
HAL Id: tel-01088786
https://inria.hal.science/tel-01088786

Submitted on 28 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compilation efficace de spécifications de contrôle
embarqué avec prise en compte de propriétés
fonctionnelles et non-fonctionnelles complexes

Thomas Carle

To cite this version:
Thomas Carle. Compilation efficace de spécifications de contrôle embarqué avec prise en compte de
propriétés fonctionnelles et non-fonctionnelles complexes. Base de données [cs.DB]. Université Pierre
et Marie Curie - Paris VI, 2014. Français. �NNT : 2014PA066392�. �tel-01088786�

https://inria.hal.science/tel-01088786
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
L’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité Informatique
(École Doctorale Informatique, Télécommunication et Électronique)

Présentée par THOMAS CARLE

Pour obtenir le grade de
DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE

COMPILATION EFFICACE DE SPÉCIFICATIONS
DE CONTRÔLE EMBARQUÉ AVEC PRISE EN

COMPTE DE PROPRIÉTÉS FONCTIONNELLES
ET NON-FONCTIONNELLES COMPLEXES

Soutenue le 31 Octobre 2014, devant le jury composé de

Prof. ISABELLE PUAUT IRISA Rapportrice
Prof. FRANÇOIS IRIGOIN Mines ParisTech Rapporteur
Prof. ALIX MUNIER UPMC Examinatrice
Dr. DAVID LESENS Airbus DS Examinateur
Prof. LAURENT GEORGE ESIEE Examinateur
Dr. DUMITRU POTOP-BUTUCARU INRIA Directeur de thèse

PH.D. THESIS OF THE UNIVERSITY
PIERRE AND MARIE CURIE

Department : COMPUTER SCIENCE AND

MICRO-ELECTRONICS

Presented by: THOMAS CARLE

Thesis submitted to obtain the degree of
DOCTOR OF THE UNIVERSITY PIERRE AND MARIE CURIE

EFFICIENT COMPILATION OF EMBEDDED
CONTROL SPECIFICATIONS WITH COMPLEX

FUNCTIONAL AND NON-FUNCTIONAL
PROPERTIES

Defence on October 31st, 2014, Committee:

Prof. ISABELLE PUAUT IRISA Reviewer
Prof. FRANÇOIS IRIGOIN Mines ParisTech Reviewer
Prof. ALIX MUNIER UPMC Examiner
Dr. DAVID LESENS Airbus DS Examiner
Prof. LAURENT GEORGE ESIEE Examiner
Dr. DUMITRU POTOP-BUTUCARU INRIA Advisor

Remerciements

Je tiens à remercier ici Dumitru Potop-Butucaru, mon directeur de thèse, pour la confiance

qu’il m’a accordée, pour tous les conseils qu’il m’a prodigués, pour sa disponibilité et sa

patience tout au long de ma thèse, pour son ouverture d’esprit et pour son implication sans

faille à mes côtés tant durant cette thèse que pour la préparation de mon avenir.

J’aimerais également remercier Isabelle Puaut et François Irigoin, qui ont accepté

d’être les rapporteurs de cette thèse, pour leurs remarques constructives qui m’ont permis

de prendre du recul sur mon travail et de l’améliorer. Je remercie de même Alix Munier,

David Lesens et Laurent George de m’avoir fait l’honneur d’accepter de participer à mon

jury.

Je voudrais remercier les membres passés et présents de mon équipe pour leur bi-

enveillance et leur sympathie, ainsi que pour leurs conseils et leur soutien dans les mo-

ments difficiles, notamment de la rédaction. Mes pensées vont notamment vers Manel

Djemal, Raul Gorcitz, Abderraouf Benyahia, Walid Talaboulma, Falou N’doye, Daniel

de Rauglaudre, Cécile Stentzel, Yves Sorel, Liliana Cucu-Grosjean, Adriana Gogonel et

Codé Lo.

Enfin, je remercie ma famille et mes amis, et plus particulièrement mes parents pour

m’avoir soutenu tout au long de mes (longues) études.

“Un jour viendra où ces avaleurs de feu que nous sommes se mettront à le cracher, et

notre plus belle création sera l’œuvre des incendies que nous aurons ainsi allumés.”

- Romain Gary, Les enchanteurs.

Contents

Remerciements 2

Résumé 6

Abstract 17

1 Introduction 18
1.1 Embedded systems design . 18
1.2 Compilation vs. Real-time scheduling 21
1.3 Contribution . 23

I Offline scheduling: fundamental notions and contributions on
the specification models for embedded systems 28

2 Introduction to synchronous formalisms 29
2.1 The synchronous model of computation 29

2.1.1 Abstraction issues . 30
2.1.2 Clocks and Single-clock synchronous languages 31
2.1.3 Polychronous languages . 32
2.1.4 Languages with affine clocks . 32
2.1.5 From logical time to real time 33

3 Functional specification 35
3.1 Introduction . 35
3.2 The Clocked Graph synchronous language 37

3.2.1 Host language and global definitions 38
3.2.2 Dataflow definition . 44
3.2.3 Well-formed properties . 51
3.2.4 Example . 53

3.3 Translation from higher-level specifications 55
3.3.1 Functional specifications in SynDEx 57
3.3.2 Translation technique . 59

3.4 Abstraction as single-period task systems 60
3.5 Modeling multi-period task systems . 63
3.6 Conclusion . 68

3

4 Modeling resources and resource allocation 69
4.1 Resource description formalism . 72
4.2 Scheduling tables . 74

4.2.1 Table-based off-line scheduling (the principle) 76
4.2.2 Scheduling tables in LoPhT . 82

4.3 Conclusion . 88

II Software pipelining of scheduling tables 90

5 Extensions of the basic formalism 91
5.1 Memory representation for pipelining 92

5.1.1 Architecture model . 92
5.1.2 Implementation model . 93
5.1.3 A simple example . 94
5.1.4 Well-formed properties . 94

5.2 Conclusion . 95

6 Throughput optimization by software pipelining of conditional reservation
tables 96
6.1 Related work and originality . 100

6.1.1 Decomposed software pipelining 100
6.1.2 Originality . 102
6.1.3 Other aspects . 104

6.2 Pipelining technique overview . 104
6.2.1 Representing a pipelined scheduling table 104

6.3 Optimization algorithms . 111
6.3.1 Dependency graph and maximal throughput 111
6.3.2 Dependency analysis and main routine 113
6.3.3 Complexity considerations . 118

6.4 Code generation . 118
6.4.1 Memory management issues . 118

6.5 Experimental results . 122
6.6 Conclusion . 125

III Real-time scheduling and code generation under complex non-
functional constraints 127

7 Extensions of the Clocked Graph formalism 128
7.1 Related work . 131
7.2 Architecture model . 134

7.2.1 Time-triggered systems . 134
7.2.2 Temporal partitioning . 136
7.2.3 Example . 137

7.3 Modeling of the aerospace case study 139
7.3.1 From non-determinism to determinism 140

4

7.3.2 Representing execution modes 141
7.4 Non-functional properties . 142

7.4.1 Period, release dates, and deadlines 142
7.4.2 Worst-case durations, allocations, preemptability 145
7.4.3 Partitioning . 146
7.4.4 Syntax extensions . 146

7.5 Conclusion . 151

8 Real-Time scheduling under complex non-functional requirements 152
8.1 Removal of delayed dependencies . 153
8.2 Offline real-time scheduling . 155

8.2.1 Basic principles . 156
8.2.2 Scheduling algorithm . 157
8.2.3 Complexity and optimality considerations 160
8.2.4 Scheduling results . 161

8.3 Post-scheduling slot minimization . 164
8.4 Partitioned time-triggered code generation 165

8.4.1 Automatic synthesis of communication channels 166
8.4.2 Process number minimization 168

8.5 Conclusion . 169

9 Conclusion and perspectives 171
9.1 Conclusion . 171
9.2 Perspectives . 174

A Modeling NoC-based many-cores 176

List of Publications 178

Bibliography 179

5

Résumé

Conception de systèmes embarqués

Les systèmes embarqués sont des systèmes informatiques ayant une fonction dédiée, au

sein d’un système physique ou informatique plus large. Dans cette thèse, nous nous in-

téressons en particulier aux systèmes de contrôle embarqué [Lee and Seshia, 2011], dont

le rôle est de réguler l’évolution de processus (physiques) afin d’assurer la correction de

leur fonctionnement. Ici, les termes contrôle et régulation sont compris dans le sens de la

théorie du contrôle [Doyle et al., 1990], c’est à dire qu’un système de contrôle embarqué

est vu comme le moyen d’effectuer le contrôle automatique d’un équipement comme un

avion, un train, un réacteur nucléaire, un téléphone mobile, etc. Comme on le voit dans la

figure 1, un système de contrôle embarqué intéragit avec l’équipement contrôlé par le bi-

ais de capteurs et d’actuateurs. Les capteurs mesurent des caractéristiques (analogiques)

spécifiques de l’équipement, et présentent l’information correspondante sous une forme

discrétisée, permettant un traitement digital par le contrôleur embarqué. Les valeurs de

retour discrètes du contrôleur sont utilisées par les actuateurs pour exercer un contrôle

(analogique) sur l’équipement.

Equipement

Actuateur Capteur
Domaine analogique

Domaine digital

Système

Embarqué
de contrôle

Figure 1: Interaction entre un équipement et un système de contrôle embarqué

Un exemple de ces interactions est donné par les contrôleurs embarqués de guidage,

navigation et contrôle (GNC) des avions. Ceux-cis utilisent différents capteurs (de pres-

sion, de température, GPS, accéléromètres, gyroscopes, etc.) pour déterminer l’emplacement,

la vitesse, le roulis, le tangage et le lacet de l’appareil. Ces valeurs sont utilisées de

manière cyclique par le contrôleur GNC pour manipuler la position des ailerons et la

puissance des réacteurs (par le biais d’actuateurs), afin de maintenir la trajectoire désirée.

La conception de systèmes de contrôle embarqué est inter-disciplinaire. A haut niveau,

elle est dirigée par des ingénieurs contrôle commande et par des ingénieurs système. Les

6

ingénieurs contrôle commande fournissent une spécification du comportement attendu

du contrôleur, incluant ses fonctionnalités et ses besoins en termes temporels. Définir

les fonctionnalités d’un système consiste à spécifier les opérations qui doivent s’exécuter

ainsi que leur ordre d’exécution, pour calculer les commandes des actuateurs à partir

des valeurs produites par les capteurs1. Cependant, la spécification fonctionnelle seule

n’est pas suffisante pour traduire le comportement d’un système de contrôle. Pour assurer

un contrôle effectif, les changements dans les processus physiques de l’équipement con-

sidéré doivent être suivis en temps voulu par des changements dans les actuateurs. Par

exemple, le contrôleur embarqué GNC évoqué plus haut doit réagir rapidement aux coups

de vent latéraux afin de maintenir la stabilité de l’avion, particulièrement lors des phases

d’atterrissage. C’est pour cette raison que la partie correspondant au contrôle d’attitude

du contrôleur GNC est exécutée une fois toutes les 50ms [Kent and Williams, 2002].

La spécification de ces contraintes temporelles s’effectue sous la forme de contraintes

temps-réel telles que des périodes, des latences, des dates de déclenchement et des échéances

qui sont attachées aux divers éléments de la spécification fonctionnelle. Les systèmes de

contrôle embarqué appartiennent donc à la catégorie des systèmes temps-réel [Butazzo,

2002], qui forment eux-même une sous-classe des systèmes réactifs [Harel, 1987].

Alors que les ingénieurs contrôle commande spécifient le comportement des con-

trôleurs embarqués, les ingénieurs système étudient le problème de leur implantation,

et fournissent des outils permettant de les gérer durant toute leur durée de vie. Cette durée

de vie s’élève à plus de 20 ans pour un avion commercial, plus de 30 ans pour un réacteur

nucléaire, et plus de 150000km en moyenne pour une voiture. A haut niveau, l’ingénierie

des systèmes considère des propriétés macroscopiques telles que le coût (de développe-

ment, de maintenance, et parfois de mise hors service), la fiabilité (pour des raisons de

cout et de sécurité), le risque, etc. Ces objectifs macroscopiques peuvent être traduits

en termes de besoins non-fonctionnels, et l’ingénierie des systèmes fournit des méthodes

pour raffiner de tels besoins de haut niveau et définir des besoins de plus bas niveau tels

que ceux que nous considérons dans cette thèse. Par exemple, le chapitre 7 considère les

besoins d’ingénierie système suivants : la plateforme d’exécution est fixée2, chaque opéra-

tion de la spécification fonctionnelle s’est vue assignée un niveau de criticité, certaines

de ces opérations peuvent être préemptées (les autres sont dites non préemptables), et une

partie de la distribution des opérations de la spécification fonctionnelle sur les ressources

de la plateforme est également déjà fixée. D’autres propriétés non-fonctionnelles qu’il

est possible de considérer à ce niveau sont, par exemple, la tolérance aux pannes, la con-

sommation d’énergie et l’évolutivité du système. C’est le niveau auquel mon travail se

place : dans cette thèse je considère que les phases préliminaires d’ingénierie ont pro-

1L’état interne du système peut aussi être utilisé.
2Cela peut également imposer des contraintes temps-réel supplémentaires, en plus des celles provenant

de la spécification du contrôle.

7

duit une spécification fonctionnelle, ont fixé l’architecture d’exécution cible (qui peut être

une architecture multiprocesseur/distribuée), et ont généré un ensemble de besoins non-

fonctionnels qui inclut notamment des contraintes temps-réel. A partir de ces données,

mon objectif est de construire automatiquement un système de contrôle embarqué cor-

rect. La correction implique ici deux aspects : la correction fonctionnelle et le respect

des besoins non-fonctionnels. La correction fonctionnelle se traduit par le fait que le sys-

tème se comporte tel que la spécification fonctionnelle le prescrit. Assurer la correction

fonctionnelle d’un tel système implique plusieurs disciplines telles que la compilation

(pour assurer que chaque opération de la spécification est correctement implantée par du

code séquentiel), le calcul parallèle/distribué (pour la construction d’implantations mul-

tiprocesseurs correctes), etc. Un domaine revêtant une importance particulière est celui

de la conception et de l’implantation de langages synchrones qui regroupent toutes les

disciplines nécessaires pour assurer la correction fonctionnelle. Cela est dû au fait que

les langages et formalismes synchrones, qui seront décrits dans la thèse, ont été conçus

spécifiquement pour permettre la spécification de systèmes de contrôle embarqué. Cela

explique leur omniprésence dans la conception des systèmes embarqués et leur utilisation

dans cette thèse.

Assurer le respect de besoins non-fonctionnels tels que ceux listés plus haut (temps-

réel, criticité, préemptabilité, consommation d’énergie, etc.) est principalement étudié

dans le domaine de l’ordonnancement temps-réel, qui lui même tire avantage de résultats

venant de la conception de matériel et de systèmes d’exploitation, du calcul parallèle/dis-

tribué, de la tolérance aux pannes, etc.

Plaidoyer pour une intégration renforcée. La conception d’un système embarqué

complexe rassemble en général des experts venant des domaines cités précédemment.

Cependant, dans les travaux scientifiques et dans la pratique industrielle actuels, ces do-

maines restent largement séparés. Mon opinion est qu’une telle ségrégation a pour résultat

d’augmenter les coûts de conception et de dégrader l’efficacité de l’implantation. Cela est

dû à deux principales causes :

• Les interfaces entre les différents domaines, souvent matérialisées par des transfor-

mations de modèles, ont tendance à abstraire des détails significatifs présents dans

les modèles de départ, ce qui entraine une perte d’efficacité. Cette perte d’efficacité

est souvent accompagnée de l’utilisation d’abstractions peu sûres, qui imposent que

la validation du système passe par une phase de tests intensive, ce qui augmente les

coûts de développement3,

3Par exemple, les modèles de tâches utilisés dans le domaine de l’ordonnancement temps-réel font
souvent l’abstraction de tout le contrôle conditionnel attaché aux tâches, ce qui ajoute du pessimisme à
l’analyse. De plus, beaucoup de modèles de tâches utilisés dans le cadre d’ordonnancement multipro-

8

• Le manque de communication entre les communautés scientifiques et industrielles

implique que des solutions développées dans un domaine ne seront pas appliquées

dans un autre, même lorsque cela serait approprié.

Le travail réalisé durant cette thèse s’attaque à ces deux points pour des classes spécifiques

d’architectures cibles. Afin de réduire la perte d’efficacité nous utilisons des modèles pré-

cis des applications (où le contrôle conditionnel est pris en compte), des architectures

(où les coûts de communication et les mécanismes d’exécution précis sont considérés),

et des besoins non-fonctionnels, qui sont adaptés à nos plateformes d’exécution cibles

(des systèmes partitionnés dirigés par le temps). La modélisation précise de la plateforme

d’exécution réduit également le recours à des abstractions non sûres. Néanmoins la con-

tribution principale de ma thèse s’articule autour du second axe. Plus précisément, je vais

montrer que par l’intégration de concepts provenant de l’ordonnancement temps-

réel, de la compilation et de la programmation synchrone, nous sommes en mesure

de produire automatiquement des implantations temps-réel dirigées par le temps à

la fois correctes par construction (et qui ont donc besoin de moins de travail de vali-

dation) et plus efficaces que celles produites par les approches existantes jusqu’alors.

Dans notre cas, cela revient à appliquer une approche de type compilation lors de la syn-

thèse d’implantations temps-réel à partir de spécifications qui sont complexes à la fois

dans leurs aspects fonctionnels et non-fonctionnels. Réciproquement, on peut également

voir cela comme une extension de l’état de l’art de la compilation, afin de prendre en

compte des besoins non-fonctionnels et de permettre une prise en compte précise des

temps d’exécution au pire cas dans le processus de compilation.

Comparaison entre compilation et ordonnancement temps-
réel

Une séparation existe de longue date entre les domaines de la construction de compi-

lateurs et de l’ordonnancement temps-réel. Si ces deux domaines ont le même objectif

- la construction d’implantations correctes - la séparation se justifie historiquement par

des différences significatives entre les modèles et les méthodes utilisés. En effet, les

travaux initiaux dans la communauté de la compilation se sont concentrés sur la généra-

tion de code machine séquentiel et ordonnancé statiquement. L’objectif des optimisa-

tions était d’améliorer la vitesse d’exécution du cas moyen, mais sans fournir de garantie

formelle d’optimalité ou de performance. L’optimisation était basée sur l’exploitation

cesseur font l’hypothèse que les communications ne prennent pas de temps. Pour que cette abstraction reste
sûre, les durées au pire cas des communications doivent être prises en compte en ajoutant des marges de
sécurité dans les durées caractérisant les tâches. Cependant, dans la plupart des cas, ces marges ne sont pas
calculées en utilisant une analyse formelle du matériel et des protocoles de communication.

9

d’informations détaillées concernant la microarchitecture. Etant donné la nature du prob-

lème à résoudre, un compilateur devait toujours retourner un résultat pour un programme

syntactiquement correct.

Dans les premiers systèmes temps-réel multi-tâches, les compilateurs fournissaient les

tâches séquentielles que le système d’exploitation executait. La conception et l’analyse

au niveau système constituaient l’objet de travail de la communauté de l’ordonnancement

temps-réel. Les travaux sur ce sujet, tel que l’article fondateur de Liu et Layland [Liu

and Layland, 1973], tentaient de fournir des garanties d’ordonnançabilité formelles pour

des tâches exécutées par un ordonnanceur dynamique/en ligne (et souvent preemptif). Au

contraire de la compilation, où l’objectif est la synthèse complète d’un morceau de code,

l’ordonnancement temps-réel ne synthétise pas ou peu de paramètres de l’implantation

(par exemple, les priorités des tâches, ou l’allocation des tâches sur les processeurs dans

un système distribué). L’analyse d’ordonnancement était basée sur des abstractions fortes

des tâches et de la plateforme d’exécution, appelées modèles de tâches. Assurer qu’une

telle abstraction forte est sûre est un sujet rarement couvert dans les articles d’ordonnancement

temps-réel. Cela représentait un problème significatif lors de la mise en pratique in-

dustrielle, et particulièrement parce que l’implantation du système était elle même pro-

duite pour la plupart à la main (contrairement à une compilation complètement automa-

tique, où tous les aspects de l’ordonnancement et de la génération de code seraient con-

trôlés par le compilateur). Enfin, l’analyse d’ordonnançabilité pouvait échouer. Les dif-

férences entre les modèles et les méthodes mentionnés plus haut sont d’une importance

certaine, et peuvent expliquer la séparation initiale entre les communautés de recherche

et d’ingénierie. Cependant, ces deux domaines ont significativement évolué depuis. Lors

de la conception de techniques de compilation pour les architectures superscalaires et

VLIW, la communauté de la compilation a introduit une prise en compte précise des

durées d’exécution ainsi que l’utilisation de multiples resources indépendantes. Plus

récemment, elle a considéré des modèles d’architecture moins précis et des modèles

d’exécution plus dynamiques pour permettre la compilation vers des cibles GPU. D’un

autre côté, les approches temps-réel basées sur l’ordonnancement statique/hors ligne,

plutôt que sur l’ordonnancement dynamique/en ligne, ont gagné en importance lorsque

des besoins industriels ont mené à la définition de standards tels que IMA/ARINC 653

(pour les systèmes avioniques), AUTOSAR (pour les systèmes automobiles), ou TTA,

FlexRay, TTEthernet (pour les bus de communication). Qui plus est, les systèmes basés

sur ces standards nécessitent d’être configurés en détail (ce qui peut nécessiter de synthé-

tiser l’information de configuration), ce qui a pour conséquence la nécessité d’avoir re-

cours à des approches de type compilation pour traiter tous les aspects de l’implantation,

et pas seulement l’ordonnancement.

Dès lors, sans pour autant se confondre entièrement, les objets d’étude de ces deux

10

communautés se recouvrent aujourd’hui largement, ce qui justifie une mise en commun

des efforts de recherche et d’ingénierie. De plus, dans ce processus de mutualisation,

un troisième domaine peut jouer un rôle important : la conception et l’implantation de

langages synchrones.

Comme il est écrit au chapitre 2, les premiers langages synchrones ont été introduits

par la communauté du temps réel dans le but de permettre la spécification (formellement

complète) de systèmes de contrôle embarqué complexes. Ces systèmes sont de taille

importante, et nécessitent donc le recours à une modélisation hiérarchique, et incluent

des structures de contrôle complexes, qui impliquent de la concurrence, du contrôle con-

ditionnel, de la préemption, et des comportements à états qui ne peuvent pas être bien

représentés par les modèles de tâches très abstraits. L’étude des langages et formalismes

synchrones sont devenus un domaine de recherche indépendant qui a des applications

dans la spécification, l’analyse formelle, et l’implantation à la fois des systèmes embar-

qués et de la conception matérielle [Benveniste et al., 2003]. Deux aspects de ce domaine

sont particulièrement intéressants dans le contexte de cette thèse. Tout d’abord, les for-

malismes synchrones peuvent être vus comme des extensions naturelles des formalismes

utilisés pour l’ordonnancement temps réel (les graphes de tâches dépendantes), mais aussi

pour la compilation (les représentations single static assignment et les graphes de dépen-

dences de données). Les formalismes synchrones peuvent donc être utilisés comme un

terrain d’entente entre ces domaines pour la modélisation formelle. Mais au-delà d’être

un terrain d’entente, des travaux existants sur les langages synchrones nous procurent

également des techniques efficaces pour la manipulation de structures de contrôle com-

plexes par le biais de ce que l’on appelle les horloges et les retards.

Contribution

Comme on le voit dans la figure 2, ma thèse s’articule à l’intersection des trois domaines

présentés précédemment. Son objectif général est de montrer qu’une meilleure intégration

entre ces domaines résulte dans la simplification de la construction de systèmes de con-

trôle embarqué, et dans une amélioration de leur qualité. Plus précisément, nous montrons

que cela est possible pour la classe des systèmes basés sur l’utilisation d’un paradigme

d’ordonnancement temps-réel hors-ligne (basé sur des tables). Pour de tels systèmes,

nous prenons en compte une technique de compilation avancée (le software pipelining)

pour améliorer les résultats du processus d’ordonnancement hors-ligne. Notre approche

est similaire aux travaux classiques de compilation selon deux autres aspects :

• Contrairement aux travaux classiques sur le temps-réel, nous ne nous limitons pas

à l’ordonnancement des systèmes, mais permettons la génération complètement au-

tomatique de leurs implantations,

11

pipelining),

CompilationOrdonnancement
Temps-Réel

(ordonnancement
hors-ligne),

garanties temps-réel,

besoins
non-fonctionnels

classe d’applications
optimisations (software

descriptions
d’architectures
plus précises

génération complète
du code

Langages synchrones

manipulation

assise formelle

de contrôle complexe

Figure 2: Cette thèse se positionne au carrefour entre trois domaines de recherche

• Pour préserver l’efficacité et permettre la génération de code notre approche utilise

une plateforme d’exécution et des modèles d’applications qui sont plus précis que

ceux utilisés dans le domaine de l’ordonnancement temps-réel. En particulier, nous

utilisons des formalismes synchrones pour représenter des fonctionnalités com-

plexes et nous permettons la prise en compte de divers types de besoins non-fonctionnels,

ce qui permet la modélisation naturelle de tous les besoins d’un cas d’étude avion-

ique.

Cependant, notre travail ne se résume pas simplement à l’application de techniques de

compilation à une nouvelle classe de systèmes. En effet, contrairement aux travaux de

compilation classiques, notre approche :

• se situe au niveau système, ce qui nécessite une abstraction significative de la plate-

forme d’exécution,

• fournit des garanties temps-réel dûres, ce qui nécessite une prise en compte sûre du

temps,

• considère l’exécution conditionnelle des systèmes,

• considère des besoins non-fonctionnels de différents types, ce qui modifie fonda-

mentalement la nature du problème d’optimisation à résoudre.

La définition de notre approche est basée sur l’adaptation non triviale de concepts, de

modèles et d’algorithmes venant des domaines de l’ordonnancement temps-réel, de la

compilation et des langages synchrones. Cette adaptation a été facilitée par l’utilisation

12

de formalismes synchrones qui nous ont fourni un terrain d’entente pour la modélisa-

tion et l’analyse des systèmes considérés. Notre travail concerne tous les aspects du

problème d’implantation : la conception de formalismes de modélisation, la définition

d’algorithmes d’ordonnancement hors-ligne basés sur l’utilisation de tables, et la généra-

tion de code exécutable.

Une description détaillée des contributions et de l’originalité de notre travail par rap-

port aux travaux existants dans les trois domaines de recherche considérés sera fournie

lorsque les différents concepts relatifs aux trois domaines auront été introduits (en partic-

ulier aux sections 6.1 et 7.1).

Organisation de la thèse. Etant donné que l’objectif de mon travail a été la conception

d’une technique de compilation (permettant l’ordonnancement et la génération de code de

façon complètement automatisée), celui-ci n’aurait pas été complet sans une évaluation

des approches de modélisation, d’ordonnancement et de génération de code que nous

fournissons. Pour permettre cette évaluation, les modèles et techniques décrits dans cette

thèse ont été accompagnés par leur implantation dans un outil décrit dans la figure 3. Nous

appelons cet outil le compilateur temps-réel LoPhT4.

L’organisation de ma thèse suit de près celle de LoPhT, qui est présentée dans la fig-

ure 3. C’est pour cela que cette figure est utilisée pour représenter à la fois ma thèse et

l’outil LoPhT. Afin d’évaluer la généralité du travail effectué, le compilateur LoPhT a

deux cibles : les systèmes partitionés dirigés par le temps qui se conforment au standard

IMA/ARINC 653, et les systèmes multiprocesseurs sur puce (MPSoCs) dans lesquels les

communications inter-processeurs sont réalisées par le biais d’un réseau sur puce (NoC).

Le travail sur les cibles MPSoC a été réalisé en collaboration avec Manel Djemal dans

le cadre de sa thèse de doctorat [Carle et al., 2013, 2014] et sera seulement mentionné

rapidement dans cette thèse. Dans la figure 3, les éléments en noir sont ceux qui exis-

taient déjà avant le début de ma thèse. Les éléments en rouge (les boites remplies de

jaune, ainsi que les éléments à gauche dans la boite “Ordonanceur”) sont ceux que j’ai

développés lors de ma thèse et qui sont décrits dans ce manuscrit, et les éléments verts

(les boites à droite de la figure, contenant la mention M. Djemal/T. Carle) correspondent

aux extensions spécifiques aux cibles MPSoC.

Mon manuscrit ne comporte pas un chapitre dédié à l’état de l’art. Cela est dû au fait

que ma thèse recouvre trois domaines de recherche ainsi que les relations existant entre

eux. Présenter toute l’information correspondante en une fois aurait dégradé la clarté

de la présentation. Au contraire, nous fournissons dans le chapitre 2 une introduction

aux formalismes synchrones (l’assise formelle de notre approche), puis chaque chapitre

technique fournit un état de l’art partiel, souvent regroupé dans une section dédiée (par

4de l’anglais Logical to Physical Time Compiler : compilateur du temps logique vers le temps physique

13

List schedulingDeadline−driven/

Non− partitionnéPartitionné/

Preemptif/Non− preemptif

Sans PipelineAvec/

WCCTs, WCETs

(M. Djemal/T. Carle)

(M. Djemal/T. Carle)

(M. Djemal/T. Carle)

Extensions

[Carle et al., 2013]

[Carle et al., 2013]

[Carle et al., 2013]

+info ARINC653 spécification SynDEx

Traducteur

(Chapitre 3)
Specification directe

Formalisme Clocked graphs

Besoins
non−fonctionnels

Preemptabilité

Contraintes
temps−réel

(Chapitre 6)

Formalisme de base

Spécification fonctionelle synchrone
(Chapitre 3)

Spécifications d’architectures
multi−processeurs/distribuées

Contraintes d’allocation

(Chapitre 4)

Modélisation d’architectures

MPSoC

(Chapitre 4)

Traducteur ILP

Système ILP

Ordonnancement

Ordonnanceur

Partitionnement

(Chapitre 7)

(Chapitre 5)

aux NoCs
Heuristiques spécifiques

Algorithme de pipeline

(Chapitre 5)

Table d’ordonnancement

(Chapitres 4, 5)

ARINC 653

Générateur de code

Code exécutable

pour MPSoC

Générateur de code

Code exécutable

Solveur ILP

(Chapitre 7)

Figure 3: Description du compilateur temps-réel LoPhT

14

exemple les sections 6.1 et 7.1). De cette façon, l’exploration des relations complexes

existant entre les modèles et les algorithmes utilisés dans les trois domaines de recherche

considérés ne se fait qu’après que ces modèles et algorithmes aient été définis.

Le formalisme utilisé par les algorithmes d’ordonnancement de LoPhT s’appelle Clocked

Graphs. Une spécification Clocked Graphs comprend une spécification fonctionnelle et

une spécification non-fonctionnelle incluant la définition de l’architecture et des besoins

non-fonctionnels de l’application. La spécification fonctionnelle est donnée sous la forme

d’un programme flot de données synchrone de bas niveau, écrit dans un langage qui

s’appelle également Clocked Graphs. Ce langage synchrone, qui a été défini pour la

première fois avant le début de ma thèse, est présenté au chapitre 3. Ce chapitre explore

également les relations existant entre ce langage et :

• des formalismes de spécification fonctionnelle de haut niveau. J’y explique com-

ment des programmes synchrones de haut niveau écrits en SynDEx peuvent être

transformés en programmes Clocked Graphs,

• les modèles de tâches utilisés pour l’ordonnancement temps-réel. J’y explique com-

ment des programmes synchrones peuvent être abstraits dans des représentations

basées sur des systèmes de tâches dépendentes.

Le chapitre 4 présente notre approche de modélisation des ressources de la plateforme

d’exécution, ainsi que notre approche de modélisation de l’allocation des ressources,

basée sur l’utilisation de tables d’ordonnancement. Ce chapitre définit tout d’abord le for-

malisme utilisé pour la description des architectures et celui utilisé pour la description des

tables d’ordonnancement, tels qu’ils existaient dans LoPhT avant le début de ma thèse. Il

inclut également une comparaison rapide entre le modèle de réservation de ressources que

nous avons choisi (l’ordonnancement hors-ligne basé sur les tables d’ordonnancement) et

d’autres techniques de réservation de ressources, telles que la réservation de bande pas-

sante ou l’ordonnancement en-ligne basé sur les priorités.

Le chapitre 5 introduit les extensions que j’ai apportées à ces modèles pour permettre

l’application du software pipelining, et pour permettre la modélisation des plateformes

MPSoC.

Le chapitre 6 présente la première de nos deux principales contributions techniques

: l’utilisation de techniques de software pipelining pour améliorer la qualité des tables

d’ordonnancement temps-réel. Ce chapitre inclut un état de l’art approfondi et une section

d’évaluation de la méthode.

Le chapitre 7 définit les extensions que j’ai apportées au formalisme Clocked Graphs

pour permettre la modélisation de systèmes partitionnés dirigés par le temps incluant des

besoins non-fonctionnels complexes. Il inclut une introduction aux systèmes dirigés par

le temps (ainsi qu’un état de l’art sur ce sujet).

15

Le chapitre 8 présente les techniques d’ordonnancement hors ligne et de génération de

code capables d’opérer sur les spécifications décrites au chapitre précédent. Finalement,

le chapitre 9 conclut ce manuscrit.

16

Abstract

There is a long standing separation between the fields of compiler construction and real-

time scheduling. While both fields have the same objective - the construction of correct

implementations - the separation was historically justified by significant differences in

the models and methods that were used. Nevertheless, with the ongoing complexification

of applications and of the hardware of the execution platforms, the objects and prob-

lems studied in these two fields are now largely overlapping. In this thesis, we focus on

the automatic code generation for embedded control systems with complex constraints,

including hard real-time requirements. To this purpose, we advocate the need for a recon-

ciled research effort between the communities of compilation and real-time systems. By

adapting a technique usually used in compilers (software pipelining) to the system-level

problem of multiprocessor scheduling of hard real-time applications, we shed light on the

difficulties of this unified research effort, but also show how it can lead to real advances.

Indeed we explain how adapting techniques for the optimization of new objectives, in a

different context, allows us to develop more easily systems of better quality than what was

done until now. In this adaptation process, we propose to use synchronous formalisms and

languages as a common formal ground. These can be naturally seen as extensions of clas-

sical models coming from both real-time scheduling (dependent task graphs) and compi-

lation (single static assignment and data dependency graphs), but also provide powerful

techniques for manipulating complex control structures. We implemented our results in

the LoPhT compiler.

17

Chapter 1

Introduction

1.1 Embedded systems design

Embedded systems are computing systems with a dedicated function inside a larger phys-

ical or computing system. In this thesis, we are particularly interested in embedded con-

trol systems [Lee and Seshia, 2011] whose task is to regulate the evolution of (physical)

processes in order to ensure their correct functioning. Control and regulation must be

understood here in the sense of control theory [Doyle et al., 1990], meaning that an em-

bedded control system is the means of performing the automatic control of a plant such

as a plane, a train, a nuclear reactor, a mobile phone, etc.

As pictured in Fig. 1.1, an embedded control system interacts with the controlled plant

by means of sensors and actuators. The sensors measure specific (analog) characteristics

of the plant and present the resulting information in a discrete form allowing digital treat-

ment by the embedded controller. The discrete output values of the controller are used by

the actuators to exert (analog) control over the plant.

For instance, the guidance, navigation, and control (GNC) embedded controller of a

Control
System

Plant

Actuator Sensor
Analog domain

Embedded

Digital domain

Figure 1.1: Interaction between plant and embedded control system

18

1.1. EMBEDDED SYSTEMS DESIGN 19

plane uses a variety of sensors (pressure, temperature, GPS, accelerometers, gyroscopes,

etc.) to determine its location, speed, and attitude. These values are cyclically used by the

GNC controller to manipulate (through actuators) the position of steering controls and the

power of thrusters in order to maintain the desired trajectory.

The design of embedded control systems is highly inter-disciplinary. At the top level,

it is driven by control engineers and systems engineers. Control engineers provide a spec-

ification of the expected behavior of the controller covering functionality and temporal

requirements. Defining the functionality of a system consists is specifying which oper-

ations must be executed, and in which order, to compute the commands of the actuators

starting from the values produced by sensors1. But the functional specification alone is

not enough to represent the behavior of a control system. To perform effective control,

changes in the physical processes of the plant must be followed in a timely fashion by

changes in actuators. For instance, the GNC embedded controller mentioned above must

rapidly react to cross-wind gusts to maintain the stability of the plane, especially during

landing phases. For this reason, the attitude control part of the GNC controller is executed

once every 50ms [Kent and Williams, 2002].

The specification of these timeliness constraints is realized under the form of real-time

requirements such as periods, latencies, release dates, deadlines attached to the elements

of the functional specification. Embedded control systems are therefore real-time systems

[Butazzo, 2002], which are a sub-class of reactive systems [Harel, 1987].

While control engineers are concerned with specifying the behavior of the embedded

controller, systems engineers consider the problems of implementing the embedded con-

troller and then providing tools for managing it during its entire lifetime, which is typically

of more than 20 years for a commercial aircraft, more than 30 years for a nuclear reactor,

more than 150000km on average for a car, etc.. At top level, systems engineering con-

siders macroscopic properties such as cost (in development, maintenance, and possibly

disposal), reliability (for both cost and safety reasons), risk, etc. Such macroscopic objec-

tives can be set under the form of non-functional requirements, and systems engineering

provides methods for refining such high-level requirements into lower-level requirements

such as the ones we consider in this thesis. For instance, Chapter 7 will consider the fol-

lowing requirements coming from systems engineering: the execution platform is already

fixed2, each operation of the functional specification has been assigned a criticality, some

operations are preemptable and the others are non-preemptable, and part of the mapping

of the functional specification onto the platform is already fixed. Other non-functional

properties that can be considered at this lower level are fault tolerance, energy consump-

tion, evolutivity, etc.

1The internal state of the system may also be used.
2Which may also impose some supplementary real-time requirements in addition to the ones coming

from the control specification.

1.1. EMBEDDED SYSTEMS DESIGN 20

This is the level where my work takes place: I assume in this thesis that previous en-

gineering phases have produced a functional specification, have fixed the target execution

architecture (which can be multiprocessor/distributed), and have provided a set of non-

functional requirements including real-time ones. Starting from this input, my objective

is to automatically build a correct embedded control system.

Correctness involves here two aspects: functional correctness and the respect of the

non-functional requirements. Functional correctness means that the system behaves as

prescribed by the functional specification. Ensuring the functional correctness of such a

system involves multiple disciplines such as compilation (to ensure that each operation

of the specification is correctly implemented by a sequential piece of code), parallel/dis-

tributed computing (for the construction of correct multiprocessor implementations), etc.

