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GPU Computing for Parallel Local Search
Metaheuristic Algorithms

Thé Van Luong, Nouredine Melab, El-Ghazali Talbi

Abstract —Local search metaheuristics (LSMs) are efficient methods for solving complex problems in science and industry. They allow
significantly to reduce the size of the search space to be explored and the search time. Nevertheless, the resolution time remains
prohibitive when dealing with large problem instances. Therefore, the use of GPU-based massively parallel computing is a major
complementary way to speed up the search. However, GPU computing for LSMs is rarely investigated in the literature. In this paper,
we introduce a new guideline for the design and implementation of effective LSMs on GPU. Very efficient approaches are proposed
for CPU-GPU data transfer optimization, thread control, mapping of neighboring solutions to GPU threads and memory management.
These approaches have been experimented using four well-known combinatorial and continuous optimization problems and four GPU
configurations. Compared to a CPU-based execution, accelerations up to ×80 are reported for the large combinatorial problems and
up to ×240 for a continuous problem. Finally, extensive experiments demonstrate the strong potential of GPU-based LSMs compared
to cluster or grid-based parallel architectures.

Index Terms —Parallel Metaheuristics, Local Search Metaheuristics, GPU Computing, Performance Evaluation.

✦

1 INTRODUCTION

R EAL-WORLD optimization problems are often com-
plex and NP-hard. Their modeling is continu-

ously evolving in terms of constraints and objectives,
and their resolution is CPU time-consuming. Although
near-optimal algorithms such as metaheuristics (generic
heuristics) make it possible to reduce the temporal com-
plexity of their resolution, they fail to tackle large prob-
lems satisfactorily. GPU computing has recently been re-
vealed effective to deal with time-intensive problems [1].
Our challenge is to rethink the design of metaheuristics
on GPU for solving large-scale complex problems with a
view to high effectiveness and efficiency. Metaheuristics
are based on the iterative improvement of either single
solution (e.g. Simulated Annealing or Tabu Search) or a
population of solutions (e.g. evolutionary algorithms) of
a given optimization problem. In this paper, we focus
on the first category i.e. local search metaheuristics. This
class of algorithms handles a single solution which is
iteratively improved by exploring its neighborhood in
the solution space. The neighborhood structure depends
on the solution encoding which could mainly be a binary
encoding, a vector of discrete values, a permutation or
a vector of real values.

For years, the use of GPU accelerators was devoted
to graphics applications. Recently, their use has been
extended to other application domains [2] (e.g. compu-
tational science) thanks to the publication of the CUDA
[3] (Compute Unified Device Architecture) development
toolkit that allows GPU programming in C-like lan-
guage. In some areas such as numerical computing [4],
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we are now witnessing the proliferation of software
libraries such as CUBLAS for GPU. However, in other
areas such as combinatorial optimization, the spread of
GPU does not occur at the same pace. Indeed, there
only exists few research works related to evolutionary
algorithms on GPU [5]–[7].

Nevertheless, parallel combinatorial optimization on
GPU is not straightforward and requires a huge effort
at design as well as at implementation level. Indeed,
several scientific challenges mainly related to the hier-
archical memory management have to be achieved. The
major issues are efficient distribution of data processing
between CPU and GPU, thread synchronization, opti-
mization of data transfer between the different memo-
ries, the capacity constraints of these memories, etc. The
main purpose of this paper is to deal with such issues for
the re-design of parallel LSM models in order to solve
large scale optimization problems on GPU architectures.
We propose a new generic guideline for building efficient
parallel LSMs on GPU.

Different contributions and salient issues are dealt
with: (1) defining an effective cooperation between CPU
and GPU, which requires to optimize the data trans-
fer between the two components; (2) GPU computing
is based on hyper-threading (massively parallel multi-
threading), and the order in which the threads are exe-
cuted is not known. Therefore, on the one hand, an effi-
cient thread control must be applied to meet the memory
constraints. On the other hand, an efficient mapping
has to be defined between each neighboring candidate
solution and a thread designated by a unique identifier
assigned by the GPU runtime; (3) the neighborhood has
to be placed efficiently on the different memories taking
into account their sizes and access latencies.

To validate the approaches, four optimization prob-
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lems with different encodings have been considered
on GPU: the quadratic assignment problem (QAP) [8],
the permuted perceptron problem (PPP) [9], the trav-
eling salesman problem (TSP) [10], and the continuous
Weierstrass function [11]. QAP and TSP are permutation
problems; PPP is based on the binary encoding, and the
Weierstrass function is represented by a vector of real
values. The proposed work has been experimented on
the four problems using four GPU configurations. These
latter have different performance capabilities in terms of
threads that can be created simultaneously and memory
caching.

The remainder of the paper is organized as follows:
Section 2 highlights the principles of parallel LSMs. Sec-
tion 3 describes generic concepts for designing parallel
LSMs on GPU. In Section 4, parallelism control through
efficient mappings between state-of-the-art LSM struc-
tures and GPU threads model is performed. A thorough
examination of the GPU memory management adapted
to LSMs is conducted in Section 5. Section 6 reports
the performance results obtained for the implemented
problems. Finally, a discussion and some conclusions of
this work are drawn in Section 7.

2 PARALLEL LOCAL SEARCH METAHEURIS-
TICS

2.1 Principles of Local Search Metaheuristics

LSMs are search techniques that have been successfully
applied for solving many real and complex problems.
They could be viewed as “walks through neighbor-
hoods” meaning search trajectories through the solutions
domains of the problems at hand. The walks are per-
formed by iterative procedures that allow to move from
one solution to another (see Algorithm 1).

A LSM starts with a randomly generated solution.
At each iteration of the algorithm, the current solution
is replaced by another one selected from the set of its
neighboring candidates, and so on. An evaluation func-
tion associates a fitness value to each solution indicating
its suitability to the problem. Many strategies related to
the considered LSM can be applied in the selection of
a move: best improvement, first improvement, random
selection, etc. A survey of the history and a state-of-the-
art of LSMs can be found in [12].

Algorithm 1 Local search pseudo-code

1: Generate(s0);
2: Specific LSM pre-treatment
3: t := 0;
4: repeat
5: m(t) := SelectMove(s(t));
6: s(t+ 1) := ApplyMove(m(t), s(t));
7: Specific LSM post-treatment
8: t := t+ 1;
9: until Termination criterion(s(t))

Fig. 1. Major encodings for optimization problems.

2.2 Solution Representation

Designing any iterative metaheuristic requires an encod-
ing of a solution. The representation plays a leading role
in the efficiency and effectiveness of any LSM. It must
be suitable and relevant to the optimization problem
at hand. Moreover, the quality of a representation has
a considerable influence on the efficiency of the search
operators applied on this representation (neighborhood).
Four main encodings in the literature can be highlighted:
binary encoding (e.g. Knapsack, SAT), vector of discrete
values (e.g. location problem, assignment problem), per-
mutation (e.g. TSP, scheduling problems) and vector of
real values (e.g. continuous functions). Fig. 1 illustrates
an example of each representation.

2.3 Parallel Models of Local Search Metaheuristics

Various algorithmic issues are being studied to design
efficient LSMs. These issues commonly consist in defin-
ing new move operators, parallel models, and so on.
Parallelism naturally arises when dealing with a neigh-
borhood, since each of the solutions belonging to it
is an independent unit. Performance of LSMs is thus
remarkably improved when running in parallel.

Three major parallel models for LSMs can be distin-
guished: solution-level, iteration-level and algorithmic-
level (see Fig. 2).

