by the preset •t of some
transition t of P , and has no event labeled by t in its post-
set within B. Append to c a net isomorphic to •t → t→ t•

(recall that ϕ(•t) = c), and label its additional nodes by t
and t•, respectively. Performing this recursively yields all
possible finite branching processes of P . Their union is the
unfolding ΩP .

Comparison with automata and their trajectories. Fig. 8
shows an automaton (top left, the initial state indicated
by an ingoing arrow), its translation as a Petri net (bot-
tom left, the initial marking is composed of the place filled
in grey), and a branching process of the so obtained Petri
net (right). Since each transition in the Petri net has a
single place in its pre- and postset, the unfolding is a tree.
Each maximal directed path of this tree represents a run
of the automaton.

5

a

α

γ δ

γ

a

φ

a b

b

α

c

c

ε

a

ε

a

δ

β

b

c

c

b

α β δγ

ε φ

a

γ δ

α β

c

a

ε φ

b

Fig. 8. Showing a branching process of an automaton (i.e., a prefix
of its unfolding).

III. Adding probabilities: Markov nets

This section is the core of the paper. We introduce
Markov nets by equipping unfoldings with probabilities.

A. Markov nets

We introduce Markov nets by locally randomizing the
possible choices, for each individual branching place of the
considered Petri net. To avoid uninteresting technicalities,
we shall consider that the initial marking is fixed, and not
randomized. Extending our theory and results to the more
general case of random initial marking is easy (we need to
deal with a collection of unfoldings, one for each different
initial marking).

Definition 1 (Markov net) We consider a Petri net P =
(P, T,→,M0). Let Pc be the set of those p ∈ P whose
post-set p• contains at least two transitions—we say that
p exhibits a choice, or, equivalently, that p is branching.
Let π be a transition probability from Pc to T , i.e., a set

π
4

=(πp)p∈Pc
, where πp is a probability over p•. The pair

M = (P , π) is called a Markov net, and π is called its
routing policy, it specifies the probability distribution of
routings—for convenience, we shall sometimes write π(t|p)
instead of πp(t), to reflect that πp plays the role of a con-
ditional probability. �

Referring to Fig. 9, Pc is composed of the places filled in
dark grey, and routing policies π1, π4 are shown on the
Petri net. Note that the minimal condition labeled by 7

in the unfolding is not a choice condition, since place 7 in
the Petri net does not belong to Pc. In fact, the branch-
ing at the minimal condition labeled by 7 in the unfolding
does not correspond to choice, and should not be random-
ized. The remainder of this section is mainly devoted to
the construction of the probability of runs for Markov nets,
according to the partial order semantics.

5

32

7

iii

iv v vi

4π

1π

6

iii

4

1

ii

7 5 6

657

32

i

7

2

2 3

ii

2 3

11

1111

1

4

44

iii iv v

vi

iii iv v

iii

Fig. 9. Markov net: illustrating routing policy, stopping time, layer.
(The mid-grey area comprising the conditions labeled by 3,4 indicates
the superposition of the two light- and dark-grey areas.)

In the extended paper [1], we also consider Markov nets
with random labels, and we propose a definition of the
product of (labeled) Markov nets, denoted by M′ × M′′.
It consists in equipping the product P ′ ×P ′′ of the under-
lying Petri nets with proper routing policies. It has the
important desirable feature that, if the underlying Petri
nets P ′ and P ′′ do not interact (i.e., share no transition),
then the product M′×M′′ makes the two components M′

and M′′ independent in the probabilistic sense, see Theo-
rem 2 in Section III-E.

B. Branching processes and stopping times

When equipping sets of runs with probabilities, the first
issue to be addressed is the following: which σ-algebras
should one use? In classical theories of stochastic processes,
there is typically an increasing family of σ-algebras (Fn),
indexed by some totally ordered time index, say n ∈ N.
Then, stopping times are considered to model “causal” ran-
dom instants, they can be used to index σ-algebras as well.
What are the counterparts of these classical notions in our
case ?

The case of automata (see Fig. 8). In automata, the
progress of time coincides with the occurrence of one tran-
sition in the automaton. Let τ be a stopping time, i.e., an
integer valued random variable such that deciding whether
or not τ ≤ n requires at most n successive transitions of
the automaton. For ω a run, denote by ωn the prefix of ω
of length n. Since τ is a stopping time, deciding whether or
not τ = n requires n successive transitions of the automa-

ton. Thus ωτ
4

=ωτ(ω) is well defined. Then denote by Bτ the
union of all ωτ , for ω running over the set of all runs: Bτ is
a branching process. The following lemma relates stopping
times to branching processes, for automata.

Lemma 1: Assume that P is an automaton. Then, a
branching process B of P has the form Bτ for some stopping
time τ iff it satisfies the following property: ∀b ∈ B such
that ϕ(b) ∈ Pc, either b•B = ∅ or b•B = b• , where b•B denotes
the postset of condition b in B (and b• denotes, as usual,
the postset of condition b in the whole unfolding ΩP). �

6

In other words, stopping times coincide with branching pro-
cesses such that all branching conditions have their postset
either entirely inside the process or entirely outside of it.

Proof: See the Appendix (the entire branching process
B shown in Fig. 8 possesses this property, but the branching
process B′ obtained by removing the shaded subnet does
not.)

The case of general Petri nets (cf. Fig. 9). Lemma 1 sug-
gests the proper notion of stopping time for general Petri
nets:

Definition 2 (stopping time) A branching process B =
(B,E,→, ϕ) is called a stopping time if it satisfies the fol-
lowing condition: ∀b ∈ B such that ϕ(b) ∈ Pc, either b•B = ∅
or b•B = b•, where b•B denotes the postset of condition b in
B. �

Lemma 2: The set of stopping times is stable under ar-
bitrary intersections and unions.

Proof: Obvious. �
We are now ready to introduce our concept of layer, as a
formalization of atomic progress of time, from one stopping
time to a successor.

Definition 3 (layer) Let B and B′ be two stopping times
such that 1/ B′ is strictly contained in B, and 2/ there
exists no stopping time strictly containing B′ and strictly
contained in B. We call a layer the following suffix of B:

L = (B \ B′) ∪ •(B \ B′) (3)

where ∪ denotes the union of labelled graphs. �
This notion is illustrated in Fig. 9, where the subnet con-
tained in the dark grey area and having the conditions
labeled by 3, 4 as minimal conditions, is a layer.

Decomposition (3) is not unique. However, if decompo-
sition L = (Bi \ B′

i) ∪
•(Bi \ B′

i), i = 1, 2 holds, then it
also holds with B1 ∩ B2 and B′

1 ∩ B′
2 in lieu of Bi and B′

i,
i = 1, 2. Hence the set of pairs (B,B′) for which decomposi-
tion (3) holds has a unique minimal pair, we take this pair
as the canonical decomposition of layer L, and we write
this canonical decomposition as follows:

L = B/B′ . (4)

The set of all layers of the considered unfolding is denoted
by L. Now we collect some useful properties of L. Let Bc

denote the set of conditions that are branching in both P
and ΩP , we call them branching conditions in the sequel
(for A a set, |A| denotes its cardinal):

Bc = {b ∈ B : |b•| > 1 ∧ ϕ(b) ∈ Pc} . (5)

Lemma 3:
1. Consider the following relation on L:

L′ ≺ L iff L = B/B′ and (L′ ∩ Bc) ⊆ B′ . (6)

Then (L,≺) is a partial order.
2. Any stopping time decomposes as a union of layers hav-
ing pairwise disjoint sets of events. Such a decomposition

is unique, it defines a bijection between stopping times and
prefixes of (L,≺).