Of particular interest here is the domain of synchronous language design and implementa-

tion which puts together all the disciplines needed to ensure functional correctness. This

is due to the fact that synchronous languages and formalisms, described later in this the-

sis, were designed specifically to allow the functional specification of embedded control

systems. This explains their pervasiveness in embedded systems design and their use in

this thesis.

Ensuring the respect of non-functional requirements such as those mentioned above

(real-time, criticality, preemptability, power consumption, etc.) is mainly studied in the

field of real-time scheduling, which itself takes advantage of results from hardware design,

operating systems design, parallel/distributed computing, fault tolerance, etc.

The case for stronger integration. The design of a complex embedded system usually

brings together people from all the aforementioned fields. However, in current scientific

work and industrial practice the fields remain largely segregated. My opinion is that

such a strong segregation results in increased design costs and decreased implementation

efficiency, mainly due to 2 causes:

• The interfaces between the various fields, which are usually materialized under the

form of model transformations, often abstract away significant details of the source

models, which results in efficiency loss. This efficiency loss is often accompanied

by the use of unsafe abstractions, which requires validation through extensive tests,

and thus increases development costs3.

• The lack of communication between the scientific and industrial communities means
3For instance, tasks models used in real-time scheduling often abstract away all conditional control

associated to the tasks, thus adding pessimism to the analysis. Furthermore, many task models used in
multiprocessor scheduling assume that communications take no time. For this abstraction to be safe, the
worst-case duration of communications should be taken into account by means of overheads added to the
durations of tasks. But in most cases, these overheads are not derived from a formal analysis of the com-
munication hardware and protocols.

1.2. COMPILATION VS. REAL-TIME SCHEDULING 21

that some solutions developed in one field will not be applied in another, even when

appropriate.

The work of this thesis addresses both points for specific classes of target architectures.

To reduce efficiency loss, we use precise models of the application (where conditional

control is taken into account), of the platform (where communication costs and the precise

execution mechanisms are considered), and of the non-functional requirements, which are

adapted to our target execution platforms (time-triggered partitioned systems). Having a

precise modeling of the execution platform also reduces the need for unsafe abstractions.

But the main contribution of my thesis is along the second axis. More precisely, I

will show that by closely integrating concepts from real-time scheduling, compilation,

and synchronous programming, we are able to automatically produce time-triggered

real-time implementations that are both correct by construction (thus requiring less

validation) and more efficient than those produced by existing approaches. This

amounts to applying a compilaton-like approach in the synthesis of real-time implemen-

tations from specifications that are complex in both their functional and non-functional

aspects. Conversely, this can also be seen as extending the compilation state of the art

to take into account non-functional requirements and to allow for a careful accouting of

worst-case execution time in compilation.

1.2 Compilation vs. Real-time scheduling

There is a long standing separation between the fields of compiler construction and real-

time scheduling. While both fields have the same objective - the construction of correct

implementations - the separation was historically justified by significant differences in

the models and methods that were used. Indeed, initial work in the compilation com-

munity was focused on generating statically scheduled sequential machine code. The

optimization objective was to improve average-case speed, but with no formal optimality

or performance guarantees. Optimization was based on the use of detailed microarchi-

tectural information. Given the nature of the problem it solved, a compiler was expected

to always provide a result for a syntactically-correct program.

In early real-time multi-tasking systems, compilers were meant to provide the sequen-

tial tasks that were run by the OS. The system-level design and analysis were the object

of the real-time scheduling community. Work on this subject, such as the seminal paper

of Liu and Layland [Liu and Layland, 1973], focused on providing formal schedulability

guarantees for tasks run by a dynamic/on-line (usually priority-preemptive) scheduler.

Unlike in compilation, where the objective is the complete synthesis of a piece of code,

in real-time scheduling few or no parameters of the implementation would be synthesized

(e.g. the priorities of the tasks, or the allocation of tasks to processors in a distributed

1.2. COMPILATION VS. REAL-TIME SCHEDULING 22

system). Schedulability analysis was based on coarse abstractions of the tasks and the

execution platform, known as task models. Ensuring that such a coarse abstraction is

safe is a subject seldom covered in real-time scheduling papers. This was a significant

problem in industrial practice, especially given that the system implementation itself re-

mained largely manual (as opposed to the fully automatic compilation, where all aspects

of scheduling and code generation were controlled by the compiler). Finally, schedulabil-

ity analysis could fail.

The differences between the models and methods mentioned above are indeed impor-

tant and may explain the initial separation of the research and engineering communities.

However, both fields have significantly evolved since. When designing compilation tech-

niques for superscalar and VLIW architectures, the compilation community introduced

precise timing accounting and the use of multiple, independent execution resources. More

recently, it has considered less precise hardware models and more dynamic execution

models in order to allow compilation for GPU targets. On the other hand, the real-time

scheduling approaches based on static/off-line, rather than dynamic/on-line scheduling,

gained more importance when industrial needs resulted in the definition of standards

such as IMA/ARINC 653 (for avionics systems), AUTOSAR (for automotive systems),

or TTA, FlexRay, TTEthernet (for communication buses). Furthermore, systems based on

these standards require significant configuration (synthesis), which results in the need for

compilation-like approaches handling all aspects of an implementation, and not just the

scheduling.

Thus, without becoming indistinct, the types of objects studied by the two commu-

nities are today largely overlapping, which should justify a mutualization of the research

and engineering effort. Furthermore, in this mutualization process a third research field

should play a significant part: the design and implementation of synchronous languages.

As we shall see in the next chapter, the first synchronous languages have been intro-

duced in the real-time community in order to allow the formally sound specification of

complex embedded control system. Such systems have large sizes, thus requiring hier-

archical modeling, and feature complex control structures, involving concurrency, condi-

tional control, preemption, and stateful behaviors that are not well represented using the

very abstract task models. The study of synchronous languages and formalisms became a

stand-alone research field, with applications in the specification, formal analysis, and im-

plementation of both embedded systems design and hardware design [Benveniste et al.,

2003]. Two particular aspects of this field are appealing from the point of view of this the-

sis. First of all, synchronous formalisms can be seen as natural extensions of formalisms

of both real-time scheduling (the dependent task graphs) and compilation (static single as-

signment representations and the data dependency graphs). Synchronous formalisms can

therefore be used as a common ground for formal modeling. But beyond being a formal

1.3. CONTRIBUTION 23

Scheduling
optimizations (software

pipelining),

full code generation,

more precise
architecture
descriptions

Compilation

Synchronous languages

complex control handing

formal grounding

Real-Time

application class
(off-line

scheduling),

real-time guarantees,

non-functional
requirements

Figure 1.2: This thesis is positioned at the intersection of 3 research fields

ground, previous work on synchronous languages also provides powerful techniques for

manipulating complex control structures by means of so-called clocks and delays.

1.3 Contribution

As pictured in Fig. 1.2, my thesis is developed at the intersection of the 3 research fields

presented above. Its most general objective is to show that better integration between

these fields allows the easier construction of better embedded control systems.

More precisely, we show that this is possible for the class of systems relying on an

off-line (table-based) real-time scheduling paradigm. For such systems, we take into ac-

count an advanced compilation technique (software pipelining) in order to improve offline

scheduling results. Our approach is similar to classical compilation work in two other as-

pects:

• Unlike in classical real-time work, we not only perform scheduling, but allow fully

automatic generation of the implementation.

• To preserve efficiency and allow code generation our approach uses execution plat-

form and application models that are more precise than those used in real-time

scheduling. Particular points here are the use of synchronous formalisms to rep-

resent complex functionalities and the ability to consider multiple types of non-

functional requirements, which allows the natural modeling of all the requirements

of an avionics case study.

1.3. CONTRIBUTION 24

But our work does not consist in simply applying compilation techniques to a new class

of systems. Indeed, unlike in classical compilation work, our approach:

• works at system level, requiring a significant abstraction of the execution platform,

• provides hard real-time guarantees, which in turn requires a safe accouting of time,

• considers conditional (predicated) execution, and

• considers non-functional requirements of various types, which fundamentally changes

the nature of the optimization problem that must be solved.

The definition of our approach is based on a non-trivial adaptation of concepts, mod-

els, and algorithms of the real-time scheduling, compilation, and synchronous languages

fields, which were facilitated by the use of synchronous formalisms to provide a common

formal ground for modeling and analysis. Our work covered all aspects of the implemen-

tation problem: the design of modeling formalisms, the definition of table-based off-line

scheduling algorithms, and the generation of executable code.

A detailed description of the contributions and originality of our work with respect to

existing work in the 3 research fields will be provided once the various concepts of the 3

fields will be introduced (and in particular in Sections 6.1 and 7.1).

Organization of the thesis. Given that the object of my work has been the design of

what is essentially a compiling technique (allowing fully automatic scheduling and code

generation), my work would not have been complete without an evaluation of the model-

ing, scheduling, and code generation approaches we provide. To allow evaluation, all the

developments described in this thesis were accompanied by a significant prototyping ac-

tivity that resulted in the tool flow of Fig. 1.3. We call this tool flow the LoPhT4 real-time

compiler.

The organization of my thesis closely follows that of the LoPhT tool, presented in

Fig. 1.3. This is why we use this figure to detail both. To evaluate the generality of the

work, the LoPhT compiler has two targets: partitioned time-triggered systems compli-

ant with the IMA/ARINC653 standard and multiprocessor systems-on-chips (MPSoCs)

where interprocessor communication is realized through a network-on-chip (NoC). The

work specific to the MPSoC targets was realized in collaboration with Manel Djemal as

part of her PhD thesis [Carle et al., 2013, 2014] and will only briefly be mentioned in this

thesis. In Fig. 1.3, black elements are those that existed before my thesis started. Red ele-

ments (the boxes filled in yellow, as well as the left part of the “Scheduling toolbox” box)

are those developed as part of and described in my thesis, and green elements (the boxes

4For Logical to Physical Time Compiler

1.3. CONTRIBUTION 25

Non PipelinedPipelined/

List schedulingDeadline−driven/

Non− partitionedPartitioned/

Preemptive/Non− preemptive

SynDEx specification file+ARINC653 info

Direct specification

Non−functional

Partitioning

(Chapter 6)

constraints
Real−Time

Preemptability

Clocked graphs formalism

Core formalism

WCCTs, WCETs

architecture specifications

(Chapter 3)

(Chapter 4) (M. Djemal/T. Carle)

Functional synchronous specification

Multi−processor/distributed

Allocation requirements

requirements
MPSoC

architectures modeling

ILP translator

(Chapter 5)

ILP system

ILP solver

Schedule

Translator

specific heuristics

(M. Djemal/T. Carle)

Scheduling toolbox

Standalone Pipeliner

(Chapter 5)

MPSoC

(M. Djemal/T. Carle)

code generator

Extensions

Scheduling table

Executable code

ARINC 653
code generator

(Chapter 7)

Executable code
[Carle et al., 2013]

(Chapter 4)

[Carle et al., 2013]

NoC

[Carle et al., 2013]

(Chapter 7)

(Chapters 4, 5)

(Chapter 3)

Figure 1.3: Tool flow of the LoPhT real-time compiler

1.3. CONTRIBUTION 26

in the right part of the figure, labelled with (M. Djemal/T. Carle)) are those corresponding

to the MPSoC-specific extensions.

My thesis does not have a single, dedicated state of the art chapter. This is due to the

fact that my thesis covers 3 research fields and the relations between them, and presenting

this amount of information at once would have compromised the clarity of the presenta-

tion. Instead, we provide in Chapter 2 an introduction to synchronous formalisms (the

formal basis of our approach) and then, each technical chapter will provide partial state of

the art information, often grouped in a dedicated section (such as Sections 6.1 and 7.1).

In this way, exploring the complex relationships existing between particular models and

algorithms used in the 3 research fields is only done after the models and algorithms are

properly defined.

The formalism taken as input by the scheduling algorithms of LoPhT is called Clocked

Graphs. A Clocked Graphs specification comprises a functional specification and a non-

functional specification including the definition of the architecture and that of the non-

functional requirements. The functional specification part consists in a low-level dataflow

synchronous program written in a language that is also called Clocked Graphs. This syn-

chronous language, which was first defined before the beginning of my thesis, is presented

in Chapter 3. The chapter also explores the relations between this language and:

• Higher-level functional specification formalisms. I explain here how high-level

SynDEx synchronous programs can be translated into Clocked Graphs.

• Task models used in real-time scheduling. I explain here how synchronous pro-

grams can be abstracted away as dependent task systems.

Chapter 4 presents our approach to modeling the resources of the execution plat-

form and then our approach to modeling resource allocation (by means of scheduling

tables). The chapter first defines the basic architecture description formalism and the basic

scheduling table description formalism that existed in LoPhT before the start of my thesis.

The chapter also includes a brief comparison between the resource allocation model we

chose (table-based off-line scheduling) and other resource allocation techniques, such as

bandwidth reservation or on-line priority-based scheduling.

Chapter 5 introduces the extensions I brought to these models to allow the application

of software pipelining, and to allow the modeling of MPSoC platforms.

Chapter 6 presents the first of our two main technical contributions, namely our use

of software pipelining techniques to improve the quality of real-time scheduling tables. It

includes a thorough state of the art and an extensive evaluation section.

Chapter 7 defines the extensions I added to the Clocked Graphs formalism to allow

the modeling of partitioned time-triggered systems with complex non-functional require-

ments. It includes an introduction to time-triggered systems (and a related work on the

1.3. CONTRIBUTION 27

subject).

Chapter 8 presents the off-line scheduling and code generation technique capable of

handling the specifications of the previous chapter. Finally, Chapter 9 concludes.

Part I

Offline scheduling: fundamental notions
and contributions on the specification

models for embedded systems

28

Chapter 2

Introduction to synchronous formalisms

Contents
2.1 The synchronous model of computation 29

2.1.1 Abstraction issues . 30

2.1.2 Clocks and Single-clock synchronous languages 31

2.1.3 Polychronous languages . 32

2.1.4 Languages with affine clocks 32

2.1.5 From logical time to real time 33

2.1 The synchronous model of computation

Synchronous languages emerged from the real-time systems community as a way to de-

scribe precisely the functional aspects of complex embedded control systems with hard

timing constraints [Potop-Butucaru and Sorel, 2014]. This family of languages relies on

the synchronous model of computation which provides sound formal foundations for de-

scribing applications with a cyclic execution model. The synchronous model allows the

non-ambiguous representation of behaviors at a high level of abstraction, and then sup-

ports formally sound analysis and implementation techniques allowing the synthesis of

correct and efficient implementations.

In the synchronous model, the execution of a program is divided into an infinite se-

quence of execution steps called reactions [Benveniste et al., 2003]. The key point of the

synchronous model is the synchrony hypothesis which states that each reaction happens

atomically, as if its computations take zero time [Halbwachs, 1993]. Under this hypoth-

esis, time flows as a sequence of discrete, ordered instants, each corresponding to an

instantaneous reaction of the system [Potop-butucaru et al., 2005]. Computation instants

do not need to be linked to physical time. They just define a sequence of abstract events,

29

2.1. THE SYNCHRONOUS MODEL OF COMPUTATION 30

partially or totally ordered by a precedence relation. This is why we say that they define a

logical time scale.

In the synchronous model, the synchrony between computations of a given instant has

a very strong meaning:

• Two reads of the same variable/signal performed during the same instant must al-

ways provide the same result, because they happen at the same time.

• If a variable/signal is written during an instant, then all reads will produce this

value. Furthermore, no variable/signal should be written twice during an instant, or

otherwise it must be specified which of the writes gives the signal/variable its value

for the instant.

This property applies to all variables/signals, be them inputs, state variables, or internal

variables/signals. Thus, at each instant all the computations of a synchronous model have

access to a single, coherent state. No computations occur outside of the time scale defined

by the logical instants of the system, the system and its environment being invariant:

all changes in the inputs, outputs and in the system state occur only during the logical

instants.

The second main tenant of the synchronous model is causality. Inside an execution

instant, computations take place in zero time, but their execution are performed causally,

without speculation. Causality amounts to requiring that inside each execution instant

the computations can be (partially) ordered so that signal/variable productions precede

their reads. In other terms, this amounts to enforcing the respect of the data and control

dependencies inside each reaction [Berry, 1996].

Enforcing causality has two important practical consequences: first of all it allows the

compilers to automatically detect and reject specifications that cannot be scheduled in a

causal way. The second consequence is functional determinism: a causal synchronous

system will always produce the same outputs when given the same set of inputs. This

property is verified by the system regardless of the schedule of the operations, as long as

it respects all the dependencies between operations inside each instant.

2.1.1 Abstraction issues

Of course, computations performed by real hardware do take time, which means that syn-

chronous models provide an abstract view of embedded applications. However, current

industrial adoption shows that this abstraction level is a good one. We provide here several

points justifying (a posteriori) this adoption.

As explained above, the synchronous model and the synchronous languages natively

include characteristics of embedded control systems: a cycle-based execution model, con-

currency, causality.

2.1. THE SYNCHRONOUS MODEL OF COMPUTATION 31

In conjunction with causality, the synchrony hypothesis provides a strong formal ba-

sis for defining well-formed properties that have emerged as good design practices in all

fields dealing with the specification and implementation of concurrent behaviors: the ab-

sence of races or hazards in software and hardware design, the use of atomic interactions

such as transactions, the enforcement of functional determinism. For instance, the devel-

opment of internal compiler representations such as static single assignment (SSA) had

similar objectives. All synchronous formalisms allow simple interpretation in universally

recognized mathematical models such as the Mealy machines and the digital circuits. In

turn, this allows the use of established formal verification and optimization techniques.

Finally, abstracting away physical time under the form of logical time provides a pow-

erful mechanism of enforcing the separation of concerns between functional aspects of the

system on one side, and the real-time non-functional requirements on the other. Indeed,

the instantaneity assumption of the synchronous hypothesis is interpreted in practice as

the capacity of the system to react quickly enough to changes in the physical processes of

the controlled plant. In this case, it is not necessary to take into account physical changes

occurring between the sensor input and the actuator output.

Furthermore, since computations (conceptually) happen instantaneously, the model-

ing of an application is independent of the platform on which it will be executed. This

means that the application developper can focus on the specification of the functional

behaviour of the application, and leave the mapping (distribution) and scheduling of the

computations to the compiler or online scheduler.

Mature synchronous languages have been developped and used in both academic and

industrial contexts. In the next sections, we will focus on the definition of logical time in

synchronous specifications, and how its representation has evolved from a simple model to

more complex and expressive forms, as new languages were developped. Our last section

briefly presents how real-time constraints can be applied to a synchronous specification,

and how this specification can be implemented in a particular case.

2.1.2 Clocks and Single-clock synchronous languages

A key notion in synchronous languages is that of logical clock. We saw in the previous

section that the synchronous model defines a notion of logical time, where the execution

of the system is organized as a set of instants that are partially or totally ordered. At each

instant, a reaction of the system is performed. Logical clocks are totally ordered sets of

execution instants. Logical clocks are used to identify the execution instants where a cer-

tain event takes place. In particular, logical clocks are used to determine when the various

operations of the system are executed, which means that they are used as activation con-

ditions to represent the conditional control of the application. As sets of instants, clocks

are partially ordered by the inclusion relation. We say that a clock c1 is a sub-clock of

2.1. THE SYNCHRONOUS MODEL OF COMPUTATION 32

clock c2, denoted c1 ≤ c2 if the set of instants of c1 is included in that of c2.

The first synchronous languages [Halbwachs et al., 1991, Berry, 1996] only consid-

ered systems where execution instants are totally ordered. This set, by itself, is a logical

clock, known as the base clock of the system. Any synchronous language where each

specification has a base clock is classified as a single-clock synchronous language. In

single-clock languages, any clock of a program is defined starting from the base clock

(by means of predicates, affine relations, etc.) and is a sub-clock of the base clock. The

synchronous language Clocked Graphs, used in this thesis, is a single-clock synchronous

language, and it will be presented in Section 3.2.2.1.

2.1.3 Polychronous languages

For certain embedded control systems, having a single logical time base may not allow a

natural description of the system behavior. This happens in systems where various parts

need to synchronize on different physical quantities. For example, the ignition control

system of a car requires both time-triggered computations for handling the input from the

sound sensors, and computations triggered by the engine crankshaft (i.e. triggered at cer-

tain angles during the rotation of the engine). Defining a base clock from which both the

time-triggered and the rotation-triggered clocks are derived can be done for specification

purposes, but it imposes artificial relations between the two time bases which must be

removed at implementation time. To allow a more natural specification and analysis, lan-

guages such as Signal [Guernic et al., 1986, Benveniste and Guernic, 1990, Guernic et al.,

2003] and ΨC [Chabrol et al., 2009] allow the definition of multiple independent time

bases on which the various parts of the applications can synchronize. The independent

time bases allow different parts of an application to evolve in total temporal independence

from one another. These languages are called polychronous.

2.1.4 Languages with affine clocks

Some languages such as Giotto [Henzinger et al., 2000] or PRELUDE [Forget et al., 2010]

have an intermediate way of representing time bases. These formalisms define multi-

ple time bases, but then relate them in a deterministic way by means of affine relations

defining frequency (rate, period) and phase relations between them. We call such clocks

affine clocks. Execution instants of these systems are totally ordered, which would allow

their faithful representation using single-clock formalisms. However, using multiple base

clocks related in phase and offset allows a more natural description, analysis and code

generation of multi-periodic task systems.

One particular problem in the synchronous modeling of such systems is the represen-

tation of tasks with low period and long duration. Such tasks are not fast enough to be

seen as instantaneous in the time base provided by the clocks of tasks of higher period.

2.1. THE SYNCHRONOUS MODEL OF COMPUTATION 33

ω2 = 1

f2

i2

i3

t2

i1
t1

f1

π = 20ms

ω1 = 2

Figure 2.1: Small specification example in the Giotto formalism

In languages based on affine clocks, both time bases (slow and fast) are represented and

each task satisfies the synchrony hypothesis in its time base.

Communication and synchronization between tasks belonging to different time bases

is deterministic, performed according to rules that take into account the affine relations

between clocks. For instance, the Giotto formalism considers that for any given given task

t, its outputs are made available in the instant i that follows the one in which t was started,

in the time base associated to the clock of t. This means that any other task that starts

before i in this model only has access to the previous value of the outputs of t, regardless

of its own finishing date. PRELUDE allows a finer control of synchronization by dividing

each logical instant into smaller instants and by refining the clocks of the operations that

need a finer synchronization. Then the communication semantics are defined using these

new, more precise time bases.

2.1.5 From logical time to real time

In the synchronous model, clocks are logical time bases, and the synchronous model does

not relate clocks to the flow of some physical quantity such as time, length, etc. However,

when modeling the real-time aspects of an embedded system the clocks offer the natural

places where the non-functional information is attached. Indeed, transforming a logical

clock into a “physical” one can be as simple as attaching it a period and an offset specified

in milliseconds.

We shall explain how this is done in the Giotto language using the example of Fig. 2.1.

Our example specification consists of two Giotto tasks t1 and t2 grouped in a Giotto mod-

ule, and which are responsible for the computation of functions f1 and f2 respectively.

Task t1 has two outputs, one of which is connected to its own input port i1, and the other

which is connected to the input port i3 of task t2. Task t2 has only one output port, which

is connected to the second input port of t1, named i2. The ratio between the activation

2.1. THE SYNCHRONOUS MODEL OF COMPUTATION 34

f1 f1

f2

τ1 = τ ′1 τ2 = τ ′2 τ3 = τ ′3

π = 20ms

ω1 = 2

ω2 = 1

ω1 = 2

t1 t1

t2

Figure 2.2: Time line for a round of execution of the Giotto specification of Fig. 2.1

periods of both tasks imposes that t1 activates twice as fast as t2 (as specified by the ω1

and ω2 parameters).

The system designer imposed a real-time constraint on the module: its execution pe-

riod must be 20 ms. This constraint is immediately translated into execution periods for

the tasks: t2 will inherit the module period (20 ms) because ω2 = 1, and t1 will have a

period of 10 ms because ω1 = 2. The first release date for each task is by definition 0. The

output of a task is made available not at its activation date, but at the next activation date.

In a synchronous interpretation, this means that the output of each task is delayed by one

instant. Thus, the output of t2 will be available at dates 20, 40, 60, . . ., and the outputs of

t1 at dates 10, 20, 30,

An intuitive view of this execution model is depicted in Fig. 2.2. This figure displays

the temporal behaviour of one period of the example application. In this figure, execution

instants of task t1 are started at dates 0, 10, and 20, and execution instants of task t2 at dates

0 and 20. The outputs produced by the instance of t1 started at date 0 become available at

date 10. The outputs of the first instance of t2 only become available at date 20. Thus the

second instance of t1 cannot use them even if the actual execution of t2 completes before

date 10.

The traditional code generation scheme followed by Giotto then consists in mapping

each task of the specification to a thread (for example a POSIX thread), that is activated

periodically, using the period computed from the specification. In our example, the imple-

mentation would comprise two threads, one of period 10 ms for t1 and the other of period

20 ms (for t2). Then, Giotto relies on a preemptive rate-monotonic (RM) on-line scheduler

to execute the system. This allows to analyse the system using well-known schedulability

results concerning the RM policy [Liu and Layland, 1973].

Chapter 3

Functional specification

Contents
3.1 Introduction . 35

3.2 The Clocked Graph synchronous language 37

3.2.1 Host language and global definitions 38

3.2.2 Dataflow definition . 44

3.2.3 Well-formed properties . 51

3.2.4 Example . 53

3.3 Translation from higher-level specifications 55

3.3.1 Functional specifications in SynDEx 57

3.3.2 Translation technique . 59

3.4 Abstraction as single-period task systems 60

3.5 Modeling multi-period task systems 63

3.6 Conclusion . 68

3.1 Introduction

This chapter presents our approach to formally modeling the functional aspects of an em-

bedded control system. The first part of this chapter is dedicated to the definition of the

formalism taken as input by our tool LoPhT, and to justifying our choice of an input for-

malism. This formalism, called Clocked Graphs (CG), is a simple data-flow synchronous

language that was designed to be an intermediate compilation format. Unlike other data-

flow synchronous languages, it is non-hierarchic, and imposes a full separation between

control (represented with explicitly-defined clocks) and the data-flow itself (represented

with variables and blocks).

The CG language has been designed to serve as an intermediate compilation represen-

tation. As such, it lacks many features meant to facilitate programming: hierarchy, the use

35

3.1. INTRODUCTION 36

Heptagon Signal

SynDEx

Scope of this thesis

Heptagon to CG Signal to SynDEx

SynDEx to CG

translator translator

translator

LoPhT

compiler

Clocked Graphs

Figure 3.1: The two current compiling chains using CG as an intermediate representation
language

of complex expressions, etc. Instead, all objects are identified and declared inside tables,

and all clocks are identified (so that no complex clock inference is needed). Transforming

high-level specifications written in languages such as Signal, SynDEx, or Lustre into CG

programs requires a non-trivial transformation, detailed in Section 3.3. Fig. 3.1 pictures

the two compilation chains that exist up to this day: one starts with programs written in

the Heptagon reactive language (a language similar to Lustre) which can be translated

into CG programs using a translator developed by Valentin Perrelle at IRT SystemX. The

other starts with Signal programs which can be translated into SynDEx programs using

a translator. These SynDEx programs can then be translated into CG programs using the

translator that I developped during my thesis and which is presented in Section 3.3.

While simpler than other synchronous languages, CG is a full-fledged programming

language which contains all the elements needed to support scheduling and code genera-

tion. However, for concision reasons, scheduling algorithms in both the real-time schedul-

ing and the compilation communities are described on more abstract models, such as the

various real-time task models or the data dependency graphs (DDGs). The definition of

our algorithms will follow the same approach. Thus, in order to reason about the correct-

ness of our implementation flows we define in this chapter (in Section 3.4) the abstract

models used for scheduling in subsequent chapters and their formal relation with the CG

3.2. THE CLOCKED GRAPH SYNCHRONOUS LANGUAGE 37

programs.

Following the classification of Chapter 2, the CG language is a single-clock syn-

chronous language, which means that there exists a clock (logical time base), called the

primitive clock, from which all other clocks of the program are derived through sub-

sampling. Moreover, in its current version, the language does not provide specific con-

structs for the definition of periodic sub-sampling, nor support for the description of long

tasks whose execution lasts for more than one synchronous execution cycle. This poses a

problem when the CG language is used to represent the functionality of systems involving

multiple execution periods and long tasks. Encoding such a system in the CG language

requires the use of a hyperperiod expansion which transforms a multi-period specification

into a single period one. This transformation is presented in Section 3.5.

Overall, this chapter mostly reviews and systematizes existing work on the CG lan-

guage (first defined in [Potop-Butucaru et al., 2009]). However, it contains two important

elements of originality:

• The explanation of how a single-clock synchronous language can be used to model

our complex avionics case study which involves real-time tasks with multiple peri-

ods.

• The extension of the CG language with logical invariants relating the inputs and

outputs of a function. These invariants are needed in the definition of our pipelining

technique in Chapter 6.

Less original, yet novel pieces of information provided in this chapter include the first full

presentation of the CG language (its concrete syntax), and the description of the transla-

tion from a high-level data-flow formalism to CG.

3.2 The Clocked Graph synchronous language

This section defines the syntax and semantics of the CG language. As explained above,

this language was designed to serve as an intermediate compilation representation. As

such it does not offer syntactic sugar constructs meant to facilitate the work of human

programmers. Instead, it clearly identifies and tabulates all objects it defines in a way that

facilitates automatic treatment.

In a CG program, applications are modeled using a set of tables. Each table collects

all definitions of a given kind: types, functions, constants, clocks, variables or data-flow

blocks. Each element of a CG specification belongs to one of these tables, and can be

uniquely referenced using a typed index, which points to a location in one of the tables.

This allows the non-ambiguous referencing of any element of a CG program. The dec-

laration of the indices follows the syntax given in Fig. 3.2: each index is composed of a

3.2. THE CLOCKED GRAPH SYNCHRONOUS LANGUAGE 38

keyword which designates the table, and an integer which points to the element location

inside this table. The 6 tables of a CG program are divided into two sections, defined next.

Like in other synchronous languages such as Lustre, Esterel, and Signal, the CG lan-

guage relies for its definition of types, constants, and computation functions on a sequen-

tial, imperative programming language such as C, Ada, etc. This language, known as the

host language, is in our case (for the scope of this thesis) the C language. The first section

of a CG program, named the global definitions section, defines the interface between the

synchronous data-flow described in CG and the host language. This section contains three

tables that declare the types, constants, and functions that are defined in the host language

and used in the synchronous program. One important remark here is that typing inside the

CG language is strict, and no notion of sub-type exists.

The second section of a CG program defines the data-flow. The CG language largely

follows a data-flow paradigm by organizing data computations as a graph formed of blocks

connected through dependencies. However, unlike classical data-flow synchronous lan-

guages such as Signal, Lustre, or SynDEx, it does not represent control using subsampling

and oversampling data-flow operators. Instead, it fully separates the description of con-

trol, which is represented with clocks, from that of the data flow. In particular, this sepa-

ration means that no clock inference is needed during program analysis. Instead, a simple

correctness check is needed, realized through the verification of simple well-formedness

properties defined in Section 3.2.3.

A second difference with respect to existing languages concerns causality analysis.

We shall assume throughout this thesis that the CG programs we manipulate are causally

correct, in the sense of the definitions of Chapter 2. Moreover, we will assume that these

programs satisfy a certain number of well-formed properties (defined below) facilitating

analysis and code generation. These properties include the data-flow acyclicity required

in Lustre or SynDEx. But as the CG language represents clocks separately, our causality

analysis must include clocks. To allow this, the data dependencies related to clock compu-

tations are explicitly represented using so-called supports, defined next. Then, the notion

of endochrony, which characterizes causally-correct single-clock programs that can be

statically scheduled, is enforced on CG specifications using well-formed properties that

are easily checked at scheduling and/or code generation time.

3.2.1 Host language and global definitions

As previously explained, all data types, computation functions, and most constants that

are used in a CG program must be:

• Defined in a so-called host language, which in our case is C.

• Declared in the global definitions section of the CG program.

3.2. THE CLOCKED GRAPH SYNCHRONOUS LANGUAGE 39

type_idx := Type: <Int>

fun_idx := Function: <Int>

cst_idx := Const: <Int>

var_idx := Variable: <Int>

clk_idx := Clock: <Int>

block_idx := Block: <Int>

Figure 3.2: CG indexes syntax

type_table := Type Table type_list

type_list :=

|type type_list

type := type_idx <Identifier> type_description

type_description := Predefined

| Simple

Figure 3.3: CG types declaration syntax

The CG declarations, grouped in 3 tables (type table, function table, and constant table)

are the interface allowing scheduling and code generation algorithms to check the correct-

ness of the specification and then generate C code. This code, together with the external

C definitions provided in the host language, can be compiled to generate the executable

code of the implementation.

This section details the form of the 3 CG tables that compose the host language inter-

face (the global definitions section), and also details the form that must be respected by

the external C definitions to allow interfacing at code generation time.

3.2.1.1 Types

Data types are declared in the type table following the rules of Fig. 3.3. Each type is

referenced using a table index, an identifier (i.e. a string that defines the name of the

type), and a description. The description defines the kind of the type. There are two kinds

of types:

• Predefined types, identified with the Predefined keyword, have built-in support

within LoPhT.

• All other types are identified with the keyword Simple.

The predefined types are bool, int, float and string. Literals of these types can be directly

used as constants, and specific built-in operators can be used on Booleans, as we shall see

in Section 3.2.2.

The following example of a type table defines three types.

3.2. THE CLOCKED GRAPH SYNCHRONOUS LANGUAGE 40

function_table := Function Table function_list

function_list :=

|function function_list

function := fun_idx <Identifier> (type_list)->(type_list)

Figure 3.4: CG function declarations syntax

Type Table

Type:0 int Predefined

Type:1 point Simple

Type:2 bool Predefined

The table begins with the keywords Type Table, and is then composed of the succes-

sive declarations of the types, following the order of their indices. In our table, the first one

is the int type that is predefined in C (and thus needs no user-defined external definition),

and the second one is a user defined type used to represent points in a two-dimensional

space. The third line interfaces with the classical C bool type.

The C definition of the non-predefined type point is given in the external types.h li-

brary:

\\types.h

typedef struct {int x; int y;} point;

3.2.1.2 Functions (basic syntax)

The functions table collects abstract descriptions - prototypes - of all the functions used

by the application. Along with the name of the function, which is needed to allow code

generation, the interface includes the types of the input and output variables. This allows

type-checking prior to the code generation phase. To allow code generation, the interface

of the C function must comply with the CG definition. Compliance consists in having the

same name, having a void return type, and having a list of parameters with the following

structure:

• arguments that correspond to the inputs declared in the prototype are of the same

type as in the prototype,

• arguments that correspond to the outputs declared in the prototype are pointers to

elements of the types declared in the prototype: the outputs are passed by reference.

3.2. THE CLOCKED GRAPH SYNCHRONOUS LANGUAGE 41

Moreover, it is required that the order in which the input and output types are declared

in the prototype be respected in the implementation.

When modeling an application using the CG language, we assume that the implemen-

tations of the functions do not have an internal state and that they have no side effects. The

language provides means of explicitely defining and managing the state of the application

by the means of delay constructs, as we will see in Section 3.2.2.3.

The syntax for function definitions in CG is given in Fig. 3.4. An example of function

table is provided below. In this example the types reference the type definitions given in

Section 3.2.1.1.

Function Table

Function:0 highest_y (Type:1 Type:1) -> (Type:0)

Function:1 shift_right (Type:1 Type:0) -> (Type:1)

The keyword Function Table announces the definitions of the functions. The first

function, called highest_y takes two points (as defined in the previous section) as inputs,

and returns the value of the highest y-coordinate. The library file, called functions.h

comprises the source code for the two functions:

//functions.h

void highest_y (point p1, point p2, int *return_val) {

if (p1.y > p2.y){

*return_val = p1.y;

}

else {

*return_val = p2.y;

}

};

void shift_right (point p1, int shift, point *return_point) {

return_point->x = p1.x + shift;

return_point->y = p1.y ;

};

Note the parameter order in the C definitions. The first function has three parameters,

the return value being passed by reference. The second function takes a point and returns

another point which has the same y coordinate as the first one and its x coordinate that has

been shifted by a length given by an integer.

3.2. THE CLOCKED GRAPH SYNCHRONOUS LANGUAGE 42

function := fun_idx <Identifier> (var_list)->(var_list)

ensures_clause

var_list :=

| fun_var var_list

fun_var := <Identifier> : type_idx

ensures_clause :=

|Ensures p_test_e

p_test_e := And(p_test_e p_test_e)

|Or(p_test_e p_test_e)

|Not p_test_e

|<Identifier>

Figure 3.5: CG complete function declaration syntax

3.2.1.3 Functions (extended syntax with invariants)

The function declaration syntax defined above is the one used in previous versions of the

LoPhT tool. However, it does not provide enough information to allow the application of

advanced scheduling techniques such as software pipelining (presented in Chapter 6).

To support such advanced scheduling algorithms, I have extended the function de-

scription language as follows:

• Instead of declaring only the types of the inputs and outputs of each function, we

associate a name to each input and output. These names do not correspond to any

other element of the specification graphs: they are local to each function definition,

so the same names can be used in the definition of two different functions. However,

these names must be unique inside each function definition, to avoid any ambiguity.

• An ensures clause can be defined for each function. It consists in a Boolean formula

constructed from the names of the inputs and outputs of the function. The clause of

a function defines a logical invariant that must be true at all execution cycles. The

definition of the predicate can use the logical connectors And, Or and Not, along

with identifiers corresponding to inputs and outputs of Boolean type.

The revised syntax for the functions specification is given in Fig. 3.5. We illustrate the

declaration of an ensures clause in the following example:

Function:0 bool_neg (i:Type:2)->(o:Type:2)

Ensures Or(And(i Not o) And(Not i o))

In this example, we specify a function called bool_neg (for boolean negate), which

takes an input i of type Type:2 (Boolean), and returns an output of the same type. The

ensures clause states that at each instant, the output is the negation of the input. The

implementation code corresponding to this function is the following:

3.2. THE CLOCKED GRAPH SYNCHRONOUS LANGUAGE 43

constant_table := Constant Table constant_list

constant_list :=

|constant constant_list

constant := cst_idx <Identifier> type_idx cst_kind

cst_kind := External

|fun_idx (cst_or_lit_list)

cst_or_lit_list :=

|cst_or_lit cst_or_lit_list

cst_or_lit := cst_idx

| <Int>

| True

| False

| <Float>

| <String>

Figure 3.6: CG constants declaration syntax

\\Functions.h

void bool_neg (bool i, bool *o){

*o = !i

};

3.2.1.4 Constants

As explained above, literals of the predefined types can be directly used in CG specifica-

tions. However, all constants of non-predefined types must be explicitly declared in the

constant table. It is also possible to define constants of predefined types, whenever having

named constants is needed.

