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Résumeé

Un C-arm est un appareil d'imagerie médicale par rayons X utilisé en radiologie interventionnelle. La
plupart des C-arms modernes sont capables de tourner autour du patient tout en acquérant des
images radiographiques, a partir desquelles une reconstruction 3D peut étre effectuée. Cette
technique est appelée angiographie rotationnelle et est déja utilisée dans certains centres
hospitaliers pour I'imagerie des organes statiques. Cependant son extension a I'imagerie du coeur ou
du thorax en respiration libre demeure un défi pour la recherche. Cette these a pour objet
I’angiographie rotationnelle pour I'analyse du myocarde chez I'homme. Plusieurs méthodes
nouvelles y sont proposées et comparées a I'état de I'art, sur des données synthétiques et des
données réelles.

La premiere de ces méthodes, la déconvolution par FDK itérative synchronisée a I'ECG, consiste a
effacer les artéfacts de stries dans une reconstruction FDK synchronisée a I'ECG par déconvolution.
Elle permet d’obtenir de meilleurs résultats que les méthodes existantes basées sur la déconvolution,
mais reste insuffisante pour I'angiographie rotationnelle cardiaque chez I'homme. Deux méthodes de
reconstruction 3D basées sur |’échantillonnage compressé sont proposées : la reconstruction 3D
régularisée par variation totale, et la reconstruction 3D régularisée par ondelettes. Elles sont
comparées a la méthode qui constitue I'état de I'art actuel, appelée « Prior Image Constrained
Compressed Sensing » (PICCS). Elles permettent d’obtenir des résultats similaires a ceux de PICCS.

Enfin, deux méthodes de reconstruction 3D+temps sont présentées. Leurs formulations
mathématiques sont légerement différentes I'une de l'autre, mais elles s’appuient sur les mémes
principes : utiliser un masque pour restreindre le mouvement a la région contenant le cceur et
I'aorte, et imposer une solution réguliére dans I'espace et dans le temps. L'une de ces méthodes
génere des résultats meilleurs, c'est-a-dire a la fois plus nets et plus cohérents dans le temps, que
ceux de PICCS.

Ces méthodes ont été implémentées avec soin en utilisant la bibliothéque RTK, une bibliothéque C++
de tomographie basée sur ITK. Les opérations les plus gourmandes en temps de calcul ont été
portées en CUDA pour étre exécutées sur carte graphique. Une reconstruction 3D+temps standard
peut ainsi étre calculée en environ une heure. Avec plus d’optimisation, et en utilisant du matériel
plus performant, ce temps de calcul pourrait encore étre réduit et devenir compatible avec les
exigences de certaines procédures cliniques.



Résumé moins résumé

Un C-arm est un arc en forme de C fixé sur un bras robotique articulé, utilisé dans le cadre d’examens
radiologiques. L'une des extrémités de cet arc est équipée d’un tube a rayons X, I'autre d’un
détecteur. Grace a la mobilité du bras robotisé, un C-arm peut acquérir des images radiologiques 2D
depuis presque n‘importe quel angle. C’est particulierement utile en radiologie interventionnelle : les
coronarographies et les angioplasties des coronaires, par exemple, nécessitent d’observer le cceur
sous différents angles spécifiques pour éviter que les arteres ne se superposent les unes aux autres,
ou ne soient masquées par d’autres structures. Les C-arms sont utilisés pour des interventions tres
variées : angiographie, embolisation pulmonaire, remplacement de valve mitrale, exploration
électrophysiologique, pose de stent, ...

A la fin des années 1990, des systémes C-arm équipés de fonctionnalités 3D sont apparus. Le principe
est similaire a celui du scanner : le C-arm tourne autour du patient tout en acquérant des images (des
« projections »), puis ces projections issues de différentes perspectives sont traitées pour obtenir un
volume 3D. L'ensemble des méthodes permettant d’obtenir un volume 3D a partir d’une série de
projections 2D est |I'objet d’une branche des mathématiques : la « tomographie ».

En tomographie cardiaque, il faut composer avec le mouvement du cceur, qui se déforme a chaque
battement et se déplace lors de la respiration. Un battement cardiaque peut, trés grossierement,
étre divisé en deux parties. Pendant la premiére, appelée « systole », le ventricule gauche du coeur se
contracte pour expulser le sang dans |'aorte. Pendant la seconde, appelée « diastole », il se relache et
se gonfle du sang venant des veines pulmonaires. Le coeur se déforme beaucoup pendant la systole,
et peu pendant la diastole. Pour l'instant, I'imagerie cardiaque a partir de projections acquises en
respiration libre semble hors de portée. De plus, les médecins ne s’intéressent pas au mouvement du
ceceur induit par la respiration. Il est donc systématiquement demandé aux patients de retenir leur
respiration pendant I’acquisition. La tomographie cardiaque a donc pour objet la reconstruction a
partir de projections entachées du seul mouvement de battement cardiaque. L'objectif est soit
d’obtenir un volume statique du cceur, en général une reconstruction de la diastole, soit d’obtenir un
volume dynamique montrant le battement du coeur. Durant cette thése, I'objectif principal a été
d’obtenir une reconstruction précise du mouvement du coeur.

Dans les deux cas, on acquiert I'électrocardiogramme du patient en méme temps que les projections.
Pour reconstruire un instant donné du cycle cardiaque (une « phase »), on n’utilise que les
projections acquises durant cette phase, et on ignore les autres. Par conséquent, pour chaque phase,
un sous-ensemble incomplet du jeu de données est utilisé, et le reste est ignoré.

Dans de telles conditions, les méthodes de reconstruction classiques que sont la rétroprojection
filtrée de Feldkamp, Davis et Kress (Feldkamp et al 1984) et la méthode algébrique SART d’Andersen
et Kak (Andersen and Kak 1984) donnent des résultats décevants. Le manque de données génere des
artéfacts qui masquent les structures anatomiques et empéchent l'interprétation. Des méthodes
spécifiques permettant de reconstruire a partir de peu de données doivent étre développées. Cette
these présente et compare entre elles plusieurs méthodes spécifiquement congues pour résoudre ce
probleme.



La premiere approche que nous avons développée est basée sur une déconvolution ; en effet, un
volume reconstruit a partir de peu de projections, contenant des artéfacts dus au manque de
données, peut étre vu comme la convolution d’un volume « idéal », sans artéfacts, avec une réponse
impulsionnelle responsable de I'apparition d’artéfacts. Inverser ce processus de convolution devrait
donc permettre de supprimer les artéfacts. Cependant les limites de cette approche apparaissent
rapidement. Tout d’abord, le volume reconstruit a partir de peu de projections ne peut étre
interprété comme le résultat d’'une convolution que lorsque le faisceau de rayons X utilisé pour
I’acquisition est parallele, c'est-a-dire que le générateur de rayons X tire des rayons tous paralléles
entre eux. Ce n’est malheureusement le cas d’aucun équipement clinique actuel : tous les C-arms
utilisent des faisceaux de rayons X coniques. Une approximation est donc nécessaire. Ensuite, le
spectre de Fourier de la réponse impulsionnelle contient beaucoup de coefficients nuls. Convoluer
avec une telle réponse impulsionnelle implique donc la perte de beaucoup d’information. Dans ces
conditions, la déconvolution n’est qu’'une maniére de remplacer I'information spectrale perdue lors
de la convolution par une information spectrale estimée, mais les mécanismes de cette estimation
sont peu explicites. La méthode de déconvolution présentée en 2011 par Badea et al. est décrite en
détails, et une amélioration est proposée, qui permet entre autres d’exploiter des données acquises
avec un faisceau de rayons X divergent. Malgré une amélioration significative de la qualité des
résultats, cette nouvelle méthode de déconvolution reste insuffisante pour la reconstruction
cardiaque a partir de données C-arm.

Il apparalt nécessaire, étant donné |'échec relatif des méthodes de déconvolution, de traiter
explicitement le probléme du manque de données. C'est précisément I'objet d’un domaine de
recherche ouvert durant la derniere décennie par les travaux de Candes, Donoho et Tao:
I’échantillonnage compressé. Fondé sur le constat que la plupart des signaux réels sont
compressibles car parcimonieux, c'est-a-dire qu’il existe une base dans laquelle ils peuvent étre
exprimés avec peu de coefficients non-nuls, I’échantillonnage compressé inclut des travaux sur des
méthodes de reconstruction adaptées a des données sous-échantillonnées au sens de Nyquist. Les
deux chapitres suivants de cette these décrivent des méthodes de reconstruction basées sur
I’échantillonnage compressé. Certaines sont adaptées de la littérature, d’autres introduites par nous.

Dans un premier temps, on s’intéresse a la reconstruction d’'une seule phase cardiaque. Trois
méthodes de reconstruction sont présentées: deux régularisent la solution en minimisant sa
variation totale, I'autre s’appuie sur la minimisation de la norme L1 de sa transformée en ondelettes.
Ces méthodes different peu de méthodes existantes (voire pas pour PICCS), mais leur
implémentation, leur application a la reconstruction cardiaque de données acquises chez I'humain
par un C-arm et la comparaison des résultats qu’elles permettent d’obtenir constituent des
nouveautés. Les résultats obtenus montrent la supériorité de la régularisation par variation totale
pour reconstruire les données synthétiques, mais sont beaucoup plus homogénes sur les cas réels.

Bien que ces méthodes soient congues pour reconstruire une seule phase cardiaque, on peut obtenir
une reconstruction de I'intégralité du cycle cardiaque en mettant bout-a-bout les reconstructions de
chaque phase. Cet exercice fait apparaitre plusieurs problemes : certaines régions censées étre
statiques ont une absorption variable au cours du cycle cardiaque, les frontieres des organes en
mouvement sont floues et I'amplitude des mouvements est parfois inférieure a celle attendue. Ces
problémes appellent le développement de méthodes plus performantes, permettant d’exploiter la
cohérence temporelle entre phases cardiaques.



Dans un second temps, on s’intéresse donc a la reconstruction de I'intégralité du cycle cardiaque en
une fois. Ceci permet d’ajouter une régularisation temporelle, qui impose que les volumes
représentant des phases cardiaques successives different peu I'un de l'autre. Afin de contraindre au
maximum le probléme, une segmentation préalable du cceur est utilisée : les différences entre
phases cardiaques successives sont acceptées a l'intérieur de la région contenant le cceur, et
découragées (ou interdites, suivant la méthode) a I'extérieur. Une premiére méthode est présentée,
mais elle s’avere extrémement difficile a calibrer. Une seconde méthode, plus simple et plus
intuitive, a donc été développée. Les résultats de cette derniére méthode, aussi bien sur données
synthétiques que sur données réelles, sont meilleurs que ceux des méthodes de reconstruction 3D ne

se focalisant que sur une phase a la fois.

Au début de cette thése, l'application ciblée était I'imagerie de l'infarctus du myocarde en
rehaussement tardif, c'est-a-dire quelques minutes aprés injection d’'un agent de contraste dans les
arteres coronaires : I'agent de contraste est évacué en quelques secondes des tissus sains, mais
stagne plusieurs minutes dans les tissus nécrosés. En effectuant I'acquisition au bon moment, on
observe des régions hyper atténuantes dans le myocarde a cause d’une accumulation d’agent de
contraste. Ces régions sont les parties infarcies du myocarde, et leur volume est un élément crucial
du pronostic vital. Ce phénomene a été observé sur des images acquises par un scanner, et I'objectif
de cette these était de tenter de I'observer avec un C-arm. Malheureusement, les résultats de
reconstruction d’acquisition en rehaussement tardif sont encore décevants, et les méthodes
développées durant cette thése sont peu adaptées au probleme. Des modifications du protocole
d’acquisition sont suggérées.

Ce document s’acheve sur une série de pistes de recherche futures, parmi lesquelles I'application de
la méthode 4D ROOSTER développée durant cette these, ou de ses principes de base, a d’autres
problemes d’imagerie, et I'utilisation de méthodes de régularisation plus efficaces et mieux adaptées
aux images réelles que celles proposées dans ce travail.

Mots clés

Tomographie dynamique, angiographie rotationnelle, cceur, cardiaque, électrocardiogramme,
échantillonnage compressé, variation totale, ondelettes, régularisation, 3D, 4D
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Abstract

A C-arm is an X-ray imaging device used for minimally invasive interventional radiology procedures.
Most modern C-arm systems are capable of rotating around the patient while acquiring radiographic
images, from which a 3D reconstruction can be performed. This technique is called C-arm computed
tomography (C-arm CT) and is used in clinical routine to image static organs. However, its extension
to imaging of the beating heart or the free-breathing thorax is still a challenging research problem.
This thesis is focused on human cardiac C-arm CT. It proposes several new reconstruction methods
and compares them to the current state of the art, both on a digital phantom and on real data
acquired on several patients.

The first method, ECG-gated lterative FDK deconvolution, consists in filtering out the streak artifacts
from an ECG-gated FDK reconstruction in an iterative deconvolution scheme. It performs better than
existing deconvolution-based methods, but it is still insufficient for human cardiac C-arm CT. Two 3D
reconstruction methods based on compressed sensing are proposed: total variation-regularized 3D
reconstruction and wavelets-regularized 3D reconstruction. They are compared to the current state-
of-the-art method, called prior image constrained compressed sensing (PICCS). They exhibit results
that are similar to those of PICCS.

Finally, two 3D+time reconstruction methods are presented. They have slightly different
mathematical formulations but are based on the same principles: using a motion mask to restrict the
movement to the area containing the heart and the aorta, and enforcing smoothness of the solution
in both space and time. One of these methods outperforms PICCS by producing results that are
sharper and more consistent throughout the cardiac cycle.

Much care has been dedicated to the implementation of all these methods: they were all
implemented in the RTK framework, a C++ tomography framework based on ITK, and the most
demanding operations were ported to GPU. As a result, a typical 3D+time reconstruction can be
performed in about one hour. With further optimization and using more powerful hardware, the
processing time could be reduced again and become compatible with some existing clinical
workflows.

Keywords

Dynamic tomography, C-arm CT, heart, cardiac, electrocardiogram, compressed sensing, total
variation, wavelets, regularization, 3D, 4D
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Chapter1 : Introduction

At the end of the 19" century, several scientists, including William Crookes, Johann Wilhelm Hittorf
and Nikola Tesla conducted research on discharge tubes and generated the first X-rays. Wilhelm
Conrad Rontgen, a German physicist, was the first person to systematically study X-rays. He was
awarded the first Nobel Prize in physics in 1901. The technology of X-ray tubes then evolved quickly:
in 1913, William D. Coolidge invented the high vacuum tube, still in use nowadays, and X-ray
radiography became a common clinical practice.

