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Many biological systems approach physical limits to their perfor-
mance, motivating the idea that their behavior and underlying mech-
anisms could be determined by such optimality. Nevertheless, op-
timization as a predictive principle has only been applied in very
simplified setups. Here, in contrast, we explore a mechanistically-
detailed class of models for the gap gene network of the Drosophila
embryo, and determine its 50+ parameters by optimizing the infor-
mation that gene expression levels convey about nuclear positions,
subject to physical constraints on the number of available molecules.
Optimal networks recapitulate the architecture and spatial gene ex-
pression profiles of the real organism. Our framework makes precise
the many tradeoffs involved in maximizing functional performance,
and allows us to explore alternative networks to address the ques-
tions of necessity vs contingency. Multiple solutions to the optimiza-
tion problem may be realized in closely related organisms.

Gene regulatory networks | Optimization | Evolution | Drosophila

Optimization is the mathematical language of choice for a
number of fundamental problems in physical and statis-

tical sciences. Stochastic optimization likewise constitutes the
foundation of evolutionary theory, where selection continually
improves organismal fitness by favoring adaptive traits (1, 2).
This evolutionary force pushes against quantifiable physical
constraints and there are many examples where the organisms
we see today operate very close to the physical limit: photon
counting in vision (3), diffraction limited imaging in insect
eyes (4), molecule counting in bacterial chemotaxis (5), and
more. Experimental evidence for optimal performance can be
promoted to an optimization principle from which one can
derive non–trivial predictions about the functional behavior
and underlying mechanisms, sometimes with no free parame-
ters (6, 7). Attempts at such ambitious ab initio predictions
include the optimization of coding efficiency in visual and
auditory sensory processing (8–11); growth rates in metabolic
networks (12); matter flux in transport networks (13); informa-
tion transmission in regulatory networks (14); and the design
of molecular machines and assemblies (15).

We are unaware of any successful optimization predictions
for complex, multi-component biological systems whose in-
teractions are described in molecular detail. Whether any
first principles prediction is even possible at this level remains
unclear. As a consequence, we cannot determine whether the
existence of a particular gene, genetic interaction or regulatory
logic is an evolutionary necessity or merely a historical contin-
gency (16). This difficulty is not resolved by genetic tests for
necessity, since these cannot rule out alternative evolutionary
histories that would have unfolded without (or with modified)
molecular components.

Here we address these issues during the early stages of devel-

Fig. 1. Deriving a genetic regulatory network from an optimiza-
tion principle. We simulate patterning during early fly development in a biophys-
ically realistic, spatial–stochastic gap gene expression model (bottom; see Box 1)
that accounts for the stochastic gene expression dynamics in individual nuclei along
the anterior-posterior (AP) axis of the embryo. Regulatory interactions among four
gap genes (arrows between colored circles in each nucleus), their response to three
maternal morphogen gradients, and spatial coupling between neighboring nuclei
are parameterized by a set of over 50 parameters θ. For each parameter set, we
numerically simulate the resulting noisy gap gene expression patterns, compute the
system’s positional information I(g; x), and adjust θ using stochastic optimization to
iteratively maximize the encoded I (top).

opment in the Drosophila embryo (17). About two hours post
fertilization, the four major gap genes hunchback, Krüppel,
giant, and knirps are expressed in an elaborate spatiotem-
poral pattern along the anterior–posterior (AP) axis of the
embryo (18). The gap genes regulate one another, forming
a network that responds to the anterior (Bicoid), posterior
(Nanos), and terminal (Torso-like) maternal morphogen gra-
dients (17, 19). The states of the gap gene network in turn
drive the expression of pair rule genes in striped patterns that
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presage the segmented body plan of the fully developed or-
ganism (20). At readout time, about 40 minutes into nuclear
cycle 14 (NC14), the local gap gene expression levels peak and
encode 4.3± 0.1 bits of positional information (21–23). This
information is necessary and sufficient for the specification of
downstream pair–rule expression stripes and other positional
markers with a positional error as small as ∼ 1% of the embryo
length (EL) (24), roughly corresponding to the nuclear spac-
ing. Multiple lines of evidence further suggest that the flow
of positional information through this system – comprising
both its encoding into gap gene profiles and its readout by
the pair–rule genes – is nearly optimal (22, 24, 25). These
empirical observations lead us to the hypothesis that the gap
gene network itself may be derivable from an optimization
principle.