Proof: Obvious. �

In the sequel, we identify L with the directed acyclic graph
(dag) defined as follows: for L,L′ ∈ L, write L → L′ iff
L ≺ L′ and L ∩ L′ 6= ∅ (meaning that layers L and L′ are
neighbours in the unfolding).

C. Equipping unfoldings of Petri nets with probabilities

C.1 Choice-compact Petri nets.

In equipping unfoldings of Petri nets with probabilities,
we are faced with two types of difficulties:

1. To obtain probability measures on unfoldings, we natu-
rally think of using the labelling map ϕ in order to lift the
routing policy π from Petri net P to its unfolding ΩP . Let
us make an attempt by defining πΩ(e | b) = π(ϕ(e) |ϕ(b)),
for e ∈ b•. This is a sound definition if the map e 7→ ϕ(e),
from b• to ϕ(b)

•
, is injective. In this case πΩ becomes

a positive measure with total mass ≤ 1, it is a proba-
bility if e 7→ ϕ(e) is bijective. If e 7→ ϕ(e) is not injec-
tive, we are in trouble lifting π(. |ϕ(b)) to a transition
probability from b to its postset. Now, check carefully the
definition of branching processes in subsection II-B: it is
stated that, for t = ϕ(e), the two subnets •e → e → e•

and •t → t → t•, seen as directed graphs, are isomorphic.
But such a property does not hold for conditions and their
pre- and postsets. This motivates the following definition
of choice-conformal branching processes, namely branching
processes satisfying the following condition: for all b ∈ B
such that ϕ(b) ∈ Pc, the restriction to b• of the labelling
map e 7→ ϕ(e) is injective, from b• into ϕ(b)•.

2. The second problem is that of the finiteness of layers. In
constructing our probability distribution on ΩP , we need to
apply a Kolmogorov extension argument, by constructing
a “consistent” family of probabilities, one for each finite
stopping time. Progressing from one stopping time to a
next one proceeds by concatenating some layer, seen as an
atomic progress of the random process under construction.
The idea is to lift our routing policy π to a transition prob-
ability on the layer in consideration. This is easy if the
considered layer involves only finitely many routings.

The above two points motivate the following definition:

Definition 4 (choice-compact) P = (P, T,→,M0) is
called choice-compact iff it satisfies the following two con-
ditions:

1. Choice-conformalness: For each condition b ∈ Bc, the
restriction to b• of the labelling map e 7→ ϕ(e) is injective,
from b• into ϕ(b)

•
.

2. Finiteness of layers: All layers of ΩP possess only
finitely many conditions that are labelled by places belong-
ing to Pc.

Examples and counter-examples. Our running example of
Fig. 9 possesses a choice-conformal unfolding. The reason
is that places belonging to Pc (places 1,4 in Fig. 7–top left),

7

and places causing branching in the unfolding due to syn-
chronization (place 7 in Fig. 7–top left), are disjoint. An-
cillary synchronizations and active choices occur in distinct
sets of places. Also, our running example possesses finite
layers. In fact, all layers are isomorphic to one of the two
layers shown in this figure, in light and mid grey, respec-
tively. Thus, our running example is choice-compact.

Now, Fig. 10 shows an example of a Petri net which

g

n

l

E

h
D

e

A
B f

ba

dc

C

G

k

H

F

m

m

A

B

b

D

D

e

A

e

d

d

f

f

m

m
F

a b c

B

gC

hk

H

n E

G l

a c

...
...

Fig. 10. A Petri net which has a choice-conformal unfolding but has
infinite layers.

has a choice-conformal unfolding but still has infinite lay-
ers. Actually, this Petri net possesses only two stop-
ping times, namely min(ΩP) and the entire unfolding ΩP .
Hence choice-conformalness is not sufficient to guarantee
the finiteness of layers. The very tricky topology of this
counter-example suggests that “natural” Petri nets are very
likely to possess finite layers.

C.2 The case of free choice Petri nets

From the above discussion, we see that we really need
choice-conformalness and the finiteness of layers. This is a
difficult property, not checkable directly on the Petri net,
but only on the unfolding. Free choice nets are a known
and simple class of Petri nets, which are choice-compact,
as we will show next. Free choice nets are popular, they
are regarded as an interesting intermediate class between
automata and general Petri nets. For completeness, we
recall the definition of free choice nets [11][5]:

Definition 5 (free choice Petri net) A Petri net P =
(P, T,→,M0) is called free choice if |p•| > 1 implies that,
for all t ∈ p•, |•t| = 1 holds.

Lemma 4: Free choice nets are choice-compact—but the
converse is not true as shown by our example of Fig. 9.

Proof: See the Appendix (in the course of this proof,
we give a detailed description of the layers, for free choice
nets). �

C.3 Equipping choice-compact Petri nets with probabili-
ties

For P a Petri net, ΩP its unfolding, ω ∈ ΩP , and W a
subnet of ΩP , define

ωW
4

= projW(ω) = ω ∩W , (7)

the subnet obtained by removing, from ω, the nodes not
belonging to W .

Any stopping time B is the union of all its maximal con-
figurations. Such configurations represent partial runs ωB.
Continuing ωB proceeds by randomly selecting the next
transition. The idea is that this choice shall be governed
by the transition probability π. We formalize this next.

Consider

Lc
4

= {b ∈ L ∩ Bc : b• ⊆ L}

Lc
4

= {L ∈ L : Lc 6= ∅},

i.e., Lc is the set of all layers involving branching. Clearly,
only layers belonging to Lc need to be randomized.

Using the generic notation (7), we identify layer L with
its set of “local runs” vL, where v ∈ ΩP ranges over the set
of runs which traverse L, i.e., satisfy vL 6= ∅. Fix a prefix
ωB′ , where L = B/B′, and write

ωB′ � vL , (8)

to denote that vL is a non-empty continuation of ωB′ ; note
that we may have v 6= ω.

For L ∈ Lc, we shall now define the conditional distri-
bution Pπ

L(vL |ωB′), for ωB′ fixed and vL ranging over the
set of local runs such that:

[vL 6= ∅] ∧ [ωB′ � vL] . (9)

For vL satisfying (9), set

Pπ
L(vL |ωB′) =

1

CL

∏

b∈Lc∩vL

π(ϕ(e) |ϕ(b)) (10)

where e is the unique event belonging to b•∩ vL, and CL is
a normalizing constant depending on L and ωB′ , to ensure
that Pπ

L is a probability. Since P is choice-compact: 1/ its
layers are finite and thus Lc and CL are both finite, hence
the product in (10) is well defined, and 2/ ϕ is a bijection
from b• onto ϕ(b)

•
, hence the term π(ϕ(e) |ϕ(b)) is well

defined. Thus the right hand side of (10) is well defined.
We are now ready to define the restriction of our desired

probability to a stopping time B, we denote this probability
by Pπ

B. By statement 2 of lemma 3, every stopping time
B decomposes as a union of layers having pairwise disjoint

sets of events. Set LB
4

={L ∈ Lc : L ⊆ B}, and

Pπ
B (ωB) =

∏

L ∈ LB

ωL 6= ∅

Pπ
L(ωL |ωB′) . (11)

Recall that ωB′ denotes the restriction of ω to B′, and note
that it always holds that ωB′ � ωL, since we consider pro-
jections of the same ω, and L is a continuation of B′. Hence

8

the terms Pπ
L(ωL |ωB′) on the right hand side of (11) are

well defined. Now we claim that, if B′vB, then:

Pπ
B′ (ωB′) =

∑

v : vB′=ωB′

Pπ
B (vB) , (12)

Applying (12) with B′ = min(B) shows in particular that
formula (11) actually defines a probability, since the left
hand side of (12) yields 1 in this case. Formula (12) ex-
presses that the family Pπ

B, where B ranges over the set of
choice-conformal branching processes of P , forms a projec-
tive family of probability distributions. By Kolmogorov’s
extension theorem [25] (see [1] for a detailed proof), there
exists a unique probability Pπ over the projective limit
of the choice-conformal B’s, this projective limit identifies
with ΩP . This construction defines a unique probability
Pπ over ΩP .