• Solution-level Parallel Model. The focus is on the
parallel evaluation of a single solution. This model
is particularly appealing when the evaluative func-
tion can itself be parallelized as it is CPU time-
consuming and/or IO intensive. In that case, the
function can be viewed as an aggregation of partial
functions.

• Iteration-level Parallel Model. This model is a low-
level Master-Worker model that does not alter the
behavior of the heuristic. Evaluation of the neigh-
borhood is made in parallel. At the beginning of
each iteration, the master duplicates the current
solution between parallel nodes. Each of them man-
ages a number of candidates, and the results are
returned back to the master.

• Algorithmic-level Parallel Model. Several LSMs are
simultaneously launched for computing robust solu-
tions. They may be heterogeneous or homogeneous,



LUONG et al.: GPU COMPUTING FOR PARALLEL LOCAL SEARCH METAHEURISTIC ALGORITHMS 3

Fig. 2. Parallel models of local search metaheuristics.

independent or cooperative, started from the same
or different solution(s) and configured with the
same or different parameters.

2.4 GPU Computing for Local Search Metaheuristics

During these two last decades, different parallel ap-
proaches and implementations have been proposed for
LSM algorithms using Massively Parallel Processors [13],
Clusters of Workstations (COWs) [14]–[16] and Shared
Memory or SMP machines [17], [18]. These contributions
have been later revisited for large-scale computational
grids [19].

These architectures often exploit the coarse-grained
asynchronous parallelism based on work-stealing. This
is particularly the case for computational grids. To over-
come the problem of network latency, the grain size is
often increased, limiting the degree of parallelism.

Recently, GPU accelerators have emerged as a pow-
erful support for massively parallel computing. Indeed,
these architectures offer a substantial computational
horsepower and a remarkably high memory bandwidth
compared to CPU-based architectures. Since more tran-
sistors are dedicated to data processing rather than data
caching and flow control, GPU is reserved for compute-
intensive and highly parallel computations. Reviews of
GPU architectures can be found in [1], [20].

The parallel evaluation of the neighborhood (iteration-
level) is a Master-Worker and a problem-independent,
regular data-parallel application. Therefore, GPU com-
puting is highly efficient in executing such synchronized
parallel algorithms that involve regular computations
and data transfers.

In general, for distributed architectures, the global
performance in metaheuristics is limited by high com-
munication latencies whilst it is just bounded by mem-
ory access latencies in GPU architectures. Indeed, when
evaluating the neighborhood in parallel, the main draw-

back in distributed architectures is the communication
efficiency. GPUs are not that versatile.

However, since the execution model of GPUs is purely
SIMD, it may not be well-adapted for few irregular
problems in which the execution time cannot be pre-
dicted at compile time and varies during the search.
For instance, this happens when the evaluation cost of
the objective function depends on the solution. When
dealing with such problems in which the computations
or the data transfers become irregular or asynchronous,
parallel and distributed architectures such as COWs or
computational grids may be more appropriated.

3 DESIGN OF PARALLEL LOCAL SEARCH
METAHEURISTICS ON GPU
In this section, the focus is on the re-design of the
iteration-level parallel model presented in Section 2.3.

3.1 Generation of the Neighborhood

The GPU has its own memory and processing ele-
ments that are separate from the host computer. Thereby,
CPU/GPU communication might be a serious bottleneck
in the performance of GPU applications. One of the
crucial issues is to optimize the data transfer between
the CPU and the GPU. Regarding LSMs, these copies
represent the solutions to be evaluated. In other words,
one has to say where the neighborhood must be gener-
ated. For doing that, there are basically two approaches:

• Generation of the neighborhood on CPU and its evalua-
tion on GPU. At each iteration of the search process,
the neighborhood is generated on the CPU side. Its
associated structure storing the solutions is copied
on GPU. Thereby, the data transfers are essentially
the set of neighboring solutions copied from the
CPU to the GPU. This approach is straightforward
since a thread is automatically associated with its
physical neighbor representation.

• Generation of the neighborhood and its evaluation on
GPU. In the second approach, the neighborhood
is generated on GPU. It implies that no explicit
structure needs to be allocated. This is achieved
by considering a neighbor as a slight variation of
the candidate solution which generates the neigh-
borhood. Thereby, only the representation of this
candidate solution must be copied from the CPU
to the GPU. The benefit of such an approach is
to reduce drastically the data transfers since the
whole neighborhood does not have to be copied.
However, finding a mapping between a thread and
a neighbor might be challenging. Such an issue will
be discussed in Section 4.2.

The first approach is easier, but it will end in a lot
of data transfers for large neighborhoods, leading to a
great loss of performance. That is the reason why, in the
rest of the paper, we will consider the second approach.
An experimental comparison of the two approaches is
broached in Section 6.
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3.2 The Proposed GPU-based Algorithm

Adapting traditional LSMs to GPU is not an easy task.
We propose a methodology to adapt LSMs on GPU in a
generic way (see Algorithm 2).

Algorithm 2 Local Search Template on GPU

1: Choose an initial solution
2: Evaluate the solution
3: Specific LSM initializations
4: Allocate problem inputs on GPU memory
5: Allocate a solution on GPU memory
6: Allocate a fitnesses structure on GPU memory
7: Allocate additional structures on GPU memory
8: Copy problem inputs on GPU memory
9: Copy the initial solution on GPU memory

10: Copy additional structures on GPU memory
11: repeat
12: for each neighbor in parallel do
13: Incremental evaluation of the candidate solution
14: Insert the resulting fitness into the fitnesses

structure
15: end for
16: Copy the fitnesses structure on CPU memory
17: Specific LSM selection strategy on the fitnesses

structure
18: Specific LSM post-treatment
19: Copy the chosen solution on GPU memory
20: Copy additional structures on GPU memory
21: until a stopping criterion satisfied

First of all, at initialization stage, memory allocations
on GPU are made: data inputs and candidate solution
of the given problem (lines 4 and 5). A structure has
to be allocated for storing the results of the evaluation
of each neighbor (fitnesses structure) (line 6). Addi-
tional structures, which are problem-dependent, might
be allocated to facilitate the computation of neighbors
evaluations (line 7). Second, problem data inputs, initial
candidate solution and additional structures associated
with this solution have to be copied onto the GPU (lines
8 to 10). Third, comes the parallel iteration-level on
GPU, in which each neighboring solution is generated
(parallelism control), evaluated (memory management)
and copied into the fitnesses structure (from lines 12 to
15). Fourth, the order in which candidate neighbors are
evaluated is undefined, then the fitnesses structure has
to be copied to the host CPU (line 16). Then a solution
selection strategy is applied to this structure (line 17):
the exploration of the neighborhood fitnesses structure
is carried out by the CPU in a sequential way. Finally,
after a new candidate has been selected, this latter and
its additional structures are copied to the GPU (lines 19
and 20). The process is repeated until a stopping criterion
is satisfied.

This methodology is well-adapted to any deterministic
LSMs. Its applicability does not stand on any assump-
tion.

3.3 Additional Data Transfer Optimization

In some LSMs such as Hill Climbing or Variable Neigh-
borhood Descent, the selection operates on the minimal
fitness for finding the best solution. Therefore, only one
value of the fitnesses structure has to be copied from the
GPU to the CPU. However, finding the proper minimal
fitness in parallel on GPU is not direct. To deal with this
issue, adaptation of parallel reduction techniques [21] for
each thread block must be considered. Thus, by using
local synchronizations between threads in a given block
via the shared memory, one can find the minimum of a
given structure. The complexity of such an algorithm is
in O(log2(n)), where n is the size of each threads block.
The benefits of such a technique for LSMs will be pointed
out in Section 6.