In 1917, the Austrian mathematician Johann Karl August Radon invented the Radon transform
(Radon 1917): he showed that a two-dimensional function can be uniquely determined from its
integrals along parallel lines. His work, combined with Stefan Kaczmarz’s discoveries on solving large
linear systems in 1937 (Kaczmarz 1937), and later with Alan Cormack’s work (Cormack 1963, 1964),
laid the mathematical foundations for computed tomography. The first medical CT scanner was
developed by Godfrey Hounsfield, and first used for clinical practice in 1971.

Systems combining an X-ray tube and an X-ray detector mounted together on a C-shaped gantry, and
therefore called C-arms, appeared in the 50s. C-arms are designed to be mobile, and perform 2D
imaging for diagnostic and interventional radiology. In the 90s, C-arms capable of rotating around the
patient while acquiring radiographic images were released, which opened the way to C-arm
computed tomography, i.e. computed tomography using data acquired by a C-arm (Saint-Félix et al
1994, Moret et al 1998, Grass et al 1999).

This work focuses on cardiac C-arm computed tomography. The heart motion results in specific
reconstruction problems. As a consequence, cardiac examinations using CT scanners have only been
possible since 2004, with the availability of multi-slice detectors, and cardiac C-arm CT is not yet
widely used in clinical practice. In this work, we shall explain why, and propose computed
tomography algorithms to address some of the open problems.

I.1. Basics of X-Ray computed tomography

In classical X-ray radiographs, the image is a map of the attenuation of the X-rays along the path they
followed from the source to the detector. Bones absorb the X-rays more than soft tissues, soft
tissues more than air, and because of these differences in X-ray absorption, various anatomical
structures can be identified in the radiographs. But radiographs only contain information about the
cumulated attenuation of rays along their path: the contribution of the different organs crossed by
the X-ray superimpose, yielding a 2D image sequence with overlapped structures. In contrast, the
aim of computed tomography is to determine the local X-ray attenuation of each point on a 3D grid
in the body, which gives access to the properties of each anatomical structure.

X-Ray computed tomography is the science of combining several radiographs taken from different
perspectives in order to determine the X-ray attenuation of each voxel of the object. Depending on
the shape of the X-ray beam and the trajectory of the X-ray source, the methods vary a lot. A short
state of the art is presented here. Whenever possible, the methods will be presented using a convex
optimization framework, as a means to highlight their similarities and differences.



I.1.a. Reconstruction of a 2D function from its projections

Parallel beam: Radon transform

The 2D Radon transform of a R? — R function is the set of line integrals of this function for angles
ranging from 0° to 180°. It is similar to X-ray imaging with a parallel beam X-ray source (a source that
generates X-rays that are parallel to each other) which performs a 180° rotation around the object.

Figure 1. Parallel beam projection of the function f at angle 8 t

Figure 2 shows a Shepp and Logan phantom (Shepp and Logan 1974) and its 2D Radon transform,
also called “sinogram”.

Figure 2. Shepp & Logan phantom (left) and its Radon transform, or “sinogram” (right)

! Figure taken from (Turbell, H. 2001)



Fan beam

In its original form, the Radon transform is of little practical interest in modern tomographic imaging:
it is hard to design an X-ray source that generates rays parallel to each other. Instead, modern C-
arms and CT scanners embed a divergent beam X-ray source: the rays all originate from a single
point-shaped source?, and form a fan (in 2D) or a cone (in 3D).

Figure 3. Fan beam projection of the function f at angle 8

Throughout this document, we will refer to the linear map of a 2D function to its parallel beam
projections as the “Radon transform”, and use the term “X-ray transform” for all the other cases (fan
beam and cone beam projection operators). In all calculations, the letter R will denote the projection
operator, no matter which projection geometry is used.

Reconstructing a 2D function from its parallel or fan-beam projections is a well studied problem, and
essentially three classes of solutions exist:

e the direct Fourier methods (Henry Stark 1981, Gottlieb et al 2000), which will not be covered
here, because they are not used in any of the methods presented in the next sections

e the Algebraic Reconstruction Technique and all the methods derived from it (Gordon et al
1970, Andersen and Kak 1984)

e the Filtered Back Projection and the methods building upon it (Feldkamp et al 1984, Mc
Kinnon and Bates 1981, Medoff et al 1983)

%In practice, the source has a small radius, but can be approximated by a point



The Algebraic Reconstruction Technique (ART)

The Algebraic Reconstruction Technique (Gordon et al 1970) has been the first iterative
reconstruction method applied to X-ray computed tomography. It can be derived from a convex
optimization approach.

Let f be the 2D object we are trying to reconstruct, p the set of projections of f we have measured,
and R the linear operator performing a discrete approximation of the Radon transform. f is a column
vector with as many components as the number of pixels, p is also a column vector, with as many
components as the number of samples per projection times the number of projections, and R is a
non-square matrix. Each line of R is the set of coefficients used to compute the projection through f
along a single ray.

We suppose that Rf = p + ¢, where ¢ is the noise on the projections, and we want to recover f
given R and p. This problem can be solved in the least squares sense by defining a cost function

(f) = lIRf — pli3, and finding f = argmin, J(f)
J(f) is convex, so it reaches its global minimum when its gradient is 0, i.e. when
RT(Rf —p) =0

The operator R is the adjoint of R, and is called the back projection operator. Back projection
consists in setting the values of all points located on the path of a ray to the projection’s value. In
simple words, the projection is smeared out along the path of the rays. This is illustrated in Figure 4.

Figure 4. Projections of a circle are back projected along the direction with which they have been acquired. Their sum is
shown in the bottom right corner.



The most straightforward approach to minimize J(f) is to perform a gradient descent. The algorithm
would start from an initial image f,, and iteratively update it using the following update step:

fr+1 = — O-’kRT(Rfk -p)

where a is the gradient descent step size. In words, this update step consists in the following
operations:

- Projections are calculated through the image f;: it yields Rf}
- These projections are compared with the ones actually measured: it yields Rf, —p

- The difference between the computed projections Rf;, and the measured projections p is back
projected: it yields RT (Rf}, — p)

- The volume yielded by back projection is subtracted to the current volume, with a weighting
coefficient ay: it yields fi, — axRT (Rfx, — p)

This method is called Simultaneous Iterative Reconstruction Technique, short SIRT (Kak and Slaney
1988). It converges to a volume f that minimizes J(f), but the convergence is slow, because every
iteration step involves a computationally demanding forward and back projection along all rays. The
ART minimizes J(f) by the Kaczmarz method (Kaczmarz 1937), which consists in forward projecting
and back projecting one ray at a time. The Simultaneous ART, short SART (Andersen and Kak 1984), is
a compromise between SIRT and ART in the sense that it forward projects and back projects
simultaneously all the rays acquired with a given angle, or alternatively with a small set of angles, at
each iteration. The SIRT, SART and ART methods have different convergence properties (in particular,
ART converges only with consistent, noise-free data), but are very similar from a convex optimization
standpoint: they all minimize the same cost function J(f), and differ only by the minimization
method employed.

Filtered Back Projection (FBP)

Filtered Back Projection is a reconstruction method that implements the analytical inversion of the
Radon transform. It can also be adapted to reconstruct from fan beam projections. It is described
extensively in (Kak and Slaney 1988, Turbell, H. 2001), in which all theoretical foundations can be
found.

As the name suggests, Filtered Back Projection consists in two steps: filtering, and back projecting.
The projections are first convolved with a high-pass filter, called “ramp filter” because of its V-shaped
profile in the Fourier domain, and then back projected. Using linear operators, FBP can be expressed
as follows:

f=R"Kp

where K is the ramp filtering operator. FBP requires only a single back projection, and can be
performed in a few seconds on modern hardware. This is therefore the most widespread
reconstruction method in commercial CT scanners (Pan et a/ 2009).



I.1.b. Generalization to 3D

Cone beam geometry

Modern X-ray imaging devices rely on a source that generates a cone-shaped beam of X-rays. It
rotates around the patient following either a helical trajectory, for CT scanners, or a circular
trajectory, for CT scanners and C-arm systems.

Soiutrce

Figure 5. Cone beam source and planar detector following a circular acquisition trajectory3

Practical cone beam algorithm

The practical cone beam algorithm (Feldkamp et al 1984), also called FDK from the names of its
inventors Feldkamp, Davis and Kress, is a method adapted from the 2D fan beam filtered back
projection in order to reconstruct an object from cone beam projections acquired on a circular
trajectory. It consists in weighting the filtered projection data before back projecting it: the further
the considered ray is away from the cone’s axis, the lower the weight.

In 1983, Tuy identified a criterion for exact reconstruction to be possible: every plane intersecting the
object must also intersect the trajectory of the source. A circular trajectory does not meet this
criterion for exact reconstruction (Tuy 1983), therefore FDK can only be an approximate method.
Only the central slice (the intersection of the volume and the plane containing the source trajectory)
can be reconstructed exactly. The further away from the central slice, the more the volume is
affected by so-called “cone artifacts” (Sunnegaardh 2009, Valton 2007).

I.1.c. Managing motion in cardiac CT
Cardiac imaging requires specific acquisition and processing methods because of the observed
motion. In a human being at rest, this motion has two main causes: breathing and heart beating.

Breathing motion

The heart undergoes a movement close to a translation during inhalation, and the opposite
movement during exhalation. The amplitude of this movement is typically larger than what is
induced by heart beating. It is difficult to compensate for it, especially when it is mixed with

? Figure taken from (Turbell, H. 2001)



heartbeat motion. In addition, the displacement of the heart induced by breathing is irrelevant in
most clinical situations. As a consequence, patients are asked to hold their breath during
acquisitions, so as to avoid breathing motion. Most patients are old (Go et al 2013) and suffer from
various cardiac and vascular diseases, which affects their breathing and breath holding capabilities.
Physicians estimate that patients should not be required to hold their breath for more than 10 to 15
seconds.

Breathing motion is periodic, but hard to reproduce. This means that if a patient holds his breath for
a while, then breathes normally, and then starts holding his breath again, there is little chance that
his chest will be in same mechanical state as during the first breath hold. In cardiac C-arm CT, this
means that acquisitions must be performed during a single breath hold.

Heartbeat motion

There are several ways to deal with the motion induced by heart beating. One can just choose not to
take it into account, and reconstruct the cardiac volume as if the heart had been static. The result is
called an “ungated” reconstruction: the static structures like the rib cage and spine are well
reconstructed, but the contours of the heart are not sharp, and the location of fine and highly
contrasted objects like iodine-injected coronary arteries is imprecise. Alternatively, one can also
acquire the ECG signal of the patient simultaneously to the projections, select the cardiac phase (the
moment in the cardiac cycle) one wants to reconstruct based on the ECG, and perform the
reconstruction using only the projections acquired around this phase. This approach is called
retrospective gating and is illustrated in Figure 6. Mathematically, it amounts to multiplying all
projections by a temporal weighting function shaped like a gate, thus the term “gating”(Kachelriess
and Kalender 1998). A third approach is to acquire only the data that corresponds to a certain cardiac
phase, and switch off the X-ray tube during the other phases. This last approach is called prospective
gating, and is commonly referred to as “step and shoot” (Hsieh et al 2006). It delivers a lower dose to
the patient, but requires real-time ECG R-peaks detection and prevents from performing an ungated
reconstruction. Step and shoot acquisitions require fast acceleration and braking of the gantry, which
is currently possible on CT scanners but not on C-arms. All the experiments presented in this work
have been carried out with retrospectively gated acquisitions.

ECG

Cardiac
phase

Gating
weights |_| H |_l

Figure 6. Retrospective ECG-gating: the target cardiac phase is selected (here 80% of the cardiac cycle), and only the
projections acquired during a cardiac phase close to the target are kept. The other ones are discarded. The projections
kept form clusters of consecutive projections




I.2. C-arm computed tomography

I.2.a. Presentation

Figure 7. Three modern C-arm systems attached to the ceiling of the catheter lab

A C-arm is an X-ray imaging device made of an X-Ray tube and a detector mounted on a C-shaped
gantry, as can be seen on Figure 7. Because the gantry can be translated and rotated around all three
axes, the C-arm is a convenient tool to image the vascular system, in particular during an
intervention. It is designed to acquire and display 2D images (also called ‘projections’ throughout this
thesis) in real time.

In the late 90’s, C-arm systems capable of automatically and precisely rotating around the patient
were released, and C-arm computed tomography became possible.

1.2.b. Clinical interest

The initial objective of this PhD thesis was to develop a specific reconstruction method for late
enhancement myocardium imaging in C-arm CT. The principle is the following: acute myocardial
infarction occurs when a patient’s artery gets suddenly obstructed (e.g. by a clot or by the remains of
an atherosclerosis plaque). In a few minutes, the muscle cells that were irrigated by the culprit artery
die. In most cases, the patient is treated in the catheter lab, and the culprit artery is re-opened. Some
of the contrast medium injected during the treatment in the catheter lab accumulates in the
infarcted region, because it washes out slower from dead tissues than from healthy ones. It has been
proved in (Boussel et al 2008) that an 80kV CT scanner acquisition on the patient’s heart performed a
few minutes after the intervention presents a brighter region in the infarction area. This technique
allows evaluating the infarction size and location, both of which are key prognosis parameters. If this
reconstruction could be performed in the catheter lab, instead of requiring moving the patient to the
CT scanner, it would save both the patient and the physician a lot of time. Developing the
tomography algorithms for this application was the initial aim of this thesis, which over the course of
these three years took a slightly different direction. The reasons for this change, and the results
obtained on late enhancement datasets, are discussed in section IX.2.

Late enhancement imaging, however, is not the only potential application of C-arm CT. There are
many situations in which 3D imaging during a C-arm guided intervention is desirable. In vascular
surgery, for example, physicians could start their intervention by a 3D acquisition with contrast
medium, which would then serve as a roadmap over the fluoroscopy to guide the intervention
(Glockler et al 2013). The system would merge the live fluoroscopic images, which show the current
position of the surgical tools in the patient’s body, with a 2D image calculated from the 3D, which
shows the location of the vessels. Such a procedure would require less contrast medium than the



current clinical practice, which consists in injecting a bolus of iodine to make the vessels visible in
fluoroscopy every time an ambiguity arises.

A comprehensive review of the various ways C-arm computed tomography is used or could be used
can be found in (Wallace et al 2008, Grangeat 2009).

I.2.c. Challenges specific to cardiac C-arm CT
Cardiac reconstruction from C-arm CT implies specific challenges that do not exist on CT scanners.

Therefore, CT reconstruction algorithms cannot be exploited without major modifications on C-arm
CT data.

Modern CT scanners can perform a 360° rotation in 250ms, while C-arm devices are slower and
limited to short-scan acquisitions. The fastest C-arms currently available require around 3 seconds for
a 220° rotation. The cardiac rhythm at rest, for humans, is on average 60 beats per minute. As a
consequence, a cardiac C-arm CT acquisition is never free of cardiac motion and will capture at least
3 cardiac cycles.

