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• Madame Céline Rouveirol Rapporteur

• Monsieur Philippe Rigaux Rapporteur

• Madame Lynda Tamine-Lechani Examinateur

• Monsieur Nicolas Spyratos Examinateur

• Monsieur Dominique Laurent Directeur de thèse
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Abstract

Recently social networks have attracted many research efforts due to
the important role they play in everyday life. Among the numerous
applications of social networks, we mention recommendation sys-
tems, whose aim is to identify users likely to be interested in a given
item, based on their tastes and opinions. In this thesis we propose a
new approach to recommender systems, called semantic-social rec-
ommender systems. The aim of such a system is to recommend
a given item to a group of users connected via a social network.
For that, we propose two classes of algorithms based on depth-first
search and breadth-first search strategies.
The contribution of our proposed algorithms, called semantic-social
depth-first search (SSDFS) and semantic-social breadth-first search
(SSBFS), is that two types of information are used, namely semantic
information and social information. Semantic information refers to
users preferences and items features, while social information refers
to users centrality in the social network. In order to test our al-
gorithms, we consider two real datasets, namely Amazon.com and
MovieLens, and we compare our algorithms with classical recom-
mendation algorithms known as item-based collaborative filtering
algorithm and hybrid recommendation algorithm. Our experimen-
tal results show that, while the recommendations computed by our
algorithms are generally of better quality (in terms of precision, re-
call and F-measure) than that of classical algorithms, a significant
improvement in performance is achieved. This is so because our
algorithms explore a small part of the graph, instead of the whole
graph as done by the classical algorithms.
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Résumé

Récemment les réseaux sociaux ont fait l’objet de nombres de sujets
de recherche à cause du rôle important qu’ils jouent dans notre vie.
Parmi les nombreuses applications des réseaux sociaux, nous men-
tionnons les systèmes de recommandation, dont le but est d’identifier
les utilisateurs susceptibles d’être intéressés par un article donné,
sur la base de leurs goûts et opinions. Dans cette thèse, nous pro-
posons une nouvelle approche des systèmes de recommandation, ap-
pelé système de recommandation sémantique et social, dont le but
est de recommander un élément à un groupe d’utilisateurs impliqués
dans un réseau social. Pour ce là, nous proposons deux classes
d’algorithmes basés sur la recherche en profondeur et la recherche
en largeur dans un graphe. La contribution de nos algorithmes, ap-
pelés algorithme de recherche sémantique et sociale en profondeur
(SSDFS) et algorithme de recherche sémantique et sociale en largeur
(SSBFS), est que deux types d’information sont utilisés : informa-
tion sémantique et information sociale. L’information sémantique
fait référence aux préférences des utilisateurs et aux caractéristiques
des éléments, alors que l’information sociale fait référence à la cen-
tralité des utilisateurs dans le réseau social.
À fin de tester nos algorithmes, nous avons considéré deux jeux de
données réelles, Amazon.com and MovieLens, et nous avons com-
paré nos algorithmes avec les algorithmes classiques de recomman-
dation que sont l’algorithme de filtrage collaboratif et l’algorithmes
hybride. Nos expériences montrent que, alors que les résultats de
nos algorithmes sont généralement de meilleure qualité (en termes
de précision, rappel et F-mesure) que les algorithmes classiques, leur
performance est notablement améliorée. Ce résultat s’explique par
le fait que nos algorithmes explorent une petite partie du graphe,
contrairement aux algorithmes classiques qui explorent le graphe en
entier.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, social networks are becoming great resources of informa-
tion, especially when they have a huge number of actors e.g. Face-
book has 1.15 billion active users, and more than 15 million pages
about business brands and organizations; and LinkedIn has 238 mil-
lion active users, and more than 2.1 million pages about different
companies.
Table 1.1 shows some important information about the most famous
social networking sites, and their revenue in US dollar.
Every day a great flow of information is diffused, and enormous in-
formation is shared between actors in social networks, as shown in
Table 1.1. Furthermore, actors in social networks show a wide range
of variations in tastes, interests, attitudes and activities. For that,
studying, analyzing and exploring the hidden and the visible sides
and characteristics of the actors and their social ties in social net-
works are very important topics; and they are very considerable in
certain domains such as: sociology and psychology [134], searching
for experts in certain domains [198], searching the web [150], search-
ing for customers for recommendation [125].

On the other hand, in the domain of recommendation, 53% of
people using Twitter recommend products via their tweets; and 42%
of marketers find Facebook an important environment for them. Fig-
ure 1.1 shows the effectiveness of marketing through different types

1
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Table 1.1: Social networks statistics on 2013
Network Active users Launched Data per day Revenue

Facebook 1.15 billion February 2004 500 terabytes 5.1 billion $
Youtube 1 billion February 2005 100 million videos 3.7 billion $
Google plus 500 million June 2011 24 petabytes 50 billion $
LinkedIn 259 million May 2003 26 billion message 972 million $
Twitter 200 million July 2006 400 million tweets 140 million $

of social networks1. In this Figure we find that Facebook and Twit-
ter have significant effects on users decisions and purchases.
Indeed, the important role of social networks relies on the fact that,

Figure 1.1: The effects of marketing through different types of social networks
on users purchases

they are rich in resources from all the types of information related
to actors and their different kinds of interests and interactions.

Although, all the huge amount of information, stacked in social
networks, can lead to information overload. Especially when there
are no suitable methods to analyze and manipulate all this informa-
tion.

Information overload can appear when users receive a massive
amount of information, that they are not able to recognize or to
process, leading them to poor understanding and limited decision
making [129]. Information overload is not only related to social net-

1http://social media.com
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Table 1.2: Search Engines
Network Launched Visits per month

Google September 1998 88 billion visits
Yahoo March 1994 9.4 billion visits
Bing June 2009 4.1 billion visits

works, but it happens in the whole web especially when using search
engines, Table 1.2 shows how many times, search engines are visited
every month. Moreover, it is important to mention that not all the
visited sites are correlated to the searched subjects.

For instance, on November 2006, according to the Economist.com
in their article The phone of the future they mentioned that: “Peo-
ple read around 10 MB worth of material a day, hear 400 MB a day,
and see one MB of information every second”2. So, how can people
process such an amount of information, and how can they find their
suitable interests.

Since the year 2013, this information overload has been incredibly
augmented, and can be easily found and widely expected specially
in social networks, for example:

• In Facebook: a person having a considerable number of friends,
e.g. more than 10, 000 friends, will not be able to manage all
his/her friends in the list; and this person needs intelligent
methods to manage and search his/her contacts according to
their priority and importance.

• Searching LinkedIn: human resources will spend an enormous
time and effort, on LinkedIn, in order to find experts in a certain
domain.

• Searching social networks for recommendations is very costly
and a complex process, using the classical searching methods.

Moreover, in the literature of recommender systems we find that3:

• Chris Anderson in “The Long Tail” has mentioned that: we
are leaving the age of information and entering the age of rec-
ommendation.

2http://www.economist.com/node/8312260
3Recommenders Systems tutorial slides from the European Summer School of Information

Retrieval by Alexandros Karatzoglou 2013
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• CNN Money in “The race to create a smart google”: the web,
they say, is leaving the era of search and entering the one of
discovery. What’s the difference? Search is what you do when
you are looking for something. Discovery is when something
wonderful that you did not know existed, or did not know how
to ask for, finds you.

As information searching is becoming a complex process, especially
in social networks, we propose a group of special recommendation
algorithms to maintain the information overload in social networks;
and to mention that the age of search should have an end, by re-
placing the searching act with the recommendation act. Therefore,
instead of wasting users time and efforts looking for interesting in-
formation, the recommender system will guide the information to
their corresponding users. This is evident in some social networks
e.g. Facebook has the application “People you may know”, and
LinkedIn has the application “People you may have worked with”.

Moreover, recommender systems have shown a significant impor-
tance and success e.g. in Netflix two thirds of the rented movies
have been chosen based on recommendation, 38% of Google news
are generated based on recommendation and 35% of purchases in
Amazon.com depend on recommendations.

Furthermore, from “Digital Intelligence Today” in the article
“Word of Mouth Still Most Trusted Resource Says Nielsen; Impli-
cations for Social Commerce”, it has been indicated that “the latest
Global Trust in Advertising report, proved that people do not trust
advertising, as much as they do trust recommendations from friends
and consumer opinions expressed online4”. Figure 1.2 shows the dif-
ferences of importance between social recommendation (recommen-
dation between friends) and the other types of recommendations.
Thus, according to that recommendation in social network, where
relations between users are based on common tastes and interests,
can show significant importance and effectiveness.

Finally, we can say that recommender systems in social networks
are important for two main reasons:

• Manage the huge amount of information in social networks.

4http://digitalinnovationtoday.com
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Figure 1.2: Nielsen latest global trust in advertising April 2012

• Improve the recommendation by recommending items to users
based on their tastes, connections and positions in the social
network.

In this thesis, we are interested in studying and analyzing social net-
works, and particularly the users who are connected via co-purchases
network, in order to extract important information about the pref-
erences and the characteristics of users. This aims to propose a
system used to determine users’ concerns, interests and problems,
which leads to satisfying users’ needs and to provide the proper
recommendation for them; with the respect to high accuracy and
performance. We propose to apply recommender systems methods,
using social network analysis measures including user centrality and
graph searching algorithms. Moreover we take into account the se-
mantic information about users preferences and item features, that
are represented in their ontological profiles.

So, our thesis outlines two topics: social networks and recom-
mender systems, in order to use them in a model that recommends
items to users connected via a social network or co-purchases net-
work. We are mainly concerned about by improving the performance
and the accuracy of the system.



6 CHAPTER 1. INTRODUCTION

1.1.1 Social Networks

Social networks are networks in which vertices represent people,
called actors; and edges represent social interactions between peo-
ple, called social ties or relationships.

Social networks can be modeled by a graph G in which actors are
represented by a set of graph vertices V (G) and the social ties are
represented by a set of graph edges E(G).

Graph-based searching algorithms, in social networks, are used
for several purposes, such as: Finding experts in a given domain e.g.
seeking for a java expert in a java online help-seeking community
[198]. Ranking network actors according to their relation to a given
subject e.g. ranking emails according to their correlation to users’
interests [55]. Searching engines e.g. “google.com” [150], and Rec-
ommender Systems [125]. Recommender systems in social networks
is the focus of our thesis.

Indeed, social networks have a vast range of applications, that re-
quire very fast and very effective graph-based searching techniques;
generally, graph searching algorithms can be classified into three
main categories: general computational based algorithms, network
structure based algorithms and similarity based algorithms [197].

In this thesis we are interested in Network Structure algorithms,
mainly: vertex centrality [4, 102].

1.1.2 Recommender systems

Recommender systems are very important, because they help users
to find interesting items based on their tastes and preferences. In
general, recommender systems have three main categories: content-
based recommendation which recommend items to users according
to the contents of user profile; collaborative-filtering recommenda-
tion which recommends items to users according to their historical
purchases; and hybrid recommendation that combines recommen-
dation methods from content-based and collaborative-filtering.

In this thesis we are interested in collaborative-filtering methods,
applied on the graph. Graph-based recommender systems use sev-
eral methods as shortest path [84, 85, 131, 6], random walk [87] and
PageRank [68, 104]. In addition, we are interested in the content-
based methods by considering the ontological contents of user pref-
erences and item features.
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1.1.3 User profile

User profile contains information about users, such as: name, age,
friends; or it contains information about users’ preferences such as
items the users liked in the past. In social networks and recom-
mender systems, user profile is a great source of information, so it
is very important to be appropriately treated and operated.

According to the literature, user-profile has several types of rep-
resentation [64] as follows: a bag of words, a vector of weighted
keywords and ontological profiles using ontology or taxonomy.

In this thesis we use taxonomy as a special case of ontology to
represent user preferences and item features.

1.2 Problem definition and proposed solution

Our approach recommends an item (input item) to users, these users
are members of social network or co-purchases network, by submit-
ting a recommendation query containing this item. Then the algo-
rithm navigates the network and explores users’ semantic profiles
and users’ social connections. The output of the recommendation
algorithm is a recommendation list containing all the possible rele-
vant users to the input item.

For that, in our approach we propose a graph-based recommender
system, that includes (a) users and items represented via semantic
tree profile (taxonomy profile), (b) user centrality and position in
the network and (c) graph searching algorithm to explore the se-
mantic and the social characteristics of the user in the network.

Our proposed approach supposes:

• A network connecting users, these users have various character-
istics and interests; also, users have (a) centrality values accord-
ing to their position in the network and (b) a weighted social
ties connecting them with the other members in the network .

• A user profile, that describes users’ interests and preferences.
This profile has a semantic tree structure.

• An item profile that describes the item’s features, by referenc-
ing it to a domain ontology. Also we suppose that, both of user
profile and item profile have the same structure (the semantic
tree structure).
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1.2.1 Semantic-social recommendation scenario

Starting from a database, relating users with their preferred items
as Amazon.com and MovieLens, the semantic-social recommender
system extracts a user-item bipartite graph. Then the semantic-
social recommender system builds the users one-mode projection,
to finally apply the recommendation algorithm on this graph, we
call the users one-mode projection graph a users co-purchases net-
work.

Figure 1.3 shows the process of building the users co-purchases
network, on which we submit the recommendation query and we
apply the semantic-social recommendation algorithm. This proce-
dure has two stages, stage (a) in which a user-item bipartite graph
is built from user-item database, and a stage (b) which contains
the users co-purchases network where the recommendation query is
submitted as an input and a recommendation list of recommended
users is given as an output.

Our approach is designed in a modular way which allows the

Figure 1.3: Semantic-social recommendation applied on item-user database

semantic-social recommendation algorithm to be applied on social
networks as Facebook, LinkedIn and Twitter, by only considering
the part (b) of our model.
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1.3 Contributions

In this thesis we propose a new approach named semantic-social
recommender system. This approach contains two different types of
information semantic information and social information.

• Semantic information by using tree structure to represent user
preferences and item features. This structure helps the recom-
mender system to classify and specify the system’s information.

• Social information by representing the dataset in a user-item
bipartite graph to finally construct the users co-purchases net-
work. Then we employ the structural information of the co-
purchases network, as social information, in the recommenda-
tion.

The semantic-social recommendation algorithm is proposed to search
the co-purchases network using a defined heuristic based on seman-
tic information and social information. For that we propose the
following measures, algorithms and experimental validation:

Proposed measures

1. User-item semantic relevancy measure, in which we propose
a semantic relevancy measure to find the relevance between
user preferences and item features, which is specified in the
recommendation query. In fact, user-item relevancy measure is
used to determine the closeness between the item features and
the user taste, in order to achieve the recommendation.

2. Social heuristics measures, in which we propose to define and
to compare several heuristics. These heuristics are based on
(a) user centrality in the co-purchases network and (b) social
ties between users in the co-purchases network.

Proposed algorithms

1. Semantic-social depth-first search SSDFS, we propose to inte-
grate the user-item relevancy measure and the social heuristics
measures with depth-first search algorithm for exploring the
co-purchases network, in order to achieve the recommendation.
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2. Semantic-social breadth-first search SSBFS, we propose the
same method as SSDFS by integrating the user-item relevancy
measure and the social heuristic measures with breadth-first
search algorithm, for exploring the co-purchases network.

Experiments and validation

1. We propose to compare the semantic-social depth-first search
SSDFS with the semantic-social breadth-first search SSBFS.

2. We propose to compare several user centralities integrated with
the heuristics of semantic-social depth-first search SSDFS, and
semantic-social breadth-first search SSBFS. These centralities
are degree centrality, closeness centrality and betweenness cen-
trality. Furthermore, we propose another heuristic that com-
bines degree centrality with betweenness centrality.

3. Datasets, we propose to use real datasets with different sizes
and types. These datasets are MovieLens dataset which con-
tains ratings about movies given by the users; and Amazon
dataset which contains information about users and their pur-
chases.

4. Validation, we propose to test and to compare the accuracy and
the performance of our proposed algorithms, with two classical
recommendation algorithms, item-based collaborative filtering
algorithm and hybrid recommendation algorithm. These algo-
rithms are tested over MovieLens dataset and amazon datasets.

1.4 Thesis overview

This thesis is organized in six chapters, Figure 1.4 shows how our
thesis is organized. These chapters are summarized as follows:

Chapter 1: Introduction In this chapter we briefly outline the global
ideas of the semantic-social recommendation.

Chapter 2: Social Network Analysis: a survey In this chapter we in-
troduce an overview about social networks and social network anal-
ysis methods. Starting from the fundamental definitions in both
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Figure 1.4: Thesis Structure

graph theory and social network. Passing by the characteristics
and the models of social networks. Then we introduce some defini-
tions of the most important social network analysis measures. Also,
we present some of the well known algorithms used for community
detection and for searching social networks. Then we present exam-
ples of some of the well known social network, and finally we present
some of the softwares used for social network analysis.

Chapter 3: Recommender Systems: a survey In this chapter we in-
troduce a brief survey about recommender systems. Recommender
systems have three main types: Content-based, Collaborative fil-
tering and hybrid recommendation. In content-based recommen-
dation the content of user interests and item features are involved
in the recommendation process. In collaborative filtering recom-
mender systems, recommendations are based on the ratings of like
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minded users. Hybrid recommender systems combine content-based
methods with collaborative filtering methods, in order to bypass
the limitations of content-based and collaborative filtering systems.
Moreover, we detail some of the well known recommendation algo-
rithms that are categorized into two main categories: Model-based
and Memory-based. Then, we discuss some of Graph-based recom-
mender systems. Finally, we introduce some of the most famous
methods that are used to evaluate recommender systems.

Chapter 4: Semantic-Social Recommender System In this chapter
we introduce our approach the semantic-social recommender system.
The semantic-social approach combines two types of information:
semantic information with social information.

Chapter 5: Experimental results We apply our proposed algorithms
on MovieLens and Amazon datasets; and we compare our proposed
algorithms with the classical recommendation algorithms item-based
and hybrid recommendation algorithms, and we use precision, re-
call and F-measure as accuracy measure to assess the accuracy of
our algorithms. Moreover, we evaluate the performance of the algo-
rithms by comparing the data coverage and the time of execution be-
tween the different algorithms. Our experiments show better results
than collaborative filtering and hybrid recommendation algorithms,
by significantly reducing the data coverage and the execution time;
while ensuring a slightly better accuracy.

Chapter 6: Conclusion this chapter outlines a brief summary of the
thesis, and our perspectives for future work.

1.5 Published work
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Kadima, Dominique Laurent conférence MARAMI 2012.
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Chapter 2

Social Network Analysis a
Background

2.1 Introduction

Networks are defined as a collection of points connected to each
others by lines. In general, networks have several kinds such as:
topological networks, social networks, information networks and bi-
ological networks [145].

On the other hand, social networks are networks in which points
represent people, called actors, and edges represent social interac-
tions between people, and they are called social ties or relationships.
Social networks can be modeled by a graph G in which actors are
represented by the set of graph vertices V (G) and the social ties
are represented by the set of graph edges E(G). So, social networks
represent people and the interactions between them.
In our real life, social networks have a vast range of applications,
in several domains such as: marketing, finding users with similar
tastes, recommendation, searching for expertise [197, 198] and e-
commerce. These applications are evident in the recent social net-
working sites as Facebook, LinkedIn and google+. For that social
networks have attracted the attention of scientists from several do-
mains such as: psychology, social science, physics and mathematics;
and they are used in several studies about different social issues like
social relationships (friendship), professional relationships (collab-
oration networks), exchange of goods or money, communications,
romantic relationships and many other types of connections.

15
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Furthermore, social network analysis (SNA) is used to study so-
cial networks. The origins of studying and analyzing social networks
is referred to the Romanian psychiatrist Jacob Moreno, in his study
of friendship relations between boys and girls in a class of schoolchil-
dren in 1930s [134]. Thanks to this study, Moreno is considered as
the founder of social network analysis [136].
Social Network Analysis is a branch of computational social science,
and it is involved in studying and evaluating the structure of social
networks. Social network analysis is very important subject because
it helps to investigate the characteristics of different social networks
and to study the connectivity between users in these networks.

The study of social networks analysis has three main directions:
vertex based, structure based and community detection based. In
this thesis we are concerned by vertex-based analysis. Using vertex-
based we study vertices centrality like degree and betweenness cen-
trality. Moreover, we are interested in graph searching algorithms
to explore and search the social networks.

In this chapter we introduce the concept of social networks and
social network analysis methods starting from basic definitions and
algorithms in graph theory as in section 2. In section 3 we define
social networks and social network analysis and we detail some of
social network analysis measures, mainly vertex centrality. Section 4
reviews some of social network searching algorithms. Section 5 and
Section 6 shows examples about some of the famous social networks
and the well known tools used for analyzing these networks. Finally
we conclude this chapter in Section 7.

2.2 Definitions and Algorithms From Graph The-
ory

Graph theory is one of the fundamental concepts in mathematics
and computer science. It has a huge number of applications on
several domains such as, telecommunications and transportations.
According to the mathematical structure of graph, data is organized
in two sets: a set of nodes or vertices and a set of edges connecting
these vertices.
Graph theory has been recognized first in Königsberg bridges prob-
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lem, Königsberg is a city that has seven bridges, in this problem
we seek for a path in which the seven bridges can be traversed in
a single trip without passing from the same bridge more than once.
In 1736 the swiss mathematician and physician Leonhard Euler, has
studied the Königsberg problem and he suggested to represent the
seven bridges and their connecting points as edges and vertices in
a graph. In this study, Euler proved that the Königsberg bridges
problem has no solution.
Euler’s solution of the Königsberg bridges problem is considered to
be the first brick in graph theory, and to be the base of several
algorithms especially in combinatorial optimization and networks.

Figure 2.1 shows the seven bridges of Königsberg city and their
representation in a graph of four vertices and seven edges.

In this section we introduce some of the fundamental definitions
and algorithms of graph theory. These definitions and algorithms
correspond to our contributions.

Figure 2.1: Königsberg bridge graph

2.2.1 Definitions

The following definitions are basic definitions in graph theory and
strongly related to social network analysis and to our contributions.
The majority of these definitions and algorithms are cited from [49].

2.2.1.1 Basic Definitions

Graphs have several types, as: weighted, complete and connected.
Moreover, graphs can be represented via adjacency matrix and they
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have characteristics, such as: density, clustering coefficient and tran-
sitivity. These types of graphs and their characteristics are widely
used in social network analysis and they are described as follows:

Definition 1 (Graph). A graph G is defined by two finite sets: a
non empty set of elements called vertices, denoted by V (G), and a
set of elements called edges, denoted by E(G); E(G) is a set of two
elements of the form (v, v′), where v and v′ are elements from V (G).

In a graph G each edge of E(G) is denoted by e(v, v′), where v and v′

are called the adjacent vertices. Moreover, in undirected graphs the
set of pairs of elements of E(G) are symmetric, that means e(v, v′) is
as same as e(v′, v) and v and v′ are named the endpoints of this edge.

Figure 2.1 is an example of a graph G with two sets: a set of four
vertices V (G) and a set of seven edges E(G). Each edge connects
two vertices called adjacent vertices or neighbors.

Definition 2 (Adjacency Matrix). Let G be a graph with a set of
vertices V (G) = {v1, ..., vn} and a set of edges E(G) = {e1, ..., em}.
The adjacency matrix of G, denoted by A(G), is the n × n matrix
where: rows and columns are indexed by V (G). In A(G), if v and v′

are adjacent, or e(v, v′) exists in E(G), then the matrix entry (v, v′)
equals to 1, and it equals to 0 else other.

In undirected graphs the adjacency matrix is a symmetric matrix,
while in directed graphs the adjacency matrix is a non symmetric
matrix.

Definition 3 (Weighted Graph). Weighted graph G is a graph in
which each edge has a corresponding value (integer or real). Thus,
weighted graph is a graph G with the edge function F : E −→ R.

In this thesis we are concerned by undirected weighted graphs.
Furthermore, in social network analysis graph density and clustering
coefficient are very important measures to characterize the social
network, for that we use them to characterize the social networks
which we use in our contributions. Graph density and clustering
coefficient are defined as follows:
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2.2.1.2 Graph density

Graph density for a graph G is used to study the graph sparsity and
connectedness and it is given by Formula 2.1:

D =
2|E(G)|

|V (G)|(|V (G)| − 1)
(2.1)

where |E(G)| is the cardinality of E(G), |V (G)| is the cardinality of
V (G) and 1

2
|V (G)|(|V (G)| − 1) is the maximum possible number of

graph edges, in the case of complete graphs.
In social network analysis, network density is used to find the ratio
between the sum of the values of all the connections between actors
and the number of all the possible connections in the network. Fur-
thermore, density is considered to be an important characteristic of
the social network.
Moreover, in order to have an inner understanding of graph density,
we have to define complete graphs and connected graphs as follows:

Definition 4 (Complete Graph). A graph G is said to be a complete
graph if each vertex v in V (G) is adjacent to all the other vertices
in the graph.

In any complete graph, the number of edges equals to
1
2
|V (G)|(|V (G)| − 1), where |V (G)| is the cardinality of the set of

the graph vertices V (G).

Definition 5 (Connected Graphs). the graph G is said to be a con-
nected graph, if all of its pair of vertices are connected via at least
one edge.

Conversely, a graph G is said to be disconnected, if there is no
edges between, at least one pair of its vertices. Moreover, any sub-
group of a disconnected graph is called component .

2.2.1.3 Clustering Coefficient

Clustering coefficient plays an important role in social network anal-
ysis. Indeed, in a given social network and for any three vertices x,
y and z: if x has a connection with y and if x has another connec-
tion with z, then it is very possible that y and z to have the same
kind of connection as the ones to x [191]. For that reason, clustering
coefficient is used to study the possibility of having such kinds of
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ties between vertices.
In social networks, clustering coefficient equals to the number of
triangles divided by the number of triples in the network. The fol-
lowing definitions explain how to compute the number of triangles
and triples of a social network, and how we can use them to find
out the clustering coefficient[174].

Definition 6 (A Triangle Δ). Let G be an undirected graph with a
set of vertices V (G) and a set of edges E(G), any complete subgraph
of three vertices is a triangle Δ: if for a given vertices {u, v, w} ∈
V (G) there is {e(u, v), e(v, w), e(w, v)} ∈ E(G). The number of
triangles δ(G) in any graph G is given by Formula 2.2:

δ(G) =
1

3

∑
v∈V

Δ(v) (2.2)

where Δ(v) is the number of triangles passing from the vertex v.

Definition 7 (A Triple Υ). In any graph G a triple Υ at a vertex
v ∈ V (G) is a path of a length equals to two, in which v is the center
vertex. Thus, the summing of the triples of all vertices in the graph
G is denoted by Formula 2.3:

τ(G) =
∑
v∈V

Υ(v) (2.3)

a path is defined as a sequence of vertices in the graph, and the path
length is defined as the number of edges connecting these vertices.

Definition 8 (Clustering Coefficient). The clustering coefficient for
a vertex v with a number of neighbors d(v) ≥ 2, is denoted by For-
mula 2.10:

C(v) =
Δ(v)

Υ(v)
(2.4)

and, the clustering coefficient C(G) of a graph G is the average over
the clustering coefficients of its vertices and it is given by Formula
2.5:

C(G) =
1

|V ′|
∑
v∈V ′

C(v) (2.5)

where V ′ is the set of vertices v where d(v) ≥ 2.
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2.2.1.4 Bipartite Graphs

Bipartite graphs are graphs in which vertices are grouped into two
disjoint sets, and edges connect only vertices from different sets.
Bipartite graphs are used to model social networks [137, 199] and
they are defined as follows:

Definition 9 (Bipartite Graph). Let G be a graph, with a set of
vertices V (G) and a set of edges E(G). Let X ∈ V (G) and Y ∈
V (G) be two subsets of V (G). The graph G is said to be a bipartite
graph, with two partitions {X, Y } ∈ V (G), if X∩Y = ∅ and X∪Y =
V (G), and for all the graph edges e(x, y) ∈ E(G): x ∈ X and y ∈ Y.

Figure 2.2 is an example of a bipartite graph G with two sets of
vertices X and Y from V (G). From this Figure, we can notice that
X ∩ Y = ∅ and X ∪ Y = V (G), edges only connect vertices from
different sets.

Figure 2.2: A Bipartite Graph

Bipartite graphs give a complete representation of a particular
graph, but sometimes it is necessary to work with vertices of just
one type. For that, one-mode projection is proposed as another type
of graphs extracted from the original bipartite graph. One-mode
projection is defined as follows:

Definition 10 (One-Mode Projection). Let G be a bipartite graph
with two partitions {X, Y } ∈ V (G). One-mode projection of X
is defined a graph Gx in which the set of vertices is V (Gx) = X,
and the set of edges is E(Gx). In the set of the edges of Gx, an
edge e(x1, x2) ∈ E(Gx) if and only if ∃y ∈ Y where (x1, y) and
(x2, y) ∈ E(G).
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Figure 2.3: One Mode projection graphs

The same thing can be defined in the case of one projection of
the set Y ∈ V (G), for the Gy one-mode projection graph.