Quantitative experiments, genetic manipulations, and at-
tempts to fit mathematical models of the gap gene network
to data have uncovered a wealth of detail about this sys-
tem (26–35). These facts are, in part, what an optimization
theory for the gap gene network should explain. But there
are also major conceptual questions: Is behavior of the net-
work more constrained by its evolutionary history (36) or by
the developmental constraints and physical limits that arise
from the limited numbers of mRNA (37, 38) and protein (39)
molecules? Are all three maternal morphogens and four gap
genes necessary? Most importantly for our discussion, are
the interactions among gap genes and the resulting expres-
sion patterns coincidental, or determined by some underlying
theoretical principle (25)? In simpler terms, can we derive
the behavior of the gap gene network, rather than fitting its
parameters to data?

Optimization in a realistic context

To answer the questions outlined above, we have formulated a
detailed and realistic spatial–stochastic model of patterning
that encompasses gap gene regulation by maternal morphogens;
gap gene cross–regulation; discrete nuclei, including their di-
visions; transcription, translation, and degradation processes;
and diffusion of gap gene products (Fig. 1 and Box 1). Within
this class of models, we search for the networks that trans-
mit the maximum positional information given limits on the
number of molecules that can be synthesized. Here we give a
preliminary account of this work, with subsequent analyses to
be reported in a longer paper.

We considered the three maternal morphogens as well as
maximal gap gene transcription, translation, and degradation
rates to be physical constraints fixed to their measured or es-
timated values (Box 1). This leaves more than 50 parameters
which govern how gap genes integrate transcriptional regula-
tory signals from other gap genes and from their morphogen
inputs; we refer to all these parameters together as θ. As an
example, for each gene regulated by another, there is a param-
eter that measures the concentration at which the regulator
exerts half–maximal activating or repressive effect on its target,
and another parameter that measures the strength of this reg-
ulatory interaction. Different points in this 50+ dimensional
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space describe a wide spectrum of regulatory networks and
their diverse expression patterns, most of which are nothing
like the real fly embryo but nonetheless are possible networks
given the known component parts. For any set of parameters
we simulate the time evolution of our model, evaluating the
mean spatial pattern of expression for all four gap genes as well
as the gap gene (co)variability at every nuclear location along
the AP axis. These calculations, carried out in the Langevin
formalism, are complex yet numerically tractable; they prop-
erly account for maternal morphogen gradient variability and
intrinsic biochemical stochasticity.

Positional information I(g;x) can be formalized as the mu-
tual information between the set of gap gene expression levels
g ≡ {g1, g2, g3, g4} and the AP coordinate x (7, 22, 23, 25).
This quantity can be computed from the means and covari-
ances of gap gene expression, which are the results of our
model simulation at fixed θ (see Box 1). If the gap gene
system indeed has been strongly selected to maximize po-
sitional information at some readout time T , then the real
network should be near the optimal setting of parameters,
θ∗ = argmaxθI (g(T );x). This problem is well posed because
there are physical limits: the maximal rates of molecular syn-
thesis combine with degradation rates to limit the maximum
number of molecules for each species, setting the scale of the
noise which in turn limits information transmission. We have
previously solved simplified versions of this optimization prob-
lem on small subnetworks (40, 41, 46–49), but understanding
the whole network at the level where comparisons with data
are possible required a new computational strategy (Box 1).
This larger scale numerical approach, combining simulation
and optimization (Fig. 1), provides a route to derive the first
ab initio prediction for a gene network in a realistic context.

Comparing optimal networks with the real network

We used a custom simulated annealing code to optimize the
gap gene system for positional information (Fig. 2A). We first
biased the search towards solutions that might exist in the
proximity of the wild–type (WT) Drosophila gap gene expres-
sion pattern using a recently developed statistical method-
ology (50), and then removed the bias to be sure that we
have found a true optimum. Figure 2B compares the gap gene
expression profiles generated by the optimized network to data.
The match in mean expression profiles is very good (Fig. 2C),
although not perfect. Mismatches—e.g., double–peaked an-
terior giant domain, posterior–most hunchback bump, linear
anterior ramp of hunchback—likely trace their origin to the
fact that the class of models we consider still is a bit too
simple; even if we fit the parameters of the model to the data
we cannot resolve these discrepancies. The predicted gap gene
variability similarly recapitulates the measured behavior.