There are two types of constant declarations: the first ones are identified by the Ex-

ternal keyword. They are defined in an external C file. The second type of constants

are initialized with a simple constant expression formed by applying functions to other

constants (literals or tabulated constants). Note that recursive definitions are not allowed,

in the sense that a constant cannot depend on itself.

The syntax is given in Fig. 3.6, and illustrated in this example, which uses the type

and function tables used as examples in the previous sections:

Constant Table

Const:0 origin Type:1 External

Const:1 shifted_origin Type:1 Function:1 (Const:0 3)

3.2. THE CLOCKED GRAPH SYNCHRONOUS LANGUAGE 44

The external constants must be defined in C. In our case, only one constant must be

defined:

//constants.h

static point origin = { 0,0 } ;

The second constant is defined in the CG specification. It can be implemented in one

of two ways: through a constant definition synthesized by our tool, or by inlining the

function call at each point of use. In our example, constant shifted_origin is defined by

the application of function shift_right to the origin constant and to the literal 3.

3.2.2 Dataflow definition

The second section of a CG program contains the tables defining the control and dataflow

of the application.

Control is described under the form of logical clocks which define the activation con-

ditions (triggers) of the various computations and communications of the application. One

particularity of the CG clocks is that apart from defining an activation condition (a boolean

predicate), a clock also carries the necessary information for the computation of that con-

dition: this allows to easily check that the specification is causal, and lets the application

designer specify the way he wants the clocks to be computed (which in turn may allow a

minimization of the amount of data sent through the communication media).

The data flow of the application is specified using nodes, called blocks in the CG

formalism, and variables, which represent the flows of data between blocks. The blocks

represent the computations and internal state of the application. Another particularity

of the language is that the dataflow specification does not rely on communication arcs.

Instead the specification file contains variables that are unambiguously amalgamated to

the output ports of the dataflow blocks. The description of the application thus involves

objects that are close to the ones used in the implementation code.

3.2.2.1 Clocks

In our formalism, application control is specified by the means of clocks. The clocks are

the activation conditions governing the execution of all computations and communica-

tions. In CG, a clock defines a Boolean predicate and a way of computing this predicate.

The Boolean predicate is the actual activation condition. At each execution cycle, the

predicate associated with a clock is evaluated. A computation or communication whose

clock is c is performed in execution cycle n whenever the value of c in cycle n, denoted

c[n], is 1 (true, active) in the given cycle. If c[n] = 0, then the associated computation or

communication is not performed.

3.2. THE CLOCKED GRAPH SYNCHRONOUS LANGUAGE 45

clock_table := Clock Table clock_list

clock_list := clock

|clock clock_list

clock := clk_idx clk_name clk_def clk_support

clk_name :=

|<Identifier>

clk_def := Primitive

|clk_predicate

clk_predicate := clk_idx

|Or(clk_predicate clk_predicate)

|And(clk_predicate clk_predicate)

|Diff(clk_predicate clk_predicate)

|Test(clk_predicate test_expr)

test_expr := And(test_expr test_expr)

|Or(test_expr test_expr)

|Diff(test_expr test_expr)

|Not(test_expr)

|rval

rval := var_idx

|cst_or_lit

clk_support :=

|clkd_var clk_support

clkd_var := var_idx On clk_idx

Figure 3.7: CG clocks declaration syntax

Clocks are partially ordered by the ≤ relation defined as follows: c1 ≤ c2 iff c1[n] im-

plies c2[n] for all execution instant n. In the classification of Chapter 2, the CG language

is a single-clock synchronous language, which means that in each CG specification there

exists a unique maximal clock which is true on each execution instant. We call it the prim-

itive clock, because all the other clocks of the specification are obtained by successively

subsampling it.

The predicate associated with the primitive clock is predefined (always true), but the

definition of all other clocks must include a predicate built from the other clocks and from

the variables of the data flow using a small set of operators defined below.

Clocks are following the syntax given in Fig. 3.7. The primitive clock must be de-

clared in first position in each specification (this is why the syntax does not allow the

clock_list to be empty). This is done by using the Primitive keyword. Other clocks

are specified by directly defining their predicate. A clock predicate is defined by:

• a reference to another declared clock,

• the union, intersection or difference of two other clock predicates,

3.2. THE CLOCKED GRAPH SYNCHRONOUS LANGUAGE 46

Time instants
0 1 2 3 4 5 6 7 8 9 10

Variables
x 1 1 0 1 0 0 1 0 0 0 0
y 1 1 1 0 1 0 1 0 0 0 1
z 1 5 2 3

Clocks
Clock:0 Primitive 1 1 1 1 1 1 1 1 1 1 1
Clock:1 Test(Clock : 0 x) 1 1 0 1 0 0 1 0 0 0 0
Clock:2 Test(Clock : 0 y) 1 1 1 0 1 0 1 0 0 0 1
Clock:3 Test(Clock : 0 And(x y)) 1 1 0 0 0 0 1 0 0 0 0
Clock:4 And(Clock : 2 Clock : 3) 1 1 0 0 0 0 1 0 0 0 0

Figure 3.8: Predicates associated to clocks

• a test expression which is evaluated on the instants when a specified clock evaluates

to true.

A test expression is the definition of a logical formula over the boolean variables and

constants of the data flow:

• the conjunction, disjunction or difference of two other test expressions,

• the negation of a test expression,

• a rvalue.

Rvalues are defined as references to either boolean variables or constants of the data

flow, the application of a function to other rvalues (the output of the function must be

boolean), or boolean constant literals1. As you can see, there are two different levels of

specification: one works at clock level (clk_predicate) and allows the direct com-

bination of clocks. The other works at the variables and constants level by allowing the

definition of logical formulas using the variables and constants of the data flow. This par-

ticularity of the syntax allows the definition of equivalent formulas under different forms,

as shown in the next example. The expressiveness of this language can be used when

automatically transforming a high-level specification to a CG specification, in order to

capture to a certain extent the structure of the initial (hierarchical) program inside the

clocks. Keeping this information can be very useful, especially when deciding how to

evaluate the clocks values.
1The syntax can be extended to include the definition of regular clocks and predicates defined over non-

boolean variables. Nevertheless the support for such clocks in our scheduling algorithms would require the
use of a SMT solver instead of the currently used SAT solver.

3.2. THE CLOCKED GRAPH SYNCHRONOUS LANGUAGE 47

In the example of Fig. 3.8, we consider two boolean variables: x and y, which are

defined at any instant of the system. Five clocks are also depicted in this example. The

first one is the primitive clock: it is true at each instant and thus lays the basis for the

definition of the other clocks. Clock:1 is defined by the value of variable x at any instant

defined by the primitive clock: it is true at instants 0, 1, 3 and 6, and false at any other

instant. Clock:2 is defined in the same fashion, but using variable y instead. Finally the

value of Clock:3 at any instant is given by the result of the logical conjunction of variables

x and y. Since both of these variables are defined on any instant given by the primitive

clock, Clock:3 will also be defined on all instants of the system. Clock:4 is equivalent to

Clock:3 (they are synchronous). Both are present at all instants, and at each instant they

evaluate to the same value. Nevertheless, one (Clock:4) is defined at the clock predicates

level, as a conjunction between two clocks, while the other is defined at the data flow

variables level as a conjunction between two variables. You may have noticed that the

example also includes one integer variable called z. It is only defined in the instants

when Clock:1 is true. In all the instants when Clock:1 is false, z has no value (we say

that it is absent). For this reason, we say that z is a clocked variable: a clocked variable

cv = (var,clk) is a variable var whose value is considered only in the instants defined by a

clock clk. Clocked variables are involved in the definition of the clock supports described

below, and in the definition of the input ports of the blocks of the data flow, as we will see

later.

Clock support As said before, the definition of a clock is not limited to the predicate

that defines it. It also includes the elements needed to evaluate this predicate: the clock

support. This information is exploited to ensure causality, and allows optimizations to

occur during the offline scheduling phase, when reserving time for the communication of

the corresponding data. The support of a clock c is the set of all variables needed to com-

pute c, along with the clocks defining the instants when these variables are needed. As we

saw before, the association of a variable var with a clock clk is called a clocked_variable

cv = (var,clk). In order to ensure causality when declaring clocks that involve the recur-

sive computations of other clocks, the support of each clock must be endochronous, that

is to say for each clocked variable cv of a support s:

• there must exist a subset sub(s) of s such that the clock of cv can be computed using

only the clocked variables present in sub(s),

• there are no cyclic dependencies in s.

This means, for example, that for any two clocked variables cv1 = (var1,clk1) and cv2 =

(var2,clk2) in s, if clk1 is defined using var2, then clk2 cannot itself make a reference to

var1 or be defined using any clock making a reference to var1. In practice, we impose

3.2. THE CLOCKED GRAPH SYNCHRONOUS LANGUAGE 48

that the clocked variables defining the support of a clock be declared in a list following a

certain partial order: for each clocked variable in the list, it must be possible to compute

its clock using only the clocked variables declared earlier in the list. The primitive clock

can always be computed, since it is the basis of all clocks. Intuitively, this means that the

first elements of the list (at least the first one) are always defined over the primitive clock.

The example of Fig. 3.9 illustrates how clocks are declared in CG, and how supports

work. First of all, the primitive clock has to be uniquely defined. This clock has no de-

pendency, since it is always present and always returns true. Clock var0 is defined as

being the value of the boolean variable Variable:0, evaluated when the primitive clock is

true (that is to say always). The support of this clock thus states that its computation re-

quires the value of Variable:0 at any instant when Clock:0 is true. Clock not_var1 returns

the negated value of a boolean variable Variable:1 at any instant defined by Clock : 0.

The next five clocks are synchronous in the sense that for any given instant (and thus

any given configuration of Variable:0 and Variable:1), they all return the same value:

(Variable : 0∧¬Variable : 1). Nevertheless, we have declared them in order to illustrate

the importance of clock supports in the definition of clocks. Indeed, although they all

return the same value, the amount of data required to compute it is different, and varies

according to the values of Variable:0 and Variable:1. Clock version1 makes the conjunc-

tion of clocks var0 and not_var1, and its support states that the values of Variable:0 and

Variable:1 are needed at any time (on Clock:0) to compute this formula. In other terms,

any time this clock has to be evaluated, the scheduler must ensure that the values of both

variables are present on the processor that computes the clock. Clock version2 makes

exactly the same conjunction, except that Variable:1 is only required when var0 is true.

Indeed, if var0 is false, then the whole conjunction will be false, and there is no need to

evaluate not_var1. In clock version3, the conjunction is still the same, but not_var1 is

evaluated before var0, and thus the clock support must be changed accordingly. Using

version1, version2 or version3 has an impact on the result of the scheduling phase, since

the communications will be optimized depending on the clock dependencies. Moreover,

when running the application, having made the good choice (given there is one) can speed

up the execution: if we consider an application where both Variable:0 and Variable:1

are frequently false, using version2 will cause the sending of Variable:0 at every execu-

tion cycle, but Variable:1 will rarely be sent, since var0 will often evaluate to false. On

the other hand, using version3 will cause the frequent sending of both variables, since

Variable:1 will often be false (and thus, not_var1 will be true).

Clocks version4 and version5 are equivalent to version2 and version3 respectively,

from the point of view of their return value and their clock support. They illustrate the

fact, already intuitively pointed out in the example of Fig. 3.8, that there are two different

levels of clock predicate definition, which may be used to declare equivalent clocks.

3.2. THE CLOCKED GRAPH SYNCHRONOUS LANGUAGE 49

Clock:0 tick Primitive

Clock:1 var0 Test(Clock:0 Variable:0) Variable:0 On Clock:0

Clock:2 not_var1 Test(Clock:0 Not(Variable:1)) Variable:1 On Clock:0

Clock:3 version1 And(Clock:1 Clock:2) Variable:0 On Clock:0 Variable:1 On Clock:0

Clock:4 version2 And(Clock:1 Clock:2) Variable:0 On Clock:0 Variable:1 On Clock:1

Clock:5 version3 And(Clock:2 Clock:1) Variable:1 On Clock:0 Variable:0 On Clock:2

Clock:6 version4 Test(Clock:1 Not(Variable:1)) Variable:0 On Clock:0 Variable:1 On Clock:1

Clock:7 version5 Test(Clock:2 Variable:0) Variable:1 On Clock:0 Variable:0 On Clock:2

Figure 3.9: Example of clock definitions in CG

variable_table := Variable Table variable_list

variable_list :=

|variable variable_list

variable := var_idx type_idx Single Assignment port_ref

port_ref := <Identifier> @ block_idx

Figure 3.10: CG variables declaration syntax

3.2.2.2 Variables

As said before, we chose not to use arcs to depict the data dependencies in the CG lan-

guage, but rather to use specification variables, that is to say objects that are very close to

the variables that will be used in the implementation. We made this choice because we

believe that using the same object, which seemlessly evolves by successive operations, all

along the scheduling and code generation flow is much more convenient in an intermedi-

ate representation than using different objects at different stages of the flow, and having

to convert them.

In CG, variables are produced by the output ports of the dataflow blocks: each output

port corresponds to exactly one variable, and each variable corresponds to exactly one

output port. This way, there is no ambiguity on the definitions of the variables, and as

LoPhT schedules the dataflow blocks, the variables produced by these blocks are directly

mapped on the resources. The specification syntax of the variables of the system is given

in Fig. 3.10. Each variable type is defined by referencing an entry of the types interface.

Then the variable is linked to the output port that produces it: a reference is made to

this port, by declaring its identifier and the block it belongs to. The Single assignment

keyword states that for now, LoPhT only supports single assignment of variables within

an execution cycle, but this model may be extended in the future to variables that can

be reassigned multiple times within a cycle. The example in Fig. 3.11 illustrates the

declaration of the two boolean variables used to define the clocks of Fig. 3.9.

3.2. THE CLOCKED GRAPH SYNCHRONOUS LANGUAGE 50

Variable:0 Type:2 Single Assignment is_ok@Block:8

Variable:1 Type:2 Single Assignment broken_booster@Block:5

Figure 3.11: Example of variable definitions in CG

block_table := Block Table block_list

block_list := block

|block block_list

block := block_idx clk_idx block_definition

block_definition := (iport_list)->(oport_list) block_fun

iport_list :=

| input_port iport_list

input_port := <Identifier> Is clkd_var_list

clkd_var_list := clkd_var

| clkd_var clkd_var_list

oport_list :=

| output_port oport_list

output_port := <Identifier> Is var_idx

block_fun := fun_idx

| Delay delay_info

delay_info := type_idx Depth <Int> Init cst_or_lit_list

Figure 3.12: CG blocks syntax

3.2.2.3 Dataflow blocks

The dataflow blocks (N) are separated in two kinds: computation blocks (N C) and delay

blocks (N ∆). The computation blocks represent the stateless computations that happen

during a cycle of execution. The supported model for computations does not allow hidden

side effect using unspecified variables between different blocks, or between successive

computations of a computation block, because it would imply that a part of the system

state be stored in these unspecified, hidden variables. Nevertheless, it allows some non-

determinism, for example for the implementation of sensors, which do not have a specified

input port, and instead acquire their data via side effect. In order to cope with that limi-

tation of the computation blocks, the state of the system is completely stored in the delay

blocks, which carry explicitly all the necessary data from one execution cycle to the next

one.

Syntax The syntax for the declaration of the dataflow blocks is given in Fig. 3.12. Each

block specification includes a reference to its activation clock, and the definition of the

blocks. The definition of the blocks contains:

• The list of output ports which are simply defined by a name and a reference to the

3.2. THE CLOCKED GRAPH SYNCHRONOUS LANGUAGE 51

unique variable they produce. For the variables specification to remain unambigu-

ous, two output ports of the same block should never have the same name,

• The list of input ports. Since our representation relies on the use of variables, the

usual dataflow arcs are replaced by the definition of the input ports of the blocks.

Each of these ports is characterized by a name, and contains a list of clocked vari-

ables that designate the variables that give their value to the input port, and under

which condition they shall give it,

• The nature of the block.

The nature of the block is defined either by directly refering to the function that the

block computes, in the case of a computation block, or by using the Delay keyword, fol-

lowed by the relevant information about the delay block: the type of the delayed variable,

the depth of the delay - the number of successive execution cycles it spans - and the non-

empty list of constants or constant literals that are used to initialize the value of its output

port. An important point is that the current implementation of LoPhT only supports delay

blocks with one single input and one single output port. This is coherent with the usual

delay construct in traditional synchronous languages and should not be subject to change

in the future.

We illustrate the declaration of blocks in the following example, where three blocks

are declared:

Block Table

Block:0 Clock:0 (point Is Variable:3 On Clock:0 shift_int Is Variable:4 On Clock:0)->(shifted_point Is Variable:2) Function:1

Block:1 Clock:0 ()->(polled_int Is Variable:4) Function:2

Block:2 Clock:0 (i_point Is Variable:2 On Clock:0)->(o_point Is Variable:3) Delay Type:1 Depth 1 Init Const:0

The first one is a functional block which takes as input a point and an integer variable,

and computes function shift_right on these inputs. The second block models an input

interface which returns the integer used to shift the point in Block:0. The last block is

a delay which takes as input the output of the first block, and gives it back to its next

occurence (in the next execution cycle). It is initialized with the value of the constant

Const:0.

3.2.3 Well-formed properties

Correctness properties We summarize here the correctness properties which ensure

that the specification respects the synchronous hypothesis. Thus, they must be respected

by any CG specification, and in the remainder of the thesis, we will always assume that

they are.

The formalization of the two first properties uses the following notations: for any

block n, we denote by I(n) the set of its input ports and by clk(n) its activation clock. For

3.2. THE CLOCKED GRAPH SYNCHRONOUS LANGUAGE 52

any clocked variable cv = (var,clk) of the specification, we denote by src(cv) the block

that produces var and by clk(cv) its clock clk. Finally, for any input port i, we denote by

inputs(i) the set of clocked variables that are declared in this input port.

• Property 1: At any time instant when a block n is active (i.e. its activation clock is

true), all its inputs must be computed and transmitted. Formally:

∀n ∈N ,∀i ∈ I(n),clk(n)≤
∨

cv∈inputs(i),
clk(cv)

meaning that for each block n, each of its input ports i receives clocked variables

whose clocks reunion covers at least all the time instants defined in clk(n). In other

terms, each times n is active, its inputs are defined.

and

∀cv,clk(cv)≤ clk(src(cv))

meaning that for any clocked variable cv in the specification, the block producing

its variable activates on a clock that contains at least all the activation instants of

clk(cv).

• Property 2: For any block n, each of its inputs can come from at most one source

at each instant. Therefore, we forbid write conflicts and the non-determinism that

could result from multiple assignments of the same input port in the same cycle. In

a formal way:

∀n ∈N ,∀i ∈ I(n),∀cv1,cv2 ∈ inputs(i),cv1 6= cv2 =⇒ clk(cv1)∧ clk(cv2) = f alse

• Property 3: It is forbidden to specify a dataflow graph comprising a cycle that does

not include a delay block. This condition imposes that there are no causality cycles

in the spec, and in conjunction with the synchronous hypothesis, that the execution

of each computation cycle performs in bounded time.

Endochrony of a Clocked Graph specification Apart from these correctness proper-

ties, we define a preorder � as follows (this definition is adapted from [Potop-Butucaru

et al., 2009]):

• o � cv for each clocked variable cv created by an output port o,

• cv � i for each clocked variable cv declared in an input port i,

3.2. THE CLOCKED GRAPH SYNCHRONOUS LANGUAGE 53

F1

¬HS

G

FS_IN

HS_IN

FS

HS

HS

¬HS

true

true

N

M

FS

¬FS

F3

¬HS

¬HS
F2

¬HS

HS∧¬FS

ID

ID ID

ID

¬HS∧¬FS

¬HS

δ
¬HS ¬HS

Figure 3.13: Example of specification in the clocked graph formalism

• o � x for each output port o and each block or clocked variable x such that the

variable created by o is used in the support of clk(x),

• i � o for each input port i and output port o of a block that is not a delay.

If � is a partial order relation and for each block n, and each output port of o of n, any

clocked variable cv created by o has its clock clk(cv)≤ clk(n), then we say the functional

specification is endochronous. This ensures causality, even for the computations of the

clocks, as well as the existence of a static schedule for all the operations, including the

computations of the clocks (which are thus endochronous).

3.2.4 Example

Let us illustrate how to program a specification in the CG language with a graphical

example. The example of Fig. 3.13 is a graphical representation of a clocked graph spec-

ification. It is a simplified model of an application controlling the ignition cycle in an

explosion engine. Between two successive ignitions, the computations represented in

this specification must be executed at most once, depending on their execution condition.

Since the engine can run at variable speed, the time between two successive ignitions is

also variable. When the engine runs at a low pace, a long time interval is available to

perform accurate computations. On the other hand, the faster the engine is running, the

smaller the time interval available for computations. In order to tackle this problem, two

operational modes are defined for the system. A sensor acquires the speed of the engine,

and outputs a boolean stating if this speed exceeds a certain stage. In the specification,

block HS_IN is responsible for reading this boolean value at the begining of each cycle

of computation, and to make the value of HS available to the system. Then, in each cycle

where HS evaluates to false (i.e. when the engine is not running at high speed), operations

F1, F2 and F3 are computed. The delay block δ saves the last output value generated

3.2. THE CLOCKED GRAPH SYNCHRONOUS LANGUAGE 54

by F3 (in the last execution cycle where HS was false), and feeds it to F1. This way we

specify a feedback loop, while keeping the specification valid from the point of view of

causality. In the cycles where HS is true, since there is less time between two ignitions,

only one coarser grain, quicker computation is performed: function G. Following the

same scheme, a failsafe mode is defined using a sensor and the input block FS_IN. If an

abnormal behaviour is detected in the system, then FS_IN returns the value true, to signal

the application that something is going wrong. When it is the case, graceful degradation

of the system is achieved by computing one generic function, N, that does not depend on

any other computation (it has no input). On the other hand, in nominal mode a function

M is called and takes as input the value computed either by G or by F1, depending on the

speed of the engine.

Blocks that have no dependency, or dependency chain, between them can be scheduled

in parallel. For example, in the case when FS is true at a given instant, N can be scheduled

in parallel to F1, F2, F3, or G. On the contrary, on instants when clock ¬HS is true, F2

has to wait for the production of the output variable of F1, and F3 of the output variable

of F2.

Example in the clocked graph syntax We will now show the CG specification cor-

responding to this example. To do so, we need to specify three data types: one will be

used to type the boolean variables of the system (HS and FS), and the others are two

user defined data types. Then we must declare the functions table containing the eight

functions of the system. In this example, we also declare one external constant that is

used to initialize the delay block δ . Seven variables must be declared: the two boolean

variables HS and FS, the variables produced by the output ports of functional blocks F1,

F2, F3 and G, and the output of the delay block δ . We must then declare seven clocks.

First, the PrimitiveClock which contains all the time instants considered in the system.

By convention, we name it Tick, since it contains all the clock ticks of the system. Then

the clocks corresponding to the value of variable HS being true or false (one clock for

each) on the time instants defined by the base clock, and the corresponding clocks for the

value or variable FS. For each of those four clocks, the support consists in the consid-

ered variable, sampled on the primitive clock. Finally we declare two clocks that are the

conjunctions of previous clocks, and that are needed to activate or inhibit the communi-

cations to the block computing function M. The support of those clocks is defined in the

following way: for each of them, we need the variable corresponding to the first part of

the conjunction, sampled on the primitive clock, and the variable of the second part of the

conjunction, only when the first part of the conjunction evaluates to true. Finally, we must

declare the 9 dataflow blocks corresponding to the two input functions, the 6 computation

functions and the delayed variable. The full functional specification of this example, in

3.3. TRANSLATION FROM HIGHER-LEVEL SPECIFICATIONS 55

the CG syntax, is given in Fig. 3.14.

Checking correctness properties in our example In order to illustrate the three cor-

rectness properties we defined, we will now check that they are indeed enforced in our

example.

• Property 1: This rule applies to the three blocks Block : 3, Block : 4 and Block : 6,

since they are the only blocks with functional inputs. Clearly, for blocks 3 and 4,

their only input arc has the same activation clock than the blocks (¬HS), so the

property is verified. For block 6, we must check the reunion of the clocks of its two

arcs against its own activation clock. We have :

(¬HS∧¬FS)∨ (HS∧¬FS)⇔¬FS

and since ¬FS is precisely the activation clock of block 6, property 1 is verified.

• Property 2: This rule applies only to the communications of variables 2 and 4

from block 2 and 5 to block 6. We can compute the logical conjunction of the two

communication clocks:

(¬HS∧¬FS)∧ (HS∧¬FS)⇔ f alse

so the second property is verified in our example.

• Property 3: The third property is easily verified in the example since the only

dependency cycle which exists between F1, F2 and F3 includes a delay block δ .

We have just presented the core language of the CG formalism, along with its seman-

tics and correctness properties. Amongst the particular features of the language dedicated

to improving scheduling, we introduced the possibility to define contracts on the functions

of the specifications: the application developer can declare logical invariants between the

inputs and outputs of the boolean functions of the application. This additional information

can then be used in order to improve the results of our scheduling algorithms.

3.3 Translation from higher-level specifications

We have already explained that the CG language was not defined as a specification lan-

guage, but as an intermediate representation to be used during compilation and/or real-

time scheduling. This means that actual specification must be done in higher-level syn-

chronous languages such as Signal, SynDEx, or Lustre, and then the specification must

be translated into a lower-level CG program.

3.3. TRANSLATION FROM HIGHER-LEVEL SPECIFICATIONS 56

ClockedGraph

Global Definitions

Type Table

Type:0 boolean Predefined

Type:1 ID_type Simple

Type:2 V_type Simple

Function Table

Function:0 FS_IN ()->(o:Type:0)

Function:1 HS_IN ()->(o:Type:0)

Function:2 F1 (i:Type:2)->(o:Type:1)

Function:3 F2 (i:Type:1)->(o:Type:2)

Function:4 F3 (i:Type:2)->(o:Type:2)

Function:5 G ()->(o:Type:1)

Function:6 M (i:Type:1)->()

Function:7 N ()->()

Constant Table

Const:0 init_del Type:2 External

Functional Specification

Variable Table

Variable:0 Type:0 Single Assignment FS@Block:0

Variable:1 Type:0 Single Assignment HS@Block:1

Variable:2 Type:1 Single Assignment ID@Block:2

Variable:3 Type:2 Single Assignment V1@Block:3

Variable:4 Type:1 Single Assignment ID@Block:5

Variable:5 Type:2 Single Assignment V2@Block:4

Variable:6 Type:2 Single Assignment V2_del@Block:8

Clock Table

Clock:0 Tick Primitive

Clock:1 TestClock(Clock:0 Variable:1) Variable:1 On Clock:0

Clock:2 TestClock(Clock:0 Not(Variable:1)) Variable:1 On Clock:0

Clock:3 TestClock(Clock:0 Variable:0) Variable:0 On Clock:0

Clock:4 TestClock(Clock:0 Not(Variable:0)) Variable:0 On Clock:0

Clock:5 And(Clock:2 Clock:4) Variable:1 On Clock:0 Variable:0 On Clock:2

Clock:6 And(Clock:1 Clock:4) Variable:1 On Clock:0 Variable:0 On Clock:1

Block Table

Block:0 Clock:0 ()->(FS Is Variable:0) Function:0

Block:1 Clock:0 ()->(HS Is Variable:1) Function:1

Block:2 Clock:2 (i Is Variable:6 On Clock:2)->(ID Is Variable:2) Function:2

Block:3 Clock:2 (ID Is Variable:2 On Clock:2)->(V1 Is Variable:3) Function:3

Block:4 Clock:2 (V1 Is Variable:3 On Clock:2)->(V2 Is Variable:5) Function:4

Block:5 Clock:1 ()->(ID Is Variable:4) Function:5

Block:6 Clock:4 (ID Is Variable:2 On Clock:5 Variable:4 On Clock:6)->() Function:6

Block:7 Clock:3 ()->() Function:7

Block:8 Clock:2 (del_i Is Variable:5 On Clock:2) -> (V2_del Is Variable:6) Delay Type:2

Depth 1 Init Const:0

Figure 3.14: CG functional specification of the previous example

3.3. TRANSLATION FROM HIGHER-LEVEL SPECIFICATIONS 57

To allow interfacing with high-level specification languages, I have developed a trans-

lator that generates CG programs from input specifications of the SynDEx [Sorel, 2005]

tool. We briefly present here this translator. In doing so, we present the principles that

must be respected when translating into CG any high-level data-flow formalism (e.g. Lus-

tre/Scade). Furthermore, given that a Signal-to-SynDEx translator already exists [Pan

et al., 2003], our translator allows the translation of Signal/Polychrony specifications into

CG.

In defining our translation scheme we make a number of important hypotheses that

are used during translation. First of all, we assume that the input SynDEx specification

is correct (in the sense that it can be scheduled by SynDEx). Important aspects of this

correctness are type correctness, clock consistency, and causal correctness. In particular,

we assume that the input specification represents a single-clock synchronous program,

where all clocks are derived from a single base clock.

Our transformations preserve these correctness properties. We do not check whether

types are consistent, assuming that it was checked by the SynDEx graphical specification

environment. The causal correctness is checked by the translation process itself, as the

translation will fail for a causally incorrect specification.

In defining our translation, we start by introducing in Section 3.3.1 the SynDEx spec-

ification formalism. Then in Section 3.3.2 we intuitively define the translation algorithm,

using the engine iginition control example of Section 3.2.4.

3.3.1 Functional specifications in SynDEx

3.3.1.1 Hierarchy

The synchronous language SynDEx allows the description of embedded applications un-

der the form of hierarchical dataflow graphs. A SynDEx specification consists in a dataflow

definition which can hierarchically use other definitions. Inside each definition, the dataflow

is extremely simple. It consists in a set of dataflow nodes, and a set of arcs connecting the

input and output ports of the nodes. Each time the dataflow description is executed, all its

nodes are executed in the order prescribed by the dataflow arcs2.

The nodes of a SynDEx dataflow definition have one of 3 types:

• Computation nodes are direct references to external C functions, much like the com-

putation blocks of CG. They are subject to the same constraints as the computation

blocks of CG. For instance, they cannot have an internal state or make side effects.

• Delay nodes are the state holders of SynDEx. They are similar to CG’s delays,

defined above.
2In the terminology of Dennis [Dennis, 1974], SynDEx uses no control actors (nodes).

3.3. TRANSLATION FROM HIGHER-LEVEL SPECIFICATIONS 58

HS

FS

i1 o1

Main algorithm

i1

i2

H1

HS_IN

FS_IN

H2

Condition: i2 = 0

M

i1

i2

i1

Condition: i2 = 1

N

i2

i1

i1
F3

o1i1
δ

F1

G

i1

i1 o1

o1

o1

Condition: i1 = 0

Condition: i1 = 1

o1
F2 o1i1i1

Figure 3.15: Example of specification in SynDEx

• Hierarchical nodes are references to other dataflow definitions.

The semantics of hierarchical nodes is that execution must take place as if the referenced

dataflow replaces the hierarchical node. The input and output ports of a hierarchical node

allow to interface between the nodes inside the referenced description and the other nodes

of the top-level definition.

The top-level SynDEx specification of the engine ignition control application de-

scribed earlier is given in Fig. 3.15. At this description level, the two input functions

HS_IN and FS_IN are present, as well as two hierarchical blocks H1 and H2. HS_IN

is linked to the input port i1 of node H1 and FS_IN to the input port i2 of node H2.

Moreover, the output o1 of H1 is provided to the input port i1 of H2.

3.3.1.2 Execution conditions

Hierarchy is often used in programming to allow the structuring of a specification into

descriptions of reasonable size. This is also true in SynDEx, but not only. Indeed, in

SynDEx hierarchy is also the only mechanism allowing the description of conditional

control.

To describe conditional control, a hierarchical node in a dataflow definition can have

not one, but several references to other dataflow definitions. Each of these references cor-

responds to one execution mode, identified through a predicate over the input ports of the

hierarchical node. This predicate determines which reference is used as the replacement

of the hierarchical node at each execution instant of the dataflow description. This means

that the predicates of any two references must be exclusive, and that one of them must

3.3. TRANSLATION FROM HIGHER-LEVEL SPECIFICATIONS 59

be true at each execution cycle of the top-level dataflow definition. The input ports used

in the definition of these predicates are called the conditioning ports of the hierarchical

node. We shall assume, as SynDEx requires, that only integer ports can be conditioning

ports, and that each hierarchical node has only one conditioning port.

In the engine ignition control example, the input ports i1 and i2 (of H1, resp. H2) are

of integer type, and can take values 0 or 13. Input port i1 (resp. i2) is the conditioning

port of node H1 (resp. H2), which means that for each of these two hierarchical nodes,

two descriptions must be provided, as detailed below.

3.3.2 Translation technique

From this input specification, the translator produces the clocked graph program displayed

in Fig. 3.14. To do so, a first step consists in building an intermediate representation of

the specification where the conditional control is no longer hidden: each mode inside a

hierarchical node is expanded, and execution conditions are explicited. The relationship

between the ports of hierarchical nodes and the nodes inside their referenced descriptions

are also made explicit. Fig. 3.16 shows the intermediate representation of the engine

ignition example. We see for example that the two modes inside the H1 hierarchical

node are replaced by one single mode including two explicitely conditioned nodes. Each

corresponds to one of the execution modes that were initially in H1. These new nodes are

still hierarchical, but each describes only one mode. Note that at this stage H1 has not yet

disappeared: it still plays the role of intermediate to link the arcs between its inner new

nodes and the top-level nodes. The same holds for node H2. From this representation, the

translator performs two important transformations:

• Flatten the hierarchy so that the final clocked graph specification will not be hierar-

chical. The hierarchical blocks disappear, and only the computation nodes remain.

The translator performs disambiguation of the names of such nodes, so that no two

remaining nodes will have the same name.

• Compute the execution conditions associated to all dataflow nodes and communica-

tions, and transform them into clocks. Since SynDEx uses integer variables for its

conditioning, and CG uses boolean clocks, a conversion must be done at this stage.

For input specifications where the values of the conditioning port can be different

than 0 or 1, we have designed a module that rewrites the considered node into nested

hierarchical nodes with binary (0/1) conditions.

The most difficult part of the translation is the handling of the arcs: the translator must

create corresponding clocked variables labelled with the good conditions and that globally

3But no range check is performed in SynDEx or by our tools.

3.4. ABSTRACTION AS SINGLE-PERIOD TASK SYSTEMS 60

Main algorithm

HS_IN
HS

i1 F3

H1 H2

i1 i1

i1

F1

G
o1 o1

o1 M
i1

N

Condition: i1 = 0

Condition: i1 = 1

Condition: i2 = 0

Condition: i2 = 1

i2

i1

i2

i1

i1

i2

o1 i1 F2 o1 o1
i1 o1

o1i1 δ

FS_IN
FS

Figure 3.16: Intermediate translation of the SynDEx specification

reproduce the semantics of the initial specification. In the hierarchical description, arcs

representing the same variable may be split or merged at various places, go through differ-

ent hierarchical and conditioned blocks, and the translator must replace them by variables

present in the correct input ports under the good condition in the final specification.

From the intermediate representation of Fig. 3.16, the flattening of the hierarchy will

preserve only the computation blocks HS_IN, FS_IN, F1, F2, F3, G, M, and N. The

arcs corresponding to the conditioning ports are hidden, since the control will be handled

using clocks. The arcs that lead from F1 and from G to M are represented with two

clocked variables. The arcs that do not come from an output port or lead to an input port

of a computation node are erased. Finally, the control is translated into clocks that are

explicitely applied to the computation nodes: condition i1 = 0 is translated into ¬HS,

i1 = 1 into HS, i2 = 0 into ¬FS and i2 = 1 into FS. This process leads to the graphical

representation already given in Fig. 3.13.

3.4 Abstraction as single-period task systems

We have now completed the definition of the formalisms we use for functional specifica-

tion: the low-level CG we use as an internal compiler representation, and the high-level

synchronous languages that can be translated into CG. But both CG and the high-level

synchronous languages are full-fledged synchronous languages allowing the description

of complex behaviors involving data-dependent control.

However, in both compilation and in the real-time systems community it is common

to define mapping (allocation and scheduling) algorithms on simpler models that abstract

away much of the complexity of a full-fledged synchronous specification. For instance,

task models in real-time scheduling either have no way of representing conditional ex-

ecution, or represent them using exclusion relations, instead of providing the execution

conditions themselves. Another common simplification used in both real-time task mod-

3.4. ABSTRACTION AS SINGLE-PERIOD TASK SYSTEMS 61

els and the data dependency graphs (DDGs) used in compilation is that data flows between

various computations are abstracted away as simple dependencies. Furthermore, no in-

formation is provided on the interface with computation functions provided in external C

libraries.

These abstractions facilitate the definition of mapping algorithms, by placing focus

on the properties (e.g. exclusion properties) that are directly exploited by the mapping

algorithms. However, it is important that the abstraction is clearly defined, to ensure that

once mapping is done in the abstract model the result is implementable when the lower-

level detail is taken into account.

We define in this section the basic version of the abstract task model we use through-

out this thesis (possibly with extensions defined later). This task model is very similar

to formalisms existing in both real-time scheduling (the task models of, among others,

Blazewicz and Chetto [Blazewicz, 1977, Chetto et al., 1990]) and in the compilation world

(the data dependency graphs [Allan et al., 1995]). As such, the model will allow the di-

rect application of techniques coming from both the real-time scheduling and compilation

communities, which are detailed in the following chapters. The model is also close to the

CG language. The algorithms allowing the replacement of CG’s clocks with an exclusion

relation are provided in Chapter 6, and the other elements of the abstraction are straight-

forward4. We also provide, in the following section, an explanation of how CG and the

abstract task model cover our modeling needs.

Our scheduling technique works on deterministic functional specifications of dataflow

synchronous type, such as those written in SCADE/Lustre [Caspi et al., 2003]. These

formalisms, which are common in the design of safety-critical embedded control systems,

allow the representation of dependent task systems featuring multiple execution modes,

conditional execution, and multiple relative periods.

It is important to recall at this point that our formalization is based on a dataflow syn-

chronous paradigm, and not on Lee and Messerschmitt’s Synchronous Data Flow (SDF)

[Lee and Messerschmitt, 1987b] and derived models. Confusion sometimes occurs, as

both classes of models aim at describing deterministic, tightly synchronized systems, and

have a data-flow form. However, there is a fundamental difference concerning synchro-

nization. While in SDF-like formalisms synchronization is local, driven by the flow of

messages, the synchronous paradigm relies on a notion of global synchronization which

is driven by one or more global time bases, known as (logical) clocks. Through their use

of global time bases, synchronous formalisms are very close to formalisms used in con-

trol theory, which explains the widespread use of synchronous formalisms in the design

of embedded control systems in fields such as avionics or automotive.