Adding weights to edges of one-mode projection is important, be-
cause it helps to know how many vertices from the bipartite graph
are in common between the connected vertices in the one-mode pro-
jection graph. But one-mode projection graphs have problem of
identifying the vertices of the other partition of the graph. Thus,
in one-mode projection we can know how many vertices are shared
in common but we lose the information about the identity of these
vertices [145, 199].

One-mode projection is widely used in social network analysis,
where these kinds of projections are known as collaboration net-
works [141, 142, 41, 74, 156]. In [141, 142] Newman studies the
scientific collaboration between scientists (in the fields of physics,
biomedical and computer science), by extracting authors one-mode
projection from authors-citations bipartite graph. Also, the relation
user-music is used to build graph of connected music artists [41]. In
[74] authors build movies collaboration network extracted from In-
ternet Movie Database (IMD), vertices represent movies and edges
represent common users who have voted for these movies. In [156]
authors study and compare three collaboration social networks: the
network of movie actors obtained from Internet Movie Database
(IMD), the network of scientific collaboration, and the network of
company directors, in which two directors are linked if they sit on
the same board of directors.

Example 1. Figure 2.3(a) represents the bipartite graph G, where
V (G) = X∪Y and every vertex x from X is connected to a vertex y
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from Y . Figure 2.3(b) represents the one-mode projection graph Gx

in which all the vertices set is V (Gx), and all the edges is E(GX).
Figure 2.3(c) represents the one-mode projection of the graph Gy in
which the set of vertex is V (Gy) and the set of edges is E(Gy), in
the both graph Gx and Gy are weighted graphs.

Definition 11 (Tripartite Graph). Let G be a graph, with a set of
vertices V (G) and a set of edges E(G). Let X, Y and Z be subsets
of V (G). The graph G is said to be tripartite graph, with three
partitions X ⊆ V (G), Y ⊆ V (G) andZ ⊆ V (G), if these sets are
disjoint sets, and for every edge e(v, v′) from E(G): if one of the
edge’s endpoints is one of the disjoint sets, then the other must be
one of the other two sets.

Figure 2.4: A Tripartite graph

Figure 2.4 is an example of a tripartite graph G, from this graph
vertices are grouped in three disjoint sets X, Y and Z; and edges
connect only vertices that are members of different sets.
Tripartite graphs have several applications especially in the context
of semantic web and Folxonomy [127, 83]. In [127] authors represent
semantic-social networks in the form of a tripartite graph of person,
concept and instance associations, proposing to extend the concept
of ontologies with the social dimension. In [83] authors transformed
the Folksonomy F := (U, T,R, Y ) into a tripartite graph G. Graph
vertices V (G) is the set of vertices V (G) = U ∪ T ∪R, U represents
users, T represents tags and R represents resources. While graph
edges E(G) are weighted edges and they connect tags and users,
users and resources and tags and resources.
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2.2.2 Paths and walks in the graph

In [31] authors mentioned several types of flow in networks: geodesics,
paths, trails and walks. A path in a graph is a sequence of edges
which connect a sequence of vertices, paths in the graph have sev-
eral types such as: cycle, simple path, simple cycle, Hamiltonian
path and else more [145, 49]. On the other hand, a walk in a graph
G consists of alternating vertices and edges of G [145, 31]. In this
subsection we study the shortest path and the random walk.

2.2.2.1 Shortest Path (Geodesic Path)

In a given graph G a path p(v, v′) between two vertices v and v′ from
V (G) is defined as the sequence of vertices and edges connecting
these vertices, and the length of a path is defined as the number of
traversed edges between v and v′.
Shortest path between two vertices is defined as a path which has
the minimum length in the graph [49]:

Definition 12 (Shortest path). Let P (v, v′) = {p1(v, v′), p2(v, v′),
. . . , pn(v, v

′)} be a the set of all possible paths between the vertices
v, v′. The path pj(v, v

′) from the set of paths P (v, v′), is said to be
shortest path if it has the minimum length compared with the other
paths in P (v, v′).

The length of shortest path is often called the geodesic distance or
the shortest distance, and the shortest path whose shortest distance
is the longest in the graph is called graph diameter . Moreover, if the
vertices are disconnected then no shortest path exists between them.
Furthermore, it is very possible to see several shortest paths between
the pairs of vertices [143]. In social network analysis shortest path
is used in several algorithms as: the algorithms used for computing
Betweenness centrality [143, 33] and closeness centrality [61], also
shortest paths are used in some algorithms for investigating the
community structure of networks [140].

2.2.2.2 Random Walk

In a given graph G and starting from an initial vertex v from V (G),
random walk algorithm, selects randomly a neighbor of v, and moves
to it, and repeats this operation [145]. The random sequence of ver-
tices and edges selected in this way creates a random walk in the
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graph [116]. So, a random walk is a path across the graph created
by repeating random steps, and it is allowed to go along edges and
visit vertices more than once.

In social network analysis random walk is used in several algo-
rithms such as: random walk betweenness [144] and link prediction
[148, 12].
In an undirected graph G we define pi(t) as the probability that the
walk is at the vertex i at the time t. If the walk is at the vertex j
at time t− 1, then the probability of taking one step from j via one
of its connected edges is 1/dj, as denoted in [145], and is defined by
Formula 2.6:

pi(t) =
∑
j

Aij

dj
pj(t− 1) (2.6)

where dj is the degree of the vertex j and Aij is the value of the
entry (i, j) in the adjacency matrix of the graph G.

2.2.3 Algorithms

In this subsection we detail and discuss three fundamental and im-
portant algorithms, which are used for searching and exploring the
graph. These algorithms are: depth-first search DFS, breadth-first
search BFS and A*. Depth-first search and breadth-first search
explore all the graph, while A* algorithm explores a part of the
graph according to some predefined heuristics. In our approach we
propose to use depth-first search DFS algorithm and breadth-first
search BFS algorithm with heuristics; for that reason, in this subsec-
tion, we discuss DFS, BFS and A* referencing them from [49, 167].

2.2.3.1 Depth-First Search DFS Algorithm

Since the nineteenth century, Depth-First Search algorithm (DFS)
has been one of the fundamental graph searching algorithms [186,
98]. DFS is used in artificial Intelligence, in order to solve several
problems such as: navigating systems, mapping, decision making
and combinatorial problems.
DFS algorithm searches deeper in the graph whenever it is possi-
ble. It explores the graph’s edge out of the most recently discovered
vertex v that still has unexplored edges leaving it. Once all of the
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v edges have been explored, the search backtracks to explore edges
leaving the vertex from which v was discovered. This process con-
tinues until discovering all the vertices that are reachable from the
original source vertex. If any undiscovered vertices remain, then
DFS selects one of these remained vertices as a new source, and it
repeats the search from it. The algorithm repeats this entire process
until discovering every vertex in the graph [49]. DFS is detailed b
Algorithm 1 and by the recursive Procedure 2. DFS search has ad-
vantages related to memory requirement and time complexity, but
the main drawbacks of DFS are that DFS is not guaranteed to find
solution.

Algorithm 1: Depth-First Search Algorithm

Require: (i) A graph G
1: for all v ∈ V (G) do
2: v.label = unexplored
3: end for
4: for all e ∈ E(G) do
5: e.label = unexplored
6: end for
7: for all v ∈ V (G) do
8: if v.label = unexplored then
9: DFS − V isit(G, v)

10: end if
11: end for

Algorithm 2: DFS-Visit(G,V)

1: v.label = explored
2: for all e ∈ G.incidentEdges(v) do
3: if e.label = unexplored then
4: w ← opposite(v, e)
5: if e.label = unexplored then
6: e.label = explored
7: DFS − V isit(G,w)
8: else
9: e.label = explored

10: end if
11: end if
12: end for
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2.2.3.2 Breadth-First Search BFS Algorithm

Breadth-First Search Algorithm BFS is one of the simplest graph
searching algorithms. BFS expands all the vertices one level away
from the initial vertex, then it expands all vertices two levels away
from the initial vertex, then three levels, until a goal state is reached.
Since BFS expands all vertices at a given depth before expanding
any vertices at a greater depth, the first solution path found by
breadth-first search will be the one of the shortest length [99]. So, for
a given graph G and a distinguished source vertex v, BFS explores
the edges, connected to v, in order to reach every vertex that is
connected to v. Thus, BFS computes the distance from the vertex
v to every reachable vertex from v. It also produces a breadth-first
tree starting from the root v, this tree contains all the reachable
vertices from v [49].
BFS algorithm works on both directed and undirected graphs, and
it has advantages such that BFS never enter an infinite cycle, and
it definitely finds all the possible solutions; but yet, BFS has some
limits regarding to time and space complexity. BFS is described by
Algorithm 3.

Algorithm 3: Breadth-First Search Algorithm

Require: (i) A graph G, (ii) Source vertex
1: for all vertices v in V (G) do
2: v.label = unvisited
3: end for
4: user list = empty list
5: Q = empty queue
6: while Q �= ∅ do
7: v = dequeque(Q)
8: v.label = visited
9: for all e(v, v′) and e(v′, v) in E(G) do

10: if v′.label = unvisited then
11: v′.label = visited
12: enqueue(Q, v′)
13: end if
14: end for
15: end while
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2.2.3.3 A* Algorithm

A* algorithm was firstly proposed in 1968 [77] as an extension of
Dijkstra’s algorithm [167]. A* algorithm has several applications
such as message routing in large networks, resource allocation and
vehicle navigation systems [10]. Moreover, this algorithm is used to
find the minimum path cost between two points in a two dimensional
rectangular grid with obstacles.

As classical graph searching algorithms A*, finds the minimum
cost path between the start vertex and the goal vertex, but classi-
cal algorithms search all the possible paths and in the all directions
around the starting vertex in the graph, while A* algorithm concen-
trates the search on a very limited number of paths and directions
around the the starting vertex. For that, A* algorithm uses a heuris-
tic function f(n).
According to the literature, A* heuristic function f(n) is combined
of two functions h(n) and g(n). The first function h(n) is called
the admissible heuristic, which minimizes the estimated cost of the
cheapest path from the current vertex to the goal vertex; while the
second function g(n) gives the path cost from the start vertex to the
current vertex [167]. By combing the two functions h(n) and g(n)
we can have the score path function f(n) = h(n)+g(n) which is de-
fined as the estimated cost of the cheapest solution passing through
the vertex n. Thus, according to that heuristic function, A* algo-
rithm is guaranteed to find the optimal solution (the path with the
minimum cost) in the graph. Algorithm 4 shows the details of A*
algorithm.

2.3 Social Network Analysis

Social Network is a graph, in which the set of vertices represents
actors, and the set of edges represents the social ties between the
actors. Social Network Analysis SNA is a branch of computational
social science, that is involved in studying and evaluating the struc-
ture of social network. Social network analysis is very important
issue because it helps to investigate the characteristics of different
social networks and to study the connectivity between the users in
the social networks. The study of social networks analysis has three
main axes: vertex based, structure based and community detection
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Algorithm 4: A* Algorithm

Require: (i) Start vertex s, (ii) Goal vertex g
1: OpenSet← s
2: while OpenSet �= ∅ do
3: for all n ∈ OpenSet do
4: current← n with minimum f(n)
5: end for
6: Remove current from OpenSet
7: ClosedSet← current
8: if current = g then
9: Return the path from current to s

10: else
11: currentNeighbor ← current.neighbor()
12: for all cn ∈ currentNeighbor do
13: if cn /∈ OpenSet and cn /∈ ClosedSet then
14: g(cn) = g(n) + path(n, cn)
15: f(cn) = g(cn) + h(cn)
16: if cn ∈ OpenSet and its value is lower then
17: update g(cn)
18: end if
19: if cn /∈ ClosedSet and cn /∈ OpenSet then
20: OpenSet← cn
21: end if
22: end if
23: end for
24: end if
25: end while
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based.

• Vertex based analysis methods study the position and the role
of the vertices in the social network. This study is mainly based
on vertex centrality using centrality measures [145] and social
network analysis algorithms as, PageRank [35] and HITS [93].

• Structure based analysis depends on link prediction [19, 66] and
network evolutionary [109, 101]. Link prediction algorithms
study and suggest which vertices are more likely to be con-
nected with other vertices, while network evolutionary studies
the structure of network and its dynamics over the time.

• Community detection methods propose to group graph vertices
into clusters using community detection algorithms, such as
modularity based ones [138, 27] and graph partitioning [180, 2]
algorithms.

In this thesis we are interested in two axes of social network analysis,
these axes are vertex centrality and community detection. There-
fore, in this section, we discuss in details the most common social
network centrality measures and some of the notable community de-
tection algorithms, but before that we firstly introduce an overview
some of the well known graph models and their characteristics.

2.3.1 Introduction

Studying the structure and the functional characteristics of social
networks is an important issue in social network analysis. But,
studying and analyzing social networks require realistic models and
standard characteristics of these networks. For that, we present
here some of the famous network models and their characteristics,
as found in the literature of social networks.

2.3.1.1 Graph models

The first study of a realistic model of social networks was achieved in
1959 by Erdös and Rényi [58], when they proposed a model based on
“random graphs”, in which n vertices are connected randomly to m
edges according to a probability p. Each pair of vertices is connected
with equal probability p independently of the other pairs. Figure
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2.5 is an example of Erdös-Rényi network, in this network n = 50,
m = 123 and p = 0.1.

Figure 2.5: Erdös and Rényi network

Later in 1969 Milgram and Travers [188] proposed the “Small
World” model, in their attempt to find the average path length
connecting any pair of vertices in the network, and they concluded
that vertices are connected via short paths with maximum average
length of 6. This was later known as the “six degrees of separation”
in social networks.

In 1977 Zachary [196] studied the “community structure” of a
small social network connecting members of a Karate club.

Watts and Strogatz [191] proposed a model starting from a ring
lattice with n vertices and k edges per vertex, where each edge is
rewired at random with a probability p. This construction allows to
tune the graph between regular finite ring lattice when p = 0 and
disordered random graph when p = 1. Figure 2.6 is an example of
Watts-Strogatz’s model, this network is generated using the values
n = 50, k = 8 and p = 0.2.

Barabási and Albert [9, 161] have proposed a network model, in
which a preferential attachment is defined. Preferential attachement
means that the probability of having connection to a vertex depends
on the vertex’s degree. Thus, in this model vertices degree follow
the power-law distribution.
This type of networks are used for friendship networks, the World
Wide Web, business and commerce networks. Figure 2.7 is an exam-
ple of Barabási and Albert scale-free network, this network is gen-
erated using the values n = 50 and an average edge degree equals
to 2.
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Figure 2.6: Watts-Strogatz model

Figure 2.7: Barabási and Albert scale-free network

Furthermore, other models based on bipartite graphs [142, 137]
are proposed as another class of network models. In these networks
both of the individuals and groups are represented by two types of
vertices; and edges only connect individuals with their correspond-
ing groups representing the group membership. Although, one-mode
projection can be applied on bipartite graph in order to extract the
collaboration networks.

2.3.1.2 Social networks features

Social networks have three main features: the small world effect, the
power-law degree distribution and community structure [142, 137].
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Table 2.1: Social Networks models and characteristics
Network Diameter Clustering coefficient Power Law

Erdös and Rényi [58]
√

X X
Barabàsi and Albert [161]

√
X

√
Watts and Strogatz [191]

√ √
X

Bipartite model [142]
√ √ √

• The small world effect is identified when the social network has
low graph diameter and high clustering coefficient.

• The power-law degree distribution means that network vertices
should follow the power-law distribution, which implies that a
few vertices have high degree and the majority of graph vertices
have small degree.

• Community structure means that vertices are divided into groups,
in which vertices of the same group has strong and dense con-
nections while vertices from different groups have weak connec-
tions.

According to Erdös and Rényi model the graph diameter is small,
the degree distribution follows poisson distribution and the cluster-
ing coefficient is small. In Watts and Strogatz model the generated
network has small diameter, high clustering coefficient, but the ver-
tices of this network follow the poisson distribution. In Barabàsi
and Albert model, the network has a small network diameter, small
clustering coefficient and its vertices follow the power-law distribu-
tion. Furthermore, bipartite graphs show a small network diameter,
high clustering coefficient, and vertices follow the power-law distri-
bution. Table 2.1 synthesizes the previously discussed models with
their characteristics 1.

2.3.2 Social network analysis: centrality measures

Centrality measures are used to capture the features and the char-
acteristics of social networks, and to understand the topology and
the role of its connected actors. In this subsection, we present some
of these centrality measures. Table 2.2 synthesizes these measures.

1Introduction à l’analyse des réseaux sociaux, Rushed Kanawati université de Paris13
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Table 2.2: Social networks centrality measures
Centrality measure Characteristics

Degree Number of direct connections with other vertices
Closeness Sum of length of the shortest paths passing from v
Betweenness Frequency of the shortest paths passing from v
Eigenvector and Katz Importance of the vertex’s neighbors

2.3.2.1 Degree Centrality

Degree centrality is described as a local and structural measure, and
it is computed in two simple ways: by counting the number of direct
connections of each vertex in the graph, or by finding the sum of
each row in the adjacency matrix of the graph [147, 61, 145].
Degree centrality CD(vk) of any vertex vk in the graph G is given
by Formula 2.7:

CD(vk) =
n∑

i=1

e(vi, vk) (2.7)

where e(vi, vk) = 1 if vi and vk are connected by an edge (adjacent),
and e(vi, vk) = 0 otherwise.
According to Formula 2.7, large value of CD(vk) means that vk is
adjacent to a large number of vertices, and small value of CD(vk)
means that vk is adjacent to a small number of vertices. Thus, in
any graph G, the maximum degree centrality is equal to n − 1, n
is the number of graph vertices, and the minimum value of degree
centrality is equal to 0. Vertices with degree centrality that is equal
to n−1 are said to be dominating vertices, and vertices with degree
centrality that is equal to 0 are said to be isolated vertices and out
of contacts.

Degree centrality of any vertex could be proportional to n−1 the
maximum degree in the network [61], in this case degree centrality
is called relative-degree centrality C

′
D(vk) and it is given by Formula

2.8:

C
′
D(vk) =

∑n
i=1 e(vi, vk)

n− 1
(2.8)

In the literature, there are some measures that are considered to
be variants of degree centrality as k-path centrality which counts all
the paths crossing the vertex [168], having a length of k or less; and
vertex disjoint k-path centrality which counts all the vertex-disjoint
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paths, of length k or less [8]. Vertex-disjoint paths are paths that
have no vertices in common, so every vertex from these paths belongs
to only one path.

Moreover, directed graphs have two types of degree centrality in-
degree which indicates the vertex importance in the network, and
out-degree which indicates the vertex powerfulness and ability of
information transmission in the network.

Example 2. From the social network illustrated in Figure 2.8 we can
find that: bigger vertices have higher degree centrality, and smaller
vertices have smaller degree centrality. Moreover, the maximum
degree value in this social network is 9, represented by the green
vertex; and the minimum value of degree centrality is 0, represented
by the red vertex.
If any vertex in the social network has a large value of degree central-
ity, that means it has a significant position and a very influential
role in this network, as a result of having large number of direct
connections with other vertices (the green vertex).

Figure 2.8: Degree Centrality

2.3.2.2 Closeness Centrality

Closeness centrality is based on the computation of the distances
between the vertices in the network [16]. Closeness centrality of a
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vertex vi is defined as the sum of the graph’s shortest paths (geodesic
paths) linking this vertex with all the other vertices [31]. Closeness
is classified as a radial measure and is given by Formula 2.9:

C(vi) =
n∑

j=1

d(i, j) (2.9)

d(i, j) is the number of edges in the shortest paths connecting vi
and vj.
From Formula 2.9, we can notice that important vertices have small
closeness values and non important vertices have large closeness val-
ues. Thus, closeness centrality is defined as the inverse of C(vi) and
it is described as follows [61, 31, 145]:

CC(vi) =
1∑n

j=1 d(i, j)
(2.10)

As the maximum distance between any pair of vertices in the net-
work is equal to n− 1 (n is the number of vertices), then the vertex
relative centrality is denoted by 2.11:

C
′
C(vi) =

n− 1∑n
j=1 d(i, j)

(2.11)

Closeness centrality has two main drawbacks [145]: firstly, close-
ness has small range of values among the largest and the smallest
closeness centrality, that means, it is difficult to distinguish the more
or the less central vertices using this measure; secondly, it only works
on connected graphs, as the fact that shortest paths have infinite
values if vertices fall into two different components. If vi and vj fall
in two different components of the network then the geodesic path
between them is infinite because:

n∑
j=1

d(i, j) =∞⇒ CC(vi) = 0

In the literature, several variant of closeness centrality have been
proposed such as, immediate effects centrality [63] which counts the
distance between any vertices in a graph as the average length of all
paths between them; information centrality IC [182] which measures
the reciprocal of the topological distance between the corresponding
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vertices using the harmonic average; centroid centrality [76] which
specifies one or more vertices as a graph centroid then, and in order
to find the centrality of the vertex, it computes the distance between
that vertex and the centroid.

Example 3. Figure 2.9 shows a social network in which the bigger
vertices are the ones having high closeness centrality, and the smaller
vertices are the ones having smaller closeness centrality. According
to this example, the maximum closeness value is equal to 0.538 (the
blue colored vertex) and the minimum value is equal to 0 (the red
colored vertex). We notice that, the range between the smallest
value and the biggest value is limited.
Obviously, vertices with high closeness centrality have short dis-
tances connecting them with other vertices in the social network,
which means these vertices are easy to be reached by others, so they
can spread their messages and opinions easily in the social network.
Moreover, sending messages from vertex with high closeness central-
ity (the blue colored vertex in our example) takes short time and
low costs, and in this case the vertex is said to have a good position
enabling it to receive and transmit information rapidly and easily.

Figure 2.9: Closeness Centrality
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2.3.2.3 Betweenness Centrality

Betweenness centrality of the vertex vk in the graph G is defined as
the number of times that any vertex vi ∈ V (G) needs the vertex
vk in order to reach other vertices in the graph via a shortest path
[31]. That means, betweenness centrality indicates the frequency
that a vertex falls on a shortest path between any two vertices in
the graph, and it is computed by counting the number of the shortest
paths passing through this vertex [61].

Computing betweenness centrality is simple and easy, if there
exists only one shortest path connecting the pairs of vertices in the
graph, but sometimes this is not the case. Often and for the majority
of graphs, there exist several shortest paths between vertices, this
fact makes betweenness centrality more complicated to compute;
and a partial betweenness can be assigned in terms of probabilities
[145].

According to Newman [145], the probability p(vi, vj) of using one
of several different shortest paths connecting two vertices vi and vj
is denoted by 2.12:

p(vi, vj) =
1

gij
(2.12)

where gij is equal to the number of the shortest paths between vi
and vj.
Furthermore, the potential of the vertex vk controlling the informa-
tion flow between vi and vj is defined as the probability that vk falls
on a randomly selected shortest path linking vi and vj.
So, if gij(vk) refers to the number of the shortest paths between vi
and vj then, the probability that vk falls between these vertices is
given as follows 2.13:

bij(vk) =
1

gij
× gij(vk) =

gij(vk)

gij
(2.13)

Moreover, based on Formula 2.12 and Formula 2.13 and in order to
determine the overall betweenness centrality of the vertex vk in the
graph G, where n is the number graph vertices, a sum is applied on
all the vk partial betweenness values over all the unordered pairs of
vertices, in the graph, where i �= j �= k as shown in 2.14:

CB(vk) =
n∑

i=1,j=1,i �=j �=k

bij(vk) (2.14)
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Moreover, in a graph G the maximum betweenness value CB(vk)
of a vertex vk is as follows:

CBmax(vk) =
n2 − 3n+ 2

2
(2.15)

As consequence, the relative betweenness centrality of any vertex in
the graph is given by 2.16:

C ′
B(vk) =

2CB(vk)

n2 − 3n+ 2
(2.16)

The factor between the largest and the smallest betweenness cen-
tralities in the social network, is almost equal to 1

2n
.

Betweenness centrality has several variants, such as k-betweenness
centrality [69, 63] which bounds the path by the length of k, where
k represents the maximum number of edges in the explored path.
Freeman [62] proposed another betweenness centrality by replacing
the shortest paths by the edge disjoint paths. Moreover, Newman
proposed betweenness measure based on random walk [144], by re-
placing the number of shortest paths by the number random walks.

In contrary to degree and closeness centralities, betweenness cen-
trality does not measure the vertex ability to control information
spread and transmission, but it measures the ability to facilitate
the information flow passing from a vertex to another in the social
network [31]. Thus, Betweenness centrality is not a measure of how
a vertex is well connected, but it is a measure of how much a ver-
tex falls in the communication channels between vertices [145, 61].
Therefore, a vertex could have a low degree and a long distance far
from others in the social network, but still have high betweenness.
Furthermore, removing a vertex with high betweenness will cut off
the communications in the social network, because it has a position
that lies on the largest number of shortest paths, that are used to
spread information and messages in the network.

Example 4. Figure 2.10 is an example of a social network in which
bigger vertices have high betweenness centrality, and smaller ver-
tices have small betweenness centrality. According to this network
the maximum betweenness value is equal to 0.758 (the blue colored
vertex) and the minimum value is equal to 0 (the red colored ver-
tices). In this Figure, according to betweenness centrality the blue
vertex is considered to be an important mediator, because it partic-
ipates in the majority of the shortest paths in the social network.
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By removing this vertex from the social network, this network will
be disrupted and the information will be hold. In the other case,
removing one of the red vertices in the network will never influence
the communication.

Figure 2.10: Betweeness Centrality

2.3.2.4 Eigenvector Centrality

Eigenvector centrality is considered as an extension of degree cen-
trality, because it is concerned by the number of the vertex’s neigh-
bors (as degree centrality) and the importance of these neighbors.
Thus, according to this centrality vertex’s prestige in the graph is
increased when it is connected to other vertices that are themselves
important [30, 29].
For that, eigenvector centrality gives each vertex a score propor-
tional to the sum of the scores of its neighbors.
Generally, eigenvector centrality of a vertex vi in the social networks
is given by 2.17:

λx = Ax (2.17)

where A is the adjacency matrix of the graph, λ is a constant of the
eigenvalue, and v is the eigenvector. Thus, eigenvector of the vertex
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vi is given by 2.18:

xvi =
1

λ

n∑
j=1

Aijxvj (2.18)

where λ is a constant that must be the largest eigenvalue of the
adjacency matrix and x is the corresponding eigenvector.

Example 5. Figure 2.11 is an example of a social network in which
bigger vertices have high eigenvector centrality (the blue colored
vertex), and small vertices have low centrality (the red colored ver-
tex). According to this network, the maximum eigenvector value is
equal to 1, for the blue vertex, and the minimum value is equal to
0, for the red vertex. Moreover, the blue vertex has high influence
in the social network because it is connected to important vertices,
the green vertex, the yellow and the orange ones. So, if the blue ver-
tex has a direct influence on its neighbors, then these neighbors will
transmit this influence to the maximum possible number of vertices
according to their degree centrality.

Figure 2.11: Eigenvector Centrality

2.3.2.5 Katz Centrality

Katz centrality adds some weights to the vertex degree. These
weights are equal to the number of the paths between the vertex
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and all the other vertices in the network [90] (the overall intercon-
nectedness). In the graph G with n vertices, if A is the adjacency
matrix, α is the weight factor, and Ak is the matrix representing the
number of the paths of length k between v all the other vertices in
the network, then Katz centrality is given by 2.19:

CKatz(vi) =
∞∑
k=0

n∑
j=0

αk(Ak)j,i (2.19)

Formula 2.19 shows that if a vertex with high centrality is connected
to other vertices then these other vertices will also obtain a high
centrality, e.g. if a vertex with a very high centrality is connected
to one million other vertices this high centrality will be transferred
to the one million vertices.

2.3.3 Social network analysis: Community detection

The study of community structure in social networks gives a de-
tailed information about the topology and the role of the vertices
in these networks. Moreover, almost all the social networks have a
topology of connected or disconnected clusters, where vertices are
grouped into clusters.

Ties and interactions between vertices belonging to the same clus-
ter are very strong and intense, while ties and interactions between
vertices belonging to different clusters are very rare and weak.

In social networks, the clusters of vertices are named commu-
nities, and the study of these communities is named community
detection.

The origins of community detection comes from a study of po-
litical communities of people according to their votes [165]; and a
study of the structure of a complex government and the relationship
between its workers in their different agencies [192].

For example in Zachary’s karate club, as shown in Figure 2.14, the
social network has two main communities the blue one and the yel-
low one. The vertex with the highest degree in the blue community
represents the first instructor in the club, connected to the members
that are training with him; and the vertex of the highest degree in
the yellow community represents the second instructor in the club,
connected to the members that are training with him. Obviously,
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club members who are training with the instructor have intense con-
nections between them and moderate connections between the other
ones who are training with the other instructor. Moreover, the two
instructors have no direct connection between them because they
have some conflicts considering to some administrative problems, so
they have no social interactions between them.

