A. Krokhin, P. J. Jonsson, and P. , Reasoning about temporal relations, Journal of the ACM, vol.50, issue.5, pp.591-640, 2003.
DOI : 10.1145/876638.876639

R. Angles, P. Barcel, and G. Ros, A practical query language for graph dbs, 7th Alberto Mendelzon International Workshop on Foundations of Data Management (AMW), 2013.

R. Angles and C. Gutiérrez, Survey of graph database models, ACM Computing Surveys, vol.40, issue.1, 2008.
DOI : 10.1145/1322432.1322433

S. Auer and H. Herre, A Versioning and Evolution Framework for RDF Knowledge Bases, pp.55-69, 2007.
DOI : 10.1007/978-3-540-70881-0_8

K. Bastani, In: Bank Fraud Detection (2014), https://github.com/ neo4j-contrib/gists

T. T. Board, Technology radar, 2013.

J. A. Bondy, Graph Theory With Applications, 1976.
DOI : 10.1007/978-1-349-03521-2

A. Castelltort and A. Laurent, Representing history in graph-oriented NoSQL databases: A versioning system, Eighth International Conference on Digital Information Management (ICDIM 2013), 2013.
DOI : 10.1109/ICDIM.2013.6694022

URL : https://hal.archives-ouvertes.fr/lirmm-01381081

V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection, ACM Computing Surveys, vol.41, issue.3, pp.1-15, 2009.
DOI : 10.1145/1541880.1541882

S. S. Chawathe, S. Abiteboul, and J. Widom, Representing and querying changes in semistructured data, Proceedings 14th International Conference on Data Engineering, 1998.
DOI : 10.1109/ICDE.1998.655752

D. Conte, P. Foggia, C. Sansone, and M. Vento, THIRTY YEARS OF GRAPH MATCHING IN PATTERN RECOGNITION, International Journal of Pattern Recognition and Artificial Intelligence, vol.18, issue.03, 2004.
DOI : 10.1142/S0218001404003228

URL : https://hal.archives-ouvertes.fr/hal-01408706

H. He and A. K. Singh, Graphs-at-a-time, Proceedings of the 2008 ACM SIGMOD international conference on Management of data , SIGMOD '08, 2008.
DOI : 10.1145/1376616.1376660

T. Horvth, T. Grtner, S. Wrobel, W. Kim, R. Kohavi et al., Cyclic pattern kernels for predictive graph mining, Proceedings of the 2004 ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '04, pp.158-167, 2004.
DOI : 10.1145/1014052.1014072

C. Jedrzejek, J. Bak, and M. Falkowski, Graph mining for detection of a large class of financial crimes, 17th International Conference on Conceptural structure, 2009.

U. Khurana and A. Deshpande, Efficient snapshot retrieval over historical graph data, 2013 IEEE 29th International Conference on Data Engineering (ICDE), pp.997-1008, 2013.
DOI : 10.1109/ICDE.2013.6544892

M. Kuramochi and G. Karypis, Frequent subgraph discovery, Proceedings 2001 IEEE International Conference on Data Mining, pp.313-320, 2001.
DOI : 10.1109/ICDM.2001.989534

K. Y. Lee, Y. D. Chung, and M. H. Kim, An efficient method for maintaining data cubes incrementally, Information Sciences, vol.180, issue.6, pp.928-948, 2010.
DOI : 10.1016/j.ins.2009.11.037

A. Leontjeva, K. Tretyakov, J. Vilo, and T. Tamkivi, Fraud Detection: Methods of Analysis for Hypergraph Data, 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp.1060-1064, 2012.
DOI : 10.1109/ASONAM.2012.234

S. Moody, Advanced techniques for detecting complex fraud schemes in large datasets, BAE Systems Detica 2012 COMMERCIAL IN CONFIDENCE Date, 2013.

C. C. Noble and D. J. Cook, Graph-based anomaly detection, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '03, pp.631-636, 2003.
DOI : 10.1145/956750.956831

V. Papavasileiou, G. Flouris, I. Fundulaki, D. Kotzinos, and V. Christophides, High-level change detection in RDF(S) KBs, ACM Transactions on Database Systems, vol.38, issue.1, pp.1-1, 2013.
DOI : 10.1145/2445583.2445584

G. Sadowski and P. Rathle, Fraud detection: Discovering connections with graph databases, White Paper -Neo Technology -Graphs are Everywhere, 2014.

S. Schockaert, M. D. Cock, and E. E. Kerre, Fuzzifying Allen's Temporal Interval Relations, IEEE Transactions on Fuzzy Systems, vol.16, issue.2, pp.517-533, 2008.
DOI : 10.1109/TFUZZ.2007.895960

J. Wang, K. Zhang, and G. Chirn, The approximate graph matching problem, Proceedings of the 12th IAPR International Conference on Pattern Recognition (Cat. No.94CH3440-5), pp.284-288, 1994.
DOI : 10.1109/ICPR.1994.576921

P. T. Wood, Query languages for graph databases. SIGMOD Rec, pp.50-60, 2012.

X. Yan and J. Han, gspan: Graph-based substructure pattern mining, Proceedings of the 2002 IEEE International Conference on Data Mining. pp. 721?. ICDM '02, 2002.