4An important remark here is that our thesis emphasizes, through its definition of this abstract model, the
close relations existing between formalisms used in 3 communities: synchronous programming, real-time
scheduling, and compilation.

3.4. ABSTRACTION AS SINGLE-PERIOD TASK SYSTEMS 62

The abstract model we use is also synchronous, in the sense that it divides execution

in a sequence of instants. We define our task model in two steps. The first one covers

systems with a single execution mode:

Definition 1 (Non-conditioned dependent task set) A non-conditioned dependent task

system is a directed graph defined as a triple

D = {T (D),A(D),∆(D)} .

Here, T (D) is the finite set of tasks. The finite set A(D) contains typed dependencies of the

form a= (src(a),dst(a), type(a)), where src(a),dst(a)∈ T (D) are the source, respectively

the destination task of a, and type(a) is its type (identified by a name). The directed graph

determined by A(D) must be acyclic. The finite set ∆(D) contains delayed dependencies

of the form δ = (src(δ),dst(δ), type(δ),depth(δ)), where src(δ), dst(δ), type(δ) have

the same meaning as for regular dependencies and depth(δ) is a strictly positive integer

called the depth of the dependency.

Like synchronous (CG) programs, non-conditioned dependent task sets have a cyclic

execution model. At each execution cycle of the task set, each of the tasks is executed

exactly once. We denote with tn the instance of task t ∈ T (D) executed in cycle n. The

execution of the tasks inside a cycle is partially ordered by the dependencies of A(D).

If a ∈ A(D) then the execution of src(a)n must be finished before the start of dst(a)n,

for all n. Note that dependency types are explicitly defined, allowing us to manipulate

communication mapping.

The dependencies of ∆(D) impose an order between tasks of successive execution

cycles. If δ ∈ ∆(D) then the execution of src(δ)n must complete before the start of

dst(δ)n+depth(δ), for all n. We make the assumption that a task has no state unless it is

explicitly modeled through a delayed arc. Thus, the code of each task is a simple sequen-

tial function with no internal state. Note that for tasks with no state, it is possible that two

instances are executed in parallel if the architecture has enough resources.

This first definition is similar to classical definitions of dependent task sets in the real-

time scheduling field [Chetto et al., 1990], and to definitions of data dependency graphs

used in software pipelining [Allan et al., 1995, Chiu et al., 2011].

But we need to extend this definition to allow the efficient manipulation of specifica-

tions with multiple execution modes. The extension is based on the introduction of a new

exclusion relation between tasks, as follows:

Definition 2 (Dependent task set) A dependent task set is a tuple

D = {T (D),A(D),∆(D),EX(D)}

where {T (D),A(D),∆(D)} is a non-conditioned dependent task set and EX(D) is an ex-

clusion relation EX(D)⊆ T (D)×T (D)×N.

3.5. MODELING MULTI-PERIOD TASK SYSTEMS 63

The introduction of the exclusion relation modifies the execution model defined above

as follows: if (τ1,τ2,k) ∈ EX(D) then τ1
n and τ2

n+k are never both executed, for any

execution of the modeled system and any cycle index n. For instance, if the activations of

τ1 and τ2 are on the two branches of a test we will have (τ1,τ2,0) ∈ EX(D).

The relation EX(D) is obtained by analysis of the execution conditions (logical clocks)

in the data-flow synchronous specification.

The relation EX(D) needs not be computed exactly. Any sub-set of the exact exclu-

sion relation between tasks can safely be used during scheduling (even the void sub-set).

However, the more exclusions we take into account, the better results the scheduling algo-

rithms will give because tasks in an exclusion relation can be allocated the same resources

at the same dates.

3.5 Modeling multi-period task systems

The task model defined above is defined over a single-clock synchronous model, which

most naturally models systems where tasks are repeated at the same pace (modulo some

data-dependent control). However, most real-life scheduling problems involve multi-

period task systems where tasks run at different paces. In such cases, period information

is usually classified as non-functional. However, it also impacts functional specification:

without knowing the ratio between the periods of the tasks it is impossible to precisely

define how the tasks exchange data, and therefore it is impossible to ensure the deter-

minism of the functional specification. In this section we explain how our model allows

the representation of multi-periodic task systems through the use of an operation called

hyperperiod expansion.

To illustrate our approach, we consider a task system composed of five tasks {F,R,G,R′,G′}

whose periods are respectively 20ms, 20ms, 40ms, 20ms, and 40 ms. Fig. 3.17 provides

the functional specification of this system under the form of a multi-clock synchronous

program written in the Signal/Polychrony [Guernic et al., 2003] synchronous language.

It deterministically defines the communication scheme between the tasks, taking into ac-

count the execution modes they belong to. It starts by the declaration of an affine con-

straint which defines the relationship between the activation rates of the two main clocks

of the application: Gclock activates once every two activations of Fclock, each time with

the second activation of Fclock. The boolean variable mode is used to define in which ex-

ecution mode the program is running at each activation instant. If mode evaluates to true,

then the program runs in mode1, in which tasks R and G are executed, but not Rprime

and Gprime. Conversely, if variable mode evaluates to false, the program is running in

mode2, where tasks Rprime and Gprime are executed, but not R and G. Task F is executed

in both modes. The execution mode is initialized as mode1 when the execution starts, and

3.5. MODELING MULTI-PERIOD TASK SYSTEMS 64

process MultiRate()

(| AffineConstraint(Fclock,2,1,Gclock,1,0)

| mode := (Fmode when Gclock) default

(mode $1 init true) %initial mode=mode1%

| gtofoversampled := gtof default

(gtofoversampled $1 init K2)

| (Fs,Fmode,ftor,ftog) := F(Fs $1 init K0,

rtof $1 init K1, gtofoversampled) %F%

| rtof := R(ftor when mode) default

Rprime(ftor when not mode) %R and Rprime%

| gtof := G(f2g when (mode when Gclock)) default

Gprime(f2g when ((not mode) when Gclock)) %G and Gprime%

|)

where Fclock,Gclock:event ; %rates (clocks)%

mode:boolean ; Fs:FStatetype ; %state variables%

ftor:FtoRtype ; rtof:RtoFtype ;

ftog:FtoGtype ; gtof:GtoFtype ;

end;

Figure 3.17: Synchronous specification of the multi-rate dependent task system of Sec-
tion 3.5

is assigned a new value (given by the output Fmode of F) at each execution instant where

clock Gclock is active. In other execution instants the value of the mode is preserved.

At each execution of task F, it reads the last value produced by R or Rprime and the last

value produced by G or Gprime, depending on the execution mode. These variables are

named rtof and gtof in the program, and their value explicitely depends on the execution

mode: in the activation instants when mode is set to true (mode1), task R is activated,

and its return value is assigned to rtof. Otherwise, task Rprime is activated and gives

its output to rtof. The same happens with gtof and tasks G and Gprime, except that G

and Gprime are only activated on the subsampled clock Gclock. Since task F needs an

input coming from either G or Gprime at each of its activations, the value gtof has to be

oversampled, in order to be present at each activation of task F. Variable gtofoversampled

performs this by replicating its own value on the activation instants when gtof is not

present (when Gclock is not activated), and by updating this value every time gtof gets a

new value. At each activation, task F also reads the value of Fs. This value was produced

by F during its previous activation. The value Fs explicitly models the state of task F. Note

that transferring data from one execution instance to the next requires the use of a special

construct, named a delay, which is represented here with $1.

This example shows how Signal/Polychrony allows the faithful functional specifica-

tion representation of multi-period systems. However, the definition of a real-time imple-

mentation problem requires the representation of non-functional information, most im-

portantly the real-time characterization of the task system. This characterization includes

global characteristics of the system (e.g. is it strictly periodic, periodic, sporadic, etc.)

3.5. MODELING MULTI-PERIOD TASK SYSTEMS 65

and individual characteristrics of the tasks, such as their periods, release dates, deadlines,

etc. The main synchronous languages, such as Signal/Polychrony or Scade do not specify

a real-time execution model, nor do they provide the language contructs needed to specify

task characteristics. In our case, the program specifies that one task is executed twice as

often as another, but it cannot specify the real-time period of either task.

Several extensions have been proposed to existing synchronous languages to allow the

specification of real-time characteristics. One of the most advanced is the one of Pagetti

et al. [Pagetti et al., 2011], which draws influences from Chetto et al. [Chetto et al., 1990]

and Cohen et al. [Cohen et al., 2006], among others. The focus of Pagetti et al. is on the

compact representation of multi-period specifications, and on its efficient manipulation

for scheduling purposes. They target implementations where all tasks are periodic and

use specification-level task periods to drive the on-line scheduler of the implementation.

In this thesis we make a very different choice, detailed in Chapter 7. Instead of requir-

ing that all tasks are periodic, we only require periodicity for the input acquisitions and for

the outputs (actuations) of the system. Computation tasks can follow any schedule, even

if it is not periodic in the sense of real-time scheduling. For instance, multiple instances

of a task can be executed in a burst, if data dependencies and real-time constraints allow

it. Such bursty execution often improves efficiency by reducing cache-related traffic and

context changes.

This implementation model explains why we did not invest time during this PhD thesis

in defining constructs for the modeling of multi-periodic specifications, or algorithms for

their manipulation. Instead, we prefered to focus on scheduling problems for single-

period task systems. For dealing with multi-periodic systems we rely on hyperperiod

expansion. Hyperperiod expansion is a classical operation of scheduling theory [Munier,

1996, Richard et al., 2001, Zheng et al., 2005], consisting in replacing a multi-period task

system with an equivalent one in which tasks have all the same period. The period of the

resulting tasks is equal to the hyper-period of the initial task system, which is the least

common multiple of the periods of its tasks/operations. For example, the hyperperiod of

the task system we consider in this section is 40 ms.

Hyperperiod expansion works by determining how many instances of the tasks in the

initial system are needed to cover the hyperperiod. In the worst case, this operation may

lead to an exponential increase in the number of tasks to consider (as a function of the

number of initial tasks). This happens when the periods of the input tasks are relatively

prime. However, this exponential explosion does not happen in our case, because realistic

task systems have harmonic periods (as in our industrial example) or follow simple period

ratios. Furthermore, the increase in terms of generated code length is negligible, as only

calls to the task functions are replicated (the code of the functions is not inlined in the

generated application). More fundamentally, hyperperiod expansion is one solution to the

3.5. MODELING MULTI-PERIOD TASK SYSTEMS 66

trade-off between code size and schedulability. Existing solutions often privilege code

size by requiring tasks to be strictly periodic or by imposing implicit deadlines (equal to

the periods). We do not impose such constraints, which are not part of the initial industrial

requirements, which gives more freedom to the off-line scheduling algorithms.

Note that hyperperiod expansion does not imply in our case an increase in the size of

the initial phase of the scheduling (often called prologue in repetitive scheduling contexts).

There are two causes to this: first of all, scheduling is fully static, so there is no dynamic

pipeline filling phase. Second, we do not aim at optimizing the overall duration of a

finite loop computation (including its prologue). Therefore, we do not try to optimize the

duration of the prologue. As we shall see in Section 8.2.1 (cf. Page 156), we schedule its

operations following the pattern of the steady state.

In our example, F has period 20ms, so it must be replaced by 2 tasks F1 and F2, both

of period 40 ms. Similarly, R is replaced by R1 and R2 and R′ is replaced by R′
1 and R′

2.

Tasks G and G′ do not require replication because their periods are already equal to the

hyperperiod.

Replication of tasks is accompanied by the replication of dependency arcs [Munier,

1996], which follows the same rules, but is more complicated due to the fact that an arc

can connect tasks of different periods, and thus may involve under- or over-sampling (as

it can be specified in languages such as Prelude or Giotto). The period-driven replication

must infer which instances of the source and destination task must be connected through

arcs.

The full hyperperiod expansion of our example is pictured in Fig. 3.18. Regular de-

pendencies are represented here using solid arcs. Delayed dependencies are represented

using dashed arcs. The label of a delayed dependency gives its depth. For instance, a

regular dependency connects F1 and F2 to signify that inside a hyperperiod F1 must be

executed before F2. We did not graphically represent here the type information specified

by our formal model, which determines the kind (and amount) of data that is passed from

F1 to F2. The delayed dependency of depth 2 between G and F1 means that the instance

of G started in the execution cycle of index n must be completed before F1 is started

in the execution cycle of index n+ 2, for all n. Note that task F has an internal state,

which is expanded into arcs connecting its instances F1 and F2, whereas the other tasks

are stateless.

Fig. 3.18 also emphasizes exclusion relations: an exclusion relation of depth 0 relates

each task of mode1 to each task of mode 2. We have graphically represented these rela-

tions with a relation between the two sets of tasks that are activated in only one of the two

modes. Tasks F1 and F2 belong to both modes.

As explained above, dependent task systems are the abstract model containing just the

formal elements needed to define our scheduling algorithms. But our tools work on full-

3.5. MODELING MULTI-PERIOD TASK SYSTEMS 67

F2

mode1 only

mode2 only

F1

R1 R2

R′
1 R′

2

1

11 exclusion at depth 0

1

1

2

2

G

G′

Figure 3.18: Example of dependent task system

process MTFfunction()

(| mode := Fmode2 $1 init true

| (Fs1,Fmode1,ftor1,ftog1) :=

F(Fs2 $1 init K0, rtof1 $1 init K1, gtof $2 init K2) %F1%

| (Fs2,Fmode2,ftor2,ftog2) :=

F(Fs1, rtof2, gtof $1 init K2) %F2%

| rtof1 := R(ftor1 when mode) default

Rprime(ftor1 when not mode) %R1 and R1prime%

| rtof2 := R(ftor2 when mode) default

Rprime(ftor2 when not mode) %R2 and R2prime%

| gtof := G(ftog when mode) default

Gprime(ftog when not mode) %G and Gprime%

|)

where mode,Fmode1,Fmode2:boolean ; %state variables%

F1s,F2s:FStatetype ; ftor1,ftor2:FtoRtype ;

rtof2,rtof1:RtoFtype ; ftog1,ftog2:FtoGtype ;

gtof:GtoFtype ;

end;

Figure 3.19: Synchronous program corresponding to the task system of Fig. 3.18

fledged dataflow synchronous programs defining all details needed to allow executable

code generation. Fig. 3.19 provides a data-flow synchronous program corresponding to

the dependent task system in Fig. 3.18. This program is also written in the Signal/Poly-

chrony language, and since it defines single-rate tasks, our tool can take it as input. Trans-

lating this program into CG is straightforward: calls to R, R′, F , and G become the blocks

of the data-flow graph, data-flow dependencies become the variables, and the delays of

depth 1 and 2, identified with $1 and $2, become delay blocks.

3.6. CONCLUSION 68

3.6 Conclusion

This chapter defined the CG language, which is the functional specification language

taken as input by our tools. CG is a synchronous language, and more precisely a single-

clock synchronous language. CG programs can be abstracted as mono-periodic task sys-

tems that only exhibit the elements used by our scheduling algorithms. To allow the

modeling of multi-periodic systems in our single-clock language, we use a hyperperiod

expansion technique, which is presented using a comprehensive example. The next two

chapters will show how the non-functional aspects of an embedded application are mod-

eled in CG. In the next chapter, we will describe how the execution platform and the

constraints it imposes on the system are specified. Then in Chapter 7, we will focus on

the non-functional extensions made to the CG language in order to model complex non-

functional constraints (real-time, preemptability, and partitionning).

Chapter 4

Modeling resources and resource
allocation

Contents
4.1 Resource description formalism . 72

4.2 Scheduling tables . 74

4.2.1 Table-based off-line scheduling (the principle) 76

4.2.2 Scheduling tables in LoPhT 82

4.3 Conclusion . 88

This chapter starts the presentation of the non-functional aspects that we consider in

our implementation work. It is focused on the modeling of the execution platform and

of the way resources of the execution platform are allocated to the computations and

communications of the application.

Modeling of the execution platform in a way that reconciles predictability (safety) and

performance is a central problem in real-time scheduling. Indeed, some form of platform

model is required by all mapping (allocation and scheduling) algorithms. But when hard

real-time guarantees are needed, a platform model must include, in one way or the other,

several types of information:

1. The resources of the platform. These include computation resources, such as pro-

cessors or accelerators, and communication resources, such as buses, FIFO buffers,

or shared RAM banks. For multi-processor platforms such as the ones we consider,

this platform model is often provided under the form of a graph representing the way

these resources are linked to each other, and the capabilities of each resource (the

operations it can execute and the cost of executing each operation) [Sorel, 2005].

2. An execution model. There is more to the platform model than a mere intercon-

nection graph. Indeed, timing analysis and schedulability analysis must rely on an

69

Modeling resources and resource allocation 70

analytical model of the way operations are executed on these resources at runtime.

This model must include implicitly or explicitly:

• A description of the way applications are run on the execution platform. Such

a description may include the task scheduling paradigm, the network routing

and switching algorithms, memory size and organization hypotheses, etc..

• A formal definition of what it means for an implementation to be correct with

respect to its functional and non-functional specification. This definition must

include properties such as functional correctness (e.g. specification-level data

dependencies are respected in the implementation), real-time correctness (e.g.

each operation is allocated enough time), and possibly correctness with respect

to other non-functional requirements (partitioning, preemptability, etc.).

The execution model can be specified operationally, under the form of allocation

and scheduling algorithms (as is often the case in WCET analysis), under the form

of a set of constraints to be respected by the mapping (like in scheduling approaches

based on constraint solving), or a combination of both.

3. An implementation model. This is the output of the mapping algorithms. It consists

of all the configuration information required to configure the various resources of

the platform. It usually includes:

• Allocation information: distribution of computations to computation resources,

distribution of data and code to memory banks, routing of communications

onto the interconnect, etc.

• Configuration of all arbiters/sequencers/schedulers that allow/require config-

uration. Depending on the platform, this may include priorities, TDM tables,

assigned bandwidths, scheduling tables, etc. in both computation and commu-

nication resources.

An implementation model should allow the synthesis of a running implementation

on the actual execution platform by means of simple code generation transforma-

tions.

Defining a good platform model (resources, implementation model, execution model) is

difficult. First of all, a platform model must be a conservative abstraction of the actual

execution platform. Once a correct implementation model is built, the implementation

built from it on the actual execution platform should be correct itself1.

1Keep in mind that correctness here includes both functional aspects (causality) and non-functional ones
(timing predictability, reliability, etc.).

Modeling resources and resource allocation 71

A platform model must also provide a good compromise between simplicity and pre-

cision. Simplicity, that is a higher abstraction level, is needed to ensure the tractability of

the mapping and analysis algorithms. Timing precision in the allocation of resources is

needed to ensure that resources are not wasted.

To reconcile performance, predictability, and tractability, multiple abstraction levels

of the same architecture are usually needed in the analysis of a single system. Two

commonly-used platform abstraction levels are those used in Worst Case Execution Time

(WCET) analysis and in schedulability analysis, respectively:

• In WCET analysis, the platform model includes very detailed micro-architectural

features such as caches, CPU pipelines, etc. Such a complex resource model of

the hardware is often used in conjunction with rather simple models for the soft-

ware that is executed (sequential code with no or limited interrupts) to provide very

precise execution time estimates for the system tasks.

• In schedulability analysis, the whole system is modeled, but with a much coarser

grain. For instance, in a distributed system each single-board computer (SBC) may

be represented using a single execution resource.

Great care must be taken to ensure that the various abstraction levels are consistent with

one another. For instance, it must be ensured that the hypotheses made during WCET

analysis (e.g. absence of interrupts) are respected in the system through the use of a non-

preemptive scheduling model, or that schedulability analysis uses safety margins that are

proven safe by taking into account the worst-case overhead due to interrupts.

In our experience, the consistency between various abstraction levels and the consis-

tency between abstractions and the platform itself is a critical point in current industrial

practice of real-time systems design. There are two main reasons to this:

• Building formal abstractions that are correct, simple, and precise for complex sys-

tems formed of both hardware and software (OS, drivers, etc.) is difficult in itself.

• In most cases, the platform descriptions that must be used to develop the abstract

platform models are incomplete. Typical missing details are the exact cache algo-

rithms, the exact arbitration policies, OS internals, etc.

This is why, in current design practice, the margins used during schedulability analysis are

often derived from experience with little or no formal justification. This practice is even

less acceptable today, given that the platform hardware and software undergo significant

changes such as the move to multi-/many-core platforms or major changes in the OS type

through the inclusion of mechanisms such as time/space partitioning.

4.1. RESOURCE DESCRIPTION FORMALISM 72

All these arguments explain why off-line scheduling approaches [ARINC, AUTOSAR,

Kopetz and Bauer, 2003] are gaining acceptance in various industrial settings.2 Indeed,

in off-line scheduling approaches conformance between the actual system and the formal

models of the platform and of the implementation can be validated at a smaller cost in

both time and money. When implementing hard real-time systems, off-line scheduling

also has a second major advantage: it can be done with high temporal precision, result-

ing in very efficient implementations. For both reasons, my work in this thesis will also

follow an off-line scheduling paradigm.

In this chapter we introduce the formal platform model used during my PhD work.

As we shall see, we did not use here a single formalism, but a family of closely related

formalisms based on a unique scheduling paradigm, namely table-based off-line schedul-

ing. Table-based off-line resource allocation provides the unifying formal basis of my

work. Then, variations in the syntax and semantics of the actual platform models allow

us to take into account a variety of platforms ranging from the bus-based time-triggered

platforms considered in Chapter 8 to many-core platforms such as the ones used in [Carle

et al., 2014].

Format variations are needed not only to take into account different types of platforms,

but also to accomodate various abstraction levels used by different mapping algorithms.

As we shall see, some of our allocation and scheduling algorithms [Carle et al., 2012]

take a coarse-grain approach to the modeling of memory, whereas others require a more

precise representation [Carle and Potop-Butucaru, 2014].

Chapter outline To facilitate presentation, this chapter is organized as follows: we start

by presenting the simplest version of the resource description formalism. Based on this

formalism we explain how table-based off-line mapping is performed. we also provide the

formalism used to represent the resulting implementation models (the scheduling tables),

define its semantics, and explain how actual implementation code is generated from it.

We will then discuss in Chapter 5 variations of the resource description formalism,

used to represent different architecture types and different abstraction levels.

Note that this chapter only considers non-functional properties related to topology and

real time. Other non-functional properties, such as preemptability, partitioning, deadlines

and release dates shall be covered later, in Chapter 7.

4.1 Resource description formalism

We define here the simplest version of our resource description formalism. Its constructs

allow the description of distributed architectures formed of a set of sequential processors

2Often in conjunction with a time-triggered execution model and strong space/time isolation mecha-
nisms.

4.1. RESOURCE DESCRIPTION FORMALISM 73

P = {Pi|i = 1, ...,n} interconnected by a unique broadcast bus B. Timing information

relates the processors and buses with elements of the functional specification defined in

the previous chapter:

• For each processor P and for each function f of the functional specification that can

be executed on P we provide the duration of executing f on P, denoted dP(f). This

value is obtained through a conservative WCET analysis of f on P. For uniformity,

we shall extend the notation dP(f) to all processors P and functions f by assigning

a value of dP(f) = ∞ whenever the function f cannot be scheduled on processor P.

• For each processor P and for each data type t (of the functional specification) that

can be stored locally on P we provide the duration of executing on P the bookkeep-

ing operation associated with a delay block of type t. This value is denoted with

dP(t), and it should also be a safe WCET estimation.

• For each data type that can be transferred over the bus B, we provide the worst case

duration of transferring one value of type t over the bus, assuming this bus is free

from other traffic. This value is denoted dB(t).

Durations are provided as integers, the unit not being specified.

A graphical example of such an architecture, with timing information corresponding

to the example application of Section 3.2.4 is given in Fig. 4.1. This architecture has three

processors and:

• Processor P1 can execute functions HS_IN, FS_IN, F1 and F2, with execution

durations: dP1(HS_IN) = 1, dP1(FS_IN) = 1, dP1(F1) = 3 and dP1(F2) = 8 time

units. P1 is the only processor capable of executing HS_IN and FS_IN: this models

the fact that P1 is the only processor connected to the I/O interface device of the

system.

• Processor P2 can execute G with a duration dP2(G) of 3 time units, and F3 also in 3

time units.

• Processor P3 can execute M and N in 3 time units each, and has a hardware acceler-

ator that allows it to execute F3 in only 1 time unit.

Since P2 and P3 cannot compute HS_IN, we have dP2(HS_IN) = dP3(HS_IN) = ∞ (not

represented in the figure). Each processor can store values of type V_type, such as the

one produced by F3, and the bookkeeping operation for a delay of type V_type takes one

time unit on any processor. The bus can transmit variables of types boolean and V_type in

2 time units, and variables of type ID_type in 5 time units: dB(V _type) = dB(bool) = 2

and dB(ID_type) = 5.

4.2. SCHEDULING TABLES 74

Asynchronous
broadcast bus

P1

P3

P2

dP1 (HS_IN) = 1

dP1 (F2) = 8
dP1 (V _type) = 1

dP1 (F1) = 3
dP1 (FS_IN) = 1

dP2 (G) = 3
dP2 (F3) = 3
dP2 (V _type) = 1

dB(bool) = 2
dB(V _type) = 2
dB(ID_type) = 5

dP3 (M) = 3
dP3 (N) = 3
dP3 (F3) = 1
dP3 (V _type) = 1

Figure 4.1: Hardware architecture example

Syntax The general syntax for modeling hardware architectures in CG, including the

timing information necessary for the scheduling process is given in Fig. 4.2. As for the

functional specification part of CG, the information declared to describe the architecture

is tabulated. Thus, we need once again to define indices to denote without ambiguity any

element of the specification inside its table. The rest of Fig. 4.2 defines one table for the

bus declaration, and one table for the processors. Each of them can be left empty: if both

are left empty, then the CG program is just a functional specification, which cannot be

scheduled. If the bus table is empty, then the processors cannot communicate with one

another (this is for example the case in mono-processor architectures). If no processor is

declared, then declaring a bus is useless, since scheduling cannot be done without at least

one processor. Each processor has an index, a name, and a list of WCET values. This list

is composed of the functions that can be executed on the processor (in finite time) along

with the corresponding WCETs, as well as the types of the variables that can be stored on

the processor (for delayed variables), along with a safe WCET for the storing operation.

The same syntax is used for the bus table (which in our case will contain only one record).

The formal, textual representation of the architecture of Fig. 4.1 is provided in Fig. 4.3.

Now that we have presented the syntax for specifying the architectures on which ap-

plications are executed, we will explain in more details the principles of the table based

off-line scheduling approach that we advocate and which is implemented in LoPhT.

4.2 Scheduling tables

The simplest way of using the LoPhT compiler is by providing it an input file contain-

ing a functional specification following the syntax of Chapter 3 and a matching resource

description as defined above. Starting from this input, LoPhT will perform the mapping

of the functional specification on the architecture model. This consists in performing the

4.2. SCHEDULING TABLES 75

archi := Architecture bus_table proc_table

bus_table := Bus Table bus

bus :=

|bus_idx Broadcast Bus comm_durations

comm_durations := comm_duration

|comm_duration comm_durations

comm_duration := Duration(type_idx)= <Int>

proc_table := Processor Table proc_list

proc_list :=

|proc proc_list

proc := proc_idx <Identifier> comp_durations

comp_durations := comp_duration

|comp_duration comp_durations

comp_duration := Duration(fun_idx)= <Int>

|Duration(type_idx)= <Int>

bus_idx := Bus: <Int>

proc_idx := Processor: <Int>

Figure 4.2: Clocked graphs architecture syntax

Architecture

Bus Table

Bus:0 BroadcastBus Duration(Type:0)=2

Duration(Type:1)=5

Duration(Type:2)=2

Processor Table

Processor:0 P_1 Duration(Function:0)=1

Duration(Function:1)=1

Duration(Function:2)=3

Duration(Function:3)=8

Duration(Type:2)=1

Processor:1 P_2 Duration(Function:4)=3

Duration(Function:5)=3

Duration(Type:2)=1

Processor:2 P_3 Duration(Function:4)=1

Duration(Function:6)=3

Duration(Function:7)=3

Duration(Type:2)=1

Figure 4.3: Example architecture syntax

4.2. SCHEDULING TABLES 76

(spatial) allocation and (temporal) scheduling of the blocks of the functional specification

onto the processing elements of the architecture model, as well as the scheduling of the

bus communications needed to transmit data produced by a block on one processor to

blocks that are executed on other processors. Once the mapping is performed, LoPhT can

produce executable code implementing the result of the mapping phase.

The output of the mapping phase, taken as input by the code generation phase, is

an implementation model consisting in a scheduling table (known in some fields as a

reservation table). This section will define our scheduling table formalism, its semantics,

intuitively explain how these tables are synthesized, and how code can be generated from

a scheduling table. We shall also provide a brief comparison with other implementation

models used in real-time scheduling.

4.2.1 Table-based off-line scheduling (the principle)

In this thesis we only consider execution platforms whose computation and communica-

tion resources are sequential. This means that each moment in time, a processor can only

be computing one function, and a bus can only be transmitting one given value/message.

On such platforms, the role we assign to scheduling is not only to determine the order

in which the computations and communications happen, but to reserve time intervals for

them on the various resources. A time interval is characterized by a starting date and a

duration, and defines when a resource is completely dedicated to a certain computation or

communication. A scheduling table contains the collection of all the time intervals that

must be reserved on each resource in order to perform the various operations (function

execution, communication, data storage) of the application.

A scheduling table describes an allocation pattern of fixed length. The scheduling of

the system is performed by periodically applying this pattern, with a periodicity equal to

the length of the table. The length of the table depends on the application that is being

mapped. For the control applications that we target, the length of the scheduling table

is often closely related to the periods of the application tasks (equal, a multiple, or a

divisor). For the single-clock functional specifications we defined in Chapter 3, a natural

assumption that we shall make for the scope of this thesis is that the scheduling table

describes the scheduling of one generic execution cycle of the functional specification.

Consequently, the objective of our algorithms is to produce a table describing the schedule

of one execution cycle of the application.

4.2.1.1 Semantics of scheduling tables

In this section we intuitively describe the execution model associated with our condi-

tional scheduling tables. Fig. 4.4 displays a graphical representation of a scheduling table

obtained by automatically mapping the engine ignition functional specification of Sec-

4.2. SCHEDULING TABLES 77

tion 3.2.4 (cf. Page 53) on the architecture of Fig. 4.1. In this representation, time flows

from top to bottom, and each column represents the schedule of one resource of the archi-

tecture. In each column, the time intervals reserved for computations and communications

are represented by colored boxes: for example, a time interval is reserved from date 0 to

date 1 to compute HS_IN on processor P1, and the time interval starting at date 1 and

lasting 2 time units on the bus is dedicated to sending variable HS from P1 to P2 and P3.

The complete schedule of the system is obtained by iteratively traversing this table

from top to bottom: once the bottom is reached (after date 18), the execution is continued

by restarting from the top.

As explained before, a time interval completely reserves a resource for a certain du-

ration, starting at a particular date in order to perform an operation. Thus, in the general

case, given a resource there should never be overlaps between two or more reserved time

intervals. For example, if a time interval T1 starts at date 0 and lasts 5 time units on pro-

cessor P0, then no other time interval can be reserved before date 5 on P0. Nevertheless,

we make an exception to this rule in order to take advantage of the explicit data-dependent

control that can be specified using the CG language. To do so, we attach a condition to

each reserved time interval. This condition corresponds to the clock of the block (or com-

munication) for which the interval is reserved. In our graphical formalism, the condition

attached to the reservation of a time interval is denoted using the operator @. For exam-

ple, on processor P1, the two first reservations are made under condition true, meaning

that they are effective in any execution cycle. The third reservation (the interval starting

at date 2), is considered only under the condition that HS = f alse: this reservation is only

effective (and the corresponding function will only be executed) during execution cycles

where HS evaluates to false. This adds a new dimension to the mapping problem: two

time intervals T1 and T2 reserved on the same processor can overlap in time, but only if

the conditions c1 and c2 that are attached to them are exclusive, that is to say if for any

given configuration of the variables of the system, c1 ∧ c2 = f alse. In the example of

Fig. 4.4, the two time intervals reserved on the bus starting respectively at dates 5 and 6

are overlapped from date 6 to date 10. This double reservation is correct because their

conditions are exclusive: one reservation is made for the transfer of the output variable

of F1 from processor P1 under the condition that (HS = f alse)∧ (FS = f alse), and the

other for the transfer of the output variable of G from processor P2 under the condition that

(HS = true)∧(FS = f alse). These two conditions are clearly exclusive which allows this

reservation optimization to occur. Since in any execution cycle of the application, at most

one of the two conditions can be true, we have the insurance that at most one reservation

can effectively be active at a time, and that there will be no contention for the use of the

bus. In the abstract model defined in Section 3.4, this information is directly encoded in

the exclusion relation EX(D). In this formalism, when scheduling two tasks τ1 and τ2

4.2. SCHEDULING TABLES 78

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

P1 P2 P3 Bus

Scheduling table

time

HS_IN@true

FS_IN@true

F1@(HS=false)

F2@(HS=false)

G@(HS=true)

N
@(FS=true)

δ@(HS=false)

F3@(HS=false)

@(FS=false)
M

@(HS=false)

@(HS=false)

∧ FS=false)
@(HS=true
Send(P2,ID)

Send(P1,FS)@true

Send(P1,HS)@true

Send(P1,ID)

@(HS=false
∧ FS=false)

Send(P1,V1)

Send(P3,V2)

Figure 4.4: Example of a scheduling table for the result of the mapping of the engine
ignition application

on the same processor, their corresponding reserved time intervals can overlap in time if

(τ1,τ2,0) ∈ EX(D).

4.2.1.2 Implementing scheduling tables

In this section, we briefly discuss the effective implementation of embedded systems using

scheduling tables. In particular we provide hints on how scheduling tables can be used to

produce code for two particular execution paradigms.

The code generation scheme in SynDEx produces one infinite loop for each proces-

sor of the architecture. On any given processor, the code inside the loop is a sequence

of function calls whose order is defined by the scheduling table. Moreover, communi-

cation primitives are inserted between the function calls to send or receive data on the

bus whenever it is needed. The receiving primitive is blocking, meaning that it forces the

considered processor to stall until the data has been received. Once the sending primitive

has been executed, it is not allowed to execute again until the data that it sent during its

last execution has been received. Such implementations allow the execution to advance at

its own pace on the various resources, and pause it only to synchronize processors when

they have to communicate, while keeping the number of buffers used for communications

4.2. SCHEDULING TABLES 79

low.

The code generated by LoPhT relies instead on the time-triggered paradigm, which we

define in detail in Section 7.2.1. It considers that a globally synchronized timer is shared

by all resources. Computations and communications are started when this timer reaches

the date at which their time intervals start in the table. If safe WCET/WCCT bounds were

used to determine the length of the time intervals, then the operations necessarily finish

their execution (or transmission) before, or at the end of their reserved interval3.

These two implementation schemes are illustrated in Fig. 4.5. This figure depicts

the code generated for processor P1 of the last example in both the SynDEx and LoPhT

fashions. As said before, the code generated by SynDEx is an infinite loop, in which the

function calls follow the order defined in the scheduling table. First, the processor makes

the acquisition of variable HS, sends it on the bus and releases the bus. Then it does the

same with variable FS. Afterwards, it evaluates the value of HS and computes F1 if it is

false. The same is then done for F2. Finally, if HS is false, P1 waits until V 2 is received

from the bus, and stores it in memory for the next cycle. The loop then starts again from

the beginning. In the cycles where HS is true, the last four instructions are not executed,

and thus no further synchronization occur for the cycle, since the blocking RECEIVE

primitive is not called. Thus in this case, the next acquisition of HS is performed right

after sending FS and releasing the bus.

On the other hand, in the time-triggered code generated by LoPhT, a global timer

advances regularly and its value is read modulo 19 time units, since it is the table length.

Then on processor P1, HS is acquired at date 0 and FS at date 1 (in this example the bus

is also considered to be time-triggered and statically programmed so that it knows which

variable to send at which date, and where to read it in memory). Then at date 2, HS is

evaluated. If it is false, F1 is started. At date 5, HS is evaluated again. If it is still false, F2

is started. At date 18, HS is evaluated one last time, and the code storing V 2 is executed

if HS is false. Note that no blocking RECEIVE primitive is used: we consider instead

that at date 18 variable V 2 will have been entirely received on P1, since the bus is also

statically scheduled. Another difference with the previous implementation is that if HS

is true, although none of the three last function calls occur, the next cycle will only start

when the global timer reaches 0 mod 19, which means a global synchronization for the

cycle is preserved in any case.

4.2.1.3 Comparison with other resource allocation paradigms

Some of the advantages of table-based off-line scheduling have already been discussed in

this document. Most important, this is the scheduling paradigm where the distance be-

tween implementation model and the implementation itself is the smallest possible, which

3We will show in Chapter 7 that more complex execution mechanisms can be applied to this model.

4.2. SCHEDULING TABLES 80

initialize; initialize;

loop every 19 ms

HS_IN(HS); 0: HS_IN(HS);

SEND(HS);

unlock_bus;

FS_IN(FS); 1: FS_IN(FS);

SEND(FS);

unlock_bus;

if(!HS)F1(V2_del); 2: if(!HS)F1(V2_del);

if(!HS)F2(ID); 5: if(!HS)F2(ID);

if(!HS) RECEIVE(V2);

if(!HS)exec_delay(V2); 18: if(!HS)exec_delay(V2);

end loop

(a) (b)

Figure 4.5: Illustration of the 2 main implementation schemes: (a) infinite loop in Syn-
DEx, (b) Fully time-triggered in LoPhT

largely facilitates system validation. In particular, scheduler-related overheads are small

and predictable. The second major advantage stems from the fact that off-line algorithms

theoretically allow the computation of scheduling tables specifying an optimal alloca-

tion and real-time scheduling of the various computations and communications onto the

resources of an architecture. These advantages are counterbalanced by three major disad-

vantages:

• Theoretical optimality may be unattainable due to a combination of 3 factors:

– The application may exhibit a high degree of dynamicity due to either envi-

ronment constraints (e.g. unknown task arrival dates) or to execution time

variability resulting from data-dependent conditional control. Implementing

an optimal scheduling for such applications may require more resources than

the application itself.

– The execution platform may not allow the implementation of scheduling ta-

bles. For instance, most multi- and many-core architectures provide little or no

control over the scheduling of communications on the on-chip interconnect.

– The mapping problems we consider are NP-hard. In practice, this means that

optimality cannot be attained, and that efficient heuristics are needed.

• When applications exhibit significant dynamicity, it may be impossible in a static

scheduling paradigm to ensure short response times for urgent tasks.

• Ease of validation, which is a major argument for the recent adoption of time-

triggered industrial standards, is counterbalanced by the more complex develop-

4.2. SCHEDULING TABLES 81

ment process, which must produce a relatively complex implementation model (the

scheduling table).