Some C-arm devices perform several short scans around the patient, by going back and forth several
times (Lauritsch et al 2006). Assuming that the patient’s heart beats regularly, and each sweep can
be started by ECG-triggering, this kind of acquisition procedure can fill some of the gaps in the
angular sampling for a particular heart phase. However, multi-sweep acquisitions require a long
breath hold and a long contrast medium injection.

In this work, the focus is on developing tomography algorithms for a particular acquisition procedure,
which has the following properties:

e Only one sweep, in order to be compatible with most patients’ breath hold capabilities
e 308 projections
e 10.3 seconds

e 210° rotation on a circular arc

The first clinical application targeted is the measurement of the left ventricular ejection fraction
(short LVEF), i.e. the ratio between the amount of blood that the heart pumps out at each cycle and
the amount of blood the left ventricle stores when fully dilated. Measuring the LVEF requires an
easy-to-segment reconstruction of the left ventricle over the whole cardiac cycle.

Impact of the angular distribution

In tomography with few views, the reconstruction quality depends not only on the number of
projections used, but also on the way they cover the angular range around the object (Schwartz et al
2011, Chen et al 2012). In ECG-gated cardiac C-arm CT, the angular distribution of the projections is
determined by the periodic motion of the patient’s heart, and results in a few clusters of consecutive
projections (one cluster per heart beat), separated by empty angular regions (where other cardiac
phases are acquired), as shown in Figure 6.

Projections from the same cluster are very similar, and therefore each cluster brings only marginally
more information than its central projection alone. Consequently, a dataset with many clusters of
few projections is preferable to a dataset with few clusters of many projections. This effect is



highlighted in Figure 8, which shows SART reconstructions of a Shepp & Logan phantom from 60
projections grouped in 10, 20, 30 and 60 equally spaced clusters of 6, 3, 2 and 1 projections

respectively.

Figure 8. SART reconstructions of the Shepp and Logan phantom from 60 projections, grouped, from left to right, into 10,
20, 30 and 60 equally spaced clusters of 6, 3, 2 and 1 projections respectively.

The number of heart cycles captured during the acquisition is therefore a crucial parameter in the
final reconstruction quality of ECG-gated cardiac C-arm CT data. Unfortunately, little can be done to
influence it since it only depends on the patient’s heart rhythm (the higher, the better) and on the
acquisition time (the longer, the better) — and the latter has to remain short to fit in a single breath
hold and limit the amount of contrast medium.

A consequence is that the number of heart cycles during the acquisition must be considered with
great attention when assessing the quality of a reconstruction

Evaluation of the results

The goal of this work is to design a 3D + time reconstruction method for human cardiac C-arm CT.
Ideally, the resulting 3D+t reconstruction would have the same textures’ structure as the ungated
FDK reconstruction, be free of artifacts, and animated by a realistic cardiac movement. It seems
however illusory to target for a perfect dynamic reconstruction of the heart in the difficult conditions
detailed above.

In order to compare the reconstruction results between different methods, or between different sets
of parameters within the same method, we must evaluate both the quality of each volume
representing a given cardiac phase, and the quality of the motion pattern of the whole sequence.
Several metrics are proposed to quantify these aspects on the simulated data, where a ground truth
is available, and real data reconstructions are assessed by visual evaluation and Contrast to Noise
Ratio (CNR) measurements. Visual evaluation was performed by myself and by trained radiologists,
with the following criteria in mind:

e Size, shape, contrast with the background and sharpness of the edges of the beating ellipse,
for the Shepp and Logan phantom

e Sharpness of the contours of the left ventricle, for real data

® Intensity of the streak artifacts and temporal consistency, for both kinds of datasets



Chapter Il : State of the art in Cardiac C-arm
Computed Tomography

A number of methods have been developed to reconstruct 3D or 3D+time volumes from cardiac C-
arm data. As C-arm systems are mostly used to diagnose and treat vascular pathologies, it is not
surprising that many of these methods aim to reconstruct the coronary tree (Langet et a/ 2011, 2012,
Blondel et al 2006, 2004, Hansis et al 2010, 2008). Reconstructing the surface of the left ventricle, in
order to measure functional parameters such as the left ventricular ejection fraction, has also been a
topic of research (Miller et al 2013). In this work, we focus on whole heart reconstruction, and will
therefore not describe in details the methods designed specifically for coronary arteries or left
ventricle reconstruction.

II.1. Methods of reference
ECG-gated FDK

ECG-gated FDK consists in performing an FDK reconstruction with ECG-gated data. When the gated
projections are sufficiently well distributed in the angular space, it yields satisfactory images. When
they are not, the reconstructed image contains line-shaped artifacts called “streak artifacts” or
“streaks”, which hamper the medical interpretation. In our case, the gaps in the angular sampling are
large, and ECG-gated FDK is not suitable. Figure 9 shows a simulated ECG-gated reconstruction of a
phantom with the angular sampling obtained in practice on clinical data.

Figure 9. ECG-gated FDK reconstructions of the Shepp and Logan phantom from 300 projections (left) and ground truth
(right). The streaks are too intense for such a reconstruction to be usable in clinical practice



ECG-gated ART (convex optimization approach)

The same ECG-gating approach can be applied to ART. It is interesting to formalize it in a convex
optimization framework since most of the novel algorithms introduced in this thesis can be viewed as
more complex convex optimization-based algorithms. ECG-gated ART aims at minimizing the
following cost function:

J(F) = IGRf —p)lI3

where G is the linear operator performing the gating, and the rest of the notations are identical to
those used in section |.1.a. G is a diagonal matrix, and its diagonal coefficients are the square root of
the gating weights. The minimum of this cost function is reached when the gradient of J is null, i.e.
when

RTGTG(Rf —p) =0
o RTG2(Rf —p) =0

because G is diagonal. Thus in any gradient-based method to minimize J(f), the update step involves
multiplying the difference between artificial projections through the current volume, and the
measured projections, by G2. Note that in the case of binary gating (when a projection is either
selected or rejected, so the weights are either 0 or 1), G? = G. The gating matrix G will be used
extensively in chapter Chapter .

McKinnon Bates(Mc Kinnon and Bates 1981)

In 1984, McKinnon and Bates proposed the following method that builds upon ECG-gated FDK:

e Start with a standard ungated FDK. The regions undergoing movement (in practice, the
heart) are blurred, but the static regions are well defined

e Forward project the resulting volume

e Subtract these projections from the measured ones: only the dynamic region containing the
heart should be non-zero

e Compute an ECG-gated FDK of these subtracted projections

e Add the ECG-gated FDK from difference projections to the ungated FDK

This method is fast, it significantly reduces the amount of streak artifacts with respect to ECG-gated
FDK, but neither the reduction in streaks nor the temporal resolution obtained are sufficient in our
case (see section V.3.b, as the iterative method described therein boils down to McKinnon-Bates’
method if only one iteration is performed).

I1.2. Deconvolution

A second class of methods performs an ECG-gated reconstruction (FBP or ART), and then attempts to
filter out the streak artefacts using a deconvolution scheme. Such a method has first been proposed
in (Dhawan et al 1985). The deconvolution was performed using the Wiener filter. It has been
recently reintroduced by Badea et al. in the context of 4D micro-CT (Badea et al 2011) with a
modified Wiener filtering. Their method is simple to implement, fast, has only one parameter, and
gives satisfying results on 4D cardiac micro CT in the mouse. Unfortunately, the results on human



data are disappointing because of the difference in cardiac rhythms between humans and small
animals (mice have a cardiac rhythm approximately ten times higher than humans) and of the
difference in rotation speed between C-arms and CT scanners. Section Chapter | is dedicated to a
deconvolution method using iterative FBP and its comparison with Badea’s method.

I1.3. Motion compensation

An intuitive approach to reconstruct from data containing movement is to estimate the motion and
compensate for it. Every motion-compensated reconstruction method relies on a first step of motion
estimation, either from the projections, from the reconstructed volumes, or from both.
Unfortunately, estimating the movement in cardiac C-arm CT data is difficult, and none of the motion
compensation methods published at the moment has proven to be efficient in the situation
considered here (single sweep human cardiac C-arm CT for whole heart reconstruction). Since | have
not explored this kind of methods in our work, the following is only a quick overview of the state of
the art in the domain.

Primmer has worked on whole heart motion-compensated reconstruction from multi sweep C-arm
CT data in his PhD thesis (Priimmer 2009) and in various articles (Primmer et al 2009, Rohkohl et a/
2010). The methods proposed in these articles are unfortunately not suitable for single sweep
acquisitions: in single sweep acquisitions, there are large gaps in the angular sampling, while in multi
sweep acquisitions the gaps left in the angular sampling during one sweep can be partially filled by
subsequent sweeps. For this reason the motion-compensated methods underlying Primmer’s
methods cannot be applied with success in our case.

In 2012, Miller et al proposed a reconstruction method for whole heart cardiac C-arm CT from single
sweep acquisitions, called Combined Multiple Heart Phase Registration (CMHPR) (Mdiller et al 2012).
CMPHR consists in computing a series of ECG-gated reconstructions (based on compressed sensing,
using the PICCS method, see 0), then estimating a 4D movement vector field from it, and finally
performing a motion-compensated reconstruction. The results are demonstrated on two acquisitions
on porcine models, containing 25 and 32 heart beats respectively. Miiller et al also proposed a
second method using surface-based motion compensation in order to reconstruct the left ventricle: a
moving endocardium is first reconstructed from the projections, then its movement is estimated, and
then extended to a dense movement vector field. Finally, the dense movement vector field is used
for the motion-compensated reconstruction (Miller et al/ 2013). These methods rely on the
possibility to estimate the movement accurately, which in turn depends on the efficiency of the
compressed sensing-based method used for the initial ECG-gated reconstructions.

I1.4. Compressed sensing

Compressed sensing is a recent development of the signal processing theory. It has drawn
considerable attention during the last years, mostly following the work of Candes et al. (Candes et a/
2006b, Candes and Wakin 2008, Candes et al 2006a). Very roughly, this research field aims to
investigate the links between signal sampling conditions, reconstruction methods and the concept of
sparsity. A signal is said to be N-sparse in a certain basis if it has at most N non-zero coefficients in
this basis. Numerical methods have been developed to recover a signal from far fewer (adequately
performed) measurements than what is dictated by the Nyquist criterion, under the assumption that
the signal has a correct sparsity in a certain basis.



Real signal are never exactly sparse in bases we use, but they may have only a few high energy
coefficients and many very low energy coefficients if the basis is well chosen. Even with relaxed
hypotheses on the signal’s sparsity and no control on the signal sampling process, compressed
sensing-based methods remain efficient for solving ill-posed inverse problems. Constraining the
solution to be sparse in a certain basis enforces a certain form of regularity (which depends on the
basis), and rules out irregular solutions. Thus it often referred to as “regularization”. The choice of a
basis in which the signal is supposed to be sparse, or equivalently of a sparsifying transform, is a
critical question.

Sparsity in space

Several authors have proposed 3D reconstruction methods based on the spatial sparsity of the
coronary tree (Li et al 2002, Hansis et al 2008, Langet et al 2012). Langet later proposed an
improvement using both spatial and temporal regularization (Langet et al 2012). While coronary
arteries filled with contrast medium are thin and very bright objects (they are sparse in space), the
myocardium is not. These methods cannot be straightforwardly adapted to whole heart
reconstruction. However, the idea of combining spatial and temporal regularization, proposed in
(Langet et al 2012) is developed in the methods presented in sections 0 and 0.

Sparsity of the gradient

A widespread application of the compressed sensing theory is the reconstruction using total variation
(short TV) minimization. The total variation of an image f is defined as the L1 norm of the gradient’s
magnitude. Images with low TV are typically piecewise constant, therefore imposing a low TV during
a reconstruction forces the output to be spatially regular.

ASD-POCS (Sidky and Pan 2008, Bergner et al 2010) is a compressed sensing reconstruction method
based on such a regularization. It iteratively minimizes the current volume’s TV, under the constraint
that the difference between the measured projections and the estimated ones lies under a given
threshold.

Another recent method is the Prior Image Constrained Compressed Sensing (Chen et al 2008, 2012,
Lauzier et al 2012a), which also enforces a low TV, both on the reconstructed image itself and on the
difference between the reconstructed image and a “prior image”. The prior image is supposed to be
close to the image to reconstruct. In practice the prior image used is the ungated FDK reconstruction.
PICCS is currently the only method available in the literature to reconstruct from single sweep C-arm
CT data with a good temporal resolution. At the moment, it has only been demonstrated on animals
(several pigs and a dog), not yet on human C-arm CT data. Section 0 of this document is dedicated to
PICCS.

Sparsity on a wavelets basis

Real images, including C-arm CT reconstructions, contain textured regions, which typically have a
high total variation, and therefore cannot be accurately reconstructed by enforcing a low TV
constraint. Several reconstruction methods using a wavelet transform as sparsifying transform have
been proposed (Daubechies et al 2004, Jia et al 2011, Dong et al 2013), which supposedly circumvent
this inadequacy of TV. A method using the Daubechies wavelet transform as sparsifying basis is
presented in details in section 0.



Dictionary-based sparsifying transform

A number of methods propose to learn an efficient sparsifying transform from a close prior image (or
a set of close prior images) (Babacan et al 2011). A dictionary is learnt from the prior images, and is
used for the reconstruction.

Non-local means regularization (Jia et al 2010, Hao et al 2012) can also be considered a dictionary-
based compressed sensing method in which the basis is learnt from the reconstructed image itself.



Chapter IIl :Data

Throughout this document, three kinds of datasets will be used to evaluate the presented methods:
a Shepp & Logan phantom modified to mimic a beating heart (one of the ellipsoids periodically
dilates and shrinks over time), several injected human C-arm CT scans, and a late enhancement
human C-arm CT scan. The injected scans were acquired at the department of medicine, division of
cardiology, University of Colorado Denver, Aurora, USA. The late enhancement dataset was acquired
at the radiology department, Hopital Cardiologique Louis Pradel, Bron, France. These three kinds of
datasets share the same geometry and number of projections, but differ by many aspects. In this
chapter, each kind of dataset is briefly described.

III.1. Shepp and Logan phantom

The Shepp and Logan phantom (Shepp and Logan 1974) is a numerical phantom built out of ellipsoids
with different shapes and absorptions. The line-integrals through an ellipsoid can be computed
exactly; therefore it is possible to calculate exact projections through this phantom, which made it
very popular. It was initially designed to simulate a human head, with a low contrast similar to that
existing between white and grey matter in the brain. For the purpose of this study, a modified Shepp
& Logan phantom with higher contrast has been used. One of the ellipsoids was used to simulate a
beating heart: it shrinks and dilates periodically, its diameter following a sinusoidal function. Only the
volume of the ellipsoid changes over time; its absorption remains constant. Figure 10 shows cuts of
this Shepp & Logan phantom in systole and diastole. The beating ellipsoid is pointed out by a red
arrow.