4 PARALLELISM CONTROL OF LOCAL
SEARCH METAHEURISTICS ON GPU
In this section, the focus is on the neighborhood gener-
ation to control the threads parallelism.

4.1 Thread Control

From an hardware point of view, GPU multiproces-
sor is based on thread-level parallelism to maximize
the exploitation of its functional units. Each processor
device on GPU supports the single program multiple
data (SPMD) model, i.e. multiple autonomous processors
simultaneously execute the same program on different
data. For achieving this, the kernel is a function callable
from the CPU host and executed on the specified GPU
device. It defines the computation to be performed by a
large number of threads, organized in thread blocks. The
multiprocessor executes threads in groups of 32 threads
called warps. Blocks of threads are partitioned into warps
that are organized by a scheduler at runtime.

Hence, one of the key points to achieve high per-
formance is to keep the GPU multiprocessors as active
as possible. Latency hiding depends on the number
of active warps per multiprocessor, which is implicitly
determined by the execution parameters along with reg-
ister constraints. That is the reason why, it is necessary
to use threads and blocks in a way that maximizes
hardware utilization. This is achieved with two param-
eters: the number of threads per block and the total
number of threads. In general, threads per block should
be a multiple of the warp size (i.e. 32 threads) to avoid
wasting computation on under-populated warps.

Regarding the execution of a LSM on GPU, it consists
in launching a kernel with a large number of threads.
In this case, one thread is associated with one neighbor.
However, for an extremely large neighborhood set, some
experiments might not be conducted. The main issue
is then to control the number of threads to meet the
memory constraints like the limited number of registers
to be allocated to each thread. As a result, on the one
hand, having an efficient thread control will prevent
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GPU programs from crashing. On the other hand, it will
allow to find an optimal number of threads required at
launch time to obtain the best multiprocessor occupancy.
Different works [22], [23] have been investigated for
parameters auto-tuning. The heuristics are a priori ap-
proaches which consist in enumerating all the different
values of the two parameters (threads per block and
number of threads). Such approaches are too much time-
consuming and are not well-adapted to LSMs.

We propose in Algorithm 3 a dynamic heuristic for
parameters auto-tuning. The main idea of this approach
is to send threads by “waves” to the GPU kernel to
perform the parameters tuning during the first LSM
iterations. Thereby, the time measurement for each se-
lected configuration, according to a certain number of
trials (lines 5 to 14), will deliver the best configuration
parameters. Regarding the number of threads per block,
as quoted above, it is set as a multiple of the warp
size (see line 19). The starting total number of threads
is set as the nearest power of two of the solution size, as
well. For decreasing the total number of configurations,
the algorithm terminates when the logarithm of the
neighborhood size is reached. In some cases, the kernel
execution will fail since too many threads are requested.
Therefore, a fault-tolerance mechanism is provided to
detect such a situation (from lines 8 to 12). In this case,
the heuristic terminates and returns the best configura-
tion parameters previously found.

Algorithm 3 Dynamic parameters tuning heuristic

Require: nb trials;
1: nb threads := nearest power of 2 (solution size);
2: while nb threads <= neighborhood size do
3: nb threads block := 32;
4: while nb threads block <= 512 do
5: repeat
6: LSM iteration pre-treatment on host side
7: Generation and evaluation kernel on GPU
8: if GPU kernel failure then
9: Restore (best nb threads);

10: Restore (best nb threads block);
11: Exit procedure
12: end if
13: LSM iteration post-treatment on host side
14: until Time measurements of nb trials
15: if Best time improvement then
16: best nb threads := nb threads;
17: best nb threads block := nb threads block;
18: end if
19: nb threads block := nb threads + 32;
20: end while
21: nb threads := nb threads * 2;
22: end while
23: Exit procedure
Ensure: best nb threads and best nb threads block;

The only parameter to determine is the number of

Fig. 3. A neighborhood for binary representation.

trials per configuration. The more this value is, the more
will be accurate the overall tuning at the expense of
an extra computational time. The benefits of the thread
control will be presented in Section 6.

4.2 Efficient Mapping of Neighborhood Structures
on GPU

The neighborhood structures play a crucial role in the
performance of LSMs and are problem-dependent. As
quoted above, a kernel is launched with a large number
of threads which are provided with a unique id. As a
consequence, the main difficulty is to find an efficient
mapping between a GPU thread and LSM neighboring
solutions. The answer is dependent of the solution rep-
resentation. In the following, we provide a methodology
to deal with the main structures of the literature.

4.3 Binary Encoding

In a binary representation, a solution is coded as a vec-
tor of bits. The neighborhood representation for binary
problems is usually based on Hamming distance (see
Fig. 3). A neighbor of a given solution is obtained by
flipping one bit of the solution.

Mapping between LSM neighborhood encoding and
GPU threads is fairly trivial. Indeed, on the one hand, for
a binary vector of size n, the size of the neighborhood is
exactly n. On the other hand, threads are provided with
a unique id. That way, a thread is directly associated with
at least one neighbor.

4.4 Discrete Vector Representation

Discrete vector representation is an extension of binary
encoding using a given alphabet Σ. In this representa-
tion, each variable acquires its value from the alphabet
Σ. Assuming that the cardinality of the alphabet Σ is
k, the size of the neighborhood is (k − 1) × n for a
discrete vector of length n. Fig. 4 illustrates an example
of discrete representation with n = 3 and k = 5.

Let id be the identity of the thread corresponding to
a given candidate solution of the neighborhood. Com-
pared to the initial solution which allowed to generate
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Fig. 4. A neighborhood for discrete vector representation.

Fig. 5. A neighborhood for a continuous problem with two
dimensions.

the neighborhood, id/(k − 1) represents the position
which differs from the initial solution and id%(k − 1)
is the available value from the ordered alphabet Σ.
Therefore, such a mapping is possible.

4.5 Vector of Real Values

For continuous optimization, a solution is coded as a
vector of real values. A usual neighborhood for such a
representation consists in discretizing the solution space.
The neighborhood is defined in [24] by using the concept
of “ball”. A ball B(s, r) is centered on s with radius r;
it contains all points s′ such that ||s′ − s|| ≤ r. A set
of balls centered on the current solution s is considered
with radius h0, h1, . . . , hm.

Thus, the space is partitioned into concentric
“crowns” Ci(s, hi−1, hi) such that Ci(s, hi−1, hi) =
s′|hi−1 ≤ ||s′ − s|| ≤ hi. The m neighbors of s are chosen
by random selection of one point inside each crown Ci

for i varying from 1 to m (see Fig. 5). This can be easily
done by geometrical construction. The mapping consists
in associating one thread with at least one neighbor
corresponding to one point inside each crown.

Fig. 6. A neighborhood for permutation representation.

4.6 Permutation Representation

4.6.1 2-exchange Neighborhood

Building a neighborhood by pair-wise exchange opera-
tions is a typical way for permutation problems. For a
permutation of length n, the size of the neighborhood is
n×(n−1)

2 . Fig. 6 illustrates a permutation representation
and its associated neighborhood.

Unlike the previous representations, in the case of a
permutation encoding, the mapping between a neighbor
and a GPU thread is not straightforward. Indeed, on
the one hand, a neighbor is composed of two indexes (a
swap in a permutation). On the other hand, threads are
identified by a unique id. Consequently, one mapping
has to be considered to transform one index into two
ones. In a similar way, another one is required to
convert two indexes into one.