Hence it remains to justify (12). By induction, it is
enough to show (12) for B and B′ related by L = B/B′,
for some layer L ∈ Lc. Decompose vB into vB = ωB′ • vL,
meaning that vL is a continuation of ωB′ and vB is the
extension of ωB′ by vL. By (11) we have

ωB′ � vL ⇒ Pπ
B (vB) = Pπ

B′ (ωB′) ×Pπ
L(vL |ωB′) ,

hence it remains to prove that
∑

vL : ω
B′�vL

Pπ
L(vL |ωB′)

= 1. But this results immediately from formula (10) since
Pπ

L is a probability. This finishes the construction of Pπ.

Some comments are in order about the present construc-
tion, versus that of [31]. The construction of [31] applies
to free choice conflicts only, whereas ours is more general.
It uses no Kolmogorov’s extension argument, but rather
performs a direct construction of the probability on a field
generating the whole σ-algebra on the unfolding, and then
invokes a basic extension theorem from measure theory.
The resulting proof is long, like ours, and it is more tech-
nical. Our proof uses our notion of stopping time, which
turns out to be required anyway for the Markov property
we investigate next—the latter topic is not considered in
[30][31].

Running example, continued. Let us provide explicit for-
mulas for our running example of Fig. 9. Referring to this
figure, set B0 = min(ΩP), and denote by L1 and L2 the two
layers in light and mid grey, respectively, and let B1 = L1

and B2 = B1∪L2 be the two corresponding stopping times.
The two layers L1 and L2 contain local runs, we denote
them by wj

Li
. We list them here as unions of graphs using

the labels from Fig. 9:

ϕ(w1
L1

) = (7)
⋃

(1) → ii→ (2) → iii→ (1)
ϕ(w2

L1
) = (1,7) → i→ (2,3)

⋃
(2) → iii→ (1)

ϕ(w1
L2

) = (3,4) → iv → (7,5)
⋃

(4) → vi→ (5)
ϕ(w2

L2
) = (4) → v → (6)

Layer L1 can continue any co-set labeled by 1,7; thus re-
ferring to formula (10), we have:

Pπ
L1

(
w1

L1
|ωB0 = ω0

)
= π(ii|1)

Pπ
L1

(
w2

L1
|ωB0 = ω0

)
= π(i|1)

}
(13)

Pπ
L2

(
w1

L2

∣∣ωB1 = w1
L1

)
= 0

Pπ
L2

(
w2

L2

∣∣ωB1 = w1
L1

)
= 1

}
(14)

Pπ
L2

(
w1

L2

∣∣ωB1 = w2
L1

)
= π(iv|4)

Pπ
L2

(
w2

L2

∣∣ωB1 = w2
L1

)
= π(v|4)

}
(15)

where ω0 = min(ΩB). Since all runs begin with ω0, the
conditioning in (13) is trivial and could be omitted. Layer
L2 is a continuation of B1 = L1. For runs beginning with
ωB1 = w1

L1
as a prefix, the only possible continuation is

w2
L2

, this justifies formula (14). For runs beginning with

ωB1 = w2
L1

as a prefix, two extensions, by wj
L2
, j = 1, 2 are

possible, and formula (15) follows.

The possible prefixes within B2 are given by ωi,j
B2

4

=wi
L1

∪

wj
L2

, for i, j = 1, 2, and we have—note that Pπ
B2

is indeed
a probability:

Pπ
B2

(ω1,1
B2

) = π(ii|1) × 0 Pπ
B2

(ω1,2
B2

) = π(ii|1) × 1

Pπ
B2

(ω2,1
B2

) = π(i|1) × π(iv|4) Pπ
B2

(ω2,2
B2

) = π(i|1) × π(v|4)

Discarding the prefixes having zero probability, we
find three possible prefixes, with respective probabilities
π(ii|1), π(i|1)×π(iv|4), π(i|1)×π(v|4). We insist that this
is different from randomizing firing sequences, we rather
randomize “firing sequences up to interleavings”.

D. The Markov property

We first define the σ-algebras of past, present, and future.
Using notation (7), we consider the following equivalence
relation on ΩP :

ω ∼W ω′ iff
ωW and ω′

W are isomorphic,
when seen as labelled graphs.

(16)

Note that definition (16) for the relation ∼W simplifies
when W is a branching process, since isomorphism reduces
to equality in this case. Then we define the σ-algebra FW

as follows:

A ∈ FW iff
ω ∈ A
ω′ ∼W ω

}
⇒ ω′ ∈ A . (17)

Consider B a stopping time, and denote by B+ the suffix
of ΩP equal to:

B+ = (ΩP \ B) ∪ •(ΩP \ B) , (18)

where ∪ denotes the union of labelled graphs. B+ is to be
interpreted as the future of B. Then we set

XB = B ∩ B+ , (19)

and we call it the present of B. Accordingly, the σ-algebras
of past, present, future are, respectively:

FB , XB
4

=FXB
F+

B

4

=FB+ , (20)

9

where the generic definition (17) was used. Note that the
present XB consists of sets of conditions that are either
mutually concurrent or in conflict, but not causally related.

The example of Fig. 11 is an interesting illustration of

b

a c

future

past

ed

Fig. 11. Past, present, and future.

our Markov property. In this figure, we show an unfolding.
The “past” area depicts a stopping time, we call it B. The
“future” area depicts B+. Hence the present XB consists
of the two conditions d,e. Now, the exit cut containing
d (resp. e) is {c,d} (resp. {a,e})—by exit cut, we mean
the cut by which the configuration containing d (resp. e)
exits B. Thus the present XB is smaller than the set of
exit cuts of B it defines. In fact, conditions a,b belonging
to these cuts are useless for predicting the future! This
illustrates once again that our model takes deep advantage
of the underlying concurrency. We are now ready to state
our theorem.

Theorem 1 (strong Markov property) Future and past
are conditionally independent, given the present:

∀B ∈ F+
B : Pπ (B |FB) = Pπ (B |XB) . (21)

Since all B we consider are stopping times, formula (21) is
in fact a strong Markov property.

Proof: See the Appendix. �

E. In Markov nets, concurrency matches stochastic inde-
pendence

Theorem 2 (conditional independence of layers) Consider
the partial order (L,≺) introduced in lemma 3, and let
L1 6= L2 be two layers such that neither L1 ≺ L2 nor
L2 ≺ L1 holds. Denote by B the minimal stopping time
such that Li is a continuation of B for i = 1, 2 (such
a B exists). Then the two σ-algebras FL1 and FL2 are
conditionally independent given FB, meaning that, for
Ai ∈ FLi

, i = 1, 2, we have

Pπ(A1 ∩ A2 | FB) = Pπ(A1 | FB) ×Pπ(A2 | FB) (22)

Proof: See [1]. �

Note that, if P is an automaton, then (22) boils down to
0 = 0 and our theorem is trivial (this is why no such result
was stated for stochastic automata). Now, if layers L1 and
L2 are concurrent, then A1 ∩ A2 6= ∅ and the theorem is
non trivial. It expresses that concurrent continuations are
conditionally independent, given the past.

