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ACYCLIC EDGE-COLOURING OF PLANAR GRAPHS∗

MANU BASAVARAJU† , L. SUNIL CHANDRAN‡ , NATHANN COHEN§ , FRÉDÉRIC HAVET§ , AND TOBIAS

MÜLLER¶

Abstract. A proper edge-colouring with the property that every cycle contains edges of at least three distinct colours
is called an acyclic edge-colouring. The acyclic chromatic index of a graph G, denoted χ′a(G), is the minimum k such
that G admits an acyclic edge-colouring with k colours. We conjecture that if G is planar and ∆(G) is large enough then
χ′a(G) = ∆(G). We settle this conjecture for planar graphs with girth at least 5. We also show that χ′a(G) ≤ ∆(G) + 12
for all planar G, which improves a previous result by Fiedorowicz et al. [12].

Key words. spanning galaxy; even strong subdigraph; directed star arboricity

1. Introduction. A proper edge-colouring with the property that every cycle contains edges of at
least three distinct colours is called an acyclic edge-colouring. The acyclic chromatic index of a graph G,
denoted χ′a(G), is the minimum k such that G admits an acyclic edge-colouring with k colours. Fiamčik [9]
and later Alon, Sudakov and Zaks [2] conjecture that ∆(G) + 2 colours are enough.

Conjecture 1.1 (Fiamčik [9]–Alon, Sudakov and Zaks [2]). For every graph G, χ′a(G) ≤ ∆(G)+2.
This conjecture would be tight as there are cases where more than ∆+1 colours are needed. Consider

for example a graph G on 2n vertices with at least 2n2−2n+2 edges. The union of two perfect matchings
is a cycle factor and thus contains a cycle. Thus, in an acyclic edge-colouring, at most one colour class

contains n edges. Hence there are at least 1 +
⌈
2n2−3n+2

n−1

⌉
= 2n+ 1 colours. So χ′a(G) ≥ ∆(G) + 2.

Clearly, every graph with maximum degree at most 2 has acyclic chromatic index at most 3. If
∆(G) ≤ 3 then its line-graph L(G) has maximum degree at most 4. Thus by Burnstein’s results [7]
χa(L(G)) ≤ 5 and so χ′a(G) ≤ 5. So Conjecture 1.1 holds for ∆(G) ≤ 3. In 1980, Fiamčik [10] conjectured
that K4 is the only cubic graph requiring five colours in an acyclic edge-colouring (and actually gave an
uncorrect proof of it). More generally, Alon, Sudakov and Zaks [2] conjectured that if G is a ∆-regular
graph then χ′a(G) = ∆ + 1 unless G = K2n.

However as noted by Fiamčik [11], these two conjectures are false as χ′a(K3,3) = 5. In addition,
Basavaraju, Chandran and Kummini [5] showed that all d-regular graphs with 2n vertices and d > n,
require at least d+2 colours to be acyclically edge-coloured and for every odd n, χ′a(Kn,n) = n+2. They
also showed that for every d, n such that d ≥ 5, n ≥ 2d + 3 and dn even, there exist d-regular graphs
which require at least d+ 2-colours to be acyclically edge-coloured.

Alon, Sudakov and Zaks [2] showed that Conjecture 1.1 is true for almost all regular graphs. This
was later improved by Nešetřil and Wormald [19] who proved that the acyclic edge-chromatic number
of a random ∆-regular graph is asymptotically almost surely equal to ∆ + 1. Alon, McDiarmid and
Reed [1] showed an upper bound of 64∆(G) for χ′a(G) which was later improved to 16∆(G) by Molloy
and Reed [16]. For graphs with large girth, better upper bounds are known. Muthu et al [17] showed that,
if G has girth at least 9, then χ′a(G) ≤ 6∆(G), and, if it has girth at least 220, then χ′a(G) ≤ 4.52∆(G).
Finally, Alon, Sudakov and Saks also showed that Conjecture 1.1 is true for graphs with girth at least
C∆ log(∆) for some fixed constant C.
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Muthu et al [18] proved that χ′a(G) ≤ ∆(G)+1 for outerplanar graphs. Fiedorowicz et al. [12] proved
that χ′a(G) ≤ 2∆(G) + 29 if G is planar and χ′a(G) ≤ ∆(G) + 6 if G is planar and triangle-free. This
bound has been improved for planar graphs with larger girth. Recall that the girth of a graph is the
minimum length of a cycle it contains or +∞ if it has no cycles. Hou et al. [14] showed that if G is a
planar graph G then χ′a(G) ≤ ∆(G) + 2 if G has girth at least 5, χ′a(G) ≤ ∆(G) + 1 if G has girth at
least 7 and χ′a(G) ≤ ∆(G) if G has girth at least 16 and ∆(G) ≥ 3.

Sanders and Zhao [20] showed that planar graphs with maximum degree ∆ ≥ 7 have chromatic index
∆. A conjecture of Vizing [21] asserts that planar graphs of maximum degree 6 are also 6-edge-colourable.
This would be best possible as for any ∆ ∈ {2, 3, 4, 5}, there are some planar graphs with maximum degree
∆ with chromatic index ∆ + 1 [21].

We propose a conjecture analogous to the above one of Vizing.

Conjecture 1.2. There exists ∆0 such that every planar graph with maximum degree ∆ ≥ ∆0 has
an acyclic edge-colouring with ∆ colours.

In this paper, we give some evidences to this conjecture. Firstly, in Section 2, we show that every
planar graph G has an acyclic edge-colouring with ∆(G)+12 colours thus improving the 2∆(G)+29 bound
of Fiedorowicz et al. [12]. In Section 3, we show that Conjecture 1.2 holds for planar graphs of girth at least
5 (with ∆0 = 19) thus improving the results of Hou et al. [14] and Borowiecki and Fiedorowicz [6]. More
generally, we settle Conjecture 1.2 for graphs with maximum average degree less than 4− ε for any ε > 0.

The maximum average degree of G is Mad(G) = max{ 2|E(H)|
|V (H)| | H is a subgraph of G}. It is well known

that a planar graph of girth g has maximum average degree less than 2 + 4
g−2 . Conjecture 1.2 holds for

outerplanar graphs with ∆0 = 5 as shown by Hou et al. [15]. Note that sup{Mad(G) |G is outerplanar} =
4.

Our proofs are constructive and yield efficient polynomial time algorithms. We present the proofs in
a non-algorithmic way. But it is easy to extract the underlying algorithms from them.

2. Planar graphs. In this section we will prove the following result.

Theorem 2.1. χ′a(G) ≤ ∆(G) + 12 for all planar graphs G.

The proof of Theorem 2.1 relies on the following theorem of van den Heuvel and McGuiness [13]
which establishes a set of unavoidable configurations in planar graphs.

Lemma 2.2 (van den Heuvel and McGuiness [13]). Let G be a planar graph with minimum degree
at least two. Then there exists a vertex v in G with exactly d(v) = k neighbours v1, v2, . . . , vk with
d(v1) ≤ d(v2) ≤ . . . ≤ d(vk) such that at least one of the following is true:

(A1) k = 2,
(A2) k = 3 and d(v1) ≤ 11,
(A3) k = 4 and d(v1) ≤ 7, d(v2) ≤ 11,
(A4) k = 5 and d(v1) ≤ 6, d(v2) ≤ 7, d(v3) ≤ 11.

Sketch of the proof of Theorem 2.1:. Let G be a minimum counter-example with respect to the
number of vertices and edges for the statement in Theorem 2.1. Trivially G has minimum degree at
least 2. Indeed, it has no vertex v of degree 0 because any acyclic edge-colouring of G − v is an acyclic
edge-colouring of G, and it has no vertex v with a unique neighbour u, since any acyclic edge-colouring
of G− v on at least ∆(G) colours may be extended to an acyclic edge-colouring of G by assigning to uv
a colour not already assigned to an edge incident to u. From Lemma 2.2, we know that there exists a
vertex v in G such that it belongs to one of the configurations A1–A4. If there is a configuration A2, A3

and A4 in G, we show in Subsection 2.2 how to derive an acyclic edge-colouring with ∆(G) + 12 colours
of G from one of G \ vv1. Hence, we assume that there is no such configurations. In such case, we select
an appropriate edge uu′ and show again how to derive an acyclic edge-colouring of G with ∆(G) + 12
colours from one of G \ uu′. This gives a final contradiction. See Subsection 2.3.