Proposition 1: Two-to-one index transformation

Given i and j the indexes of two elements to be
exchanged in the permutation representation, the
corresponding index f(i, j) in the neighborhood

representation is equal to i× (n− 1) + (j − 1)− i×(i+1)
2 ,

where n is the permutation size.

Proposition 2: One-to-two index transformation

Given f(i, j) the index of the element in the
neighborhood representation, the corresponding index i

is equal to n− 2− b
√

8×(m−f(i,j)−1)+1−1

2 c and j is equal

to f(i, j) − i × (n − 1) + i×(i+1)
2 + 1 in the permutation

representation, where n is the permutation size and m
the neighborhood size.

The proofs of two-to-one and one-to-two index transfor-
mations can be found in Appendix A.1 and Appendix
A.2. Another well-known neighborhood for permutation
problems is a neighborhood built by exchanging three
values. Its full details and mappings are discussed in
Appendix A.3.
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5 MEMORY MANAGEMENT OF LOCAL
SEARCH METAHEURISTICS ON GPU
Task repartition between the CPU and the GPU and
efficient parallelism control in LSMs have been pre-
viously proposed. In this section, the focus is on the
memory management. Understanding the GPU memory
organization and its related issues is useful to provide
an efficient implementation of parallel LSMs.

5.1 Memory Coalescing Issues

From an hardware point of view, at any clock cycle, each
processor of the multiprocessor selects a half-warp (16
threads) that is ready to execute the same instruction on
different data. Global memory is conceptually organized
into a sequence of 128-byte segments. The number of
memory transactions performed for a half-warp will be
the number of segments having the same addresses as
used by that half-warp.

For more efficiency, global memory accesses must be
coalesced, which means that a memory request per-
formed by consecutive threads in a half-warp is strictly
associated with one segment. If per-thread memory
accesses for a single half-warp establish a contiguous
range of addresses, accesses will be coalesced into a sin-
gle memory transaction. Otherwise, accessing scattered
locations results in memory divergence and requires
the processor to produce one memory transaction per
thread.

Regarding LSMs, global memory accesses in the eval-
uation function have a data-dependent unstructured pat-
tern (especially for permutation representation). There-
fore, non-coalesced memory accesses involve many
memory transactions, which lead to a significant per-
formance decrease for LSMs. Appendix B.1 exhibits a
pattern of coalescing transformation for dealing with
intermediate structures used in combinatorial problems.

Notice that, in the Fermi based GPUs, global memory
is easier to access. This is due to the relaxation of the
coalescing rules and the presence of L1 cache memory.
It means that applications developed on GPU get a better
global memory performance on this card.

5.2 Texture Memory

The use of texture memory is a solution for reduc-
ing memory transactions due to non-coalesced accesses.
Texture memory provides a surprising aggregation of
capabilities including the ability to cache global memory.
Indeed, each texture unit has some internal memory
that buffers data from global memory. Therefore, texture
memory can be seen as a relaxed mechanism for the
threads to access the global memory. Indeed, the coa-
lescing requirements do not apply to texture memory
accesses. Thereby, the use of texture memory is well-
adapted for LSMs for the following reasons:

• Data accesses are repeated in the computation of
LSM evaluation functions.

TABLE 1
Kernel memory management. Summary of the different

memories used in the evaluation function.

Type of memory LSM structure
Texture memory problem inputs, solution representation
Global memory fitnesses structure, large structures

Registers additional variables
Local memory small structures

Shared memory partial fitnesses structure

• This memory is adapted to LSMs since the problem
data and the solution representation are read-only
values.

• Since optimization problem inputs are mostly 2D
matrices or 1D solution vectors, cached texture data
is laid out so as to give the best performance for
1D/2D access patterns.

The use of textures in place of global memory accesses
is a totally mechanical transformation. Details of texture
coordinate clamping and filtering is given in [3], [21].

5.3 Memory Management

Table 1 summarizes the memory management in accor-
dance with the different LSM structures. The inputs of
the problem (e.g. matrix in TSP) and the solution which
generates the neighborhood are associated with the tex-
ture memory. The fitnesses structure which stores the
obtained results for each neighbor is declared as global
memory (only one writing operation). Declared variables
for the computation of each neighbor are automatically
associated with registers by the compiler. Additional
complex structures, which are private to a neighbor, will
reside in local memory. In the case where these structures
are too large to fit into local memory, they are stored
in global memory using the coalescing transformation
mentioned above. Finally, the shared memory may be
used to perform additional reduction operations on the
fitness structure to collect the minimal/maximal fitness.
A discussion, which explains why its use is not adapted
for LSMs, is proposed in Appendix B.2.

6 EXPERIMENTATION

In order to validate the approaches presented in this
paper, the four problems presented in the introduction
have been implemented. As the iteration-level parallel
model does not change the semantics of the sequential
algorithm, the effectiveness in terms of quality of solu-
tions is not addressed here. Only execution times and
acceleration factors are reported in comparison with a
single-core CPU.

For the four problems, a Tabu Search has been im-
plemented on GPU. This algorithm enhances the perfor-
mance of the search by using memory structures. Indeed,
the main memory structure called the tabu list represents
the history of the search trajectory. In this way, using this
list allows to avoid cycles during the search process.
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Experiments have been carried out on top of four
different configurations. The GPU cards have a different
number of cores (respectively 32, 128, 240 and 448),
which determines the number of active threads being
executed. The three first cards are relatively modest
and old, whereas the last one is a modern Fermi card.
The number of global iterations of the Tabu Search is
set to 10000 which corresponds to a realistic scenario
in accordance with the algorithm convergence. For the
different problems, a single-core CPU implementation, a
CPU-GPU, and a CPU-GPU version using texture mem-
ory (GPUtex) are considered for each configuration. The
number of threads per block has been arbitrary chosen
to 256 (multiple of 32), and the total number of threads
created at run time is equal to the neighborhood size.
The additional thread control to adjust parameters will
be specifically applied to some problems. The average
time has been measured in seconds for 30 runs. For the
sake of clarity, the CPU time is not represented in most
tables since it can be deduced. Statistical analysis of all
the produced results can be found in Appendix D.

6.1 Application to the Quadratic Assignment Prob-
lem

The QAP arises in many applications such as facility
location or data analysis. Let A = (aij) and B = (bij)
be n × n matrices of positive integers. Finding a solu-
tion of the QAP is equivalent to finding a permutation
π = (1, 2, . . . , n) that minimizes the objective function:

z(π) =

n∑

i=1

n∑

j=1

aijbπ(i)π(j)

The problem has been implemented using a permu-
tation representation. The neighbor evaluation function
has a time complexity of O(n), and the number of

created threads is equal to n×(n−1)
2 . The considered

instances are the Taillard instances proposed in [8]. They
are uniformly generated and are well-known for their
difficulty. Results are shown in Table 2 for the four
configurations. Non-coalescing memory drastically re-
duces the performance of GPU implementation on both
G80 cards. This is due to high-misaligned accesses to
global memories (flows and distances in QAP). Bind-
ing texture on global memory allows to overcome the
problem. Indeed, from the instance tai30a, using texture
memory starts providing positive acceleration factors
for both configurations (respectively ×1.8, ×1.9, ×2.0
and ×2.8). GPU keeps accelerating the search as long
as the size grows. Regarding the GTX 280, this card
provides twice as many multiprocessors and registers.
As a consequence, hardware capability and coalescing
rules relaxation lead to a significant speed-up (from
×10.9 to ×16.5 for the biggest instance tai100a). The
same goes on for the Tesla M2050 where the acceleration
factor varies from ×15.7 to ×18.6. However, since this
last card provides on-chip memory for L1 cache memory,
the benefits of texture memory are less pronounced.