Running example, continued. Our running example of
Fig. 9 is too small to illustrate theorem 2, because it does
not exhibit enough concurrency. However, if we apply
theorem 2 to Fig. 6–bottom, we derive that the two non-
interacting parts of P are probabilistically independent.
This was our second requirement, when discussing Fig. 6.

IV. Handling general safe nets

This section is devoted to the analysis of Petri nets which
are not choice-compact. We will show how to make such
nets free choice, and hence choice-compact. In Fig. 12 we

(a) (b)

α

d

γ

c

b

β

a

δ ε ζ

ba c

α β γ

e fd

Fig. 12. Two examples that are not free choice.

show two Petri nets, for further discussion in the sequel.
None of them is choice-compact, but we still wish to inves-
tigate how they can be randomized.

A. Using pre-selection

Pre-selection has been proposed as a way to transform
a net exhibiting constrained choice into another net which
is free choice. It consists in breaking the output branches
of a place exhibiting constrained choice, by inserting, on
each branch, a pair { transition → place }. Pre-selection
separates blocking from synchronization. We illustrate the
use of this technique on the Petri nets of the Fig. 12, the
result is shown in Fig. 13. The nets of Fig. 12 (a) and (b),

(a) (b)

α

d

b

βγ

c

a

δ ε ζ

ba c

α β γ

e fd

Fig. 13. Making the nets of Fig. 12 free choice, using preselection.

are modified, in Fig. 13 (a) and (b) respectively, by enforc-
ing preselection: dummy transitions and places are added,

10

they are figured by small boxes and circles. We formalize
this construction next.

Pre-selection. We are given a net P with its set Pc of places
exhibiting choice, and let ΩP = (B,E,→, ϕ) be its unfold-
ing. Consider the following relation Cc ⊆ (B×E)×(P×T):

((b, e), (p, t)) ∈ Cc iff





p ∈ Pc

e ∈ b• , t ∈ p•

ϕ(b) = p , ϕ(e) = t
(23)

Fix b, p, t, and suppose that:

the set {e | ((b, e), (p, t)) ∈ Cc} has cardinal > 1. (24)

Then,

replace the branch p→ t, in the flow relation of P ,
by the path p→ tp,t → pp,t → t ,

(25)

where (tp,t, pp,t) is a pair of new (dummy) transition and
place which we add to the original net P . In other words, if
some condition labelled by a branching place p has at least
two different events in its postset that are labelled by the
same transition, then we add a pair of dummy transition
and place to each outgoing branch of place p in net P . Note
that this new dummy place exhibits no choice, and there-
fore we do not need to modify the transition probability
π(t | p). Performing this for each case in which (24) holds,

we construct a free choice net P̂, for which condition (24)

never holds. Applying to P̂ the theory of Section III-C, we
get an extended probability space

{
Ω̂P , F̂ , P̂

π
}

(26)

where π is as before, we call it the extended Markov net 2

associated with P . Of course, a natural question is: how to
take advantage of this extended Markov net in defining a
probabilistic version of the original net P ? We investigate
this next.

Relation between the extended Markov net, and the original
net. One may guess that erasing, in the extended unfolding
Ω̂P , dummy conditions and events, would yield again ΩP .
This may not be the case, however. In fact, since prese-
lection has been performed, there are in general maximal
configurations belonging to Ω̂P , which terminate at dummy
conditions. Erasing dummy conditions and events in such
a configuration may yield either a maximal configuration
of ΩP , or a prefix of a maximal configuration of ΩP . This
means that erasing, in the extended unfolding Ω̂P , dummy
conditions and events, yields in general an additional set of
partial runs. Hence the so obtained set is larger than ΩP ,
seen as a set of runs. We shall investigate this situation
later, but we first discuss the case in which such an artifact
does not occur.

Consider the extended Petri net P̂, its unfolding Ω̂P pos-
sesses “dummy” paths, themselves labelled by paths of the

2The term “extended” used here should not be confused with its
use in “extended free choice”.

form (25). Denote these paths by bp → ep,t → bp,t, where
ϕ(bp) = p, ϕ(et) = t. Assume for the moment that:

Assumption 1: Replacing, in Ω̂P , the path bp → ep,t →

bp,t by the single node bp, defines a map Ψ : Ω̂P 7→

ΩP , (where Ω̂P and ΩP are seen as sets of runs) which is

measurable, from F̂ to F . �
Note that in this case, the map Ψ may or may not be
one-to-one, but, clearly, it is onto. Then

{ΩP ,F ,P
π} , where Pπ = Ψ−1

(
P̂π

)
, (27)

is a probability space, we can define it as the Markov net
generated by π on P. A characterization of the safe nets
P for which assumption 1 holds true is given in Lemma 5
below.

An example and a counter-example of Petri net satisfying
assumption 1 are shown in Fig. 14, (a) and (b), respectively.
In this figure, we show the unfoldings of the nets shown in

(a)

Ψ

(b)

Ψ

γ

c

b

α

d

α

d

β

b

β

b

a b

α

d

α

d

β

b

β

b

a

γ

c

α β γ

d e f

β

e

α

d

γ

f

ε

a c

δ ζ

b b

a b c

a c

α β γ

e fd

a b c

Fig. 14. Showing the unfoldings of the nets of figures 12/13, (a)
and (b), respectively. Unfolding (a) satisfies assumption 1, whereas
unfolding (b) does not.

Fig. 13, (a) and (b), respectively. It turns out that Ψ is

a one-to-one map from Ω̂P to ΩP , for the unfolding (a).

However, Ψ does not result in a map from Ω̂P to ΩP , for
the unfolding (b). Indeed, after applying pre-selection for

11

example (b), the three conditions in black in the unfold-
ing constitute a maximal coset, and therefore constitute
the termination of some finite configuration. This config-
uration is blocked at dummy, additional conditions, and
therefore Ψ maps it to a configuration which is the strict
prefix of some run of the original net. This strict prefix is
not a run, hence Ψ does not define a map from Ω̂P to ΩP .
We formalize this next.

B. How to check if pre-selection fails to work: doubly com-
plete prefix

In this subsection we analyze how to check assumption
1. This is not obvious, as this assumption is formulated
in terms of the unfoldings, which are infinite objects. Our
objective is to provide an effective criterion to check this
assumption. The following lemma is useful, as a first step
toward achieving this objective:

Lemma 5: Assumption 1 is violated iff there exists ω̂ ∈
Ω̂P , satisfying the following conditions:
(i) some maximal node of ω̂ is a dummy condition, and
(ii) if ωd denotes the configuration obtained by erasing,
in ω̂, the maximal dummy conditions and corresponding
dummy events, then ωd possesses another extension ω̂′ ∈
Ω̂P with no maximal dummy conditions.

Proof: We first prove the “if” part. Due to (ii), re-
moving the dummy conditions and events from maximal
configuration ω̂′ yields a maximal configuration ω′ ∈ ΩP .
On the other hand, performing the same for ω̂ yields a
strict sub-configuration of the same ω′,

we call it ωd. (28)

Hence ωd is not a maximal configuration of the unfolding
of P , and is therefore not an element of ΩP . In fact, our
operation maps elements of the extended net to not nec-
essarily maximal configurations of the original net. Hence
assumption 1 is violated.