In order to show how to extend an acyclic edge-colouring of G \ e for some edge e into an acyclic
edge-colouring of G,we first establish some preliminaries.
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2.1. Preliminaries.

Partial edge-colouring:. Let H be a subgraph of G. Then an edge-colouring c′ of H is also a partial
edge-colouring of G. Note that H can be G itself. Thus an edge-colouring c of G itself can be considered
a partial edge-colouring. A partial edge-colouring c of G is said to be a proper partial edge-colouring if
c is proper. A proper partial edge-colouring c is called acyclic if there are no bichromatic cycles in the
graph. Note that with respect to a partial edge-colouring c, c(e) may not be defined for an edge e. So,
whenever we use c(e), we are considering an edge e for which c(e) is defined, though we may not always
explicitly mention it.

Let c be a partial edge-colouring of G. We denote the set of colours in c by C = {1, 2, . . . , k}. For
any vertex u ∈ V (G), we define Fu(c) = {c(uz) | z ∈ NG(u)}, with NG(u) denotes the set of vertices
adjacent tot u. For an edge ab ∈ E, we define Sab(c) = Fb(c)−{c(ab)}. Note that Sab(c) need not be the
same as Sba(c). We will abbreviate the notation to Fu and Sab when the edge-colouring c is understood
from the context.

The following definitions arise out of our attempt to understand what may prevent us from extending
a partial edge-colouring of G \ e to G.

Maximal bichromatic Path:. An (α,β)-maximal bichromatic path with respect to a partial edge-
colouring c of G is a maximal path consisting of edges that are coloured using the colours α and β
alternatingly. An (α,β,a,b)-maximal bichromatic path is an (α,β)-maximal bichromatic path which starts
at the vertex a with an edge coloured α and ends at b. We emphasize that the edge of the (α,β,a,b)-
maximal bichromatic path incident on vertex a is coloured α and the edge incident on vertex b can be
coloured either α or β. Thus the notations (α,β,a,b) and (α,β,b,a) have different meanings. Also note
that any maximal bichromatic path will have at least two edges. The following fact is obvious from the
definition of proper edge-colouring.

Fact 2.3. Given a pair of colours α and β of a proper edge-colouring c of G, there is at most one
maximal (α,β)-bichromatic path containing a particular vertex v, with respect to c.

A colour α 6= c(e) is a candidate for an edge e in G with respect to a partial edge-colouring c of G
if none of the adjacent edges of e is coloured α. A candidate colour α is valid for an edge e if assigning
the colour α to e does not result in any bichromatic cycle in G.

Let e = ab be an edge in G. Note that any colour β /∈ Fa ∪ Fb is a candidate colour for the edge ab
in G with respect to the partial edge-colouring c of G. A sufficient condition for a candidate colour being
valid is captured in the lemma below.

Lemma 2.4 (Basavaraju and Chandran [4]). A candidate colour for an edge e = ab is valid if
(Fa(c) ∩ Fb(c)) \ {c(ab)} = Sab(c) ∩ Sba(c) = ∅.

Now even if Sab(c) ∩ Sba(c) 6= ∅, a candidate colour β may be valid. But if β is not valid, then what
may be the reason? It is clear that colour β is not valid if and only if there exists α 6= β such that a
(α,β)-bichromatic cycle gets formed if we assign colour β to the edge e. In other words, if and only if,
with respect to edge-colouring c of G there existed an (α, β, a, b)-maximal bichromatic path with α being
the colour given to the first and last edge of this path. Such paths play an important role in our proofs.
We call them critical paths. It is formally defined below.

Critical Path:. Let ab ∈ E and c be a partial edge-colouring of G. Then an (α, β, a, b)-maximal
bichromatic path which starts out from the vertex a via an edge coloured α and ends at the vertex b via
an edge coloured α is called an (α, β, a, b)-critical path. Note that any critical path will be of odd length.
Moreover the smallest length possible is three.

Let a ∈ NG\vv1(x) and let c(x, a) = α. Let β ∈ Sxa. colour β is said to be actively present in a set
Sxa, if there exists a (α, β, xy) critical path.

A natural strategy to extend a acyclic partial edge-colouring c of G would be to try to assign one of
the candidate colours to an uncoloured edge e. The condition that a candidate colour is not valid for the
edge e is captured in the following fact.

Fact 2.5. Let c be a partial edge-colouring of G. A candidate colour β is not valid for the edge
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e = ab if and only if for some colour α ∈ Sab ∩ Sba, there is an (α, β, a, b)-critical path in G with respect
to c.

Colour exchange:. Let c be a partial edge-colouring of G. Let u, v, w ∈ V (G) and uv, uw ∈ E(G).
We define colour exchange with respect to the edge uv and uw, as the modification of the current partial
edge-colouring c by exchanging the colours of the edges uv and uw to get a partial edge-colouring c′, i.e.,
c′(uv) = c(uw), c′(uw) = c(uv) and c′(e) = c(e) for all other edges e in G. The colour exchange with
respect to the edges uv and uw is said to be proper (resp. acyclic) if the edge-colouring obtained after
the exchange is proper (resp. acyclic). The following fact is obvious.

Fact 2.6. Let c′ be the partial edge-colouring obtained from an acyclic partial edge-colouring c by
the colour exchange with respect to the edges uv and uw. Then c′ is proper if and only if c(uv) /∈ Suw
and c(uw) /∈ Suv.
The colour exchange is useful in breaking some critical paths as is clear from the following lemma.

Lemma 2.7 (Basavaraju and Chandran [4, 3]). Let u, v, w, a and b be vertices of G such that
uv, uw and ab are edges. Also let α and β be two colours such that {α, β} ∩ {c(uv), c(uw)} 6= ∅ and
{v, w} ∩ {a, b} = ∅. Suppose there exists a (α, β, a, b)-critical path that contains vertex u, with respect to
an acyclic partial edge-colouring c of G. Let c′ be the partial edge-colouring obtained from c by the colour
exchange with respect to the edges uv and uw. If c′ is proper, then there is no (α, β, a, b)-critical path in
G with respect to c′.

Multisets and Multiset Operations:. Recall that a multiset is a generalized set where a member can
appear multiple times. If an element x appears t times in the multiset S, then we say that the multiplicity
of x in S is t. In notation multS(x) = t. The cardinality of a finite multiset S, denoted by ‖ S ‖, is
defined as ‖ S ‖=

∑
x∈SmultS(x). Let S1 and S2 be two multisets. The reader may note that there are

various possible ways to define union of S1 and S2. For the purpose of this paper we define one such
union notion- which we call as the join of S1 and S2, denoted as S1 ] S2. The multiset S1 ] S2 have all
the members of S1 as well as S2. For a member x ∈ S1 ] S2, multS1]S2

(x) = multS1
(x) + multS2

(x).
Clearly ‖ S1 ] S2 ‖=‖ S1 ‖ + ‖ S2 ‖.

2.2. There exists a Configuration A2, A3 or A4. We now can resume the proof of Theorem 2.1.
Suppose by way of contradiction that there exists a Configuration A2, A3 or A4 in G. Let v, v1, v2 and
v3 be the vertices as described in Lemma 2.2.