Generally in social networks, vertices having high degree and
closeness appear to be in the center of the community, with in-
tense connections with vertices from the same community; while
vertices having high betweenness appear to be at the boundaries of
the community, and they are connected to vertices from different
communities.

In the literature several studies have been achieved in the con-
text of community detection and their applications in the different
networks, such as the world wide web, the citation networks and the
co-authorship networks; and several network clustering algorithms
have been proposed. In this subsection we introduce some of these
algorithms.

2.3.3.1 Traditional clustering algorithms

Traditional graph clustering algorithms can be used for community
detection in social networks, these algorithms are grouped in several
categories [59] as, graph partitioning, hierarchical clustering, parti-
tional clustering and spectral clustering. Table 2.3 shows a synthesis
of these algorithms, and these algorithms are described as follows:

Graph Partitioning is an important issue in computer science, and
it is known as an NP-hard problem. According to graph partitioning
methods, graph vertices are grouped in several partitions, where the
number of edges connecting these partitions is minimum (the num-
ber of edges connecting different partitions is called the cut size).
In the literature, several graph partitioning algorithms have been
proposed such as, Kernighan-Lin algorithm [91] which proposes to
divide the graph into bisections iteratively; maximum flows algo-
rithms [2] which are based on the max-flow min-cut theorem by
Ford and Fulkerson; and algorithms based on minimizing measures
related to the cut size [180]. In such algorithms, the number of clus-
ters should be predefined and in some cases the cluster size should
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be also predefined.

Hierarchical Clustering in some cases it is difficult to predefine the
number of clusters or the size of clusters for graph partitioning,
for that the hierarchical clustering methods have been proposed.
The hierarchy in these methods is based on a predefined similar-
ity measure between vertices, and they suppose that graph vertices
are grouped in several levels where smaller clusters are included in
larger clusters. Hierarchical clustering algorithms have two main
categories (a) agglomerative clustering with a bottom-up structure
that starts from a single vertex as a separated clusters to end up
by the whole graph vertices as one cluster [78]; (b) divisive cluster-
ing with a top-down structure that splits the graph into clusters by
removing edges connecting vertices with low similarity [141]. Such
algorithms depend on predefined functions between vertices as mod-
ularity, and sometimes vertices are not classified correctly. It also
in many cases that some vertices are missed even if they are central
or important, moreover agglomerative algorithms have a drawback
that they do not scale well [59].

Partitional clustering methods represent vertices as points in the
metric space, then they define the distances between these vertices,
according to a cost function, in order to group the vertices into k
clusters with the respect to minimizing or maximizing the cost func-
tion. Partitional clustering can be achieved using several algorithms
such as k-means clustering [118, 158] and fuzzy k-means clustering
[56]. In such algorithms the number of clusters should be defined at
the beginning of the algorithm.

Spectral Clustering clusters the graph using the eigenvector values
of the vertices similarity matrices. This could be achieved via the
laplacian matrix [22], using normalized spectral clustering [179] or
unnormalized spectral clustering [117].

2.3.3.2 Optimization based community detecting algorithms

Hierarchical Clustering is considered as an optimization based ap-
proach for community detection. Here we discuss three of the most
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Table 2.3: Graph Clustering methods
Methods Algorithms Characteristics

Graph partitioning
bisection-partition [91] Clustering vertices,
max-flow min-cut [2] with minimum cut size,

cut size [180]
clusters number or size should be
predefined.

Hierarchical Clustering
Agglomerative algorithms [78]

Bottom-up structure, never scale
well

(optimization based)
Divisive algorithms [141]

Top-down structure, sometimes
vertices are not well classified.

Partitional clustering

k-means [118, 158] Clustering depends a predefined
cost function

Fuzzy k-means [56] predefining clusters number.

Spectral clustering
Laplacian matrix [22] Using eigenvector values

Normalized spectral clustering [179] of vertices similarity matrix
Unnormalized spectral clustering [117]

Table 2.4: Hierarchical clustering algorithms
Hierarchal clustering Algorithms Characteristics

Divisive hierarchy Grivan-Newman algorithm [65]
greedy method, splits the graph,
by deleting edges with high be-
tweenness.

Agglomerative hierarchy

Newman algorithm [141]
greedy method, merges clus-
ters according to the modularity
value.

Louvain algorithm [27]

heuristic method, maximizes the
modularity, network of commu-
nities (communities of communi-
ties structure).

famous community detection algorithms, these algorithms are Grivan-
Newman algorithm, Newman’s greedy algorithm and Louvain algo-
rithm. Table 2.4 synthesizes the characteristics of these algorithms.

Girvan-Newman algorithm This algorithm has been introduced as
a very distinguished approach in the field of community detection.
It is categorized as a divisive hierarchal clustering algorithm, in
which clusters are iteratively splitted by removing some edges ac-
cording to a predefined criteria. Since inter-community edges (edges
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connecting different communities) are most likely to have a high be-
tweenness, Girvan-Newman algorithm has used edge betweenness as
a criterion to identify the network communities.

As vertex betweenness, edge betweenness is proposed as a mea-
sure of edge importance and influence in the social network [65], and
it is equal to the number of all the shortest paths passing through
this edge.

The main idea of Grivan-Newman algorithm is to find the inter-
community edges, edges with high betweenness centrality, and delete
them progressively from the graph. This method, leads to have sep-
arated groups of vertices, representing the possible graph communi-
ties.
Girvan-Newman algorithm is described as follows [65]:

1. Compute the betweenness centrality of all the edges in the so-
cial network.

2. Remove edges with the largest betweenness centrality.

3. Recalculate the new values of edges betweenness centralities.

4. Repeat the steps 2 and 3 until no edges remain.

Each iteration of Girvan-Newman algorithm could lead to a new
group of partitions ending up by a hierarchy of partitions [65].
Figure 2.12, illustrates the top-down clustering nature of Grivan-
Newman algorithm [140].
This method imposes the following question: “how to choose the
best partitions?”. The answer on this question is proposed in [140],
where Newman and Girvan proposed a quality function to assess
the quality of the discovered graph partitions, this function uses the
modularity.

Modularity based methods Modularity is one of the most popular
graph partitioning quality functions, that assigns a score to each
partition in the graph. This score ranks the graph partitions ac-
cording to their quality. Thus, partitions with higher scores have
higher quality [59]. Modularity is given by formula 2.20:

Q =
1

2m

∑
(Aij − kikj

2m
)δ(Ci, Cj) (2.20)
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Figure 2.12: Girvan-Newman algorithm top-down clustering [140]

where δ(Ci, Cj) = 1 if the vertices i and j are in the same community
and δ(Ci, Cj) = 0 otherwise, m is the total number of edges in the

graph, and
kikj
2m

is the expected number of edges between vertices
i and j in the null model graph. The null graph model is a copy
of the original graph keeping all its structural properties except the
community structure.

It is remarkably that the modularity is based on the idea in which
random graphs are not expected to have a community structure, so
according to modularity the possible existence of clusters is revealed
by comparing the edges density in the actual graph and the expected
edges density in the null model graph, regardless to the community
structure.

Newman’s Greedy algorithm Newman proposed a greedy algo-
rithm based on maximizing the modularity of the discovered com-
munities in the network [138]. This algorithm is categorized as an
agglomerative hierarchical clustering algorithm, in which clusters
are iteratively merged according to a predefined criterion, the mod-
ularity criterion.
The algorithm starts from n clusters (n is the number of all the graph
vertices), at the beginning these clusters are disconnected, having
no edges between them; then edges between vertices are added, if



48 CHAPTER 2. SOCIAL NETWORK ANALYSIS A BACKGROUND

and only if they maximize the modularity of their corresponding
clusters.
However, in order to decide whether to merge the two clusters or not,
the algorithm computes the variation of modularity ΔQ between ev-
ery two different clusters at each iteration step. The algorithm stops
when ΔQ � 0 for any two clusters in the network.

Louvain algorithm is a heuristic-based and agglomerative hier-
archical clustering algorithm [27]. Louvain algorithm includes two
steps, in the first step the algorithm divides the network into n dis-
connected communities (n is the number of all the vertices in the
graph); then for each vertex v the modularity gain is evaluated, by
placing v in each community of each one of its neighbor, to finally be
added to the community in which the gain of modularity is positive
and has the maximum value. If the modularity gain is not positive
then the vertex v stays in its own community. This process is ap-
plied repeatedly and sequentially for all the vertices until no further
improvement can be achieved and in this case the first step of the
algorithm is completed.
The second step of the algorithm constructs a new weighted network,
a meta-communities network (a network of communities), in which
each vertex represents one of the discovered communities given by
the first step. In this network edges have two types of weights (a)
weights of edges from the same community, which is equal to the
sum of the edges connecting vertices of the same community; and
(b) weights of edges connecting different communities, which is equal
to the sum of the edges connecting vertices from the different con-
nected communities. Once the second step is accomplished, it is
then possible to reapply the first step of the algorithm on the new
weighted network and to iterate until no new changes, in modularity,
occur on the obtained network. Figure 2.13 shows that each pass is
made of two phases: one where modularity is optimized by allowing
only local changes of communities; one where the found communi-
ties are aggregated in order to build a new network of communities.
The passes are repeated iteratively until no increase of modularity
is possible [27].
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Figure 2.13: Louvain algorithm [27]

2.4 Searching Social Networks: Algorithms

Social networks become a great source of information, specially if
these networks have a huge number of actors e.g. Facebook that
has 1.15 billion active users and LinkedIn that has 238 million ac-
tive users. In such cases, social networks play an important role,
because they contain huge amount of information about users, ex-
perts, locations, products and more else. According to that, social
networks have a vast range of applications, that require very fast
and very effective graph-based searching techniques.

Graph-based searching algorithms, in social networks, are used
for several purposes, such as: Finding experts in a given domain
e.g. seeking for a java expert in a java online help-seeking commu-
nity [198]. Ranking network actors according to their relation to a
given subject e.g. ranking mails according to their correlation to
users’ interests [55]. Searching engines e.g. “google.com” [150], and
Recommender Systems [125].

In [197] authors classified graph searching algorithms into three
main categories: General computational based algorithms, Network
structure based and Similarity based.General computational algo-
rithms include breadth first search and random walk search. Net-
work structure algorithms include vertex degree based algorithms
algorithm using: vertex degree [102], PageRank algorithm or HITS
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Table 2.5: Searching network structure algorithms
Algorithms Methods

Vertex-based

Degree-based

in-degree [121, 32]
high-degree seeking [4]
h-distance & target physical lo-
cation [102]

searching algorithms
PageRank

Personalized PageRank [89, 123]
flow values, traffic rank PageR-
ank [187]

HITS
Weighted vertices and edges [47]
Randomized HITS [146]

algorithm [198], weak tie and strong tie search [70]. Similarity-based
includes using referral systems associated with the social network of
its users. Such systems attach agent to each user, this agent learns
user’s preferences and interests. So agents order incoming quires by
issuing referrals where others might be more suitable to field a given
query [194].

In our thesis we are interested in Network Structure algorithms,
mainly: vertex degree [4, 102], PageRank algorithm [150, 21, 32]
and HITS algorithm [93, 94, 198].
Generally, vertex degree-based algorithms suppose that all the ver-
tices with high degree are equally important. Moreover, PageRank
algorithm supposes that vertices with high degree are not necessarily
important and useful information resources. While HITS algorithm
groups graph vertices into two special categories, as follows: hubs
and authorities.

The following subsections give essential details about network
structure algorithms, and Table 2.5 summarize the previously dis-
cussed algorithms.

2.4.1 Degree-based searching algorithms

Degree-based algorithms rank graph vertices according to their de-
gree centralities. In [121, 32] authors proposed ranking vertices ac-
cording to the in-degree, supposing that the more in-degree value
the more is the vertex importance. This algorithm is not efficient
because not all the vertices having high in-degree are important.
In [4] authors proposed a high-degree seeking strategy, this strategy
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performs a sequential search which visits vertices with highest de-
gree in sequence. They proved that: high degree seeking strategies
are effective in networks with a power-law degree distribution with
an exponent γ close to 2.
In[102] authors proposed two other strategies beside to the high-
degree seeking strategy, as follows: the first strategy is based on
exploring the organizational hierarchy of the social network, in or-
der to find the closest possible people to the target. This is achieved
by labeling the vertices by their hierarchical distance (h-distance)
from the target, to finally pass the information to the closest ver-
tex to the target in the social network. Their experiments on an
email network showed that individuals closer to each other in the
organizational hierarchy are more likely to exchange emails between
them. The second strategy is based on target physical location,
such as: city, street, building and floor number. The experiments
on email exchanging network showed that: The general tendency
of individuals in close physical proximity to correspond holds: over
87% percent of the 4000 email links are between individuals on the
same floor.

2.4.2 PageRank

PageRank [150, 35] is one of the most famous searching algorithms,
whose name has been attached to Google, the popular and successful
web searching engine, since 1998. PageRank is defined as a variant
of Katz centrality, and it supposes that the PageRank of a given
vertex is proportional to its centrality divided by its out-degree.
PageRank algorithm answers text quires by generating a list of rel-
evant web pages. The relevancy between the suggested web pages
and the query depends on two ranking scores: the first one is related
to the matching value between the query’s text and the web pages’
weighted index, web weighted index could be: title, anchor, URL,
plain text large font, plain text small font; and the second ranking
score is the PageRank score of the web pages.
Google searching engine shows a high ability to find relevant web
pages, because it orders its results according to their scores, where
results on the top of the ranked list are more relevant than results
that are in the down of the ranked list.
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The PageRank score of a given vertex vi is described as in 2.21:

vi = α
∑
j

Aij
vj
doutj

+ βi (2.21)

where α = 0.85 as defined by google search engine, doutj is the number
of the out degree of the vertex vj and βi gives a value based on a
predefined criteria, as the textual relevancy to the search query [145].

PageRank algorithm has several variant which are proposed in
the literature, as: personalized PageRank [89, 123], and flow values,
traffic rank PageRank [187].

2.4.3 Hyperlink-Induced Topic Search HITS algorithm

HITS algorithm was firstly proposed by Kleinberg in 1999 [93, 94].
HITS algorithm gives each vertex vi in the network two centralities:
authority centrality ai and hub centrality hi. The vertex having
high authority ai, is defined as a vertex that has been pointed to
by several hubs; and the vertex having high hubs centrality hi is
defined as a vertex that points to several vertices with high author-
ities. However, citation networks are good examples of hubs and
authorities, where articles that have been cited by high number of
other articles, e.g. more than one hundred articles, are supposed to
be a very significant articles. While articles that have cited several
important article are not necessarily supposed to be important arti-
cles. Furthermore, we can define authorities as vertices that contain
important information and hubs as vertices that are guiding to im-
portant vertices.
According to Kleinberg authority centrality ai of a given vertex vi
is given by Formula 2.22:

ai = α
∑
j

Aijhj (2.22)

where α is constant.
Hubs centrality hi of a given vertex vi is given by Formula 2.23:

hi = β
∑
j

Ajiaj (2.23)

where β is a constant. HITS algorithm works on directed networks,
and it was used in some search engines as: ask.com.
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HITS algorithm has some variations as algorithms that weigh ver-
tices and edges with textual information [47], and randomized HITS
[146].

2.5 Social networks: examples

In this section we present some of the well known social networks,
that are used as benchmarks to test several algorithms proposed
for social network analysis. These networks are: Zachry’s karate
club network 2, as shown in Figure 2.14, Newman’s co-authorship
collaboration network 3, as shown in Figure 2.15, les misérables
social network 4, as shown in Figure 2.16, and protein interaction
network, as shown in Figure 2.17.
Table 2.6 provides some statistics about these networks, mainly the
number of vertices |v(G)|, the number of edges |E(G)|, the graph
diameter Dia, the graph density D and the clustering coefficient
CC.

• Zachary’s karate club network: is a social network proposed
by Wayane Zachary in 1970s [196], to study the social interac-
tions between members of karate club at one of the universities
in USA. Vertices of this network represent club members, and
edges represent the social interactions between these members,
inside and outside the club. This network has been studied by
Newman [65, 140] in the context of analyzing the network struc-
ture for community detection. Zachary’s karate club network
is shown in Figure 2.14.

• Newman co-authorship network: is an undirected network, in
which vertices represent scientists from three domains biology,
physics, and mathematics; and edges represent the ties between
these scientists. Newman’s co-authorship network is a collab-
oration network, where two scientists (vertices) are connected
if they have, at least, one written paper in common; edges are
weighted and their weights is equal to the number of common
papers written by the connected scientists. Co-authorship col-
laboration networks is used to study the structure of commu-

2http://moreno.ss.uci.edu/data.html
3http://wiki.gephi.org/index.php/Datasets
4http://www-personal.umich.edu/ mejn/netdata/
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Figure 2.14: Zachary’s Karate Club Social Network

nities in social networks [139], and it is shown in Figure 2.15.

• Les Misérables: is a weighted and undirected network, repre-
senting the characters of Victor Hugo’s novel Les Misérables.
This network is a collaboration network, where vertices repre-
sent the characters of the novel, and edges represent how many
times the characters have appeared together in the same chap-
ter [95]. This network has been used to study and analyze the
community structure in social networks [140], and it is shown
in Figure 2.16.

• Protein interaction network: is a network of physical interac-
tions between nuclear proteins, vertices represent proteins and
edges represent interactions between these proteins [37, 122].
Protein interaction network is shown in Figure 2.17.

Beside to the previously discussed networks, several datasets have
been studied and used for modeling and analyzing social networks
such as: ego-Facebook networks 5, which are extracted from Face-
book [124]; wiki-vote networks 6, which are extracted from users’s

5http://snap.stanford.edu/data/egonets-Facebook.html
6http://snap.stanford.edu/data/wiki-Vote.html
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Figure 2.15: Newman’s Co-authorship collaboration Network

Table 2.6: Social Networks Examples
Social Network |V (G)| |E(G)| Dia D CC

Karate Club 34 78 5 0.139 0.588
Co-authorship 1589 2742 17 0.002 0.878
Les misérables 77 254 5 0.087 0.736
Protein-Protein 2361 6646 11 0.002 0.2

votes on the contexts of Wikipedia [108]; and DBLP collaboration
network [193].

2.6 Social Network Analysis Tools

In this section we present four of the most common tools used for
social network analysis and visualization, these tools are: JUNG,
NetworkX, Gephi and Pajek. Moreover, we compare these tools7,
as described in Table 2.7.

• JUNG (Java Universal Network Graph) Framework: is a free
and open-source library, that is written in java and used for

7Etude comparative d’outiles de fouille et d’analyse de réseaux social. David Combe, Chris-
tine Largeron, Elöd Egyed-Zsigmond et Mathias Géry. 2ieme jour née thématique: Fouille de
grands graphes -20 Octobre 2011
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Figure 2.16: Les Misérables Social Network

modeling, analyzing, and visualizing graphs and networks8.
The first version of JUNG was released in 2003 and the last ver-
sion of JUNG was released in 2010. JUNG supports GraphML
and Pajek input/output files, although users have the ability to
create exporters and parsers from any kinds of formats. JUNG
supports several classes to manipulate several kinds of graphs,
such as: hyper graphs, k-partite graphs and multi graphs.
Moreover, JUNG supports several classes for social network
analysis: such as centrality measures, PageRank, HITS and
shortest paths algorithms. The presence of community de-
tection algorithms and visualization algorithms is limited in
JUNG.

• NetworkX: is a free and open-source library for social network
analysis, that is written in python9. The first version of Net-
workX was released in 2005 and the last version of NetworkX
was released in 2012. NetworkX supports GML, GraphML,
NetworkX and Pajek input/output files. NetworkX supports
several types of graph such as bi-partite graphs, and it contains
several social network analysis algorithms; but it has some limi-

8http://jung.sourceforge.net
9http://networkx.github.io
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Figure 2.17: Protein Interaction Network

tations considering the lack of community detection algorithms
and the social networks visualization methods.

• Gephi: is an open-source software, that is written in java and
it is used to visualize and analyze social networks10. The first
version of Gephi was released in 2010, and the latest version of
Gephi was released in 2013. Gephi supports input files in sev-
eral formats such as: GraphML, GML, Pajek, Tulip, UCINET,
and it supports output files in format of Gephi, and png. Gephi
provides various social network analysis algorithms such as:
centrality measures, PageRank, HITS and modularity. Also,
Gephi supports several algorithms for graph visualization and
3D mode network visualization.

• Pajek: is a program for windows, used to analyze and visu-
alize large scale networks11; Pajek is a free software for non
commercial use, and it is written in Delphi (Pascal) program-
ming language. Pajek first version was released in 1996, and
Pajek last version was released in 2013. Pajek supports in-
put/output files in several formats such as: Pajek, Ucient and

10https://gephi.org
11http://pajek.imfm.si
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Table 2.7: Social Network Analysis Tools
Tools JUNG NetworkX Gephi Pajek

First Version
JUNG 1.0.0
(2003)

NetworkX
(2005)

Gephi 0.7-alpha
(2010)

pajekXXL 0.0.1
(1996)

Last Version
JUNG 2.0.1
(2010)

NetworkX 1.8, 1
(2013)

Gephi 0.8.2-
beta (2013)

pajekXXL 3.12
(2013)

Platform java library python library Software Software
Social Networks
Algorithms

++ ++ ++ +

Community Al-
gorithms

− − + +

Visualization − − ++ +
Graph Types ++ + − +

GraphML. Furthermore, Pajek provides many tools for study-
ing and analyzing social network structure. For that it supports
several types of graphs as: bipartite graphs, multiple relations
networks and temporal networks; also, it provides several clus-
tering and visualization algorithms. Moreover, Pajek supports
networks visualization in 3D mode.

2.7 Conclusion

In this chapter we introduced an overview about social networks
and social network analysis methods. Starting from fundamental
definitions in both graph theory and social network. Passing by the
characteristics and models of social networks. Then we introduced
some definitions of the most important social network analysis mea-
sures. After that, we presented some of the well known algorithms
in community detection domain and in searching social networks do-
main. Then we presented examples of some of the well known social
network examples. And finally we presented some of softwares used
for social network analysis.



Chapter 3

Recommender Systems
Background

3.1 Introduction

Recommender systems [162] have attracted the attention of researchers
in the last two decades, and nowadays they have a strong impact on
our modern life [164]. Recommender systems are used to help users
in making choices about interesting items based on their tastes and
opinions. So, recommender systems provide personalized recom-
mendation based on the explicit and implicit information about the
users. Tapestry was the first non-personalized recommender system
which was proposed in 1992 [67]. Later in 1994 GroupLens proposed
UseNet recommender system as a personalized recommender system
for news recommendation [1, 96]. Moreover, recommender systems
have a wide range of implementations in the domain of e-commerce
[171]. Also, recommender systems are used in Aamzon.com, eBay
and google searching engine.

Recommender systems have three main categories as follows:
content-based recommendation which achieves the recommendation
based on the relevance between item features and user profile; col-
laborative filtering systems which propose to exchange the personal
experiences of the users, on their different choices, with other people
who could share or could not share their same tastes or interests;
and hybrid recommendation which combines content-based recom-
mendation methods with collaborative filtering methods. Figure

59
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3.1, shows the three main classes of recommendation, each of them
can use model-based methods or memory-based methods according
to the recommendation process, as we will see later in this chapter.

In this chapter we provide a brief explanation about the com-
mon types of recommender systems, the famous algorithms used for
recommender systems, the drawbacks of recommender systems, and
finally we present some methods for evaluating the accuracy and
efficiency of recommender systems.

Figure 3.1: Recommender Systems Types

3.2 Content-Based Recommender Systems

Content-based recommendation has its origins from information fil-
tering and information retrieval [5].

Content-based recommender systems are content oriented, which
means the content of users’ interests and the content of the features
of items play an essential role in the recommendation process. Actu-
ally, the recommender system compares the content of user interests
with the content of item features, using one of the well known meth-
ods such as Bayesian networks [24, 135], Neural networks [153, 151],
Decision trees [100] and TF-IDF [25]. However, Bayesian networks,
Neural networks and Decision trees are classified as model-based
methods, while TF-IDF is classified as memory-based methods, as
described in Table 3.1.
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Table 3.1: Content-based recommender systems
CB Method Used technique Example

Model-based
Bayesian Classifier NewsDude [24],

Libra[135]
Decision trees InfoFinder [100]
Neural Networks Syskill & webert [153,

151]

Memory-based
TF-IDF DailyLearner [25]
Semantic relevancy QuickStep [126]

Content-based recommender systems impose a very important is-
sue related to the representation of the content of user interests and
the content of item features. For that, we need to have a structured
form of users’ interests and a structured form of items’ features.
The structured form of users and items is very important in the
recommendation process, because it facilitates finding the relevancy
between items and users in the system. In the literature, the struc-
tured form of user’s interests and item’s interests is represented via
user profile and item profile [115].

Generally, content-based recommender systems have two inputs
first a target user, defined by a certain profile containing the user’s
preferences and second a group of items defined by certain profiles
defining their features. The output of content-based recommender
systems is a recommendation list containing the most relevant items
to the target user (based of the contents of user profile and item pro-
file). For that, the system compares item profile with user profile
using one of the well known model-based or memory-based algo-
rithms.

In this section we introduce the content-based recommender sys-
tem, then we describe some of the well known content-based recom-
mendation algorithms and finally we mention some of the limitations
related to content-based recommender systems.

3.2.1 Background

Content-based recommender systems, recommend an item i to a tar-
get user u, if the content of i is similar to the content of other items
that have been liked by u.
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In such systems, user profile becomes important because it con-
tains the contents of all the user’s preferred items.

In content based recommender systems, the utility function de-
termines the importance of an item i to a user u. So, the utility
function f(u, i) of an item i for a user u is estimated based on the
utilities f(u, in) assigned by the user u to items in ∈ I that are
similar to item i. Thus, content-based recommenders suggest items
similar to the ones the user has liked in the past. Where, the simi-
larity between items depends on the content of these items.

Example, in a “book” content-based recommender system, the
recommender system determines the books that are highly rated by
the user u, then it characterizes the user’s preferences by analyzing
the content of the user’s highly rated books e.g. title, author, edi-
tor, year, keywords, etc. Then it explores the common preferences
between the book, and the user’s preferred items (books). If the
book has a high similarity to user’s preferences then this book will
be recommended to the user u.

In general, content-based recommender systems depend on three
main substances as follows:

• User-profile: which contains the users’ preferences, such as:
items the users rated and liked in the past. Also, user-profile
can contain extra information about users such as: name, age,
city, friends, etc.

• Item-profile: which contains all the features and the character-
istics describing the item.

• User-item utility function: which is used to find the relevancy
between user-profile and item-profile. If the relevancy is high,
then the item can be recommended to the user.

Definition 13. Let uc(uc1 , uc2 , . . . , ucn) be the profile of the user u
where ∀x ∈ [1, n] : ucx is the content of the preferred items of u,
and let ic(ic1 , ic2 , . . . , icm) be the contents of the item i where ∀y ∈
[1,m] : icy is the content of i. The utility function f(u, i) between
the user u, and the item i is described as:

f(u, i) = score(uc, ic)
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Both of user-profile and item-profile should have a well defined struc-
ture, constructed in the same way, in order to be processed easily
by the user-item utility function (relevancy measure). For instance,
if user-profile and item-profile have a textual description, then user-
item relevancy measure will require a very complex process. On
the other hand, if user-profile and item-profile have a keyword pro-
file then the user-item relevancy will become a very easy process,
achieved by one of the well known similarity measures, such as co-
sine similarity.

Figure 3.2 is an example of a very simple Content-based recom-
mender system. According to this example, the recommender sys-
tem is composed of three main components: user profile, item profile
and the recommender system (user-item utility function). User pro-
file contains all the important information about user’s interests in
forms of groups of terms, and this is the same for item profile. The
recommender system compares the terms of user profile with the
terms of the items in the system, to finally decide which item is the
most appropriate for the user. In this example, the recommender
system compares all the terms of user profile with all the terms of
item profile of all the items in the system, by applying the intersec-
tion between all the terms of user profile with all the terms of all
the item profiles. If the intersection value is high then the item will
be added to the recommendation list; and the score function of this
example is described as follows:

f(u, i) = uprofile ∩ iprofile

3.2.1.1 User profile

In content based recommender systems user profiles and item pro-
file are very important, because they are used to hold information
related to the characteristics of items and preferences of users.

However, item characteristics and user preferences are a very fun-
damental aspects in content based recommender systems. Further-
more, the accuracy of recommendation is highly related to the infor-
mation stacked in user profile and item profile, and also it is related
to the type of this information. The following paragraph describes
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Figure 3.2: Content-Based Recommender System example

user profile and its representation methods. However user profile
description and methods could also be applied for item profile.