These arguments explain why off-line table-based methods are mainly used for two classes

of applications: safety-critical embedded control applications[Cordovilla et al., 2011]

where reducing validation costs is a major issue, and signal/image processing applica-

tions with largely regular control structure [Lee and Messerschmitt, 1987a].

Aside from the table-based paradigm, two other major resource allocation paradigms

are used in real-time scheduling, which provide different trade-offs between ease of im-

plementation, ease of validation, performance, etc.:

• Bandwidth reservation approaches, such as those based on real-time calculus [Thiele

et al., 2000].

• Priority-based approaches.

Like table-based techniques, bandwidth reservation approaches also rely on a form of

resource reservation. However, while in table-based techniques a reservation is a time

window with fixed start and end date, in bandwidth reservation techniques a reservation

involves a sliding window. A typical bandwidth reservation specification is that a task t

will be able to execute on processor P for 10ms every 30ms (thus being able to use 30%

of the computing bandwidth).

The reservations manipulated in table-based and bandwidth reservation approaches

under the form of scheduling tables, real-time calculus specifications, etc. can be seen as

contracts governing the real-time behavior of tasks and applications. These contracts can

be manipulated in a modular fashion using low-complexity algorithms. Modularity in this

context means the ability to infer the real-time properties of a system from the contracts

associated with its direct sub-systems, without the need of considering internal aspects

of these sub-systems. Modularity facilitates the incremental design and analysis of large

systems.

By comparison, the priority-based resource allocation paradigm does not manipulate

real-time contracts on system components (e.g. tasks). Instead, it focuses on the opera-

tional definition of the way resources are allocated to tasks at execution time using on-line

priority-based algorithms. Real-time aspects are taken into account indirectly through as-

signment of priorities to the various tasks, which can be done using off-line (e.g. FP, RM,

DM) or on-line (e.g. EDF, LLF) algorithms. Determining whether tasks meet their real-

time requirements is done through a schedulability analysis phase that is usually holistic

(not modular).

The three paradigms of resource allocation are not exclusive. They can be used for

different parts of a system or at different levels of the same system. For instance, time

4.2. SCHEDULING TABLES 82

division multiplexing (TDM) scheduling, which is a table-based resource allocation tech-

nique, is often used to provide bandwidth reservation guarantees in both communication

networks[Goossens et al., 2005] and for processor time [ARINC].

From the point of view of its ability to handle application dynamicity, the bandwidth

reservation paradigm is intermediate between table-based off-line scheduling and priority-

based on-line techniques. It can use on-line scheduling algorithms, yet it allows for a

modular analysis (unlike priority-based approaches). The timing characterization is less

precise in bandwidth reservation approaches than in table-based off-line scheduling. This

may result in a waste of computing resources when the objective is to model systems with

little dynamic execution. Maybe more important, dealing with execution modes requires

non-trivial extensions to the resource reservation models, which in turn complicates anal-

ysis [Phan et al., 2008].

Priority-based scheduling approaches facilitate system design. Indeed, such systems

usually rely on the use of proven real-time operating systems (RTOSs) whose real-time

configuration consists in choosing task priorities (or the priority update policy). Imple-

mentation is followed by the application of schedulability analyses [Liu and Layland,

1973] meant to ensure that the resulting system satisfies its real-time requirements. A ma-

jor advantage of priority-based techniques, when compared to table-based and bandwidth

reservation techniques, is their ability of ensuring short response time for high-priority

tasks. The main drawback associated with priority-based scheduling is the difficulty of

precisely accounting for RTOS-related costs. Not only RTOS internals are often unknown,

but schedulability analyses work best on simple task models where must of the complexity

of the execution platform is hidden by means of heavy abstraction resulting in significant

over-approximations and resource waste. Furthermore, in current industrial practice these

abstractions are not formally defined (due to cost reasons) which requires expensive test-

based validation phases.

4.2.2 Scheduling tables in LoPhT

We now present in detail the scheduling tables used in LoPhT. We start by describing the

various elements composing the scheduling tables, as well as the syntax used in LoPhT.

Then we define the properties that must be checked on the tables to ensure the correctness

of the implementation. Finally, we illustrate the creation and use of a scheduling table in

an example.

4.2.2.1 Syntax

The scheduling tables used in LoPhT to represent the result of the mapping process are di-

vided in three parts: the table length, the list of implementation variables and the schedule

of operations. The full syntax is displayed in Fig. 4.6.

4.2. SCHEDULING TABLES 83

Table length The table length is an integer value giving the duration of one execution

cycle of the application, in the implementation model defined by our scheduling tables.

Implementation variables The list of implementation variables is used when generat-

ing the code: it defines the list of all variables that must be statically allocated by the

implementation. This list may differ from the list of specification variables present in

the initial CG program. Indeed, in our model, each time a variable v is produced on one

processor and needed on another, memory must be allocated on both processors to hold

the value of v. To account for this we must declare two implementation variables corre-

sponding to v, one allocated on the producer processor, and the other on the consumer.

In the list, each implementation variable is designated by a unique index, the type of the

variable, the processor on which it is allocated, and the index of the specification variable

it implements.

Schedules Each resource is then assigned its own schedule. For each processor, the

schedule comes in the form of a table of scheduled operations which correspond to the

blocks of the functional specification. A block b scheduled on a processor is characterized

by an index which allows its non-ambiguous designation from any other scheduled oper-

ation in the system (and not just on the same processor). It also comprises the execution

condition of the computation, the function (or delay) to compute, the starting date (refered

to as start(b) in the remainder of the chapter) and duration of the time interval reserved

for the computation, and the input and output variables of the function. On the bus, the

syntax is equivalent, except there is no reference to a function or delay. Instead we give

the source variable of the communication, and its destination variables (since we consider

a broadcast bus, each communication may have several destinations).

4.2.2.2 Correctness of a table

Verifying the correctness of a schedule consists in checking that some properties are veri-

fied in the scheduling table. For example, we want to ensure that the operations will never

take more time than what has been allocated for them. To do so, as we suggested before,

we impose that the time interval reserved for any function or delay (resp. communica-

tion) have a length computed using a WCET (resp. WCCT) analysis of the function/s-

toring operation (resp. transmission) execution. We also want to enforce the exclusive

use of resources by the scheduled operations, and the causal correctness of the scheduled

application. The exclusive use of resources is guaranteed as long as:

• for each processor P, if two blocks b1 and b2 are scheduled on P, and clk(b1)∧

clk(b2) 6= f alse then start(b1) ≥ (start(b2)+ dP(b2)) or start(b2) ≥ (start(b1)+

dP(b1)),

4.2. SCHEDULING TABLES 84

scheduling table := Scheduling Table length variables schedule

length := ScheduleLength= <Int>

variables := Implementation Variables var_table

var_table :=

|implem_var var_table

implem_var := var_idx type_idx Allocated On proc_idx Implements var_idx

schedule := proc_schedules bus_schedule

proc_schedules := proc_sched

|proc_sched proc_schedules

proc_sched := ProcSchedule(proc_idx) delay_list comp_list

delay_list :=

|delay_op delay_list

delay_op := sched_op_idx Condition clk_expr Delay StartDate <Int>

Duration <Int> block_idx (iport_list)->(oport_list)

comp_list :=

|comp_op comp_list

comp_op := sched_op_idx Condition clk_expr StartDate <Int> Duration <Int>

fun_idx (iport_list)->(oport_list)

bus_schedule := Bus Schedule(bus_idx) comm_list

comm_list :=

|comm comm_list

comm := sched_op_idx Condition clk_expr StartDate <Int> Duration <Int>

Source var_idx Destinations var_idx_list

var_idx_list := var_idx

|var_idx var_idx_list

sched_op_idx := SO: <Int>

Figure 4.6: Scheduling table syntax

• on the bus B, if two different communications comm(v1) and comm(v2) are sched-

uled with conditions that are not exclusive, then start(comm(v1))≥ (start(comm(v2))+

dB(type(v2))) or start(comm(v2))≥ (start(comm(v1))+dB(type(v1))) (where type(v2)

and type(v1) designate the types of the two variables).

The causal correctness is a bit harder to define formally, and necessitates many no-

tations that are defined in [Potop-Butucaru et al., 2009], which we will not copy here.

Instead we will intuitively show how causality is checked in the scheduling tables. It

amounts to statically verifying that any variable needed to start an operation (computation

or communication) will be available at the starting date of the operation on the relevant

processor, and that the computation of the corresponding supports is endochronous. By

this we mean:

• Causality for blocks. Considering a computation corresponding to a block b,

scheduled on processor P: for any clocked variable cv in the input ports of b and in

the support supp(clk(b)), cv has been assigned a value, and this value is available

on P, at least under the condition clk(cv), at date start(b). In other terms, either

src(cv) has been scheduled on P before start(b) and with an execution condition

that implies clk(cv), or it has been scheduled on another processor, and a commu-

nication of the value of cv has been scheduled to finish before start(b) and under a

condition that implies clk(cv).

• Causality for communications. Considering the communication on the bus of a

4.2. SCHEDULING TABLES 85

variable v under the condition clk initiated by processor P: for any cv in the support

supp(clk), cv has been assigned a value which has been made available to the whole

system, at least under the condition clk(cv), at date start(comm(v)). This ensures

that any potential recipient of the communication can compute the condition under

which it must receive the variable, and that P can compute the condition under

which it must send it. Moreover, src(v) must have been scheduled on P in such a

way that start(src(v))+dP(src(v))≤ start(comm(v)).

• Endochronous schedule. For any block b or clocked variable x in an input port of

a block, we consider all clocked variables cv = (var,clk) in the support of clk(x),

of clk(b) or in the support of the clocked variables of the input ports of b. If a com-

munication comm(var) has been scheduled at date t under a condition c 6= f alse,

then c can be computed using only the clocked variables that have already been sent

on the bus before date t. Also, for all clocked variable cv1 = (var1,clk1) in the en-

dochronous support of clk, var1 has been sent on the bus at date t under a condition

that implies clk1.

Provided the scheduling table verifies these conditions, it is consistent and causal, and

thus provides a correct intermediate representation of the final program, to be used for

code generation. We will now see on an example how correct tables can be built using a

very simple heuristic that ensures the correction of the produced table by construction.

4.2.2.3 Example

We consider once again the functional specification of Section 3.2.4 (cf. Page 53), and the

simple bus-based architecture of Fig. 4.1. Our mapping heuristic works in two phases:

• Define a total order over the functional blocks of the specification. This total order

must be compatible with the explicit data-flow dependencies, but must also take into

account data dependencies due to clock computation. To ensure this, we impose that

for any functional blocks b1 and b2, b1 cannot be a predecessor of b2 in the chosen

total order if one of the outputs of b2 is either:

– in an input port of b1,

– in the support of clk(b1),

– in the support of the clock of any clocked variable declared in the input ports

of b1.

Variables that are outputs of delay blocks are considered available on any processor

at any time. Thus, there is no need to consider delay blocks, or their variables when

defining the total order. Multiple compatible total orders may exist for a given

4.2. SCHEDULING TABLES 86

0

1

2

3

4

5

6

7

8

9

10

11

12

P1 P2 P3 Bus

Scheduling table

time

HS_IN@true

FS_IN@true

F1@(HS=false)

F2@(HS=false)

Figure 4.7: Temporary scheduling table after having scheduled HS_IN, FS_IN, F1 and
F2 on P1

specification, and all may not result in the same final schedule. In this case, we

need to arbitrarily choose one. In our example, we will use the following mapping

order: HS_IN, FS_IN, F1, F2, F3, G, N and M. Delays are separately mapped

after all other blocks.

• Iteratively map all blocks of the application, following the order that we just de-

fined. To do so, we start with an empty scheduling table, and map all the block one

by one. At each step, we map a new block in the scheduling table that results from

the previous step. The mapping decision is based on a simple cost function. For any

processor that can execute the function of the considered block, we build a schedul-

ing table in which the block is mapped on this processor. In each of these tables, and

considering the data dependencies, we automatically schedule data communications

when necessary, and schedule the block as soon as possible on the considered pro-

cessor. Once this is done, we keep the scheduling table in which the end date of the

reservation for the block is the smallest, and discard the other tables. Note that in

order to keep this heuristic very fast, no backtracking is performed.

In our example, the first block to be scheduled is HS_IN, followed by FS_IN. In this

particular architecture, we specified the fact that these operations could only be executed

on P1. Consequently we schedule HS_IN as soon as possible on P1: as the initial schedul-

ing table is empty, and block HS_IN has no input (and its clock support is empty), we can

schedule it at date 0. The same happens for FS_IN, except that P1 is already occupied

from date 0 to date 1. FS_IN is thus scheduled from date 1 to date 2. Then, following the

4.2. SCHEDULING TABLES 87

0

1

2

3

4

5

6

7

8

9

10

11

12

P1 P2 P3 Bus

Scheduling table

time

HS_IN@true

FS_IN@true

F1@(HS=false)

F2@(HS=false)

@(HS=false)

Send(P1,HS)@true

Send(P1,V1)13

14

15

16

17

F3@(HS=false)

(a)

0

1

2

3

4

5

6

7

8

9

10

11

12

P1 P2 P3 Bus

Scheduling table

time

HS_IN@true

FS_IN@true

F1@(HS=false)

F2@(HS=false)

F3@(HS=false)

@(HS=false)

Send(P1,HS)@true

Send(P1,V1)13

14

15

(b)

Figure 4.8: The two possibilities for mapping F3. Variant (b) is retained because it mini-
mizes the end date of F3

order that we defined, we must schedule F1. Its input is created by a delay, so we consider

that it is available at any time on any processor. F1 can only be executed on P1 (the spec-

ification imposes it), and its clock depends only on HS which is also acquired on P1 and

thus made available at date 1. As a consequence, F1 can be scheduled from date 2 to date

5. Following the order, the algorithm will then schedule F2: the only input variable of

this block is produced by F1 which is scheduled on P1. Once again, the specification only

allows F2 to be executed on this processor, so using the same reasoning as before, we

schedule it on P1 between dates 5 and 13. These decisions lead to the temporary schedul-

ing table of Fig. 4.7. For the mapping of F3, the process is a bit harder since it involves a

choice. F3 can be scheduled on P2 or P3, so we will have to try both variants, and select

the one that minimizes its end date. Since the clock corresponding to the computation of

this block is HS = f alse, we must make sure that HS is present on the processor that will

compute F3. HS is acquired on P1 from date 0 to 1, so its value must be sent on the bus

to the corresponding processor. This communication is scheduled in both variants from

date 1 to date 3. Moreover, F3 has one input: variable V 1, which is produced by F2 on

prcessor P1. Once again it must be sent on the bus, under the condition that HS = f alse.

For causality reasons, V 1 cannot be sent on the bus before HS is available system-wide,

that is to say at date 3. We can thus send it as soon as it has been produced, that is to

say between dates 13 and 15 in both variants. Fig. 4.8 shows the scheduling tables cor-

responding to the two mapping variants. On the left, F3 has been mapped on P2, where

its computation takes 3 time units in the worst case. On the right, it has been mapped on

P3, where it is computed in 1 time unit in the worst case. The variant that will be retained

4.3. CONCLUSION 88

by the scheduler is thus the second one, because F3 finishes its computation at date 16,

whereas in the first variant it finishes at date 18.

The algorithm then continues to map the remaining blocks in order, until they have

all been scheduled, and we obtain the scheduling table of Fig. 4.44. The corresponding

textual table, described in the syntax that we provided before is displayed in Fig. 4.9. It

comprises the schedule length, the implementation variables, and the schedules for each

resource. An important thing to point out is that in the processor schedules, all references

to variables are references to the variables of the specification file, whereas in the bus

schedules, the conditions are also expressed with references to the specification variables,

but the source and destinations of the communications are implementation variables. On

the processors, a straightforward translation can be done, using the implementation vari-

ables table. On the bus, we needed to express the communication conditions in one way

that could be easily translated for each processor, so we kept the conditions of the speci-

fication. At the same time, for code generation purposes, we needed to describe precisely

which implementation variables are sent and what are their destinations, so we used direct

references to the implementation variables.

4.3 Conclusion

In this chapter, we have presented the features of the CG language for modeling embed-

ded systems execution platforms. Our models usually rely on a distributed architecture

composed of several sequential processors linked together by a broadcast bus. The com-

plexity of the processors and bus is abstracted by only characterizing the WCET or WCCT

of the operations on the various resources where they are allowed to execute. From these

architecture models, and the corresponding CG functional specifications, LoPhT is able to

perform the mapping of the operations of the functional specification onto the resources

of the architecture model. The result of this phase is described in a data structure called

scheduling table, which contains all the necessary elements for code generation. From this

intermediate representation, it is possible to target multiple execution models, depending

on the support offered by the execution platform and by its operating system (or real-

time kernel). In the next chapter, we will define a more general representation of these

scheduling tables, that is general and precise enough to be used by the software pipelining

algorithms of Chapter 6.

4We do not give here a formal definition of the scheduling algorithm nor do we discuss its complexity.
This is due to the fact that this algorithm is not a contribution of this thesis (it already existed before I started
working), and also to the fact that it is close to the high-level algorithm routine described and discussed in
Section 8.2.2 (cf. Page 157)

4.3. CONCLUSION 89

Scheduling Table

ScheduleLength= 19

Implementation Variables

Variable:0 Type:0 Allocated On Processor:0 Implements Variable:0

Variable:1 Type:0 Allocated On Processor:2 Implements Variable:0

Variable:2 Type:0 Allocated On Processor:0 Implements Variable:1

Variable:3 Type:0 Allocated On Processor:1 Implements Variable:1

Variable:4 Type:0 Allocated On Processor:2 Implements Variable:1

Variable:5 Type:1 Allocated On Processor:0 Implements Variable:2

Variable:6 Type:1 Allocated On Processor:2 Implements Variable:2

Variable:7 Type:2 Allocated On Processor:0 Implements Variable:3

Variable:8 Type:2 Allocated On Processor:2 Implements Variable:3

Variable:9 Type:1 Allocated On Processor:1 Implements Variable:4

Variable:10 Type:1 Allocated On Processor:2 Implements Variable:4

Variable:11 Type:2 Allocated On Processor:2 Implements Variable:5

Variable:12 Type:2 Allocated On Processor:0 Implements Variable:5

Variable:13 Type:2 Allocated On Processor:0 Implements Variable:6

ProcSchedule(Processor:0)

SO:0 Condition Test(True) Delay StartDate 18 Duration 1 Block:8

(del_i Is Variable:5 On Clock:2) -> (V2_del Is Variable:6)

SO:1 Condition Test(True) StartDate 0 Duration 1 Function:1

() -> (HS Is Variable:1)

SO:2 Condition Test(True) StartDate 1 Duration 1 Function:0

() -> (FS Is Variable:0)

SO:3 Condition Test(Not(Variable:1)) StartDate 2 Duration 3 Function:2

(i Is Variable:6 On Clock:2) -> (ID Is Variable:2)

SO:4 Condition Test(Not(Variable:1)) StartDate 5 Duration 8 Function:3

(ID Is Variable:2 On Clock:2) -> (V1 Is Variable:3)

ProcSchedule(Processor:1)

SO:5 Condition Test(Variable:1) StartDate 3 Duration 3 Function:5

() -> (ID Is Variable:4)

ProcSchedule(Processor:2)

SO:6 Condition Test(Variable:0) StartDate 5 Duration 3 Function:7

() -> ()

SO:7 Condition Test(Not(Variable:0)) StartDate 11 Duration 3 Function:6

(ID Is Variable:2 On Clock:5 Variable:4 On Clock:6) -> ()

SO:8 Condition Test(Not(Variable:1)) StartDate 15 Duration 1 Function:4

(V1 Is Variable:3 On Clock:2) -> (V2 Is Variable:5)

Bus Schedule(Bus:1)

SO:9 Condition Test(True) StartDate 1 Duration 2

Source Variable:2 Destinations Variable:3 Variable:4

SO:10 Condition Test(True) StartDate 3 Duration 2

Source Variable:0 Destinations Variable:1

SO:11 Condition Test(And(Not(Variable:1) Not(Variable:0))) StartDate 5 Duration 5

Source Variable:5 Destinations Variable:6

SO:12 Condition Test(And(Variable:1 Not(Variable:0))) StartDate 6 Duration 5

Source Variable:9 Destinations Variable:10

SO:13 Condition Test(Not(Variable:1)) StartDate 13 Duration 2

Source Variable:7 Destinations Variable:8

SO:13 Condition Test(Not(Variable:1)) StartDate 16 Duration 2

Source Variable:11 Destinations Variable:12

Figure 4.9: Textual description of the scheduling table of Fig. 4.4

Part II

Software pipelining of scheduling tables

90

Chapter 5

Extensions of the basic formalism

Contents
5.1 Memory representation for pipelining 92

5.1.1 Architecture model . 92

5.1.2 Implementation model . 93

5.1.3 A simple example . 94

5.1.4 Well-formed properties . 94

5.2 Conclusion . 95

We have already explained in the introduction of Chapter 4 that defining a good plat-

form model is a complex task that must take into account many parameters, such as the

structure of the hardware platform, the performance and predictability objectives, etc.

While in Chapter 4 we have defined the basic resource description formalism of LoPhT,

we are now at the point where we will explore how changes in the platform modeling

objectives require changes in the platform model itself to allow correct and efficient map-

ping.

More precisely, we shall define in this section here two variants of the previously-

defined platform model. The first one explicitly represents memory allocation. This is

required to allow the modeling of memory usage during software pipelining (in Chap-

ter 6). This model can be seen as a refinement of the previously-defined platform model,

because it allows the representation of bus-based systems (but with greater detail). This

is the platform model that will be used in the remainder of the thesis.

The second variant, which is only sketched in Appendix A, targets quite different ex-

ecution platforms: many-core with a network-on-chip interconnect. Interesting aspects

of this platform model are the abstraction of multiple processors as single execution re-

sources, the modeling of the network-on-chip, and the structure of the generated exe-

cutable code.

This section does not include a significant extension of the resource reservation model,

which is needed to represent preemptive time-triggered partitioned systems, and which

91

5.1. MEMORY REPRESENTATION FOR PIPELINING 92

v1

P1 M1 P2 M2 P3

v2

Figure 5.1: Simple architecture

will be defined in Chapter 8.

While our work on platform modeling has put in evidence general platform modeling

principles, my PhD work did not produce a general model for platform modeling for off-

line scheduling. This will be the subject of future work.

5.1 Memory representation for pipelining

5.1.1 Architecture model

For our software pipelining algorithms, we model execution architectures using a very

simple language defining sequential execution resources, memory blocks, and their in-

terconnections. Formally, an architecture model is a bipartite undirected graph A =<

P,M,C >, with C ⊆ P ×M. The elements of P are called processors, but they model

all the computation and communication devices capable of independent execution (CPU

cores, accelerators, DMA and bus controllers, etc.). We assume that each processor can

execute only one operation at a time. We also assume that each processor has its own se-

quential or time-triggered program. This last assumption is natural on actual CPU cores.

On devices such as DMAs and accelerators, it models the assumption that the cost of

control by some other processor is negligible.

The elements of M are RAM blocks. We assume each RAM block is structured as a

set of disjoint cells. We denote with Cells the set of all memory cells in the system, and

with CellsM the set of cells on RAM block M. Our model does not specify memory size

limits. To limit memory usage in the pipelined code we rely instead on the mechanism

detailed in Section 6.4.1.

The elements of C are the interconnections. Processor P has direct access to memory

block M whenever (P,M) ∈ C. All processors directly connected to a memory block M

can access M at the same time. Therefore, care must be taken to prohibit concurrent read-

write or write-write access by two or more processors to a single memory cell, in order

to preserve functional determinism (we will assume this is ensured by the input system

model, and will be preserved by the pipelined one).

The simple architecture of Fig. 5.1 has 3 processors (P1, P2, and P3) and 2 memory

blocks (M1 and M2). Each of the Mi blocks has only one memory cell vi.

5.1. MEMORY REPRESENTATION FOR PIPELINING 93

5.1.2 Implementation model

On such architectures, we execute time-triggered implementations of embedded control

applications with a periodic non-preemptive execution model. Once again, we represent

such an application with a scheduling/reservation table.This pattern defines the computa-

tion of one period (also called an execution cycle). The infinite execution of the embedded

system is the infinite succession of periodically-triggered execution cycles.

Formally, a reservation/scheduling table is a triple S =< p,O, Init >, where p is the

activation period of execution cycles, O is the set of scheduled operations, and Init is the

initial state of the memory.

The activation period gives the (fixed) duration of the execution cycles. All the op-

erations of one execution cycle must be completed before the following execution cycle

starts. The activation period thus sets the length of the scheduling/reservation table, and

is denoted by len(S).

The set O defines the operations of the scheduling table. Each scheduled operation

o ∈ O is a tuple defining:

• In(o)⊆ Cells is the set of memory cells read by o.

• Out(o)⊆ Cells is the set of cells written by o.

• Guard(o) is the execution condition of o, defined as a predicate over the values

of memory cells. We denote with GuardIn(o) the set of memory cells used in the

computation of Guard(o).

• Res(o)⊆ P is the set of processors used during the execution of o.

• t(o) is the start date of o.

• d(o) is the duration of o. The duration is viewed here as a time budget the operation

must not exceed. As in the original model, this can be statically ensured through a

worst-case execution time analysis.

All the resources of Res(o) are exclusively used by o after t(o) and for a duration of

d(o) in cycles where Guard(o) is true. The sets In(o) and Out(o) are not necessarily

disjoint, to model variables that are both read and updated by an operation. For lifetime

analysis purposes, we assume that input and output cells are used for all the duration of

the operation. The cells of GuardIn(o) are all read at the beginning of the operation, but

we assume the duration of the computation of the guard is negligible (zero time)1.

1The memory access model where an operation reads its inputs at start time, writes its outputs upon
completion, and where guard computations take time can be represented on top of our model.

5.1. MEMORY REPRESENTATION FOR PIPELINING 94

CBA

time

0

P2P1 P3

1

2

A@true

B@true

C@true

Processor

(a) (b)

Figure 5.2: Simple specification in the abstract model Section 3.4 (a) and (non-pipelined)
scheduling table for this specification (b)

To cover cases where a memory cell is used by one operation before being updated

by another, each memory cell can have an initial value. For a memory cell m, Init(m) is

either nil, or some constant.

5.1.3 A simple example

To exemplify, we consider the simple data-flow synchronous specification of Fig. 5.2(a),

which we map onto the architecture of Fig. 5.1. This example is described in the graph-

ical formalism corresponding to the abstract model of Section 3.4. Depending on the

non-functional requirements given as input to the scheduling tool of Phase 1 (allocation

constraints, WCETs, etc.) one possible result is the scheduling table pictured in Fig. 5.2.

We assumed here that A is must be mapped onto P1 (e.g. because it uses a sensor periph-

eral connected to P1), that B must be mapped onto P2, that C must be mapped onto P3 and

that A, B, and C have all duration 1.

This table has a length of 3 and contains the 3 operations of the data-flow specifica-

tion (A, B, and C). Operation A reads no memory cell, but writes v1, so that In(A) = /0

and Out(A) = {v1}. Similarly, In(B) = {v1}, Out(B) = In(C) = {v2}, and Out(C) = /0.

All 3 operations are executed at every cycle, so their guard is true (guards are graphi-

cally represented with “@true”). The 3 operations are each allocated on one processor:

Res(A) = {P1}, Res(B) = {P2}, Res(C) = {P3}. Finally, t(A) = 0, t(B) = 1, t(C) = 2,

and d(A) = d(B) = d(C) = 1. No initialization of the memory cells is needed (the initial

values are all nil).

5.1.4 Well-formed properties

This abstract formalism provides the syntax of the implementation models that we use

as input to our pipelining algorithms, and allows the definition of operational semantics.

However as we saw in Section 4.2.2, not all syntactically correct specifications model

correct implementations. Some of them are non-deterministic due to data races or due

to operations exceeding their time budgets. Others are simply un-implementable, for

instance because an operation is scheduled on processor P, but accesses memory cells on

5.2. CONCLUSION 95

a RAM block not connected to P.

We already provided in Section 4.2.2.2 the set of properties defining the correctness

and implementability of the non-pipelined scheduling tables. These properties must still

be satisfied by our extended tables. In addition, explicitly representing memory allocation

means that we have to define the correctness properties concerning data locality and data

races. These properties are the following:

• Data locality. The memory cells needed for the evaluation of guards, or because

they correspond to inputs or outputs of an operation must be located in RAM blocks

that are directly connected to the processor that will perform the operation,

• No data races. If some memory cell m is written by o1 (m ∈ Out(o1)) and is used

by o2 (m ∈ In(o2)∪Out(o2)), then Guard(o1)∧Guard(o2) 6= false =⇒ t(o1) +

d(o1) ≥ t(o2)∨ t(o2)+ d(o2) ≥ t(o1). In other words, if the operations guards are

not exclusive, then the operations executions cannot overlap in time.

5.2 Conclusion

In this chapter, we defined an abstract and more general representation of the scheduling

tables that we introduced in Chapter 4. This model is well-suited for the description of

the software pipelining algorithms that we will define in Chapter 6.

Chapter 6

Throughput optimization by software
pipelining of conditional reservation
tables

Contents
6.1 Related work and originality . 100

6.1.1 Decomposed software pipelining 100

6.1.2 Originality . 102

6.1.3 Other aspects . 104

6.2 Pipelining technique overview . 104

6.2.1 Representing a pipelined scheduling table 104

6.3 Optimization algorithms . 111

6.3.1 Dependency graph and maximal throughput 111

6.3.2 Dependency analysis and main routine 113

6.3.3 Complexity considerations . 118

6.4 Code generation . 118

6.4.1 Memory management issues 118

6.5 Experimental results . 122

6.6 Conclusion . 125

One of the main contribution of my thesis is to take inspiration from classical compi-

lation techniques, such as software pipelining, in order to improve the system-level task

scheduling of specific classes of embedded systems. In this chapter we show how software

pipelining can be used to improve the throughput of existing scheduling tables. Apply-

ing software pipelining as a stand-alone optimization phase has two main advantages: it

can be used in conjunction with existing, state-of-the-art real-time scheduling techniques

(used to build the initial scheduling table), and it allows us to focus on the differences be-

tween the ways software pipelining is used in compilation and in system-level real-time

96

Throughput optimization by software pipelining of conditional reservation tables 97

scheduling. In particular, it allowed us to define the extensions needed to the scheduling

table representations defined in the previous chapter to allow pipelining. Therefore, this

chapter is important by itself, through its optimization results, but also as a basis for the

work of Chapter 8, where pipelining is performed at the same time as the scheduling.

Software pipelining Compilers are expected to improve code speed by taking advan-

tage of micro-architectural instruction level parallelism [Hennessy and Patterson, 2007].

Pipelining compilers usually rely on reservation tables to represent an efficient (possibly

optimal) static allocation of the computing resources (execution units and/or registers)

with a timing precision equal to that of the hardware clock. Executable code is then gen-

erated that enforces this allocation, possibly with some timing flexibility. But on VLIW

architectures, where each instruction word may start several operations, this flexibility

is very limited, and generated code is virtually identical to the reservation table. The

scheduling burden is mostly supported here by the compilers, which include software

pipelining techniques [Rau and Glaeser, 1981, Allan et al., 1995] designed to increase

the throughput of loops by allowing one loop cycle to start before the completion of the

previous one.

Static (offline) real-time scheduling A very similar picture can be seen in the system-

level design of safety-critical real-time embedded control systems with distributed (paral-

lel, multi-core) hardware platforms. The timing precision is here coarser, both for starting

dates, which are typically given by timers, and for durations, which are characterized

with WCETs. However, safety and efficiency arguments mentioned in the previous chap-

ters [Fohler et al., 2008] lead to the increasing use of tightly synchronized time-triggered

architectures and execution mechanisms, defined in well-established standards such as

TTA, FlexRay[Rushby, 2001], ARINC653[ARINC], or AUTOSAR[AUTOSAR]. Sys-

tems based on these platforms typically have hard real-time constraints, and their correct

functioning must be guaranteed by a schedulability analysis. As we saw in the previous

chapters, we are interested here in statically scheduled systems where resource alloca-

tion is described with scheduling tables whose correctness ensures schedulability. Such

systems include:

• Periodic time-triggered systems [Caspi et al., 2003, Zheng et al., 2005, Monot et al.,

2010, Eles et al., 2000, Potop-Butucaru et al., 2010] that are naturally mapped over

ARINC653, AUTOSAR, TTA, or FlexRay.

• Systems where the scheduling table describes the reaction to some sporadic input

event (meaning that the table must fit inside the period of the sporadic event). Such

systems can be specified in AUTOSAR, allowing, for instance, the modeling of

computations synchronized with engine rotation events [André et al., 2007].

Throughput optimization by software pipelining of conditional reservation tables 98

• Some systems with a mixed event-driven/time-driven execution model, such as

those synthesized by SynDEx[Grandpierre and Sorel, 2003].

Synthesis of such systems starts from specifications written in domain-specific synchronous

formalisms such as Simulink or SCADE[Caspi et al., 2003] which can be translated into

the CG formalism of Chapter 3.

The problem The optimal scheduling of such specifications onto platforms with mul-

tiple, heterogenous execution and communication resources (distributed, parallel, multi-

core) is NP-hard regardless of the optimality criterion (throughput, makespan, etc.) [Garey

and Johnson, 1979]. Existing scheduling techniques and tools [Caspi et al., 2003, Zheng

et al., 2005, Grandpierre and Sorel, 2003, Potop-Butucaru et al., 2010, Eles et al., 2000]

heuristically solve the simpler problem of synthesizing a scheduling table of minimal

length which implements one generic cycle of the embedded control algorithm. The algo-

rithm briefly presented in Section 4.2.2.3 follows this trend: it maps a CG specification to

an architecture while trying to minimize the length of the obtained scheduling table. In a

hard real-time context, minimizing table length (i.e. the makespan, as defined in the glos-

sary of Fig. 6.2) is often a good idea, because in many applications it bounds the response

time after a stimulus.

But optimizing makespan alone relies on an execution model where execution cycles

cannot overlap in time (no pipelining is possible), even if resource availability allows

it. At the same time, most real-time applications have both makespan and throughput

requirements, and in some cases achieving the required throughput is only possible if a

new execution cycle is started before the previous one has completed.

This is the case in the electronic control units (ECU) of combustion engines. Starting

from the acquisition of data for a cylinder in one engine cycle, an ECU must compute the

ignition parameters before the ignition point of the same cylinder in the next engine cycle

(a makespan constraint). It must also initiate one such computation for each cylinder in

each engine cycle (a throughput constraint). On modern multiprocessor ECUs, meeting

both constraints requires the use of pipelining[André et al., 2007]. Another example is

that of systems where a faster rate of sensor data acquisition results in better precision

and improved control, but optimizing this rate must not lead to the non-respect of require-

ments on the latency between sensor acquisition and actuation. To allow the scheduling of

such systems we consider in this chapter the static scheduling problem of optimizing both

makespan and throughput, with makespan being prioritary.

Contribution To (heuristically) solve this optimization problem, we use a two-phase

scheduling flow that can be seen as a form of decomposed software pipelining [Wang and

Eisenbeis, 1993, Gasperoni and Schwiegelshohn, 1994, Calland et al., 1998]. As pictured

Throughput optimization by software pipelining of conditional reservation tables 99

scheduling table
(non-pipelined)

Pipelining
(throughput
optimization)

scheduling table
(pipelined)(data-flow

specification)
(makespan

Scheduling tool

optimization)

control algorithm

Initial CG formalism Extensions for pipelining

Figure 6.1: Proposed pipelined scheduling flow

in Fig. 6.1, the first phase of this flow consists in applying one of the previously-mentioned

makespan-optimizing tools. The result is a scheduling table describing the execution of

one generic execution cycle of the embedded control algorithm with no pipelining. In our

evaluations, we will consider the output of the algorithm intuitively described in Chapter

4, which is implemented in LoPhT. Nevertheless, using our table-based representation,

the results described in this chapter apply to any scheduling table obtained regardless of

the tool or method used to obtain it.

The second phase uses a novel software pipelining algorithm, introduced in this chap-

ter, to significantly improve the throughput without changing the makespan and while

preserving the periodic nature of the system. The approach has the advantage of simplic-

ity and generality, allowing the use of existing makespan-optimizing tools.

The proposed software pipelining algorithm is a very specific and constrained form

of modulo scheduling [Rau, 1996]. Like all modulo scheduling algorithms, it determines

a shorter initiation interval for the execution cycles (iterations) of the control algorithm,

subject to resource and inter-cycle data dependency constraints. Unlike previous mod-

ulo scheduling algorithms, however, it starts from an already scheduled code (the non-

pipelined scheduling table), and preserves all the intra-cycle scheduling decisions made at

phase 1, in order to preserve the makespan unchanged. In other words, our algorithm com-

putes the best initiation interval for the non-pipelined scheduling table and re-organizes

resource reservations into a pipelined scheduling table, whose length is equal to the new

initiation interval, and which accounts for the changes in memory allocation.

We have implemented our algorithm into a pipelining tool that is used, as we desired,

in conjunction with LoPhT1. The resulting two-phase flow gives good results on architec-

tures without temporal partitioning [ARINC], like the previously-mentioned AUTOSAR

or SynDEx-generated applications and, to a certain extent, applications using the FlexRay

dynamic segment.

For applications mapped onto partitioned architectures (ARINC 653, TTA, or FlexRay,

the static segment) or where the non-functional specification includes multiple release

date, end-to-end latency, or periodicity constraints, separating the implementation pro-

cess in two phases (scheduling followed by pipelining) is not a good idea. We therefore

1Here we refer to the simple version of LoPhT corresponding to the algorithm of Chapter 4, that is to
say without all the extensions of Chapter 7 and 8.

6.1. RELATED WORK AND ORIGINALITY 100

developed a single-phase pipelined scheduling technique documented elsewhere [Carle

et al., 2012], but which uses (with good results) the same internal representation based

on scheduling tables to allow a simple mapping of applications with execution modes

onto heterogenous architectures with multiple processors and buses. This contribution is

detailed in the following chapters.

Chapter outline The remainder of this chapter is organized as follows: an emphasis on

related work is given, including the comparison of our originality points with the clas-

sical methods. Then we give an intuitive presentation of our technique using examples,

followed by a precise description of our pipelining algorithms. We then introduce the

necessary elements for the support of pipelining concerning the code generation process.

Finally, we evaluate our method and conclude the chapter.

6.1 Related work and originality

This section reviews existing work and details the originality points related to this precise

contribution. Performing this comparison required us to relate concepts and techniques

belonging to two fields: software pipelining and real-time scheduling. To avoid ambi-

guities when the same notion has different names depending on the field, we define in

Fig. 6.2 a glossary of terms that will be used throughout the paper.