In all the propositions of this subsection, we start with an acyclic edge-colouring c′ of G \ vv1. So
the abbreviations Fu and Sab stand for Fu(c′) and Sab(c

′) respectively.
Proposition 2.8. For any acyclic edge-colouring c′ of G \ vv1, |Fv ∩ Fv1 | ≥ 2.
Proof. Suppose by way of contradiction that there is an acyclic edge-colouring c′ of G \ vv1 with a

set C of ∆ + 12 colours such that |Fv ∩ Fv1 | ≤ 1.
Assume first that |Fv ∩Fv1 | = 0. The reader can verify from close examination of Configurations A2,

A3 and A4 that |Fv∪Fv1 | will be maximum for Configuration A2 and therefore |Fv∪Fv1 | = |Fv|+ |Fv1 | ≤
2 + 10 = 12. Thus there are ∆ candidate colours for the edge vv1 and by Lemma 2.4 all the candidate
colours are valid, a contradiction to the assumption that G is a counter-example.

Assume now that |Fv ∩Fv1 | = 1. It is easy to see that |Fv ∪Fv1 | = |Fv|+ |Fv1 | − |Fv ∩Fv1 | ≤ 11 and
hence there are at least ∆ + 1 candidate colours for the edge vv1. Let Fv ∩ Fv1 = {α} and let u ∈ N(v)
be a vertex such that c′(vu) = α. Now if none of the ∆ + 1 candidate colours is valid for the edge vv1,
then by Fact 2.5, for each γ ∈ C \ (Fv ∪ Fv1), there exists an (α, γ, v, v1)-critical path. Since c′(vu) = α,
we have all the critical paths passing through the vertex u and hence Svu ⊆ C \ (Fv ∪ Fv1). This implies
that |Svu| ≥ |C \ (Fv ∪Fv1)| ≥ (∆ + 12)− 11 = ∆ + 1, a contradiction since |Svu| ≤ ∆− 1. Thus we have
a valid colour for the edge vv1, a contradiction to the assumption that G is a counter-example.

Let Sv be the multiset defined by Sv = Svv2 ] Svv3 ] . . . ] Svvk .
Proposition 2.9. For any acyclic edge-colouring c′ of G \ vv1, |Fv ∩ Fv1 | 6= 2.
Proof. Suppose not. Let Fv ∩ Fv1 = {α1, α2} and let v′, v′′ ∈ NG\vv1(v) and u′, u′′ ∈ NG\vv1(v1) be

such that c′(vv′) = c′(v1u
′) = α1 and c′(vv′′) = c′(v1u

′′) = α2. It is easy to see that |Fv ∪ Fv1 | ≤ 10.
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Thus there are at least ∆ + 2 candidate colours for the edge vv1. If any of the candidate colours is valid
for the edge vv1, we are done. Thus none of the candidate colours is valid for the edge vv1. This implies
that there exists a (α1, θ, v, v1)- or (α2, θ, v, v1)-critical path for each candidate colour θ.

Claim 1. The multiset Sv contains at least |Fv1 | − 1 colours from Fv1 .

Proof. Suppose not. Then there are at least two colours in Fv1 which are not in Sv. Let ν and µ
be any two such colours. Now assign colours ν and µ to the edges vv′ and vv′′ respectively to get an
edge-colouring c′′. Now since ν, µ /∈ Sv, we have ν /∈ Svv′ and µ /∈ Svv′′ . Moreover µ, ν /∈ Fv(c′)\{α1, α2}.
Thus the edge-colouring c′′ is proper. Now we claim that the edge-colouring c′′ is acyclic also. Suppose
not. Then there has to be a bichromatic cycle containing at least one of the colours ν and µ. Clearly this
cannot be a (ν, µ)-bichromatic cycle since µ /∈ Svv′ . Therefore it has to be a (ν, λ)- or (µ, λ)-bichromatic
cycle where λ ∈ Fv(c′′) \ {ν, µ}. Let u be a vertex such that c′′(vu) = λ. This means that there was
already a (λ, ν, v, v′)- or (λ, µ, v, v′′)-critical path with respect to the edge-colouring c′. This implies that
ν ∈ Svu or µ ∈ Svu, implying that ν ∈ Sv or µ ∈ Sv, a contradiction. Thus the edge-colouring c′′ is
acyclic. Let u1, u2 ∈ NG\vv1(v1) be such that c′′(v1u1) = ν and c′′(v1u2) = µ.

Note that |Fv ∪Fv1 | ≤ 10 (The maximum value of |Fv ∪Fv1 | is attained when the graph has Configu-
ration A2). Therefore there are at least ∆ + 2 candidate colours for the edge vv1. If any of the candidate
colours are valid for the edge vv1, then we are done as this is a contradiction to the assumption that G
is a counter-example. Thus none of the candidate colours is valid for the edge vv1 and therefore there
exist either a (ν, θ, v, v1)-critical or a (µ, θ, v, v1)-critical path for each candidate colour θ. Let Cν and Cµ
respectively be the set of candidate colours which are forming critical paths with colours ν and µ. Then
clearly Cν ⊆ Sv1u1

and Cµ ⊆ Sv1u2
since c′′(v1u1) = ν and c′′(v1u2) = µ. Now we exchange the colours

of the edges vv′ and vv′′ to get a modified edge-colouring c. Note that c is proper since µ /∈ Svv′ and
ν /∈ Svv′′ . By Lemma 2.7, all (ν, β, v, v1)-critical paths where β ∈ Cν and all (µ, γ, v, v1)-critical paths
where γ ∈ Cµ are broken. Now if none of the colours in Cν are valid for edge vv1, then it means that
for each β ∈ Cν , there exists a (µ, β, v, v1)-critical path with respect to the edge-colouring c, implying
that Cν ⊆ Sv1u2

. Since the recolouring involved no candidate colours, we still have Cµ ⊆ Sv1u2
. Thus we

have (Cν ∪Cµ) ⊆ Sv1u2
. But |Cν ∪Cµ| ≥ ∆ + 2 which implies that |Sv1u2

| ≥ ∆ + 2, a contradiction since
|Sv1u2 | ≤ ∆− 1.

Claim 2. There exists at least two colours β1 and β2 in C \Fv1 with multiplicity at most one in Sv.

Proof. In view of Claim 1 we have
∑
x∈C\Fv multSv (x) =‖ Sv ‖ −(|Fv| − 1). Thus if ‖ Sv ‖

−(|Fv1 |−1) ≤ 2|(C \Fv1)|−3, then there exist at least two colours β1 and β2 in C \Fv1 with multiplicity
at most one in Sv. Thus it is enough to prove ‖ Sv ‖≤ 2|C|−|Fv1 |−4 ≤ 2∆+24−|Fv1 |−4 = 2∆+20−|Fv1 |.
Now we can easily verify that ‖ Sv ‖ +|Fv1 | ≤ 2∆ + 20 for Configurations A2, A3 and A4 as follows:

• For A2, ‖ Sv ‖ +|Fv1 | ≤ (d(v2)− 1) + (d(v3)− 1) + |Fv1 | = (∆− 1) + (∆− 1) + 10 = 2∆ + 8.
• For A3, ‖ Sv ‖ +|Fv1 | ≤ (d(v2)−1)+(d(v3)−1)+(d(v4)−1)+|Fv1 | = 10+(∆−1)+(∆−1) +6 =

2∆ + 14.
• For A4, ‖ Sv ‖ +|Fv1 | ≤ (d(v2)− 1) + (d(v3)− 1) + (d(v4)− 1) + (d(v5)− 1) + |Fv1 | = 6 + 10 +

(∆− 1) + (∆− 1) + 5 = 2∆ + 19.

The colours β1 and β2 of Claim 2 are crucial to the proof. Now we make another claim regarding β1 and
β2:

Claim 3. β1 and β2 ∈ Fv.
Proof. Without loss of generality, let β1 /∈ Fv. Then recalling that β1 /∈ Fv1 , β1 is a candidate for the

edge vv1. If it is not valid, then there exists either an (α1, β1, vv1)- or (α2, β1, v, v1)-critical path with
respect to c′. Since the multiplicity of β1 in Sv is at most one, we have the colour β1 in exactly one of
Svv′ or Svv′′ . Without loss of generality let β1 ∈ Svv′′ . Hence there exists an (α2, β1, v, v1)-critical path
with respect to c′.