User-profile In Content-based recommender systems, the content
of user’s preferences is a very important subject, because it plays an
important role in the recommendation process.

Indeed, user-profile describes in details all the possible informa-
tion that are related to the user, such as name, age, job, preferences,
etc. However, this information could be presented in several forms.

According to the literature, user-profile has several types of rep-
resentation [64] as follows: a bag of words; a vector of weighted
keywords, using weighted or non-weighted vectors of keywords; se-
mantic network profiles, using ontology; and conceptual profiles,
using taxonomy (as special case of semantic networks) [115]. Table
3.2 summarizes the different types of user profile.

Keyword user-profile Keyword based profiles are represented via
vectors of one or more dimensions; where, each user is associated
with a vector of weighted terms. Formally, a user u : u ∈ U , where
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Table 3.2: User Profile
User Profile Definition Example

Keyword user profile Vectors of n dimensions of
weighted or non-weighted key-
words

NewsTailor [178] &
YourNews [7]

Semantic user profile Weighted semantic network us-
ing Ontology

QuickStep [126],
News@hand [42]

Conceptual user profile Abstract topics of user interests,
using Taxonomy

SEWeP [57]

U is the set of all the users in the system, is represented as follows:
u = [wt1 , wt2 , . . . , wtn ], where wt1 is the weight of the term t1 ∈ T ,
and T is the set of all the terms in the system. Furthermore, in the
case of non-weighted terms u is represented as u = [t1, t2, . . . , tn],
where t1, . . . , tn ∈ T , T is the set of all the terms in the system.
In the literature several recommender systems use keyword profiles
in order to describe users and items such as: Letizia [110] and Per-
sonal Web Watcher [132] which are used for web recommendation.
News Tailor [178], YourNews [7] and NewsDude [24] which are pro-
posed for news recommendation. Libra for book recommendation
[135]. Citeseer for scientific articles recommendation [28]. Intimate
for movie recommendation [120]. Last.fm 1, Pandora 2 and FOAF-
ing the music [46, 45] for music recommendation.

Semantic network user profile Profiles are represented by weighted
semantic network or ontology, in which each vertex represents a spe-
cific concept and each edge represents relations between concepts.
In such profiles, concepts are very specific and they use external
knowledge bases, e.g. domain ontology, as references. Actually,
using semantic networks to represent user profile increases the ac-
curacy of the recommendation because it helps in interpreting and
analyzing the content of these profiles, taking in advantage the rea-
soning characteristics associated with the ontology.

In the literature, several models have used semantic user profiles.
SiteIF [119] is a sense-based recommender system for web news rec-
ommendation. In this system, users’ interests have been described
based on the synonyms of the word. However, word synonyms are in-

1http://www.last.fm
2http://www.pandora.com
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herited from MultiWordNet, which considered as reference ontology,
and user profile is represented as a semantic network, in which ver-
tices represent the synonyms and edges represent the co-occurrences
of these synonyms in the user’s document of interests. QuickStep
[126] is proposed to recommend research papers. Profiles are ex-
tracted from web browsing history and user’s feedbacks, and they are
represented as topic ontology. Moreover, research papers are classi-
fied using ontological classes and a topic ontology extracted from the
current topics of interests of similar people who have seen this paper.
Recommendation is achieved by finding the relevancy between user
interest profiles and classified paper topics. Informed recommender
[3] uses ontology to interpret users’ opinions. News@hand [42] is
another recommender system, for news recommendation, in which
users and items are represented using ontological profile, and profile
concepts are referenced to a group of domain ontologies. In [26] On-
tology Web Language OWL is used as a formalism to represent user
profile for an Interactive Digital TV programs recommender system.

Conceptual user profile Concept-based profiles could be consid-
ered a special case of semantic network profiles, in which the nodes
represent abstract topics describing user preferences, rather than
specific words (in the case of semantic profiles) or sets of related
words (in the case of keyword profile). In such profiles, taxonomies
are remarkably used. SEWeP (Semantic Enhancement for Web Per-
sonalization) [57] is a web personalization system, it uses a domain
specific taxonomy in order to semantically annotate the Web pages.

3.2.2 Content-based Recommender Systems: Methods and
Algorithms

Content-based recommendation algorithms are grouped into two
main groups Model-based and Memory-based. In model-based meth-
ods the algorithms adapt a model and learn it in order to achieve the
recommendations [15, 151, 159]; while in memory-based or heuristic-
based methods recommendations are made by analyzing the entire
collection of data [135].
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3.2.2.1 Model-Based

In model-based systems, the recommendation is achieved using a
model learned from the data based on statistical learning and ma-
chine learning techniques as: bayesian classifier [159], clustering,
decision trees and neural networks [151]. Here we choose to give
some details about the most used method, in literature, the Näıve
Bayesian.

Näıve Bayesian Näıve Bayesian is a probabilistic inductive learning
approach. It generates a probabilistic model based on previous data,
and it estimates the probability that a document d belongs to a class
c.
In these models, items are represented via a group of terms instead
of a vector of terms. And user profile is learned using probability
based on what the user has previously liked. The probability P (c | i)
is computed using the Bayes theorem as follows 3.2:

P (c | i) = P (c)

P (i)
× P (i | c) (3.1)

where P (c) is the probability of the class c, P (i) is the probability
of that item i occurring and P (i | c) is the probability that item i
appears in the class c. To recommend an item i, the system needs
to calculate P (c | i) for each of the class in C, and find the largest
probability. As each of these calculations involves unknown but
fixed probability P (i), it can be ignored, which simplifies the model
to:

P (c | i) = P (c)× P (i | c) (3.2)

Under the assumption that each term appears independently from
each others, the probability P (i | c) can be decomposed as follows:

P (i | c) =
�content(i)∏

l=1

P (tl,i | c) = P (t1,i | c)× P (t2,i | c)×

· · · × P (tn,i | c)
(3.3)

where each term is supposed to be independent for the others,
P (tl,i | c) is the probability of having the lth term when we have
the class c and it indicates to the number of times the lth term ap-
pears in the class c divided by the total number of terms in c. P(c)
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is defined as the total number of terms in class c divided by the total
number of terms in set of classes C.
The item is recommended by computing all the conditional proba-
bilities P (c | i) for each class c and item i ∈ I. As shown in Equation
3.4:

P (c\i) = P (c)×
�content(i)∏

l=1

P (tl,i | c) = P (c)× P (t1,i | c)

×P (t2,i | c)× · · · × P (tn,i | c)
(3.4)

Bayesian classifiers give high classification accuracy but they have
limitations concerning that terms are independent from each others
and it takes a lot of data training in order to estimate the various
probabilities.

3.2.2.2 Memory-Based

Memory-based algorithms are used in content based recommender
system. These algorithms continuously analyze users and items
data, in order to achieve the recommendation. Term Frequency
and Inverse Document Frequency TF-IDF is one of the most used
methods in this context.

Term Frequency and Inverse Document Frequency (TF-IDF) TF-
IDF is one of the most popular measures used for weighting keywords
in information retrieval [13]. TF-IDF measures the relevancy of a
term keyword to a document, with the respect to the fact that terms
that occur frequently in one document but rarely in the other ones
are more likely to be relevant to that document.
Term frequency TF counts how many times the term ti occurs in
the document dj. So according to TF, the relevancy of the term ti
to the document dj is determined by how many times it appears in
the document, and the higher TF of ti means the more relevancy to
dj. The term frequency is given by Formula 3.5:

TF (ti, dj) =
f(ti, dj)

maxf(dj)
(3.5)

where maxf(dj) is the maximum frequency of all the terms that
appear in the document dj.



3.2. CONTENT-BASED RECOMMENDER SYSTEMS 69

Inverse document frequency IDF is obtained by calculating the
ratio between the total number of documents in the system, and the
number of documents containing this term. IDF means that terms
with high IDF are rarely to appear in the system’s documents, and
it is described by Formula 3.6

IDF (ti) = log
N

nti

(3.6)

where N is the number of documents in the system, and nti is the
number of documents containing ti.

Based on Formula 3.5 and 3.6, the TF-IDF weight for term ti in
document dj is defined by Formula 3.7:

wti,dj = TF (ti, dj)× IDF (ti) (3.7)

In content based recommendation the contents of user profile and
the contents of items are presented as TF-IDF vectors, and the
utility function f(u, i) can be computed using some scoring functions
between the user’s terms vector wu and the item’s terms vector wi,
such as cosine similarity measure [170] as shown in Formula 3.8:

f(u, i) = cos(wu, wi) =

∑m
k=1 wk,uwk,i√∑m

k=1 w
2
k,u

√∑k
i=1 w

2
k,i

(3.8)

where m is the number of total keywords in the system, wk,u is the
weight of the keyword k given by the user u and wk,i is the weight
of the keyword k given by the user i.

3.2.3 Limitations of Content-Based Recommender Systems

Content-based recommender systems have some limitations. These
limitations have been mentioned and well defined in the literature
[5, 115], and we present them bellow:

3.2.3.1 Overspecialization

Overspecialization problem also named serendipity problem occurs
because content-based recommender systems are employed to find
expected recommendations based on predefined user’s preferences.
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So, the ability to receive recommendation of new items with new
features, out of user profile, is very limited. For example, a user
who has rated books only about science fiction will receive recom-
mendations considering this type of books ignoring all the other
possibilities. However, a content-based recommender system would
rarely find new and useful recommendations, and as a consequence
there will be no chance to receive unexpected recommendations.

3.2.3.2 Limited Content Analysis

Content-based recommender systems have a natural limit in the
number and type of features that are associated, whether automati-
cally or manually, with the objects they recommend. Domain knowl-
edge is often needed, e.g. for movie recommendations the system
needs to know the actors and directors, and sometimes, domain
ontologies are also needed. No content-based recommendation sys-
tem can provide suitable suggestions if the analyzed content does
not contain enough information to distinguish items the user likes
from items the user does not like. Some representations capture
only certain aspects of the content, but there are many others that
would influence a user’s experience. For instance, often there is not
enough information in the word frequency to model the user in-
terests in jokes or poems, while techniques for affective computing
would be most appropriate. Again, for Web pages, feature extrac-
tion techniques from text completely ignore aesthetic qualities and
additional multimedia information. To sum up, both automatic and
manual assignment of features to items could not be sufficient to de-
fine distinguishing aspects of items that turn out to be necessary for
the elicitation of user interests.

3.2.3.3 Cold Start: New User Problem

Content-based recommender system recommends items only if the
items have a high degree of similarity between the user’s preferences.
Furthermore, if the user is new to the system and has no preferences
history, the recommender system will be unable to recommend items
to this user until this user rates a sufficient number of items to
determine the user’s preferences.
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3.3 Collaborative Filtering Recommender Sys-
tems

Collaborative filtering is one of the most popular approaches used
for recommendation. The early beginnings of collaborative filtering
recommender systems were introduced in 1994 by GroupLens, when
they proposed a NewsNet system for news recommendation [1, 96].
In such systems the only information related to users and items are
their ratings. Furthermore, users rated items are correlated to other
similar users called neighbors, and the recommender system explores
the correlation between similar users and items in order to achieve
the recommendation. Collaborative-Filtering recommender systems
are also named Social Filtering recommender systems [54].

Collaborative-filtering recommender system is used to predict the
utility of items for a particular user based on the items previously
rated by other users.

The formal definition of the utility function of a collaborative-
filtering recommender system is given as follows [5]:

Definition 14. Let U be a set of m users U = {u1, u2, . . . , um}
and I be a set of n items I = {i1, i2, . . . , in}. The utility function
f(u, i) of item i for user u is estimated based on the utility functions
f(uj, i) assigned to item i by those users uj ∈ U who are similar to
the user u, like minded users.

In Collaborative-Filtering, users explicitly rate items according
to their preferences, then these rates are stored in a user-item ma-
trix R. This matrix contains all the users’s profiles, where rows
represent the users U = {u1, u2, . . . , um} and columns represent the
set of items I = {i1, i2, . . . , in} and Ru,i is the rating assigned to
item i by the user u. So, the key idea is that the rating of u for a
new item i is likely to be similar to that of another user u′, if u and
u′ have rated other items in a similar way.

Algorithms for collaborative-filtering recommender systems have
been classified into two main categories: Model-based and Memory-
based. As shown in Figure 3.3.

In this section, we will give an overview about model-based meth-
ods and memory-based methods, and the algorithms and techniques
that are used by these methods.
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But, the focus of this thesis is on the memory-based collaborative-
filtering using graph techniques.

Figure 3.3: Collaborative Filtering Methods and Algorithms

3.3.1 Model-based collaborative-filtering

Model-based collaborative filtering learns the interactions between
items and users, in the system, in order to extract a predictive model
that is used to predict the unknown users’s rantings.

Thus, the main concept of model-based algorithms is to deter-
mine an off-line model of the data, in order to rapidly obtain an
on-line predicted ratings [40].
Moreover, from a probabilistic point of view, model-based collab-
orative filtering could be considered as the expected rating of the
user u on the item i, as described by Formula 3.9:

E(ru,i) =
m∑
k=0

Pr(ru,i = k/ru,i′ , i
′ ∈ Iu)k (3.9)

where Iu is the set of the items that have been previously rated by
the user u, k ∈ [0,m] is an integer representing the rating value, and
the interval [0,m] denotes the rating range in the system.

In this context, two methods have been proposed in order to es-
timate users’ ratings, the clustering methods and bayesian network
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methods [34]. In clustering methods, users are grouped in classes
according to their preferences; while in bayesian networks meth-
ods items are represented as nodes in the bayesian network and the
states of each node correspond to the possible rating values.

Furthermore, other machine learning approaches have been pro-
posed for model-based collaborative-filtering such as, association
rules [133, 112, 52], and artificial neural networks. In fact, associa-
tion rules have some limitation related to performance issues, while
artificial neural networks have limitations related to the complexity
of learning time to finally reach the convergence [23].

Besides to machine learning methods other methods have been
proposed, such as: singular value decomposition (SVD) for matrix
factorization [97, 17, 185], latent semantic analysis [82], maximum
Entropy [201], Boltzmann machines [169] and Support Vector Ma-
chines [71].

3.3.2 Memory-based collaborative-filtering

Memory-based algorithms, which are also named neighborhood-based,
are heuristics that make rating predictions based on the entire col-
lection of previously rated items by the users [5]. In such algorithms,
aggregation functions are commonly used in order to predict the un-
known users ratings. So, the prediction of the unknown rating ru,i
for a user u on the item i is usually computed as the aggregation of
the ratings of other users for the same item i as follows 3.10:

ru,i = aggru′∈U(ru′,i) (3.10)

The aggregation function given by 3.10 could be an average rating or
weighted sum function. Furthermore, aggregation function could be
replaced by a normalized user-user similarity sim(u, u′) in the user-
based collaborative filtering, or could be replaced by a normalized
item-item similarity sim(i, i′) in item-based collaborative filtering
(as we will see later).

Memory-based collaborative-filtering has two principal types user-
based and item-based. Moreover, Memory-based algorithms can be
grouped into two main categories: K-nearest neighbors algorithms
and graph-based algorithms. Here, we will discuss memory-based
types and algorithms.
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3.3.2.1 Memory-based collaborative-filtering types

Memory-based collaborative-filtering has two types user-based and
item-based.

User-based collaborative filtering computes the missing rating ru,i,
of an item i for a target user u, based on the opinions of the other
like-minded users (users having similar tastes with u). Like-minded
users are also called nearest-neighbors.

User-based collaborative-filtering compares users preferences and
considers that a user who has liked and rated an item i, will like and
rate the item i′, if other users who have liked and rated the item i
also have liked and rated the item i′.

For a target user u, user-based collaborative filtering algorithms,
achieves the following tasks:

• At first, the algorithm constructs the user-item rating matrix
R.

• Then, the algorithm finds the like-minded users (or the nearest
neighbors), based on the previous ratings of the target user u.

• Finally, the algorithm computes the value of the predicted rat-
ing.

The predicted rating r(u, i) for a target user u on the item i, depends
on the similarity between the previous rating values of this user
u, and the previous rating values of her/his nearest-neighbors as
described by Formula 3.11:

r(u, i) = c
∑

u′∈Nk(u,i)

sim(u, u′)× r(u′, i) (3.11)

where c is a normalization factor, Nk(u, i) is the k nearest-neighborhood
of u, sim(u, u′) is the similarity between the target user u and
u′ ∈ Nk and r(u′, i) is the rating of the user u′ on the item i.
And also the predicted rating r(u, i) for a target user u on the item
i could be described by Formula 3.12

r(u, i) = r̄u + c
∑

u′∈Nk(u,i)

sim(u, u′)× (r(u′, i)− r̄u′) (3.12)
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Table 3.3: User-Based Collaborative Filtering Example
i1 i2 i3 i4 i5

u1 1 1 0 0
u2 1 1 0 1 1
u3 1 1 ? 1 1
u4 0 0 1 0
u5 0 1 1 0

where r̄u and r̄u′ are the average ratings of the both users u and u′.

In the literature, several user-based recommender systems have
been proposed such as: Usenet recommender system [1, 96] proposed
by GroupLens for news recommendation, MovieLens recommender
systems [128]3 for movie recommendation and Ringo recommender
system [189] for music recommendation.

Example 6. Table 3.3 represents user-item rating matrix R. Ratings
have two values: 1 if the user likes the movie and 0 if the user does
not like the movie. From this table we can find that: u2 and u3

seem to be like-minded users (because they rate same movies with
same values). So, in order to predict the missing rating of the user
u3 on the item i3: r(u3, i3) we should look to the rating of users
who have similar tastes to u3: which is u2 in our example. As a
consequence, if the user u2 does not like the item i3, then the user
u3 will not like the item i3. Thus, the predicted rating of user u3:
r(u3, i3) = r(u2, i3) = 0.

Item-based collaborative filtering explores the similarity between
items instead of exploring the similarity between users. In general,
item-based collaborative filtering deals with the target user’s u pre-
ferred items. An item-based collaborative filtering system suggests
that a user u who likes item i should be recommended by item i′ if
the item i′ is found to be similar to item i regarding to the list of
user’s u preferred items. So the key idea of item based collaborative
filtering is to find items similar to other items that the user has liked
in the past.

Figure 3.4 is an example of Amazon.com item-based collaborative
filtering, which it recommends items that are similar to the item i

3http://movielens.umn.edu/
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with the respect to the opinions of other users.
For an item i, item-based collaborative-filtering algorithms, the

recommendation is achieved as follows:

• At first, the algorithm constructs the user-item rating matrix
R.

• Then, the algorithm finds items that are similar to i, according
to the users ratings.

• Finally, the algorithm computes the value of the predicted rat-
ing r(u, i).

The predicted rating r(u, i) according to item-based by Formula
3.13:

Figure 3.4: Item-Based recommendation

r(u, i) = c
∑
j∈Iu

sim(i, j)× r(u, j) (3.13)

where c is a normalization factor, Iu is the set of items rated by the
user u, sim(i, j) is the similarity between item i and item j rated
by the user u and r(u, j) is the rating of user u and the item j ∈ Iu.

In the literature, item-based collaborative filtering algorithms are
widely used as Ringo the music recommender system [189], Ama-
zon item-based recommender system [114] and Google news recom-
mender system [51].

Moreover, in [172] item-based collaborative filtering has shown
better performance than user-based collaborative filtering.

Example 7. Table 3.4 represents user-item rating matrix R. Ratings
have two values: 1 if the user likes the movie and 0 if the user does
not like the movie. From this table we can notice that: users who
liked i2 also liked i4, and some of people who liked i1 also liked i3.
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Table 3.4: Item-Based Collaborative Filtering Example
i1 i2 i3 i4 i5

u1 1 ? 1 0
u2 1 1 0 1 1
u3 0 1 1 1
u4 1 0 1 0
u5 0 1 0 1

So in order to predict a rating value for user u1 on item i2, the item-
based collaborative filtering will look for the items having similar
rates as i2, which is i4 in our example, and the predicted rating
value of u1 on i2 will be similar to the rating of u1 on item i4.

Comparasion between User-based and Item-based Here we discuss
the effects of using user-based and item-based collaborative filtering
on the system from three points of view [54]: accuracy, efficiency
and stability, as follows:

• Accuracy: user-based collaborative filtering systems are user
oriented systems, that means the recommendation algorithm
depends on the user’s neighborhood. On the other hand, item-
based collaborative filtering algorithms are item oriented sys-
tems, that means recommendation algorithm depends on the
item’s neighborhood. Moreover, the number of users in the
majority of recommender systems is greater than the number
of items. So, in collaborative filtering system, in the case of
user-based collaborative filtering having large number of users,
each user can have a large number of neighbors, that could
negatively affect the recommendation accuracy; while in the
case of item-based collaborative filtering having small number
of items each item can have a small number of neighborhood,
this case could positively affect the recommendation accuracy
[189, 172].

• Efficiency: of recommender systems is related to the number
of users and items in the system. In the case of user-based col-
laborative filtering the larger number of users means the more
memory and time to calculate sim(u, u′); and in the case of
item-based collaborative filtering, the smaller number of items
means the less memory and time to calculate sim(i, i′).
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• Stability: in the majority of collaborative filtering systems sim-
ilarity relations between users may change over the time, as a
result users similarity weights must be updated frequently over
the time. While relations between items are static and they are
very rare to be changed over the time, in this case the frequency
of updating the items similarity is very low.

Item-based methods are simple to compute and easy to be justified;
but they have a drawback related to the fact that item-based rec-
ommender systems recommend similar items, so there is no variety
in the recommendation e.g. a user who previously rated jazz music
will be constantly recommended by jazz music, ignoring the other
types of music.
Moreover, some systems combine item-based collaborative filter-
ing with user-based collaborative filtering in one model. In such
systems, the prediction is achieved by exploring the similarity be-
tween users and the similarity between items in the same time; ac-
tually these systems showed better performance than using only
item-based collaborative-filtering or only user-based collaborative-
filtering [190].

3.3.2.2 Memory-based collaborative-filtering methods

In this thesis, we propose to classify memory-based algorithms into
two main categories: K-nearest neighbors algorithms and graph-
based algorithms.

K-Nearest Neighbor Methods In K-Nearest Neighbor algorithms
recommendations, similarity between users or items is achieved us-
ing some of the well known similarity measures, such as: cosine
similarity, Pearson correlation, Spearman correlation, as follows:

Cosine Similarity this measure maintains the similarity between
two users by computing the cosine of the angle formed by their
corresponding rating vectors [34, 53]. User’s rating vector contains
the users’ ratings, and cosine similarity is denoted by Formula 3.14.

Cosine(ui, uj) =
rui,k

.ruj,k

‖rui,k
‖ × ‖ruj,k

‖ =

∑n
k=1 rui,k

.ruj,k√∑n
k=1 r

2
ui,k

.
∑n

k=1 r
2
uj,k

(3.14)
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where rui,k
is the rating of user ui on the item ik, ruj,k

is the rating
of user uj on the same item ik and n is the number of items in the
system.

Adjusted Cosine Correlation Cosine similarity is not capable to
detect the differences in rating scales between users [172]. For that,
adjusted cosine Correlation is proposed. In fact, adjusted cosine
correlation is used to measure the similarity between two items in
an item-based collaborative filtering by taking into consideration the
user average ratings from each pair of items [172, 183]. Adjusted
cosine similarity between two items x and y is denoted by Formula
3.15:

AC(x, y) =

∑
u∈U(ru,x − r̄u).(ru,y − r̄u)√∑

u∈U(ru,x − r̄u)2.
∑

u∈U (ru,y − r̄u)2
(3.15)

ru,x, ru,y are the rating values of the user u on the items x, y and r̄u
is the average of the user u ratings.

Pearson Correlation Coefficient computes the similarity between
two users u and v using Pearson correlation coefficient [1, 177, 80,
189], where ru,i is the rating of the user u on the item i, and r̄u is
the average of all the ratings of the user u. Pearson correlation is
given by Equation 3.16:

Pearson(u, v) =

∑
i∈I(ru,i − r̄u).(rv,i − r̄v)√∑

i∈I(ru,i − r̄u)2.
∑

i∈I (rv,i − r̄v)2
(3.16)

Equation 3.16 is used for user-user collaborative filtering. Further-
more, Pearson correlation coefficient for item-item collaborative fil-
tering is given by Equation 3.17, where i, j are the items, ru,i is the
rating of user u on item i and r̄i is the average rating of the ith item
by those users [183, 172].

Pearson(i, j) =

∑
u∈U(ru,i − r̄i).(ru,j − r̄j)√∑

u∈U(ru,i − r̄i)2.
∑

u∈U (ru,j − r̄j)2
(3.17)

Constrained Pearson correlation is proposed as a variant of Pear-
son correlation [189, 79]. This correlation can have positive and neg-
ative values, because its computation is based on a fixed midpoint
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on the system’s rating scale R. So, the recommender system selects
neighbors whose correlation is greater than a predefined threshold
with the respect to the fixed rating value R [177]. See Equation
3.18:

CPearson(u, v) =

∑
i∈I(ru,i −R).(rv,i −R)√∑

i∈I(ru,i −R)2.
∑

i∈I (ru,j −R)2
(3.18)

where ru,i and rv,i are the ratings of the users u, v on the item i.

Spearman Correlation Coefficient Spearman rank correlation co-
efficient is similar to Pearson, but it computes the correlation be-
tween ratings’ ranks instead of the correlation between ratings [79].
So, users’ ratings are converted into ranks and Pearson correlation is
applied on ranks instead of ratings. Spearman correlation between
two users u and v is given bye Equation 3.19:

Spearman(u, v) =

∑
i∈I(ku,i − k̄u).(kv,i − k̄v)√∑

i∈I(ku,i − k̄u)2.
∑

i∈I (kv,i − k̄v)2
(3.19)

where ku,i is the ranking of the rating of user u on item i, and k̄u is
the average ranking of user u ratings.

Jaccard Similarity Coefficeint between two users ui and uj equals
to the number of items rated in common between ui and uj, divided
by the number of ui rated items plus to the number of uj rated items
[11]. Jaccard similarity coefficient is given by Equation 3.20 where
Iui

is the set of the user ui rated items and Iuj
is the set of the user

uj rated items.

Jaccard(ui, uj) =
‖Iui

∩ Iuj
‖

‖Iui
∪ Iuj

‖ (3.20)

Jaccard similarity coefficient is a simple measure, it deals with the
number of rated items, discarding the information related to their
rating values. That may reduce the accuracy of the recommender
system.

Graph-Based Methods Graph theory methods could be used for
computing the nearest neighbors for a given user in the collaborative
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filtering system [5, 54]. These methods showed a great capability of
solving the sparsity problem in collaborative filtering recommender
systems [84].

In classical collaborative-filtering systems, where no graph rep-
resentation is used, the path between two users u1, u2 sharing the
same item i1, is described as the sequence: u1 → i1 → u2 and it has
a path length equals to 3. All the paths in classical collaborative fil-
tering systems have the same structure and the same length. While,
in graph-based collaborative filtering: user-item path sequence and
path length are not limited and they depend on graph structure,
e.g. u1 → i1 → u5 → i4 → u1. Furthermore, transitive relations
could be widely exploited in recommender system using graph-based
representation. Such kind of representations using bipartite graphs
invoke the transitive association between users which has the im-
portant role in the recommendation process.

Figure 3.5 is an example of graph representation of the rating
matrix defined by Table 3.3 and Table 3.4. The graph is a bipartite
graph in which red vertices represent items and blue vertices repre-
sent users, although an item-user edge is created if the user rated
the item.

Table 3.5 synthesizes the different methods used in graph-based
collaborative filtering algorithms. These algorithms are explained
as follows:

Figure 3.5: Bipartite graph extracted from item-user rating matrix

Shortest-Path based methods in [6] authors propose a graph-
based algorithm called IRA (the Intelligent Recommendation Algo-
rithm). This algorithm works on directed graphs, where vertices
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Table 3.5: Graph-Based Collaborative Filtering
Graph Method Definition Example

Shortest path

IRA System [6]
User directed graphs

Horting & Predictability edges
Shortest-path algorithm

Jumping connection [131]

User-Item bipartite graph
User graph using jumping function
Recommender graph equals to:
User-item graph ∪ user graph

Shortest path on recommender graph

Two-layers graph RS [85]

Graph of two layers
Item-Item layer & User-User layer
If the user have purchased the item:
Item-user connection between layers
Exploring the path between layers

Paths number [84] User-Item bipartite graph
Transitive association between users

based on graph structure & paths length

Random Walk
CT, PCA CT & PI of LM [60]

User-item bipartite graph
Random walk algorithm

TrustWalker [87]
User-based trust network
Random walk is applied

PageRank

ItemRank [68]
User-user graph

Recommends top ranked items
Using PageRank

PathRank [104]
Graphs are heterogeneous
PageRank is applied on

Edges and vertices from different types

represent users and edges represent two types of user-user relation
called Horting and Predictability.
Horting is a non symmetric and non transitive relation between two
users ui and uj, in which ui is said to hort uj if they have rated
items in common: ui horts uj if (Iui

∩ Iuj
)/Iui

≥ α where Iui
and

Iuj
are the sets of ui and uj rated items and α is a predetermined

threshold.
On the other hand, Predictability is defined as another relation be-
tween ui and uj in which the value of common ratings is considered.
Thus, uj is said to predict ui: if ui horts uj and there exists a linear
transformation F : S → S, which maps uj ratings to ui, as given by
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Equation 3.21:

1

|Iui
∩ Iuj

|
∑

x∈Iui∩Iuj
|ruix

− f(rujx
)| ≤ β (3.21)

where β is a predefined threshold.
After applying the recommendation query for a given user ui: users
who apply the horting and predictability commonality constraints
join the set P , and a shortest path in the directed graph from any
user u ∈ P to a user who have rated the item ix is computed, if the
shortest path is found then the prediction is computed considering
the path weight and if not the algorithm stops with failure.