The mechanistic nature of our model allows us to ratio-
nalize how the optimal pattern emerges. For example, the
precision of the system output, manifested in the low variabil-
ity (∼ 10%) of gap gene expression levels at fixed position, is
achieved through a combination of temporal averaging and
spatial averaging via diffusion, which substantially reduces
noise components transmitted from upstream regulators and
morphogens (40, 51, 52). The spatial patterns of expression
in the optimal solution are shaped siginificantly by mutual
repression and self–activation, closely mimicking what had
been inferred about the structure of the network from genetic
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Box 1. Model description and assumptions.

We model the expression of gap genes up to the readout time, 40
min into nuclear cycle 14 (T = 166 min post fertilization). First, we
assume that the dynamics of gap gene expression can be described
by effective rates for mRNA and protein synthesis and degradation.
mRNA dynamics is assumed to set the slowest time scale (lifetime
τM = 20 min), so that the corresponding protein concentrations
(lifetime τP = 10 min) track the mRNA levels. The maximal mRNA
production rate at full activation, ρmax, reproduces the maximal
mRNA counts per nuclear volume reported for gap gene hb in early
nuclear cycle 14 (Mmax ≈ 5 · 102) (37). Proteins are produced from
mRNA in bursts (burst size β = 12 per mRNA), leading to maximal
average protein number per nucleus Nmax ≈ 6·103. These parameters
are assumed to be the same for all gap genes (38). Second, while
our model allows for a two-dimensional cylindrical embryo geometry,
a one-dimensional approximation of pattern formation along the
anterior-posterior axis, with N = 70 nuclei uniformly spaced at
positions xi = i ·∆ (with ∆ = 8.5 µm) along the length L = N∆
of the embryo, provides a tractable approximation (40). During the
simulated time period the embryo is a syncytium, allowing expression
levels in neighboring cells to be coupled via an effective diffusion
constant D (baseline value D = 0.5 µm2/s, varied in Fig 3E) that
includes both cytoplasmic diffusion and transport across the nuclear
membrane. Third, the spatial profiles of maternal inputs to the gap
gene network (A = anterior, P = posterior, and T = terminal system;
see Box image) are established early and are assumed to be constant
throughout the relevant time period. Fourth, the rate of mRNA
synthesis for each gene expressed at xi is modulated between zero and
ρmax by local gap gene expression levels gi = (g1

i , g
2
i , g

3
i , g

4
i ) and the

local maternal input concentrations, ci = (cA
i , c

P
i , c

T
i ), as described

by regulation functions fα that parametrically differ between gap
genes α but are the same for all positions i. Regulatory functions
are inspired by the Monod-Wyman-Changeux (MWC) model, where
the expression of gene α switches between active (probability fα)
and inactive (1− fα) states; these probabilities depend on regulatory
effects as follows (41, 42):

fα(gi, ci, θ) =
ρα

1 + exp (−Fα(gi, ci, θ))

Fα(gi, ci, θ) =
∑

κ∈{1..4}

H
ακ
G log

(
1 +

gκi
Kακ
G

)
︸ ︷︷ ︸

Self- and Cross-Reg.

+
∑

ζ∈{A,P,T}

H
αζ
M log

(
1 +

cζ
i

Kαζ
M

)
︸ ︷︷ ︸

Feed Forward (FF) Reg.

+ F0︸ ︷︷ ︸
Base Expr.

.

Here F0 is the bias towards active state in absence of any regulatory
signals; HακG and Hαζ

M
are the strengths of regulatory action (H > 0

is activating and H < 0 repressive; |H| < Hmax cf. Fig 4C), by

gap proteins (for self– & cross–regulation) and maternal morphogen
proteins (for feed forward regulation), respectively, while Kακ

G and
Kαζ
M

are the associated concentration thresholds. Taken together, we
obtain a system of coupled stochastic differential equations,