6.1.1 Decomposed software pipelining

Closest to our work are previous results on decomposed software pipelining [Wang and

Eisenbeis, 1993, Gasperoni and Schwiegelshohn, 1994, Calland et al., 1998]. In these

papers, the software pipelining of a sequential loop is realized using two-phase heuris-

tic approaches with good practical results. Two main approaches are proposed in these

papers.

In the first approach, used in all 3 cited papers, the first phase consists in solving the

loop scheduling problem while ignoring resource constraints. As noted in [Calland et al.,

1998], existing decomposed software pipelining approaches solve this loop scheduling

problem by using retiming algorithms. Retiming [Leiserson and Saxe, 1991] can therefore

be seen as a very specialized form of pipelining targeted at cyclic (synchronous) systems

where each operation has its own execution unit. Retiming has significant restrictions

when compared with full-fledged software pipelining:

• It is oblivious of resource allocation. As a side-effect, it cannot take into account

execution conditions to improve allocation, being defined in a purely data-flow con-

text.

6.1. RELATED WORK AND ORIGINALITY 101

Concept Description
scheduling table These are essentially modulo reservation tables [Lam,

1988], extended to allow the representation of conditional/-
multiple reservations. The scheduling tables of this chapter
are described in the abstract model defined in Section 5.1.2.

initiation interval The length of a schedule table is also called its initiation
interval (II).

execution cycle One iteration of either a scheduling table or the control al-
gorithm before scheduling.

non-pipelined vs.
pipelined

In classical software pipelining, reservation tables are used
to represent the pipelined schedule. In our case, a reserva-
tion table is also used to represent the input of the pipelin-
ing algorithm. To avoid ambiguity, uses of “scheduling ta-
ble”, “initiation interval”, “throughput”, etc. will be qual-
ified with “non-pipelined” or “pipelined” whenever neces-
sary. For instance, the pipelined scheduling table is usually
known in software pipelining as the kernel.

makespan Worst-case duration of one execution cycle of the control
algorithm, from the start of its first operation, to the end of
its last operation. In our approach, by construction, it is the
same in both the non-pipelined and pipelined scheduling ta-
bles. It is equal to the initiation interval of the non-pipelined
scheduling table.

throughput The number of execution cycles of the control algorithm
executed per time unit. It is defined as the inverse of the
initiation interval.

inter-cycle de-
pendency

Data dependencies between operations of different execu-
tion cycles of the non-pipelined scheduling table.

scheduled opera-
tion

Complex data structure defining a resource reservation in
a scheduling table (a time interval on one or several re-
sources), but providing at the same time information on the
operation (real-time task) to be executed inside this reserva-
tion (input and output variables, execution condition).

Figure 6.2: Glossary of terms used in this chapter. All notions are formally defined later

6.1. RELATED WORK AND ORIGINALITY 102

• It requires that the execution cycles of the system do not overlap in time, so that one

operation must be completely executed inside the cycle where it was started.

Retiming can only change the execution order of the operations inside an execution cycle.

A typical retiming transformation is to move one operation from the end to the beginning

of the execution cycle in order to shorten the duration (critical path) of the execution cycle,

and thus improve system throughput. The transformation cannot decrease the makespan

but may increase it.

Once retiming is done, the second transformation phase takes into account resource

constraints. To do so, it considers the acyclic code of one generic execution cycle (after

retiming). A list scheduling technique ignoring inter-cycle dependences is used to map

this acyclic code (which is actually represented with a directed acyclic graph, or DAG)

over the available resources.

The second technique for decomposed software pipelining, presented in [Wang and

Eisenbeis, 1993], basically switches the two phases presented above. Resource constraints

are considered here in the first phase, through the same technique used above: list schedul-

ing of DAGs. The DAG used as input is obtained from the cyclic loop specification by

preserving only some of the data dependences. This scheduling phase decides the re-

source allocation and the operation order inside an execution cycle. The second phase

takes into account the data dependences that were discarded in the first phase. It basi-

cally determines the fastest way a specification-level execution cycle can be executed by

several successive pipelined execution cycles without changing the operation scheduling

determined in phase 1 (preserving the throughput unchanged). Minimizing the makespan

is important here because it results in a minimization of the memory/register use.

6.1.2 Originality

The objective of this chapter is to present a third decomposed software pipelining tech-

nique with two significant originality points, detailed below.

6.1.2.1 Optimization of both makespan and throughput

Existing software pipelining techniques are tailored for optimizing only one real-time

performance metric: the processing throughput of loops [Yun et al., 2003] (sometimes

besides other criteria such as register usage [Govindarajan et al., 1994, Zalamea et al.,

2004, Huff, 1993] or code size [Zhuge et al., 2002]). In addition to throughput, we also

seek to optimize makespan, with makespan being prioritary. Recall that throughput and

latency (makespan) are antagonistic optimization objectives during scheduling [Benoît

et al., 2007], meaning that resulting schedules can be quite different (an example will be

provided in Section 6.2.1.2).

6.1. RELATED WORK AND ORIGINALITY 103

To optimize makespan we employ in the first phase of our approach existing schedul-

ing techniques that were specifically designed for this purpose [Caspi et al., 2003, Zheng

et al., 2005, Grandpierre and Sorel, 2003, Potop-Butucaru et al., 2010, Eles et al., 2000],

such as the one used to create the scheduling table of Section 4.2.2.3. But the contribution

described in this chapter concerns the second phase of our flow, which takes the schedul-

ing table computed in phase 1 and optimizes its throughput while keeping its makespan

unchanged. This is done using a new algorithm that conserves all the allocation and intra-

cycle scheduling choices made in phase 1 (thus conserving makespan guarantees), but

allowing the optimization of the throughput by increasing (if possible) the frequency with

which execution cycles are started.

Like retiming, this transformation is a very restricted form of modulo scheduling soft-

ware pipelining. In our case, it can only change the initiation interval (changes in memory

allocation and in the scheduling table are only consequences). By comparison, classical

software pipelining algorithms, such as the iterative modulo scheduling of [Rau, 1996],

perform a full mapping of the code involving both execution unit allocation and schedul-

ing. Our choice of transformation is motivated by three factors:

• It preserves makespan guarantees.

• It gives good practical results for throughput optimization.

• It has low complexity.

It is important to note that our transformation is not a form of retiming. Indeed, it allows

for a given operation to span over several cycles of the pipelined implementation, and

it can take advantage of conditional execution to improve pipelining, whereas retiming

techniques work in a pure data-flow context, without predication (an example will be

provided in Section 6.2.1.2).

6.1.2.2 Predication

For an efficient mapping of our conditional specifications, it is important to allow an inde-

pendent, predicated (conditional) control of the various computing resources. However,

most existing techniques for software pipelining [Allan et al., 1995, Warter et al., 1993,

Yun et al., 2003] use hardware models that significantly constrain or simply prohibit pred-

icated resource control. This is due to limitations in the target hardware itself. One com-

mon problem is that two different operations cannot be scheduled at the same date on a

given resource (functional unit), even if they have exclusive predicates (like the branches

of a test). The only exception we know to this rule is predicate-aware scheduling (PAS)

[Smelyanskyi et al., 2003].

6.2. PIPELINING TECHNIQUE OVERVIEW 104

By comparison, the computing resources of our target architectures are not a mere

functional units of a CPU (as in classical predicated pipelining), but full-fledged proces-

sors such as PowerPC, ARM, etc. The operations executed by these computing resources

are large sequential functions, and not simple CPU instructions. Thus, each computing

resource allows unrestricted predication control by means of conditional instructions, and

the timing overhead of predicated control is negligible with respect to the duration of the

operations. This means that our architectures satisfy the PAS requirements. The drawback

of PAS is that sharing the same resource at the same date is only possible for operations

of the same cycle, due to limitations in the dependency analysis phase. Our technique

removes this limitation (an example will be provided in Section 6.2.1.3).

To exploit the full predicated control of our platform we rely on a new intermediate

representation, namely predicated and pipelined scheduling tables. By comparison to the

modulo reservation tables of [Lam, 1988, Rau, 1996], our scheduling tables allow the

explicit representation of the execution conditions (predicates) of the operations, as we

saw in Chapter 4. In turn, this allows the double reservation of a given resource by two

operations with exclusive predicates.

6.1.3 Other aspects

A significant amount of work exists on applying software pipelining or retiming tech-

niques for the efficient scheduling of tasks onto coarser-grain architectures, such as multi-

processors [Kim et al., 2012, Yang and Ha, 2009, Chatha and Vemuri, 2002, Chiu et al.,

2011, Caspi et al., 2003, Morel, 2005]. To our best knowledge, these results share the two

fundamental limitations of other software pipelining algorithms: optimizing for only one

real-time metric (throughput) and not fully taking advantage of conditional execution to

allow double allocation of resources.

Minor originality points of our technique, concerning code generation and dependency

analysis will be discussed and compared with previous work in Sections 6.3.2 and 6.4.1.

6.2 Pipelining technique overview

6.2.1 Representing a pipelined scheduling table

6.2.1.1 A simple example

Recall the example of Fig. 5.2. For this small application, an execution where successive

cycles do not overlap in time is clearly sub-optimal. Our objective is to allow the pipelined

execution of Fig. 6.3, which ensures a maximal use of the computing resources.

In the pipelined execution, a new instance of operation A starts as soon as the previous

one has completed, and the same is true for B and C. The first two time units of the

6.2. PIPELINING TECHNIQUE OVERVIEW 105

P1 P2 P3

A@true
iteration 10

A@true
iteration 2
A@true

iteration 3
A@true

iteration 4

B@true
iteration 1
B@true

iteration 2
B@true

iteration 3

C@true
iteration 1
C@true

iteration 2

1

2

3

Prologue

Steady
state

.

time

Figure 6.3: Pipelined execution trace for the example of Fig. 5.2

time P1 P2 P3

0
A@true B@true C@true

f st(A) = 0 f st(B) = 1 f st(C) = 2

Figure 6.4: Pipelined scheduling table (kernel) for the example of Fig. 5.2

execution are the prologue which fills the pipeline. In the steady state the pipeline is full

and has a throughput of one computation cycle (of the non-pipelined system) per time

unit. If the system is allowed to terminate, then completion is realized by the epilogue,

not pictured in our example, which empties the pipeline.

We represent the pipelined system schedule using the pipelined scheduling table pic-

tured in Fig. 6.4. Its length is 1, corresponding to the throughput of the pipelined system.

The operation set contains the same operations A, B, and C, but there are significant

changes. The start dates of B and C are now 0, as the 3 operations are started at the

same time in each pipelined execution cycle. A non-pipelined execution cycle spans over

several pipelined cycles, and each pipelined cycle starts one non-pipelined cycle.

To account for the prologue phase, where operations progressively start to execute,

each operation is assigned a start index fst(o). If an operation o has fst(o) = n, it will first

be executed in the pipelined cycle of index n (indices start at 0). Due to pipelining, the

instance of o executed in the pipelined cycle m belongs to the non-pipelined cycle of index

m− fst(o). For instance, operation C with fst(C) = 2 is first executed in the 3rd pipelined

cycle (of index 2), but belongs to the first non-pipelined cycle (of index 0).
The textual representation of the corresponding schedules (inside the scheduling table)

is as follows:

ProcSchedule(Processor:0)

SO:0 Condition Test(True) StartDate 0 Duration 1 Block:0

() -> (o Is Variable:0) Fst 0

ProcSchedule(Processor:1)

SO:1 Condition Test(True) StartDate 0 Duration 1 Block:1

(i Is Variable:0 On Clock:0) -> (o Is Variable:1) Fst 1

6.2. PIPELINING TECHNIQUE OVERVIEW 106

A C D

B

x y

P1 M1 M2Bus P2

(a) (b)

Figure 6.5: Example 2: Dataflow specification (a) and a bus-based implementation archi-
tecture (b)

ProcSchedule(Processor:2)

SO:2 Condition Test(True) StartDate 0 Duration 1 Block:2

(i Is Variable:1 On Clock:0) -> () Fst 2

where Block:0 corresponds to function A, Block:1 to function B and Block:2 to function

C. It includes a new syntactic element which accounts for the start index f st.

6.2.1.2 Example 2: makespan vs. throughput optimization

The example of Fig. 6.5 showcases how the different optimization objectives of our tech-

nique lead to different scheduling results, when compared with existing software pipelin-

ing techniques.

The architecture is here more complex, involving a communication bus that connects

the two identical processors. Communications over the bus are synthesized during the

scheduling process, as needed. Note that the bus is modeled as a processor performing

communication operations. This level of description, defined in Section 5.1.1, is accurate

enough to support our pipelining algorithms.

The functional specification is also more complex, involving parallelism and different

durations for the computation and communication operations. The durations of A, B, C,

and D on the two processors are respectively 1, 2, 4, and 1, and transmitting over the bus

any of the data produced by A or C takes 1 time unit.

Fig. 6.6(a) provides the non-pipelined scheduling table produced for this example by

the makespan-optimizing heuristic of Chapter 4 (and inspired by [Potop-Butucaru et al.,

2009]). Operations A and B have been allocated on processor P1 and operations C and

D have been allocated on P2. One communication is needed to transmit data x from P1

to P2. The makespan is here equal to the table length, which is 7. The throughput is the

inverse of the makespan (1/7).

When this scheduling table is given to our pipelining algorithm, the output is the

pipelined scheduling table of Fig. 6.6(b). The makespan remains unchanged (7), but the

table length is now 5, so the throughput is 1/5. Note that the execution of operation C

6.2. PIPELINING TECHNIQUE OVERVIEW 107

time

0

1

2

P1

A@true

3

Bus P2

B@true

C@true

D@true

4

5

6

x@true

time

0

1

2

P1

3

Bus P2

4

C@true

D@true

A@true

B@true

C@true
fst(A) = 0

fst(B) = 0
fst(SND)=0

fst(C) = 1

fst(C) = 0

fst(D) = 1
x@true

(a) (b)

Figure 6.6: Example 2: Non-pipelined scheduling table produced by phase 1 of our tech-
nique (a) and pipelined table produced by phase 2 (b) for the example of Fig. 6.5

time

0

1

2

P1

3

Bus

4

C@true

A@true

B@true

fst(A) = 0

fst(B) = 0
fst(SND)=0

fst(C) = 0

fst(D) = 1
D@true

P2

5

x@true

time

0

1

2

P1

3

Bus

A@true

B@true

fst(A) = 0

fst(B) = 0

P2

C@true
fst(C) = 0

C@true

D@true

fst(C) = 1x@true
fst(x)=0
y@true
fst(y)=1

fst(D) = 1

(a) (b)

Figure 6.7: Example 2: At left, the result of retiming the scheduling table of Fig. 6.6(a).
At right, the result of directly applying throughput-optimizing modulo scheduling onto
the specification of Fig. 6.5.

starts in one pipelined execution cycle (at date 2), but ends in the next, at date 1. Thus,

operation C has two reservations, one with fst(C) = 0, and one with fst(C) = 1.

Operations spanning over multiple execution cycles are not allowed in retiming-based

techniques. Thus, if we apply retiming to the scheduling table of Fig. 6.6(a), we obtain the

pipelined scheduling table of Fig. 6.7(a). For this example, the makespan is not changed,

but the throughput is worse than the one produced by our technique (1/6).

But the most interesting comparison is between the output of our pipelining technique

and the result of throughput-only optimization. Fig. 6.7(b) provides a pipelined schedul-

ing table that has optimal throughput. In this table, operation D is executed by processor

P1, so that the bus must perform 2 communications. The throughput is better than in our

case (1/4 vs. 1/5), but the makespan is worse (8 vs. 7), even though we chose a schedule

with the best makespan among those with optimal throughput.

6.2. PIPELINING TECHNIQUE OVERVIEW 108

G

true

MC F2

F3
old_m

true

true

init=1
δ

F1

m = 1

m = 2

m = 3
true

m = 1

true m = 3

m = 2
m

true

true

true

m = 1 m = 2 m = 3

(a) (b)

Figure 6.8: Example 3: Dataflow specification with conditional execution (a) and possible
mode transitions (b)

6.2.1.3 Example 3: Predication handling

To explain how predication is handled in our approach, consider the example of Fig. 6.8.

We only picture here the functional specification (described in the CG formalism). As

architecture, we consider two processors P1 and P2 connected to a shared memory M1 (a

2-processor version of the architecture in Fig. 5.1).

This example features a delay, labeled δ . As explained in Chapter 3, delays are the

only constructs in our data-flow formalism to represent the system state, and are a source

of data dependences between successive execution instants. In this example, we shall as-

sume that the duration of the bookkeeping operation associated with a delay is negligeable

(when compared to the durations of the other computations). As a consequence, we will

not represent it in the scheduling tables.

The functional specification also makes use of conditional (predicated) execution. Op-

erations F1, F2, and F3 (of length 3, 2, and 1, respectively) are executed in execution

cycles where the output m of operation MC equals respectively 1, 2, or 3. Operations MC

and G are executed in all cycles. Note that our graphical representation uses, for clar-

ity reasons, integer values for clock definitions (for tests). As explained in Chapter 3, our

tool cannot analyze integer tests, which means that integer values and tests over them must

be encoded using Boolean variables when writing the CG specification given as input to

LoPhT (two variables, in our case).

The output m of operation MC (for mode computation) is gives the execution mode

of our application. This mode is recomputed in the beginning of each execution cycle by

MC, based on the previous mode and on unspecified inputs directly acquired by MC. The

application has 3 possible modes (1, 2, and 3), and we assume that mode changes can only

occur in the directions indicated by arrows in Fig. 6.8(b). This automaton specifies that

a direct transition between modes 1 and 3 is forbidden. For instance, if in one execution

6.2. PIPELINING TECHNIQUE OVERVIEW 109

cycle m = 1, then in the next cycle m cannot have value 3 (only 1 or 2). Such constraints

can be specified using the ensures clauses introduced in Section 3.2.1.3. Such a clause

defines a predicate over the inputs and outputs of various functions and this clause is

assumed true in all execution cycles. In our case, this predicate is defined using an ensures

clause associated with the function of block MC. Assuming that the input port of operation

MC is called old_m and that the output port is called m, the predicate associated to MC is:

not (m = 1 and old_m = 3) and not (m = 3 and old_m = 1)

To represent this predicate using in our CG specification, we shall use a Boolean encoding

of m and old_m using 2 Boolean variables each: m1 and m2 for m and om1 and om2 for

old_m. The encoding is as follows:

m m1 m2

1 0 0
2 0 1
3 1 1

Under this encoding, the ensures clause associated with the function of MC is:

ensures And ((Not (And (Not m2) om1)) (Not (And m1 (Not om2))))

We assume that operations MC, F1, F2, and F3 are executed on processor P1, and

that G is executed on P2. Under these conditions, one possible non-pipelined schedule

produced by Phase 1 is the one pictured in Fig. 6.9. Note that this table features 3 condi-

tional reservations for operation G, even if G does not have an execution condition in the

data-flow graph. This allows G to start as early as possible in every given mode.

This table clearly features the reservation of the same resource, at the same time, by

multiple operations. For instance, operations F1, F2, and F3 share P1 at date 1. Of

course, each time this happens the operations must have exclusive predicates, meaning

that there is no conflict at runtime, as we saw in Section 4.2.1.1.

Pipelining this table using the algorithms of the following sections produces the schedul-

ing table of Fig. 6.10. The most interesting aspect of this table is that the reservations

G@m=1,fst=1 and G@m=3,fst=0, which belong to different execution cycles of the non-

pipelined table, are allowed to overlap in time. This is possible because the dependency

analysis of Section 6.3.2 will determine that the two operations have exclusive execution

conditions. In our case, this is due to the fact that m cannot change its value directly from

1 to 3 when moving from one non-pipelined cycle to the next.

When relations between execution conditions of operations belonging to different exe-

cution cycles are not taken into account, the resulting pipelining is that of Fig. 6.11. Here,

reservations for G cannot overlap in time if they have different fst values.

6.2. PIPELINING TECHNIQUE OVERVIEW 110

time

0

1

P1 P2

2

3

4

5

6

F1
F2

F3

G

G

G
@m=1

@m=2
@m=3

@m=3

@m=2

@m=1

MC@true

Figure 6.9: Example 3: non-pipelined scheduling table

time

0

1

P1 P2

2

3

MC@true

F3
@m=3
fst = 0

G
@m=3
fst=1

G
@m=2
fst = 0

F1
@m=1
fst = 0

F2
@m=2
fst = 0

G
@m=1
fst=1

G
@m=2
fst=1

G
@m=3
fst = 0

Figure 6.10: Example 3: Pipelined schedul-
ing table produced by our technique

time

0

1

P1 P2

2

3

4

fst=1
@m=2MC@true

@m=1
fst=1

G
G

F1
@m=1
fst=0

F2
@m=2
fst=0

F3
@m=3
fst=0

G
@m=2
fst=0

G
@m=1
fst=0

G
@m=3
fst=0

Figure 6.11: Example 3: Pipelined schedul-
ing table where inter-cycle execution condi-
tion analysis has not been used to improve
sharing.

6.3. OPTIMIZATION ALGORITHMS 111

6.2.1.4 Construction of the pipelined scheduling table

The prologues of our pipelined executions are obtained by incremental activation of the

steady state operations, as specified by the fst indices (this is a classical feature of modulo

scheduling pipelining approaches). Then, the pipelined scheduling table can be fully built

using Algorithm 1 starting from the non-pipelined table and from the pipelined initiation

interval. The algorithm first determines the start index and new start date of each operation

by folding the non-pipelined table onto the new period. Algorithm AssembleSchedule

then determines which memory cells need to be replicated due to pipelining, using the

technique provided in Section 6.4.1.

Algorithm 1 BuildSchedule

Input: S : non-pipelined scheduling table
p̂ : pipelined initiation interval

Output: Ŝ : pipelined schedule table
for all o in O do

fst(o) := ⌊ t(o)
p̂
⌋

t̂(o) := t(o)− fst(o)∗ p̂

end for
Ŝ := AssembleSchedule(S, p̂, fst, t̂)

6.3 Optimization algorithms

6.3.1 Dependency graph and maximal throughput

The period of the pipelined system is determined by the data dependences between suc-

cessive execution cycles and by the resource constraints. If we follow the classification

of [Hennessy and Patterson, 2007], we are interested here in true data dependences, and

not in name dependences such as anti-dependences and output dependences. A true data

dependency exists between two operations when one uses as input the value computed by

the other. Name dependencies are related to the reuse of variables, and can be eliminated

by variable renaming. For instance, consider the following C code fragment:

x := y + z; y := 10; z := y;

Here, there is a true data dependence (on variable y) between statements 2 and 3. There

is also an anti-dependence (on variable y) between statements 1 and 2 (they cannot be re-

ordered without changing the result of the execution). Renaming variable y in statements

2 and 3 removes this anti-dependence and allows re-ordering of statements 1 and 2:

x := y + z; y2:= 10; z := y2;

6.3. OPTIMIZATION ALGORITHMS 112

In our case, not needing the analysis of name dependences is due to the use of the

rotating register files (detailed in Section 6.4.1) which remove anti-dependences, and to

the fact that output dependences are not semantically meaningful in our systems whose

execution is meant to be infinite.

We represent data dependences as a Data Dependency Graph (DDG) – a formalism

that is classical in software pipelining based on modulo scheduling techniques[Allan et al.,

1995]. In this section we define DDGs and we explain how the new period is computed

from them. The computation of DDGs is detailed in Section 6.3.2.

Given a scheduling table S =< p,O, Init >, the DDG associated to S is a directed

graph DG =<O,V > where V ⊆O×O×N. Ideally, V contains all the triples (o1,o2,n)

such that there exists an execution of the scheduling table and a computation cycle k

such that operation o1 is executed in cycle k, operation o2 is executed in cycle k+n, and

o2 uses a value produced by o1. In practice, any V including all the arcs defined above

(any over-approximation) will be acceptable, leading to correct (but possibly sub-optimal)

pipelinings.

The DDG represents all possible dependences between operations, both inside a com-

putation cycle (when n = 0) and between successive cycles at distance n ≥ 1. Given the

static scheduling approach, with fixed dates for each operation, the pipelined scheduling

table must respect unconditionally all these dependences.

Note the strong similarity between the formalism used to represent DDGs and the non-

conditioned dependent task systems of Definition 1 (Section 3.4). The only difference

between them is that the arc sets of Definition 1 are fusioned here into a single set of

arcs V . This similarity shows the strong ties that exist between various techniques used in

compilation and real-time scheduling. Note also the differences: DDGs cannot represent

exclusiveness relations due to data dependent control (as they are defined in Definition 2)

because they cannot be exploited by the algorithms using them.

For each operation o ∈O, we denote with tn(o) the date where operation o is executed

in cycle n, if its guard is true. By construction, we have tn(o) = t(o) + n ∗ p. In the

pipelined scheduling table of period p̂, this date is changed to t̂n(o) = t(o)+n∗ p̂. Then,

for all (o1,o2,n) ∈ V and k ≥ 0, the pipelined scheduling table must satisfy t̂k+n(o2) ≥

t̂k(o1)+d(o1), which implies:

p̂ ≥ max
(o1,o2,n)∈V,n6=0

⌈
t(o1)+d(o1)− t(o2)

n

⌉

Our objective is to build pipelined scheduling tables satisfying this lower bound constraint

and which are well-formed in the sense of Section 5.1.4.

6.3. OPTIMIZATION ALGORITHMS 113

time

0

P2P1 P3

1

2

A@true

B@true

C@true

D@true3

Figure 6.12: Dependency analysis ex-
ample, non-pipelined

time P1 P2 P3

0
A@true C@true

f st(A) = 0
B@true

f st(D) = 1
D@true

f st(B) = 0

f st(C) = 1

1

Figure 6.13: Dependency analysis ex-
ample, pipelined

6.3.2 Dependency analysis and main routine

Dependency analysis is a mature discipline, and powerful algorithms have been used in

practice for decades [Muchnick, 1997]. However, previous research on inter-iteration de-

pendency analysis has mostly focused on exploiting the regularity of code such as affine

loop nests. To the best of our knowledge, existing algorithms are unable to analyze spec-

ifications such as our Example 3 (Section 6.2.1.3) with the precision we seek. Doing this

requires that inter-iteration dependency analysis deals with data-dependent mode changes

(which are a common feature in embedded systems design).

Performing our precise inter-iteration dependency analysis requires the (potentially

infinite) unrolling of the non-pipelined scheduling table. But our specific pipelining tech-

nique allows us to bound the unrolling, and thus limits the complexity of dependency

analysis. By comparison, existing pipelining and predicate-aware scheduling techniques

either assume that the dependency graph is fully generated before starting the pipelin-

ing algorithm [Rau and Glaeser, 1981], or use the predicates for the analysis of a single

cycle[Warter et al., 1993].

The core of our dependency analysis consists in the lines 1-10 of Algorithm 3, which

act as a driver for Algorithm 2. The remainder of Algorithm 3 uses DDG-derived infor-

mation to drive the pipelining routine (Algorithm 1).

Both the data dependency analysis and pipelining driver take as input a flag that

chooses between two pipelining modes with different complexities and capabilities. To

understand the difference, consider the non-pipelined scheduling table of Fig. 6.12. Re-

source P1 has an idle period between operations A and D where a new instance of A can

be started. However, to preserve a periodic execution model, A should not be restarted

just after its first instance (at date 1). Indeed, this would imply a pipelined throughput of

1, but the fourth instance of A cannot be started at date 3 (only at date 6). The correct

pipelining starts A at date 2, and results in the pipelined scheduling table of Fig. 6.13.

Determining if the reuse of idle spaces between operations is possible consists in de-

termining the smallest integer n greater than the lower bound of Section 6.3.1, smaller

than the length of the initial table, and such that a well-formed pipelined table of length

n can be constructed. This computation is performed by lines 14-19 of Algorithm 3. We

6.3. OPTIMIZATION ALGORITHMS 114

do not provide here the code of function WellFormed, which checks the respect of the

well-formed properties detailed in Section 5.1.4.

This complex computation can be avoided when idle spaces between two operations

are excluded from use at pipelining time. This can be done by creating a dependency

between any two operations of successive cycles that use a same resource and have non-

exclusive execution conditions. In this case, the pipelined system period is exactly the

lower bound of Section 6.3.1, and the output scheduling table is produced with a single

call to Algorithm 1 (BuildSchedule) in line 12 of Algorithm 3. Of course, Algorithm 2

needs to consider (in lines 10-16) the extra dependences.

Excluding the idle spaces from pipelining also has the advantage of supporting a spo-

radic execution model. In sporadic systems the successive computation cycles can be

executed with the maximal throughput specified by the pipelined table, but can also be

triggered arbitrarily less often, for instance to tolerate timing variations, or to minimize

power consumption in systems where the demand for computing power varies. On the

contrary, using the idle spaces during pipelining imposes synchronization constraints be-

tween successive execution cycles. For instance, in the pipelined system of Fig. 6.13,

the computation cycle of index n cannot complete before operation A of cycle n+ 1 is

completed.

The remainder of this section details the dependency analysis phase. The output of

this analysis is the lower bound defined in Section 6.3.1, computed as period_lbound.

The analysis is organized around the repeat loop which incrementally computes, for

cycle ≥ 1, the DDG dependences of the type (o1,o2,cycle). The computation of the

DDG is not complete: we bound it using a loop termination condition derived from our

knowledge of the pipelining algorithm. This condition is based on the observation that if

period_lbound∗ k ≥ len(S) then execution cycles n and n+ k cannot overlap in time (for

all n).

The DDG computation works by incrementally unrolling the non-pipelined schedul-

ing table. At each unrolling step, the result is put in the SSA2-like data structure S that

allows the computation of (an over-approximation of) the dependency set. Unrolling is

done by annotating each instance of an operation o with the cycle n in which it has been

instantiated. The notation is on. Putting in SSA-like form is based on splitting each mem-

ory cell v into one version per operation instance producing it (vn
o, if v ∈ Out(o)), and one

version for the initial value (vinit). Annotation and variable splitting is done on a per-cycle

basis by the Annotate routine (not provided here) which changes for each operation o its

name to on, and replaces Out(o) with {vn
o | v ∈ Out(o)} (n is here the cycle index parame-

ter). The Annotate routine is also responsible for dealing with the ensures clauses that are

declared with the functions. For any operation linked to a function containing an ensures

2SSA stands for Static Single Assignement representation form [Muchnick, 1997].

6.3. OPTIMIZATION ALGORITHMS 115

Algorithm 2 DependencyAnalysisStep

Inputs: S : non-pipelined scheduling table
l : the list of events of S
n : integer (cycle index)
fast_pipelining_flag : boolean

InputOutputs: S : annotated scheduling table
curr : current variable assignments
DDG : Data Dependency Graph

1: S := Concat(S,Annotate(S,n))
2: while l not empty do
3: e := head(l) ; l := tail(l)
4: if e = start(o) then
5: Replace Guard(on) by

∨

wi@Ci∈curr(vi),i=1,k
(C1 ∧ . . .∧Ck)∧go(w1, . . . ,wk)

where Guard(o) = go(v1, . . . ,vk).
6: for all p operation in S, u ∈ Out(p), v ∈ In(o) do
7: if u0

p@C ∈ curr(v) and ¬Exclusive(C,Guard(on)) then
8: DDG := DDG∪{(p,o,n)}
9: end if

10: if fast_pipelining_flag then
11: if Res(o)∩Res(p) 6= /0 then
12: if ¬Exclusive(Guard(on),Guard(p0)) then
13: DDG := DDG∪{(p,o,n)}
14: end if
15: end if
16: end if
17: end for
18: else
19: /* e = end(o) */
20: for all v ∈ Out(o) do
21: new_curr := {vn

o@Guard(on)}
22: for all vk

p@C ∈ curr(v) do
23: C′ := C∧¬Guard(on)
24: if ¬Exclusive(C,Guard(on)) then
25: new_curr := new_curr∪{vk

p@C′}
26: end if
27: end for
28: curr(v) := new_curr

29: end for
30: end if
31: end while

6.3. OPTIMIZATION ALGORITHMS 116

clause, the routine maps the annotated variables corresponding to the inputs and outputs

of the operation to their counterparts in the ensures formula. Instances of S produced by

Annotate are then assembled into S by the Concat function which simply adds to the date

of every operation in the second argument the length of its first argument. During this

assembly the ensures clauses coresponding to the operations of the new instance are con-

catenated to the already existing ensures clause corresponding to the previous instances.

This is done using the conjunction operator between the old and new clauses.

Recall that we are only interested in dependences between operations in different cy-

cles. Then, in each call to Algorithm 2 we determine the dependences between operations

of cycle 0 and operations of cycle n, where n is the current cycle. To determine them,

we rely on a symbolic execution of the newly-added part of S, i.e. the operations ok with

k = n. Symbolic execution is done through a traversal of list l, which contains all op-

eration start and end events of S, and therefore S, ordered by increasing date. For each

operation o of S, l contains two elements labeled start(o) and end(o). The list is ordered

by increasing event date using the convention that the date of start(o) is t(o), and the

date of end(o) is t(o)+ d(o). Moreover, if start(o) and end(o′) have the same date, the

start(o) event comes first in the list.

At each point of the symbolic execution, the data structure curr identifies the possible

producers of each memory cell. For each cell v of the initial table, curr(v) is a set of

pairs w@C, where w is a version of v of the form vk
o or vinit, and C is a predicate over

memory cell versions. In the pair w@C, C gives the condition on which the value of v is

the one corresponding to its version w at the considered point in the symbolic simulation.

Intuitively, if vk
o@C ∈ curr(v), and we symbolically execute cycle n, then C gives the

condition under which in any real execution of the system v holds the value produced

by o, n− k cycles before. The predicates of the elements in curr(v) provide a partition

of true. Initially, curr(v) is set to {vinit@true} for all v. This is changed by Algorithm

2 (lines 20-29), and by the call to InitCurr in Algorithm 3. We do not provide this last

function, which performs the symbolic execution of the nodes of S annotated with 0. Its

code is virtually identical to that of Algorithm 2, lines 1 and 6-17 being excluded.

At each operation start step of the symbolic execution, curr allows us to complete

the SSA transformation by recomputing the guard of the current operation over the split

variables (line 5 of Algorithm 2). In turn, this allows the computation of the dependences

(lines 6-17). Guard comparisons are translated into predicates that are analyzed by a

SAT solver. This translation into predicates also considers the predicate holding all the

information contained in the ensures clauses of the instanciated dataflow operations, as

intuitively explained in Section 6.2.1.3. The translation and the call to SAT are realized

by the Exclusive function, not provided here.

6.3. OPTIMIZATION ALGORITHMS 117

Algorithm 3 PipeliningDriver

Input: S : non-pipelined schedule table
fast_pipelining_flag : boolean

Output: Ŝ : pipelined schedule table
1: l := BuildEventList(S)
2: period_lbound := 0
3: cycle := 0
4: S := Annotate(S,cycle)
5: curr := InitCurr(S)
6: repeat
7: cycle:=cycle+1
8: (S,curr,DDG) := DependencyAnalysisStep(S, l,

cycle,fast_pipelining_flag,S,curr,DDG)

9: period_lbound := max(period_lbound, max(o1,o2,cycle)∈DDG⌈
t(o1)+d(o1)−t(o2)

cycle
⌉)

10: until period_lbound∗ cycle ≥ len(S)
11: if fast_pipelining_flag then
12: Ŝ := BuildSchedule(S,period_lbound)
13: else
14: for new_period := period_lbound to len(S) do
15: Ŝ := BuildSchedule(S,new_period)

16: if WellFormed(Ŝ) then
17: goto 21
18: end if
19: end for
20: end if
21: return

6.4. CODE GENERATION 118

6.3.3 Complexity considerations

The pipelining algorithm per se consists in Algorithm 1 and its driver (lines 11-20 of

Algorithm 3). The complexity of Algorithm 1 is linear in the number of operations in the

scheduling table. As explained above, the complexity of the driver routine (lines 11-20

of Algorithm 3) depends on the value of fast_pipelining_flag. When it is set to true, a

single call to Algorithm 1 is performed. When it is set to false, the number of calls to

Algorithm 1 is bounded by len(S).

In our experiments, fast_pipelining_flag is set for all examples, and the pipelining

time is negligible.

But the main source of theoretical complexity in our pipelining technique is hidden

in the dependency analysis implemented by Algorithm 2 and its driver (lines 1-10 of

Algorithm 3). In Algorithm 3, the number of iterations in the construction of the DDG

is up-bounded by len(S) (which can be large). Algorithm 2 is polynomial (quadratic) in

the number of operations of the scheduling table, but involves comparisons of predicates

with Boolean arguments (instances of the Boolean satisfiability problem SAT). Hence,

our algorithm is overall NP-complete.

In practice, however, DDG construction time is negligible for all examples, real-life

and synthesized. There are 2 reasons to this:

• In examples featuring predicated execution, the predicates remain simple, so that

SAT instances are solved in negligible time. This might not be the case for more

complex specifications, but then we also expect that better SAT solving engines

bring matching gains (for simplicity reasons, we currently use the very simple SAT

engine described in [Conchon and Lescuyer, 2008]).

• The number of iterations in the construction of the DDG is bounded by the condition

in line 10 of Algorithm 3. In our experiments the maximal number of iterations is

2.

6.4 Code generation

6.4.1 Memory management issues

Our pipelining technique allows multiple instances of a given variable, belonging to suc-

cessive non-pipelined execution cycles, to be simultaneously live. For instance, in the

example of Figures 5.2 and 6.3 both A and B use memory cell v1 at each cycle. In the

pipelined table, A and B work in parallel, so they must use two different copies of v1.

In other words, we must provide an implementation of the expanded virtual registers of

[Rau, 1996].

6.4. CODE GENERATION 119

The traditional software solution to this problem is the modulo variable expansion of

[Lam, 1988]. However, this solution requires loop unrolling, which would increase the

size of our scheduling tables. Instead, we rely on a purely software implementation of

rotating register files [Rau et al., 1992], which requires no loop unrolling, nor special

hardware support. Our implementation of rotating register files includes an extension for

identifying the good register to read in the presence of predication. To our best knowledge,

this extension (detailed in Section 6.4.1.2) is an original contribution.

6.4.1.1 Rotating register files for stateless systems

Assuming that Ŝ is the pipelined version of S , we denote with max_par = ⌈len(S)/len(Ŝ)⌉

the maximal number of simultaneously-active computation cycles of the pipelined schedul-

ing table. Note that max_par = 1+maxo∈O fst(o).