In [131] Jumping connections recommender system: recommender
system dataset is modeled in a bipartite graph G = (V,E) where
V = {U ∪ I}, U is the set of users (people), I is the set of items
(movies), and the edges in E connect a user with an item if the user
rates this item.
After modeling the dataset in a bipartite graph, a Jump function is
used. The Jump function is given by: J : R → S, where R is the
recommender dataset and S ⊆ U × U is the output of the function
containing pairs of users (ui, uj). According to the Jump function:
pairs of users (ui, uj) ∈ U ×U are created if and only if ui can reach
uj via one single jump. In fact, the jump function is used to create
the social network graph.
The social network graph G(U,Es) is the users one-mode projection
graph extracted from the user-item bipartite graph. In this social
network vertices U represent users and edges are created accord-
ing to the Jump function: if the pair ui, uj ∈ S, then an edge e
will connect the vertices ui and uj in the social network graph. As
the Jump function ignores edges weights w authors proposed to use
Hammock jump instead of jump function where edges are weighted
by the number of common rated items between the pair of users.
The weight of hammock jump w equals to the number of common
items in common between users and it is called the Hammock width.
The recommender graph is constructed from the union between two
graphs : the bipartite graph G(V,E) and the social network graph
G(U,Es).
The recommendation algorithm explores the shortest paths in the
recommender graph, in order to achieve the recommendation. Fig-
ure 3.6 shows the user-item bipartite graph, the social network
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graph and the recommender graph. In [85] authors propose rec-

Figure 3.6: Jumping connections recommender system (a) bipartite graph, (b)
social network graph, (c) recommender graph [131].

ommender system that combines content-based and collaborative
filtering methods. According to that: users have feature vector
representing their demographic information, and items have fea-
ture vector containing attributes and textual information describing
them.
This algorithm is a graph-based recommendation algorithm in which
three types of correlations are presented, as follows: user-user cor-
relation, item-item correlation and user-item correlation, see Figure
3.7. Apparently, the recommendation graph is composed of two lay-
ers: users layer and items layer. In the users layer: each vertex
represents user and each edge represents the demographic similar-
ity between users. In items layer: each vertex represents item and
each edge represents the content similarity between items. More-
over, besides the inner-layer links, inter-layer links between vertices
from different layers are used to connect users in the users layer with
items in the items layer. In fact, user-item connection is created if
and only if the user has purchased the item.
According to this model, the recommendation process needs a graph
searching algorithm in order to explore the best paths between users
and items from the different layers. Thus, to achieve the recommen-
dation two algorithms have been proposed: the first one is a simple
graph search that uses only low-degree associations between users
and items. While, the second algorithm is a neural network ap-
proach using Hopfield algorithm to achieve spreading activation and
exploit higher degree associations between users and items. In [84]
the recommendation algorithm is applied on the user-item bipartite
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Figure 3.7: Two-layer graph model of books, customers and purchases [85].

graph G(V,E), V = {U ∪ I}, U is the set of vertices representing
the users in the recommender system, I is the set representing the
items in the recommender system, and E is the graph edges. Graph
edges connect a user u ∈ U with an item i ∈ I if and only if the
user u has bought the item i.
The algorithm recommends items to users by extracting the transi-
tive association between users based on: the structure of the user-
item bipartite graph, and the paths lengths connecting these users
and items.
After building the user-item bipartite graph, user-item transitive as-
sociation is computed. User-item transitive association a(ux, iy) is
defined as: the sum of all the weights of all the distinctive paths
connecting ux and iy. In this computation, only paths whose length
is less than or equal to a predefined maximum length M are consid-
ered.
Given the user-item interaction matrix A, a predefined path weight
parameter α and the maximum path length M : the transitive as-
sociations between users and items are given by the matrix AM

α as
defined in Equation 3.22

AM
α =

{
αA if M = 1
α2A.AT .AM−2

α if M = 3, 5, 7, . . .
(3.22)

As computing AM
α requires extensive computing resources, authors

proposed to use spreading activation algorithms [50] to efficiently
explore transitive associations between users and items in the sys-
tem. This approach works on sparse data but when data becomes
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denser, spreading activation algorithms show the over-activation ef-
fect. Actually, over-activation effect is the main drawback of this
approach and it appears when the user-item matrix becomes denser,
leading to a worse performance compared to user-based and item-
based collaborative filtering.

Random walk based methods these methods recommend items
to users based on the random walk in the graph.
In [60] authors propose three graph-based recommendation algo-
rithms, applied on a bipartite graph. These algorithms are: Aver-
age Commute Time (CT), Principal Component Analysis based on
Euclidean Commute Time Distance (PCA CT), Pseudo-inverse of
the Laplacian Matrix.
In Average Commute Time (CT) algorithm: distance between two
vertices ui and ij equals to the average number of steps that a ran-
dom walker takes starting from ui, passing through ij and ending
by going back to ui.
In Principal Component Analysis based on Euclidean Commute
Time Distance (PCA CT): the eigenvector decomposition of the
pseudo-inverse of the graph’s Laplacian matrix is used in order to
map vertices into a new Euclidean space that preserves the Eu-
clidean Commute Time Distance. Then distances between vertices,
in the reduced space, is computed to be used for items ranking.
In Pseudo-inverse of the Laplacian Matrix: is the matrix containing
the inner products of the vertices vectors in the Euclidean space. So,
it can be considered as a similarity measure between graph vertices.
The main drawback of these methods that they do not scale very
well in the case of large database.

Trust walker [87]: Authors propose another type of recommen-
dation graph: a trust network between users.
The trust network is defined as a graph G(U, T ) where U is the set
of users and T is the set of edges. An edge t ∈ T connects two users
u ∈ U and u′ ∈ U if they trust each others. Then the neighborhood
will be defined using the information related to the trust network
instead of the information related to the similar ratings between
users.
TrustWalker model is based on two leading ideas: the first idea con-
siders searching the trust network using random walk. While the
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second idea considers the probabilistic item selection, which is used
for computing the similarities between items. To recommend a rat-
ing for a source user u0 on target item i, we perform random walks
on the trust network, each starting at u0 to find a user having ex-
pressed rating for i or items similar to i. Accordingly, the random
walk starts from the source user u0, and at each step of the random
walk a node u is selected. For each node u:

• If u has already rated the item i, the random walk will stop
and the rating value ru,i will be returned.

• If not, we will face two different cases:

– Stay at the vertex u and randomly select one of the items
similar to i rated by u and return their rates ru,i.

– Continue the random walk, following one of the user u’s
trusted neighbors.

Based on the previous points, the algorithm achieves several random
walks and the final predicted rating is given by Equation 3.23 as
follows:

r̂u0,i =
∑

P (XYu0,i = (v, j))rv,j (3.23)

Where XYu0,i is the random variable for stopping the random walk
at vertex v and selecting item j rated by v, while starting the random
walk fro, the source user u0 looking for the item i.
In this algorithm there is a risk of entering a non-stop random walk,
for that authors proposed to terminate the random walk after going
farther than the maximum depth of the trust network.

PageRank [36] based methods ItemRank [68] is a personalized
PageRank scoring recommendation algorithm which recommends
top ranked items to the interested user. In this algorithm graph
vertices represent items and graph edges connect items if they have
rated users in common. In this algorithm, ItemRank equation is
similar to PageRank equation and it is denoted by Equation 3.24:

IRui
(t+ 1) = α.C.IRui

(t) + (1− α).dui
(3.24)

where:

• IRui
is the score vector for the user ui
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• IRui
(0) is the initial status of the algorithm and it follows the

uniform distribution: IRui
(0) = 1

|M | .1|M |

• M is the number of graph items

• c is the items correlation matrix

• dui
is the user ui preferences vector: duij

= ri,j (the rating

of user ui for the item j) if the user ui rates the item j and
duij

= ri,j = 0 in the other case.

The algorithm is updated iteratively until the convergence. Once
IRui

(∞) has been computed, the system recommends to ui item ij
for which IRui

is the highest.

PathRank: a Graph-based multi dimensional recommender sys-
tem [104] using personalized PageRank. Recommendation is achieved
on heterogeneous graphs which consist of different types of vertices
and edges. So the heterogeneous graph G is represented by a set of
weighted adjacent matrices A = {At1 , . . . , Atn} where each Ati ∈ A
represent the graph’s edges whose type is ti. Such type of graphs
could contain various paths depending on the types of graph ver-
tices and edges. Vertices could present users, items, places and
more. Edges could present relations such as: friend with, lives in,
likes and more. So a path is composed of a consequence of ver-
tices from different types connected by edges from several types.
e.g user u1 lives in city (Paris) friends with user u2 likes the movie
(Titanic). The main advantage of such representations is the abil-
ity to have several recommendations according to the selected path.
Thus, the recommendation query is given by: Q = {O,P,Dt} where
O is a set of entities e.g. O = {Toto ∈ users, Paris ∈ city}, DT is
the recommendation target e.g. movie, and P is the selected path
extracted from the adjacency matrix A e.g. pi with weight wi ex-
tracted from the adjacency matrix Ai ∈ A. Then a personalized
PageRank algorithm “PathRank” is used to achieve the recommen-
dation. Such types of recommender systems are used to achieve
several kinds of recommendation request depending on the type of
the selected path e.g. recommend a user who lives in Paris a proper
movie. In [105, 106] authors propose two algorithms using the per-
sonalized PageRank algorithm applied on the homogeneous graph
(graph with one type of edges) instead of heterogeneous graph.
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3.3.3 Collaborative Filtering: Limits

Collaborative filtering methods have some drawbacks [5], as follows:

3.3.3.1 Cold Start New User Problem

Collaborative filtering algorithms can predict users’ preferences only
by learning their precedent ratings. So, users with no rating history
(mainly new users) will not receive accurate recommendations until
they rate a proper number of items. To solve this problem two ap-
proaches have been proposed: the first one uses hybrid recommenda-
tion which combines content-based with collaborative filtering [38],
and the second one determines the best items for new users based
on item popularity, item entropy, user personalization [157, 195].

3.3.3.2 Cold Start New Item Problem (Latency)

Collaborative filtering systems depend on users’ ratings on items
to achieve the recommendation. Thus, if any item has no ratings,
which is the case of new item, the collaborative filtering will not be
able to recommend it. To address this problem hybrid recommender
systems are used [175].

3.3.3.3 Sparsity

Sparsity is a fundamental problem in collaborative filtering recom-
mender systems. Sparsity appears when the difference between the
number of rated items given by users is very small compared to the
number of items in the whole system. As consequence, user-item
matrix R becomes very sparse and empty, which could lead to have
some restrictions concerning the construction of the user neighbor-
hood.
E.g. Amazon has millions of items, the majority of users can rate or
purchase a very small number of items compared to the number of
the all items in Amazon, this fact leads to have a very small ratings
density and an almost empty user-item matrix.
To overcome sparsity problem, some authors proposed to add ad-
ditional information (content-based) to the collaborative filtering
(hybrid recommendation). In [149] authors used data mining tech-
niques to support the ratings-based profile with additional knowl-
edge about item similarity. Moreover, additional information such
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(age, job, education, demographic segment) could be added to the
user profile [152]. Moreover, singular value decomposition (SVD)
can also be used to reduce the dimensionality of user-item matrix
[170]. In [200] authors proposed to use taxonomy to estimate user
preferences.

3.3.3.4 Scalability

As the number of users and items in the system grows, the com-
plexity of the system increases. As consequence, the computation
of neighborhood becomes more complicated. Several methods have
been proposed to overcome the scalability problem such as clus-
tering algorithms [48, 44]. But as clustering algorithms defeat the
scalability effects in the system, on the other hand, they decrease
the recommendation accuracy.

3.3.3.5 Grey Sheep problem

Sometimes recommender systems contain users with particular tastes.
These users can have a very uncommon preferences compared to
others, so it is difficult for them to find similar users and relevant
neighborhoods. This problem is named Grey Sheep Problem: users
who fall on the border of two clusters of users. Generally, collab-
orative filtering works best for users who have usual preferences,
because having ordinary tastes helps users to integrate with many
neighbors of similar tastes.
Finally, to overcome this problem hybrid recommender systems are
used because they combine the contents of user profile (containing
user preferences) with the collaborative filtering.

3.3.3.6 Non Diversity Problem

Collaborative filtering systems mainly depend on the historical rat-
ings of users. This could lead to frequent recommendations of the
most popular items, avoiding the recommendation of diverse inter-
esting items. However, using hybrid recommender system can help
to overcome this problem.
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3.3.3.7 Privacy

Since the users’ ratings are located in an external server, the pri-
vacy of users could be threatened by a third party which has the
possibility to access the data and attack the user’s privacy. Some
authors propose to add random noise to user’s ratings in order to
overcome this problem [155].

3.4 Hybrid Recommender Systems

Hybrid recommender systems combine Content-based and Collab-
orative Filtering methods in one model, in order to bypass their
limitations. In [38, 39] hybrid recommender systems have been clas-
sified as shown in Table 3.6:

• Weighted Hybrid Recommenders: use models of both content-
based and collaborative filtering, in the same time, by applying
the recommendation query individually on each model. Then
scores are aggregated by combining the results of each model.
The results are usually merged by linear combinations or vote
consensus schemes. Weighted hybrid approach is very used in
the literature and it is very effective in the terms of accuracy
[18].

• Switched Hybrid Recommenders: these systems use some pre-
defined criteria in order to switch between recommendation sys-
tems. For example, in the DailyLearner system [25] two sys-
tems have been used, the first one uses k-nearest-neighbor algo-
rithm to model the user’s short-term interests, while the second
system uses a naive bayesian to learn user’s the long-term in-
terests. However, switched hybrid recommender systems show
some limitations, considering the system complexity, because
the switching criterions must be determined with an additional
level of parameterization and this can impose more complexity
to the recommendation.

• Mixed Hybrid Recommenders: These systems mix the results
given by the different recommendation techniques and present
them together. In [181] a content-based algorithm is used to
recommend TV shows to users, this algorithm is based on the
textual description of TV shows, and a collaborative filtering
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algorithm is used for recommendation based on users’ prefer-
ences. The final recommendation of this system combines the
results of the both algorithms.

• Feature combination: In this methods of hybridization, one
recommendation algorithm is applied as a main recommen-
dation algorithm, and another recommendation algorithm is
inserted, as an additional feature associated to the main algo-
rithm. Thus, a feature combination hybrid methods borrow the
recommendation logic from another recommendation algorithm
rather than implementing several algorithms together [39]. For
example: LIBRA recommender system [135] is a feature com-
bination hybrid, it is used to recommend books from Amazon
according to their content, such as: title and authors. And
according to the collaborative information about Amazon’s re-
lated users, which are treated as additional content about the
book.

• Feature augmentation: A first recommender system produces
ratings for each item in the system. Then, a second recom-
mender system uses the obtained information as inputs for its
recommendation process. So, in feature augmentation hybrid
the output of the first recommender system is considered as an
input to the second recommender algorithm. In [173] authors
proposed to integrate the content-based ratings into the col-
laborative filtering model using robots named filterbots, these
robots act as artificial users. Filterbots evaluate and rate new
documents, to finally use their ratings in the collaborative fil-
tering process besides to the real users ratings.

• Cascade: Cascade hybrid recommenders. These systems in-
volve a staged sequential process. A first recommender pro-
duces a coarse ranking of candidates. Next, a second recom-
mender starts from the previously filtered list as the set of
candidate items, and produces a refined set of final sugges-
tions. The benefit of these methods is that they avoid employ-
ing the second, lower- priority technique on items that are well
differentiated by the first technique, or are sufficiently poorly-
rated so that they will never be recommended. By doing this,
cascade recommenders achieve more computationally efficient
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Table 3.6: Hybrid Recommender Systems
Type Definition Example

Weighted CB and CF are combined to-
gether.

Netflix prize challenge
[18]

Switched Switching between different rec-
ommenders based on predefined
criterions.

DailyLearner news rec-
ommender [25]

Mixed Mixing the results given by ap-
plying different kinds of recom-
menders.

PTV to recommend
TV shows [181]

Feature Combination Adding the CF as extra features
to the CB algorithm.

LIBRA book recom-
mender [135]

Feature augmentation The output of the first system is
used as an input to the second
one

Filterbot for news rec-
ommendation [173]

Cascade Refining the recommendations
given by other systems

Entree restaurant rec-
ommender [38]

Meta-Level Generated model from the first
algorithm is used an input for the
second one.

Collaboration via con-
tent recommender [14]

recommendations than, for example, a weighted hybrid rec-
ommender that has to apply all its techniques to all items. In
addition, the cascade approach is by its nature tolerant to noise
in the low-priority technique, since recommendations given by
the high-priority recommender can only be refined.

• Meta-Level: These systems use two recommendation algorithms:
the first one is used to generate a model, and the second one
uses the previously generated model as an input. In [152] a
collaborative via content method works as follows: at the be-
ginning, the first recommender system generates users profiles,
these profiles are represented via vectors of users features. Then
the generated vectors are used as input to a collaborative fil-
tering algorithm.
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Table 3.7: Accuracy metrics used in recommender systems
Accuracy Metrics Definition Example

Predictive Evaluating the proximity be-
tween the predicted ratings and
the real ratings

MAE [177, 34, 80],
RMSE [20]

Classification Evaluating the frequency of hav-
ing accurate and inaccurate rat-
ings

Precision, Recall and
F-measure [23, 170,
171]

Rank Evaluating ranked lists of items NDPM [15]

3.5 Evaluating Recommender Systems: Accu-
racy Metrics

Evaluating recommender systems is one of the fundamental aspects
in the recommendation domain, because it determines the effective-
ness of the ratings predicted by the system. For that, several metrics
have been proposed. Accuracy metrics are one of the most popular
metrics, that are used to measure the proximity between the sys-
tem predicted ratings and the real ratings given by users. Accuracy
metrics are grouped into three main groups [81]: Predictive accuracy
metrics, Classification accuracy metrics and Rank accuracy metrics.
Table 3.7 shows the differences between these three metrics.

3.5.1 Accuracy Metrics

Accuracy metrics are very well known metrics, that are used to
measure the proximity between the system predicted ratings and
the real ratings given by users. Accuracy metrics are grouped into
three main groups [81]: Predictive accuracy metrics, Classification
accuracy metrics and Rank accuracy metrics. Table 3.7 shows the
differences between these three metrics.

3.5.1.1 Predictive accuracy metrics

Predictive accuracy metrics measure the proximity between the sys-
tem’s predicted ratings and the real ratings given by the user. Thus,
these metrics measure the difference between the predicted ratings
and the real ratings given by the users. For that several metrics
have been proposed, such as: mean absolute error and root mean
squared error.
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• Mean Absolute Error MAE: finds the mean average deviation
between the predicted rating and the real rating, and it is given
by Formula 3.25:

MAE =
1

N

N∑
i=1

|r̂i − ri| (3.25)

MAE has been used in [177, 34, 80].

• Root Mean Squared Error RMSE: is another predictive accu-
racy measure, in which errors are squared before summing
them, larger errors means larger RMSE. This measure has been
used in Netflix prize [20] and it is denoted by Formula 3.26:

RMSE =

√√√√ 1

N

N∑
i=1

(r̂i − ri)2 (3.26)

In Formula 3.25 and Formula 3.26: N denotes the number of
recommended items, r̂i is the real rating given by the user and ri
is the predicted rating given by the recommendation algorithm.
Moreover, minimum values of MAE or RMSE means maximum
recommendation accuracy.

3.5.1.2 Classification accuracy metrics

Classification accuracy metrics, also named decision-support metrics
are used to measure the frequency of having accurate or inaccurate
ratings about items. Furthermore, Precision and Recall are good
examples of classification accuracy metrics, and they are widely used
in the classical information retrieval methods. Precision and recall
are defined as follows:

• Precision: according to information retrieval methods, preci-
sion equals to the ratio of the number of true positive values tp
(relevant recommended items), to the sum of the number of true
positive values tp and the number of false positive values fp
(the sum of relevant and irrelevant recommended items). Thus,
according to recommender system methods, precision estimates
the probability of recommending relevant items [23, 170, 171],
as described in Formula 3.27:

P =
tp

tp+ fp
(3.27)
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• Recall according to information retrieval methods, recall equals
to the number of true positive values tp (relevant recommended
items)divided by the sum of the number of true positive val-
ues tp and the number of false negative values fn (sum of
relevant recommended items and relevant non-recommended
items, user’s preferred items). According to recommender sys-
tems, recall represents the probability that a relevant item will
be recommended. Recall is denoted by Formula 3.28:

R =
tp

tp+ fn
(3.28)

• F-Measure: as precision and recall are inversely related, and
as precision and recall should be studied together in order to
understand the performance of recommendation algorithms, f-
measure is proposed as a single measure that combines precision
and recall in one formula[170, 171]. F-measure is denoted by
Equation 3.29:

F = 2× P ×R

P +R
(3.29)

Figure 3.8 explains how precision and recall are calculated.

Figure 3.8: Preicsion and recall

3.5.1.3 Rank accuracy metrics

Rank accuracy metrics are used to propose ranked recommendation
lists to users. Thus, such metrics [81] matches a list of recommended
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items with a user’s list of ordered items. Normalized Distance-based
Performance Measure NDPM is one of the common metrics that are
used as rank accuracy measure.

• Normalized Distance-based Performance Measure NDPM: is
used to compare two different weakly ordered ratings [15] and
it denoted by Equation 3.30:

NDPM =
2C− + C

2C i
(3.30)

Where C− is the number of contradictory preferences between sys-
tem’s ranking and user’s ranking, C i is the number of preferred items
in the user’s ranking and C is the number of compatible preferences
between user’s ranking and system’s ranking.

3.5.2 Non-Accuracy Metrics

As mentioned in [81] recommendation accuracy is not enough to de-
termine whether the recommendation is effective or not. For that,
recommender system usefulness is proposed to move beyond the ac-
curacy measure to include the suitability of the recommendations to
users [81]. Recommender system suitability or usefulness comprises
several measures as described in [81]:

• Coverage: measures the percentage of a dataset that the rec-
ommender system is able to provide prediction for.

• Confidence: this measure determines how sure is the recom-
mender system that its recommendation is accurate.

• Learning rate: measures how quickly an algorithm can produce
good recommendations.

• Novelty or Serendipity: some recommender systems propose
a very accurate recommendations but still are not useful for
users. Novelty metrics help to measure how much is the user
aware of new and unknown items.

• User satisfaction: measures the satisfaction of the user on the
recommender system performance.
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3.6 Conclusion

Recommender systems are very important, because they help users
to find interesting items based on their tastes and preferences. In
fact recommender systems have changed the classical methods in
which queries are applied on static datasets to extract information,
by proposing new algorithms which are oriented on user’s tastes and
opinions. In recommender systems user’s interests are classified ac-
cording to their historical ratings about different items.

In this chapter we introduced a brief review about recommender
systems. Recommender systems have three main types: Content
based, Collaborative filtering and hybrid recommendation. In con-
tent based recommendation the content of user interests and item
features are involved in the recommendation process. In collabora-
tive filtering recommender systems, recommendations are based on
the ratings of like minded users. Hybrid recommender systems com-
bines content based methods with collaborative filtering methods.
Moreover, content-based and collaborative-filtering algorithms have
two main types model-based and memory-based, and each of these
type has its own methods.

Also, we introduced the user-based and the item-based collab-
orative filtering and we compared them. In fact, memory-based
collaborative filtering use some of the well known similarity mea-
sures such as cosine similarity, pearson correlation and more. More-
over, memory-based collaborative filtering uses graph-based meth-
ods, which are very interesting for our thesis. Also, we introduce
the limitations of each type of recommender system and finally we
present some of the well known measures which are used to evaluate
the recommender systems.



Chapter 4

Semantic-Social
Recommender System

4.1 Introduction

In this chapter we present a new approach of recommender systems
called semantic-social recommender system.
Semantic social recommender system includes two types of informa-
tion semantic information and social information.
Semantic information is related to the semantic representation and
semantic relevance between user profile and item profile. We pro-
pose, for that, using ontology to represent user profile and item
profile.
Social information is related to users position and role (centrality)
in the social network, besides to the type of connections and social
ties between these users.

Our motivation, in this approach, is to recommend an input item
to a group of users connected via a social network or collaboration
network, using semantic information and social information.

Figure 4.1 illustrates the main axes of our model, which we will
detail later in this chapter.

Figure 4.2 gives a global view of our approach in recommenda-
tion. In this Figure we notice that users and items are attached to
a taxonomy, which is a special case of ontology. Moreover, users
are represented as vertices of the collaboration network. The rec-

99
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Figure 4.1: Semantic-social recommendation global details

ommendation query (the algorithms input) is defined as an item to
be recommended to users connected via a collaboration social net-
work. The output of the algorithms is a recommendation list which
contains all the relevant users to the input item.

This chapter is organized as follows, Section 4.2 and Section 4.3
represent a detailed explications about semantic information and
social information proposed in our approach. Section 4.4 describes
our proposed algorithms, and finally we conclude in Section 4.5.

4.2 Semantic information

In this section we investigate the semantic part of our new ap-
proach, and we show how the semantic information can be used
in the semantic-social recommender system.

According to our approach, the semantic information depends
on two points: the first point is related to the taxonomy representa-
tion of information, particularly information about user preferences
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Figure 4.2: Semantic-social recommendation a global view

(user profile) and item features (item profile); while the second point
is related to the semantic similarity between user preferences and
item features.

This section contains a brief background about taxonomy, and
a detailed explanations about the semantic part of semantic-social
recommender system.

4.2.1 Background

4.2.1.1 Taxonomy

Taxonomy is a class/subclass relationship between a collection of
entities, describing a certain object or a certain domain of objects.
Taxonomy has a hierarchical structure, characterized by the ‘is-a’
hierarchy, and it is organized in a tree in which nodes and edges
represent connected concepts or categories. In most cases, taxon-
omy is established according to a predefined human design or some
other criteria [86]. The well known linguistic database Wordnet is
an example of a taxonomy [130, 88, 92]
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In taxonomy the nodes are placed in several levels, from level 0
to level n − 1. Level 0 contains the most general nodes (concepts)
in the domain (0 out-degree), while level n − 1 contains the most
specific nodes (concepts) in the domain (0 in-degree). Thus, moving
deeper in taxonomy means moving from general concepts to more
specific concepts.
Figure 4.3, is an example of fruit taxonomy.This taxonomy has been
extracted from food domain taxonomy, and it has 5 levels, starting
from the concept “Thing”, the most general concept in the taxon-
omy, in level 0, and ending by the concept “Orange”, one of the
most specific concepts, in level 4.

Figure 4.3: Taxonomy Example

Taxonomy as a special case of ontology The origins of ontology come
from philosophy, where ontology was firstly introduced by Aristo-
tle as the study of the characteristics of being or existence. Com-
puter science has borrowed the notion of ontology from philosophy
and applied it on several domains such as natural language appli-
cations, knowledge representation, database design, object-oriented
analysis, information retrieval and other domains [75]. According to
computer science, ontology is defined as an explicit specification of
conceptualization [72, 73]. In ontology the concepts are grouped in a
semantic graph, the ties between these concepts represent semantic
relations or specification relations, such as ‘is-a’ relation in taxon-
omy. In ontology concepts or terms are grouped in classes, these
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classes can have several kinds of relationships between them. More-
over, each class can have several kinds of properties, several kinds
of attributes and values correlated to the attributes. Furthermore,
ontology has the reasoning characteristics that is used to analyze
the relationships between ontology classes and to reason their prop-
erties and attributes.

Ontology definition is very generic and it can carry out several
interpretations. Moreover, in certain cases taxonomy is considered
as a special case of ontology; and ontology can be defined as a tax-
onomy with additional properties [160]. Generally, taxonomy has
a tree structure while ontology has a forest structure. Also, taxon-
omy is easy to read and interpret, while ontology needs a special
specification languages in order to define the concepts and their re-
lationships and characteristics. Furthermore, the reasoning process
in taxonomy is little limited compared to ontology.