Figure 10. Ground truth of the beating Shepp and Logan phantom used throughout this thesis. Systole is displayed on the
top row, diastole on the bottom row. The left column contains cuts along a plane containing the rotation axis, and the
right column a cut along a plane normal the rotation axis.



The absorption coefficient of this Shepp and Logan phantom are shown in Figure 11.

Figure 11. Attenuation coefficients of the Shepp & Logan phantom used in this thesis

The projections of this phantom were computed using exact line-integral calculations. 308
projections evenly distributed over a 205 degrees circular arc trajectory were used. A 10.3 seconds
acquisition was simulated, with the beating ellipsoid performing 64 beats per minute. 10 phases
were reconstructed, each one as a 256 * 256 * 256 voxels volume.

Figure 12 shows the ungated FDK reconstruction of this phantom, in which the motion blurring can
be observed in both slices.

Figure 12. Ungated FDK reconstruction of the beating Shepp & Logan phantom

II1.2. Injected C-arm CT scans

The X-rays absorption of blood is close to that of water, and consequently to that of soft tissues.
Therefore in a cardiac CT reconstructed volume, there is no noticeable difference between the
myocardium and the blood inside the ventricle. In order to create a distinction between blood and
muscle, an iodine-based contrast medium, which is opaque to X-rays, is injected into the patient’s
vascular system. It mixes up with the blood and travels with it. The injection site, the volume of
contrast medium and the rate at which it is injected are important parameters in order to obtain
opaque blood at the proper position and time for the acquisition.

The datasets used throughout this thesis have been acquired following the protocol described in
(Schwartz et al 2011): on average, 68 mL of contrast medium were injected to each patient, starting



with a high injection rate (10 mL/s), then lowering the rate (4-5 mL/s) and then injecting saline in

order to push the contrast medium outside the heart’s left ventricle. 308 projections evenly
distributed on a 205° circular arc trajectory were acquired in 10.3 seconds. Patient DENVER1 had a 60
bpm cardiac rhythm, and patient DENVER2 88 bpm. Projections 50 and 250 for both patients are
displayed on Figure 13.

Figure 13. Projection 50 out of 308 (left column) and 250 out of 308 (right column) of the injected C-arm CT scan
performed on patient DENVERL1 (top row) and patient DENVER2 (bottom row). The red arrow points out the highly
concentrated contrast agent in the superior vena cava in projection 50.

As can be observed in projection 50, at its initial concentration, before it gets diluted into blood, the
contrast medium has a high absorption. This creates hyper-attenuation artifacts in the reconstructed
volumes, just like metallic objects would do. These artifacts are shown in Figure 14.



Figure 14. Hyper attenuation streak artifacts caused by highly concentrated contrast agent in the superior vena cava in
patient DENVER1. The location of the contrast agent, from which streak artifacts originate, is pointed out by a red arrow

Moreover, the contrast medium flows in the vascular system. Its distribution in space can be
considered periodic inside the heart if the injection is performed carefully, but is never periodic
outside the heart. Therefore, projections acquired at the same ECG-phase can represent different
volumes: the flow of the contrast medium makes the projection data inconsistent. Cardiac
reconstruction algorithms are nevertheless built on the assumption that the attenuation of a voxel
depends only on its position in space and on the ECG-phase considered, or in other words, that the
imaged object’s attenuation varies periodically like the ECG.

Another source of error is the truncation of data: patients are typically larger than the field of view,
so that certain parts of their chest are visible on some projections and not on the others. This also
makes the projection dataset inconsistent. In order to mitigate the artifacts caused by truncation, the
reconstructed volume has been slightly extended, as recommended in (Zhang and Zeng 2007). 10
phases were reconstructed, each one as a 284 * 216 * 284 voxels volume.

II1.3. Late enhancement scan

The principle of late enhancement acquisition has already been described in section I.2.b. Contrary to
injected scans, no contrast medium is injected specifically for this acquisition. The one used during
diagnosis and treatment is considered sufficient. The acquisition is performed a few minutes after
the end of the intervention, once the catheter has been removed from the patient’s body. Therefore
the contrast medium has long been diluted into the blood, and does not cause the inconsistencies in
the projections mentioned in section IIl.2. A few projections extracted from this dataset are shown in
Figure 50.

Though late enhancement scans were performed on several patients, only the best case is used in
this work, because even on that case the results are not yet satisfying. 308 projections evenly
distributed on a 205° circular arc trajectory were acquired in 10.3 seconds. The patients’ cardiac
rhythm was 102 bpm. 10 phases were reconstructed, each one as a 284 * 216 * 284 voxels volume.



II1.4. Relevance of phantom studies

Compressed sensing reconstruction methods, which constitute the core of this work, assume that
the image to reconstruct is sparse in a certain basis, and therefore has some kind of regularity. Their
efficiency depends on whether the image to reconstruct indeed presents the kind of regularity that
the method enforces.

Unfortunately, most synthetic phantoms are schematic and do not contain the same textures, edge
structure and attenuation levels distribution as real images. Phantoms are typically piecewise
constant images with very sharp edges and no texture, while real cardiac CT images contain textured
regions separated by less sharp transitions.

Methods using TV regularization will typically perform extremely well on phantoms, while being less
efficient on real data. On the contrary, methods based on wavelet regularization are expected to
perform better on real data than on piecewise phantoms. Methods based on deconvolution or on
motion compensation usually do not make assumptions on the image regularity, so that their
performances on phantoms are usually consistent with those on real data.

In this work, an evaluation of the different algorithms on phantom data will be provided, because
their available ground truth allows to study their behavior in detail, and to quantify their efficiency.
However, the definitive assessment of their performance will be carried out on real data.



Chapter IV  : Results with a method of
reference: ECG-gated SART

SART is a widespread reconstruction method, which can be used as a baseline to evaluate the
efficiency of other methods. It has already been described in this document in section Il.1, therefore

only results are presented here.

These results have been obtained using a relaxation parameter A = 0.5, and performing 10
iterations. The forward projection operator is a ray cast method with trilinear interpolation (similar
to Joseph’s forward projector, but with an arbitrary step length), and the back projection operator is
a voxel-based back projector (in their RTK implementation on GPU).

Figure 15. Reconstructions of the moving Shepp & Logan phantom by the SART method, in both systole (top row) and
diastole (bottom row)
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Figure 16. Profiles through the border of the beating ellipsoid (top row) and their first order derivative (bottom row) for
systole (left column) and diastole (right column). The dashed line is the ground truth, and the solid line is the SART
method.

On the Shepp & Logan phantom in Figure 15, there is a clear difference between systole and diastole
results. However, the borders of the beating ellipse in diastole are not sharp, and a lot of streak
artifacts corrupt the reconstructions.

In oblique cuts like the ones presented in Figure 17 and Figure 18, the streak artifacts exist but are
hard to identify: the regions that are on the path of a streak artifact appear brighter than they
should, and those close to the path of a streak appear darker than they should. This effect is hard to
detect on static images, but appears clearly on animated sequences of the whole cardiac cycle. The
reader in encouraged to visit my personal page on the CREATIS website (http://www.creatis.insa-
lyon.fr/~mory/), where animated gif sequences are available.




Figure 17. Reconstructions of patient DENVER1 by the SART method, in both systole (top row) and diastole (bottom row).
The slices show the left ventricle, in long-axis cut in the left column and in short axis cut in the right column

Figure 18. Reconstructions of patient DENVER2 by the SART method, in both systole (top row) and diastole (bottom row).
The slices show the left ventricle, in long-axis cut in the left column and in short axis cut in the right column



Chapter V : Deconvolution for streak
artifacts removal

In the 1980’s, a number of limited-view computed tomography methods based on deconvolution
have been proposed (Dhawan et al 1985, Gordon and Rangayyan 1983). Limited-view reconstruction
is a convolution process (see section V.1), and therefore these methods propose to first perform a
gated reconstruction, and then to filter out the streak artifacts of the gated reconstruction by
deconvolution. Deconvolution was mainly performed by Wiener filtering and was only marginally
efficient.

In a recent paper (Badea et al 2011), Badea et al. introduced a new deconvolution-based
reconstruction algorithm for 4D cardiac micro CT. It uses inverse filtering and fills the gaps in the
Fourier data with the corresponding Fourier coefficients of the ungated reconstruction. This new
algorithm is simple to implement, fast, has only one parameter, and gives satisfying results on 4D
cardiac micro CT.

The aim of this chapter is to compare the method proposed in (Badea et al 2011) with one based on
convex optimization, and equivalent to ECG-gated Iterative Filtered Back Projection (IFBP)
(Sunnegardh and Danielsson 2008, Sunnegaardh 2009, Medoff et al 1983, Nassi et al 1982). They are
evaluated on cardiac micro CT and human cardiac C-Arm CT phantom simulations. ECG-gated IFBP
has the advantage of being theoretically suited not only to parallel beam geometry (like (Badea et al
2011) is), but also to fan beam and cone beam, which are the geometries used in practice.

V.1. Gated FBP is a convolution

Before we describe the deconvolution-based methods in details, we prove that, in the continuous
and infinite extent case, and in parallel beam geometry, a gated reconstruction can indeed be
expressed as a convolution. The proof is only valid in this context. In the next subsection, and
throughout the paper, we will use the following notations, or their obvious extension to 3D:

fiR? >R
(x,y) - Attenuation(x, y)

fis the object function that we aim to reconstruct from its projections.. Fqp is the one-dimensional
Fourier transform, F,p the two-dimensional Fourier transform. The symbol X denotes the pointwise
product, and * the convolution.

Let us define ® the set of angles for which we keep the projections. The gating function g is:
g:Rx [0; [ - {0; 1}
lifs=0
(s,0) >1 1if6€®
0 otherwise

g is a 2D function, but for any fixed value of 8, g(s, 8) is constant and can be replaced by gg. The
gated reconstruction can be written as fyeq = R~ (R(f) X g), or equivalently R(fgated) = R(f) x



g. Let 0€[0; [, and let Ry(f) be the projection of f along direction 6. The Fourier Slice Theorem
(Kak and Slaney 1988) states that for any reR

Fon (Faatea) (1, 0) = Fip(Rg (f) X go) (1) (V.1)

Jo being a constant, it can be taken out of the Fourier transform:

Fin(Rg(f) x go) () = Fip(Re()) () X go (V.2)

On the other hand, from the Fourier Slice Theorem,

Fio(Re () (1) = Fop () (r, 6) (V.3)

And so, by combining all three equations,

Fon (faatea) (1, 0) = Fop(F)(r, 0) X g(r, 6) (V.4)

This holds for any 8 and any r, thus

Fop(faarea) = Fan(F)g (V.5)

Which is equivalent, in the spatial domain, to

fgated = f *TZD_l(g) (V.6)

This demonstrates that the gated reconstruction is a convolution. The Point Spread Function (PSF) is
the inverse 2D Fourier transform of the gating function. If we substitute f with a Dirac function, we
obtain Jgareq = & * Fop 1(g) = Fop *(g), which gives a simple way to construct this PSF: it is the

gated reconstruction of a Dirac function. This function is plotted on the center of Figure 19.

Figure 19. From left to right, gated reconstruction of a phantom, gated reconstruction of a Dirac function, and shifted FFT
of the Dirac peak’s gated reconstruction. The streak pattern is the same on the Dirac and the phantom

We have shown that in the 2D parallel beam and continuous case, a gated reconstruction is a
convolution between the object function and the gated reconstruction of a Dirac function.
Recovering f from fgreq from (V.6) thus boils down to performing a deconvolution. However some
Fourier domain information is lost during the gated reconstruction process, when g(r,6) =0 in
(V.6). As shown on the right image of Figure 19, which contains many zero (or almost zero)



coefficients, the amount of information lost can be large. This information will have to be
extrapolated, explicitly or implicitly, in the deconvolution process.

In divergent beam geometry, the gated reconstruction process is linear, but not shift-invariant. To be
more precise, in fan beam it is shift-invariant for very special cases of 0, for example when © = @ or
© = [0; 2x[, but not for most subsets of [0; 27| (Gullberg 1979). And in particular, R} KRy (with K
the ramp filter) is not shift-invariant, as is illustrated on Figure 20, which shows the single projection
reconstructions of two Dirac functions, one centered, and the other one off-center. It is obvious that
the reconstructions are not shifted version of one another. As a result, in the case of fan and cone
beam projections, the gated FBP reconstruction process cannot be interpreted as a convolution.

@ ®) © (@

Figure 20. (a): Centered Dirac, (b): Reconstruction of (a) using only one projection, (c): Off-center Dirac, (d):
Reconstruction of (c) using only one projection. For both reconstructions, the source is at the same location (under the
image). (b) and (d) are not shifted versions of one another.

V.2. Badea’s method

A straightforward deconvolution method is called inverse filtering, and consists in dividing the
Fourier transform of the convolved image f; by the Fourier transform of the PSF, and applying an
inverse Fourier transform on the result (Bracewell 2003). With F,; the 2D Fourier transform and f
the deconvolution result, inverse filtering is simply expressed as:

Fao(f)(w,v)

Pl )0 ) = 7 s, ) v.7)

The major problem is to handle the divisions by 0, in particular when F,5(PSF)(u, v) has many zeros,
which is the case with ECG-gating.

In (Badea et al 2011), an important adaptation of inverse filtering was proposed to handle the zeros
of the spectrum of the PSF. The voxel-by-voxel division in the Fourier domain is performed only when
the magnitude of the Fourier coefficient of the PSF is above a certain threshold. In the other voxels,
where |T2D(6gated)(u, v)| is too close to zero, the division is considered unreliable and the
corresponding Fourier coefficients are copied from the ungated FBP reconstruction, which is the
reconstruction obtained by taking into account the projections corresponding to all cardiac phases.
This can be summarized as:

TZD(fgated)(u: v)
TZD(f) (u: v) = TZD(6gated)(u: v)

TZD(fungated)(u: 17) otherwise
In practice, inverse filtering deconvolution causes border effects. This is because by multiplying the

if |T2D(6gated)(u; V)l > threshold v.8)

discrete Fourier transforms of two images, one obtains the discrete Fourier transform of their



circular convolution, not of their zero-padded convolution (DFT-based convolution requires that the
images be infinite and periodic, and they usually aren’t). The reverse process, inverse filtering,
therefore assumes that the image to be deconvolved is the result of a circular convolution between
the target and the PSF, which is usually wrong, and leads to border effects.

It turns out that, with sufficiently large zero-padding of the images, a circular convolution can be
equivalent to a zero-padded one. Here the images are reconstructed in a field of view twice as large
as the object and multiplied by a 2D cosine window, which is close to zero-padded deconvolution,
and helps mitigate the border effects. The threshold is set to 15% of the maximum value of

|T2D (6gated)

, as recommended in (Badea et al 2011).

V.3. ECG-gated Iterative FBP

V.3.a.Van Cittert deconvolution method
A straightforward iterative deconvolution method has been proposed by Van Cittert (Van Cittert
1931). It can be applied to streak removal and leads naturally to iterative filtered back-projection.