Now recolour the edge vv′ with colour β1 to get an edge-colouring c. Then c is proper since β1 /∈ Fv
and β1 /∈ Svv′ . We shall prove that is is acyclic. Suppose, by way of contradiction, that there is
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a bichromatic cycle with respect to c. Then it has to be a (β1, γ)-bichromatic cycle for some γ ∈
Fv(c) \ c(vv′). Let a ∈ NG\vv1(v) be such that c(va) = γ. Then the (β1, γ)-bichromatic cycle should
contain the edge va and therefore γ ∈ Sva(c). But we know that v′′ is the only vertex in NG\vv1(v) such
that β1 ∈ Svv′′ . Therefore a = v′′. This implies that γ = α2 and there existed an (α2, β1, v, v

′)-critical
path with respect to the edge-colouring c′. This is a contradiction to Fact 2.3 since there already existed
an (α2, β1, v, v1)-critical path with respect to the edge-colouring c′.

Thus the edge-colouring c is acyclic and |Fv(c) ∩ Fv1(c)| = 1, a contradiction to Proposition 2.8.

Note that {β1, β2}∩{α1, α2} = ∅ since β1, β2 /∈ Fv1 . In view of Claim 3, we have {α1, α2, β1, β2} ⊆ Fv
and thus |Fv| ≥ 4, which implies that d(v) ≥ 5. Thus the vertex v belongs to Configuration A4. Therefore
d(v) = 5 and Fv = {α1, α2, β1, β2}. There are at least ∆ + 12− (5 + 4− 2) = ∆ + 5 candidate colours for
the edge vv1. Also recall that d(v2) ≤ 7, c′(vv′) = c′(v1u

′) = α1 and c′(vv′′) = c′(v1u
′′) = α2.

Claim 4. v2 /∈ {v′, v′′}.
Proof. Suppose not. Then, without loss of generality, v2 = v′ and c′(vv2) = α1. Now if none of

the ∆ + 5 candidate colours is valid for the edge vv1, then they all are in critical paths that contain
either the edge vv′ or the edge vv′′. Now |Svv′ | + |Svv′′ | ≤ 6 + ∆− 1 = ∆ + 5. Since each of the ∆ + 5
candidate colours has to be present in either in Svv′ or Svv′′ , we infer that Svv′′ ∪ Svv′ is exactly the set
of candidate colours, i.e., |Svv′ | + |Svv′′ | = ∆ + 5. This requires that |Svv′ | = 6, |Svv′′ | = ∆ − 1 and
Svv′′ ∩ Svv′ = ∅. Since for each γ ∈ Svv′′ , we have (α2, γ, v, v1)-critical path containing u′′, we can infer
that Svv′′ ⊆ Sv1u′′ (Recall that c′(v1u

′′) = α2). But since |Sv1u′′ | ≤ ∆− 1, we have Svv′′ = Sv1u′′ . Thus
Sv1u′′ ∩ Svv′ = Svv′′ ∩ Svv′ = ∅.

Now we exchange the colours of the edges vv′ and vv′′ to get an edge-colouring c. Hence c(vv′) = α2

and c(vv′′) = α1. The edge-colouring c is proper since α2 /∈ Svv′ and α1 /∈ Svv′′ (Recall that Svv′ and Svv′′

contain only candidate colours). We shall prove that c is also acyclic: A bichromatic cycle with respect
to c has to be an (α1, η)- or (α2, η)-bichromatic cycle for some η ∈ Fv. Clearly it cannot be an (α1, α2)-
bichromatic cycle since α1 /∈ Svv′(c) and therefore η ∈ {β1, β2} (Recall that Fv = {α1, α2, β1, β2}). This
implies that either β1 or β2 belongs to Svv′ ∪ Svv′′ . But we know that Svv′ ∪ Svv′′ is exactly the set of
candidate colours for the edge vv1, a contradiction since β1, β2 ∈ Fv cannot be candidate colours for the
edge vv1.

Therefore the edge-colouring c is acyclic. By Lemma 2.7, all the existing critical paths are broken.
Now consider a colour γ ∈ Svv′ . If it is still not valid then there has to be a (α2, γ, v, v1)-critical path since
c(vv′) = α2 and γ /∈ Svv′′(c). This implies that γ ∈ Sv1u′′(c), a contradiction since Sv1u′′(c)∩Svv′(c) = ∅.
Thus we have a valid colour for the edge vv1, a contradiction to the assumption that G is a counter-
example.

From Claim 4, we infer that c′(vv2) /∈ Fv∩Fv1 since Fv∩Fv1 = {c′(vv′), c(vv′′)} = {α1, α2}. Therefore
we have c(vv2) ∈ {β1, β2} since Fv = {α1, α2, β1, β2}. Without loss of generality let c(vv2) = β1. We
know that the colour β2 can be in at most one of Svv′ and Svv′′ by Claim 2. Now let v′ be such that
β2 /∈ Svv′ . Note that C \ (Svv′ ∪Fv ∪Fv1) 6= ∅ since |Svv′ ∪Fv ∪Fv1 | ≤ ∆− 1 + 4 + 5− 2 = ∆ + 6. Assign
a colour θ ∈ C \ (Svv′ ∪Fv ∪Fv1) to the edge vv′ to get an edge-colouring c′′. Now |Fv(c′′)∩Fv1(c′′)| = 1.
Thus in view of Proposition 2.8, the edge-coloring c′′ is not acyclic. Hence there is a bichromatic cycle
with respect to c′′. This bichromatic cycle should involve one of the colours α2, β1, β2 along with θ.
Since the bichromatic cycle contains a colour from Svv′ and β2 /∈ Svv′ , it cannot be a (θ, β2)-bichromatic
cycle. Now with respect to the edge-colouring c′, colour θ was not valid for the edge vv1 implying that
there existed a (α1, θ, v, v1)- or (α2, θ, v, v1)-critical path. But (α1, θ, v, v1)-critical path was not possible
since θ /∈ Svv′ by the choice of θ. Thus there existed an (α2, θ, v, v1)-critical path with respect to c′.
Thus by Fact 2.3, there cannot be an (α2, θ, v, v

′)-critical path with respect to c′ and hence there cannot
be an (α2, θ)-bichromatic cycle in c′′ formed due to the recolouring. Thus if there is a bichromatic cycle
formed, then it has to be a (β1, θ)-bichromatic cycle, which implies that β1 ∈ Svv′ .

Now taking into account the fact that β1 is in Svv′ as well as Fv, we get |Svv′ ∪ Fv ∪ Fv1 | ≤
∆ − 1 + 4 + 5 − 2 − 1 = ∆ + 5 and therefore |Svv′ ∪ Fv ∪ Fv1 ∪ Svv2 | ≤ ∆ + 5 + 6 = ∆ + 11. Thus
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C \ (Svv′ ∪Fv ∪Fv1 ∪Svv2) 6= ∅. Now recolour the edge vv′ using a colour γ ∈ C \ (Svv′ ∪Fv ∪Fv1 ∪Svv2)
to get an edge-colouring c. Clearly this edge-colouring is proper. It is also acyclic since if a bichromatic
cycle gets formed it has to be a (β1, γ) bichromatic cycle (Note that the (α2, γ) and (β2, γ) bichromatic
cycles are argued out as before). But γ /∈ Svv2 , a contradiction. Thus the edge-colouring c is acyclic.

But |Fv(c) ∩ Fv1(c)| = 1, a contradiction to Proposition 2.8. This completes the proof of Proposi-
tion 2.9.

Proposition 2.10. For any acyclic edge-colouring c′ of G \ vv1, |Fv ∩ Fv1 | 6= 3.

Proof. Suppose not. Let c′ be an acyclic edge-colouring of G \ vv1 such that |Fv ∩ Fv1 | = 3. Then
|Fv| ≥ 3 and therefore d(v) ≥ 4. Thus v belongs to either configuration A3 or A4. Let S′v be the multiset
defined by S′v = Sv\(Fv1∪Fv. Let v′, v′′, v′′′ ∈ NG\vv1(v) be such that {c(vv′), c(vv′′), c(vv′′′)} = Fv∩Fv1 .
Also let c(vv′) = α1, c(vv′′) = α2 and c(vv′′′) = α3.