∂tg
α
i = fα(gi, ci, θ)︸ ︷︷ ︸

Regulated Production

−
1
τα
g
α
i︸︷︷︸

Degradation

+
D

∆2

∑
n

(gαn − g
α
i )︸ ︷︷ ︸

Diffusion

+
∑
k

Γki (θ)︸ ︷︷ ︸
Noise

,

where n runs over all neighbors of nucleus i and Γki represent stochas-
tic forces whose magnitude we derive in SI to account for the following
noise processes: (i) “input noise” caused by the random arrival of
TFs to gap gene CREs (43); (ii) “output noise” due to stochastic
mRNA and protein synthesis and degradation; (iii) “diffusion noise”
due to stochastic spatial exchange of gap gene proteins between
neighbouring nuclei. Importantly, the variances of these noise terms
typically scale (inversely) with the number of gap gene products.
We phenomenologically add (iv) “extrinsic noise” due to maternal
morphogen variability as well as other sources of embryo-to-embryo
variation, where the contribution to the gap gene expression variance
is assumed to be proportional to the squared mean expression (44),
with the coefficient of variation (CV2 = 0.02) estimated directly from
measurements.
The model is solved in two steps. In step one, we numerically inte-
grate the deterministic part of the equation system defined above to
obtain the mean expression levels at each position along the embryo
axis at time T . Nuclear divisions are incorporated by doubling the
maximal expression rate at the experimentally determined division
times (i.e., ρmax is only reached after the last division before T ).
In step two, the means are used to compute the full covariance ma-
trix of the noise fluctuations in the gap protein levels, describing
noise magnitude (on-diagonal matrix elements) and correlations (off-
diagonal matrix elements) across space and gap gene species. These
two quantities are used to compute the decoding map (24) and the
corresponding positional information I(g; x) (23, 25).
Maximal copy number of gene products per nucleus and extrinsic
noise imply that positional information must be upper bounded.
To reach its absolute maximum value of log2(N) ≈ 6 bits (error-
free specification of N nuclei), these constraints would have to be
lifted, implying a slower developmental process (due to lower pro-
tein and mRNA degradation rates) and/or a higher metabolic cost
(due to higher transcription and translation rates). Within set rate
constraints, various networks differ in the amount of actual gene
expression, which we quantify by “resource utilization” (RU), the
average expression across all gap genes and positions. RU = 1 means
that gap gene expression is fully induced, proceeding at the maximal
rate in every nucleus; for the Drosophila WT pattern, RU ≈ 0.2.

Spatial-stochastic model for gap gene expression. The gap gene regulatory network (center; colored circles = gap genes; grayscale circles = maternal
morphogens) in each nucleus transforms maternal inputs with known spatial profiles (left) into a gap gene expression pattern at readout time T (right; solid lines =
computed mean expression; shade = computed standard deviation). Each interaction in the network stands either for the feed forward (FF) regulation of a gap gene by a
morphogen input (light gray arrows), or for the regulation of a gap gene by other gap genes or by itself (cross– and self–regulation, dark gray arrows), and is described by
two parameters (concentration threshold K and regulatory strength H; several parameter pairs are shown, corresponding to nearby thicker arrows). All parameters
denoted by regulatory arrows are jointly optimized to maximize positional information I(g; x).

interventions (Fig. 2D). Optimization correctly predicts strong
mutual repression between hunchback and knirps, between
giant and Krüppel, as well as most weak repressive interactions
and self–activation of hunchback (52). Together, these factors

combine to encode positional information nearly unambigu-
ously, with a median positional error of ∼ 1.5% (Fig. 2E); even
the elevated positional uncertainty around the cephalic furrow
and in the far posterior is consistent between the optimal
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Fig. 2. Networks that maximize information transmission recapitulate the measured gap gene expression patterns and the regula-
tory network topology. (A) Positional information increases during a single optimization run, starting with the homogeneous profile at 0 bits (1), proceeding through
more complex spatial patterns (2-4), to the final solution (5, pattern in panel B) that reaches∼ 4.2 bits (dashed blue line). (B) Predicted optimal (left) vs. measured gap
gene expression pattern (right; (45)), 40 min into NC14 (blue = hunchback /Hb; green = giant /Gt; yellow = Krüppel /Kr; red = knirps/Kni; shade = standard deviation in gene
expression). Positional information estimate from data is consistent with that reported in (22). (C) Measured vs. predicted mean expression (top) and variability (bottom) are
highly correlated (color code as in B; Pearson p < 10−3). (D) Predicted gap gene regulatory network (left; blunt arrows = repression; circular arrows = self–activation)
vs. literature–based reconstruction (right; (18)). (E) Predicted (left) vs. measured (right) decoding map (bottom) shows a nearly unambiguous code (diagonal band) with
∼ 1.5% median positional error and few outlier positions (top inset) (24). (F) Fitting the model to mean WT gap gene expression profiles yields a good fit but lower positional
information values (black bars = distribution over replicate fits) compared to the optimized solution (blue dashed line).