To prove the “only if” part, we proceed by contradiction.
Assume first that condition (i) is not satisfied. Then clearly
assumption 1 holds true—in this case, the map Ψ is one-
to-one. Next, assume that (i) is satisfied, but (ii) is not.
Then all proper extensions of ωd possess maximal dummy
places. Hence all such maximal configurations of Ω̂P are
mapped to ωd, thus ωd is a maximal configuration of ΩP .
Again, assumption 1 holds true in this case. �
Complete prefixes, and doubly complete prefixes. We are
still not happy, since lemma 5 remains formulated in terms
of unfoldings and runs. We shall use the concept of com-
plete prefix and its new related notion we propose here,
we call it the doubly complete prefix. McMillan [24] and,
later, Esparza and Römer [14], have shown that reachabil-
ity properties of Petri net unfoldings are revealed by some
finite prefixes of them, called complete:

Definition 6 (finite complete prefix) We say that a branch-
ing process B of a Petri net P is complete if, for every reach-
able marking M of P , and for every transition t enabled
by M , there exists a cut c of B labelled by M (i.e., M is
represented in B), and there exists an event e ∈ c• which
is labelled by t (i.e., t is represented by e). �

It has been proved by McMillan [24] that finite complete
prefixes exist for every Petri net unfolding, and Esparza
and Römer [14] have provided an efficient algorithm for
computing a complete prefix, which is minimal in some
sense detailed in this reference. This minimal complete
prefix of Petri net P is denoted by BP .

Unfortunately, complete prefixes are not enough in gen-
eral to check Assumption 1, or, equivalently, the two condi-
tions of Lemma 5. We need to consider the doubly complete
prefix, which is described informally as follows. Take the
complete prefix, and make enough copies of it. The initial
marking is represented by the minimal cut of the prefix,
and also by some other cuts, lying at the “exit boundary”
of the prefix. Re-paste a copy of the complete prefix at
each “exit” cut representing the initial marking, this yields
the doubly complete prefix.

This construction is illustrated in Fig. 15. In this fig-

α

d

γ

c

b

β

a

a Petri net

α

d

γ

c

β

b

finite complete prefix
its minimal

a b

α

d

γ

c

β

b

a b

α

d

γ

c

β

b

a b

finite complete prefix
re−pasting the

γ

c

b

α

d

α

d

β

b

β

b

the resulting
doubly complete prefix

a

Fig. 15. Doubly complete prefix. Note that only one instance of the
branch a → γ → c is kept after re-pasting.

ure, we show a Petri net (top-left) and its complete prefix
(top-right). In this complete prefix, there are two cuts as-
sociated with the marking a,b: the minimal cut, and one
of the exit cuts. In the bottom-left diagram, we show two
copies of the complete prefix. The minimal cut of the sec-
ond copy is superimposed on the exit cut of the first copy,
this is depicted by the two grey thick links. Then, the two
branches a → γ → c are also superimposed, this yields the
doubly complete prefix shown in the bottom-right diagram.

Let us formalize this construction. Let P be a Petri net
and let BP a minimal complete prefix. In what follows we
write B instead of BP for the sake of clarity. For M a
reachable marking of P , we denote by PM the Petri net
obtained by substituting M for the initial marking M0 in
P : PM = (P, T,→,M); denote by BM a minimal complete
prefix of PM (hence B = BM0), and denote by ϕM the
homomorphism defining the unfolding of Petri net PM . For
each reachable marking M of P , denote by CM the set of

12

the cuts contained in B which represent M , CM is non
empty since B is complete. For each c ∈ CM , the following
formulas define an injective homomorphism ψc : BM 7→
ΩP :

ψc (min(BM)) = c , ϕ (ψc (n)) = ϕM (n) ,
ψc (•e) =• (ψc (e)) , ψc (e•) = (ψc (e))

•
.

(29)

Finally, we set

B2
P =

⋃

M : reachable marking
c ∈ CM

ψc(BM) (30)

Definition 7 (doubly complete prefix) Formulas (29,30)
yield a branching process of P which is an extension of the
complete prefix BP , we call it the doubly complete prefix
of P and denote it by B2

P . It satisfies the following prop-
erty: for each reachable marking M , and each marking M ′

reachable from M , B2
P contains a configuration reaching a

cut representing M , and terminating at a cut representing
M ′. �
Using this notion we can state the following theorem:

Theorem 3: The conditions of Lemma 5 can be checked
on the doubly complete prefix of Petri net P̂. �

Proof: See the Appendix. �

C. What happens if pre-selection fails to work

From the proof of Lemma 5 it can be deduced that the
action of removing the dummy places and transitions from
the maximal configurations ω̂ ∈ Ω̂P , can be made a map

Ψ : Ω̂P 7−→
(
ΩP ∪ Ωblock

P

)
(31)

where Ωblock
P denotes the set of (non maximal) configura-

tions ωd of ΩP obtained as in (28). This map Ψ is one-
to-one, from the subset of configurations which do not ter-
minate at dummy places, onto ΩP ; and it is only onto,
from the subset of configurations which terminate at some
dummy place, onto Ωblock

P . Therefore Ωblock
P models the

“blocking” of the configurations subject to a deadlocked
choice of the routers as in Theorem 3.

Equip
(
ΩP ∪ Ωblock

P

)
with its natural σ-algebra, we de-

note it again by F . Then we can again proceed as in (27)
and get a probability space

{(
ΩP ∪ Ωblock

P

)
,F ,Pπ

}
, Pπ = Ψ−1

(
P̂π

)
, (32)

in which blocking configurations are made explicit. Of
course, due to the additional set Ωblock

P , the original unfold-
ing ΩP suffers from a “loss of mass”, i.e., we expect that
Pπ(ΩP) < 1. In fact the following zero/one law holds:

Theorem 4: Consider a net P satisfying conditions (i,ii)
of lemma 5, we use the notations of this lemma. Denote
by c the set of maximal conditions of ω̂∩ ω̂′, i.e., the co-set
at which ω̂ and ω̂′ branch from each other. Assume that
the sub-marking ϕ(c) is reachable from any initial marking.
Then we have Pπ(ΩP) = 0. �

This theorem means that infinite behaviours of the original
Petri net have a zero probability with respect to probability
distribution Pπ. Of course, finite behaviours have a non
zero probability, so distribution Pπ is still of interest at
describing the probabilistic behaviour of finite prefixes of
runs.

Proof: See the Appendix. �

V. Related work

The problem of distributed diagnosis of discrete event
systems motivated the present fundamental work, we refer
the reader to [12] and the references therein. On the other
hand, to our knowledge, net unfoldings are almost unkown
in the control community. The only references we are aware
of are [22][23], both in the context of supervisory control
of discrete event systems modelled by Petri nets.

Having random variables indexed by sets that are not
linearly ordered has already been considered in the littera-
ture, in the area of probability on processes indexed by finite
graphs. This topic has its origin in the pioneering work of
A.P. Dempster in the late seventies, when the so-called
Dempster-Shafer theory of belief functions and belief net-
works was introduced in statistics and artificial intelligence
(see Shafer [29]). Since then, this topic has known signifi-
cant developments, but to our knowledge no generalization
to interacting stochastic processes (i.e., with dynamics and
infinite behaviours) has been developed. Benveniste, Lévy
and Fabre have proposed more recently [7] a theory of in-
teracting finite systems of random variables, but again no
generalization to stochastic processes with dynamics was
available. In [2] Fabre et al. have considered for the first
time a new class of stochastic Petri nets in which inter-
leaving of concurrent transitions was not randomized; they
were called Partially Stochastic Petri nets (Pspn). In [2]
an in-depth comparison of this new model with existing
stochastic generalizations of Petri nets (mostly for perfor-
mance evaluation purposes) is provided. Our purpose in
[2] was somewhat limited, although more concrete: Also
motivated by distributed diagnosis of telecommunications
networks, we proposed a generalization of the Viterbi al-
gorithm for maximum likelihood estimation of the hidden
state trajectory from a sequence of observations. See [16]
for a detailed description of the resulting distributed algo-
rithms. Since only finite runs were considered, this needed
only a limited understanding of the underlying theory, and
the full underlying probability for such Pspn was not con-
structed; the present paper provides a full development of
such a theory, under the name of Markov nets. Related
work on combining Petri nets with probabilities was al-
ready discussed in section II-A.