Claim 5. ‖ S′v ‖≤ 2∆ + 11.

Proof. When d(v) = 4, it is clear that ‖ S′v ‖≤ (d(v2)−1)+(d(v3)−1)+(d(v4)−1) ≤ 10+∆−1+∆−1 =
2∆ + 8. On the other hand when d(v) = 5, try to recolour one of the edges vv′, vv′′, vv′′′ using a colour
in C \ (Fv ∪Fv1). There are ∆ + 6 colours in C \ (Fv ∪Fv1). If any of these colours is valid for one of vv′,
vv′′ or vv′′′, then recolouring this edge with this colour, we obtain an acyclic edge-colouring c′′ satisfying
|Fv(c′′)∩Fv1(c′′)| = 2. This contradicts Proposition 2.9. Hence there has to be a bichromatic cycle formed
during each recolouring. Since such a bichromatic cycle has to be a (γ1, γ2)-bichromatic cycle where γ1 is
the colour used in the recolouring and γ2 ∈ Fv\{γ1}, we infer that Svv′ , Svv′′ and Svv′′′ contain at least one
colour from Fv. Thus we have ‖ S′v ‖≤‖ Sv ‖ −3 ≤ (d(v2)−1)+(d(v3)−1)+(d(v4)−1)+(d(v5)−1)−3 ≤
6 + 10 + ∆− 1 + ∆− 1− 3 = 2∆ + 11.

Claim 6. There exists at least one colour β ∈ C \ (Fv ∪ Fv1) with multiplicity at most one in S′v.

Proof. Since v belongs to either configuration A3 or configuration A4, we have |Fv ∪Fv1 | ≤ 9−3 = 6.
Thus |C \ (Fv ∪Fv1)| ≤ ∆ + 6. By Claim 5 we have ‖ S′v ‖≤ 2∆ + 11 and from this it is easy to see that
there exists at least one colour β ∈ C \ (Fv ∪ Fv1) with multiplicity at most one in S′v.

Note that β ∈ C \ (Fv ∪ Fv1), where β is the colour from Claim 6 is a candidate colour for the edge
vv1. If it is not valid then there has to be a (θ, β, v, v1)-critical path, where θ ∈ {α1, α2, α3}. By Claim 6,
β can be present in at most one of Svv′ , Svv′′ and Svv′′′ . Without loss of generality let β ∈ Svv′′ . Thus
there exists an (α2, β, v, v1)-critical path with respect to the edge-colouring c′. Recolour the edge vv′

using the colour β to get an edge-colouring c. Clearly c is proper since β /∈ Svv′ and β /∈ Fv. Let us
show that it is also acyclic. A bichromatic cycle (with respect to c) has to contain the colour β as well
as a colour γ ∈ Fv(c) \ {β}. If γ = c(vw), then β ∈ Svw, for the (β, γ)-bichromatic cycle to get formed.
But v′′ is the only vertex in NG\vv1(v) such that β ∈ Svv′′ . Thus w = v′′, γ = α2 and the cycle is an
(α2, β)-bichromatic cycle. This means that there existed an (α2, β, v, v

′)-critical path with respect to
the edge-colouring c′, a contradiction to Fact 2.3 since there already existed an (α2, β, v, v1)-critical path
with respect to the edge-colouring c′. Thus the edge-colouring c is acyclic.

But |Fv(c) ∩ Fv1(c)| = 2, a contradiction to Proposition 2.9. This completes the proof of Proposi-
tion 2.10.

Proposition 2.11. For any acyclic edge-colouring c′ of G \ vv1, |Fv ∩ Fv1 | 6= 4.

Proof. Suppose not. Let c′ be an acyclic edge-colouring of G \ vv1 such that |Fv ∩ Fv1 | = 4. Then
|Fv| ≥ 4 and since d(v) ≤ 5, we have d(v) = 5. Hence v belongs to Configuration A4. Let S′v be the
multiset defined by S′v = Sv \ (Fv1 ∪Fv). Also let c(vv2) = α1, c(vv3) = α2, c(vv4) = α3 and c(vv5) = α4.

Now try to recolour an edge incident on v with a candidate colour from C \(Fv∪Fv1). If the obtained
edge-colouring c′′ is acyclic then |Fv(c′′)∩Fv1(c′′)| = 3, a contradiction to Proposition 2.10. Hence there
has to be a bichromatic cycle created due to recolouring with one of the colours from Fv. This implies
that Fv ∩S′v 6= ∅. Thus we have ‖ S′v ‖≤‖ Sv ‖ −1 ≤ (d(v2)−1) + (d(v3)−1) + (d(v4)−1) + (d(v5)−1) ≤
6 + 10 + ∆− 1 + ∆− 1− 1 = 2∆ + 13. Now since there are |C \ (Fv ∪Fv1)| ≥ ∆ + 12− (4 + 5− 4) = ∆ + 7
candidate colours and ‖ S′v ‖≤ 2∆ + 13, it is easy to see that there exists at least one candidate colour β
with multiplicity at most one in S′v.
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Note that β ∈ C \ (Fv ∪ Fv1) is a candidate colour for the edge vv1. If it is not valid then there
has to be a (θ, β, v, v1)-critical path, where θ ∈ {α1, α2, α3, α4}. We know that β can be present in at
most one of Svv2 , Svv3 , Svv4 and Svv5 . Without loss of generality let β ∈ Svv3 . Thus there exists an
(α2, β, v, v1)-critical path with respect to the edge-colouring c′. Recolour the edge vv2 using the colour
β to get an edge-colouring c. Clearly c is proper since β /∈ Svv2 and β /∈ Fv. Let us now show that
it is acyclic. A bichromatic cycle with respect to c has to contain the colour β as well as a colour
γ ∈ Fv(c) \ {β}. If γ = c(vw), then β ∈ Svw, for the (β, γ) bichromatic cycle to get formed. But v3 is the
only vertex in NG\vv1(v) such that β ∈ Svv3 . Thus w = v3, γ = α2 and it has to be a (β, α2) bichromatic
cycle. This means that there existed an (α2, β, v, v2)-critical path with respect to the edge-colouring c′,
a contradiction to Fact 2.3 since there already existed an (α2, β, v, v1)-critical path with respect to the
edge-colouring c′. Thus the edge-colouring c is acyclic.

But |Fv(c) ∩ Fv1(c)| = 3, a contradiction to Proposition 2.10.

By Lemma 2.2, dG\vv1(v) ≤ 4. Thus |Fv ∩Fv1 | ≤ |Fv| ≤ 4. Then Propositions 2.8, 2.9, 2.10 and 2.11
gives a contradiction to the assumption that G contains a Configuration A2, A3 or A4.

2.3. There is no Configuration A2, A3 or A4. In the previous subsection, we showed that G
contains no Configuration A2, A3 or A4. Then by Lemma 2.2, there is a Configuration A1, that is a
vertex v such that d(v) = 2. Now delete all the degree 2 vertices from G to get a graph H. Now since
the graph H is also planar, there exists a vertex v′ in H such that v′ belongs to one of the configurations
A1, A2, A3 or A4, say A′. The vertex v′ was not already in Configuration A′ in G. This means that
the degree of at least one of the vertices of the configuration A′ i.e., {v′} ∪NH(v′), got decreased by the
removal of 2-degree vertices. Let P = {x ∈ {v′} ∪ NH(v′) : dH(x) < dG(x)}. Let u be the minimum
degree vertex in P in the graph H. Now it is easy to see that dH(u) ≤ 11 since v′ did not belong to A′

in G.

Let N ′(u) = {x|x ∈ NG(u) and dG(u) = 2}. Let N ′′(u) = NG(u) − N ′(u). It is obvious that
N ′′(u) = NH(u).