prediction and the real embryo (24).
Ab initio optimization performed here makes minimal use

of empirical data to derive a wide range of predictions, in
stark contrast to traditional model fitting (50). This has three
further important consequences. First, when fitting, objec-
tive functions are purely statistical (e.g., maximum likelihood,
mean-square-error, etc.), lacking any biological interpretation.
In contrast, positional information used in optimization consti-
tutes a meaningful and independently measurable phenotype
of the patterning system. For example, our optimal solution
(Fig. 2A,B) reaches 4.2 bits, to be compared with 4.2−4.3 bits
estimated directly from data (22, 23). Second, if fitting is
performed instead of optimization, e.g., by minimizing the
mean-square-error of the predicted mean gap gene expression,
the best fits underestimate the positional information (Fig. 2F).
This is because fitting fails to take into account the functional
consequences of noise and pattern variability. Third, optimiza-
tion can identify locally optimal solutions that are qualitatively
different from the gene expression patterns observed in the
embryo but functionally near degenerate.

Multiple optimization runs indeed produce diverse solu-
tions that locally maximize positional information while not
exceeding the resource utilization of the wild type pattern.
Together, these solutions constitute the optimal ensemble. A

natural comparison is provided by the random ensemble, where
parameters θ are drawn independently and uniformly from
broad but realistic intervals. Optimization for positional in-
formation automatically leads to significantly lower positional
error (Fig. 3A), higher number of boundaries where gap gene
expression switches from low to high or vice–versa (“slopes”),
more uniform utilization of resources across gap genes, as
well a slight but significant over–allocation of resources in the
anterior, as can be seen in data as well. Within the optimal
ensemble, solutions with higher information tend to be more
dynamically stable at readout time, which we quantify by pat-
tern rate–of–change (RoC), i.e., mean temporal derivative of
gap gene expression (53). Low RoC is relevant since pair–rule
genes appear to read out gap gene expression via fixed decod-
ing rules (24, 27), implying that temporally varying solutions
could cause larger spatial drifts in pair–rule stripes.

Networks in the random ensemble that transmit large
amounts of information are exceedingly rare: the probability
of drawing a network with positional information of 4 bits
or more by chance is � 10−6 (Fig. 3B). In contrast, opti-
mization strongly and robustly enriches for solutions above
4 bits (Fig. 3B). In our optimization we have constrained the
maximum numbers of molecules, and the real embryo uses
∼ 20% (RU = 0.2) of this maximum, on average. This resource
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Fig. 3. Optimal and random gap gene network ensembles. (A) Patterning phenotypes for optimal ensemble (color, solutions from “WT RU” in panel C) vs.
random ensemble (gray, including only solutions > 0.5 bit that are at or below WT resource utilization, delineated by dashed yellow lines in panel C) reveal that high positional
information (leftmost; violet, red, yellow indicate lowest, middle, highest third of the information interval) correlates with low positional error, high number of gap gene “slopes”,
and a more uniform utilization of resources across the four gap genes (red numbers = ensemble medians). (B) Within the optimal ensemble, higher information correlates
with higher dynamical stability, i.e., lower pattern rate–of–change (each dot = one optimal solution; red ellipse = 1 SD contour in the I vs. RoC plane; color code and optimal
ensemble as in A). (C) Random (gray) and various optimal ensembles (red = resource utilization bounded by Drosophila WT denoted by dashed horizontal yellow line;
magenta = progressively smaller resource utilization; blue = WT resource utilization plus a bound on pattern rate–of–change; green = no resource utilization or rate–of–change
bounds) depicted in the information vs. resource utilization plane (each dot = unique parameter combination). Histograms in the margins show the raw counts of evaluated
parameter combinations. Inset: Information vs. resource utilization (median, 0.1–0.9-quantile intervals over ensembles in the main panel shown as central white squares and
ribbons, respectively). (D) Example optimal solutions (1–3) from panel C optimized at fixed gap product diffusion (D = 0.5 µm2/s), and an example solution (4) where
D was also optimized from the ensemble in panel E, qualitatively match WT gap gene expression domains (top) and the regulatory network architecture. (E) Positional
information (top) and pattern rate–of–change (bottom) as a function of gap gene diffusion constantD (empty circles = mean across optimal ensembles), capped at WT resource
utilization (red) or with an additional rate–of–change constraint (blue). Solid circles = mean values for the case where D itself is also optimized; yellow shade = broad range of
D consistent with literature reports. (F) Two example solutions optimized at lower-than-optimal (top) and higher-than-optimal (bottom) diffusion constant values.