In an attempt to iteratively deconvolve an image f;, the Van Cittert method uses the following
update step:

fieer = fx + a(fc — PSF * fi) (V.9)

where f; is the deconvolved image at the k-th iteration, f; is the observed image (here the gated
reconstruction), and a a relaxation weight. Section V.3.c gives some insight on how to determine «.

This scheme is of particular interest, since it does not require the explicit estimation of the PSF. One
only needs to compute PSF * f, i.e. the forward projection of f;, followed by a gated reconstruction.
As an iterative method, it requires an initialization: the ungated reconstruction provides an excellent
starting point in practice.

V.3.b.Iterative FDK

With the notations introduced in sections I.1.a and Il.1, the update step of the Van Cittert method,
modified as described in the previous subsection, is as follows:

free1 = fie + a(fgated — RTKGRfy) (v.10)
fosr = fio + a(RTKGRf — RTKGRf,.) (V.11)
fie+1 = fix + aRTKG(Rf — Rf},) (V.12)

Note that here, R is not the exact Radon transform: it has a finite number of rays and projections,
and is not limited to parallel projection. It is referred to as X-ray transform in the following.

Equation (V.12) can be translated into the following steps:

e Start from the ungated reconstruction

e Until a stopping criterion is met
— Apply ECG-gating, which selects a subset of projection angles
— Forward project the current volume along the selected angles



— Subtract the estimated projections to the measured ones
— Apply an FBP or FDK to these “difference projections”
— Add the result to the current volume (with a weight «)

There are many ways to set the stopping criterion. The algorithm for example can be stopped:

e When the difference between the current result and that of the previous iteration is below a
certain threshold

e When a given metric reaches a certain threshold

e After a given number of iterations

In this work, the stopping criterion used was the number of iterations (set to 100).

It turns out that this scheme has already been studied and is referred to as “Iterative Filtered Back
Projection” (short IFBP). However, to the best of our knowledge, only ungated IFBP has been the
topic of recent research, in order to remove cone beam or metal artifacts (Sunnegaardh 2009,
Sunnegardh and Danielsson 2008). Limited view IFBP has been studied, but never exactly on the
same problem: in (Medoff et al 1983), the authors study the so-called “bagel problem”, and in (Nassi
et al 1982) the study is restricted to fan beam and uses iterative reconstruction-reprojection to
estimate the missing views. Its application to cardiac micro CT and cardiac C-Arm CT simulations, as
well as human cardiac C-Arm CT data, is novel.

V.3.c.Convex optimization interpretation

Since the iterative scheme (V.12) does not model the streak removal process as a strict
deconvolution problem, the stationarity assumption can be relaxed. Thus, the method can be
adapted to fan and cone-beam projections. This is justified by the following convex optimization
interpretation of IFBP. The optimization perspective also helps understand how to set the parameter
a.

The ECG-gated reconstruction problem can be formulated as follows. The image f to be determined
minimizes the following energy:

2

E(f) = % ||K%G(Rf - pmeasured) ||2 (v.13)
Note that without the K operator, E(f) would be the energy minimized by ECG-gated ART. It would
also be a valid approach for ECG-gated reconstruction. The aim here, though, is to give a convex
optimization interpretation of IFBP, so ramp filtering needs to be performed. The gradient of this
energy reads:

VE(f) =R"G"KG (Rf - pmeasured) (V-14)

VE(f) = RTKG(Rf - pmeasured) (V.15)

because the ECG-gating and the ramp filtering commute (they can be performed in any order), and
GTG = G because G is diagonal and binary. From equation (V.15), it is clear that a gradient descent
procedure to find the minimum of this energy would have the following update step:

fk+1 = fk + akRTKG(Rfk - pmeasured) (V-16)



with aj the gradient descent step at iteration k. Setting a, = «a exactly boils down to the same
update step as in equation (V.12). This shows that IFBP can be seen as a steepest descent to find the
minimum of the energy defined in equation (V.13), with a the step length of the steepest descent.
The optimal value of the parameter a; can be determined at each iteration: the problem was solved
analytically by Lalush and Tsui in (Lalush and Tsui 1994). Other suboptimal, yet easier choices can be
made. In this work, we used aj, = «, with a small fixed value.

V.4. Results

This section contains reconstruction results for both Badea’s deconvolution method and the ECG-
gated iterative FDK method, on the Shepp & Logan phantom and the injected clinical datasets
described in Chapter Ill. Badea’s deconvolution method is presented on the left and ECG-gated IFDK
on the right. In all figures, the top row contains slices extracted from the systole reconstruction, and
the bottom row slices from the diastole one.

Figure 21 shows reconstructions of the moving Shepp & Logan phantom by Badea’s method and
iterative FDK. In Badea’s results, the beating ellipsoid has a better-defined shape, closer to that of the
ground truth, than in ECG-gated IFDK results. On the other hand, high frequency artefacts, probably
caused by errors on the high frequency components in the Fourier domain, appear in Badea’s results.

Figure 21. Reconstructions of the moving Shepp & Logan phantom by Badea’s method (left panel) and iterative FDK (right
panel), in both systole (top row) and diastole (bottom row).

Extracting the derivative of profiles through the edges of the beating ellipsoid allows measuring how
sharp they are. We averaged several profiles in order to deal with noise and streak artifact.

More precisely, we proceed as follows: the beating ellipsoid taken from the ground truth is dilated
and its surface is extracted, then the process is repeated several times. This generates several
ellipsoid surfaces of different sizes, and each value of the profile is computed by sampling the
reconstructed volume on one of these surfaces and averaging the samples. The same process is
applied using shrinking instead of dilation, which generates profile data for the area inside the
beating ellipsoid. Figure 22 shows profiles obtained by this method and their first order derivative, on



both Badea and IFDK reconstruction, in systole and diastole. As expected from visual evaluation, the
beating ellipsoid in Badea’s results appears marginally sharper than in IFDK results.
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Figure 22. Profiles through the border of the beating ellipsoid (top row) and their first order derivative (bottom row), in
systole (left column) and diastole (right column). The dashed line is the ground truth (not represented in the bottow
row), the solid line is Badea’s method, and the solid line with crosses is the ECG-gated iterative FDK. Badea’s results are
slightly sharper than ECG-gated IFDK results.

The methods are also compared in terms of Root Mean Squared Error (RMSE) and RMSE in a ROI
containing the beating ellipsoid. The results are listed in Table 1.

Badea's method | ECG-gated IFDK
Systole 0.0834 0.0443
RMSE )
Diastole 0.0821 0.0454
RMSE in Systole 0.0250 0.0238
ROI Diastole 0.0301 0.0302

Table 1. Root Mean Squared Errors for Badea’s method and ECG-gated IFDK on the beating Shepp and Logan phantom



Figure 23. Reconstructions of patient DENVER1 by Badea’s method (left of the white column) and iterative FDK (right of
the white column), in both systole (top row) and diastole (bottom row). The visualization window is [0.006; 0.058].

Figure 24. Reconstructions of patient DENVER2 by Badea’s method (left of the white column) and iterative FDK (right of
the white column), in both systole (top row) and diastole (bottom row). The visualization window is [0.006; 0.054].

Figure 23 and Figure 24 show reconstructions of patients DENVER1 and DENVER2 respectively.
Except for the hyper-attenuation artefacts on the borders of the volume, caused by truncation, the
Iterative FDK results are less noisy than those reconstructed with Badea’s method. The difference
between systole and diastole is stronger in Iterative FDK results than in Badea’s, although in both
cases it is smaller than clinically expected.

The RMSE and local RMSE results on the Shepp and Logan phantom are also in favor of iterative FDK.



V.5. Conclusion on deconvolution
Two deconvolution methods were presented, and the reconstruction results shown and commented.
Their respective advantages and drawbacks are listed in Table 2.

Badea's method ECG-gated lterative FDK
+ Fast - Slow (several iterations)
+ Slightly sharper - Slightly less sharp

+ Only one parameter

- Rigorous in parallel beam only + Suited to fan and cone beam

- High frequency Fourier noise
Table 2. Respective advantages and drawbacks of Badea’s method and ECG-gated IFDK

Although the measurements indicate that iterative FDK outperforms Badea’s method, neither of
both seems well suited to human cardiac C-Arm CT reconstruction from a single sweep acquisition:
the results are either too noisy or too close to an ungated reconstruction, i.e. affected by beating
movement blurring. No acceptable compromise has been found on real clinical data.

Two things are worth noting: first, the sharpness of the ECG-gated Iterative FDK results is partly
controlled by the cutoff frequency of the ramp filter (in order to avoid amplify high-frequency noise,
the ramp filter is often multiplied by an apodization window in the Fourier domain, which implies a
cutoff frequency). Therefore, the conclusions on the compared sharpness of the results of Badea’s
method and Iterative FDK depend on the parameters used, and should be considered less robust
than the other comparison items. Second, the tradeoff between motion blurring and artifact level
exists in all methods presented throughout this document, as it is inherent to the problem of cardiac
C-Arm CT reconstruction itself. The next section contains a mathematical interpretation of the
problem, details the reasons of this tradeoff, and suggests research directions for the rest of this
thesis.

V.6. Mathematical considerations

When expressed as a convex optimization problem, reconstruction can be interpreted in terms of
kernel and image of the data-attachment term’s linear map. In most ECG-gated approaches, the data
attachment term is ||G(Rf — p)||3, and the linear map GR. In the 2D parallel beam case, R is the
Radon transform, and from the Fourier Slice Theorem it can be deduced that the kernel of GR,
denoted Ker(GR), is the set of functions that have null Fourier coefficients along the angles selected
by G. Its orthogonal complement, denoted Ker(GR)? is the set of functions that have null Fourier
coefficients outside those angles. f can be expressed as the sum of its projection fx., on Ker(GR)
and its projection fy,¢n ON the orthogonal complement Ker(GR)*:

f = frer + fortho

Iterations of ECG-gated forward and back projections of f only update fy,tno, and leave fxer
unchanged (a proof is given at the end of this section). If the gating window width is 20% of the
cardiac cycle, the dimension of Ker(GR) is 4 times higher than the dimension of Ker(GR)'.
Therefore it is critical to find a consistent fk.,-. This can be done in two ways:



e Regularization: iterative algorithms can enforce constraints like limited support or non-
negativity. Compressed sensing methods constrain the solution to be sparse in a certain
basis. Both kinds of regularization modify fx.,

e Initialization: if no regularization is enforced or if it has little impact on fy,,, initialization is
critical. Most of the time, either f is initialized with zero, which means that fx,, is initially
zero, which leads to streak artifacts, or f is initialized with the ungated FBP reconstruction,
which fills fi., with data from the wrong cardiac phases, which causes blurring. Neither is
really satisfying

As a consequence, an optimal fx., can only be obtained with strong regularization, which allows, to
some extent, to progressively derive fxor from fortno- Compressed sensing methods therefore
appear as a reasonable research direction.

In the fan beam and cone beam cases, the Fourier Slice Theorem cannot be applied in a
straightforward manner, therefore Ker(GR) does not have a simple expression in the Fourier
domain, nor is it directly linked to gaps in the angular sampling. However the conclusions drawn from
the parallel beam case can still guide us, and lead us to investigate compressed sensing
reconstruction methods.

Proof that Ker(GR) is not modified during steepest descent:

Let A be alinear map A: RX - R, f € RK and b € RE.

We want to minimize ||Af — b||3. The steepest descent procedure consists in iteratively applying the
following update step:

fieer = fx + aAT(Afy — b)

We want to prove that the kernel of A is not updated. To this end, we must prove that the
orthogonal projections of fi 41 and of f;, on Ker(A) are identical, which amounts to proving that the
orthogonal projection of AT(Af, — b) on Ker(A) is 0. This is obvious because in finite dimension,
Im(AT) = Ker(A)*.



Chapter VI  :Regularized 3D
reconstruction

This chapter is meant as an in-depth study of three reference reconstruction methods introducing
spatial regularization. More specifically, we have implemented in a common framework the following
3D reconstruction methods:

e Method 1: Total variation (TV)-regularized reconstruction based on the Augmented
Lagrangian (AL) method and the Alternating Direction Method of Multipliers (ADMM)

e Method 2: Daubechies wavelets-regularized reconstruction, again with ALand ADMM

e Method 3: TV-regularized Prior Image Constrained Compressed Sensing (PICCS),
implemented by alternating ECG-gated SART and TV minimization by steepest descent

Some of these methods are directly taken from the literature, and some have been modified during
this PhD:

e Method 1 is novel, but the way it states the reconstruction problem is almost identical to
ASD-PQOCS, and is a sub-problem of Method 3

e Method 2 minimizes a cost function mentioned in (Daubechies et al 2004). Its application to
cardiac C-arm CT has not been published before

e Method 3 was published in (Chen et al 2008), and applied to cardiac C-arm CT. At this point
in time, it is considered the best method for reconstructing cardiac anatomies in C-arm CT.

An abuse in notations is used repeatedly in this chapter and the next one: the notation

f =argmin Cost(f)
f

is used even when arg miny Cost(f) is not a singleton, but a set containing several elements. In

these cases, it means “the f obtained by minimizing Cost(f)”. It usually results in f being the
projection of f,, the f with which the iterative search is initialized, onto the set of minimizers of
Cost, namely arg miny Cost(f).



VL.1. 3D reconstruction with TV regularization

VI.1.a. Cost function

The cost function minimized by this reconstruction method is the following:

J(f) = G(Rf = Il + aTV (f)

with a a fixed parameter and TV defined, as in section I1.4, by

|4
GEDY J [Vf W12 + [V, f @] + [V f )]
v=1

where v is the voxel position in the volume and V the number of voxels. J is a convex cost function.

VI.1.b. Minimization algorithm

Many approaches could be used to find an f that minimizes /. We have chosen the augmented
lagrangian method combined with the Alternating Direction Method of Multipliers (ADMM) (Afonso
et al 2010, 2011, Figueiredo et al 2009) because it allows to use wavelet-based regularization instead
of total variation with minimal modifications.

Prerequisite: soft thresholding on a vector

X1
Letx = ( : >6Rn, and let us consider the following problem:
xn

x* = arg minllx — ylI5 + AlIxll,
X
The solution to this problem(Tibshirani 1994) is given by the vectorial soft thresholding operator ST

of threshold %, defined as

y
Iyl

A
x* = ST4() = max (IIyll, - 5.,0)
2

Augmented lagrangian and ADMM

The unconstrained problem of finding arg min J(f) is equivalent to the constrained problem

f

Vv
(7.9) = arg minllG(Rf — I +a Y gl
f:,g v=1
subjectto g = Vf

The Augmented Lagrangian method consists in iteratively

e minimizing [IGRf —p)II3 + aXi_illgw)ll, + BIIVF — g — dill5 over f and g, without
constraints,



e and updating d; at each iteration.