6.2 Application to the Permuted Perceptron Problem

In [9], Pointcheval introduced a cryptographic identifi-
cation scheme based on the perceptron problem, which
seems to be suited for resource-constrained devices such
as smart cards. An ε-vector is a vector with all entries
being either +1 or -1. Similarly, an ε-matrix is a matrix in
which all entries are either +1 or -1. The PPP is defined
as follows:

Definition 1: Given an ε-matrix A of size m × n
and a multi-set S of non-negative integers of
size m, find an ε-vector V of size n such that
{{(AV )j/j = {1, . . . ,m}}} = S.

PPP has been implemented using a binary encoding.
Part of the full evaluation of a solution can be seen as
a matrix-vector product. Therefore, the evaluation of a
neighbor can be performed in linear time. Experimental
results for a Hamming neighborhood of distance one are
depicted in Table 3 (m-n instances). From m = 401 and
n = 417, the GPU version using texture memory starts to
be faster than the CPU one for both configurations (from
×1.7 to ×3.6). Since accesses to global memory in the
evaluation function are minimized, the GPU implemen-
tation is not much affected by non-coalescing memory
operations. Indeed, from m = 601 and n = 617, the
GPU version without any texture memory use starts to
provide better results (from ×1.1 to ×4). The speed-up
grows with the problem size augmentation (up to ×12
for m = 1301, n = 1317). The acceleration factor for
this implementation is significant but not spectacular.
Indeed, since the neighborhood is relatively small (n
threads), the number of threads per block is not enough
to cover fully the memory access latency.

To validate this point, a Hamming neighborhood of
distance two has been implemented. The evaluation

kernel is executed by n×(n−1)
2 threads. The obtained

results from experiments are reported in Table 4. For the
first instance (m = 73, n = 73), acceleration factors of
the texture version are already significant (from ×3.6 to
×12.3). As long as the instance size increases, the ac-
celeration factor grows accordingly (from ×3.6 to ×8 for
the first configuration). Since a large number of cores are
available on both 8800 and GTX 280, efficient speed-ups
can be obtained (from ×10.1 to ×44.1). The application
also scales well when performing on the Tesla Fermi card
(speed-ups varying from ×11.7 to ×73.3).

Details about the benefits of coalescing transformation
for this problem are discussed in Appendix C.3.

A conclusion from these experiments indicates that
parallelization on top of GPU provides a highly efficient
way for handling large neighborhoods. The same goes
on with a neighborhood based on a Hamming distance
three (see Appendix C.2).
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TABLE 2
Measures in terms of efficiency for the QAP using a pair-wise-exchange neighborhood.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
GPU GPUTex GPU GPUTex GPU GPUTex GPU GPUTex

tai30a 4.2×0.5 1.3×1.8 2.3×0.8 1.0×1.9 1.1×1.4 0.8×2.0 0.5×2.2 0.4×2.8

tai35a 6.5×0.5 1.6×2.1 2.9×0.9 1.2×2.3 1.2×1.9 0.9×2.6 0.6×2.4 0.5×3.8

tai40a 9.7×0.5 1.8×2.6 3.7×1.1 1.5×2.9 1.3×2.7 1.1×3.3 0.7×3.2 0.5×4.4

tai50a 16×0.6 3.0×3.2 5.7×1.4 1.8×4.6 1.7×4.1 1.3×5.3 0.8×5.4 0.6×7.2

tai60a 28×0.6 4.9×3.4 8.4×1.6 2.0×7.1 2.0×5.6 1.6×7.3 1.1×8.4 0.9×10.2

tai80a 63×0.7 10×4.2 19×1.9 4.5×8.1 3.2×9.1 2.8×10.8 1.9×12.4 1.7×13.5

tai100a 139×0.8 19×5.6 33×2.3 8.7×8.8 5.5×10.9 3.7×16.5 3.1×15.7 2.6×18.6

TABLE 3
Measures in terms of efficiency for the PPP using a neighborhood based on a Hamming distance of one.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
GPU GPUTex GPU GPUTex GPU GPUTex GPU GPUTex

73-73 6.1×0.2 5.0×0.3 3.3×0.3 3.0×0.4 3.5×0.3 2.8×0.5 1.8×0.6 1.7×0.7

81-81 6.7×0.3 5.3×0.3 3.9×0.4 3.5×0.4 3.8×0.3 3.1×0.5 2.1×0.6 2.0×0.7

101-117 8.9×0.4 6.6×0.5 4.8×0.5 4.3×0.6 4.9×0.4 3.9×0.6 2.2×1.1 2.1×1.2

201-217 19×0.6 12×0.9 10×0.8 8.1×1.1 8.8×0.9 7.7×1.1 4.9×2.1 4.6×2.2

401-417 53×0.8 24×1.7 28×1.2 18×1.8 16×1.9 13×2.2 8.9×3.4 8.4×3.6

601-617 169×1.1 98×1.9 96×1.6 68×2.2 47×2.2 43×2.4 26×4.0 25×4.1

801-817 244×1.4 120×3.1 120×2.4 84×3.4 54×3.6 49×4.2 31×6.3 28×6.9

1001-1017 345×1.8 147×4.1 145×3.1 100×4.5 63×5.3 60×5.7 45×8.5 42×9.1

1301-1317 571×2.2 273×4.3 227×3.6 169×4.8 93×7.4 82×8.1 62×11.2 58×12.0

TABLE 4
Measures in terms of efficiency for the PPP using a neighborhood based on a Hamming distance of two.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
GPU GPUTex GPU GPUTex GPU GPUTex GPU GPUTex

73-73 3.9×0.7 0.8×3.6 1.3×1.7 0.2×10.1 0.2×9.9 0.2×10.9 0.2×11.7 0.2×12.3

81-81 5.2×0.8 1.1×3.8 1.7×1.7 0.3×10.4 0.3×10.3 0.2×12.2 0.2×12.8 0.2×13.4

101-117 12×0.9 2.5×4.4 4.1×1.8 0.6×12.4 0.6×11.8 0.4×18.1 0.4×21.1 0.3×22.0

201-217 75×0.9 15×4.7 25×2.0 3.3×15.4 3.0×16.3 1.9×25.3 1.7×28.7 1.6×30.6

401-417 570×1.0 103×5.4 123×3.5 24×18.3 20×20.1 14×28.8 11×37.4 10×38.3

601-617 1881×1.7 512×6.3 351×7.1 89×28.3 67×30.5 51×40.1 37×55.2 35×58.4

801-817 4396×2.0 1245×6.9 817×8.5 212×32.8 154×35.3 128×42.3 86×63.2 81×67.1

1001-1017 8474×2.1 2421×7.2 1474×9.8 409×35.2 292×37.9 252×43.9 162×68.3 154×71.9

1301-1317 17910×2.2 4903×8.0 3041×10.9 911×36.2 651×38.5 568×44.1 362×69.2 342×73.3

6.3 Application to the Weierstrass Continuous
Function

The Weierstrass functions belong to the class of con-
tinuous optimization problems. These functions have
been widely used for the simulation of fractal surfaces.
According to [11], Weierstrass-Mandelbrot functions are
defined as follows:

Wb,h(x) =
∞∑

i=1

b−ihsin(bix) with b > 1 and 0 < h < 1

(1)
The parameter h has an impact on the irregularity
(“noisy” local perturbation of limited amplitude) and
these functions possess many local optima. The problem
has been implemented using a vector of real values.
The domain definition has been set to −1 ≤ xk ≤ 1,

h has been fixed to 0.25, and the number of iterations
to compute the approximation to 100 (instead of ∞).
Such parameters are in accordance with the one dealt
with in [11]. The complexity of the evaluation function
is quadratic. The texture optimization is not applied
since there are no data inputs in continuous optimization
problem.