utilization appears necessary for high-information solutions,
whereas permitting more utilization within the same maximal
rate limits does not noticeably increase positional information.
In fact, among > 103 optimization runs we never found a
solution exceeding 5 bits, indicating that such information
values likely cannot be accessed within realistic constraints.

The random and the optimal ensemble are closely related
to the evolutionary concepts of the neutral and the selected
phenotype distributions (54). The random ensemble delineates
what is physically possible in absence of selection for function,
while the optimal ensemble delineates solutions that maximize
function within fixed physical constraints. How closely natural
selection could approach this optimality (as quantified by the

selected phenotype distribution), or indeed has approached it
(via the actual WT pattern), depends on selection strength and
its history, genetic load, linkage disequilibrium, and other lim-
itations that are of negligible concern to in silico optimization.
Successful prediction of the pattern in Fig. 2B implies that se-
lection was sufficiently strong to overcome such limitations and
push the gap gene system beyond evolutionary tinkering (55)
towards optimality (6, 50, 56). Even in strictly ab initio runs
with zero bias towards the WT pattern we repeatedly find
solutions that closely reproduce the overall size and placement
of expression domains in Drosophila (Fig. 3D), the encoded
positional information, as well as the regulatory interactions.
Tantalizing early experimental work suggests that dipteran
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species related to Drosophila may feature a broadly consistent
gap gene domain arrangement whose expression domains are,
however, shifted (57, 58) or swapped (59), as we find in our
optimal ensembles.

Taken together, our results paint a nuanced picture of the
“necessity vs. contingency” dichotomy. In the 50+ dimensional
parameter space of possible networks, there is a highly non–
random, locally optimal solution which produces expression
patterns very similar to what we see in real fly embryos, but
there are many other local optima that transmit about the
same amount of positional information; all of these solutions
are rare in the random ensemble. It is an open question
whether alternative optima quantitatively recapitulate gap
gene patterns seen in other dipterans or whether the degener-
acy is removed by selection for additional phenotypes beyond
positional information.

Alternatives to the real network

Our theory provides a framework within which we can explore
tradeoffs beyond the structure of the gap gene network. As a
first example, we have taken the effective diffusion constant
of gap gene products to be a fixed physical property of the
cytoplasm, D = 0.5 µm2/s, in line with existing measure-
ments (39). But we can view D as one more parameter to be
optimized, and remarkably we find that there is a broad opti-
mum at the experimentally estimated value (Fig. 3E). Larger
diffusion constants lead to a precipitous drop in information
even when all other parameters θ are re-optimized, because
high diffusion smooths gap gene profiles to the extent that
adjacent nuclei can no longer be distinguished reliably (Fig. 3F,
bottom). On the other hand, slower diffusion does not serve
as effectively to average over local super–Poisson noise sources;
the optimization algorithm compensates by finding parameters
that generate more and steeper transitions between high and
low expression levels (Fig. 3F, top), but even these unrealistic
patterns do not transmit quite as much information. Thus,
a single parameter displaced away from its optimum causes
significant decreases in positional information; to lessen the
impact the optimization algorithm adjusts other network pa-
rameters, driving the predicted patterns of gene expression
away from what we see in the real embryo.