In the AL method, /8 is a constant, and ||[Vf — g — d||3 is a term added to control the difference
between Vf and g. Initially, dy is setto dg = 0.

The minimization is performed first by finding the f that minimizes the cost function for a fixed value
of g, then finding the g that minimizes the cost function for a fixed value of f (this is the Alternating
Direction Method of Multipliers, short ADMM). In total, each iteration consists in the following steps:

fr+1 = arg ;nin NGRS — D5+ BIVS — gk — dicll3

g v=1

(

{ 4

| Gi+1=argmina ) lgW)ll; +BlIVfisr — g — dill
\ dg+1 = dx = Vkr1 + G+

The calculations required to compute f; 41 and gy ., are detailed hereinafter:

fxs1 is the zero of the gradient of ||G(Rf — p)II5 + BIIVSf — gk — dill3, that is to say the value of f
such that:

RTG*Rf — R"Gp + BV (Vf — gy —di) = 0

& (RTG*R + BV'V) f = RTGp + BV (g + dy)
A b

fr+1 can thus be computed by a conjugate gradient algorithm aimed at solving Af = b. Note that
V7= —div, if both V and V7 are computed with circular padding on the borders.

Jr+1 can be computed voxel-by-voxel, and for each voxel the problem boils down to the soft
thresholding on a vector presented earlier in this section. Therefore, for any v,

1 (W) = ST%(kaH —dy)
With ST the soft thresholding operator with threshold %

VI.1.c. Implementation
In the practical implementation, the parameter [ is not set to a fixed value, but rather changes over

the course of the iterations according to the following law: f, = X P This way B is low during
max

the first iterations, which implies a strong regularization (the threshold in the computation of gy, is
high). It then gets larger over the course of the iterations, which gradually attenuates the impact of
the regularization, in a “coarse to fine” fashion.

VI.1.d. Results

The proposed method is evaluated on the Shepp & Logan phantom and the real data with contrast
medium described in Chapter Ill. The performance on phantom data is measured with the metrics
and methods introduced in section V.4 (slices, profiles for sharpness measurement, RMSE and RMSE
in the beating region). Figure 25 shows reconstructions of the Shepp & Logan phantom with the



proposed method. Some streak artifacts remain, especially in the right column images (cut plane
normal to the rotation axis) but the beating ellipsoid borders seem sharp.

Figure 25. Reconstructions of the moving Shepp & Logan phantom by the TV-regularized 3D method, in both systole (top
row) and diastole (bottom row).
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Figure 26. Profiles through the border of the beating ellipsoid (top row) and their first order derivative (bottom row) for
systole (left column) and diastole (right column). The dashed line is the ground truth, and the solid line is the TV
regularized 3D method.

The first derivative of the profiles confirms that the edges of the beating ellipsoid are sharper than in
the reconstructions obtained by the deconvolution methods: the maximum of the first derivative is
slightly above 0.02 in both systole and diastole, while it is around 0.016 for deconvolution methods.

In addition to this increase in sharpness, the global RMSE is similar to that of IFDK reconstructions

and the RMSE in the beating region is improved with respect to deconvolution results, as shown in
Table 3.

TV-regularized 3D
Systole 0.0452
RMSE )
Diastole 0.0463
RMSE in Systole 0.0175
ROI Diastole 0.0233

Table 3. Root Mean Squared Errors for TV-regularized 3D reconstruction on the beating Shepp and Logan phantom

Minimizing total variation leads to piecewise constant images, therefore it is not surprising that TV
regularization performs well on the piecewise constant Shepp & Logan phantom. Whether or not TV
regularization is efficient on clinical data, which contains textures, must also be evaluated.

Figure 27 and Figure 28 show the reconstruction results on patients DENVER1 and DENVER2

respectively.



Figure 27. Reconstructions of patient DENVER1 by the TV-regularized 3D reconstruction method, in both systole (top
row) and diastole (bottom row). The slices show the left ventricle, in long-axis cut in the left column and in short axis cut
in the right column

Figure 28. Reconstructions of patient DENVER2 by the TV-regularized 3D reconstruction method, in both systole (top
row) and diastole (bottom row). The slices show the left ventricle, in long-axis cut in the left column and in short axis cut
in the right column

In Figure 27, the border between muscle and blood containing contrast medium is well defined in the
long axis cut of the systole, but blurry and hard to identify in the other images. In Figure 28, this



border is well defined in all images. While this difference can be caused by a number of factors, it is
consistent with the observation made in section I.2.c on the impact of heart rate on reconstruction
quality: patient DENVER2 had a higher heart rate than patient DENVER1 (88 bpm vs. 60 bpm).

The results presented here are the best tradeoff | achieved between texture preservation (which
requires low TV-regularization) and accuracy of the movement reconstruction (which requires high
TV-regularization, as explained in section V.6).

This method seems sufficient for a patient with a high heart rate, but cannot be used on a patient
with a standard heart rate, which makes it of little use for clinical practice. Other methods have to be
investigated. Finding a sparsifying transform better suited to cardiac CT images than total variation
would allow applying a stronger regularization (which is necessary to reconstruct the movement
more accurately) while still preserving textures. Wavelets have been shown to be efficient in
compressing natural images, and therefore seem a rather natural choice. The next section describes
a reconstruction method using Daubechies wavelets regularization.



VL.2. 3D reconstruction with Daubechies wavelets regularization

VI.2.a. Cost function

The cost function we try to minimize in this section is the following

J(H) = I6Rf =I5 + allWfll,

where W is a Daubechies wavelet transform. The order of the wavelet filter and the number of
decomposition levels are parameters of the reconstruction method.

VL.2.b. Minimization algorithm

We employ the same method as in section 0 to find a minimum of J. The calculations, though, differ a
bit because the operator WT = W ™1, which allows to simplify several equations. As previously, the
problem is first converted to a constrained optimization problem using variable splitting:

(f,9) = argmin|IGRRf — p)II3 + allWfll,
fr9
subjecttog = Wf

The corresponding ADMM iterations are as follows:

(firr = argmin [|G(Rf ~ P +BIWS — g — dill3
4' Ji+1= argr;lin allWflly +BIW firr — g — dicll3
l diy1 = die = Wfiewr + G
As in section VI.1.b, fi,1 is the zero of the gradient of ||G(Rf — p)II5 + BIWf — g — dill5 :
RTG?Rf — R™Gp + BWT(Wf — g, — di) = 0

& (RTG?R + BI) f = RTGp + W (g + dy)
A b

where | denotes the identity operator. f;,; is obtained by conjugate gradient algorithm aimed at
solving Af = b.

Jr+1 1S, again, obtained by soft thresholding (Daubechies et al 2004)

Ir+1(V) = ST%(Wka —dy)

VI.2.c. Implementation

In the RTK framework, it was easier to store and handle a volume than its wavelets decomposition.
Since W is invertible, both options are mathematically equivalent. In order to ease the
implementation, we modified the algorithm described in section VI.2.b to store g, and d'j instead
of gx and dy, where gy, = Wy and d', = Wd,.

The soft thresholding operation, in practice, is performed on all wavelet bands but the lowest
frequency one. It gives better results in practice, as the low frequency coefficients are critical.



VI.2.d. Results

The proposed method is evaluated on the datasets described in Chapter IliIChapter I. The
performance on phantom data is measured with the metrics and methods described in section V.4
(slices, profiles for sharpness measurement, RMSE and RMSE in the beating region).

Figure 29. Reconstructions of the moving Shepp & Logan phantom by the wavelets-regularized 3D method, in both
systole (top row) and diastole (bottom row).

The beating ellipsoid is well defined, and systole and diastole can be recognized, but artifacts appear
on every edge: since sharp edges are not sparse in the wavelet domain used here, the strong

regularization required to obtain a satisfying difference between systole and diastole has generated
artifacts.
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Figure 30. Profiles through the border of the beating ellipsoid (top row) and their first order derivative (bottom row) for
systole (left column) and diastole (right column). The dashed line is the ground truth, and the solid line is the wavelets
regularized 3D method.

The profiles and their first derivative confirm that the edges of the beating ellipsoid are blurrier than
in any of the previously shown reconstructions. The global RMSE and the RMSE in the beating region
also prove the poor performance of this method on the Shepp & Logan phantom, as shown in Table

4,
Wavelets-regularized 3D
Systole 0.0478
RMSE .
Diastole 0.0493
RMSE in Systole 0.0205
ROI Diastole 0.0270

Table 4. Root Mean Squared Errors for wavelets-regularized 3D reconstruction on the beating Shepp and Logan phantom

As already mentioned in section 1ll.4, the efficiency of a compressed sensing method depends on
whether the regularization employed matches the actual properties of the image to be
reconstructed. Minimizing the L1-norm of the Daubechies wavelets decomposition was expected to
be a poor regularization choice in the case of a piecewise constant phantom. On the other hand, it
should be well suited to the reconstruction of textured images. Figure 31 and Figure 32 show the
results of this method on patient DENVER1 and patient DENVER2 respectively.



Figure 31. Reconstructions of patient DENVER1 by the wavelets-regularized 3D reconstruction method, in both systole
(top row) and diastole (bottom row). The slices show the left ventricle, in long-axis cut in the left column and in short
axis cut in the right column

Figure 32. Reconstructions of patient DENVER2 by the wavelets-regularized 3D reconstruction method, in both systole
(top row) and diastole (bottom row). The slices show the left ventricle, in long-axis cut in the left column and in short
axis cut in the right column



On real data, the results are more convincing than on the Shepp & Logan phantom: the regularization
has removed much of the high-frequency noise that was still present in the TV-regularized images
(red arrows in Figure 31 and Figure 32), and led to well differentiated systole and diastole
reconstructions. The change in regularization improved the overall reconstruction quality. It should
now be compared with a state of the art method.

The Prior Image Constrained Compressed Sensing method, short PICCS, is a generalization of the TV-
regularized 3D reconstruction method described in section 0. It has been used several times in the
literature to perform cardiac C-arm CT reconstruction, and is therefore the de facto gold standard for
cardiac C-arm CT.



VL.3. PICCS with TV regularization

Prior Image Constrained Compressed Sensing has been developed to reduce the texture-erasing
effect of TV regularization. TV is balanced with another regularization term: the attachment to a
“prior” image, known before the reconstruction and chosen close to the expected result. In practice,
this second regularization term forces the reconstruction to have a texture similar to that of the prior
image.

There are numerous versions of the PICCS algorithm available in the literature (Chen et al 2008,
2012, 2009, Lauzier et al 2012b, Bergner et al 2010, Nett et a/ 2008). The definition of the cost
function is stable throughout these publications, but the algorithm used for minimization varies a lot
from one paper to another. In all of them, the regularization used to compute the results is TV,
although the cost function is usually defined with a more general sparsifying transform.

In this section, we describe in details the version of the PICCS algorithm with TV regularization we
used.

VI.3.a. Cost function

PICCS aims to find the minimum of the following cost function:

J(F) = ullGRf —=pII3 + (1 = DTV(F) + aTV(f — f*)

where f* is the prior image (in our case, the ungated FDK reconstruction), u is a parameter
controlling the relative weights of data attachment and regularization terms, and « € [0;1]. «
controls the relative weights of the two regularization terms. Note that when « is set to 0, the PICCS
cost function boils down to that of TV-regularized 3D reconstruction method presented in section 0.

VL.3.b. Minimization algorithm

Where TV is differentiable, its gradient can be calculated analytically, therefore steepest descent and
non-linear conjugate gradient can be employed to minimize J(f) (Lauzier et al 2012a). Where it is
not differentiable, i.e. when V,f(v) = V,f(v) =V,f(v) = 0, we avoid the division by zero by
adding a small € to the denominator. It is a bold way of dealing with the problem, and a more elegant
one would be to use Chambolle’s method to compute the proximal operator of TV (Chambolle 2004),
but it is computationally efficient and gives good results in practice. The augmented lagrangian and
ADMM with 3 terms could also be used, but it would require a third level of nested iterations.

We have chosen a simple approach, proposed in (Chen et al 2008), which consists in minimizing
separately the data attachment term ||G(Rf — p)||5 and the sum of the TV terms (1 — a)TV(f) +
aTV(f — f*) in an alternative fashion. Let us denote by SART (R, p, f;) the result of SART using the
forward-projection operator R, the set of measured projections p and the volume f; as initialization.
Let us similarly denote by SD(a, f*, f,) the minimization by steepest descent of the sum of TV terms
using the parameter «, the prior image f* and the volume f; as initialization. It results in the
following update steps (Chen et al 2008):

{ SART = SART (GR, Gp, fi)
frerr = SD(a, f*, fiZ£F")



This algorithm is simpler than the various conjugate gradient approaches studied in (Lauzier et al
2012a) and easier to implement. However, it behaves badly when « is close to zero: with enough
iterations, SD (0, f*, fy) returns a uniform volume, because the steepest descent is not constrained
to preserve any structure from f; (when « is large enough, typically larger than 0.1, the attachment
to f* is sufficient to avoid this effect). Therefore we have slightly modified the steepest descent part,
adding a data-attachment term to the initial volume, as suggested in (Chan et a/ 2001):

Modified SD(0, f*, fo) = argmin A|lf — foll5 + (1 — )TV () + aTV(f — f*)
f

and the algorithm we obtain is

SART = SART(GR, Gp, fi))
fies1 = Modified SD(a, £*, fS45T)

There is no trivial proof that this algorithm indeed minimizes the PICCS cost function introduced in
section VI.3.a. As a consequence, proving that it actually converges is hard. Section VII.2.c contains a
partial proof of convergence of the 4D ROOSTER method (presented later in this document, in
section 0) using the theory of non-expansive mappings. It can be adapted to PICCS in order to prove
that if this algorithm has at least one fixed point, it converges to one of its fixed points.

VIL.3.c. Results

Figure 33 shows reconstructions of the moving Shepp and Logan phantom using PICCS with TV
regularization, and Figure 34 displays profiles through the border of the beating ellipsoid. As already
stated in section 11l.4, it would make little sense to analyze these results in detail: PICCS was designed
to work best on real data, and the best results on piecewise constant phantoms are obtained by
setting a to zero or almost zero, which amounts to using the TV-regularized 3D reconstruction
method presented in section 0.



Figure 33. Reconstructions of the moving Shepp & Logan phantom by the PICCS TV method, in both systole (top row) and
diastole (bottom row).
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Figure 34. Profiles through the border of the beating ellipsoid (top row) and their first order derivative (bottom row) for
systole (left column) and diastole (right column). The dashed line is the ground truth, and the solid line is the PICCS TV
method.



PICCS
Systole 0.0441

RMSE
Diastole 0.0454
RMSE in Systole 0.0189
ROI Diastole 0.0252

Table 5. Root Mean Squared Errors for PICCS reconstruction on the beating Shepp and Logan phantom

Figure 35 and Figure 36 contain the reconstruction results using PICCS on patient DENVER1 and
patient DENVER2 respectively. The results are visually similar to those of the previously presented

compressed sensing-based reconstruction methods.