In the example of Figures 5.2 and 6.3 we must use two different copies of v1. We

will say that the replication factor of v1 is rep(v1) = 2. Each memory cell v is assigned its

own replication factor, which must allow concurrent non-pipelined execution cycles using

different copies of v to work without interference. Obviously, we can bound rep(v) by

max_par. We use a tighter margin, based on the observation that most variables (memory

cells) have a limited lifetime inside a non-pipelined execution cycle. We set rep(v) =

1+ lst(v)− fst(v), where:

fst(v) = minv∈In(o)∪Out(o) fst(o) lst(v) = maxv∈In(o)∪Out(o) fst(o)

Through replication, each memory cell v of the non-pipelined scheduling table is re-

placed by rep(v) memory cells, allocated on the same memory block as v, and organized

in an array v, whose elements are v[0], . . . ,v[rep(v)− 1]. These new memory cells are

allocated cyclically, in a static fashion, to the successive non-pipelined cycles. More pre-

cisely, the non-pipelined cycle of index n is assigned the replicas v[n mod rep(v)] for all v.

The computation of rep(v) ensures that if n1 and n2 are equal modulo rep(v), but n1 6= n2,

then computation cycles n1 and n2 cannot access v at the same time.

To exploit replication, the code generation scheme must be modified by replacing v

with v[(cid− fst(o)) mod rep(v)] in the input and output parameter lists of every operation

o that uses v. Here, cid is the index of the current pipelined cycle. It is represented in the

generated code by an integer. When execution starts, cid is initialized with 0. At the start

of each subsequent pipelined cycle, it is updated to (cid+1) mod R, where R is the least

common multiple of all the values rep(v).

This simple implementation of rotating register files allows code generation for sys-

tems where no information is passed from one non-pipelined execution cycle to the next

(no inter-cycle dependences). Such systems, such as the example in Figures 5.2 and 6.3,

are also called stateless.

6.4. CODE GENERATION 120

6.4.1.2 Extension to stateful predicated systems

In stateful systems, one (non-pipelined) execution cycle may use values produced in pre-

vious execution cycles. In these cases, code generation is more complicated, because an

execution cycle must access memory cells that are not its own.

For certain classes of applications (such as systems without conditional control or

affine loop nests), the cells to access can be statically identified by offsets with respect to

the current execution cycle. For instance, the MC mode change function of Example 3

(Section 6.2.1.3) always reads the variable m produced in the previous execution cycle.

But in the general case, in the presence of predicated execution, it is impossible to

statically determine which cell to read, as the value may have been produced at an arbitrary

distance in the past. This is the case if, for instance, the data production operation is itself

predicated. One solution to this problem is to allow the copying of one memory cell onto

another in the beginning of pipelined cycles. But we cannot accept this solution due to

the nature of our data, which can be large tables for which copying implies large timing

penalties.

Instead, we modify the rotating register file as follows: storage is still ensured by

the v circular buffer, which has the same length. However, its elements are not directly

addressed through the modulo counter (cid− fst(v)) mod rep(v) used above. Instead, this

counter points in an array srcv whose cells are integer indices pointing towards cells of

v. This allows operations from several non-pipelined execution cycles (with different cid

and fst(o)) to read the same cell of v, eliminating the need for copying.

The full implementation of our register file requires two more variables: an integer

nextv and an array of Booleans write_flagv of length rep(v). Since v is no longer directly

addressed through the modulo counter, nextv is needed to implement the circular buffer

policy of v by pointing to the cell where a newly-produced value can be stored next. One

cell of v is allocated (and nextv incremented) whenever a non-pipelined execution cycle

writes v for the first time. Subsequent writes of v from the same non-pipelined cycle use

the already allocated cell. Determining whether a write is the first from a given non-

pipelined execution cycle is realized using the flags of write_flagv. Note that the use of

these flags is not needed when a variable can be written at most once per execution cycle.

This is often the case for code used in embedded systems design, such as the output of the

Scade language compiler, or the outputs of LoPhT that we used for evaluation.If a given

execution cycle does not write v, then it must read the same memory cell of nextv that was

used by the previous execution cycle.

The resulting code generation scheme is precisely described by the following rules:

1. At application start, for every memory cell (variable) v of the initial specification,

srcv[0], write_flagv[0], nextv are initialized respectively with 0, false, and 1. If

Init(v) 6= nil then v[0] (instead of v) is initialized with this value.

6.4. CODE GENERATION 121

2. At the start of each pipelined cycle, for memory cell (variable) v of the initial

scheduling table, assign to srcv[(cid− fst(v)) mod rep(v)] the value of srcv[(cid−

fst(v)−1) mod rep(v)], and set write_flagv[(cid− fst(v)) mod rep(v)] to false.

3. In all operations o replace each input and output cell v with v[srcv[(cid− fst(o)) mod

rep(v)]]. The same must be done for all cells used in the computation of execution

conditions.

4. When an operation o has v as an output parameter, then some code must be added

before the operation (inside its execution condition). There are two cases. If v is not

an input parameter of o, then the code is the following:

1: if not write_flagv[(cid− fst(o)) mod rep(v)] then

2: write_flagv[(cid− fst(o)) mod rep(v)] = true

3: srcv[(cid− fst(o)) mod rep(v)] = nextv

4: nextv = (nextv +1) mod rep(v)

5: end if

If v is also an input parameter of o, then only line 2 is needed from the previous

code.

6.4.1.3 Accounting for book keeping costs

The software implementation of the rotating register files induces a timing overhead of its

own. This overhead is formed of two components:

• Per operation costs, which can be conservatively accounted for in the WCET of the

operations, as it is provided to the Phase 1 of our scheduling flow:

– For each operation and for each input and output parameter, the cost of the

indirection of point (3) above. This amounts to 2 indirections, one addition,

and one modulo operation.

– For each operation and for each output parameter, the cost of the book keeping

operations defined at point (4) above.

• Per iteration costs, associated to point (2) above, and which must be added to the

length of the pipelined scheduling table. This amounts to updating the srcv and

write_flagv data structures for all v. These costs are also bounded and can be ac-

counted for with worst-case figures in Phase 1.

One important remark here is that our operations are large-grain tasks, meaning that these

costs are often considered negligible, even for hard real-time applications.

The use of rotating registers also results in memory usage overheads. These overheads

come from the replication of memory cells and from the pointer arrays srcv which must

6.5. EXPERIMENTAL RESULTS 122

be stored on the same memory bank as v for all memory cell v. We will assume that the

cost of src is negligible, and only be concerned with the cost of replication, especially for

large data.

If the replication of a large piece of data is a concern, then we can prohibit it altogether

by requiring that all accesses to that memory cell are sequenced. This is done by adding a

“sequencer” processor to the architecture model, and requiring all accesses to that memory

cell to use the sequencer processor (this requires modifications to both the architecture and

the functional specification). The introduction of sequencers may limit the efficiency of

our pipelining algorithms. However, being able to target specific memory cells means

that we can limit efficiency loss to what is really necessary on our memory-constrained

embedded platforms. This simple approach satisfies our current needs.

6.5 Experimental results

We have implemented our pipelining algorithms in a prototype tool. We have integrated

this tool with an existing makespan-optimizing scheduling tool[Potop-Butucaru et al.,

2009] to form the full, two-phase flow of Fig. 6.1.

We have applied the resulting toolchain on 4 significant, real-life examples from the

testbench of the SynDEx scheduling tool[Grandpierre and Sorel, 2003]3. As no standard

benchmarks are available in the embedded world, we have also applied our toolchain on

a larger number of automatically synthesized dataflow graphs.

Our objective was to evaluate both the standalone pipelining algorithm, and the two-

phase flow as a whole. Comparing with optimal scheduling results was not possible.4

Instead, we rely on comparisons with existing scheduling and pipelining heuristics:

1. To evaluate the standalone algorithm, we measure the throughput gains obtained

through pipelining, by comparing the initiation intervals of our examples before

and after pipelining.

2. To evaluate the two-phase flow as a whole, we compare its output to the output of

a classical throughput-optimizing software pipelining technique, namely the FRLC

algorithm of [Wang and Eisenbeis, 1993].

3The other examples present in the SynDEx benchmark are mainly useful to demonstrate some of the
features of SynDEx (such as hierarchy, conditions, etc...), and do not correspond to real, industrial, appli-
cations. Moreover, they are usually composed of only a small number of dataflow blocks. We thus decided
not to use them in our evaluation process.

4Providing optimal solutions to our scheduling problem proved intractable even for small systems with
10 blocks and 3 processors.

6.5. EXPERIMENTAL RESULTS 123

Example size Scheduling table length
(initiation interval)

example blocks processors initial pipelined gain
(makespan) (kernel)

knock 5 2 6 3 50%
cycab 40 3 1482 1083 27%
ega 67 2 84 79 6%

robucar 84 3 1093 1053 8%

Figure 6.14: Pipelining gains for the real-life applications. Durations are in time units
whose actual real-time length depends on the application (e.g. milliseconds).

The testbench The largest examples of our testbench (“cycab” and “robucar”) are em-

bedded control applications for the CyCab electric car [Pradalier et al., 2005]. The other

two applications are an adaptive equalizer and a simplified model of an automotive knock

control application [André et al., 2007].

We have used a script to automatically synthesize 30 examples (of which the first 10

are also presented individually in the result tables). For each example, synthesis is done

as follows: we start with a graph containing only one data-flow node and no dependency.

We apply a fixed number of expansion steps (3 steps for the examples in Fig. 6.15). At

every step, each node is replaced with either a parallel or a sequential composition of

newly-created nodes. The sequential and parallel choices are equiprobable. The number

of nodes generated through expansion is chosen with a uniform distribution in the interval

[1..5]. Dependences are also generated randomly at each step, and all previously-existing

dependences are preserved. We implement these data-flow graphs on an architecture con-

taining 5 processors and one broadcast bus. To model the fact that the architecture is not

homogenous, the durations of the data-flow blocks on the various processors are assigned

randomly (uniform distribution in an interval), and we randomly create a small number

of placement constraints. We also assume that one of the processors performs input ac-

quisition and another processor controls actuators. This implies placement constraints on

data-flow blocks with no inputs and no outputs, respectively.

Pipelining gains The pipelining gains for the real-life and synthesized examples are

summarized in Fig. 6.14 and Fig. 6.15, respectively. The figures show improvements on

all examples, with a reduction of 27% in cycle time for the large “cycab” example, and an

average reduction of 9.31% on the synthesized examples. We conclude that a pipelining

stage such as ours should be part of any static scheduling flow.

At the same time, improvement varies greatly among the examples, from 50% for

the knock control to 4% for one of the generated examples. We inspected the examples

showing poor performance. Some of them, like “ega” have very tight schedules with

6.5. EXPERIMENTAL RESULTS 124

Example size Scheduling table length
(initiation interval)

Example blocks processors initial pipelined gain
(makespan) (kernel)

synth3 11 5 171 142 16.9%
synth7 14 5 212 191 9.9%
synth9 15 5 351 320 8.8%
synth5 23 5 375 348 7%
synth10 29 5 318 291 8%
synth1 34 5 463 430 7%
synth2 35 5 315 290 7.9%
synth8 40 5 622 594 4%
synth6 46 5 433 310 28%
synth4 52 5 840 793 5%
Average for 30 examples 9.31%

Figure 6.15: Pipelining gains for the synthesized examples

little idle CPU time, and therefore little opportunity for pipelining. More interesting was

“robucar”, which has significant idle time, but where a critical path in the scheduling

table blocks pipelining. For such cases, more powerful pipelining algorithms are needed

(as part of future work), able to modify the scheduling of the non-pipelined execution

cycles, but without lengthening the makespan.

As explained in Section 6.4.1.3, we did not focus on precisely measuring the overhead

in memory consumption induced by our technique.

Our method [Wang and Eisenbeis, 1993] Makespan Throughput
Example makespan kernel makespan kernel gain loss
synth1m 298 276 850 246 64% 12%
synth2m 277 263 570 190 51% 38%
synth3m 142 142 299 142 52% 0%
synth4m 347 328 2380 255 85% 28%
synth5m 155 155 651 155 76% 0%
synth6m 349 288 1774 288 80% 0%
synth7m 130 115 258 115 49% 0%
synth8m 376 357 610 290 38% 23%
synth9m 116 96 198 82 41% 17%
synth10m 300 273 1686 96 82% 184%
Average for 30 examples 63.63% 38.33%

Figure 6.16: Comparison with a classical software pipelining algorithm

6.6. CONCLUSION 125

Comparison with a classical software pipelining algorithm To make this comparison,

we have implemented the classical FRLC algorithm of [Wang and Eisenbeis, 1993]. We

chose this algorithm because of its flexibility. It is easy to extend it to cover aspects taken

into account by our tool, such as the presence of operations that have different durations

on different functional units, or communication costs. However, we have used here for

comparisons its baseline, restricted version. We therefore considered only the synthesized

examples, which have a simpler structure, and modified them by removing communica-

tion costs and by choosing a single duration for each operation on all processors that can

execute it.

On these modified examples we applied our two-phase flow and the FRLC method

and compared the results in Fig. 6.16. For each example and scheduling flow we provide

the makespan and the kernel length of the generated code. We have also computed the

makespan gain and throughput loss when moving from the FRLC technique to ours.

In these figures the makespan-throughput trade-off is clearly visible (as we expected).

On average, our method gains 63.63% in makespan while losing 38.33% in throughput.

A less expected result is that this trade-off can be identified in each example, even though

the algorithms under comparison are heuristics. Indeed, our method is always better in

makespan, while the FRLC technique of [Wang and Eisenbeis, 1993] is never worse in

throughput.

Given our optimization objective (makespan first, throughput second), we consider

that our choice of two-phase optimization heuristic is justified.

Predication is present in 3 of our examples: example 3, knock, and a variant of the

cycab example. In all these examples, predication is used to encode mode-dependent

behavior, and the examples showcase different situations where pipelining is necessary

in embedded systems design. Mode-dependent behavior is usually specified at the level

of full systems or large subsystems, meaning that the number of predicates is usually

low, yet each predicate controls a significant part of the operations of the system. Our

examples have only two or three predicates (two in knock and cycab, three in Example 3).

To evaluate the contribution of predication analysis to the pipelining results, we have also

run our algorithms with the predication analysis disabled. The use of predication does not

improve pipelining result for the cycab example. On the contrary, it results in significant

gains for Example 3 and knock (20% and 40%, respectively).

6.6 Conclusion

In this section we have presented a new software pipelining technique especially adapted

to the needs of embedded applications. We showed that classical software pipelining

techniques were not fit for such applications since their main objective is the optimization

6.6. CONCLUSION 126

of the throughput of loops, and optimizing throughput can lead to unacceptable results

in terms of cycle latency/makespan. Our bi-criteria optimization applies in a first step a

makespan optimizing scheduling technique. In a second step, it optimizes the throughput

of the application without modifying any decision inside the scheduled cycle.

The use of a decomposed software pipelining technique to optimize these two criteria

is a major originality of our approach. Another original point is to exploit information

concerning the execution conditions (modes) in order to further improve the optimiza-

tion of these criteria. We demonstrated our technique on various examples (both real-life

and synthesized ones) and compared it with an existing decomposed software pipelining

technique. The (good) results make us believe that such bi-criteria optimizations are well

suited for embedded applications where real-time requirements can be reduced to a simple

characterization in terms of cycle latency and throughput.

Nevertheless, as we will see in the next chapters, some modern embedded applica-

tions include complex functional and non-functional constraints and requirements (e.g.

multiple real-time requirements, partitioning, preemptability), which cannot be tackled

efficiently by techniques that optimize only one or two criterions. Consequently, we must

adapt our software pipelining technique and integrate it into a scheduling technique whose

objective is to respect complex sets of non-functional requirements, as opposed to opti-

mizing one or two metrics. This work is presented in the next chapters.

Part III

Real-time scheduling and code
generation under complex
non-functional constraints

127

Chapter 7

Extensions of the Clocked Graph
formalism

Contents
7.1 Related work . 131

7.2 Architecture model . 134

7.2.1 Time-triggered systems . 134

7.2.2 Temporal partitioning . 136

7.2.3 Example . 137

7.3 Modeling of the aerospace case study 139

7.3.1 From non-determinism to determinism 140

7.3.2 Representing execution modes 141

7.4 Non-functional properties . 142

7.4.1 Period, release dates, and deadlines 142

7.4.2 Worst-case durations, allocations, preemptability 145

7.4.3 Partitioning . 146

7.4.4 Syntax extensions . 146

7.5 Conclusion . 151

In previous chapters we have defined powerful formalisms for the specification of the

functionality and of the resources of an embedded system, and for the representation of

resource allocation in a table-based off-line scheduling paradigm. These formalisms sup-

port scheduling and optimization algorithms able to automatically synthesize efficient im-

plementations providing tight hard real time guarantees onto multi-processor/distributed

execution platforms.

However, even though the results of the previous chapters are original, they still follow

a classical compilation approach. Indeed, their objective is the fully automated generation

of implementations that are functionally correct and which optimize some real-time char-

acteristics (in our case, worst-case latency and throughput, as opposed to the average-case

128

Extensions of the Clocked Graph formalism 129

execution time that is optimized in classical compilation). Such a compilation process

never fails, because it is not constrained.

But the implementation needs of complex embedded systems are not well captured

under the form of such unconstrained optimization problems. Indeed, embedded systems

have multiple non-functional requirements that must be satisfied by the final implemen-

tation, and which need to be taken into account by the scheduling and code generation

algorithms. In the remainder of this thesis we shall extend our specification formalisms to

allow the description of complex non-functional requirements, and then provide compi-

lation algorithms able to solve (heuristically) such constrained implementation problems.

Thus, we retain the full automation of classical compilation, but extend it to more complex

systems.

The choice of non-functional properties that we will consider is not arbitrary. To

ensure that the resulting approch has practical applicability, we consider an industrial

application class and a case study coming from the aerospace industry. We include in

our approach all the aspects (model characteristics and non-functional properties) needed

to allow scheduling and code generation for the chosen application class. In particular,

considering all details needed to allow actual code generation means that we will need

to precisely define the (time-triggered partitioned) execution mechanisms of the target

platform. Once this is done, this chapter will focus on the non-functional properties we

consider:

• The preemptability1 of the operations of the application. The initial CG formalism

presented in Chapter 3 does not support the preemption of the functions execution.

Nevertheless, to improve the schedulability of our systems, we want to allow it.

Since we target a totally static implementation, we cannot rely on an online sched-

uler to deal with preemptions such as in Giotto [Henzinger et al., 2000] or Prelude

[Pagetti et al., 2011]. Instead we want our offline technique to build a preemptive

static schedule, which includes the potential dates where preemption can happen (in

the worst case scenario),

• The temporal partitioning of the application, as specified for TTA [Kopetz and

Bauer, 2003], FlexRay [Rushby, 2001] (the static segment), and ARINC653 [AR-

INC], which allows the static allocation of CPU or bus time slots, on a periodic

basis, to various parts (known as partitions) of the application. Also known as

static time division multiplexing (TDM) scheduling, partitioning further enhances

the temporal determinism of a system,

• Release dates and deadlines for the tasks of the application, which allow the model-

1The use of the terms preemptability and preemptable is common in real-time when referring to tasks.
The terms “interrupt” and “interruptible” refer to the machine interrupts instead.

Extensions of the Clocked Graph formalism 130

ing of constraints coming from the environment and/or the dynamics of the system.

A noticeable point is that in order to allow a more natural real-time specification, an

improved schedulability and less context changes between partitions (which are no-

toriously expensive), we allow the use of deadlines that are longer than the periods

in the specification.

We also consider allocation constraints, which are already taken into account in the archi-

tecture description formalism of Chapter 4.

Industrial case study Our work is based on a launcher (spacecraft) embedded control

system case study provided by Airbus DS (formerly ASTRIUM). Such spacecraft systems

show very strict real-time requirements, since, for example, the unavailability of the avion-

ics system of a space launcher during a few milliseconds in the atmospheric phase may

lead to the destruction of the launcher. In such systems, latencies are defined between the

acquisition of data by sensors and the sending of orders to actuators. In the meantime, the

orders are computed using control algorithms (GNC, for Guidance, Navigation and Con-

trol algorithms). The GNC algorithms are usually emplemented on a dedicated processor

in a classical multi-tasking approach. In the last decade, the increase of computational

power provided by space processors allows the distribution of the GNC computations on

the sensors and actuators processors, and the suppression of the processor that was, until

now, dedicated to the GNC computations. In the future, the GNC algorithms could be

separated, and for example the navigation algorithm could run on the processor control-

ling the gyroscope, while the control algorithm would run on the processor controlling

the thruster. For the industrials who manufacture the spacecraft systems (space launchers

or space transportation vehicles), this means a non-negligeable reduction of costs and of

weight and power consumption.

Nevertheless, this practice leads to the sharing of processors by pieces of software

having different Design Assurance Levels (such as gyroscope control and navigation for

example), and consequently requires the use of an operating system that enforces Time

and Space Partitioning (TSP) between them. In such operating systems scheduling is han-

dled by a hierarchic two-level scheduler in which the top level is of static Time-triggered

(TDM) type. It is the case, for instance, of ARINC 653 [ARINC]. Moreover, for pre-

dictability issues, the processors of the distributed implementation platform share a com-

mon time base. As a consequence, the execution platform offers the possibility of a glob-

ally time-triggered implementation. Therefore, we aim for distributed implementations

that are time triggered at all scheduling levels. This improves system predictability and

allows the computation of tighter worst-case bounds on end-to-end latencies.

In the end, this case study allowed us to define the following scheduling problem:

given a set of end-to-end latencies defined at spacecraft system level, along with sensing

7.1. RELATED WORK 131

and actuation operations offsets and safe worst case execution time (WCET) estimations

of the computation functions, we wanted to synthesize the time-triggered schedule of the

system, including the activation of each partition and each functional node, and the bus

frame.

In order to solve this problem, we first needed to increase the expressiveness of the

clocked graph formalism, so that it can take into account the new partitioning and real-

time constraints that can be specified on such complex systems. We thus extended it with

an original real-time characterization that takes advantage of the time-triggered frame-

work to provide a simpler representation of complex end-to-end flow requirements. We

also extended our specifications with additional non-functional properties specifying par-

titioning and preemptability constraints. The CG formalism remains an intermediate rep-

resentation for code generation, but the increase of its expressiveness allows more tuning,

more precision, and more optimizations during the scheduling step of the compilation

process, which is described in Chapter 8.

Chapter outline In the remainder of this chapter, we present a detailed state of the art

of the models and methods used to tackle separately the various real-time and partitioning

problems that we want to solve. Then, we give a precise definition of the time-triggered

execution model that we consider, along with a characterization of time partitioning in

this framework. Then, using the abstract formalism defined at the end of Chapter 3, we

introduce the simplified specification of the aerospace case study that will be used in this

chapter and in the next one to present the extensions we made to our formalism, as well

as the new scheduling algorithms that we developped. Finally, we provide the extensions

made to the CG language in order to include the new non-functional constraints in our

models.

7.1 Related work

The main originality of this chapter is to define a complex task model allowing the spec-

ification of all the functional and non-functional aspects needed for the efficient imple-

mentation of our case study. Of course, prior work already considers all these functional

and non-functional aspects, but either in isolation (one aspect at a time), or through com-

binations that do not cover our modeling needs. Our contributions are the non-trivial

combination of these aspects in a coherent formal model and the definition of synthesis

algorithms able to build a running real-time implementation.

Previous work [Henzinger and Kirsch, 2007, Henzinger et al., 2000, Pagetti et al.,

2011, Marouf et al., 2012, Alras et al., 2009] on the implementation of multi-periodic

synchronous programs and the work by [Blazewicz, 1977] and [Chetto et al., 1990] on

7.1. RELATED WORK 132

the scheduling of dependent task systems have been important sources of inspiration. By

comparison, our work provides a general treatment of ARINC 653-like partitioning and

of conditional execution, and a novel use of deadlines longer than periods to allow faithful

real-time specification.

The work of [Caspi et al., 2003] addresses the multiprocessor scheduling of syn-

chronous programs under bus partitioning constraints. By comparison, our work takes

into account conditional execution and execution modes, allows preemptive scheduling,

and allows automatic allocation of computations and communications. Taking advantage

of the time-triggered execution context, our approach also relies on fixed deadlines (as

opposed to relative ones), which facilitates the definition of fast mapping heuristics.

Another line of work on the scheduling of dependent tasks is represented by the works

of [Pop et al., 1999] and [Zheng et al., 2005]. In both cases, the input of the technique is

a DAG, whereas our functional specifications allow the use of delayed dependencies be-

tween successive iterations of the DAG. Other differences are that the technique [Zheng

et al., 2005] does not take into account ARINC 653-like partitioning or conditional exe-

cution, and the technique of [Pop et al., 1999] does not allow the specification of complex

end-to-end latency constraints. [Fohler, 1993] does consider conditional control, but does

so in a mono-processor, non-partitioned, non-preemptive context.

The off-line (pipelined) scheduling of tasks with deadlines longer than the periods

has been previously considered (among others) by [Fohler and Ramamritham, 1997], but

this work does not consider, as we do, partitioning constraints and the use of execution

conditions to improve resource allocation. This is also our originality with respect to other

classical work on static scheduling of periodic systems [Ramamritham et al., 1993].

Compared to previous work by [Isovic and Fohler, 2009] on real-time scheduling for

predictable, yet flexible real-time systems, our approach does not directly cover the issue

of sporadic tasks, but allows a more flexible treatment of periodic (time-triggered) tasks.

Based on a different representation of real-time characteristics and on a very general han-

dling of execution conditions, we allow for better flexibility inside the fully predictable

domain.

From an implementation-oriented perspective, Giotto [Henzinger et al., 2000, Hen-

zinger and Kirsch, 2007], ΨC [Chabrol et al., 2009], and Prelude [Pagetti et al., 2011,

Puffitsch et al., 2013] make the choice of mixing a globally time-triggered execution

mechanism with on-line priority-driven scheduling algorithms such as RM or EDF. By

comparison, we made the choice of taking all scheduling decisions off-line. Doing this

complicates the implementation process, but imposes a form of temporal isolation be-

tween the tasks which reduces the number of possible execution traces and increases tim-

ing precision (as the scheduling of one task no longer depends on the run-time duration

of the others). In turn, this facilitates verification and validation. Furthermore, a fully

7.1. RELATED WORK 133

off-line scheduling approach such as ours has the potential of improving worst-case per-

formance guarantees by taking better decisions than a RM/EDF scheduler which follows

an as-soon-as-possible (ASAP) scheduling paradigm. For instance, the transformations

of Section 8.3 reduce the number of notoriously expensive partition changes by using a

scheduling technique that is not ASAP. These partition changes are not taken into account

in the optimality results concerning the EDF scheduling of Prelude [Pagetti et al., 2011].

Compared to classical work on the on-line real-time scheduling of tasks with execu-

tion modes (cf. [Baruah, 2003]), our off-line scheduling approach comes with precise

control of timing, causalities, and the correlation (exclusion relations) between multiple

test conditions of an application. It is therefore more interesting for us to use a task model

that explicitly represents execution conditions. We can then use table-based scheduling

algorithms that precisely determine when the same resource can be allocated at the same

time to two tasks because they are never both executed in a given execution cycle, such as

we explained in Chapter 4.

The use of execution conditions to allow efficient resource allocation is also the main

difference between our work and the classical results of [Xu, 1993]. Indeed, the exclu-

sion relation defined by Xu does not model conditional execution, but resource access

conflicts, thus being fundamentally different from the exclusion relation we defined in

Section 3.4. Our technique also allows the use of execution platforms with non-negligible

communication costs and multiple processor types, as well as the use of preemptive tasks

(unlike in Xu’s paper).

The off-line scheduling on partitioned ARINC 653 platforms has been previously con-

sidered, for instance by [Sheikh et al., 2012] and by Brocal et al. in Xoncrete [Brocal et al.,

2010]. The first approach only considers systems with one task per partition, whereas our

work considers the general case of multiple tasks per partition. The second approach

(Xoncrete) allows multiple tasks per partition, but does not seem interested in having a

functionally deterministic specification and preserving its semantics during scheduling

(as we do). For instance, its input formalism specifies not periods, but ranges of ac-

ceptable periods, and the first implementation step adjusts these periods to reduce their

lowest common multiple (thus changing the semantics). Other differences are that our

approach can take into account conditional execution and execution modes, and that we

allow scheduling onto multi-processors, whereas Xoncrete does not.

More generally, our work is related to work on the scheduling for precision-timed

architectures (e.g. [Edwards and Lee, 2007]). Our originality is to consider complex non-

functional constraints. The work on the PharOS technology [Chabrol et al., 2009] also

targets dependable time-triggered system implementation, but with two main differences.

First, we follow a classical ARINC 653-like approach to temporal partitioning. Second,

we take all scheduling decisions off-line. This constrains the system but reduces the

7.2. ARCHITECTURE MODEL 134

scheduling effort needed from the OS, and improves predictability.

References on time-triggered and partitioned systems, as well as scheduling of syn-

chronous specifications will be provided in the following sections.

7.2 Architecture model

7.2.1 Time-triggered systems

In this section we define the notion of time-triggered system that we will be using in the

remainder of the thesis. It roughly corresponds to the definition given by [Kopetz, 1991],

and is a sub-case of the definition given by [Henzinger and Kirsch, 2007]. We shall

introduce its elements progressively, explaining what the consequences are in practice.

7.2.1.1 General definition

By time-triggered systems we understand systems satisfying the following 3 properties:

TT1 A system-wide time reference exists, with good-enough precision and accuracy. We

shall refer to this time reference as the global clock2. All timers in the system use

the global clock as a time base.

TT2 The execution duration of code driven by interrupts other than the timers (e.g.

interrupt-driven driver code) is negligible. In other words, for timing analysis pur-

poses, code execution is only triggered by timers synchronized on the global clock.

TT3 System inputs are only read/sampled at timer triggering points.

This definition places no constraints on the sequential code triggered by timers. In partic-

ular:

• Classical sequential control flow structures such as sequence or conditional execu-

tion are permitted, allowing the representation of modes and mode changes.

• Timers are allowed to preempt the execution of previously-started code.

This definition of time-triggered systems is fairly general. It covers single-processor

systems that can be represented with time-triggered e-code programs, as they are defined

by [Henzinger and Kirsch, 2007]. It also covers multiprocessor extensions of this model,

as defined by [Fischmeister et al., 2006] and used by [Potop-Butucaru et al., 2010]. In

particular, our model covers time-triggered communication infrastructures such as TTA

2For single-processor systems the global clock can be the CPU clock itself. For distributed multiproces-
sor systems, we assume it is provided by a platform such as TTA [Kopetz and Bauer, 2003] or by a clock
synchronization technique such as the one of Potop et al. [Potop-Butucaru et al., 2010].

7.2. ARCHITECTURE MODEL 135

and FlexRay (static and dynamic segments) [Kopetz and Bauer, 2003, Rushby, 2001],

the periodic schedule tables of AUTOSAR OS [AUTOSAR], as well as systems follow-

ing a multi-processor periodic scheduling model without jitter and drift3. It also covers

the execution mechanisms of the avionics ARINC 653 standard [ARINC] provided that

interrupt-driven data acquisitions, which are confined to the ARINC 653 kernel, are pre-

sented to the application software in a time-triggered fashion satisfying property TT3. One

way of ensuring that TT3 holds is presented in [Mason et al., 2006], and to our knowledge,

this constraint is satisfied in all industrial settings.

7.2.1.2 Model restriction

The major advantage of time-triggered systems, as defined above, is that they have the

property of repeatable timing [Edwards et al., 2009]. Repeatable timing means that for

any two input sequences that are identical in the large-grain timing scale determined by the

timers of a program, the behaviors of the program, including timing aspects, are identical.

Of course, this ideal property must be amended to take into account the fact that the global

clock may not be very accurate or that interrupt-driven driver code does take time and

influences the execution of time-triggered code. In practice, however, repeatability can be

ensured with good precision. Repeatability is extremely valuable in practice because it

largely simplifies debugging and testing of real-time programs. A time-triggered platform

also insulates the developer from most problems stemming from interrupt asynchrony and

low-level timing aspects.

However, the applications we consider have even stronger timing requirements, and

must satisfy a property known as timing predictability [Edwards et al., 2009]. Timing

predictability means that formal timing guarantees covering all possible executions of

the system should be computed off-line by means of (static) analysis. The general time-

triggered model defined above remains too complex to allow the analysis of real-life sys-

tems. To facilitate analysis, this model is usually restricted and used in conjunction with

WCET analysis of the sequential code fragments.

In our model we consider a restriction of the general definition provided above. In this

restriction, timers are triggered following a fixed pattern which is repeated periodically

in time. Following the convention of ARINC 653, we call this period the major time

frame (MTF). The timer triggering pattern is provided under the form of a set of fixed

offsets 0 ≤ t(1)< t(2)< .. . < t(m)< MTF defined with respect to the start of each MTF

period. Note that the code triggered at each offset may still involve complex control, such

as conditional execution or preemption.

This restriction corresponds to the classical definition of time-triggered systems by

3But these two notions must be accounted for in the construction of the global clock [Potop-Butucaru
et al., 2010].

7.2. ARCHITECTURE MODEL 136

[Kopetz, 1991, Kopetz and Bauer, 2003]. It covers our target platform, TTA, FlexRay

(the static segment), and AUTOSAR OS (the periodic schedule tables). At the same time,

it does not fully cover ARINC 653. As defined by this standard, partition scheduling is

time-triggered in the sense of Kopetz. However, the scheduling of tasks inside partitions

is not, because periodic processes can be started (in normal mode) with a release date

equal to the current time (not a predefined date). To fit inside Kopetz’s model, an ARINC

653 system should not allow the start of periodic processes after system initialization, i.e.

in normal mode.

7.2.2 Temporal partitioning

Our target architectures follow a strong temporal partitioning paradigm similar to that of

ARINC 6534. In this paradigm, both system software and platform resources are statically

divided among a finite set of partitions Part = {part1, . . . ,partk}. Intuitively, a partition

comprises both a software application of the system and the execution and communica-

tion resources allocated to it. The aim of this static partitioning is to limit the functional

and temporal influence of one partition on another. Partitions can communicate and syn-

chronize only through a set of explictly-specified inter-partition channels.

In this chapter and the next one, we are mainly concerned with the execution resource

represented by the processors. To eliminate timing interference between partitions run-

ning on a processor, the static partitioning of the processor time is done using a static

time division multiplexing (TDM) mechanism. In our case, the static TDM mechanism

is built on top of the time-triggered model of the previous section. It is implemented by

partitioning, separately for each processor Pi, the MTF defined above into a finite set of

non-overlapping windows Wi = {w1
i , . . . ,w

ki
i }. Each window w

j
i has a fixed start offset

tw
j
i , a duration dw

j
i , and it is either allocated to a single partition partw

j
i , or left unused.

Unused windows are called spares and identified by partw
j
i = spare.

Software belonging to partition parti can only be executed during windows belonging

to parti. Unfinished partition code will be preempted at window end, to be resumed at

the next window of the partition. There is an implicit assumption that the scheduling

of operations inside the MTF will ensure that non-preemptive operations will not cross

window end points.

For the scheduling algorithms of Section 8.2, the partitioning of the MTF into windows

can be either an input or an output. More precisely, all, none, or part of the windows can

be provided as input to the scheduling algorithms.

4Spatial partitioning aspects are not covered in the thesis.

7.2. ARCHITECTURE MODEL 137

7.2.3 Example

To rapidly present the type of partitioned time-triggered system we synthesize and the

underlying execution mechanisms, we rely on the example of Fig. 7.1, which pictures a

possible scheduling table for the application described in Fig. 3.18. When compared with

the scheduling tables introduced in Chapter 4, our example has new features: partition-

ing and pre-computed preemption. An extension of the formalism is therefore needed.

Through this example we provide here its intuitive semantics, while the formal definitions

supporting it (including the corresponding syntax) will come in the following sections.

F1R1 R1F2 F2R2

w1 w2 w3 w4P1

F1 F2

Bus

P2

0 10 20 30 40
time (ms)

R1 R2

G

R′
2 G′R′

1

G (resumed)

G′ (resumed)

R2F1

w5

MT F

Figure 7.1: An example of time-triggered partitioned system. In this example only pro-
cessor P1 requires partitioning.

Our system has two processors, denoted P1 and P2, which are connected via a bus. As

explained in Chapter 4, our execution model is periodic. Our figure provides the execution

pattern for one period, under the form of a scheduling table. A full execution of the system

is obtained by indefinitely repeating this pattern. In our case, the length of the scheduling

table, which gives the MTF (global period) of the system is 40 milliseconds (ms). Note

that in this graphical representation, time flows from left to right, and each row in the

picture depicts the worst case schedule of a hardware resource.

Recall from Chapter 4 that the scheduling table defines the start dates of all the oper-

ations that can be executed during one MTF, be them computations or communications.

For operations that can be preempted, it also defines all the dates where they are pre-

empted and resumed (all these dates are pre-computed off-line). Finally, our table also

defines the worst-case end dates of the operations. All dates are defined in the time ref-

erence of the global clock provided by the time-triggered platform. In our example, this

clock (pictured at the bottom of the figure) has a precision of 1 ms. For instance, operation

7.2. ARCHITECTURE MODEL 138

F1 starts in each MTF at date 0 and ends (in the worst case) at date 8. Synchronization

of operations with respect to the global clock also ensures the correct synchronization be-

tween operations. For instance, F1 ending before date 8 allows the synchronization with

the communication ftor1 which transmits a value from F1 to R1.

To comply with Kopetz’ time-triggered model, the start/preempt/resume dates of all

operations are computed off-line. For instance, on processor P1 operations can only start

at dates 0, 9, 20, 29, and 32. However, code triggered at each offset may involve com-

plex control such as conditional execution or preemption. Our example features both.

Conditional execution is used here to represent execution modes. There are 2 modes. In

mode1 are executed F1, F2, G, R1, R2 and the bus communications. The other mode,

named mode2, is meant to be activated when processor P2 is removed from the system

due to a hardware reconfiguration. In this mode, operations F1 and F2 remain unchanged,

but the other are replaced with the lower-duration counterparts G′, R′
1, and R′

2 (and no

communication operations).

In our example, mode changes occur at the beginning of the MTF. Only operations

belonging to the currently-active mode can be started during the MTF. As explained in

Chapter 4, operations of different modes can be scheduled on the same processor at the

same dates, as is the case for G and G′ and G and R′
2. This form of double reservation

is forbidden if the operations belong to the same mode because our resources (processors

and buses) are sequential.

Preemption is needed in the scheduling of long tasks and in dealing with partitioning.

In our example, we assumed that the computation operations are divided in 2 partitions:

part1 contains F1 and F2, and part2 all the other operations. During each MTF, the pro-

cessor time of P1 is statically divided in 4 windows. Windows w1 and w3 are allocated

to part1, and windows w2 and w4 are allocated to part2. To simplify the presentation of

the algorithms we assume that bus time is not partitioned. Processor P2 only executes

operations of part2, so that its MTF contains one window w5 spanning over the entire

MTF.