We next address the question of evolutionary necessity and
sufficiency. To this end, we make structural changes to the
network and then re-optimize all of its parameters to explore
“alternative evolutionary histories” that could have unfolded
with changed molecular components or mechanisms. As an
example, Figure 4A characterizes solutions obtained using
1, 2, · · · , 5 gap genes, subject to the same total resource uti-
lization as the WT, plotting the positional information vs.
the rate at which expression patterns are changing at readout
time. Networks that transmit 4 bits or more—as in the real
embryo—are completely inaccessible using only one or two gap
genes, even though these networks are allowed to utilize the
same total number of molecules as in the optimal four gene
networks above. With three gap genes the optimized networks
can transmit a total information comparable to what is seen
experimentally, but detailed analysis reveals that three–gene
networks all have local defects where the positional error spikes
above 5− 10% of the embryo length, in contrast to the much
more uniform distribution of precision along the length of the
real embryo (22); we can quantify this by looking at the varia-

tions in the positional error along the AP axis (Fig. 4A, inset).
This failure of the three gene networks arises because they
cannot realize a sufficient number of slopes or switches between
high and low expression levels. Four gap genes thus are neces-
sary to ensure that high positional information translates into
defect–free patterning not just on average, but across the en-
tire AP axis of every embryo (22). The marginal benefit of the
putative fifth gap gene appears small and may not be sufficient
to establish the required additional regulatory mechanisms or
to maintain them at mutation–selection balance (60).

We can explore, in the same spirit, the role of the multiple
maternal morphogens. In the fly embryo, the anterior (A,
Bicoid), posterior (P, Nanos), and terminal (T, Torso-like)
systems jointly regulate gap gene expression (24). In our
model, we can remove one or two of these inputs and re–
optimize all the parameters of the gap gene network, and
find that there are moderate yet statistically significant losses
in both positional information and stability (Fig. 4B). The
impact of primary morphogen deletions is limited because the
optimization algorithm adjusts the gap gene cross–regulation
parameters to restore informative spatial patterns. This ability,
however, disappears entirely if gap gene cross–regulation is
not permitted and the gap gene network is feed forward (FF)
only (light gray arrows in Box figure, Fig. 4B); in the absence
of feedback, removal of each primary morphogen system is
associated with a large decrease in positional information.

Figure 4B suggests that stable, high information patterns
could be generated by utilizing all three maternal morphogens
even without the ability of gap genes to regulate one another.
But in the absence of cross–regulation, the time scale for
variations in the pattern is determined solely by the intrin-
sic lifetime of the most stable species (mRNA). In contrast,
feedback in the gap gene network allows for the emergence
of longer time scales which both slow the variations and can
reduce noise by temporal averaging (47); possible evidence for
these effects has been discussed previously (53). Evolutionar-
ily, adding gap gene cross–regulation creates variability in the
rate–of–change phenotype that could additionally be selected
for. Indeed, the WT–like solution of Fig. 2B falls close to the
accessibility frontier of Fig. 4B, suggesting such a preference.

Lastly, we varied the maximal allowed strength of regulatory
interactions, Hmax (see Box 1), in our model. This parame-
ter determines how strongly each individual input, either a
morphogen or a gap gene acting via self– or cross–regulation,
can impact the expression of a target gap gene. In simple
microscopic models, this parameter measures the number of
transcription factor molecules that bind cooperatively to their
target sites as they regulate a single gene, and correlates with
the steepness (or sensitivity) of the resulting induction curve.
Optimizations presented so far used Hmax = 50, sufficiently
high not to impose any functional constraint. As Hmax is
lowered and the constraint kicks in, the optimal feed forward
solution of Fig. 4B (dark blue) suffers large drops in encoded
positional information (Fig. 4C); optimal feed forward architec-
tures are thus heavily reliant on levels of effective cooperativity
that appear unrealistic. Further, one might have been tempted
to interpret Fig. 4B by saying that cross–regulation and mul-
tiple input morphogens provide alternative or even redundant
paths to high information transmission, but we see that this
degeneracy is lifted when we limit the effective cooperativity
to more realistic levels. From an evolutionary perspective, gap
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Fig. 4. Necessity and sufficiency of gap gene regulatory network mechanisms. (A) Optimal ensembles (transparent symbols = individual optimal
solutions; solid symbols = ensemble medians) for networks with 1, 2, · · · , 5 gap genes (legend colors) optimized at the WT resource utilization (for reference, red diamond +
red ellipse at 1 SD = WT–like optimal ensemble from Fig. 3B). Solutions delineate the accessibility frontier (dotted black line for visual guidance) in positional information (I) vs.
pattern rate–of–change (RoC) plane. (Inset) While the median positional error (white squares) plateaus for optimal networks with three gap genes or more, the variability in
positional error (ribbons denote 0.1- and 0.9-quantiles across AP positions in individual embryos) significantly shrinks only with 4 gap genes or more (red arrow). (B) Optimal
ensembles for networks responding to different subsets of the three morphogens (A = anterior; P = posterior; T = terminal; red/yellow circle symbols = ensemble median; red
dots, diamond, ellipse = WT–like ensemble as in A). Optimal ensembles for purely feed forward networks (“FF only”, i.e., no gap gene self– or cross–regulation) denoted in
bluish hues (legend). (C) Positional information in optimal ensembles with (red; white squares and ribbons denote median and 0.1–0.9-quantile intervals, respectively) or
without (blue; FF networks) gap gene self– and cross–regulation (legend), for different maximal regulatory strength, Hmax. Compared to feed forward networks, full regulation
supports higher-information solutions, particularly at lower values for Hmax.