Since u ∈ P and dH(u) ≤ 11, we have |N ′(u)| ≥ 1 and N ′′(u) ≤ 11. In G let u′ ∈ N ′(u) be a
two degree neighbour of u such that N(u′) = {u, u′′}. Now by minimality of G, the graph G \ uu′
admits an acyclic edge-colouring c′ using a set C of ∆ + 12 colours. Let F ′u = {c′(ux)|x ∈ N ′(u)} and
F ′′u = {c′(ux)|x ∈ N ′′(u)}. Now if c(u′u′′) /∈ Fu we are done since |Fu ∪ Fu′ | ≤ ∆ and thus there are at
least 12 candidate colours which are also valid by Lemma 2.4.

We know that |F ′′v | ≤ 11. If c′(u′u′′) ∈ F ′v, then let c = c′. Else if c′(u′u′′) ∈ F ′′v , then recolour edge
u′u′′ using a colour from C \ (Su′u′′ ∪ F ′′v ) to get an edge-colouring c (Note that |C \ (Su′u′′ ∪ F ′′v )| ≥
∆ + 12− (∆− 1 + 11) = 2 and since u′ has degree one in G− {uu′}, c is acyclic). Now if c(u′u′′) /∈ Fu
the proof is already discussed. Thus c(u′u′′) ∈ F ′u.

Let us now consider the edge-colouring c. Let a ∈ N ′(u) be such that c(ua) = c(u′u′′) = α.
Now if none of the candidate colours in C \ (Fu ∪ Fu′) are valid for the edge uu′, then by Fact 2.5,
for each γ ∈ C \ (Fu ∪ Fu′), there exists an (α, γ, u, u′)-critical path. Since c′(ua) = α, we have all
the critical paths passing through the vertex a and hence Sua ⊆ C \ (Fu ∪ Fu′). This implies that
|Sua| ≥ |C \ (Fu ∪ Fu′)| ≥ ∆ + 12− (1 + ∆− 1− 1) = 13, a contradiction since |Sua| = 1. Thus we have
a valid colour for the edge uu′, a contradiction to the assumption that G is a counter-example.

This final contradiction completes the proof of Theorem 2.1.

3. Planar graphs of girth at least 5. The aim of this section is to prove Conjecture 1.2 for
planar graphs of girth at least 5. Actually, we prove the conjecture for a more general class of graphs:
the graphs of maximum average degree at most 10/3. The average degree of a graph G is Ad(G) =

1
|V (G)|

∑
v∈V (G) d(v) = 2|E(G)|

|V (G)| . The maximum average degree ofG isMad(G) = max{Ad(H) |H is a subgraph of G}.
It is well known that the girth and the maximum average degree of a planar graph are related to each
other:
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Proposition 3.1. Let G be a planar graph of girth g.

Mad(G) < 2 +
4

g − 2
.

Theorem 3.2. Let ∆ ≥ 19 and G be a graph with maximum degree at most ∆ and maximum average
degree less than 10

3 . Then χ′a(G) ≤ ∆.
Theorem 3.2 and Proposition 3.1 immediately yield the following.
Corollary 3.3. Let ∆ ≥ 19 and G be a planar graph with maximum degree at most ∆ and girth at

least 5. Then χ′a(G) ≤ ∆.
More generally than Theorem 3.2, we show the following.
Theorem 3.4. For any ε > 0, there exists an integer ∆ε such that every graph G with maximum

degree at most ∆ with ∆ ≥ ∆ε and maximum average degree less than 4 − ε is acyclically ∆-edge-
colourable.

In order to prove Theorems 3.2 and 3.4, we first establish some properties of ∆-minimal graphs
which are graphs with maximum degree at most ∆, not acyclically ∆-edge-colourable but such that every
proper subgraph is. Then, by the Discharging Method, we deduce that such a graph has maximum average
degree at least 4 − ε (resp. 10/3) if ∆ is at least ∆ε (resp. 19). We will first prove, in Subsection 3.2,
Theorem 3.4 for its discharging procedure is simpler because we only establish the existence of ∆ε and
make no attempt to minimize it. We then show Theorem 3.2 in Subsection 3.3.

A vertex of degree i is called an i-vertex and an i-neighbour of a vertex v is a neighbour of v having
degree i.

3.1. Properties of ∆-minimal graphs. Proposition 3.5. A ∆-minimal graph G is 2-connected.
In particular, δ(G) ≥ 2.

Proof. If G is not connected, it is the disjoint union of G1 and G2. Both G1 and G2 admits an
acyclic ∆-edge-colouring by minimality of G. The union of these two edge-colourings is an acyclic ∆-
edge-colouring of G.

Suppose now that G has a cutvertex v. Let Ci, for 1 ≤ i ≤ p be the components of G− v and Gi the
graph induced by Ci ∪{v}. By minimality of G, all the Gi admit an acyclic ∆-edge-colouring. Moreover,
free to permute the colours we may assume that two edges incident to v get different colours. Hence
the union of these edge-colourings is an acyclic ∆-edge-colouring of G because any cycle of G is entirely
contained in one of the Gi.

Proposition 3.6. Let G be a ∆-minimal graph. For every vertex v ∈ V (G),
∑
u∈N(v) d(u) ≥ ∆+1.

Proof. Suppose by way of contradiction that there is a vertex v such that
∑
u∈N(v) d(u) ≤ ∆. Let

w be a neighbour of v. By minimality of G, G \ vw admits an acyclic edge-colouring with ∆ colours.
Now colour vw with a colour distinct from the ones of the edges incident to a neighbour of v. This is
possible as there are at most ∆ − 1 such edges distinct from vw. Doing so we clearly obtain a proper
edge-colouring. Let us now show that there is no bicoloured cycle. A cycle that does not contain vw
has edges of at least three colours as the edge-colouring of G was acyclic and a cycle containing vw must
contain an edge vu and an edge tu with u ∈ N(v) \ {w}. By construction, the colours of tu, uv and vw
are distinct.

A thread is a path of length two whose internal vertex has degree 2.
Proposition 3.7. Let k ≥ 2 be an integer and G a ∆-minimal graph. In G, a ∆-vertex is the end

of at most k threads whose other endvertex has degree at most k.
To prove this proposition we need the following lemma.
Lemma 3.8. Let H = ((A,B), E) be a bipartite graph with |A| = |B| = q such that for any vertex

a ∈ A d(a) = 1 and let KA,B be the complete bipartite graph with bipartition (A,B). If at least 3 vertices
of B of degree at least one in H then there exists a perfect matching M of KA,B such that the bipartite
graph ((A,B), E ∪M) has girth at least 6.
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Proof. Let m be the number of vertices of B of degree at least one. Let b1, . . . , bq be the vertices of
B with d(bi) ≥ 1 if i ≤ m and d(bi) = 0 otherwise. And let a1, . . . , aq be the vertices of A with aibi ∈ E
for all 1 ≤ i ≤ m. If m ≥ 3, let M = {aibi+1 | 1 ≤ i < m} ∪ {amb1} ∪ {aibi | m < i ≤ q}. Then the
unique cycle in ((A,B), E ∪M) is C = (a1, b2, a2, b3, . . . , am−1, bm, a1). It has length 2m ≥ 6.

Proof. [ of Proposition 3.7] Suppose for a contradiction that there is a ∆-vertex u with q = k + 1
threads uviwi, 1 ≤ i ≤ q, such d(wi) ≤ k. Note that q ≥ 3.

Set A = {v1, . . . , vq}. By Proposition 3.5, wi /∈ A for all 1 ≤ i ≤ q. By minimality of G, G − A
admits an acyclic ∆-edge-colouring.

Let us first extend it to the viwi as follows. Let F be the set of colours assigned to the edges incident
to u and to no vertex of A and for 1 ≤ i ≤ q let Fi be the set of colours assigned to the edges incident to
wi (and distinct from viwi). Then |F | = ∆ − q and |Fi| ≤ k − 1. For all 1 ≤ i ≤ q, let Si be the set of
colours not in F ∪ Fi. Since |F |+ |Fi| = ∆− q + k − 1 = ∆− 2 then |Si| ≥ 2.