Taxonomy in Recommender Systems In recommender systems tax-
onomy can be used to represent user profile, where user preferences
can be classified according to a semantic taxonomy tree, derived
from a global domain taxonomy. Moreover, the same thing can be
done on item profile by representing item features using a semantic
taxonomy tree. Furthermore, classification and specification char-
acteristics of taxonomy can be very helpful methods used for recom-
mendation. Thus, classification and specification are a very useful
methods that are used to estimate the users’ preferences, especially
in the case of having lack of information about user preferences or
item features [200, 43, 202].

4.2.1.2 Semantic relevancy meausres

Semantic similarity measures are widely used to compute the se-
mantic relevance between any given pair of concepts in the ontol-
ogy. In recommender systems, using taxonomy, semantic similarity
measures are very important to find out the relevance between users
and items.

The existing semantic similarity measures have three principal
types [176]: Information content or node-based [163, 111], distance-
based or edge-based [163, 154, 103], and hybrid [88].
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Information Content (Node-Based) approach Information Content
approach or Node-Based approach is used to compute the similarity
between two concepts in any given taxonomy.
Let T be an ‘is-a’ taxonomy and C the set of all the concepts of
this taxonomy, the similarity between two concepts c, c′ ∈ C equals
to the extent to which c and c′ share information in common. This
can be identified by determining a specific concept in the taxonomy
representing the lowest common ancestor between the two concepts
c and c′.

According to information theory [166], the information content
of a concept c can be quantified as the negative value of the log
likelihood IC(c) = − log p(c), where p(c) is the probability that
the concept c has an instance. Based on IC(c) if the probability
increases, then informativeness decreases. That means the more
abstract a concept, the lower its information content. In [163] the
information content similarity between two concepts c and c′ in any
given taxonomy is denoted by Formula 4.1:

sim(c, c′) = maxc′′∈S(c,c′)(− log
1

p(c′′)
) (4.1)

where S(c, c′) is the set of common ancestors subsuming c and c′.
However, this measure indicates that: the more information c and
c′ share in common, the more similarity they have. Moreover, the
number of common information between c and c′ is correlated to the
number of common ancestors between them.

In [111] the author proposed another variant of node-based simi-
larity measure, by finding the ratio between the similarity given by
Formula 4.1 and the sum between the information needed to de-
scribe c given by IC(c) = − log 1

p(c)
and the information needed to

describe c′ given by IC(c′) = − log 1
p(c′) . As denoted in Formula 4.2:

sim(c, c′) =
−2×maxc′′∈S(c,c′)(log 1

p(c′′))

log 1
p(c)

+ log 1
p(c′)

(4.2)

where S(c, c′) is the set of common ancestors subsuming c and c′.

Distance-Based (Edge-Based) approach or Edge-Based approach is
a very simple measure used to compute the similarity between tax-
onomy’s concepts. This measure counts the number of edges of the
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shortest path connecting the two concepts of the given taxonomy.
Let T be a taxonomy, with a set of concepts C, the similarity be-
tween the concepts c, c′ ∈ C is given by Equation 4.3 as follows:

sim(c, c′) = (2×D)− len(c, c′) (4.3)

where D is the maximum depth of the taxonomy, and len(c, c′) is
the shortest path between the two concepts c and c′.

In [103] authors proposed another measure considered as a vari-
ant of distance-based similarity measure. This measure scales the
shortest path between c and c′ by dividing it by twice of the maxi-
mum path length in the taxonomy, as denoted by Formula 4.4:

sim(c, c′) = − log
len(c, c′)
2×D

(4.4)

Hybrid approach Hybrid approach combines the two previous sim-
ilarity measures, node-based and edge-based, in one similarity mea-
sure by adding the information content as a decision factor [88].
This similarity is given as follows:

sim(c, c′) = − log
1

p(c)
− log

1

p(c′)
− 2× (maxc∈S(c,c′)(− log

1

p(c)
))

where − log( 1
p(c)

) and − log( 1
p(c′)) are the information content of c

and c′.

4.2.2 Semantic infromation in semantic-social recommender
system

The semantic information part of our contribution includes three
main aspects, as follows: semantic-taxonomy tree or domain taxon-
omy, semantic-tree for user profile and semantic-tree for item profile.

4.2.2.1 Taxonomy

In our approach we propose to represent all the knowledge in the
recommender system in a form of taxonomy named semantic tax-
onomy tree STT or domain taxonomy. However, the taxonomy rep-
resentation of knowledge in the recommender system contains the
conceptual representation of all the items in the recommender sys-
tem.
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Definition 15 (Semantic Taxonomy Tree STT). Semantic Taxon-
omy Tree (STT ) is a tree in which nodes are the domain terms,
and edges represent the hierarchy between these terms. An STT is
represented as a set of pairs of the form (term, level), where level
is an integer. When an STT has n levels, the term of level 0 is
the most general term, while the terms of level n − 1 are the most
specific terms in the domain. Moreover, we assume that every item
is associated with a unique leaf of the STT .

Figure 4.4 is an example of a Movies Semantic Taxonomy Tree
(Movies STT). In this example, domain terms represent the genres
of movies, and an ‘is-a’ hierarchy is defined between these genres.
According to Definition 15:
STT = {(Thing, 0), (Film, 1), (Adventure, 2), (Thriller, 2),
(Crime, 3), (Drama, 2), . . . }.
In Movies STT the maximum number of levels is equal to 5, genre
in level 0 is the most general genre ‘Thing’; and genres in level 4 are
the most specific ones e.g. the genre ‘Western’.

Figure 4.5 is an example of Amazon Semantic Taxonomy Tree
(Amazon STT). In this example the domain taxonomy represents
books categories, and an ‘is-a’ hierarchy is defined between these
categories. According to Definition 15
STT = {(Thing, 0), (Book, 1), (HumanScience, 2), (Philosophy, 3),
(JavaScript, 5), . . . }.
In Amazon STT the maximum number of levels is equal to 5, the cat-
egory in level 0 is the most general category in the domain ‘Thing’;
while categories in level 5 are the most specific ones, such as ‘PHP’.

4.2.2.2 Item profile

Item profile holds on all the possible information describing the item.
These information are mainly related to the features and the charac-
teristics of this item. Item profile is a conceptual profile, where the
topics of item’s features are represented via a semantic tree. Item
profile is defined as follows:

Definition 16 (Item Profile Tree IPT(x)). Given an STT and an
item x, we associate the item x with a subset of STT . This subset,
called Item Profile Taxonomy Tree and denoted by IPT (x). IPT (x)
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Figure 4.4: Movies semantic taxonomy tree STT

is the path of the STT containing all the pairs (τ, λ) connecting the
root of the STT with the leaf to which item x is associated.

Figure 4.6 is an example of a western movie profile. Obviously,
this movie is associated with the movie semantic taxonomy tree
described by Figure 4.4. According to this example:

IPT (x) = {(Thing, 0), (Film, 1), (Adventure, 2), (Action, 3),
(Western, 4)}

Figure 4.7 is another example of a book about java script asso-
ciated with books semantic taxonomy tree described by Figure 4.5.
According to this example:

IPT (x) = {(Thing, 0), (Book, 1), (ComputerScience, 2),
(Programming, 3), (WebProgramming, 4), (JavaScript, 5)}

4.2.2.3 User profile

User Profile contains all the possible information about user’s pref-
erences and activities. User profile has a conceptual representation,
in which all the topics of user’s preferences are grouped in a semantic
tree. User profile is defined as follows:

Definition 17 (User Profile Tree UPT(u)). Let u be a user and
I(u) its associated set of items, that the user has liked or bought in
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Figure 4.5: Amazon semantic taxonomy tree STT

Figure 4.6: Example of movie item profile tree

the past. User Profile Tree of user u, denoted by UPT (u), is the
union of all the item profile trees of all the items in I(u). In other
words UPT (u) =

⋃
x∈I(u) IPT (x).

Figure 4.8 is an example of user profile tree. From this figure
we can find that user u has two items (movies) on his/her list of
preferred items. According to our proposed definition: UPT(u) is
generated by finding the union of the item profile trees of movie1
and movie2, as follows:
UPT (u) = IPT (movie1) ∪ IPT (movie2).

Figure 4.9 is another example of user profile tree. From this figure



4.2. SEMANTIC INFORMATION 109

Figure 4.7: Example of book item profile tree

the user u has three items (books) in his/her list of preferred items.
So according to our proposed definition, user profile tree of the user
u is given as follows:
UPT (u) = IPT (Book1) ∪ IPT (Book2) ∪ IPT (Book3).

Figure 4.8: User profile tree of movies example

4.2.2.4 User-item semantic relevancy measure

Based on the previous definitions, we present a user-item semantic
relevancy measure between users and items. To do so, we introduce
a similarity measure between two profile trees P1 and P2, denoted
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Figure 4.9: User profile tree of books example

by σ(P1, P2), as follows:

σ(P1, P2) =
1

μ

⎛
⎝ ∑

(τ,λ)∈P1∩P2

λ

⎞
⎠

where μ = min
(∑

(τ,λ)∈P1
λ,

∑
(τ,λ)∈P2

λ
)
, τ is the common concepts

of the profiles P1 and P2 and λ is the level of the common concept.
Using σ, we now define the relevancy between a user u and an

item x as the similarity between their profile trees.

Definition 18. Let u be a user and x an item. The user-item
relevancy measure between u and x, denoted by sim(u, x), is defined
as follows:

sim(u, x) = σ(UPT (u), IPT (x))

As can be seen from Definition 18, sim(u, x) is not a standard
similarity measure since it applies two arguments of different types
(namely a user and an item). In fact, sim(u, x) measures to which
extent items ‘similar’ to x can be found in UPT (u). Notice in this
respect that if u bought and liked x, then ITP (x) is a subtree of
UPT (u), in which case sim(u, x) is maximal, that is, equal to 1.

Example 8. Figure 4.9 shows an example of user u, who likes the
items Book1, Book2 and Book3.
In this case, we have I(u) = {Book1, Book2, Book3} and UPT (u) =
IPT (Book1) ∪ IPT (Book2) ∪ IPT (Book3).
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For an item x such that:
IPT (x) = {(Books, 0), (ComputerScience, 1), (Programming, 2),
(ObjectOriented, 3)}.
The relevance between u and x sim(u, x) is computed by the fol-
lowing steps:

1. UPT (u) ∩ IPT (x) = {(Books, 0), (ComputerScience, 1),
(Programming, 2)}, and ∑

λ = 3

2.
∑

(τ,λ)∈UPT (u) λ = 38

3.
∑

(τ,λ)∈IPT (x) λ = 6

As a result, the user-item relevancy between x and u is equal to
the ratio between the number of the common terms between x and
u, and the minimum sum of levels between UPT (u) and ITP (x),
sim(u, x) = 3/6 = 0.5.

Example 9. The same thing for Figure 4.8. The user u likes items
Movie1 and Movie2.
So, I(u) = {Movie1,Movie2} and UPT (u) = IPT (Movie1) ∪
IPT (Movie2).
For an item x such that:
IPT (x) = {(Thing,0),(Film,1),(Adventure,2),(Action,3),(Western,4)}.
sim(u, x) is computed as follows:

1. UPT (u) ∩ IPT (x) = {(Thing, 0), (Filme, 1), (Adventure, 2)}
2.

∑
(τ,λ)∈UPT (u) λ = 11

3.
∑

(τ,λ)∈IPT (x) λ = 10

The relevance between u and x is sim(u, x) = 3/10 = 0.3

4.3 Social information

In this section we present a detailed description about social infor-
mation that we propose to use in our semantic-social recommender
approach. For that, at the beginning, we present a general back-
ground about graph and social network analysis, then we explain
how we use centrality measures and social ties between users in the
semantic-social recommender system.
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4.3.1 Background

A graph G is composed of two sets, a set of vertices and a set of
edges. Every edge from the set of edges connects two vertices from
the set of vertices.
Social network is defined as a graph in which vertices represent
actors or users and edges represent the social ties or relationships
between these users [145]. Furthermore, Collaboration Networks are
known as a special type of social networks, obtained from bipartite
graphs.
On the other hand, Graph Searching algorithms are used to explore
the graph by visiting all its vertices in order to search, verify or
change the values attached to these vertices. In our approach we use
two graph searching algorithms. These algorithms are Depth-First
Search algorithm (DFS) and Breadth-First Search (BFS) algorithm.
Furthermore, we propose to apply these algorithms on collaboration
networks extracted from user-item bipartite graph representing user
item relationship in the recommender systems.

User-item bipartite graph and co-purchases collaboration net-
work, that we use in our approach, are defined by the following
definitions:

Definition 19 (User-item biparite graph). The user-item bipartite
graph G is a graph, with a set of vertices V (G) and a set of edges
E(G). V (G) = {U ∪ I}, where U is the set of all the users, in
the recommender system, and I is the set of all the items, in the
recommender system, U and I are disjoint sets. In G, every edge e
from the set E(G) connects users u with items i if the user u has
purchased, rated or liked the item i.

Definition 20 (Co-purchases collaboration network). Co-purchases
network is the weighted graph G which represents the users one-
mode projection of the user-item bipartite graph G (defined in Def-
inition 19). U(G) is the set of users and E(G) is the set of edges
between these users. An edge e from E(G) connects two users u
and u′ from U(G) if u and u′ have purchased at least one item in
common, and the weight of the edge is correlated to the number and
the rating of the common purchased items between u and u′.

We can also call the co-purchases collaboration network, the co-
rated collaboration network. This depends on the types of social
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ties between users e.g. if users buy items then we call the network
co-purchases network, and if users rate items then we call the net-
work co-rated network.

Example 10. Figure 4.10 illustrates the user-item bipartite graph
G(V,E), where V is the set of graph vertices and E is the set of
graph edges. G(V,E) is represented in (a); the users one-mode
projection is represented in (b); and the items one-mode projection
is represented in (c).
The vertices set V (G) is combined of two disjoint sets the set of
users U = {A,B,C,D,E} and the items I = {1, 2, 3, 4}. In the
bipartite graph G, only user-item connections are possible, and a
user u is connected to an item i if u has purchased or rated i (these
connections are determined according to the recommender system).
Moreover, the users one-mode projection is obtained if users u1 and
u2 have purchased a same item i, that is if there exists an item i
such that e(u1, i) and e(u2, i) are edges in G(V,E). Similarly, the
items one-mode projection is obtained from G(V,E) by connecting
items i1 and i2 if there exists a user u such that e(u, i1) and e(u, i2)
are edges in G(V,E).

In our approach, after constructing the users co-purchases net-
work, we explore this network, using DFS and BFS algorithms, in
order to achieve the recommendation; and we profite from the social
information related to user centrality in the network and the weights
of the social ties (edges) in the network.

Figure 4.10: User-item bipartite graph (a), users one-mode projection (b), and
items one-mode projection (c)
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Table 4.1: User centrality & recommender systems (RS)
Centrality User characteristics in (RS)

Degree
Number of direct connections
Immediate risk and influence
Information broadcasting

Closeness
Number of connected shortest paths

Information diffusion
Information reception

Betweenness
Frequency of passing through shortest paths
Information broadcast inter communities

4.3.2 Social information in recommender system

In the social information part of our approach, we take into con-
sideration (a) user centrality in the co-purchases network and (b)
weight of the social ties (edge weight) in the co-purchases network.
User centrality determines the role of the user in the network, such
as degree centrality, closeness centrality and betweenness central-
ity; while edge weight determines the strength of the connections
between the users in the network.

4.3.2.1 User centrality

User or vertex centrality in social networks is important, because
it determines the role and the influence of the users in the net-
work. Thus, user centrality is helpful to be used in recommender
systems. In our approach, we use and compare three types of user
centralities: degree centrality, closeness centrality and betweenness
centrality. Moreover, we study the case of combining two different
centralities in one recommender system e.g. combining degree cen-
trality with betweenness centrality.
Table 4.1 synthesizes users centralities and their role in recom-
mender systems.

Degree centrality of a given vertex (user) counts the number of
vertices (users), which are in direct connections with this user. De-
gree centrality is used to measure the immediate risk or influence of
a user in the social network, and to measure the capacity of infor-
mation broadcasting [31, 61, 145]. In recommender systems, degree
centrality can be very useful where a higher degree centrality of a
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user means a higher recommendation influence on other users in the
system.

Closeness centrality counts the number of the shortest paths con-
necting a given vertex (user) with other vertices (users) in the net-
work. Closeness centrality plays an important role in information
diffusion and reception. In fact, users with high closeness have a
good position in the network, with large number of shortest paths
connecting them with other users [31, 61, 145]. In recommender
systems applied on social networks, users having high closeness cen-
trality are most likely to receive and broadcast recommendations
easily and in a very short time.

Betweenness centrality indicates the frequency of the shortest paths
passing through a given vertex (user) in the network [145]. In fact,
betweenness centrality refers to the user ability to facilitate infor-
mation flow in the network [31]. Often, vertices (users) having high
betweenness centrality connect the network communities. There-
fore, in recommender systems, betweenness centrality can be used
as a mediator to transmit the information between different com-
munities in the network.

4.3.2.2 Social ties and edge weights

In most of the collaboration networks social ties (edges) are weighted.
These weights correspond to the number of common preferences be-
tween users. Therefore, edges weights in collaboration networks can
play an important role in semantic-social recommender system, be-
cause edges weights depend on the number of common preferred
items between users. So, the higher the weight of edges connect-
ing users, the more likely that users have similar tastes and similar
opinions.

According to our approach, the edge weight between two users
depends on the number and the rating of common preferred items
between them. In semantic-social recommender system edge weights
are defined as follows:

Definition 21. Let u and u′ be two users, and let I(u) be the set
of items purchased by the user u, and let I(u′) be the set of items
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purchased by the user u′, such that I(u) ∩ I(u′) �= ∅. The weight of
the edge e(u, u′), denoted by w(u, u′) is defined by:

w(u, u′) =
1

|I(u) ∩ I(u′)|
∑

i∈I(u)∩I(u′)

(r(u, i) + r(u′, i))

In our approach, we propose to connect users having rating values
of the range [3− 5], from the total range [1− 5].

Intuitively, Definition 21 means that ‘the more users u and u′ are
connected (the higher the weight of the edge e(u, u′)), the more u and
u′ purchased and liked items in common’. Therefore, it makes sense
to state that recommending item x to u should imply recommending
x to u′.

4.4 Semantic-social recommender system: Al-
gorithms

In this section we present our proposed recommendation algorithms,
named semantic-social depth-first search algorithm (SSDFS) and
semantic-social breadth-first search algorithm (SSBFS). Each of these
algorithms have two versions vertex-based and vertex-edge-based.
Also, we discuss the cases of having several centralities, such as de-
gree centrality, closeness centrality, betweenness centrality or even
combining two different types of centralities. Our proposed algo-
rithms are summarized in Figure 4.11, and they are presented in
the following subsections.

4.4.1 Recommendation query

Let x be an item described by item profile tree IPT (x), and let G
be the users co-purchases collaboration network in which each user
has user profile tree UPT (u).
The recommendation query is the item x described by its profile
IPT (x) submitted to the co-purchases network G. Our goal is to
recommend the item x to a group of users u from the network G.
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Figure 4.11: A summary of SSDFS and SSBFS algorithms

4.4.2 Semantic-social depth-first search SSDFS

Depth-First Search algorithm (DFS) is one of the fundamental graph
searching algorithms. This algorithm searches deeper in the graph
whenever it is possible, and it explores all the graph vertices [49].

In our approach, the graph to be searched is the social network
represented by the co-purchases collaboration network.
Using DFS strategy our algorithms explore the co-purchases col-
laboration network. However, since this social network is huge, we
apply heuristics in order to avoid exploring all the network vertices.
The heuristics we propose to use with DFS are based on semantic
information and social information as follows:

1. Semantic Information represented by:

(a) Item profile tree IPT (i) as defined in Definition 16.

(b) User profile tree UPT (u), as defined in Definition 17.

(c) User-item semantic relevancy measure used to evaluate the
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relevance between user preferences and item features, as
defined in Definition 18.

2. Social Information represented by:

(a) The co-purchases collaboration social network, as defined
in Definition 20.

(b) Users role and position in the network according to user
centrality.

(c) The weights of social ties in the network as defined in Def-
inition 21.

Our proposed algorithm uses semantic information and social infor-
mation as heuristics integrated with depth-first search algorithm,
for that we suggest to call this algorithm semantic-social depth-
first search SSDFS. This algorithm can be used with two heuristics
vertex-based and vertex-edge-based.

In this subsection we introduce semantic-social depth-first search
algorithm SSDFS with the two distinct heuristics vertex-based and
vertex-edge-based.
According to SSDFS these heuristics are seen as recursive procedures
that are called by the same main algorithm that we present next in
Algorithm 5.

Algorithm 5: SSDFS Main Algorithm

Input: (i) An item x having IPT (x)
(ii) A positive integer n
(iii) A user-item similarity threshold θ
(iv) An edge weight threshold δ
Output: Recommendation list: user list
1: for all vertices v in V (G) do
2: v.label = unvisited
3: end for
4: user list = empty list
5: Compute the centrality of every vertex in V (G)
6: vertex-centrality-vector = n vertices of V (G) with the highest centrality
7: for all v in vertex-centrality-vector do
8: call one of the two heuristic algorithms with input v
9: end for

10: return user list
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4.4.2.1 SSDFS the main algorithm

Here we present a detailed explanation about SSDFS algorithm, con-
sidering its parameters, its input and output. Moreover, we discuss
the proposed heuristics attached to SSDFS algorithm vertex-based
and vertex-edge-based.

Algorithm Parameters SSDFS algorithm requires three types of pa-
rameters, as follows: n which is related to vertex-centrality-vector
N , δ which is related to the edges weights and θ which is related to
the user-item relevancy measure. These parameters are defined as
follows:

• Vertex-centrality-vector N : is a vector of size equals to n. n is
the number of users from the co-purchases collaboration net-
work, having highest centrality value in the network.

• User-Item relevancy threshold δ: which determines the min-
imum accepted similarity between user preferences and item
features in co-purchases network, that lets the algorithm con-
tinues the network searching.

• Edge weight threshold θ: which determines the minimum ac-
cepted edge weight in the co-purchases network, that lets the
algorithm continues the search in the network.

In SSDFS algorithm with vertex-based heuristic we use two thresh-
olds n and δ; while in SSDFS with vertex-edge-based heuristic we
use the three thresholds n, δ and θ.

Algorithm input An item x with tree profile ITP (x) as in Defini-
tion 16; and the algorithm’s thresholds n, δ and θ

Algorithm output Recommendation list containing all the recom-
mended users, whose preferences are relevance to the item x (the
input item).

SSDFS algorithm It should be first noted that, in our algorithms,
the vertices of the co-purchases collaboration network G to be ex-
plored are labeled in order to visit each of them at most once. More
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precisely, every vertex v of G is associated with a label whose pos-
sible values are unvisited or visited.
As we would like to avoid visiting all the vertices of G, but in order
to visit as many relevant vertices as possible, we choose to start the
exploration of G through the vertices that have the highest central-
ity in the network, that is, the vertices that are connected to a high
number of other vertices (e.g. the case of degree centrality).
To this end, the centrality of every vertex is computed (see line 5
of Algorithm 5) and the n vertices having the highest centrality are
stored in a vector called vertex-centrality-vector N (see line 6 of
Algorithm 5). Starting form the vertices in vertex-centrality-vector,
the co-purchases network is explored using DFS strategy and accord-
ing to two heuristics called Vertex-Based and Vertex-Edge-Based
heuristics, as will be presented next (see line 8 of Algorithm 5).

4.4.2.2 Vertex-Based Heuristic

Considering a predefined parameter n and a predefined user-item
semantic relevancy threshold δ.
SSDFS algorithm starts the search from the first vertex v in vertex-
centrality-vector N (vertex with heights centrality), v is processed if
it is still unvisited and if its similarity to the item x is greater than
the threshold δ. Then, all successors of v are recursively processed
in the same way, until reaching a vertex that fails to satisfy the
similarity requirement or until the vertex-centrality-vector becomes
empty. The corresponding procedure is shown in Algorithm 6.
Example 11 details how vertex-based SSDFS achieves the recom-
mendation, and Figure 4.12 illustrates how Algorithm 6 is applied
on the co-purchases collaboration network.

Algorithm 6: Vertex-based-visit

1: if v.label = unvisited then
2: v.label = visited
3: if sim(v, x) > δ then
4: Add v to the current value of user list
5: for all e = (v, v′) and (v′, v) in E do
6: Vertex-based-visit(G, v′)
7: end for
8: end if
9: end if
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Figure 4.12: Vertex-based SSDFS example

Example 11. In Figure 4.12 blue vertices represent the non visited
users (E), while red and crossed out vertices represent the visited
users (A,B, F,D,G,C). Black edges are the non explored edges
while green and dashed edges are the explored ones. Moreover, red
vertices represent the recommended users.
Furthermore, we consider degree centrality as the chosen centrality
in the vertex-centrality-vector and we call it vertex-degree-vector.
As shown in Figure 4.12, and based on this social network we assume
that n = 5. Thus, vertex-degree-vector contains the vertices A, B,
F , G and D, whose degree centrality is the highest in the social
network. Moreover, calling x the item to be recommended, we also
assume that sim(A, x) and sim(B, x) are below the threshold δ,
whereas for all other vertices v in the graph sim(v, x) > δ.

In this case, the main algorithm first marks all the vertices as
unvisited and builds the vertex-degree-vector. Then, A is first con-
sidered, but as this vertex does not satisfy the similarity criterion,
the call to Algorithm 6 just changes the label of A from unvisited
to visited. The processing of B being similar, we now turn to F .
As sim(F, x) > δ, F is added to the user recommendation list, and
vertices B, D and G are considered recursively. Notice that as B
has already been visited, no further test is done.

It is easy to see that, in this example, E is not visited and that
the output of our algorithm, the recommendation list, contains the
vertices F , D, G and C. The algorithm stops searching the social
network when the vertex-degree-vector becomes empty.



122 CHAPTER 4. SEMANTIC-SOCIAL RECOMMENDER SYSTEM

4.4.2.3 Vertex-edge-based heuristic

The only difference between vertex-based heuristic and vertex-edge-
based heuristic is that, in vertex-edge-based heuristics, the weight θ
of the edges is taken into account (see line 6 of Algorithm 7), which
is not the case in the vertex-based heuristics. Example 12 details

Algorithm 7: Vertex-edge-based-visit

1: if v.label = unvisited then
2: v.label = visited
3: if sim(v, x) > δ then
4: Add v to the current value of user list
5: for all e = (v, v′) and (v′, v) in E do
6: if e.weight > θ then
7: vertex-edge-based-visit(G, v′)
8: end if
9: end for

10: end if
11: end if

Vertex-Edge-Based SSDFS as described in Algorithm 5 and Algo-
rithm 7, and Figure 4.13 illustrates the application of this algorithm
on co-purchases collaboration network.

Figure 4.13: Vertex-edge-based SSDFS example

Example 12. Figure 4.13 shows a graph similar to the one in Fig-
ure 4.12, in which weights are associated to edges. In this Figure,
blue vertices are the non visited users (E,C), while red and crossed
out blue vertices are the visited ones (A,B, F,D,G). Black edges
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Table 4.2: Vertex-based and vertex-edge-based heuristics a comparision
Heuristic Recommended users Non-visited users Non-explored edges

Vertex-Based 4/7 1/7 2/9
Vertex-Edge-Based 3/7 2/7 3/9

are the non explored edges while green, dashed and crossed out
edges are the explored ones. Moreover, red vertices represent the
recommended users.
We assume that the weight threshold θ has been set to 10, and we
consider the degree centrality in the vertex-centrality-vector as in
Example 11, which contains the vertices A, B, F , G and D.
According to Algorithm 7, the vertices A and B are processed as
in Example 11. Regarding the processing of F , we note that G is
reached from F by Algorithm 7, whereasD is not. This is so because
the weight of e(F,G) is greater than 10 and the weight of e(F,D) is
less than 10. In this example, the users F , D and G are output of
the algorithm, the recommendation list, and vertices C and E are
the non visited users.

Table 4.2 compares the number of vertices and edges explored by
vertex-based and vertex-edge-based heuristics.

4.4.3 Semantic-social breadth-first search SSBFS

Like depth-first search algorithm (DFS), breadth-first search algo-
rithm (BFS) is considered as another important algorithm used for
graph searching.
For a given graph G and a distinguished source vertex v ∈ V (G),
BFS explores all the graph vertices that are reachable from v, level
by level, and it computes the distance from v to these vertices. At
the beginning, BFS explores all the vertices at level l = 1 from the
source vertex v, then it explores all the vertices at level l + 1 from
this source. The algorithm repeats these steps until visiting all the
graph vertices at all the levels [49].
As SSDFS, semantic-social breadth-first search SSBFS explores the
co-purchases collaboration network, and it avoids exploring all its
vertices (users) and all its edges (social ties), by applying heuristics
depend on semantic information and social information, as follows:

• Semantic Information: represented by user profile tree UPT (u),
item profile Tree IPT (x) and the semantic relevancy between
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user preferences and item features.