Figure 35. Reconstructions of patient DENVER1 by the PICCS TV method, in both systole (top row) and diastole (bottom
row). The slices show the left ventricle, in long-axis cut in the left column and in short axis cut in the right column



Figure 36. Reconstructions of patient DENVER2 by the PICCS TV method, in both systole (top row) and diastole (bottom
row). The slices show the left ventricle, in long-axis cut in the left column and in short axis cut in the right column

VI.4. Conclusions on 3D reconstruction of a single cardiac phase

Vi.4.a. Choice of the sparsifying transform

In section V.6, we have shown that a strong regularization is essential to obtain a sharp
reconstruction of the moving structures in each phase. Whether the regularization can be set strong
enough to reach good reconstruction results without generating artifacts or completely smoothing
out textures, depends on how sparse the solution indeed is in the chosen basis. We have seen that
TV minimization is well suited to piecewise constant images with sharp edges, and performs
reasonably well on real data, while Daubechies wavelets are efficient on real data and suboptimal on
piecewise constant images like the Shepp and Logan phantom.

V1.4.b. Consistency of the 3D+time sequences
The methods described in this chapter reconstruct each cardiac phase independently. The volumes
can then be assembled to form a 3D+time reconstruction.

It turns out that they often yield solutions with strong attenuation variations over the cardiac cycle,
even in regions where no movement is expected. This is illustrated on Figure 37, which shows the
difference between two consecutive phases (separated by 10% of the cardiac cycle).



Figure 37. Phases 0% (left column) and 10% (middle column) of the cardiac cycle obtained by TV-regularized
reconstruction (top row), Wavelets-regularized reconstruction (middle row) and PICCS (bottom row). The right column
contains the absolute value of the difference between these two phases, with a 10 times thinner visualization window.

This limitation of 3D reconstruction algorithms can only be overcome by reconstructing the whole
cardiac cycle at once and enforcing some consistency between different instants of the cardiac cycle.
Moreover, such an approach will exploit more information for the reconstruction of each specific
cardiac phase, so that we can expect a global improvement of the reconstruction quality. It is the
purpose of the algorithms proposed in the next chapter.



Chapter VII : Regularized 3D+t
reconstruction

In this chapter, we introduce two 3D+time reconstruction methods, in order to address the problems
of pure 3D methods pointed out in section VI.4.b. Both require a segmentation of the regions
undergoing movement for the reconstruction. For the cases presented in this document, the
segmentation has been performed on the ungated FDK reconstruction (see Figure 38) using the semi-
automatic segmentation tool LiveMorph (Mory et al 2012). It could be replaced by a fully automatic
method like the one used in (Schwartz et al 2011), especially because the segmentation used by 4D
ROOSTER can be very rough. In this work, the segmentation obtained from the ungated FDK

reconstruction was artificially expanded to include a margin of error.

Figure 38. Motion masks displayed on top of ungated FDK reconstructions of the moving Shepp & Logan phantom (left
column), patient DENVER1 (middle column) and patient DENVER2 (right column). The top row contains short axis cuts,
and the bottom row long axis cuts. The contours of the motion mask appear in red.




VII.1. 3D+t reconstruction with ROI-based 4D TV regularization

VIl.1.a. Cost function

The notations used in the previous chapter must be slightly adapted to fit in a 3D+t reconstruction
context:

fi
® fi,f2, - fn are 3D volumes, each one representing a single cardiac phase, and f = ( : ) isa

fn

4D sequence of volumes. fi, f5, ... fy are column vectors of size M, where M is the number of
voxels in a 3D volume. Thus f is a column vector of size MN

® Ry is the X-ray transform for angle 6

® pyis the projection measured at angle 8. The pg are column vectors of size P, where P is the
number of pixels in a projection, and the Ry are matrices with P lines and M columns.

e Sy is an interpolation operator which, from the 3D + time sequence, estimates the 3D
volume through which projection 8 has been acquired.

Sp is defined as follows: from the ECG, we know in which phase t(8) the patient’s heart was when
projection pg was acquired. The forward projection at angle 8, which will be compared to the
measured projection pg, should be computed through an estimate of the patient’s thorax at t(0),
which by a slight abuse in notation we will denote f;(), and which is obtained by interpolating
between some of the volumes f;. If N=10, f; is the volume at 10% of the cardiac cycle, f, the volume
at 20%, and so on. With t(6) = 87%, the interpolated volume would be Spf = f(9) = 0.3f3 + 0.7f5.
In this example, and in the implementation we used, Sy is a linear interpolator. However, other
interpolation methods could be tested, like nearest neighbors or splines. Note that Sy is a huge
matrix with M lines and MN columns, but is not explicitly computed in practice.

This method consists in minimizing the following cost function J(f):

J(f) = ZIIRQSGf —poll5 + aROI_TV (f)
‘]

® ( is a parameters that determines the relative weight between the data attachment and
regularization terms
e ROI_TV is a modified 4D total variation regularization function defined as follows:

M
ROLTV(f) = Z J [Vaf (]2 + [V, f )] + [V, f ()12 + [w(m) P, £ (m)]?
m=1

where w(m) weighs the temporal component of the gradient with respect to the spatial ones, and
depends on whether the voxel v is inside or outside the ROI containing the regions undergoing
movement. w is a vector of size M. If m is outside the ROI, its intensity should not vary much
between consecutive phases. Therefore w(m) should be high. On the other hand, if m is inside the
ROI, it is normal that its intensity varies over the cardiac cycle, and w(m) should be low in order to
allow this variation. In practice we use only two values of w(m), one for the voxels inside the ROI
and one for the voxels outside the ROI, denoted w;,, and w,,,; respectively, with w;, < wyy¢-



From these weights w(m), we define a diagonal matrix H of size 4M, which performs the voxel-by-
voxel multiplication of the gradient of f by either 1 (for x, y and z components of the gradient), w;,
(for voxels inside the ROI) or w,,; (for voxels outside the ROI).

In order to have a finer temporal resolution during systole, | have tried using a denser temporal
sampling during systole and a looser one during diastole, instead of having a sequence f of 3D
volumes regularly spaced in the cardiac cycle (for example, every 10%). Noticing no improvement, |
reverted to regularly spaced volumes for the sake of code simplicity.

VIL.1.b. Minimization algorithm
Using the matrix H, and similarly to section VI.2.b, we transform the unconstrained problem of
finding the minimum of J into a constrained problem by variable splitting:

4
(7.9) =argmin ) IRaSof —poll3 +a ) llg@)ll,
f;g 0 v=1
subjectto g = HVf

Using the Augmented Lagrangian and the Alternating Direction Method of Multipliers, this problem is
solved by the following iterative procedure:

(fas = arg min D IRSof = poll3 + BIHTS = gy - il
2]

_ d , (VIL.1)
Givr = argmin - @ ) gl + BIHfers = g — dell
)

l\ et
diy1 = dig — HVfgpq + Getn

fre+1 is the zero of the gradient of XgllRgSef — poll5 + BIHVS — gi — dill3, that is to say the value
of f such that:

Z Se"Rg"RgSaf — S¢" Rg"pe + BVTHT (HVf — gi — di) =0
7

PN (Z Se " Rg"RgSy + ﬁVTHTHV>f = Z Se"Re"pe + BVTH” (gi + dy)
0 ‘]

A b

fr+1 can thus be computed by a conjugate gradient algorithm aimed at solving Af = b. Note that
HT = H (H is diagonal) and therefore HTH = H?.

As in section VI.1.b, gy4+q can be computed voxel-by-voxel, and for each voxel the problem boils
down the soft thresholding on a vector. Therefore, for any v,

k1 (W) = ST%(Hka+1 —dy) (VI1.2)



VIl.1.c. Results

The proposed method is evaluated on the datasets described in Chapter IlIChapter I. Performance on
phantom data is measured with the metrics and methods introduced in section V.4 (slices, profiles
for sharpness measurement, RMSE and RMSE in the beating region).

Figure 39. Reconstructions of the moving Shepp & Logan phantom by the ADMM 4D TV method, in both systole (top row)
and diastole (bottom row)
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Figure 40. Profiles through the border of the beating ellipsoid (top row) and their first order derivative (bottom row) for
systole (left column) and diastole (right column). The dashed line represents the ground truth, and the solid line
represents the ADMM 4D TV method.

ADMM 4D TV
Systole 0.0430
RMSE ,
Diastole 0.0438
RMSE in Systole 0.0190
ROI Diastole 0.0227

Table 6. Root Mean Squared Errors for ADMM 4D TV reconstruction on the beating Shepp and Logan phantom



Figure 41. Reconstructions of patient DENVER1 by the ADMM 4D TV method, in both systole (top row) and diastole
(bottom row). The slices show the left ventricle, in long-axis cut in the left column and in short axis cut in the right
column

Figure 42. Reconstructions of patient DENVER2 by the ADMM 4D TV method, in both systole (top row) and diastole
(bottom row). The slices show the left ventricle, in long-axis cut in the left column and in short axis cut in the right
column



The results obtained on the Shepp & Logan phantom have fewer streaks than those of PICCS or
ADMM 3D TV, which reduces the global RMSE, but the beating ellipsoid has blurrier edges.

The results on real data are not convincing either: they are very similar to those of the TV regularized
3D reconstruction method presented in section Chapter I.

Considering the significant increase in the complexity of the algorithm, those are quite disappointing
results.

VIL.1.d. Practical difficulties

In theory, with a sufficiently large number of iterations, any value of the parameter f§ could be used.
If the number of iterations of the main loop is kept relatively low, the choice of § is important. Even
with an optimized implementation and a limited volume resolution, each iteration of the main loop
takes about two minutes. Performing hundreds of iterations would make the execution time
unacceptable for clinical practice, therefore a suitable § must be determined.

Equations (VII.1) and (VII.2) show that § is involved in at least two processes: it controls the tolerance
on the difference between HVf and g, and determines the amount of soft thresholding in the
computation of gg.1. This one parameter controlling two very different processes, it is hard to
predict which effect a change in the value of [ can have in the reconstruction, and fine-tuning is
delicate.

The choice of w;, and wyy; is also difficult: ROI_TV(f) is a sum over all voxels, therefore setting
Woyt too high makes the contribution of the voxels located in the ROI negligible, and the algorithm
only regularizes outside the ROI. Choosing w,,: too low, on the other hand, allows motion to occur
in regions that should be mostly static.

These practical fine-tuning difficulties have led me to develop another 3D + time reconstruction
method, based on the same ideas (ROI, TV regularization, and 4D reconstruction) but with a different
mathematical formulation. It is described in the next section.



VIL.2.4D ROOSTER

In this section, we introduce a new 3D + time reconstruction method, which we name 4D ROOSTER
(for 4D RecOnstructiOn using Spatial and TEmporal Regularization). This method builds upon un-
regularized 4D reconstruction by conjugate gradient, adding a series of regularization constraints one
by one: first positivity, then restriction of motion to a ROl containing the heart and the vessels, and
finally spatial and temporal total variation minimization.

VIIL.2.a. Expectations
The 4D ROOSTER method derives from the desired properties of the solution to the problem:

e (P1) The forward projection through the reconstructed 4D volume should match the
measured projection data as accurately as possible

e (P2) All voxels should have non-negative attenuation

e (P3) No movement should occur outside the heart and the vascular system

e (P4) Each volume of the sequence should have some kind of spatial regularity, i.e. be spatially
smooth except on the edges of the organs, and be free of streak artifacts

e (P5) Consecutive volumes in the sequence should be similar

The notations we will use in the next section to describe the method are similar to those of section 0.
Only the matrix H has a slightly different definition: H is here a binary diagonal matrix with M lines,
which “selects” the voxels located outside the heart. As a result, for any i,

{Hfl- (x,y,2z) = fi(x,y,2) if (x,y,z) is outside the heart
Hf;(x,y,z) = 0if (x,y, 2) is inside the heart
The multiplication by the matrix H is the linear algebra equivalent of multiplying by a motion mask.

Now, let us formalize our five requirements on the solution:

e (P,), taken in the least squares sense, means that Y.g||(Rg Sy f — pg) |5 should be small.

e (P,)is equivalent to imposing that Vi and V(x, y, z), f;(x,y,z) = 0.

® (Ps) meansthatforanyiandj, Hf; = Hfj.

e (P4) can be enforced by numerous regularization methods. We chose to express it as a
constraint on 3D total variation on each volume f;. The total variation is defined by

J (Waf)? + (Y fi) " + (V)2
1

The V operator accounts for the spacing between voxels, which can vary from one direction

TVspace (f ) =

to another.
e (Ps) can also be expressed as a constraint on total variation, although this time a one
dimension total variation has to be used. The following constraint is derived:

TViime () = IV 11

should be small. The discrete gradient along time is computed with a circular boundary
condition because the sequence of volumes is meant to be cyclic.



VIL.2.b. Method

The algorithm we propose in order to derive a 3D + time sequence f that has the aforementioned

properties consists in the following steps:

Start fromk = 0and f®) =0
Until k = kg

o Compute f =argmin Yy||(RgSef —pe)ll? by a conjugate gradient descent

f
initialized with f (0
o Setall negative voxels to zero

2 . . 1 2
o Ineach f; replace the area outside the heart by its temporal mean sz Hf;

o A2
o For each f;, compute §; = argmin Aspace”g - fi”2 + TVepace(g) using a gradient
g
descent, as described in (Chan et al 2001), and concatenate the §; into §.

o Compute f**D = argmin Aymellf — G113 + TViime (f) by the same method

f
o k=k+1

The parameters of the algorithm are the number of main loop iterations k,;,,,, the number of nested

conjugate gradient iterations, the number of iterations used in the TV minimization, the parameters
Aspace and A¢ime, Which are data attachment coefficients for TV minimization, and the steps of the

gradient descents.

VIIL.2.c. Convergence
This section provides the theoretical background to prove that, if the main loop of 4D ROOSTER has

at least one fixed point, 4D ROOSTER converges to one of these fixed points. However, we cannot

prove that such a fixed point does exist. We introduce a few definitions from the theory on non-

expansive mappings:

A mapping T: RMN — RMN is non-expansive if Vx,y € RN ||ITx — Tyl|l, < llx — yll,

T is strongly non-expansive if T is non-expansive and whenever (x;)neny and (¥n)nen are
sequences in RMN such that (x,, — V,)nen is bounded and ||x,, — vl — ITx,, — Ty, ll, —
0, it follows that (x,, — v,) — (Tx, — Ty,) — 0

Tis firmly non-expansive if Vx,y € RMN, ||[Tx — Ty|l5 < (Tx = Ty,x —y)

All operators involved in 4D ROOSTER are strongly non-expansive:

conjugate gradient is convergent. With enough iterations, it is strongly non-expansive
positivity enforcement is a projector onto a non-empty closed convex set, therefore it is
firmly non-expansive, and therefore strongly non-expansive (see fact 4.2 of (Bauschke et al
2012))

averaging along time outside the motion mask is firmly non-expansive, and therefore
strongly non-expansive. The proof is given in appendix of this document



e the spatial and temporal TV regularization operators are proximal mappings, therefore they
are firmly non-expansive (Bauschke and Combettes 2009), and therefore strongly non-
expansive

As stated in fact 4.2 of (Bauschke et al 2012), the composition of a finite number of strongly non-
expansive mappings is a strongly non-expansive mapping. Thus, each iteration of the main loop of 4D
ROOSTER amounts to applying a strongly non-expansive mapping T on the current 3D + time
sequence fy, such that fi 11 = T(f;). Applying the theorem reminded in fact 4.3 of (Bauschke et al
2012), if T has at least one fixed point, 4D ROOSTER converges to one of its fixed points.