The work closest to ours is due to Hagen Völzer [30].
Besides ours, this work is the only one we know in the con-
text of the standard unfolding semantics, in which partial
orders, not interleavings, are randomized. This interesting
work was motivated by a different application, namely the
modeling of distributed algorithms equipped with a coin
flip construct. We refer the reader to [30] for the discussion
of the related bibliography. In fact, Hagen Völzer proposes

13

a construction equivalent to ours, for the case of free choice
conflicts, but with a different proof of its construction (the
proof is available in [31]). He does not consider stopping
times and Markov properties, and does not study the ex-
tension to general safe Petri nets. On the other hand, he
focuses on the comparison of sequential versus concurrent
semantics, and fairness.

Finally, motivated by the findings of the present work,
S. Haar has proposed [20] an approach to probabilizing
partial order behaviors, in which the unfolding semantics
is modified. In fact, rather than the token/place-oriented
view of the branching process semantics, his approach is
based on a cluster view (with clusters being subnets as de-
fined in the proof of lemma 2). Each net being disjointly
partitioned into its clusters, probabilistic choice of actions
can be made within each cluster; the events of the resulting
parallel runs correspond to firings of multi-sets of transi-
tions, rather than single transitions as in the present work.
The probability of the firing events can thus be renormal-
ized on a finite static substructure of the net, rather than
on layers of the branching process unfoldings (recall that
these layers can grow infinitely long). As a result, the clus-
ter approach is always applicable without restrictions to
arbitrary Petri nets. The cost is, of course, the use of a
different semantics, with an additional effort necessary to
include the scheduling of clusters; see the application, in
[19], of this to partial order fairness. Both branching pro-
cess and cluster approaches have their respective merits
and drawbacks, and should be seen as complementing one
another.

VI. Discussion and perspectives

We have proposed a new theory for extending Markov
chains, semi-Markov chains, or Hmm’s to distributed net-
worked systems. Our generalization was called Markov
nets, to account for its tight relation to Petri nets. Our
model offers means for handling local state and time, and
concurrency. Markov nets can be composed, and in do-
ing so, non interacting components are independent in
the probabilistic sense, and more generally, independence
matches concurrency. Runs of Markov nets are partial or-
ders, and therefore are insensitive to interleavings. To our
knowledge, no previously existing probabilistic model for
communicating automata or Petri nets has these features.

We have used unfoldings of Nielsen, Plotkin, and Winskel
[26], see also [13] and [14], [15]. We have considered here
the case of unfoldings for 1-safe nets, but the reader should
remember that the unfolding technique can be extended to
general nets, see [18][17]. While preparing this work, we
were not expecting that looking for an adequate concept of
time and associated σ-algebras, we would discover stopping
times and layers, two concepts that seem to be of interest
per se in Petri net unfolding theory.

This research effort was motivated by the case of dis-
tributed diagnosis and event correlation in telecommunica-
tions networks and services, see [16]. In the latter paper,
distributed diagnosis is regarded as the problem of esti-
mating the most likely hidden state trajectory from dis-

tributed observations, by performing a new kind of “dis-
tributed Viterbi” algorithm.

Besides performing hidden state estimation via dis-
tributed Viterbi algorithm, our study allows also to en-
vision the learning of the parameters of this stochastic sys-
tem, from distributed observations. Our next objective is
to generalize existing EM-type of algorithms used for Hmm

identification, to the distributed case. Also, one can imag-
ine that this framework opens the route toward probabilis-
tic simulation and performance evaluation tools for large
distributed networked systems.

Appendix

Proof of Lemma 1

Assume first that B = Bτ for some stopping time τ .
Select some condition b ∈ Bτ such that ϕ(b) ∈ Pc and
b• ∩ Bτ 6= ∅. Denote by n the number of steps needed to
reach b. Since b• ∩ Bτ 6= ∅, there exists a run ω containing
b and such that τ(ω) > n. Since τ is a stopping time, for
any ω′ such that ω′

n = ωn, we also have τ(ω′) > n. Hence
b• ∩ ω′ ⊆ Bτ , this proves the only if part.

To prove the if part, assume that B satisfies the property
stated in the lemma. For every run ω, define τ(ω) as being
the length of the prefix ω ∩ B. Pick a run ω and set n =
τ(ω). Select an arbitrary ω′ such that ω′

n = ωn. The
following cases need to be considered. 1/ ω′

n+1 = ωn+1:
then, τ(ω′) = τ(ω). 2/ ω′

n+1 6= ωn+1 but ω′
n+1 6⊆ B: then,

again τ(ω′) = τ(ω). 3/ ω′
n+1 6= ωn+1 but ω′

n+1 ⊆ B:
the latter case cannot occur, since it violates the special
assumption on B. Thus, n = τ(ω) and ω′

n = ωn together
imply τ(ω′) = τ(ω), hence τ is a stopping time.

Proof of Lemma 4

Lemma 4 is an immediate corollary of the following
lemma, which characterizes the structure of layers for free
choice nets (see (5) for the definition of Bc):

Lemma 6: Let L be a layer of ΩP , and denote by
◦L

4

=L∩•L the “interior” of L. Then |◦L∩Bc| ≤ 1. Denote
by bL the unique branching condition of ◦L, if any. Then:
bL ∈ min(L). Also, ϕ is a bijection from b•L onto ϕ(bL)

•
.

Proof: The last statement is easy, so we focus on the
other ones. Consider the canonical decomposition of L,
namely L = B′′/B. Consider the case B ∩ L ∩ Bc 6= ∅
(the other case is trivial), and select some condition bo ∈
B ∩ L ∩ Bc. Let L′ be the largest subnet of ΩP satisfying
the following properties:

1. B ∪ L′ is a branching process.
2. L′ contains {bo} ∪ b•o, and L′ ∩ E ∩ B = ∅ (i.e., L′ is a
non trivial continuation of B).
3. If e ∈ L′, then e• ∈ L′ (maximal nodes of L′, if any,
must be conditions).
4. If b ∈ L′, b 6= bo, and b ∈ Bc, then b• ∩ L′ = ∅ (a
branching condition different from bo has no continuation
within L′).

First, note that the set of subnets of ΩP satisfying the
above properties is non empty: since P is free choice, the
subnet {bo}∪ b•o ∪ (b•o)

• satisfies these properties. Since, on

14

the other hand, this set of subnets is stable under union, it

follows that L′ is well defined. By construction, B′4=B ∪L′

is a stopping time, and B 6= B′ ⊆ B′′. Since L is a layer,
this implies B′ = B′′ and thus L′ = L.