10000 neighbors are considered with a maximal ra-
dius equals to 1

n
where n is the problem dimension.

The results obtained for the different configurations are
reported in Table 5 for single precision floating-point.
In comparison with the previous experiments, the first
thing that is highlighted concerns the impressive ob-
tained speed-ups. They alternate from ×39.2 to ×243
according to the different configurations, and they grow
with the instance size augmentation. This can be clarified
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by the fact that there are no data inputs thus no addi-
tional memory access latencies. Table 4 in Appendix C.4
confirms a similar observation of the performance results
when increasing the neighborhood size.

Regarding the quality of solutions, a preliminary study
has been investigated in Appendix C.4.1. It points out the
accuracy difference of produced solutions, when using
single or double precision floating-point.

6.4 Application to the Traveling Salesman Problem

Given n cities and a distance matrix dn,n, where each
element dij represents the distance between the cities i
and j, the TSP consists in finding a tour which minimizes
the total distance. A tour visits each city exactly once.

The chosen representation is a permutation structure.
A swap operator for the TSP has been implemented
on GPU. The considered instances have been selected
among the TSPLIB instances presented in [10]. Table 6
presents the results for the TSP implementation. On the
one hand, even if a large number of threads are executed

(n×(n−1)
2 neighbors), the values for the first configuration

are not significant (acceleration factor from ×1.2 to ×1.5
for the texture version). Indeed, the neighbor evaluation
function consists of replacing two to four edges of a
solution. As a result, this computation can be given in
constant time, which is not enough to hide the memory
latency. Regarding the other configurations, using more
cores overcomes the issue, and yields a better global
performance. Indeed, for the GeForce 8800, with the use
of texture memory, accelerations start from ×1.5 with
the eil101 instance and grows up to ×4.4 for pr2392. In
a similar manner, GTX 280 starts from ×2.3 and goes up
to an acceleration factor of ×11 for the fnl4461 instance.
Nevertheless, for the three first configurations, for larger
instances such as pr2392, fnl4461 or rl5915, the program
has provoked an execution error because of the hardware
register limitation.

6.5 Thread Control

Since the GPU may fail to execute large neighborhoods
on large instances, the next experiment consists in high-
lighting the benefits of thread control presented in Sec-
tion 4.1. The corresponding heuristic based on thread
“waves” has been applied for the TSP previously seen.
The value of the tuning parameter (number of trials) has
been fixed to 10. Table 7 presents the obtained results.

The first observation concerns the robustness provided
by the thread control version for large instances pr2392,
fnl4461 and rl5915. Indeed, one can clearly see the bene-
fits of such control since the execution of these instances
on GPU has been successfully terminated whatever the
used card. Indeed, according to some execution logs, the
heuristic detects kernel errors at run time. Regarding
the acceleration factors using the thread control, they
alternate between ×1.3 and ×19.9 according to the in-
stance size. Performance improvement in comparison
with the standard texture version varies between 1% and

5%. This modest improvement comes from the instances
size, which is too large. Indeed, the number of iterations
for tuning is directly linked to the neighborhood size.
Hence, the algorithm may take too many iterations to
get a suitable parameters tuning.

Table 6 in Appendix C.5 confirms this point for the
PPP. Indeed, the instances dealt with in this problem
are smaller leading to a smaller neighborhood size.
Therefore, performance improvement varies between 5%
and 20%, which is quite remarkable. A peak performance
of ×81.4 is even obtained for the Tesla Fermi card.

6.6 Analysis of the Data Transfers

To validate the performance of our algorithms, we intend
to do an analysis of the time consumed by each major
operation in two different approaches: 1) the generation
of the neighborhood on CPU and its evaluation on GPU;
2) the generation of the neighborhood and its evaluation
on GPU (see Section 3.1 for more details).

For the experiments, only the third configuration with
the GTX 280 card and the texture optimization are
considered in both versions. Table 8 details the time
spent by each operation in the two approaches by using
a neighborhood based on a Hamming distance of two.

For the first approach, most of the time is devoted
to data transfer. Indeed, it accounts for nearly 75% of
the execution time. As a consequence, such an approach
is terribly worthless since the time spent on the data
transfers dominates the whole algorithm. The produced
measures of the speed-up repeat the previous observa-
tions. Indeed, since the amount of data transferred tends
to grow as the size increases, the acceleration factors
diminish with the instance size (from ×3.3 to ×0.6).
Furthermore, the algorithm could not be executed for
larger instances since it exceeds the maximal amount of
global memory.

A conclusion to this analysis highlights that the neigh-
borhood should be generated on GPU. The same goes
on for a Hamming distance of one (Table 7 in Appendix
C.6).

6.7 Additional Data Transfer Optimization

Another point concerns the data transfer from the GPU
to the CPU. Indeed, in some LSMs such as Hill Climb-
ing, there is no need to transfer the entire fitnesses
structure and further optimization is possible. The next
experiment consists in comparing two GPU-based ap-
proaches of the Hill Climbing algorithm. This latter
LSM iteratively improves a solution by selecting the best
neighbor. The algorithm terminates when it cannot see
any improvement anymore.

In the first approach, the standard GPU-based algo-
rithm is considered i.e. the fitnesses structure is copied
back from the GPU to the CPU. In the second one, at
each iteration, a reduction operation is iterated on GPU
to find the minimum of all the fitnesses.
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TABLE 5
Measures in terms of efficiency for the Weierstrass function (10000 neighbors).

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPU CPU GPU CPU GPU CPU GPU

1 3848 98×39.2 2854 27×105.7 2034 16×127.1 1876 11×170.5

2 10298 247×41.7 5752 52×110.6 4088 32×127.8 3871 18×215.1

3 15776 354×44.6 8538 77×110.9 6113 47×130.0 6001 27×222.3

4 20114 440×45.7 11405 102×111.8 8137 61×133.4 7990 36×228.3

5 23294 501×46.5 14245 127×112.1 10225 76×134.5 10031 43×233.3

6 28244 603×46.8 17370 151×115.0 12193 90×135.5 11254 47×239.4

7 33461 712×47.0 20321 173×117.4 14319 104×137.7 13201 55×240.1

8 36540 774×47.2 23957 203×118.0 16699 120×139.2 15752 66×242.2

9 42319 889×47.6 27100 229×118.3 19008 134×141.9 18212 75×242.8

10 51156 1063×48.1 30709 259×118.6 21095 148×142.5 20166 83×243.0

TABLE 6
Measures in terms of efficiency for the TSP using a pair-wise-exchange neighborhood.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
GPU GPUTex GPU GPUTex GPU GPUTex GPU GPUTex