• Social Information: by considering user centrality and social
ties strength.

In this subsection we introduce the semantic-social breadth-first
search algorithm SSBFS. Although, we study and analyze two ver-
sions of this algorithm: vertex-based SSBFS and vertex-edge-based
SSBFS.

Algorithm thresholds SSBFS algorithm requires the same thresh-
olds as SSDFS. These thresholds are n which is related to the size
of the vertex-centrality-vector, the threshold δ which is related to
user-item relevancy measure and θ which represents the edges weight
threshold.

We use n and δ as thresholds for vertex-based SSBFS algorithm,
and we use n, δ and θ as thresholds for vertex-edge-based SSBFS.

4.4.3.1 Vertex-based SSBFS

Algorithm input an item x having item profile tree IPT (x), and
the algorithm thresholds n and δ.

Algorithm output recommendation list containing all the recom-
mended users.

Vertex-based SSBFS algorithm in order to avoid visiting all the
vertices of G, while visiting as many relevant vertices as possible,
the exploration of G starts from the vertices that have high central-
ity. To do so, a predefined n number of vertices with the highest
centrality in the co-purchases network are computed and stored in
a vector called vertex-centrality-vector (lines 3-4 of Algorithm 8).
Starting form the vertices in vertex-centrality-vector, the graph is
explored using BFS strategy. However, all vertices from vertex-
centrality-vector whose similarity with (IPT (x)) of the input item
x is greater than δ are first inserted into queue Q and added to the
output list (lines 4-8 of Algorithm 8). Then while Q is not empty,
and starting from the first node v in Q, all the successors v′ of v are
processed in the same manner using BFS algorithm with respect to
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the user-item relevancy threshold δ.
The algorithm stops the search when the queue Q becomes empty,
(from line 12 to line 19 of Algorithm 8)

Algorithm 8: Vertex-based SSBFS

Input: (i) An item x having IPT (x)
(ii) A positive integer n
(iii) A user-item similarity threshold δ
Output: Recommendation list user list
1: Q = empty queue
2: Compute the centrality of every vertex in V (G)
3: Order every v ∈ V (G) in a descending order acceding to their centrality
4: vertex-centrality-vector = the first n vertices of V (G) having the highest

centrality
5: for all v in vertex-centrality-vector do
6: v.label = visited
7: if sim(v, x) > δ then
8: Add v to the current value of user list
9: enqueue(Q, v)

10: end if
11: end for
12: while Q �= ∅ do
13: v = dequeue(Q)
14: for all edge e = (v, v′) in G do
15: if v′.label = unvisited then
16: v′.label = visited
17: end if
18: end for
19: end while

4.4.3.2 Vertex-edge-based SSBFS

Algorithm input an item x having item profile tree IPT (x), and
the algorithm thresholds n, δ and θ.

Algorithm output recommendation list containing all the recom-
mended users.

Vertex-edge-based SSBSF algorithm details the exploration of the
co-purchases network starts from the users having high centrality
values. so, n users with highest centrality are stored in the vertex-
centrality-vector (lines 2-4 of Algorithm 9). Starting form the users
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in vertex-centrality-vector, the graph is explored using BFS algo-
rithm.
As in vertex-based SSBFS, all vertices from the vertex-centrality-
vector whose similarity with the input item x is greater than δ are
firstly inserted into the queueQ and added to the output list (lines 4-
8 of Algorithm 9). Then while Q is not empty, and starting from
the first vertex v in Q, all the successors v′ of v whose connection
with v has a weight greater than θ are processed as follows: if v′ is
unvisited and if sim(v′, x) > δ, then v′ is added to the output list
and v′ is inserted into Q (lines 14-19 of Algorithm 9).
The algorithm stops searching the graph when the queue Q becomes
empty.

Figure 4.14: Vertex-edge-based SSBFS example

Example 13. Figure 4.14 illustrates an example of vertex-edge-based
SSBFS with degree centrality (vertex-centrality(degree)-vector).
In this example we assume that edge weight threshold θ = 10, and
the size of vertex-degree-vector n = 4 containing the vertices A, B,
F , and G, which are having the highest degree centrality. Moreover,
we suppose that sim(A, x) < δ and sim(B, x) < δ while sim(v, x) >
δ for all the other vertices in the co-purchases network.
SSBFS adds the vertices of vertex-degree-vector to the queue Q and
to the recommendation list, except the vertices A and B, because
sim(A, x) < δ and sim(B, x) < δ, and it starts the breadth-first
search from the vertex F in order to visit the vertices G and D;
according to SSBFS the vertex G is reachable because w(F,G) > 10
and the vertex D is not reachable because w(F,D) < 10, so SSBFS
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Algorithm 9: Vertex-edge-based SSBFS

Input: (i) An item x having IPT (x)
(ii) A positive integer n
(iii) A user-item similarity threshold δ
(iv) An edge weight threshold θ
Output: Recommendation list user list
1: Q = empty queue
2: Compute the centrality of every vertex in V (G)
3: Order all the vertices of V (G) in a descending order acceding to their

centrality
4: vertex-centrality-vector = the first n vertices v ∈ V (G) having the highest

centrality
5: for all v in vertex-centrality-vector do
6: v.label = visited
7: if sim(v, x) > δ then
8: Add v to the current value of user list
9: enqueue(Q, v)

10: end if
11: end for
12: while Q �= ∅ do
13: v = dequeue(Q)
14: for all edge e = (v, v′) in G do
15: if e.weight > θ and v′.label = unvisited then
16: v′.label = visited
17: if sim(v′, x) > δ then
18: Add v′ to the current value of user list
19: enqueue(Q, v′)
20: end if
21: end if
22: end for
23: end while
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restart the breadth-first search from G. The vertex D is reachable
from G so it is added to the recommendation list and to the queue,
while the vertex C is not. SSBFS resumes the graph searching from
the queue starting from the vertex D, to find that there are no more
vertices to be visited (vertex A is not reachable from D, and G
has already been visited) so the algorithm stops the search and the
output of the algorithm is represented by the recommendation list
which contains the vertices F , G and D.

4.4.4 Users centralities in the co-purchases network

Previously, in this section, we discussed vertex-based and vertex-
edge-based SSDFS algorithms; also we discussed vertex-based and
vertex-edge-based SSBFS. In these algorithms we considered the
general case of centrality, which means we did not determine the
type of user centrality. For instance, in the algorithms Algorithm 5,
Algorithm 8 and Algorithm 9 we considered user’s centrality as a
general centrality, by referencing the vertex-centrality-vector with-
out specifying which centrality the algorithm tests or uses.

In this subsection, we specify the centralities used in vertex-
centrality-vector of each algorithm, Algorithm 5, Algorithm 8 and
Algorithm 9. Moreover, we give some examples about these algo-
rithms, also we propose a new algorithm, a hybrid algorithm that
combines degree centrality with betweenness centrality in one algo-
rithm.

Figure 4.16, illustrates a collaboration social network; in which
we suppose n = 3 the size of the vertex-centrality-vector, and we
suppose that sim(D, x) < δ and sim(F, x) < δ. Furthermore, we
set the edge weight threshold θ = 10. Moreover, we study and
analyze the attitude of our proposed algorithms according to each
centrality: degree centrality, closeness centrality, betweenness cen-
trality and the hybrid degree-betweenness, on all of our proposed
algorithms.

Table 4.3 contains the degree, closeness and betweenness central-
ity values of all the users (vertices) of the co-purchases collaboration
network given by Figures 4.15.
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Table 4.3: Co-purchases network users centralities
User Degree Closeness Betweenness

A 4 1.667 13.5
B 3 2.111 8
C 2 2.222 0.5
D 3 1.778 10
E 1 3 0
F 3 2 3.5
G 3 1.889 5.5
H 3 2 5
I 3 2.222 8
J 1 3.111 0

Figure 4.15: Co-purchases network: example

4.4.4.1 Degree centrality

We replace the vertex-centrality-vector in the algorithms, Algorithm 5
(lines 5-6-7), Algorithm 8 (lines 2-4-4) and Algorithm 9 (lines 2-4-5),
by the vertex-degree-vector. In this case we compute degree central-
ity of all the users in the co-purchases network and we add n users,
having the heights degree centrality, to the vertex-degree-vector.

Example 14 (Degree Centrality). We apply SSDFS algorithm on the
social network represented by Figure 4.16.
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In this example we suppose that the size of vertex-degree-vector is
n = 3 so this vector contains the vertices: A, B and G, these ver-
tices have the largest degree values in the network.
SSDFS starts exploring the network from the vertex A and it adds A
to the recommendation list. Starting form A, the algorithm explores
all the reachable paths from A. Reachable paths are determined ac-
cording to two values: the value of edge weight, edges should have
weight w > θ, and the value of the similarity between the input item
and the vertex (representing user profile).
In this example, the only reachable path from A is: A→ B → F in
which B is recommended and no edges are explored passing by F
because sim(F, x) < δ. After exploring all the reachable paths from
A, SSDFS stops searching the network and it reprises the search
from B. As the vertex B has already been visited the algorithm
starts another exploration form G. SSDFS adds G to the recom-
mendation list and it explores all the reachable paths form G. At
this end, SSDFS terminates exploring the network because there
are no reachable paths from G and all the vertices in vertex-degree-
vector have been visited.
The output of the algorithm is the recommendation list containing
the vertices: A, B, and G. Moreover, the algorithm explores a small
part of the graph and there are some unvisited vertices as: D, I, H,
J and E.

Figure 4.16: SSDFS with degree centrality
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4.4.4.2 Closeness centrality

We replace the vertex-centrality-vector in the algorithms, Algorithm 5
(lines 5-6-7), Algorithm 8 (lines 2-4-4) and Algorithm 9 (lines 2-4-5),
by the vertex-closeness-vector. In this case we compute the close-
ness centrality of all the users in the co-purchases network and we
add n users, having the heights closeness centrality, to the vertex-
closeness-vector.

Example 15 (Closeness Centrality). In Figure 4.17, the vertex-closeness-
vector contains the vertices: J , E and I.
We apply SSDFS algorithm on the social network represented by
Figure 4.17.
In this example we suppose that the size of vertex-degree-vector is
n = 3 and this vector contains the vertices: J , E and I, these ver-
tices have the largest closeness centrality values in the network.
SSDFS starts exploring the network from the vertex J and it adds J
to the recommendation list. Starting form J , the algorithm explores
all the reachable paths from J . Reachable paths are determined ac-
cording to two values: the value of edge weight, edges should have
weight w > θ, and the value of the similarity between the input item
and the vertex (representing user profile).
In this example, there is no reachable path from J , so SSDFS stops
and it reprises the search from E and it adds E to the recommenda-
tion list. As J , there is no reachable paths from E and the algorithm
stops the search to reprise another research from I. Starting from I
the only possible path to be explored is the one connecting I with
H. So the algorithm adds I and H to the recommendation list and
it terminates the search. The output of the algorithm is the recom-
mendation list containing the vertices: J , E, I and H. Moreover,
the algorithm explores a small part of the graph and there are some
unvisited vertices as: A, B, C, D, F and G.

4.4.4.3 Betweenness centerality

We replace the vertex-centrality-vector in the algorithms, Algorithm 5
(lines 5-6-7), Algorithm 8 (lines 2-4-4) and Algorithm 9 (lines 2-4-
5), by the vertex-betweenness-vector. In this case we compute the
betweenness centrality of all the users in the co-purchases network
and we add n users, having the heights betweenness centrality, to
the vertex-betweenness-vector.
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Figure 4.17: SSDFS with closeness centrality

Example 16 (Betweenness Centrality). We apply SSDFS algorithm
on the social network represented by Figure 4.19.
In this example we suppose that the size of vertex-betweenness-
vector is n = 3 and this vector contains the vertices: A, I and B,
these vertices have the largest degree values in the network.
SSDFS starts exploring the network from the vertex A and it adds A
to the recommendation list. Starting form A, the algorithm explores
all the reachable paths from A. Reachable paths are determined ac-
cording to two values: the value of edge weight, edges should have
weight w > θ, and the value of the similarity between the input item
and the vertex (representing user profile).
In this example, the only reachable path from A is: A→ B → F in
which B is recommended and no edges are explored passing by F
because sim(F, x) < δ. After the vertex A, the algorithm starts an-
other exploration form I. SSDFS adds I to the recommendation list
and it explores all the reachable paths form I. The only reachable
path is to the vertex H, which is added to the recommendation list.
As the vertex B has been visited, SSDFS terminates exploring the
network, and the output of the algorithm is the recommendation
list containing the vertices: A, B, I, and H.

4.4.4.4 Hybrid centrality Degree-Betweenness

In this algorithm we propose to combine degree centrality with be-
tweenness centrality of users in one algorithm in order to benefit
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Figure 4.18: SSDFS with betweenness centrality

from the characteristics of both centralities. This algorithm is ap-
plied on vertex-edge-based SSDFS algorithm, Algorithm 10, and on
vertex-edge-based SSBFS algorithm, Algorithm 11.

For vertex-edge-based SSDFS, the algorithm orders the graph
vertices, in a descending order, according to their degree centrality
in the vertex-degree-vector in the main algorithm Algorithm 5, con-
sidering the degree centrality case. Then it adds to the semantic
heuristic another condition related to betweenness centrality of the
discovered vertex, in Algorithm 10 (line 6). If the vertex satisfies
the betweenness centrality threshold σ, then the algorithm contin-
ues the graph exploration. If not then the algorithm resumes the
search form vertices in the vertex-degree-vector. This algorithm is
described in Algorithm 10, which is the visit procedure of the main
algorithm Algorithm 5.

In the same manner, we apply vertex-edge-based SSBFS with
hybrid centralities. This algorithm uses vertex-degree-vector and
it adds the betweenness centrality of the vertex as a condition to
decide if the algorithm will continue the network exploration or not.
Hybrid vertex-edge-based SSBFS is explained by Algorithm 11.

Example 17 (Degree-Betweenness Centrality). In this example we
suppose that the size of vertex-degree-vector is n = 3 and this vec-
tor contains the vertices: A, B and G, these vertices have the largest
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Algorithm 10: Hybrid-vertex-edge-based-Visit

1: if v.label = unvisited then
2: v.label = visited
3: if sim(v, x) > δ then
4: Add v to the current value of user list
5: for all e = (v, v′) and (v′, v) in E do
6: if e.weight > θ and v′.betweenness > σ then
7: Hybrid-Vertex-Edge-Based-Visit(G, v′)
8: end if
9: end for

10: end if
11: end if

Algorithm 11: Hybrid vertex-edge-based SSBFS

Input: (i) An item x and its Item Preference Tree IPT (x)
(ii) A positive integer n
(iii) A user-item similarity threshold δ
(iv) An edge weight threshold θ
(v) Vertex Betweenness threshold σ
Output: List of recommended users user list
1: Q = empty queue
2: Compute the degree centrality of every vertex in V
3: vertex-degree-vector = vertices in a descending order according to degree

centrality
4: for all v in vertex-degree-vector do
5: if sim(v, x) > δ and i ≤ n then
6: Add v to the current value of user list
7: v.label = visited
8: enqueue(Q, v)
9: i = i+ 1

10: end if
11: end for
12: while Q �= ∅ do
13: v = dequeue(Q)
14: for all edge e = (v, v′) in G do
15: if v′.label = unvisited and e.weight > θ then
16: v′.label = visited
17: if sim(v′, x) > δ and v′.betweenness > σ then
18: Add v′ to the current value of user list
19: enqueue(Q, v′)
20: end if
21: end if
22: end for

23: end while
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Table 4.4: Social network analysis measure as parameters
Centrality Visited users Visited edges Recommended users

Degree 5/10 6/13 3
Closeness 4/10 1/13 4

Betweenness 6/10 4/13 4
Degree-betweenness 2/10 3/13 2

degree values in the network. We suppose that the vertex between-
ness centrality threshold σ = 6, the edge weight threshold θ = 10
and sim(D, x) < δ and sim(F, x) < δ.
SSDFS starts the search from A. The reachable vertices from A is
B. The other vertices are not reachable and not processed by SS-
DFS.The output of SSDFS using degree-betweenness centrality is
the recommendation list containing the vertices A and B.

Figure 4.19: SSDFS with degree-betweenness centrality

Table 4.4 compares how many vertices and edges the different al-
gorithms with different centrality parameters explore the co-purchases
collaboration network.

4.5 Conclusion

In this chapter we introduced our proposed approach: the semantic-
social recommender system. This new approach uses two types of
information, semantic information and social information.
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In semantic information we proposed to represent user prefer-
ences and item features in a form of semantic taxonomy tree. Fur-
thermore, we proposed a new user-item relevancy measure to find
out the semantic relevance between users and items in the system.

On the other hand, according to social information we proposed
to represent users via a collaboration social network extracted from
user-item bipartite graph; and to use information related to users
centrality and the strength of their social ties.

For that, we proposed a new approach which integrates seman-
tic information and social information with a graph searching al-
gorithm, such as depth-first search DFS algorithm and breadth-
first search BFS algorithm. We called our new proposed algorithms
semantic-social depth-first search SSDFS and semantic-social breadth-
first search SSBFS.

Both of SSDFS and SSBFS have two versions: vertex-based and
vertex-edge-based. In vertex-based we only consider user central-
ity and user-item semantic relevancy; while in vertex-edge-based we
consider user centrality, edge weights and user-item semantic rele-
vancy.

Moreover, we applied our proposed semantic-social approach with
several types of centralities: degree centrality, closeness centrality,
betweenness centrality and a hybrid model that combines degree
centrality with betweenness centrality.

In the next chapter we will provide a detailed experimental study
about the different types of our proposed algorithms, and the differ-
ent datasets and algorithms that are used to test and validate our
semantic-social recommendation approach.



Chapter 5

Experimental Results

5.1 Introduction

In this chapter we present in details our experiments and our ob-
tained results. In fact, we apply our proposed algorithms on two real
datasets, the first one is extracted from Amazon.com and the second
one is extracted from MovieLens. Then we compare our algorithms
with two of the classical recommendation algorithms: item-based
collaborative filtering and hybrid algorithm. Finally, in order to
compare and validate our algorithms we use two types of measures:
accuracy measures, including precision, recall and f-measure; and
performance measures including graph coverage and execution time
(recommendation time).

Our tests are organized as follows:

1. A comparative study of semantic-social depth-first search SS-
DFS with two heuristics: vertex-based and vertex-edge-based,
considering user-item semantic relevancy, user degree centrality
and edges weight in the case of vertex-edge-based heuristic.

2. A comparative study of semantic-social breadth-first search SS-
BFS with two heuristics: vertex-based and vertex-edge-based,
considering user-item semantic relevancy, user degree centrality
and edges weight in the case of vertex-edge-based heuristic.

3. A comparative study of semantic-social depth-first search SS-
DFS and semantic-social breadth-first search SSBFS.

137
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4. A comparative study of semantic-social depth-first search SS-
DFS and semantic-social breadth-first search SSBFS, with dif-
ferent types of user centralities (closeness, betweenness and
degree-betweenness).

This chapter is organized as follows: in the second section we rep-
resent the datasets we use, the third section details the evaluation
algorithms, the fourth section explains the evaluation metrics and
the fifth section introduce the algorithm parameters and we expose
our results in the sixth section to finally conclude in the seventh
section.

5.2 Datasets

We use two datasets from real world. (a) MovieLens1 the well
known dataset in the world of movie recommendation, and (b) Ama-
zon.com2 the well known dataset in the world of e-commerce.

MovieLens dataset has been collected by GroupLens research lab
at the university of Minnesota. This dataset describes the users and
their preferred movies, and it has been used to test and validate
several types of collaborative-filtering recommendation algorithms
since 1997.

Amazon is an international company for e-commerce, that have
been created in 1994. Datasets from Amazon.com contain several
types of information about users and their purchases.

In our experiments, we use one dataset from MovieLens and four
datasets from Amazon.com. Table 5.1 shows the features of these
datasets, mainly the number of users and the number of items.

Our motivation of using several types of datasets with different
sizes, is to study the stability and the scalability of our algorithms
and to analyze their ability to be used on different types of datasets
with different sizes.

This section discusses the datasets that we used in our exper-
iments. Moreover, we show how to shift from user-item classical
dataset to a social collaboration network connecting users.

1http://movielens.org
2http://www.amazon.fr
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Table 5.1: Datasets features
Social Network Number of users Number of items

MovieLens 999 1682
Amazon(1) 1, 253 500
Amazon(2) 2, 802 1000
Amazon(3) 38, 982 15, 000
Amazon(4) 51, 220 20, 000

Table 5.2: Social Networks Features
Social Network |V | |E| Dia D CC

MovieLens 999 46, 689 4 0.094 0.436
Amazon(1) 1, 253 36, 802 4 0.047 0.604
Amazon(2) 2, 802 117, 924 4 0.03 0.74
Amazon(3) 38, 982 5, 005, 398 5 0.139 0.588
Amazon(4) 51, 220 6, 893, 029 17 0.002 0.878

Table 5.3: Social Networks Centralities
Social Network (av) Degree (av) Closeness (av) Betweenness

MovieLens 93.472 0.608 295.3
Amazon(1) 58.7 1.623 411.38
Amazon(2) 84.171 1.635 93667
Amazon(3) 187 4.531 13605
Amazon(4) 269 6.56 18276

5.2.1 MovieLens Dataset

MovieLens dataset has been collected by GroupLens research project
at the University of Minnesota 1. MovieLens has several types of
datasets, the one we have chosen includes information about 100, 000
ratings, these ratings have interval of [1, 5], from about 1000 users
on 1682 movies. In this dataset, each user has rated 20 movies at
least.

Users have extra information about their age, gender, occupa-
tion and location. Moreover, Movies are described via their genres,
these genres are defined as follows: Action, Adventure, Animation,
Children’s, Comedy, Crime, Documentary, Drama, Fantasy, Film-
Noir, Horror, Musical, Mystery, Romance, science- fiction (Sci-Fi),
Thriller, War and Western.

We handled MovieLens dataset by: firstly building user-movie bi-

1http://grouplens.org/datasets/movielens
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partite graph, secondly extracting users co-rated network and finally
using a semantic taxonomy tree describing the hierarchical relations
among movies genres. These steps are described as follows:

• User-movie bipartite graph G is a graph in which the set of
vertices V (G) is composed of two disjoint sets, the set of users
U and the set of movies M . Edges connect a user u ∈ U with
a movie m ∈M if the user u has already rated m.

• Users co-rated network (co-rated movies), is the users weighted
one-mode projection network extracted from user-movie bipar-
tite graph. In our approach, we submit the recommendation
query on this network. Figure 5.1 shows this network, as we
plotted it using Gephi software, and Table 5.2 gives some statis-
tics about this network as follows: number of network vertices
|V |, number of network edges |E|, network diameter Dia, net-
work density D and clustering coefficient CC. Furthermore,
Figure 5.2 shows the degree distribution of this network.

Figure 5.1: MovieLens collaboration network (co-rated network) extracted form
user-movie bipartite graph.

• Semantic taxonomy Tree (STT ) is defined in Definition 15 of
Chapter 4. In our approach we use the taxonomy of the genres
of the movies as proposed in [176]. In this taxonomy, the gen-
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Figure 5.2: Degree distribution of the vertices of MovieLens collaboration net-
work.

res of movies are organized in a hierarchy starting from level
0, which contains the most general concept describing movie
genres, to the level 4 (the deepest level in STT) containing the
most specific concepts describing movies genres. This taxon-
omy is given by Figure 5.3. Moreover, as defined in Chapter 4,
item profile tree of a movie m IPT (m) is the subtree from the
semantic taxonomy tree starting from the concept ‘Thing’ in
the taxonomy and ending by the concept describing the genre
of the movie m. Furthermore, user profile tree UPT (u) of user
u is defined as the union of item profile trees of all the user’s
rated movies.

In our approach we apply the semantic-social recommendation algo-
rithms on users co-purchases network showed in Figure 5.1, and we
consider the semantic information of user profile tree UPT (u) and
item profile tree IPT (m).
Table 5.3 shows the average degree, closeness and betweenness cen-
tralities in users co-rated network.

5.2.2 Amazon Dataset

We use Amazon data as another real dataset to test and validate
our approach. Amazon dataset contains detailed information about
7 million users and more than 500 thousand items. This data was
collected, in the summer of 2006, by crawling Amazon website, and
it contains metadata and review information about different prod-



142 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.3: Movies Semantic Taxonomy Tree

ucts such as books, music CDs, DVDs and VHS video tapes [107].
Amazon dataset is available on the web page of Stanford Univer-
sity3.

In our approach, we handle Amazon dataset in the same way
as MovieLens dataset, by establishing the user-item bipartite graph
from Amazon classical dataset, then we extract users co-purchases
network from user-item bipartite graph, also we use the semantic
information attached to users and items in the dataset. These steps
are described as follows:

• User-item bipartite graph G, which is extracted from amazon
dataset. The vertices of this graph are divided into two disjoint
sets, the set of users U and the set of items I. Edges connect a
user u ∈ U with an item i ∈ I, if the user u has purchased the
item i.

• Users co-purchases collaboration network, is the users weighted
one-mode projection extracted from user-item bipartite graph.
This network is shown in Figure 5.4, and its features are given in
Table 5.2. In fact, we have extracted several users co-purchases
networks named Amazon(1), Amazon(2), Amazon(3) and Ama-
zon(4). The different features of these networks are indicated
in Table 5.2, these features are the number of network vertices
|V |, the number of network edges |E|, network diameter Dia,

3http://snap.stanford.edu/data/amazon-meta.html
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network density D and clustering coefficient CC. Moreover,
the degree distribution of each one of these datasets is shown
in Figure 5.5 4.

• In Amazon dataset, items have a profile tree describing their
features; and users have a history of their previous purchases.
Thus, we can extract item profile tree IPT and user profile tree
UPT , as defined in Definition 16 and Definition 17 of Chap-
ter 4.

Moreover, Table 5.3 shows the average degree, closeness and be-
tweenness centralities in users co-purchases network.

Figure 5.4: Amazon(1) users co-purchases network.

5.3 Evaluation Algorithms

In order to evaluate and validate our approach, we propose to com-
pare it with two classical algorithms from the literature of recom-
mender systems [5, 38, 172]. These algorithms are the item-based
collaborative filtering algorithm and the hybrid recommendation al-
gorithm.

4We generated this figure using Gephi software.
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Figure 5.5: Degree Distribution of Amazon(1), Amazon(2), Amazon(3) and
Amazon(4) co-purchases network.

5.3.1 Item-based collaborative filtering algorithm

Item-based Collaborative Filtering algorithm explores the similarity
between the items in the system with regards to the users ratings
[172, 171, 113].

In any item-based collaborative filtering system and for the input
item i the algorithm finds all the items that are similar to i; and it
recommends it to the users who have bought or rated these similar
items. Similarity between items is computed using several measures
such as cosine similarity, pearson correlation and adjusted cosine
similarity [172, 171].

In our experiments we propose to use cosine similarity to com-
pute the similarity between items. Cosine similarity is denoted by
Formula 5.1:

Cosine(ui, uj) =

∑n
k=1 rui,k

.ruj,k√∑n
k=1 r

2
ui,k

.
∑n

k=1 r
2
uj,k

(5.1)
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where rui,k
is the rating of the user ui on the item ik, ruj,k

is the
rating of the user uj on the same item ik and n is the number of
items in the system.

We implemented the item-based collaborative filtering algorithm
on MovieLens and Amazon datasets. The output of this algorithm
is a recommendation list containing all the relevant users to the
recommended item.

5.3.2 Hybrid recommendation algorithm

Hybrid recommender systems have several types [38, 39]. In our
experiments we use the weighted hybrid recommender system [20].
So, we apply the item-based collaborative filtering then we apply
the content-based algorithm. In this hybrid recommendation the
Item-based recommendation uses the cosine similarity as described
in 5.3.1, while content-based recommendation uses our proposed
user-item semantic relevancy measure which is described as follows:

σ(P1, P2) =
1

μ

⎛
⎝ ∑

(τ,λ)∈P1∩P2

λ

⎞
⎠

where μ = min
(∑

(τ,λ)∈P1
λ,

∑
(τ,λ)∈P2

λ
)
, τ is the common concepts

of the profiles P1 and P2 and λ is the level of the common concept.
Using σ, we define the relevancy between a user u and an item x as
the similarity between their profile trees. The user-item relevancy
measure is given as follows:

sim(u, x) = σ(UPT (u), IPT (x))

The output of the algorithm is a recommendation list containing all
the relevant users found by the recommendation algorithm.