VIL.2.d. Results

The proposed method is evaluated on the datasets described in Chapter Ill. Performance on
phantom data is measured with the metrics and methods introduced in section V.4 (slices, profiles
for sharpness measurement, RMSE and RMSE in the beating region).

Figure 43. Reconstructions of the moving Shepp & Logan phantom by the 4D ROOSTER method, in both systole (top row)
and diastole (bottom row)

The reconstruction results are visually close to the ground truth. Some slight streak artefacts remain
(they are visible mainly on the right column of Figure 43), and some cone beam artefacts are also
noticeable far away from the central slice (at the top and bottom of the slices displayed on the left
column of Figure 43), but apart from these defects the method seems efficient.
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Figure 44. Profiles through the border of the beating ellipsoid (top row) and their first order derivative (bottom row) for
systole (left column) and diastole (right column). The solid line represents the ground truth, and the solid line with
crosses represents the 4D ROOSTER method.

Profiles through the beating ellipsoid prove that the edges are much sharper in these results than
with any of the aforementioned methods. The global and local RMSE, shown in Table 7, are also
lower than with the other methods.

4D ROOSTER
Systole 0.0346
RMSE ,
Diastole 0.0347
RMSE in Systole 0.0093
ROI Diastole 0.0118

Table 7. Root Mean Squared Errors for 4D ROOSTER reconstruction on the beating Shepp and Logan phantom

In Figure 45 and Figure 46, results of the 4D ROOSTER method are presented for patient DENVER1
and patient DENVER2.



Figure 45. Reconstructions of patient DENVER1 by the 4D ROOSTER method, in both systole (top row) and diastole
(bottom row). The slices show the left ventricle, in long-axis cut in the left column and in short axis cut in the right
column

Figure 46. Reconstructions of patient DENVER2 by the 4D ROOSTER method, in both systole (top row) and diastole
(bottom row). The slices show the left ventricle, in long-axis cut in the left column and in short axis cut in the right
column



In both cases, the border between blood and muscle is well visible (except in the short axis systole
slice of patient DENVER1).



Chapter VIII : Conclusions on cardiac C-arm
computed tomography methods

It could be argued that, with different parameters, it would have been possible to obtain better
images with one of the presented methods. There are indeed many parameters in all methods, and |
cannot guarantee that the results presented here are the best ones that can be obtained, only that
they are the best ones that were obtained during this study, based on visual evaluation with the
criteria listed in section 1.2.c. The numerical measurements came later and confirmed the ranking
between results obtained by visual evaluation.

The parameters used to obtain the results presented in this work are listed in Table 8. They have
been chosen empirically, by running numerous tests and adjusting the parameters after each test.
Unfortunately, the “optimal” parameters vary with the nature of the data, the size of the
reconstructed volume, the sampling rate, ... and | have not found a way to estimate how they vary.

Shepp & Logan phantom Real data
Gating window width (in % of cardiac cycle) 20 20
Volume size (in voxels) 256 * 256 * 256 284 * 216 * 284
ECG-gated SART
Number of iterations 5 5
Relaxation parameter A 0.5 0.5
Badea's method
Threshold (multiplied by the maximum of the MTF) 0.15 0.15
ECG-gated IFDK
Number of iterations 100 100
Steepest descent step 0.001 0.001
ADMM 3D TV
Main loop iterations 100 30
Nested conjugate gradient iterations 4 4
Regularization parameter o 0.5 0.1
ADMM parameter 3 1000 1000
ADMM 3D Wavelets
Main loop iterations 30 30
Nested conjugate gradient iterations 4 4
Regularization parameter o 0.1 2
ADMM parameter 3 1000 10000
PICCS
Main loop iterations 30 30
Nested ECG-gated SART iterations 4 4
SART relaxation parameter A 0.5 0.5
Nested TV steepest descent iterations 20 20
TV steepest descent data attachment weight 500 500

TV steepest descent step size 0.01 0.002



PICCS balance TV / Prior parameter o 0.1 0.5

ADMM 4D TV
Main loop iterations 30 30
Nested conjugate gradient iterations 10 4
Regularization parameter o 0.1 0.1
ADMM parameter 3 1000 1000
w outside the heart ROI 2 2
w inside the heart ROI 10 10
Number of time points 10 10
4D ROOSTER
Main loop iterations 30 30
Nested conjugate gradient iterations 4 4
Nested spatial TV steepest descent iterations 5 5
Spatial TV steepest descent data attachment weight 100 10000
Spatial TV steepest descent step size 0.001 0.002
Nested temporal TV steepest descent iterations 5 5
Temporal TV steepest descent data attachment
weight 100 1000
Temporal TV steepest descent step size 0.001 0.002
Number of time points 10 10

Table 8. Parameters used with each method to obtain the results presented in this document

VIIIL.1. Quantitative evaluation of real data reconstructions

As a quantitative evaluation of the reconstructions of clinical datasets, the Contrast to Noise Ratio
(CNR) on the long axis end-systolic slices has been measured, using one ROl in the blood and one in
the muscle.

CNR gives an indication of how distinguishable from one another two adjacent regions are. It was
computed as

CNR = |Mmuscle - Mbloodl

Omuscle

where My100a and Myuscie are the mean attenuations in the blood and muscle ROIs respectively,
and Ouscie is the standard deviation in the muscle ROI. The ROIs are shown in Figure 47 and the
results listed in Table 9.



Figure 47. Regions of interest used for CNR computation. The red rectangle is the blood ROI, the blue one the muscle ROI

Contrast to Noise Ratio
Patient DENVER1 Patient DENVER?2

SART 3.4536 2.0273

Badea 2.2294 0.4332
Iterative FDK 4.0144 0.9303
ADMM 3D TV 5.0809 1.8846
ADMM 3D Wavelets 4.5681 5.5014
PICCS 5.4482 3.3044
ADMM 4D TV 4.8053 1.9992
4D ROOSTER 6.4691 4.4689

Table 9. CNR measured in the long axis end-systolic reconstruction results of all methods, on both patients

Like every image quality criterion, CNR should be considered with care when trying to rank methods,
for it has biases:

e it is high in images consisting of homogeneous regions separated by sharp edges, which
favors strongly-regularized reconstruction methods
e it depends on the ROIs chosen to measure it

Therefore, only large and consistent differences in CNR should be used to rank methods. With these
precautions, a few comments on the CNR results can be made:

e Regularized methods provide a better CNR than deconvolution ones
®  PICCS provides a better CNR than TV-regularized ADMM
e 4D ROOSTER provides a better CNR than PICCS

VIIIL.2. Comparison between methods

Figure 48 and Figure 49 show some reconstruction results with all the methods presented in this
work. On these figures, however, it is hard to determine which method performs best. The motion is
a crucial aspect of the image quality for cardiac imaging, and it cannot be rendered on paper. The
problem is the same for all the results presented in this document.

The reader is advised to visit my personal page on the CREATIS website (http://www.creatis.insa-
lyon.fr/~mory/), which contains animated gif sequences. Unlike static images, these animated




sequences allow to rank the reconstruction methods. They show that 4D ROOSTER outperforms the
other methods on all three cases.

Figure 48. Long axis cuts of systole in patient DENVER1 with all methods presented in this paper. From left to right: on
the top row, ECG-gated SART, Badea, ECG-gated IFDK; on the middle row, ADMM 3D TV, ADMM 3D Wavelets, PICCS; on
the bottom row, ADMM 4D TV and 4D ROOSTER



Figure 49. Short axis cuts of systole in patient DENVER2 with all methods presented in this paper. From left to right: on
the top row, ECG-gated SART, Badea, ECG-gated IFDK; on the middle row, ADMM 3D TV, ADMM 3D Wavelets, PICCS; on
the bottom row, ADMM 4D TV and 4D ROOSTER



Chapter IX :Clinical applications

The clinical applications of cardiac C-arm CT can roughly be grouped into two classes:

e Those requiring precise information on the heart’s movement, e.g. left ventricular ejection
fraction measurement. In this case, the whole cardiac cycle must be reconstructed and a
good contrast between blood and soft tissue is essential, but soft tissue textures and precise
recovery of Hounsfield attenuation values are unnecessary

e Those requiring precise information on soft tissue, e.g. late enhancement imaging for
myocardial infarction detection. Soft tissue analysis requires only the reconstruction of the
end-diastolic phase, which must be as precise as possible

This section describes what has been accomplished for both kinds of applications during this PhD
thesis.

IX.1. Reconstructing the heart's movement from an injected scan

The protocol used to acquire the injected scans presented in this thesis, described in (Schwartz et a/
2011), is well suited to the reconstruction of the whole cardiac cycle: it gathers the same quantity of
data on each cardiac phase, thus allowing to reconstruct them all at once to visualize the heart’s
beating motion. On the other hand, it provides only little data on a given phase, making it impossible
to precisely reconstruct soft tissues in end-diastole.

IX.2. Late enhancement

IX.2.a. Rationale

When the infarcted region is small, or when little contrast agent was injected during the
intervention, the artifacts and the blur caused by heartbeat motion make it very hard to distinguish
between healthy and infarcted myocardium.

The late enhancement CT scanner data available in Lyon (Boussel et al 2008) allowed the doctors to
conclude that very little information could be obtained from ungated reconstructions of late
enhancement scans, and that ECG-gating was required. Therefore | started investigating the field of
ECG-gated late enhancement cardiac C-arm CT.

1X.2.b. Data and first results

A few projections extracted from a late enhancement scan performed on a patient in Lyon, at the
cardiology hospital, are displayed on Figure 50, and a coronal slice of the FDK reconstruction
obtained from this dataset is displayed in Figure 51.

An important problem is that the X-ray beam used for this acquisition is almost completely absorbed
when passing through the liver. This causes high noise in the projections (see Figure 50), because
only a few photons reach the detector, and hyper attenuation artifacts in the reconstruction (see
Figure 51). As shown in Figure 51, it can be hard to distinguish the infarcted myocardium from these
artifacts in late enhancement C-arm CT. This problem can be mitigated if the patients manage to



inhale deeply and hold their breath at end-inhale, but the conditions in which the acquisition is
performed (emergency, usually at night, only a few minutes after the percutaneous coronary
intervention) make it difficult to train the patients to do it correctly.

Patient LYON1 had a late enhancement MRI (currently the gold standard for infarction imaging)
within a few days after the C-arm scan, which confirmed the location and size of the infarction.
Therefore, in this case, we are certain that the patient indeed had a myocardial infarction, and that
the hyper attenuated region pointed by the red arrows in Figure 51 is not caused by artifacts.



Figure 50. Projections 50 (top row), 150 (middle row) and 250 (bottom row) extracted from the late enhancement scan
performed on patient LYON1



Figure 51. Heart of the patient LYON1, in late enhancement cardiac C-arm CT (on the left) and late enhancement MRI (in
the middle with a long axis cut, and on the right with a short axis cut). The red arrows points to the infarcted region,
while the blue arrow shows hyper attenuation streak artifacts caused by the liver.

As shown in Figure 52, even with the 4D ROOSTER method, ECG-gated reconstruction of late
enhancement data is still far from being of clinically acceptable quality.

Figure 52. Reconstructions of patient LYON1 by the 4D ROOSTER method, in both systole (top row) and diastole (bottom
row). The slices show the left ventricle, in long-axis cut in the left column and in short axis cut in the right column



IX.2.c. Perspectives

Soft tissue imaging requires as much information as possible on a single cardiac phase, usually end-
diastole. An ECG-triggered multi sweep acquisition like the one described in (Lauritsch et a/ 2006)
seems the only way, using currently available C-arms, to obtain a decent angular distribution of the
projections to reconstruct a single phase. As multi sweep acquisitions are designed to acquire as
much information as possible on a single phase and as little as possible on the other ones (to avoid
unnecessary X-ray dose), 4D ROOSTER would not be a suitable reconstruction method for this kind of
data. PICCS, or motion compensation-based methods, should be used instead.

Multi-sweep acquisitions are currently rarely used because they imply a long breath hold and the
injection of large quantities of contrast medium. In the case of late enhancement imaging, only the
breath hold duration would remain an issue, since no injection is performed during the acquisition.



Chapter X : Perspectives

X.1. Clinical use of 4D ROOSTER

4D ROOSTER has only been tested on a few cases. The method could be tested on a larger number of
patients for clinical validation.

X.2. Improvements on the method

X.2.a.0ther sparsifying transforms

The 4D ROOSTER method can easily be modified in order to use other regularization methods. A
straightforward change would be to replace spatial TV minimization by some wavelets regularization,
using Daubechies wavelets like in the method presented in section 0 or other kinds of wavelets or
curvelets (Starck et al 2001). Another lead that could be investigated is the opportunity to perform
non-local means regularization, as used in (Jia et al 2010).

X.2.b.Taking into account the flow of contrast

Instead of modeling the volume to reconstruct as a function of space and ECG-phase, we could
investigate the possibility of segmenting the vessels and cavities into which the contrast flows, and
modeling the attenuation of the object as the sum of two 4D functions: the first one, representing all
the soft tissues and bones, would be periodic with the ECG, and the second one would be a-periodic
but have a very limited support. Such an approach has already been proposed by Langet for
angiographic C-arm CT (Langet et al 2012). However, is not certain that a cardiac C-arm CT acquisition
contains enough data to perform this kind of reconstruction for the whole heart.

X.3. Application to other problems

Cardiac C-arm computed tomography is not the only application in which the 4D ROOSTER method,
or a similar one, can be used. Thorax imaging during free breathing and standard cardiac CT from a
CT scanner acquisition are both problems in which either the method itself or some of its basic
principles could bring improvements. Replacing the forward projection operator with the Fourier
transform operator, the method could also be tested on compressed sensing cardiac MRI.
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Appendix

The following is the proof that averaging along time is a firmly non-expansive mapping.
Let us consider a mapping
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If x is a 3D + time series of N volumes, then the mapping A performs averaging along time.

A is firmly non-expansive if Vx,y € RMV ||Ax — Ay||3 < (Ax — Ay,x —y ). Let us compute both
quantities:
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This proves that A is firmly non-expansive.
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