. Assume first that |
⋃q
i=1 Si| ≥ 3, then one can assign to each viwi a colour in Si in such a way that

at least 3 colours appear on such edges and that different colours appear on viwi and vjwj ifwi = wj .
We will now colour the edges uvi for 1 ≤ i ≤ q. Therefore let H1 = ((A,B), E1) be the bipartite graph
with B the set of q colours {b1, . . . , bq} not in F and in which vi is adjacent to bj if c(viwi) = bj . As
long as some vi has degree 0 then add an edge between ai and an isolated bj to obtain a bipartite graph
H2 = ((A,B), E2). Because at least three colours appear on the viwi, the graph H2 fulfils the hypothesis
of Lemma 3.8. So there exists a perfect matching M of KA,B such that ((A,B), E2 ∪M) has girth at
least 6. For 1 ≤ i ≤ q, assign to each uvi the colour to which vi is linked in M .

Let us now prove that this edge-colouring of G is acyclic. It is obvious that it is proper since vi is
not linked to c(viwi) in M . Let us now prove that it is acyclic. Let C be a cycle of G. If it contains
no vertex of A, then it contains edges of three different colours because the edge-colouring of G − A is
acyclic. Suppose now that C contains a unique vertex of A, say vi. Then C contains wivi, viu and ut
with t a neighbour of u not in A. Then c(ut) ∈ F , so by construction, c(wivi) 6= c(ut). Hence the colours
of wivi, viu and ut are distinct. Suppose finally that C contains two vertices of A, say vi and vj . Then
C contains wivi, viu, wjvj and vju. Since ((A,B), E2 ∪M) has girth at least 6, either c(viu) 6= c(wjvj)
or c(vju) 6= c(wivi). In both cases, C has edges of three different colours.

. Asumme now that |
⋃q
i=1 Si| < 3. Then all the Si are equal and of cardinality 2, say Si = {a, b} for

all 1 ≤ i ≤ q. Hence all the Fi are the same of cardinality k − 1 and disjoint from F . Observe that this
can happen only if all the wi are distinct. Let us denote by f1, . . . , , fk−1 the elements of the Fi. Let us
set c(viwi) = a for 1 ≤ i ≤ k, c(vqwq) = b, c(uvi) = fi for 1 ≤ i ≤ k − 1, c(uvk) = b and c(uvk+1) = a. It
is easy to check that the obtained edge-colouring is an acyclic edge-colouring of G.

Proposition 3.9. Let k and l be two positive integers and G a ∆-minimal graph. In G, a (∆− l)-
vertex is the end of at most k − 1− l threads whose other endvertex has degree at most k.

To prove this proposition we need the following lemma.

Lemma 3.10. Let H = ((A,B), E) be a bipartite graph with q = |A| < |B| such that for any vertex
a ∈ A d(a) = 1 and KA,B be the complete bipartite graph with bipartition (A,B).

Then there exists a matching M of KA,B saturating A such that the bipartite graph ((A,B), E ∪M)
has no cycle.

Proof. Let q′ = |B|. Let b1, . . . , bq′ be the vertices of B with d(bi) ≥ 1 if i ≤ m and d(bi) = 0 otherwise.
And let a1, . . . , aq be the vertices of A with aibi ∈ E for all 1 ≤ i ≤ m. Let M = {aibi+1 | 1 ≤ i ≤ q}.
This is well-defined since q′ > q. Then ((A,B), E ∪M) has no cycle.

Proof. [ of Proposition 3.9]. Suppose for a contradiction that there is a (∆− l)-vertex u with q = k− l
threads uviwi, 1 ≤ i ≤ q, such d(wi) ≤ k.

Set A = {v1, . . . , vq}. By minimality of G, G − A admits an acyclic ∆-edge-colouring. Let us first
extend it to the viwi as follows. Let F be the set of colours assigned to the edges incident to u and to
no vertex of A and for 1 ≤ i ≤ q let Fi be the set of colours assigned to the edges incident to wi (and
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distinct from viwi). Then |F | = ∆− l − q and |Fi| ≤ k − 1.
For all 1 ≤ i ≤ q colour viwi with a colour not in F ∪ Fi and distinct from the colours. This is

possible since |F |+ |Fi| = ∆− l − q + k − 1 = ∆− 1.
We will now colour the edges uvi for 1 ≤ i ≤ q. Therefore let H1 = ((A,B), E1) be the bipartite graph

with B the set of q+ j colours {b1, . . . , bq+j} not in F and in which vi is adjacent to bj if c(viwi) = bj . As
long as some vi has degree 0 then add an edge between ai and an isolated bj to obtain a bipartite graph
H2 = ((A,B), E2). Then H2 fulfils the hypothesis of Lemma 3.10 so there exists a perfect matching M
of KA,B such that ((A,B), E2 ∪M) has no cycle. For 1 ≤ i ≤ q, assign to each uvi the colour to which
vi is linked in M .

In the same way as in the proof of Proposition 3.7, one shows that the obtained edge-colouring is
acyclic.

3.2. Proof of Theorem 3.4. Lemma 3.11. Let ε > 0. There exists ∆ε such that if ∆ ≥ ∆ε then
any ∆-minimal graph has average degree at least 4− ε.

Proof. The result for ε = 1
2 implies the result for larger values of ε. Hence we assume that ε ≤ 1

2 .
Let us assign an initial charge of d(v) to each vertex v ∈ V (G) Set dε =

⌈
8
ε − 2

⌉
.

We perform the following discharging rules.
R1: for 4 ≤ d < dε, every d-vertex sends a(d) = 1− 4−ε

d to each neighbour.
R2: for dε ≤ d ≤ ∆ + 1− dε then every d-vertex sends 1− ε

2 to each neighbour.
R3: for ∆ + 2− dε ≤ d ≤ ∆ then every d-vertex sends

- 1− ε to each 3-neighbour;
- 2− ε to each 2-neighbour whose second neighbour has degree 2 or 3;
- b(d) = 2−ε−a(d) to each 2-neighbour whose second neighbour has degree d with 4 ≤ d < dε;
- 1− ε

2 to each 2-neighbour whose second neighbour has degree d ≥ dε.
Let us now check that every vertex v has final charge f(v) at least 4− ε.

If v is a 2-vertex then let u and w be its two neighbours with d(u) ≤ d(w). If d(u) ≤ 3 then
d(w) ≥ ∆ − 2 by Proposition 3.6. Hence v receives 2 − ε from w by R3, so f(v) ≥ 2 + 2 − ε = 4 − ε. If
4 ≤ d(u) < dε then d(w) > ∆ + 1− dε by Proposition 3.6. Hence v receives a(d) from u by R2 and b(d)
from w by R3. So f(v) = 4− ε. If d(u) ≥ 10 then v receives 1− ε

2 from u and 1− ε
2 from w by R3. So

f(v) = 4− ε.

Suppose that v is a 3-vertex. Then by Proposition 3.6 it has at least two (≥ 8)-neighbours. Hence it
receives at least 2× 1/2 by R1, R2 or R3 because ε ≤ 1

2 . So f(v) ≥ 4.

Suppose 4 ≤ d(v) < dε. Then v sends d(v) times 1− 4−ε
d(v) so f(v) ≥ 4− ε.

Suppose dε ≤ d(v) ≤ ∆ + 1− dε. Then v sends at most d(v) times 1− ε
2 so f(v) ≥ d(v)× ε

2 ≥ 4− ε.

