On the Grundy number of graphs with few P4's

Julio Araujo 1, 2 Claudia Linhares Sales 2
1 MASCOTTE - Algorithms, simulation, combinatorics and optimization for telecommunications
CRISAM - Inria Sophia Antipolis - Méditerranée , Laboratoire I3S - COMRED - COMmunications, Réseaux, systèmes Embarqués et Distribués
Abstract : The Grundy number of a graph G is the largest number of colors used by any execution of the greedy algorithm to color G. The problem of determining the Grundy number of G is polynomial if G is a P4-free graph and NP-hard if G is a P5-free graph. In this article, we define a new class of graphs, the fat-extended P4-laden graphs, and we show a polynomial time algorithm to determine the Grundy number of any graph in this class. Our class intersects the class of P5-free graphs and strictly contains the class of P4-free graphs. More precisely, our result implies that the Grundy number can be computed in polynomial time for any graph of the following classes: P4-reducible, extended P4-reducible, P4-sparse, extended P4-sparse, P4-extendible, P4-lite, P4-tidy, P4-laden and extended P4-laden, which are all strictly contained in the fat-extended P4-laden class.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [18 references]  Display  Hide  Download

https://hal.inria.fr/inria-00639008
Contributor : Julio Araujo <>
Submitted on : Monday, November 7, 2011 - 6:58:14 PM
Last modification on : Monday, November 5, 2018 - 3:36:03 PM
Document(s) archivé(s) le : Wednesday, February 8, 2012 - 2:36:31 AM

File

grundy_p4-full-withmodifs.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Julio Araujo, Claudia Linhares Sales. On the Grundy number of graphs with few P4's. Discrete Applied Mathematics, Elsevier, 2012, 160 (18), pp.2514-2522. ⟨10.1016/j.dam.2011.08.016⟩. ⟨inria-00639008⟩

Share

Metrics

Record views

483

Files downloads

185