eil101 3.5×0.6 1.8×1.2 1.8×0.9 1.1×1.5 0.7×2.1 0.6×2.3 0.4×3.9 0.4×4.2

d198 12×0.8 6.9×1.4 5.1×1.4 3.2×2.3 1.5×3.9 1.3×4.4 0.8×7.0 0.8×7.5

pcb442 87×0.6 36×1.5 24×1.3 14×2.2 6.7×4.0 6.0×4.5 3.7×7.2 3.5×7.6

rat783 315×0.6 144×1.4 75×1.6 42×2.8 22×4.1 20×4.7 12×7.4 11×7.8

d1291 881×0.8 503×1.4 227×2.2 140×3.5 82×4.5 71×5.1 46×8.1 43×8.5

pr2392 . . 874×2.6 531×4.4 304×7.9 286×8.4 169×14.2 161×14.9

fnl4461 . . . . 1171×10.0 1125×11.0 651×18.0 616×18.9

rl5915 . . . . . . 859×19.2 837×19.7

TABLE 7
Measures of the benefits of applying thread control. The TSP is considered.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
GPU GPUTex GPU GPUTex GPU GPUTex GPU GPUTex

eil101 1.8×1.2 1.7×1.3 1.1×1.5 0.9×1.8 0.6×2.3 0.6×2.4 0.4×4.2 0.4×4.3

d198 6.9×1.4 6.8×1.5 3.2×2.3 3.0×2.4 1.3×4.4 1.3×4.5 0.8×7.5 0.8×7.6

pcb442 36×1.5 34×1.6 14×2.2 13×2.4 6.0×4.5 5.8×4.7 3.5×7.6 3.4×7.8

rat783 144×1.4 141×1.4 42×2.8 39×3.0 20×4.7 19×4.9 11×7.8 10×8.3

d1291 503×1.4 498×1.4 140×3.5 133×3.7 71×5.1 68×5.4 43×8.5 41×8.9

pr2392 . 1946×1.7 531×4.4 519×4.5 286×8.4 278×8.6 161×14.9 157×15.3

fnl4461 . 7133×2.1 . 1789×6.6 1125×11.0 1110×11.2 616×18.9 609×19.1

rl5915 . 9142×3.1 . 2471×8.5 . 1461×14.2 837×19.7 828×19.9

TABLE 8
Measures of the benefits of generating the neighborhood on GPU on the GTX 280. The PPP is considered.

Instance CPU
Evaluation on GPU Generation and evaluation on GPU

GPUTex process transfers kernel GPUTex process transfers kernel
73-73 2.1 0.2×3.2 4.8% 73.7% 21.5% 0.2×10.9 19.0% 11.2% 69.8%

81-81 2.7 0.8×3.3 4.9% 74.6% 20.6% 0.2×12.2 18.8% 10.7% 70.5%

101-117 7.0 2.1×3.3 5.2% 74.1% 20.7% 0.4×18.1 18.7% 10.1% 71.2%

201-217 48 23×2.1 4.7% 74.3% 21.0% 1.9×25.3 18.5% 7.3% 74.2%

401-417 403 311×1.3 4.4% 75.6% 20.0% 14×28.8 18.2% 6.3% 75.5%

601-617 2049 3047×0.6 3.5% 75.8% 20.7% 51×40.1 17.7% 4.5% 77.8%

801-817 5410 - - - - 128×42.3 13.3% 2.5% 84.2%

1001-1017 11075 - - - - 252×43.9 12.7% 1.5% 85.8%

1301-1317 25016 - - - - 568×44.1 10.9% 1.5% 87.6%

Since the Hill Climbing heuristic rapidly converges, a
global sequence of 100 Hill Climbing algorithms have
been considered. Results for the PPP considering two

different neighborhoods are reported in Table 9. Regard-
ing the version using a reduction operation (GPUtexR),
significative improvements in comparison with the stan-
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dard version (GPUtex) are observed. For example, for
the instance m = 73 and n = 73, in the case of
n×(n−1)

2 neighbors, the speed-up is equal to ×15.1 for
the version using reduction and ×12.6 for the other one.
Such improvement between 10% and 20% is maintained
for most of the instances. A peak performance is reached
with the instance m = 1301 and n = 1317 (×53.7 for
GPUTexR against ×49.5 for GPUtex).

An analysis on the average percentage of the time con-
sumed by each operation can clarify this improvement
(see Table 8 in Appendix C.7).

6.8 Comparison with Other Parallel and Distributed
Architectures

During the last decade, COWs and computational grids
have been largely deployed to provide standard high-
performance computing platforms. Hence, it will be
interesting to compare the performance provided by
GPU computing with such heterogeneous architectures
in regards with LSMs. For the next experiments, we
propose to compare each GPU configuration with COWs
then with computational grids. For doing a fair compar-
ison, the different architectures should have the same
computational power. Table 9 in Appendix C.8 presents
the different machines used for the experiments.

From an implementation point of view, an hybrid
OpenMP/MPI version has been produced to take advan-
tage of both multi-core and distributed environments.
Such a combination has widely proved in the past its
effectiveness for multi-level architectures [25]. The PPP
using a neighborhood based on a Hamming distance
of two is considered on the two architectures. A Myri-
10G gigabit ethernet connects the different machines
of the COWs. For the workstations distributed in a
grid organization, experiments have been carried out on
the high-performance computing Grid’5000 respectively
involving two, five and seven French sites. The acceler-
ations factors are established from the single-core CPU
used for the previous experiments.

Table 10 presents the produced results for this architec-
ture. Whatever the used configuration, the acceleration
factors keeps growing up until reaching a particular
instance, then it immediately decreases with the instance
size. For example, for the second configuration, the ac-
celeration factors begin from ×1.6 until reaching a peak
value of ×11.3 for the instance m = 401 and n = 417.
After, the speed-ups start decreasing until reaching the
value ×8.4. This behaviour can be elucidated by the
following reason: a performance improvement can be
made as long as the part reserved to the partitions
evaluation (worker) is not too much dominated by the
communication time. An analysis of the time spent to
transfers including synchronizations confirms this fact
(see Table 10 in Appendix C.8.2 for the three first con-
figurations).

Regarding the overall performance, whatever the in-
stance size, acceleration factors are less important than

their GPU counterparts. For COWs, these acceleration
factors diversify from ×0.4 to ×21.2 whereas for GPUs
they alternate from ×3.6 to ×73.3.

All the previous observations made for COWs are
valid when dealing with workstations distributed in a
grid organization. In general, the overall performance
is less significant than COWs for a comparable com-
putational horsepower. Indeed, the acceleration factors
vary from ×0.3 to ×16.1. This performance diminution
is explained by the growth of the communication time
since clusters are distributed among different sites. An
analysis of the time dedicated to transfers in Table 11 in
Appendix C.8.3 (for the three first configurations) con-
firms this observation. A conclusion of these experiments
indicates that parallelization of LSMs on top of GPUs
is much more efficient for dealing with parallel regular
applications.

7 DISCUSSION AND CONCLUSION

High-performance computing based on the use of GPUs
has been recently revealed to be a good way to pro-
vide an important computational power. However, the
exploitation of parallel models is not trivial and many
issues related to the GPU memory hierarchical man-
agement of this architecture have to be considered. To
the best of our knowledge, GPU-based parallel LSM
approaches have never been deeply and widely inves-
tigated.

In this paper, a new guideline has been established
to design and implement efficiently LSMs on GPU. In
this methodology, efficient mapping of the iteration-level
parallel model on the hierarchical GPU is proposed.
First, the CPU manages the whole search process and
allows the GPU to be used as a coprocessor dedicated
to intensive calculations. Then, the purpose of the par-
allelism control is 1) to control the generation of the
neighborhood to meet the memory constraints; 2) to find
efficient mappings between neighborhood candidate so-
lutions and GPU threads. Finally, code optimization
based on texture memory and memory coalescing is
applied to the evaluation function kernel. The re-design
of the parallel LSM iteration-level model on GPU is a
good fit for deterministic LSMs such as Hill Climbing,
Tabu Search, Variable Neighborhood Search and Iterated
Local Search.