gene cross–regulation therefore is favourable for two reasons:
first, it generates temporally stable phenotypes at the acces-
sibility frontier (as in Fig. 4B); and second, it permits high
information solutions also in networks where the strength of
individual regulatory interactions is limited (as in Fig. 4C).

Discussion

The idea that living systems can approach fundamental phys-
ical limits to their performance, and hence optimality, goes
back at least to explorations of the diffraction limit in insect
eyes and the ability of the human visual system to count
single photons (6). The specific idea that biological systems
optimize information transmission emerged shortly after Shan-
non’s formulation of information theory, in the context of
neural coding (7, 61). Despite this long history, most opti-
mality analyses in biological systems have been carried out in
very simplified contexts, using functional models with a small
number of parameters. Here we have instantiated these ideas
in a much more realistic setup, using mechanistic models for
genetic regulatory networks that permit direct interpretation
in terms of molecular mechanisms and interactions.

We focused on the Drosophila gap gene system, one of the
paradigms for developmental biology and for physical precision
measurements in living systems (62). Our work extends pre-
vious mathematical models of this system (26–34, 63–66), as
well as attempts to predict it ab initio (67–69). In contrast to
previously studied models, we systematically incorporate the
unavoidable physical sources of noise, highlighting how pat-
terning precision can emerge from noisy signals by a synergistic
combination of multiple mechanisms. This novel contribution
addresses a key question in developmental biology and provides
a key mathematical ingredient for computing positional infor-
mation. Crucially, we do not fit the parameters of the model
to data, but rather derive them ab initio via optimization. In
contrast to previous prediction attempts, our constraints and
comparisons to data are not stylized, but fully quantitative
and commensurate with the precision of the corresponding

experiments.
We have found networks that maximize positional informa-

tion with a limited number of molecules, and there is at least
one local optimum quantitatively matching a large range of
observations in the wild–type Drosophila system: its spatial
patterns of expression and variability, the resulting decoding
map, the molecular architecture of the network, as well as
subtler biases in spatial resource utilization. Our optimiza-
tion framework furthermore provides a platform for exploring
the necessity and sufficiency of various network components
that ensure maximal information transmission. Using this
framework to deliver on our introductory questions, we have
established that four gap genes appear necessary for defect–
free patterning and that the apparent redundancy between
the three maternal morphogens and gap gene cross–regulation
is lifted under a developmental constraint on the strength of
regulatory interactions.

Numerical optimization clearly is not evolutionary adapta-
tion, yet its results nevertheless provide perspective on evolu-
tionary questions. Discussions about the interplay of evolu-
tionary optimization and developmental constraints, necessity
versus contingency, and limits to selection have a venerable
history (36, 70). Rather than discussing these questions in
qualitative terms, here we explored the role of physical con-
straints and tradeoffs quantitatively, in the context of an
expressive mechanistic model, using the powerful concepts
of the random and the optimal ensembles. In the words of
Jacob (55), the random ensemble delineates the space of the
“possible.” Within this space, our optimization principle acts
as a proxy for strong selection for high positional information,
thereby identifying a much more restricted optimal ensemble.
It is surprising that this principle alone is sufficient to ensure
that the optimal ensemble contains a solution very close to
Jacob’s “actual”, the Drosophila gap gene network that we
observe and measure.
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