5.4 Evaluation Metrics

In order to evaluate our proposed algorithms, we use three types
of metrics (a) accuracy metrics including precision, recall, and F-
measure, (b) graph coverage (c) and execution time.
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5.4.1 Accuracy

We use precision, recall and F-measure to evaluate the accuracy
of our proposed recommendation algorithms [81]. We apply these
measures on the algorithms outputs the “recommendation list”. The
output of each recommendation algorithm is a recommendation list
containing all the recommended users. In fact, the recommendation
list includes two types of users the positive relevant users and the
relevant users, as follows:

1. Positive relevant users are the users from the dataset who have
already bought or rated the input item and who have been
recommended by the recommendation algorithm. Referring to
the usual way of assessing the accuracy of algorithms, positive
relevant users can seen as the true positive part of the outputs
of the algorithms. This is why, in what follows, we denote
by TP the number of positive relevant users returned by the
algorithms in our experiments.

2. Relevant users are the users who have been found by the rec-
ommendation algorithm, and who have not rated or bought the
item. In fact, these users represent the algorithm’s suggested
users, who have relevant interests to the input item (based on
the item-user relevancy measure). Relevant users can seen as
the true negative part of the outputs of the algorithms. This is
why, in what follows, we denote by TN the number of relevant
users returned by the algorithms in our experiments.

Precision is defined as the probability that a user, to whom we pro-
pose the recommendation, is positive relevant; and recall is defined
as the probability that a positive relevant user is recommended [81].

The definitions of these two measures is given as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + TN

where TP (true positive) is the number of the positive relevant users
who have been recommended, TN (true negative) is the number of
the positive relevant users who have not been recommended, and
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FP (false positive) is the number of the relevant users, who have
been recommended.
Moreover, we use F-measure which combines precision and recall in
one formula, as follows:

F −Measure = 2× Precision×Recall

Precision+Recall

The validation algorithm finds:

1. The number of the common users between the recommendation
list and the list of all the other users who have bought or rated
the items in the whole system, this number represents the true
positive TP .

2. The size of the recommendation list which is equal to TP +FP

3. The number of all the users who have already bought or rated
the items from the whole dataset, this number is equal to TP +
TN

Then we compute and compare the precision, recall and f-measure of
the all recommendation algorithms, as previously described in this
section.

5.4.2 Data coverage

Data coverage is defined as the percentage of the dataset or the
graph vertices (users) who have been visited by the recommenda-
tion algorithms. The percentage of graph visited vertices is very
important, especially in the case of big graphs, because visiting all
the graph vertices influences the algorithm performance.

5.4.3 Execution time

Execution time is defined as the time each algorithm takes to search
the graph or the dataset, in order to recommend an item to users.

5.5 Algorithms: Thresholds

In this section we study the impact of the different values of the
algorithms thresholds on the results. For that, we investigate the
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different values of the semantic threshold δ, the edge weight thresh-
old θ and the size of the centrality vector n and their effect on the
results. Actually, we study the case of Amazon dataset and we are
concerned by the values that give our algorithms the best accuracy
and performance results.

5.5.1 F-Measure and Graph coverage of algorithms thresh-
olds

We achieved several tests on different values of each threshold in the
system. Then we selected the best values of these thresholds that
give good accuracy and performance results.

• Semantic threshold δ: used in the user-item semantic relevancy
measure. Figure 5.6 shows the best values of δ giving the best
F-measure and graph coverage for SSDFS algorithm. As well,
Figure 5.7 shows the best values for SSBFS algorithm. Accord-
ing to these figures we choose δ = 3

Figure 5.6: User-item semantic relevancy threshold δ effects on F-Measure and
graph coverage for SSDFS algorithm.

• Edge weight threshold θ: determines the edges weights in the
network. Figure 5.8 shows the best values of θ giving better
F-measure and graph coverage for SSDFS algorithm. Likewise,
Figure 5.9 determines the same for SSBFS algorithm. Accord-
ing to these figures we choose θ = 30.

• Centrality-vector size threshold n that determines the max-
imum number of users in the vertex-centrality-vector. Fig-
ure 5.10 shows the best value of centrality-vector size giving
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Figure 5.7: User-item semantic relevancy threshold δ effects on F-Measure and
Graph coverage for SSBFS algorithm.

Figure 5.8: Edge weight threshold θ effects on F-Measure and Graph coverage
for SSDFS algorithm.

better F-measure and graph coverage for SSDFS algorithm.
Also, Figure 5.11 shows the best values for SSBFS algorithm.
According to these figures we choose n = 200.

Summarizing the previous discussion we fixed the semantic thresh-
old δ = 3, the edge weight threshold θ = 30 and the centrality vector
size n = 200 for the both algorithms SSDFS and SSBFS.

5.6 Recommendation queries

The recommendation query is an item x to be recommended to the
users who are connected via the collaboration network. The item x
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Figure 5.9: Edge weight threshold θ effects on F-Measure and Graph coverage
for SSBFS algorithm.

Figure 5.10: Centrality-vector size n effects on F-Measure and Graph coverage
for SSDFS algorithm.

has an item profile tree IPT (x) and each user u in the collaboration
network has a user profile tree UPT (u).

For MovieLens dataset, we have randomly selected and submit-
ted 100 queries. Moreover, we have selected the recommendation
queries as items that have been rated by more than 20 users in the
dataset. Each one of the 100 items is submitted to the SSDFS,
SSBFS, collaborative filtering, and hybrid algorithms. Our results
represent the average precision, average recall and average f-measure
of the 100 queries.

For Amazon dataset, we have randomly selected and submit-
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Figure 5.11: Centrality-vector size n effects on F-Measure and Graph coverage
for SSBFS algorithm.

ted 54 queries. Furthermore, we have selected the recommendation
queries as items that have been bought by more than 20 users in
the dataset. Each one of the 54 items is submitted to the SSDFS,
SSBFS, collaborative filtering and hybrid algorithms. Our results
represent the average precision, average recall and average f-measure
of the 54 queries.

5.7 Results and Validation

We developed our algorithms using java 6, we also used JUNG (Java
Universal Network/Graph), NetworkX (Python), and Gephi. These
frameworks are used for social network analysis and visualization.
Moreover, we performed our experiments on an Intel(R) Xeon(R)
CPU E5520 2.27GHz with 12 Giga of RAM, using Debian Linux as
operating system.

In this section Table 5.4 and Table 5.5 show how our tests and
validation processes are organized. In fact, we use three different
datasets Amazon(3), Amazon(4) and MovieLens, these datasets are
described in Table 5.2.

Our motivation is to study the accuracy and the performance
of the semantic-social recommender system using different types of
datasets with different sizes. In doing so we study the stability
and the scalability of our approach, and we show the ability of our
algorithms to be applied on several datasets.
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Table 5.4: Experiments and their validation
Experiments Algorithms Validation Dataset

SSDFS
Vertex-based CF & Hybrid

Amazon(3)
Vertex-Edge-based Accuracy & Performance

SSBFS
Vertex-based CF & Hybrid

Amazon(3)
Vertex-Edge-based Accuracy & Performance

SSDFS (vs) SSBFS
Vertex-based CF & Hybrid

Amazon(3)
Vertex-Edge-based Accuracy & Performance

SSDFS & SSBFS
Vertex-Edge-based Accuracy & Performance

Amazon(4)
&

Centrality variation MovieLens

Table 5.5: Experimented algorithms details
Experiments Algorithms Heuristic

SSDFS

Vertex-based
Semantic relevancy
Degree centrality

Vertex-Edge-based
Semantic relevancy
Degree centrality

Edge weight

SSBFS

Vertex-based
Semantic relevancy
Degree centrality

Vertex-Edge-based
Semantic relevancy
Degree centrality

Edge weight

SSDFS (vs) SSBFS

Vertex-based
Semantic relevancy
Degree centrality

Vertex-Edge-based
Semantic relevancy
Degree centrality

Edge weight

SSDFS & SSBFS Vertex-Edge-based

Semantic relevancy
closeness centrality

Edge weight
Semantic relevancy

Betweenness centrality
Centrality variation Edge weight

Semantic relevancy
Betweenness-Degree centrality

Edge weight

Our experiments include the following comparative tests:
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• Semantic-social depth-first search SSDFS with two heuristics:
vertex-based heuristic and vertex-edge-based heuristic. We com-
pare these algorithms with the item-based collaborative filter-
ing recommendation algorithm and the hybrid recommendation
algorithm.

• Semantic-social breadth-first search SSBFS with two heuristics:
vertex-based and vertex-edge based. We compare these algo-
rithms with the item-based collaborative filtering recommen-
dation algorithm and the hybrid recommendation algorithm.

• We compare the semantic-social depth-first search SSDFS with
the semantic-social breadth-first search SSBFS algorithms.

• We compare the semantic-social depth-first search SSDFS with
the semantic-social breadth-first search SSBFS using different
centralities: degree centrality, closeness centrality and between-
ness centrality. Moreover we propose to combine degree and
betweenness centralities in one algorithm.

5.7.1 Semantic-Social Depth-First Search SSDFS

In this experiment, we test two classes of the semantic-social recom-
mendation approach as explained in Chapter 4, Subsection 4.4.2:

1. Semantic-social depth-first search with vertex-based heuristic,
based on user degree centrality and user-item semantic rele-
vancy measure.

2. Semantic-social depth-first search with vertex-edge-based heuris-
tic, based on user degree centrality, edge weight and user-item
semantic relevancy measure.

Vertex-based and vertex-edge-based heuristics are based on the users
degree centrality, so the centrality vector of these algorithms con-
tains users with high values of degree centrality.

In this test we use Amazon(3) dataset which has 38, 982 users
and 5, 005, 398 edges; and we submit 54 different recommendation
queries for 54 different items.

Figure 5.12 shows a comparison of the average values of precision,
recall and F-measure of the 54 recommendation quires submitted
to the four recommendation algorithms (vertex-based, vertex-edge-
based, collaborative filtering and the hybrid); and Figure 5.13 shows
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a comparison of the data coverage and the execution time of these
algorithms.

Figure 5.12: Average precision recall and F-measure, applied on Amazon(3)
dataset.

Accuracy measures Figure 5.12 shows the average precision, the
average recall and the average F-measure of the 54 submitted rec-
ommendation queries.

• Precision: Figure 5.12 shows that vertex-edge-based SSDFS
gives the best precision value. In fact the range between the
best precision value and the worst one is not very wide, but yet
we can say that vertex-edge-based SSDFS gives good precision
compared to the other algorithms.

• Recall: Hybrid recommendation algorithm gives the best re-
call value compared to the other algorithms, then the vertex-
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Figure 5.13: Data coverage and execution time in minutes

based SSDFS comes next after the hybrid algorithm. From
Figure 5.12 and according to recall values the range between
the best value and the worst value is pretty wide compared to
the precision.

• F-measure: we notice that, the vertex-edge-based algorithm
gives the best F-measure compared to the other three algo-
rithms. Moreover, vertex-based algorithm, collaborative filter-
ing algorithm and hybrid algorithm show close values of F-
measure but not enough to be as good as the vertex-edge-based
algorithm.

Graph coverage Figure 5.13 shows the average data coverage over-
all the tested algorithms. We notice that vertex-edge-based SSDFS
algorithm covers a very small part of the graph (2.99%) compared
to the vertex-edge SSDFS algorithm which covers 52.2%. Moreover,
item-based collaborative filtering and the hybrid algorithm explore
100% of the dataset.

Execution time Figure 5.13 shows that hybrid recommendation al-
gorithm takes a very long time to answer the recommendation query,
and it is the same case for item-based algorithm. On the other hand,
vertex-based SSDFS and vertex-edge-based SSDFS answers the rec-
ommendation query in a very short time, less than 9 minutes.
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Figure 5.14: The recommendation list size of 21 queries of the compared algo-
rithms

Discussion Our results show that vertex-edge-based heuristic gives
better accuracy and performance results than the other algorithms;
also it is better than vertex-based algorithm, even if the range be-
tween the largest value and the smallest value is not wide.

Moreover, the importance of our approach comes form the fact
that, it explores a small part of the data, 2.99% in the case of vertex-
edge-based SSDFS, and in a very short time; and it still gives good
accuracy values compared to the other methods that search all the
data (and these take a very long time as shown in Figure 5.13). So
far, the semantic-social depth-first search shows an acceptable ac-
curacy and a significantly improved performance compared to the
other algorithms.

Moreover, Figure 5.14 shows the size of some of the recommen-
dation lists, the outputs of the tested recommendation algorithms.
Obviously, as vertex-edge-based SSDFS explores a small part of the
network, it has the smallest size of the recommendation list com-
pared to the other recommendation lists given by the other algo-
rithms, this can explain the high precision values and the small
recall value. Furthermore we notice that, the recommendation list
size of the vertex-based SSDFS algorithm, in some queries, is near
to the one of the collaborative filtering algorithm.
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5.7.2 Semantic-Social Breadth-First search SSBFS

Here we test two versions of the semantic-social recommendation
using breadth-first search algorithm as explained in Chapter 4, Sub-
section 4.4.3:

1. Semantic-social breadth-first search, with user centrality (de-
gree) and item-user relevancy measure.

2. Semantic-social breadth-first search with user centrality (de-
gree), item-user relevancy measure and edge weight.

We use exactly the same recommendation quires, the same param-
eters and the same dataset Amazon(3) as described in (Subsec-
tion 5.7.1).

Figure 5.15 shows a comparison of the average precision, recall
and F-measure of the 54 recommendation queries submitted to the
four recommendation algorithms (vertex-based, vertex-edge-based,
collaborative filtering and the hybrid). Figure 5.16 shows a compar-
ison of the data coverage and the execution time of these algorithms.

Accuracy Figure 5.15 shows that item-based collaborative filtering
algorithm gives the best precision value and vertex-based SSBFS
gives the worst precision value (the range between the two values is
not very wide).

Moreover, the hybrid recommendation algorithm shows the best
recall value compared to the other algorithms, then the vertex-based
algorithm, while collaborative filtering algorithm shows the worst re-
call value.

Furthermore, according to F-measure collaborative filtering shows
the best results, while the vertex-based algorithm shows the worst
values. We can also notice that, the range of the differences of F-
measure values is not wide enough between the four algorithms.

Graph coverage Figure 5.16 shows that vertex-based and vertex-
edge-based algorithms explore less data than the item-based col-
laborative filtering and the hybrid recommendation. In fact, our
proposed semantic-social recommendation algorithms explore about
50% of the dataset while the other algorithms explore 100% of the
dataset.
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Figure 5.15: Average precision recall and F-measure, applied on Amazon(3)
dataset for SSBFS algorithm.

Execution time Figure 5.16 shows that vertex-based and vertex-
edge-based algorithms are very rapid in answering the recommen-
dation query, they take less than 12 minutes, which is a very signif-
icant time compared to the other classical algorithms which takes
more than 300.

Discussion Our results show that the item-based collaborative fil-
tering and the hybrid algorithm give better accuracy values than
vertex-edge-based SSBFS and vertex-based SSBFS. But these dif-
ferences in accuracy values are not significant, because the range
between the minimum value and the maximum value is not wide
enough.

Moreover, our proposed approach shows a significant improve-
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Figure 5.16: Data coverage and execution time in minutes

ment in the performance compared to the two the other classical
algorithms.

Figure 5.17 shows the size of the recommendation lists, gener-
ated by submitting several recommendation queries on the four al-
gorithms. Obviously the size of the recommendation lists of vertex-
edge-based algorithm is the minimum compared to the others, be-
cause it explores a small part of the network.

Figure 5.17: The recommendation list size of 21 queries applied on the compared
algorithms
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5.7.3 Comparasion between SSDFS and SSBFS

We propose to compare SSDFS and SSBFS algorithms in their two
versions vertex-based and vertex-edge-based according to the ac-
curacy and the performance. We use the same recommendation
queries, the same parameters and the same dataset Amazon(3) as
described in (Subsection 5.7.1) and (Subsection 4.4.3) of Chapter 4.
Also, we submit the same 54 recommendation queries. Our results
are described as follows:

Accuracy Figure 5.18 shows that the vertex-edge-based SSDFS
shows better precision than the vertex-edge-based SSBFS, similarly
vertex-based SSDFS algorithm shows better precision than vertex-
based SSBFS algorithm. Moreover, vertex-edge-based SSBFS and
vertex-based SSBFS show better recall than vertex-edge-based SS-
DFS and vertex-based SSDFS. On the other hand, the F-measure
shows that vertex-edge-based SSDFS gives the most significant val-
ues compared to the other algorithms.

Graph coverage and execution time Figure 5.19 shows that vertex-
edge-based SSDFS explores a very small part of the co-purchases
network 3% of the network, while vertex-edge-based SSBFS explores
52% of the network.

For the case of execution time the range of differences between
SSDFS and SSBFS is about 4 minutes, and the vertex-edge-based
SSDFS algorithm achieves the recommendation in the shortest time
compared to the other algorithms.

Discussion Figure 5.20 shows the size of the recommendation lists
of the four algorithms, and we notice that vertex-edge-based SSDFS
has the minimum recommendation list size as it explores a small part
of the network.

5.7.4 Social network analysis measures as parameters

In these experiments we apply and compare the semantic-social
depth-first search SSDFS and the semantic-social breadth-first search
SSBFS, as follows:
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Figure 5.18: Average precision recall and F-measure, applied on Amazon(3)
dataset.

1. SSDFS and SSBFS with semantic relevancy, closeness central-
ity and edge weight.

2. SSDFS and SSBFS with semantic relevancy, betweenness cen-
trality and edge weight.

3. SSDFS and SSBFS with semantic relevancy, degree-betweenness
centrality (in this test we combine the degree centrality with
the betweenness centrality in one algorithm) and edge weight.

In these tests, we submit the recommendation queries to two types
of datasets: Amazon(4) dataset and MovieLens dataset. For Ama-
zon(4) we use the same parameters as Amazon(3). For MovieLens
dataset we take the average value of δ of several queries; and the
average value of all the edge weights θ in the co-rated graph. We
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Figure 5.19: Data coverage and execution time in minutes

submit 54 queries to Amazon(4) dataset, and we submit 100 queries
to MovieLens dataset.

The accuracy values and the performance values of our results
are described, as follows:

Accuracy Figure 5.21 shows the values of precision, recall and F-
measure of the 100 queries submitted to the SSDFS and SSBFS
algorithms, using MovieLens dataset. From this figure, we notice
that SSDFS with betweenness centrality gives the best precision
value; and SSDFS with closeness centrality gives the worst preci-
sion value. Moreover, SSDFS with degree-betweenness centrality
gives the best recall value; while SSDFS with betweenness central-
ity gives the worst recall value. Furthermore, for F-measure SSDFS
with degree-betweenness gives the best value while SSDFS with be-
tweenness gives the worst value.

For SSBFS algorithm, we notice the same thing as SSDFS al-
gorithm in recall and F-measure, except precision where closeness
gives the best precision value and degree gives the worst one.

Figure 5.22 shows the values of precision, recall and F-measure of
the 54 queries submitted to the two algorithms SSDFS and SSBFS,
using Amazon dataset. In SSDFS algorithm degree-betweenness
centrality gives the best precision value and closeness gives the worst
one, also degree centrality gives the best recall value while degree-
betweenness centrality gives the worst one. According to F-measure
degree centrality has the best value while closeness has the worst
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Figure 5.20: The recommendation list size of the different compared algorithms

value.
For SSBFS algorithm we notice that degree-betweenness central-

ity has the best precision, and degree centrality has the best recall
and F-measure values.

Graph coverage The graph coverage of MovieLens graph is shown
in Figure 5.23, from this figure we notice that the algorithms explore
a small part of the graph, the range of graph exploration is between
16% in the case of betweenness centrality and 53% in the case of
degree-betweenness centrality for SSDFS algorithm. In the case of
SSBFS algorithm the algorithm explores a larger part of the graph
and the range is between 92% in the case of degree centrality and
86% in the case of degree-betweenness centrality.

The graph coverage in Amazon(4) dataset is shown in Figure 5.24,
and it is very small, its range is between 0.21% in the case of degree-
betweenness and 2.3% in the case of degree centrality for SSDFS
algorithm. Furthermore, the graph coverage range for SSBFS algo-
rithm is between 3.1% in the case of closeness centrality and 37.3%
in the case of degree centrality.

Discussion MovieLens dataset and Amazon(4) dataset has no wide
range between the best accuracy values and the worst accuracy val-
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Figure 5.21: SSDFS algorithm vs SSBFS algorithm Precision Recall and F-
measure Degree, Closeness, Betweenness and Degree-Betweenness centrality

ues using different centralities. We can say that our algorithms give
an acceptable accuracy but they have a very important performance.

5.8 Conclusion

In this chapter we introduced the experiments and the validation
processes of our proposed approach the semantic-social recommender
system.

To validate our approach we used different datasets with differ-
ent sizes and different natures, these datasets are the co-purchases
dataset from Amazon.com and movies co-ratings dataset fromMovie-
Lens.

We compared our proposed algorithms with the classical recom-
mendation algorithms mainly the item-based and the hybrid algo-
rithm. Then we used precision, recall and F-measure as accuracy
measures to assess the accuracy of our algorithms. Moreover, we
assessed the performance of the algorithms by comparing the graph
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Figure 5.22: SSDFS algorithm vs SSBFS algorithm Precision Recall and F-
measure

coverage and the execution time.
Also we compared the semantic-social depth-first search with the

semantic-social breadth-first search, and we found that semantic-
social depth-first search gives better accuracy and performance than
the semantic-social breadth-first search.

It has been seen that our approach gives a comparable and some-
times better accuracy with regards to the two existing approaches
considered in our experiments. On the other hand, our experiments
show a significant improvement regarding to the performance, com-
pared to the two considered existing approaches.
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Figure 5.23: SSDFS algorithm vs SSBFS algorithm Data Coverage

Figure 5.24: SSDFS algorithm vs SSBFS algorithm Data Coverage and Execu-
tion time



Chapter 6

Conclusion

6.1 Summary

Social networks have a vast range of applications in several domains
such as: marketing, e-commerce, finding users with similar tastes for
recommendation and searching for expertise. These applications are
evident in the recent social networking sites like Facebook, LinkedIn
and google+.

For long time ago, social networks have attracted the attention
of scientists from several domains such as: psychology, social sci-
ence, physics, mathematics and computer science; and they have
been used in several studies mainly the analysis of different types of
relationships between users (friendship, professional, collaborative).

Social Network Analysis SNA is used to study the structure of
social networks. In fact SNA is very important because it helps
to investigate the different characteristics of social networks, and to
study the connectivity and the relationships between different users.
Due to that, social network analysis can be implemented in recom-
mender systems.

Recommender systems have attracted the attention of the re-
searchers in the last two decades. Recommender systems recom-
mend an item to a group of users by generating recommendation
lists that contain all the possible relevant users to the input item,
and they use methods from domains such as information filtering
and information retrieval.
Recommender systems have several applications, in our modern life,

167
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as movies recommendation, music recommendation and books rec-
ommendation.
Recommender systems have three main classes: content-based, col-
laborative filtering and hybrid. Content-based recommendation is
based on the relevance between the item features and the user pro-
file. Collaborative filtering is based on the common preferences be-
tween users. Hybrid recommendation combines content-based rec-
ommendation with collaborative filtering.

In this thesis, our focus is on hybrid recommendation applied on
social collaboration networks or co-purchases networks. In this sys-
tem the collaborative filtering depends on (a) user centralities and
(b) the strength of social ties between social network users. More-
over, the content-based depends on the contents of user preferences
profile and the content of item features profile, for that we use user-
item relevancy measure, based on taxonomy, to find the semantic
relevance between the input item and the users .

Based on social network analysis algorithms, and the taxonomy
used in user profile and item profile, we propose a new approach
named Semantic-Social recommender system which recommends an
input item to users connected by a collaboration social network,
using two types of information: semantic information using tax-
onomy representation of user profile and item profile; and social
information using information about users and their connections in
the co-purchases network.

6.2 Contribution

We proposed a new approach of recommendation, named semantic-
social recommender system. In this approach we employed two types
of information: semantic information and social information.
Semantic information depends on the semantics that describe user
profile and item profile.
Social information depends on the role and the position of the users
in the co-purchases collaboration networks. Semantic and social
information of our approach are described as follows:

1. Semantic information including:
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(a) User profile tree using ontology (taxonomy).

(b) Item profile tree using ontology (taxonomy).

(c) User-item semantic relevancy, which is used to find out the
semantic relevance between user taxonomy tree and item
taxonomy tree.

2. Social information including:

(a) Co-purchases network, in which vertices represent users in
the recommender systems and edges represent the weighted
relations between users.

(b) Graph searching algorithms based on Depth-first search
DFS and Breadth-first search BFS.

For that we proposed:

1. semantic measure, which is used to find the semantic relevance
between user preferences and item features in the system;

2. social heuristics, which are based on (a) user centrality in the
co-purchases network and (b) social ties between users in the
co-purchases network.

In our methods, we proposed to integrate semantic information and
social information with graph searching algorithms, mainly DFS
and BFS. Thus we called our algorithms semantic-social depth first
search SSDFS and semantic-social breadth-first search SSBFS.
These algorithms are designed to search a small part of the graph
while keep having a significant recommendation accuracy, which is
not the case of the classical recommendation algorithms (collaborative-
filtering and content-based). In fact, classical recommendation algo-
rithms search all the dataset in order to have a significant accuracy.

6.2.1 Tests and Results

We tested our methods on several datasets with several sizes, these
datasets are: Amazon dataset, from Amazon.com, and MovieLens.
We compared our methods with the classical recommendation algo-
rithms: item-based collaborative filtering and hybrid recommenda-
tion.
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Our results showed a significant improvement in performance and
accuracy, compared to item-based collaborative filtering and hybrid
recommender systems.

The main improvement of our approach is to significantly reduce
the size of explored data, while ensuring a slightly better accuracy.
For instance, SSDFS algorithm with vertex-edge-based heuristic ex-
plores (2.99%) of the dataset while item-based collaborative-filtering
and hybrid recommendation explore (100%) of the dataset, in ad-
dition SSDFS algorithm gives a slightly better accuracy than item-
based and hybrid recommendations.

6.3 Perspectives and Future work

We have several proposes and perspectives for future work. In this
section, we mention some of these perspectives grouping them in
two groups: short-term perspectives and long-term perspectives.

6.3.1 Short-term perspectives

Studying the impact of other types of users centralities in the rec-

ommendation in our approach we use degree centrality, closeness
centrality, betweenness centrality and we proposed a hybrid central-
ity, by combining degree with betweenness. For future, we can use
other types of centralities such as PageRank.

Applying our algorithms on the network communities This pro-
posed approach is described as follows:

1. Group the users, of the collaboration network, according to
their communities. By applying one of the well known commu-
nity detection algorithms.

2. Create a community profile for each specific community.

3. Submit the recommendation query on each community instead
of submitting the recommendation query on the global network.

For that, we propose to define the community profile as the union of
all the user tree profiles UTP (u) of all the users, that are members
of this community. As a result, the community profile will have a
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weighted tree structure, in which weights are attached to the con-
cepts of this tree and their weight values equal to the number of
their occurrence in all the UTP (u) of all the users of this commu-
nity.
In this case, we will need a community-item relevancy measure to
determine the relevancy between the input item and the community
profile. Community profile summarizes all the users preferences in
this community. If the community-item relevancy measure is ac-
ceptable (according to a predefined criterion), then the SSDFS or
the SSBFS will start the semantic-social recommendation in this
community; and the semantic-social recommender system will do
the same process for all the communities in the network.

6.3.2 Long-term perspectives

Big Data by applying and testing our algorithms on big data and
real social networks such as Facebook, LinkedIn and Twitter.

Studying the impact of using different types of user-item relevancy

measures in this thesis we proposed an intuitive user-item rele-
vancy measure, based on a taxonomy tree using ‘is-a’ hierarchy.
So, studying more complex user-item relevancy measures and using
more complex ontology than a taxonomy could lead us to a better
user-item semantic relevancy measure.

Using tripartite graph tripartite graphs have three disjoint sets of
vertices. Thus, we can employ tripartite graphs in the semantic-
social recommender system by using three different sets of graph ver-
tices, as follows: a set for users, a set for items and a third set for se-
mantic concepts connected via taxonomy. As a consequence, we will
have the relations: user-item, user-semantic-taxonomy and item-
semantic-taxonomy. Furthermore, we can adapt our algorithms on
such types of graphs in order to achieve the recommendation.
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belnik. knn versus svm in the collaborative filtering frame-
work. Data Science and Classification, pages 251–260, 2006.

[72] Thomas R. Gruber. A translation approach to portable ontol-
ogy specifications. Knowl. Acquis., 5(2):199–220, June 1993.

[73] Thomas R. Gruber. Toward principles for the design of ontolo-
gies used for knowledge sharing. Int. J. Hum.-Comput. Stud.,
43(5-6):907–928, December 1995.



BIBLIOGRAPHY 181
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