Proof of theorem 1

Consider the dag (L,≺) introduced after Lemma 3, we
denote it simply by L by abuse of notation. Stopping time
B identifies with some prefix LB of this dag, and B+ iden-
tifies with the corresponding tail LB+ of it (be careful that
the present XB is not encoded in dag L, since the present
is not a union of layers). Define successive slices of LB+ as
follows: set

L
B+

1 = {L ∈ L : L 6∈ LB and •L ∈ LB}

∀n ≥ 1 , L
B+

n+1 = {L ∈ L : L 6∈ LB+
n and •L ∈ LB+

n } ,

where •L denotes the set of parent nodes in dag L. Each

slice L
B+
n uniquely defines a corresponding slice on the un-

folding ΩP by taking the union of the layers represented in

slice L
B+
n , we denote by Sn the slice of ΩP obtained in this

way. Of course, we have B+ =
⋃

n≥1 Sn, and we claim that

F+
B =

∨

n≥1

FSn
, (33)

where FSn
is defined according to (17) 3. To show (33), it

is enough, by induction, to show that

F+
B = FS1

∨
F+

B′ , where B′ = B ∨ S1 . (34)

In the sequel, we write S for short instead of S1. Property
(34) rewrites as follows:

∀ω, ω′ :
ω ∼S ω

′

and ω ∼B′

+
ω′

}
⇒ ω ∼B+ ω′ (35)

Now, assume that ω and ω′ satisfy ω ∼S ω
′ and ω ∼B′

+
ω′.

Consequently there exist two isomorphisms ψ and ψ+ of la-
belled graphs, such that ω′

S = ψ(ωS) and ω′
B′

+
= ψ+(ωB′

+
).

Consider the suffix boundary of S, defined by S+ = S∩B′
+.

Since S is a slice, we have

min(B′
+) = S+ . (36)

We wish to glue together ψ and ψ+ at ωS ∩ S+ = ωS+ .
However it is not generally true that ψ and ψ+ agree on
ωS+ , so gluing is not immediate in this case. To circumvent
this difficulty, we remark that the restrictions ψ/S+

and

ψ+/S+
, of ψ and ψ+ to S+ respectively, both relate ωS+

and ω′
S+

via an isomorphism of labelled graphs. Hence
there must exist an automorphism χ of ωS+ , such that

ψ+/S+
◦χ = ψ/S+

,

3An active reader would probably guess that F+

B
=

�
L⊂B+

FL

also holds, but this conjecture is indeed false! The reason is that
layers in fact also carry hidden information about their past: for
instance the predicate ωL 6= ∅ indicates that ωB belongs to the set of
configurations reaching L, and sometimes this set is even a singleton!
Slices were introduced to avoid this oddity: all runs traverse all slices.

where ◦ denotes the composition of maps. Using the defini-
tion of branching processes, χ extends to an automorphism
of ωS+ ∪ (ωS+)

•
, and, by induction and using (36), it ex-

tends to an automorphism of ωB′

+
, we call it again χ. But

now, ψ and ψ+◦χ are two isomorphisms which map ωS

onto ω′
S and ωB′

+
onto ω′

B′

+
respectively, and agree on S+.

Hence they can be glued together to form an isomorphism
ψB+ , mapping ωB+ onto ω′

B+
. This proves (35) and hence

also (34) and (33).
We are now ready to prove our Markov property. We

first prove that, for A ∈ FS , the following holds:

Pπ (A |FB) = Pπ (A |XB) . (37)

By definition of FS it is enough to prove (37) for A a set
of the form A = {v : v ∼S ω(1)}, for ω(1) a fixed run
belonging to ΩP . For ωB a maximal configuration of B,
define

Z(ωB) =
∑

vS :

�
ωB � vS

v ∼S ω(1)

Pπ
S(vS |ωB) , (38)

where
∑

∅ = 0 by convention, and

Pπ
S(vS |ωB) =

∏

L ∈ LS

vL 6= ∅

Pπ
L(vL |ωB) , (39)

where Pπ
L is defined in (10), and LS

4

={L ∈ Lc : L ⊆ S}.
Note that ωB � vL holds in (39), since ωB � vS and L ⊂ S ,
hence Pπ

L(vL |ωB) therein is well defined. We claim the
following:

Z is XB − measurable (40)

Z = Pπ (A |FB) . (41)

Note that (40,41) together prove (37). To prove (40) ex-
pand (38,39) using (10), this yields

Z(ωB) =
∑

vS:

�
ωB � vS

v ∼S ω(1)

∏

L ∈ LS

vL 6= ∅

1

CL

∏

b∈Lc∩vL

π(ϕ(e) | ϕ(b)) (42)

where e is the unique event belonging to vL ∩ b•. To prove
(40) we need to show that:

ω ∼XB
ω′ ⇒ Z(ωB) = Z(ω′

B) . (43)

SetM = ϕ(max(ωB)∩XB) andM ′ = ϕ(max(ω′
B)∩XB). M

and M ′ are the live submarkings reached by ω and ω′, re-
spectively, when exiting B. Note that, since max(ωB) \XB

(resp. max(ω′
B) \XB) do not belong to B+, the correspond-

ing submarkings are blocked for ever. Assume ω ∼XB
ω′,

this implies M = M ′. For c a co-set, denote by Ωc
P the

subnet of unfolding ΩP containing all nodes x such that
x � c, i.e., Ωc

P is the “future” of c. Take in particu-
lar c = max(ωB) ∩XB and c′ = max(ω′

B) ∩XB. Since

M = M ′, it follows that Ωc
P and Ωc′

P are isomorphic, when

15

seen as labelled graphs. But the vS ’s defined in the right
hand side of formula (42), for the two cases of expand-

ing Z(ωB) and Z(ω′
B), are all subsets of Ωc

P and Ωc′

P , re-
spectively. And the same holds for the sets of branching
conditions defined in the right hand side of formula (42).
Since, on the other hand, the terms π(ϕ(e) |ϕ(b)) involved
in these expansion are invariant under an isomorphism of
labelled occurrence nets, we deduce that Z(ωB) = Z(ω′

B)
holds, this proves (43).

Let us prove (41). We need to prove that

∀A′ ∈ FB , Pπ(A′ ∩ A) = Eπ(1A′ Z) , (44)

where Eπ denotes expectation with respect to Pπ, and 1A′

is the indicator function of set A′. It is enough to prove
(44) for A′ = {v : v ∼B ω(0)}, where ω(0) is fixed. But
then, using explicit formulas (10,11), we get

Pπ
({
v : (v ∼B ω

(0)) ∧ (v ∼S ω
(1))

})

= Pπ
B(ω

(0)
B) ×

∑

v :

�
ω

(0)
B

� vS

v ∼S ω(1)

Pπ
S

(
vS

∣∣∣ω(0)
B

)

=

∫

(v ∼B ω(0))

Z(ω
(0)
B) dPπ(w) ,

which proves (44). Finally, formula (37) implies, by usual
induction, our expected Markov property. �

Proof of theorem 3

Consider the two conditions (i,ii) of Lemma 5, which

involve the unfolding Ω̂P .
Denote by ĉ the set of maximal conditions of ω̂, this co-

set represents some sub-marking m̂ of P̂ . Sub-marking m̂
is composed of dummy places and is dead, meaning that
its postset is empty. Next, denote by ĉ′′ the set of maximal
conditions of ω̂ ∩ ω̂′, i.e., the co-set at which the two con-
figurations ω̂ and ω̂′ branch. This co-set represents some
sub-marking m̂′′ of P̂ . Complement co-set ĉ′′ into a cut ĉ′′

contained in ω̂∩ ω̂′, having no dummy conditions, and rep-

resenting the marking M̂ ′′. Sub-marking m̂′′ possesses no
dummy place, and sub-marking m̂ is reachable from mark-

ing M̂ ′′. Focus on ω̂′, and denote by M̂′ the set of markings

traversed by ω̂′ after reaching M̂ ′′. Then M̂′ contains no
dead submarking composed of dummy places.