Suppose now that d(v) ≥ ∆ + 2 − dε. Then by Propositions 3.7 and 3.9, the most v can send is
when it has three 2-neighbours with second neighbour of degree at most 3, one 2-neighbour with second
neighbour of degree d for all 4 ≤ d ≤ dε− 1 and ∆− dε + 1 2-neighbours with second neighbour of degree
at least dε. Hence

f(v) ≥ ∆ + 2− dε − 3(2− ε)−
dε−1∑
d=4

b(d)− (∆− dε + 1)(1− ε

2
)

≥ ∆
ε

2
− Sε

with Sε = dε − 2 + 3(2 − ε) +
∑dε−1
d=4 b(d) − (1 − ε

2 )(dε − 1). Setting ∆ε =
⌈
2
ε (Sε + 4− ε)

⌉
, if ∆ ≥ ∆ε,

f(v) ≥ 4− ε.
Proof. [ of Theorem 3.4] If Theorem 3.4 were false, then a minimum counterexample G would be a

∆-minimum graph. So by Lemma 3.11, its average degree would be at least 4− ε, a contradiction.
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3.3. Proof of Theorem 3.2. Lemma 3.11 for ε = 2/3 yields that for ∆ ≥ ∆2/3, a ∆-minimal graph
G satisfies Mad(G) ≥ Ad(G) ≥ 10/3. The value of ∆2/3 given by the proof of Lemma 3.11 is 49. We
now show that it could be decreased to 19.

Lemma 3.12. Let ∆ ≥ 19 and G be a ∆-minimal graph. Then Mad(G) ≥ Ad(G) ≥ 10/3.

Proof. Let us assign an initial charge of d(v) to each vertex v ∈ V (G) and perform the following
discharging rules.

R1: every 4-vertex sends 4/9 to each of its (≤ 3)-neighbours;
R2: every 5-vertex sends 7/12 to each 2-neighbour and 1/3 to each 3-neighbour;
R3: for 6 ≤ d ≤ 9, every d-vertex sends 1− 10/3d to each neighbour.
R4: for 10 ≤ d ≤ ∆− 9 then every d-vertex sends 2/3 to each neighbour.
R5: for ∆− 8 ≤ d ≤ ∆ then every d-vertex sends

- 2/3 to each d-neighbour with 3 ≤ d ≤ 5;
- 4/3 to each 2-neighbour whose second neighbour has degree 2 or 3;
- 8/9 to each 2-neighbour whose second neighbour has degree 4;
- 9/12 to each 2-neighbour whose second neighbour has degree 5;
- 1/3 + 10/3d to each 2-neighbour whose second neighbour has degree d with 6 ≤ d ≤ 9;
- 2/3 to each 2-neighbour whose second neighbour has degree d ≥ 10.

Let us now check that every vertex v has final charge f(v) at least 10
3 .

If v is a 2-vertex then let u and w be its two neighbours with d(u) ≤ d(w). If d(u) ≤ 3 then
d(w) ≥ ∆ − 2 by Proposition 3.6. Hence v receives 4/3 from w by R5, so f(v) ≥ 2 + 4/3 = 10/3. If
d(u) = 4 then d(w) ≥ ∆− 3 by Proposition 3.6. Hence v receives 4/9 from u by R1 and 8/9 from w by
R5. So f(v) = 10/3. If d(u) = 5 then d(w) ≥ ∆ − 4 by Proposition 3.6. Hence v receives 7/12 from u
by R2 and 9/12 from w by R5. So f(v) = 10/3. If 6 ≤ d(u) ≤ 9 then d(w) ≥ ∆− 8 by Proposition 3.6.
Hence v receives 1− 10/3d from u by R3 and 1/3 + 10/3d from w by R5. So f(v) = 10/3. If d(u) ≥ 10
then v receives 2/3 from u by R4 and 2/3 from w by R5. So f(v) = 10/3.

Suppose that v is a 3-vertex. Then, since ∆ ≥ 10, by Proposition 3.6 it has either a (≥ 5)-neighbour
or two 4-neighbours. Hence it receives either at least 1/3 by R2, R3, R4 or R5, or 2× 4/9 ≥ 1/3 by R1.
In both cases, f(v) ≥ 3 + 1/3 = 10/3.

Suppose that v is a 4-vertex. Then, since ∆ ≥ 18, by Proposition 3.6, it has either three (≤ 3)-
neighbours and one (≥ 10)-neighbour or at most two (≤ 3)-neighbours. In the first case, it sends 4/9 to
each of its 3-neighbours and receives 2/3 form its (≥ 10)-neighbour. So f(v) ≥ 4− 3× 4

9 + 2
3 = 10/3. In

the second case, it sends 4/9 to at most 2 neighbours. So f(v) ≥ 4− 2× 4
9 > 10/3.

Suppose that v is a 5-vertex.
Assume first that v has at most three (≤ 3)-neighbours. If it has at least one (3)-neighbour it sends
at most 3/2 so f(v) ≥ 5 − 3/2 > 10/3. If not it has three 2-neighbours. Let u1 and u2 be the two
(≥ 4)-neighbours of v. By Proposition 3.6, d(u1) + d(u2) ≥ 11 since ∆ ≥ 16. Hence one of these two
vertices is a (≥ 6)-vertex and it sends at least 4/9 to u. Hence f(v) ≥ 5 + 4/9− 7/4 > 10/3.
Assume now that v has at least four (≤ 3)-neighbours. Let i be the number of 2-neighbours of v. Then
by Proposition 3.6, v has exactly 4− i 3-neighbours and its fifth neighbour has degree at least 6 + i since
∆ ≥ 17. Hence f(v) ≥ 5− i. 712 − (4− i) 1

3 + 1− 10
3(6+i) > 10/3.

Suppose 6 ≤ d(v) ≤ 9. Then v sends d(v) times 1−10/3d(v) so f(v) ≥ d(v)−d(v)(1−10/3d) = 10/3.

Suppose 10 ≤ d(v) ≤ ∆− 10. Then v sends at most d(v) times 2/3 so f(v) ≥ d(v)(1− 2/3) ≥ 10/3.

Suppose that d(v) = ∆ − l for 1 ≤ l ≤ 7. By Proposition 3.9, v is incident to at most ∆ − l − 1
threads so its has at least one (≥ 3)-neighbour to which it sends at most 2/3. Moreover the most it can
send is when it has exactly one 2-neighbour with second neighbour of degree d for each l+ 2 ≤ d ≤ 9 and
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∆− 9 2-neighbours with second neighbour of degree at least 10. Hence its final charge is

f(v) ≥ ∆− l −

(
(∆− 8)

2

3
+

9∑
d=l+2

s(d)

)

≥ 1

3
∆ +

16

3
−

(
l +

9∑
d=l+2

s(d)

)

with s(3) = 4/3, s(4) = 8/9, s(5) = 9/12 and s(d) = 1/3 + 10/3d for 6 ≤ d ≤ 9. Since s(3) > 1 and

s(d) < 1 when d ≥ 4, then l +
∑9
d=l+2 s(d) is minimum when l = 2. Hence

f(v) ≥ 1

3
∆ +

16

3
−

(
2 +

9∑
d=4

s(d)

)

≥ 1

3
∆ +

61

36
− 10

3

9∑
d=6

1

d

≥ 1

3
∆ +

61

36
− 10

3
× 275

504
≥ 10

3

because ∆ ≥ 11.

Suppose d(v) = ∆. By Proposition 3.7, the most it can send is when it has three 2-neighbours with
second neighbour of degree at most 3, exactly one 2-neighbour with second neighbour of degree d for
4 ≤ d ≤ 9 and ∆− 9 2-neighbours with second neighbour of degree at least 10. In this case it sends

3× 4

3
+

8

9
+

9

12
+

9∑
d=6

(
1

3
+

10

3d
) + (∆− 9)

2

3
=

2

3
∆ +

35

36
+

10

3

9∑
d=6

1

d

=
2

3
∆ +

35

36
+

10

3
× 275

504

≤ ∆− 10

3

because ∆ ≥ 19. Hence f(v) ≥ 10
3 .

Now Ad(G) = 1
|V |
∑
v∈V (G) d(v) = 1

|V |
∑
v∈V (G) f(v) ≥ 10

3 .

Proof. [ of Theorem 3.2] If Theorem 3.2 would be false, a minimum counterexample G would be a
∆-minimum graph. So by Lemma 3.12, its average degree is at least 10/3, a contradiction.

4. Acknowledgement. We would like to thank Jan van den Heuvel for helpful discussions.
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