Apart from being generic, we proved the effectiveness
of our methodology through extensive experiments. In
particular, we showed that it enables to gain up on
modest GPU cards to a factor of ×50 in terms of accel-
eration (compared with a single-core architecture) when
deploying it for well known combinatorial instances and
up to ×140 for a continuous problem. In addition to
this, experiments indicate that the approach performed
on these problems scales well with last GPU cards
(respectively up to ×80 and up to ×240 with a Tesla
Fermi card).

For a same computational power, GPU computing is
much more efficient than COWs and grids for dealing
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TABLE 9
Measures of the benefits of using the reduction operation on the GTX 280. The PPP is considered for two different

neighborhoods using 100 Hill Climbing algorithms.

Instance
n neighbors n×(n−1)

2
neighbors

CPU GPUTex GPUTexR CPU GPUTex GPUTexR

73-73 0.08 0.22×0.4 0.25×0.3 5.29 0.42×12.6 0.35×15.1

81-81 0.13 0.29×0.4 0.32×0.4 9.47 0.65×14.6 0.52×18.2

101-117 0.27 0.42×0.6 0.47×0.6 28.4 1.2×23.7 1.1×25.9

201-217 1.5 1.4×1.1 1.5×1.0 94.7 3.1×30.5 2.8×33.8

401-417 12.1 5.4×2.2 4.8×2.5 923 27.3×33.8 25×36.9

601-617 102 32.1×3.2 29.4×3.5 4754 110×43.2 103×46.1

801-817 199 49.3×4.0 45.7×4.4 13039 270×48.3 251×51.9

1001-1017 395 67.4×5.9 62.2×6.3 29041 593×48.9 551×52.7

1301-1317 1132 141×8.0 125×9.0 74902 1512×49.5 1395×53.7

TABLE 10
Measures in terms of efficiency for a cluster of workstations. The PPP is considered.

Instance

Intel Xeon E5440 4 Intel Xeon E5440 11 Intel Xeon E5440 13 Intel Xeon E5440
8 CPU cores 32 CPU cores 88 CPU cores 104 CPU cores

GPUTex COW GPUTex COW GPUTex COW GPUTex COW
73-73 0.8×3.6 0.9×3.5 0.2×10.1 1.4×1.6 0.2×10.9 5.4×0.4 0.2×12.3 5.9×0.4

81-81 1.1×3.8 1.2×3.6 0.3×10.4 1.6×1.8 0.2×12.2 5.6×0.5 0.2×13.4 6.3×0.4

101-117 2.5×4.4 2.9×3.8 0.6×12.4 1.9×3.8 0.4×18.1 6.0×1.2 0.3×22.0 6.7×1.1

201-217 15×4.7 18×3.9 3.3×15.4 6.2×8.2 1.9×25.3 7.6×6.3 1.6×30.6 7.0×6.8

401-417 103×5.4 139×4.1 24×18.3 39×11.3 14×28.8 21×19.2 10×38.3 19×21.2

601-617 512×6.3 966×3.3 89×28.3 258×9.8 51×40.1 115×17.8 35×58.4 108×19.0

801-817 1245×6.9 2828×3.0 212×32.8 737×9.4 128×42.3 322×16.8 81×67.1 311×17.4

1001-1017 2421×7.2 6307×2.8 409×35.2 1708×8.5 252×43.9 793×14.0 154×71.9 778×14.3

1301-1317 4903×8.0 15257×2.6 911×36.2 3968×8.4 568×44.1 1807×13.8 342×73.3 1789×14.0

TABLE 11
Measures in terms of efficiency for workstations distributed in a grid organization. The PPP is considered.

Instance

2 Intel Xeon QC E5440 5 machines 12 machines 14 machines
8 CPU cores 40 CPU cores 96 CPU cores 112 CPU cores

GPUTex Grid GPUTex Grid GPUTex Grid GPUTex Grid
73-73 0.8×3.6 1.1×2.6 0.2×10.1 1.8×1.2 0.2×10.9 7.3×0.3 0.2×12.3 7.9×0.3

81-81 1.1×3.8 1.4×3.0 0.3×10.4 2.0×1.4 0.2×12.2 7.6×0.4 0.2×13.4 8.3×0.4

101-117 2.5×4.4 3.5×3.1 0.6×12.4 2.4×3.0 0.4×18.1 8.1×0.9 0.3×22.0 8.8×0.8

201-217 15×4.7 22×3.2 3.3×15.4 7.8×6.5 1.9×25.3 10×4.7 1.6×30.6 9.5×4.9

401-417 103×5.4 167×3.4 24×18.3 49×9.0 14×28.8 28×14.4 10×38.3 25×16.1

601-617 512×6.3 1159×2.8 89×28.3 323×7.8 51×40.1 155×13.2 35×58.4 148×13.8

801-817 1245×6.9 3394×2.5 212×32.8 922×7.5 128×42.3 425×12.7 81×67.1 411×13.1

1001-1017 2421×7.2 7568×2.3 409×35.2 2135×6.8 252×43.9 1071×10.3 154×71.9 1043×10.6

1301-1317 4903×8.0 18308×2.2 911×36.2 4960×6.7 568×44.1 2439×10.2 342×73.3 2405×10.3

with data-parallel regular applications. Indeed, the main
issue in such parallel and distributed architectures is
the communication cost. This is due to the synchronous
nature of the parallel LSM iteration-level model. How-
ever, since GPUs follow a SIMD execution model, it
might not be well-adapted for few irregular problems
(e.g. [26]). When dealing with such problems in which
the computations become asynchronous, using COWs or
computational grids might be more relevant.

With the arrival of GPU resources in COWs and grids,
the next objective is to investigate the conjunction of
GPU computing and distributed computing to exploit
fully and efficiently the hierarchy of parallel models of
metaheuristics. The challenge is to find the best mapping
in terms of efficiency and effectiveness of the hierarchy of
parallel models on the hierarchy of CPU-GPU resources

provided by heterogeneous architectures. Heterogeneous
computing with OpenCL [27] will be the key to address
a range of fundamental parallel algorithms on multiple
platforms.

We are currently integrating the GPU-based re-design
of LSMs in the ParadisEO platform [28]. This framework
was developed for the reusable and flexible design of
parallel metaheuristics dedicated to the mono and mul-
tiobjective optimization. The Parallel Evolving Objects
module of ParadisEO includes the well-known parallel
and distributed models for metaheuristics such as LSMs.
This module will be extended with multi-core GPU-
based implementations.
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Université Lille 1). He is a Full Professor at the
University of Lille and a member of the DOL-
PHIN research group at LIFL and INRIA Lille
Nord Europe. He is the head of the Grid’5000
French Nation-Wide grid project and the EGI grid
at Lille. His major research interests include par-
allel, GPU and grid/cloud computing, combinato-
rial optimization algorithms and software frame-

works. Professor Melab has more than 80 international publications
including journal papers, book chapters and conference proceedings.

El-Ghazali Talbi received the Master and Ph.D.
degrees in Computer Science from the Institut
National Polytechnique de Grenoble in France.
He is a full Professor at the University of Lille and
the head of DOLPHIN research group from both
the Lille’s Computer Science laboratory (LIFL,
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