To summarize, conditions (i,ii) of Lemma 5 are equiva-
lent to the following condition, which can be checked using
the doubly-complete prefix of P̂:

Condition 1: There exist a reachable marking M̂ ′′, a

sub-marking m̂ reachable from M̂ ′′, and a firing sequence

M̂′ starting from M̂ ′′, such that: 1/ M̂ ′′ contains no
dummy place, 2/ m̂ is dead and composed of dummy

places, and 3/ M̂′ contains no dead submarking composed
of dummy places.

Proof of theorem 4

Since co-set c is reachable from any marking, it is a recur-
rent set, meaning that almost every infinite configuration

of Ω̂P contains infinitely many copies of co-set c. Denote by
Ω̂n the subset of Ω̂P composed of the configurations that
have crossed at least n times co-set c. We have

Ψ−1(ΩP) ⊆ lim sup
n→∞

Ω̂n (45)

Let α > 0 be the probability that the choices performed
at co-set c result in a blocking. We have P̂π(Ωn) ≤

(1 − α)P̂π(Ωn−1), whence

∑

n

P̂π(Ωn) ≤
∑

n

(1 − α)n < +∞ . (46)

From (45) and (46), and by the Borel-Cantelli lemma, we
get that

Pπ(ΩP) = P̂π
(
Ψ−1(ΩP)

)
= 0 .

This proves the theorem.

Acknowledgement. The authors wish to thank Samy
Abbes for pointing out mistakes in a draft version of this
article.

References

[1] A. Benveniste, E. Fabre, and S. Haar. “Markov nets: probabilis-
tic models for distributed and concurrent systems”. Irisa Re-
search Report 1538, May 2003. Extended version of this paper
ftp://ftp.irisa.fr/techreports/2003/PI-1538.ps.gz

[2] A. Aghasaryan, E. Fabre, A. Benveniste, R. Boubour, C. Jard.
Fault detection and diagnosis in distributed systems : an ap-
proach by partially stochastic Petri nets, Discrete event dynamic
systems: theory and application, special issue on Hybrid Sys-
tems, vol. 8, pp. 203-231, June 1998.

[3] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli and
G. Franceschinis. Modeling with Generalized Stochastic Petri
nets, Wiley series in parallel computing, 1995.

[4] M. Ajmone Marsan, G. Balbo, G. Chiola, and G. Conte. Gen-
eralized Stochastic Petri Nets Revisited: Random Switches and
Priorities. Proc. PNPM ’87, IEEE-CS Press, pp. 44–53.

[5] F. Baccelli, S. Foss, and B. Gaujal. Free choice Petri nets—an
algebraic approach. IEEE Trans. on Autom. Control, 41(12),
1751–1778, Dec. 1996.

[6] F. Bause and P.S. Kritzinger. Stochastic Petri Nets, An intro-
duction to the Theory. Verlag Vieweg, 1996.

[7] A. Benveniste, B.C. Levy, E. Fabre, P. Le Guernic, “A Calcu-
lus of Stochastic Systems: specification, simulation, and hid-
den state estimation,” Theoretical Computer Science, no. 152,
pp. 171-217, 1995.

[8] A. Benveniste, E. Fabre, S. Haar, C. Jard. Diagnosis of asyn-
chronous discrete event systems, a net unfolding approach. To
appear in IEEE Trans. on Autom. Control, May 2003.

[9] C. Cassandras and S. Lafortune. Introduction to discrete event
systems. Kluwer Academic Publishers, 1999.

[10] R. David and H. Alla. Petri nets for Modeling of Dynamical
Systems – a Survey, Automatica, 30(2), 175–202, 1994.

[11] J. Desel, and J. Esparza. Free Choice Petri Nets. Cambridge
University Press, 1995.

[12] R. Debouk, S. Lafortune, and D. Teneketzis. Coordinated de-
centralized protocols for failure diagnosis of discrete event sys-
tems. Discrete Event Dynamic Systems: theory and application.
10(1/2), 33-86, 2000.

[13] J. Engelfriet. Branching Processes of Petri Nets. Acta Informat-
ica 28, 1991, pp 575–591.

[14] J. Esparza, S. Römer, and W. Vogler. An improvement of McMil-
lan’s unfolding algorithm. Formal Methods in System Design
20(3):285–310, May 2002.

[15] J. Esparza, and S. Römer. An unfolding algorithm for syn-
chronous products of transition systems, in proceedings of CON-
CUR’99, LNCS 1664, Springer Verlag, 1999.

[16] E. Fabre, A. Benveniste, C. Jard, L. Ricker, and M. Smith. Dis-
tributed state reconstruction for discrete event systems. Proc. of

16

the 2000 IEEE Control and Decision Conference (CDC), Syd-
ney, Dec. 2000.

[17] S. Haar. Branching processes of general S/T-Systems. Proc.
Workshop on Concurrency, MFCS’98, Brno. Electronic Notes
in Theoretical Computer Science vol. 18, Elsevier, 1998.
http://www.elsevier.nl/locate/entcs/volume18.html

[18] S. Haar. Occurrence Net Logics. Fundamenta Informaticae 43,
pp 105–127, 2000.

[19] S. Haar. Probabilistic Unfoldings and Partial Order Fairness in
Petri Nets. In: H. Hermanns and R. Segala (eds.), Process Al-
gebra and Probabilistic Methods. Proceedings PAPM-ProbMiV
2002, LNCS 2399, 95–114.

[20] S. Haar. Probabilistic Cluster Unfoldings. Fundamenta Infor-
maticae 53(3–4), 281–314, 2002.

[21] Peter J. Haas. Stochastic Petri Nets. Modeling, Stability, Simu-
lation. Springer Verlag, Springer Series in Operations Research,
July 2002.

[22] K.X. He and M.D. Lemmon. Liveness verification of discrete-
event systems modeled by n-safe Petri nets. in Proc. of the 21st
Int. Conf. on Application and Theory of Petri Nets, Aarhus,
June 2000.

[23] K.X. He and M.D. Lemmon. On the existence of liveness-
enforcing supervisory policies of discrete-event systems modeled
by n-safe Petri nets. in Proc. of IFAC’2000 Conf. on Control
Systems Design, special session on Petri nets, Slovakia, June
2000.

[24] K. McMillan. Symbolic model checking: an approach to the state
explosion problem. Kluwer, 1993.

[25] P.A. Meyer and C. Dellacherie. Probabilités et potentiels, chap.
I-IV, Hermann, Paris, ISBN 2 7056 1372 2, 1975.

[26] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event
structures, and domains. Part I. Theoretical Computer Science
13:85–108, 1981.

[27] M. Raynal. Networks and Distributed Computation: concepts,
tools and algorithms. The MIT Press, 1988, 166 pages. (ISBN
0-262-18130-4)

[28] W. Reisig. Petri nets. Springer Verlag, 1985.
[29] G. Shafer. A mathematical theory of evidence. Princeton Uni-

versity Press, Princeton NJ, 1976.
[30] H. Völzer. Randomized non-sequential processes. Proceedings

CONCUR 2001 – 12th Int. Conf. on Concurrency Theory, Aal-
borg. LNCS 2154, 184–201, Springer Verlag, August 2001.

[31] H. Völzer. Fairness, Randomisierung und Konspiration in
verteilten Algorithmen. PhD thesis, Humboldt-Universität zu
Berlin, Institut für Informatik, feb. 2001, in german.