Window w4 starts at date 29 and ends at date 40. Operation G starts at date 29, but its

worst-case duration is 18 ms, longer than the 11 ms of w4. Since window w1 belongs to

another partition, operation G must be pre-empted at the end of w4, and it can be resumed

at date 12 (within w2) in the next MTF. Our scheduling table therefore contains a pre-

computed preemption (represented with a thick black bar at the end of G in w4), and

the execution time of G is divided between 2 windows. Similarly, the execution of G′ is

divided in two by a precomputed preemption.

An important hypothesis in our work is that the scheduling table specifies not only

the start date of an operation, but also the dates where an operation can resume after

a pre-computed preemption. For instance, operations G and G′ resume at date 12, not

7.3. MODELING OF THE AEROSPACE CASE STUDY 139

at date 9. This hypothesis facilitates scheduling. In time-triggered operating systems

such as ARINC 653, where only start dates are specified, this hypothesis can be easily

implemented by using simple manipulations of task priorities5.

Another important hypothesis we make is that once an operation is started, it must be

completed. In other words, it can be preempted and resumed, but it cannot be aborted.

This hypothesis is key in ensuring the predictability and determinism of our systems.

Intuitively, an operation can change the state of sensors, actuators, or internal variables,

and it is difficult to determine the system state after an abortion operation.

But the absence of abortion requires much care in dealing with conditional execution

and execution mode changes. Assume, for instance, that operation G is started during one

MTF, and that the mode changes from mode1 to mode2 at the end of that MTF. Then, the

scheduling of the next MTF must allow G to resume and complete while ensuring that

the operations of mode2 can be started. This explains why R′
1 and the resumed part of G

cannot be scheduled at the same date, even though G and R′
1 belong to different modes.

7.3 Modeling of the aerospace case study

The specification of the space flight application was provided under the form of a set of

AADL [international, 2014] diagrams, plus textual information defining specific inter-

task communication patterns, determinism requirements, and a description of the target

hardware architecture. In this section we use the simpler version of the specification (with

fewer tasks), the results on the full example being provided in Section 8.3.

Our first step was to derive a task model in our formalism. In doing this we discov-

ered that the initial system was over-specified, in the sense that real-time constraints were

imposed in order to ensure causal ordering of tasks instances using AADL constructs. Re-

moving these constraints and replacing them with (less constraining) data dependencies

gave us more freedom for scheduling, allowing for a reduction in the number of parti-

tion changes. The resulting specification, described in the formalism of Section 3.4, is

presented in Fig. 7.2.

GNC
Thermal 1

Fast1 Fast3 Fast4 Fast5 Fast6 Fast7 Fast8

1

Fast2 Fast9 Fast10

Figure 7.2: The Simple example

5By using helper tasks that are executed at the time triggering points, and which raise or lower the
priority of the other tasks to ensure that the greatest priority belongs to the one that must be executed
(started or resumed) in the following time slot

7.3. MODELING OF THE AEROSPACE CASE STUDY 140

Our model, named Simple represents a system with 3 tasks Fast, GNC, and Thermal.

The periods of the 3 tasks are 10ms, 100ms, and 100ms, respectively, meaning that Fast

is executed 10 times for each execution of GNC and Thermal. The hyperperiod expansion

described in Section 3.5 replicates task Fast 10 times6, the resulting tasks being Fasti,

1 ≤ i ≤ 10. Tasks GNC and Thermal are left unchanged because their period equals the

hyperperiod. The direct arcs connecting the tasks Fasti and GNC represent regular (intra-

cycle) data dependencies of A(Simple). Delayed data dependencies of depth 1 represent

the transmission of information from one MTF to the next. In this simple model, task

Thermal has no dependencies.

7.3.1 From non-determinism to determinism

The design of complex embedded systems usually starts with sets of requirements allow-

ing multiple implementations. Space launchers are no exception to this rule. For instance,

the requirements for example Simple do not impose the presence of a delayed arc con-

necting GNC to Fast4. Instead, they require that there exists an i such that the feedback

from GNC to Fasti is performed under a given latency constraint.

But determinism has its advantages: as explained in Section 7.2.1.2, it largely sim-

plifies debugging and testing. Moreover, the determinism of the functional specification

allows for a significant decoupling of software development, including verification and

validation steps, from allocation and scheduling choices.

This is why a deterministic functional specification is built early in the development

process of space launchers. The first step in this direction is made when Giotto-like rules [Hen-

zinger et al., 2000] are used to impose a fixed set of data dependencies, thus creating a

deterministic functional specification. These rules only depend on the number of tasks

before hyperperiod expansion, their relative periods, and a coarse view on the flow of data

from task to task. This information can be easily recovered from the requirements and

from early implementation choices.

The Giotto-like rules allow the fast construction of a deterministic specification and

are easy to understand and implement. However, they do not take into account latency

constraints, nor task durations, and thus the initial functional specification may not allow

real-time implementation. In our example, the initial dependency pattern did not allow the

respect of the latency constraint on the feedback from GNC to Fast. When this happens,

6Task Fast is in fact composed of several functions which can be activated or not depending on the
context, and on the considered task instance. In the high-level specification of the problem that we worked
on, consisting in multi-periodic tasks, Fast is only represented by one task. Nevertheless, this specification
also states that there exists a data flow going through ten successive instances of Fast, one instance of
GNC, and which ends by a feedback to one (and only one) instance of Fast. The behaviour of the various
instances of a given task may thus behave differently, but this special behaviour is specified and fixed before
the scheduling phase.

7.3. MODELING OF THE AEROSPACE CASE STUDY 141

the dependencies are modified manually within the limits fixed by the requirements to

allow real-time implementation.

But these manual modifications come at a cost, especially when they must be done

late in the design flow, requiring the re-validation of the whole design. This cost can be

acceptable when the system is first built, which means once every 20 years or so. But once

a deterministic implementation is built, it is strongly desired that subsequent modifications

of the system preserve unchanged the functionality of sub-systems that are not modified

(and in particular their determinism). If this is possible during the system modification,

then the confidence in the modified system is improved and less effort is needed for the

re-validation of the system.

In other words, design choices made during the initial implementation become de-

sired properties for subsequent modifications, where they are considered as part of the

functional specification. In our example, we assume that the feedback from GNC to Fast4

is such an implementation choice made in the initial implementation, and which we in-

clude in the functional specification.

Our algorithms and tool allow the scheduling of such deterministic specifications. For

the cases where the requirements are non-deterministic, our algorithms and tool can be

used to speed up an otherwise manual exploration of the possible design choices (but this

exploration process is not described in this thesis).

7.3.2 Representing execution modes

The dependent task system of Fig. 7.2 does not represent execution modes, implicitly

assuming that for each task the scheduling will always use its worst-case execution time.

But a space launcher application does make use of conditional execution and execution

modes, and the scheduling can be optimized by taking them into account. The difficulty

is to allow scheduling in a way that takes into account modes and is also compatible with

the execution mechanisms of the launcher. Recall that the number of tasks in the launcher

is fixed to 3. Mode changes do not trigger here the start or stop of tasks, as in our example

of Fig. 7.1. Instead, they are encoded with changes of state variables that enable or disable

the execution of various code fragments inside the 3 tasks.

In this approach, the only macroscopic property of a task that changes depending on

the mode and can therefore be exploited during scheduling is its duration. Represent-

ing mode-dependent durations using our formalism requires a non-trivial transformation,

detailed through the example in Fig. 7.3.

We assume that our system has 3 modes (1, 2 and 3), the mode 3 being a transition

mode between 1 and 2, as shown in Fig. 7.3(b). We assume that the duration of tasks

Fast and GNC depends on the mode. We denote with WCET(τ,P)m the duration of task

τ ∈{Fast,GNC} on processor P in mode m∈{1,2,3}. We assume that WCET(Fast,P)3 =

7.4. NON-FUNCTIONAL PROPERTIES 142

F2 F2 F2 F2F2F2F2 F2 F2 F2

F1 F1 F1 F1 F1 F1 F1 F1 F1F1

mode2 only

mode1 only

1

1 1
1

GNC1GNC2Thermal

mode3 mode2mode1

(a) (b)

Figure 7.3: Example 3: Dataflow specification with conditional execution (a) and possible
mode transitions (b)

WCET(Fast,P)1 <WCET(Fast,P)2 and that WCET(GNC,P)3 =WCET(Fast,P)2 <WCET(Fast,P)1

for all P. Then, our modeling is based on the use of 2 tasks for the representation of each

of Fast and GNC. The first task represents the amount of computation that is needed in all

modes (corresponding to the smaller WCET value), whereas the second task represents

the remainder, which is only needed in modes where the duration is longer.

The resulting model is pictured in Fig. 7.3. Here, Fast has been split into F1 and

F2, the second one being executed only in mode 2. GNC has been split into GNC1 and

GNC2, the second one being executed only in mode 1. The mode change automaton

ensures that (GNC2,F2i,1) ∈ EX(Simple) for 1 ≤ i ≤ 10, a property that will be used by

the scheduling algorithms of Section 8.2.

The method we intuitively defined here for tasks with 2 durations can be generalized.

A task having n durations depending on the mode will need an expansion into n tasks.

7.4 Non-functional properties

Our task model considers non-functional properties of 4 types: real-time, allocation, par-

titioning, and preemptability.

7.4.1 Period, release dates, and deadlines

The initial functional specification of a system is usually provided by the control engi-

neers, which must also provide a real-time characterization in terms of periods, release

dates, and deadlines. This characterization is directly derived from the analysis of the

control system, and does not depend on architecture details such as number of proces-

sors, speed, etc. The architecture may impose its own set of real-time characteristics. Our

model allows the specification of all these characteristics in a specific form adapted to our

functional specification model and time-triggered implementation paradigm.

7.4. NON-FUNCTIONAL PROPERTIES 143

7.4.1.1 Period

Recall from Section 3.5 that after hyper-period expansion all the tasks of a dependent

task system D have same period. We shall call this period the major time frame of the

dependent task system D and denote it MTF(D). We will require it to be equal to the MTF

of its time-triggered implementation, as defined in Section 7.2.1.2.

Throughout this chapter and the next one, we will assume that MTF(D) is an input to

our scheduling problem. Other scheduling heuristics, such as those of [Potop-Butucaru

et al., 2010] can be used in the case where the MT F must be computed.

7.4.1.2 Release dates and deadlines

For each task τ ∈ T (D), we allow the definition of a release date r(τ) and a deadline d(τ).

Both are positive offsets defined with respect to the start date of the current MTF (period).

To signify that a task has no release date constraint, we set r(τ) = 0. To signify that it has

no deadline we set d(τ) = ∞.

The main intended use of release dates is to represent constraints related to input

acquisition. Recall that in a time-triggered system all inputs are sampled. We assume in

our work that these sampling dates are known (a characteristic of the execution platform),

and that they are an input to our scheduling problem. This is why they can be represented

with fixed time offsets. Under these assumptions, a task using some input should have a

release date equal to (or greater than) the date at which the corresponding input is sampled.

End-to-end latency requirements are specified using a combination of both release

dates and deadlines. We require that end-to-end latencies are defined on flows (chains

of dependent task instances) starting with an input acquisition and ending with an out-

put. Since acquisitions have fixed offsets represented with the release dates, the latency

constraints can also be specified using fixed offsets, namely the deadlines.

Before providing an example, it is important to recall that our real-time implemen-

tation approach is based on off-line scheduling. The release dates and deadlines defined

here are specification objects used by the off-line scheduler alone. These values have no

direct influence on implementations, which are exclusively based on the scheduling ta-

ble produced off-line. In the implementation, task activation dates are always equal to

the start dates computed off-line, which can be very different from the specification-level

release dates.

7.4.1.3 Modeling of the case study

The specification in Fig. 7.4 adds a real-time characterization to the Simple example of

Fig. 7.2. Here, MTF(Simple) = 100 ms. Release dates and deadlines are respectively

represented with descending and mounting dotted arcs. The release dates specify that

7.4. NON-FUNCTIONAL PROPERTIES 144

GNC
Thermal

80 900 10 20 30 40 50 60 70

Fast9 Fast10

1

Fast1 Fast3 Fast4 Fast5 Fast6 Fast7 Fast8

1

Fast2

Figure 7.4: Real-time characterization of the Simple example (MTF = 100 ms)

task Fast uses an input that is sampled with a period of 10ms, starting at date 0, which

imposes a release date of (n− 1) ∗ 10 for Fastn. Note that the release dates on Fastn

constrain the start of GNC, because GNC can only start after Fast10. However, we do not

consider these constraints to be a part of the specification itself. Thus, we set the release

dates of tasks GNC and Thermal to 0 and do not represent them graphically.

Only task Fast4 has a deadline that is different from the default ∞. In conjunction with

the 0 release date on Fast1, this deadline represents an end-to-end constraint of 140ms on

the flow defined by the chain of dependent task instances

Fast1
n → Fast2

n → . . .→ Fast10
n → GNCn → Fast4

n+1

for n ≥ 0. Under the notation for task instances that was introduced in Section 3.4, this

constraint requires that no more that 140ms separate the start of the nth instance of task

Fast1 from the end of the (n+ 1)th instance of task Fast4. Since the release date of task

instance Fast1
n in the MTF of index n is 0, this flow constraint translates into the require-

ment that Fast4
n+1 terminates 140ms after the beginning of the MTF of index n. This is

the same as 40ms after the beginning of MTF of index n+ 1 (because the length of one

MTF is 100ms). The deadline of Fast4 is therefore set to 40ms.

7.4.1.4 Architecture-dependent constraints

The period, release dates and deadlines of Fig. 7.4 represent architecture-independent

real-time requirements that must be provided by the control engineer. But architecture

details may impose constraints of their own. For instance, assume that the samples used

by task Fast are stored in a 3-place circular buffer. At each given time, Fast uses one

place for input, while the hardware uses another to store the next sample. Then, to avoid

buffer overrun, the computation of Fastn must be completed before date (n+ 1) ∗ 10, as

required by the new deadlines of Fig. 7.5. Note that these deadlines can be both larger

than the period of task Fast, and larger than the MTF (for Fast10). By comparison, the

specification of Fig. 7.4 corresponds to the assumption that input buffers are infinite, so

that the architecture imposes no deadline constraint. Also note in Fig. 7.5 that the deadline

constraint on Fast3 is redundant, given the deadline of Fast4 and the data dependency

7.4. NON-FUNCTIONAL PROPERTIES 145

between Fast3 and Fast4. Such situations can easily arise when constraints from multiple

sources are put together, and do not affect the correctness of the scheduling approach.

GNC
Thermal

0 10 20 30 50 60 70 80 9040 100 110

Fast2Fast1 Fast3 Fast4 Fast5 Fast6 Fast7 Fast8 Fast9 Fast10

1

1

Figure 7.5: Adding 3-place circular buffer constraints to our example

7.4.2 Worst-case durations, allocations, preemptability

We also need to describe the processing capabilities of the various processors and the bus.

More precisely:

• For each task τ ∈ T (D) and each processor P ∈ Procs(Arch) we provide the capac-

ity, or duration of τ on P. Following the model of Chapter 4, we assume this value

is obtained through a worst-case execution time (WCET) analysis, and denote it

WCET(τ,P). This value is set to ∞ when execution of τ on P is not possible.

• Similarly, for each data type type(a) used in the specification, we provide a worst-

case communication time estimate WCCT(type(a)) as an upper bound on the trans-

mission time of a value of type type(a) over the bus. We assume this value is always

finite.

In accordance with the architecture description model of Chapter 4, the WCET informa-

tion may implicitly define absolute allocation constraints, as WCET(t,P) = ∞ prevents t

from being allocated on P. Such allocation constraints are meant to represent hardware

platform constraints, such as the positioning of sensors and actuators, or designer-imposed

placement constraints. Relative allocation constraints can also be defined, under the form

of task groups which are subsets of T (D). The tasks of a task group must be allocated on

the same processor. Task groups are necessary in the representation of mode-dependent

task durations, as presented in Section 7.3 (to avoid task migrations). They are also needed

in the transformations of Section 8.1.

Our task model allows the representation of both preemptive and non-preemptive

tasks. A task is non-preemptive when its execution should never be interrupted. Such

is often the case for tasks that directly access hardware devices which must be left in

a consistent state. Preemptability information is represented for each task τ by the flag

is_preemptive(τ). To simplify the presentation of our algorithms, we make in this thesis

two simplifying assumptions:

7.4. NON-FUNCTIONAL PROPERTIES 146

• Bus communications are non-preemptable.

• The time costs associated with the preemption of preemptive tasks is negligible

(zero). This assumption also covers the partition context switches.

7.4.3 Partitioning

Recall from Section 7.2.2 that there are two aspects to partitioning: the partitioning of

the application and that of the resources (in our case, CPU time). On the application

part, we assume that every task τ belongs to a partition partτ of a fixed partition set

Part = {part1, . . . ,partk}.

Also recall from Section 7.2.2 that CPU time partitioning, i.e the time windows on

processors and their allocation to partitions can be either provided as part of the spec-

ification or computed by our algorithms. Thus, our specification may include window

definitions which cover none, part, or all of CPU time of the processors. We do not spec-

ify a partitioning of the shared bus, but the algorithms can be easily extended to support a

per-processor time partitioning like that of TTA [Rushby, 2001].

7.4.4 Syntax extensions

To account for all these extensions in the model, the syntax of the CG formalism must

be modified. Non-functional information will be described using new tables and non-

functional decorations added to the objects of existing tables.

First of all, our specifications must allow the definition of the set of partitions of the

system. This is done using a partition table defined using the syntax of Fig. 7.6. The

partition table must be declared before the blocks table. Each partition is defined by a

unique index and by a name.

partitions_table := Partitions Table partitions_list

patitions_list :=

|partition partitions_list

partition := partition_idx <Identifier>

partition_idx := Partition: <Int>

Figure 7.6: Syntax of the new partition table

The syntax of the block table, initially provided in Fig. 3.12, is extended to allow the

definition of the non-functional properties associated with dataflow blocks. The modi-

fied syntax is provided in Fig. 7.7. Note that only the original definition of non-terminal

block_definition is concerned. The extension allows the definition, for each dataflow

block, of 4 optional pieces of information:

7.4. NON-FUNCTIONAL PROPERTIES 147

• It can be specified whether a block is Preemtible or Not Preemptible. By default

a block is considered preemptible.

• A block can have a starting offset. This is specified using the keyword Offset:,

followed by the integer value of the offset.

• A block can have a deadline offset, specified using the keyword Deadline: followed

by the integer value of the deadline. Since we accept deadlines superior to the

period of the tasks in our specifications, this integer may be superior to the MTF of

the system.

• A block can belong to a partition. This is specified using the keywords Belongs To:

followed by the index of the partition to which the block belongs.

block_definition := (iport_list)->(oport_list) block_fun

extensions

extensions := preemption offset deadline partitions

preemption :=

|Preemptible

|Not Preemptible

offset :=

|Offset: <Int>

deadline :=

|Deadline: <Int>

partitions :=

|Belongs To: partition_idx

Figure 7.7: Extension of the nodes specification syntax for release dates, deadlines and
preemptability

The architecture definition formalism introduced in Chapter 4 must also be extended.

We need to allow the specification of the MTF of the system. This is an optional parameter

of the specification. When it is not specified, we assume it can be synthesized. When

it is specified, then the definition of each processor may include partitioning constraints

under the form of pre-defined windows associated to the various partitions. Such windows

should not be defined when the MTF definition is absent. Partitioning constraints are

optional, and they may be partial. More precisely, the time windows associated with the

partitioning constraints may cover none, all, or part of the duration of the MTF. However,

all window definitions must define exclusive time intervals. The partitioning constraints

are defined through an extension of the processor definitions.

The new architecture definition syntax, which replaces the one of Fig. 4.2, is given in

Fig. 7.8. The modifications are the following:

7.4. NON-FUNCTIONAL PROPERTIES 148

• The introduction of the optional MTF declaration.

• The extension of the processor definition syntax to include an optional set of win-

dows. Each window is declared between brackets [], and is composed of:

– A unique index.

– A starting date, given by the keyword Start: followed by an integer.

– A finishing date, defined using the keyword End: followed by an integer.

– The partition to which the window is allocated.

archi := Architecture mtf bus_table proc_table

mtf :=

|MTF: <Int>

proc_table := Processor Table proc_list

proc_list :=

|proc proc_list

proc := proc_idx <Identifier> comp_durations windows

comp_durations := comp_duration

|comp_duration comp_durations

comp_duration := Duration(fun_idx)= <Int>

|Duration(type_idx)= <Int>

windows :=

|Windows Table windows_list

windows_list := window

|window windows_list

window := [window_idx Start: <Int>

End: <Int> partition_idx]

window_idx := Window: <Int>

Figure 7.8: Extension of the architecture description syntax to include MTF and windows
declaration

7.4.4.1 Example

After the syntax extensions provided above, the industrial case study of Fig. 7.4 has the

following textual specification. We have provided here the full specification file, including

functional specification, architecture specification, and non-functional information. We

assumed that the application is divided into three partitions: one that contains all the

Fast tasks, one for the GNC task, and one for the T hermal task.

ClockedGraph

Global Definitions

7.4. NON-FUNCTIONAL PROPERTIES 149

Type Table

Type:0 F_Type Simple

type:1 GNC_Type

Function Table

Function:0 Fast_1 (i:Type:0)->(o:Type:0)

Function:1 Fast_2 (i1:Type:0 i2:Type:1)->(o:Type:0)

Function:2 GNC (i:Type:0)->(o:Type:1)

Function:3 Thermal ()->()

Constant Table

Constant:0 init_del_1 Type:0

Constant:1 init_del_2 Type:1

Functional Specification

Variable Table

Variable:0 Type:0 Single Assignment o@Block:0

Variable:1 Type:0 Single Assignment o@Block:1

Variable:2 Type:0 Single Assignment o@Block:2

Variable:3 Type:0 Single Assignment o@Block:3

Variable:4 Type:0 Single Assignment o@Block:4

Variable:5 Type:0 Single Assignment o@Block:5

Variable:6 Type:0 Single Assignment o@Block:6

Variable:7 Type:0 Single Assignment o@Block:7

Variable:8 Type:0 Single Assignment o@Block:8

Variable:9 Type:0 Single Assignment o@Block:9

Variable:10 Type:1 Single Assignment o@Block:10

Variable:11 Type:0 Single Assignment v9_delayed@Block:11

Variable:12 Type:1 Single Assignment v10_delayed@Block:12

Clock Table

Clock:0 Tick Primitive

Partition Table

Partition:0 Fast_part

Partition:1 GNC_part

Partition:2 Thermal_part

Block Table

Block:0 Clock:0 (i Is Variable:11 On Clock:0) -> (o Is Variable:0)

Function:0 Belongs To: Partition:0

Block:1 Clock:0 (i Is Variable:0 On Clock:0) -> (o Is Variable:1)

Function:0 Offset: 10 Belongs To: Partition:0

Block:2 Clock:0 (i Is Variable:1 On Clock:0) -> (o Is Variable:2)

Function:0 Offset:20 Belongs To: Partition:0

Block:3 Clock:0 (i1 Is Variable:2 On Clock:0

i2 Is Variable:12 On Clock:0) -> (o Is Variable:3)

7.4. NON-FUNCTIONAL PROPERTIES 150

Function:1 Offset:30 Deadline:40 Belongs To: Partition:0

Block:4 Clock:0 (i Is Variable:3 On Clock:0) -> (o Is Variable:4)

Function:0 Offset:40 Belongs To: Partition:0

Block:5 Clock:0 (i Is Variable:4 On Clock:0) -> (o Is Variable:5)

Function:0 Offset:50 Belongs To: Partition:0

Block:6 Clock:0 (i Is Variable:6 On Clock:0) -> (o Is Variable:6)

Function:0 Offset:60 Belongs To: Partition:0

Block:7 Clock:0 (i Is Variable:6 On Clock:0) -> (o Is Variable:7)

Function:0 Offset:70 Belongs To: Partition:0

Block:8 Clock:0 (i Is Variable:7 On Clock:0) -> (o Is Variable:8)

Function:0 Offset:80 Belongs To: Partition:0

Block:9 Clock:0 (i Is Variable:8 On Clock:0) -> (o Is Variable:9)

Function:0 Offset:90 Belongs To: Partition:0

Block:10 Clock:0 (i Is Variable:9 On Clock:0) -> (o Is Variable:10)

Function:2 Belongs To: Partition:1

Block:11 Clock:0 () -> ()

Function:3 Belongs To: Partition:2

Block:12 Clock:0 (i Is Variable:9 On Clock:0) -> (v9_delayed is Variable:11)

Delay Type:0 Depth:1 Init Const:0 Belongs To: Partition:0

Block:13 Clock:0 (i Is Variable:10 On Clock:0) -> (v10_delayed is Variable:12)

Delay Type:1 Depth:1 Init Const:1 Belongs To: Partition:0

Architecture

MTF: 100

Bus Table

Processor Table

Processor:0 Proc0 duration(Function:0)=4

duration(Function:1)=4

duration(Function:2)=20

duration(Function:3)=10

Windows Table

[Window:0 Start:0 End:4 Partition:0]

[Window:1 Start:14 End:20 Partition:1]

The declaration of the first elements of the specification follow the initial syntax de-

scribed in Chapter 3. These elements include:

• two types: one for the outputs of the Fast tasks, the other for the output of GNC,

• four functions: one for GNC, one for T hermal, and two for the Fast tasks, since the

fourth Fast task has a particular behaviour, and takes two input variables instead of

one,

• two constants for the initialization of the delay blocks,

• the primitive clock,

7.5. CONCLUSION 151

• thirteen variables that are necessary for the description of the dataflow.

The block table consists in 14 blocks: twelve are function blocks, and two are de-

lays. The ten first blocks correspond to the Fast tasks, Block:10 corresponds to GNC and

Block:11 to the T hermal task. Each Fast block is specified with a starting offset, except

for the first one, since the offset 0 is set by default. Block:3 is the only block to feature a

deadline.

The architecture section of the specification defines a monoprocessor partitioned ar-

chitecture. In this example, the MTF of the application is set to 100 time units. The four

functions declared in the previous functional specification are allowed to execute on the

processor, and two time windows are declared in the specification. The first one is allo-

cated to Partition:0. At each execution cycle, this window starts at date 0 and ends at date

4: the 4 first time units of every cycle are dedicated to Partition:0. The second window

lasts from date 14 to date 20 and is reserved for Partition:1.

Note that in this example, the specified windows do not entirely cover the MTF. Dur-

ing the scheduling phase, the algorithms will have to respect these specified windows, but

can also synthesize new partition windows in the spare time intervals (from date 4 to 14,

and from date 20 to date 100) if necessary. As said before, it is possible to declare all,

none, or part of the time windows in the specification.

7.5 Conclusion

In this chapter we described the extensions we made to the Clocked Graphs language,

in order to allow the modelling of complex non-functional requirements in our specifi-

cations. All the requirements we model come from an aerospace case study that was

provided by Airbus DS. We modelled here the simple version of this case study. The

full application model shall be provided in the next chapter. We defined a particular

time-triggered execution framework. Particular features of this framework are ARINC653

temporal partitionning and pre-computed preemptions. We have adapted our specification

formalism to this time-triggered framework. In particular, any task can be declared with a

starting offset and a deadline, which allows the modelling of periodic data acquisition, of

end-to-end latency constraints and of architecture-dependent constraints. Moreover, tasks

can be allocated to a particular partition. Finally, we also extended the architecture decla-

ration syntax to allow the specification of time windows on the various processors. These

extensions allow the modelling of all non-functional requirements of our case study. The

resulting specification is the input of the mapping and code generation algorithms of the

next chapter.

Chapter 8

Real-Time scheduling under complex
non-functional requirements

Contents
8.1 Removal of delayed dependencies 153

8.2 Offline real-time scheduling . 155

8.2.1 Basic principles . 156

8.2.2 Scheduling algorithm . 157

8.2.3 Complexity and optimality considerations 160

8.2.4 Scheduling results . 161

8.3 Post-scheduling slot minimization 164

8.4 Partitioned time-triggered code generation 165

8.4.1 Automatic synthesis of communication channels 166

8.4.2 Process number minimization 168

8.5 Conclusion . 169

The previous chapter focused on the formal modeling of systems with complex non-

functional specification. In this chapter we provide algorithms that take such specifica-

tions and automatically transform them into correct-by-construction running implementa-

tions.

The transformation is performed in 2 steps: the first one performs the off-line alloca-

tion and scheduling of the computations and communications onto the various resources

of the platform. This mapping phase produces implementation models (i.e. scheduling

tables) that are functionally correct and respect the non-functional requirements. This first

phase is described in Sections 8.1 and 8.2, which introduce the multi-processor off-line

allocation and scheduling algorithms, and in Section 8.3, which details an optimization

technique needed to improve the real-time properties of the resulting scheduling tables.

The second step of the transformation is code generation. In our case, it allows fully

automated generation of ARINC 653-compliant implementation code which includes: the

152

8.1. REMOVAL OF DELAYED DEPENDENCIES 153

20

1

40

τ1 τ2 τ3

Figure 8.1: Small example for illustrating the potential gain when the recomputation of
release dates happens before removing the delayed arcs

OS configuration, the elaboration code of each partition, and the inter-partition commu-

nication code. The code generation phase includes some optimizations aimed at mini-

mizing the number of tasks in the final implementation. Code generation is described in

Section 8.4.

8.1 Removal of delayed dependencies

The first step in our scheduling approach is the transformation of the initial task model

specification into one having no delayed dependency. This is done by a modification of the

release dates and deadlines for the tasks related by delayed dependencies, possibly accom-

panied by the creation of new helper tasks that require no resources but impose scheduling

constraints. Doing this will allow in the next section the use of simpler scheduling algo-

rithms that work on acyclic task graphs.

The first part of our transformation ensures that delayed dependencies only exist be-

tween tasks that will be scheduled on the same processor, so that associated communi-

cation costs are 0. Let δ ∈ ∆(D) and assume that src(δ) and dst(δ) are not forced by

absolute or relative allocation constraints to execute on the same processor. Then, we add

a new task τδ to D. The source of δ is reassigned to be τδ , and a new (non-delayed) de-

pendency is created between src(δ) and τδ . Relation EX(D) is augmented to place τδ in

exclusion with all tasks that are exclusive with src(δ), and at the same depths. Task τδ is

assigned durations of 0 on all processors where dst(δ) can be executed, and ∞ elsewhere.

Finally, a task group is created containing τδ and dst(δ).

The second part of our transformation performs the actual removal of the delayed de-

pendencies. It does so by imposing for each delayed dependency δ that src(δ) terminates

its execution before the release date of dst(δ). This is done by changing the deadline

of src(δ) to r(dst(δ))+ depth(δ) ∗MTF(D) whenever this value is smaller than the old

deadline.

Delayed dependence removal is now completed, but we also perform as part of this im-

plementation step a re-computation of task deadlines, following the approach of Blazewicz

8.1. REMOVAL OF DELAYED DEPENDENCIES 154

20 5040

τ1 τ2 τ3

Figure 8.2: Removing the delayed arcs before recomputing the release dates in the exam-
ple of Fig. 8.1

20 20

1

40 20

τ1 τ2 τ3

(a) Recomputing the release dates

20 40 202040

1

70

τ1 τ2 τ3

(b) Recomputing the deadlines

Figure 8.3: Performing the recomputation of release dates and deadlines before removing
the delayed arcs in the example of Fig. 8.1

[Blazewicz, 1977], also used by Chetto et al. [Chetto et al., 1990]. The deadline of each

task is changed into the minimum of all deadlines of tasks depending transitively on it

(including itself). One can achieve an increased flexibility for the scheduling process by

recomputing the release dates and deadlines even before removing the delayed arcs, using

a fixed-point computation. More generally, the recomputation of release dates and dead-

lines by means of a fixed-point computation can be useful before the removal of delayed

arcs to provide for longer deadlines. For example consider the example of Fig. 8.1 where

three tasks τ1, τ2 and τ3 communicate in the following fashion: there is a direct data de-

pendency between τ1 and τ2, and between τ2 and τ3, and a delayed dependency between

τ3 and τ2. The MTF is fixed to 50 ms, τ1 has a release date of 20 ms, and there is an

end-to-end constraint of 90 ms to perform the following flow: τ1 → τ2 → τ3 → τ2. This

example is theoretical, but illustrates a situation that can be encountered inside a subpart

of a real system specification . If the delayed arc is removed prior to recomputing the

release dates and deadlines of the tasks, the deadline that will be affected to τ3 is equal

(following the formula detailed before) to the value of the MTF. τ3 will thus have a dead-

line of 50 ms. This is illustrated in Fig. 8.2. Now, if the recomputation of the release

dates and deadlines happens before removing the arcs, since τ1 has a release date of 20

ms, and a direct dependency exists between τ1 and τ2, τ2 will be assigned a release date of

20 ms. In turn, τ3 will also be affected a release date of 20 ms for the same reason. Now,

when computing the deadline that must be affected to τ3, we obtain the value of the MTF

added to 20 ms, since it is the release date of τ2. τ3 will thus have in this case a deadline

8.2. OFFLINE REAL-TIME SCHEDULING 155

GNCThermal

0 10 20 30 50 6040

130

70 80 90

130

100

Fast1 Fast3 Fast4 Fast5 Fast6 Fast7 Fast8 Fast9 Fast10Fast2

τδ

Figure 8.4: Delay removal result for the example in Fig. 7.5

of 70 ms. This widens the exploration space for feasible solutions during the scheduling

phase, since it allows τ3 to finish its computation after the end of the MTF, that is to say

at the begining of the next computation cycle. We illustrate this recomputation method in

Fig. 8.3.

The result of all these transformations for the example in Fig. 7.5 is pictured in

Fig. 8.4. We have assumed that tasks Fast4 and GNC can be allocated on different proces-

sors, and thus a helper task is needed. The new task group formed of tasks τδ and Fast4

is represented by the yellow box. We assume that all tasks Fastn must be executed on the

same processor, due to an absolute allocation constraint. This is why no helper task is

needed when removing the delayed dependency from Fast10 to Fast1.

Note that this transformation is another source of deadlines larger than the periods.

Also note that all the transformations described above are linear in the size of the number

of arcs (delayed or not), and thus very fast.

8.2 Offline real-time scheduling

On the transformed task models we apply an offline scheduling algorithm whose output

is a system-wide scheduling table defining the allocation of processor and bus time to the

various computations and communications. The length of this table is equal to the MTF

of the task model.

Our offline scheduling algorithm is a significant extension of the one proposed by

Potop et al. [Potop-Butucaru et al., 2009]. New features are the handling of preemp-

tive tasks, release dates and deadlines, the MTF, and the partitioning constraints. The

handling of conditional execution and bus communications remains largely unchanged,

which is why we do not present these features in detail. Instead, we insist on the novelty

points, like partitioning or the use of a deadline-driven criterion for choosing the order in

which tasks are considered for scheduling. The deadline-driven criterion was inspired by

existing work by Blazewicz [Blazewicz, 1977] and by Chetto et al. [Chetto et al., 1990].

By comparison with Blazewicz’s works, our algorithm takes into account the MTF, the

8.2. OFFLINE REAL-TIME SCHEDULING 156

partitioning constraints, and conditional execution.

8.2.1 Basic principles

As explained earlier, our algorithm computes a scheduling table. This is done by associ-

ating to each task:

• A target processor on which it will execute,

• A set of time intervals that will be reserved for its execution. Since we now want

to allow a preemptive behaviour, a task may need to reserve several non-contiguous

time intervals for its computation,

• A date of first start.

The conditional execution paradigm of our task model requires the use of conditional

reservations: as explained before, multiple time intervals are allowed to overlap if the

execution conditions of the corresponding tasks are mutually exclusive, as defined by

relation EX(D). A similar reservation model is used for the bus.

Given a task system D, a scheduling table S for D, and τ ∈ T (D), we shall denote

with S.proc(τ) the target processor of τ, with S.start(τ) the date of first start, and with

S.intervals(τ) the set of time intervals reserved for τ. A time interval i is defined by its

start date start(i) and end date end(i). It is required that the intervals of S.intervals(τ) are

disjoint, and that the start date of one of them is S.start(τ) mod MTF(D).

Recall from Section 7.2.3 that the execution model is as follows: The nth instance

of task τ will start (modulo conditional execution) at date S.start(τ)+(n−1)∗MTF(D).

Execution of the task is confined to its reserved time slots (it is suspended between such

slots).

The choice of processor, start date, and intervals by the scheduling algorithm must

ensure that:

• The intervals reserved for a task allow the complete execution of a task instance

before the next instance is started.

• Intervals reserved for two tasks can only overlap if the two tasks belong to the same

partition and have exclusive execution conditions. Moreover, an interval allocated

to task τ of a partition part cannot overlap with windows allocated to other parti-

tions.

• The task and communication execution order imposed by the direct and delayed

dependencies is respected.

• The release date of a task precedes its start date, and deadline constraints are re-

spected.

8.2. OFFLINE REAL-TIME SCHEDULING 157

8.2.2 Scheduling algorithm

The scheduling algorithm, whose top-level routine is Algorithm 4, follows a classical list

scheduling approach. It works by iteratively choosing a new task to schedule and then

scheduling it along with the necessary communications.

Algorithm 4 scheduler_driver
Input: D : dependent task system

Arch: architecture description
input_schedule : schedule (complex data structure comprising a scheduling table

and a representation of the free intervals)
Output: result_schedule : schedule

result_schedule := input_schedule

while T (D) 6= /0 and result_schedule 6= invalid_schedule do
τ:= choose_task_to_schedule(D)
D := remove_task(τ,D)
new_schedule := invalid_schedule

new_cost := ∞

for all processor P in Archi do
if WCET(τ,P) 6= ∞ and group_ok(τ,P,result_schedule) then

temp_schedule:= schedule_task_on_proc(τ,P,result_schedule,D)
if temp_schedule6=invalid_schedule then

temp_cost := cost_function(temp_schedule)
if temp_cost < new_cost then

new_schedule := temp_schedule

new_cost := temp_cost

end if
end if

end if
end for
result_schedule := new_schedule

end while
return result_schedule

Among the not-yet-scheduled tasks of whom all predecessors have been executed,

function choose_task_to_schedule, not provided here, returns one of minimal deadline. If

several tasks satisfy this criterion, then we determine for each of them the earliest start date

in the current scheduling state, and we choose one with maximal earliest start date. For

instance, the tasks in Fig. 8.4 are chosen in the order Fast1, . . . ,Fast10,GNC,τδ ,Thermal.

The body of the while loop allocates and schedules a single task τ, along with the

communications needed to gather the input data of τ. It works by attempting to allocate

and schedule τ on each of the processors that can execute it. Function group_ok deter-

mines if the relative allocation constraints and the current scheduling state allow τ to be

allocated on P.

Among all the possible allocations of τ, Algorithm 4 chooses the one resulting in

8.2. OFFLINE REAL-TIME SCHEDULING 158

Algorithm 5 schedule_task_on_proc
Input: τ : task to schedule

P : processor on which to schedule
input_schedule : schedule (before adding τ)
D : dependent task system

Output: result_schedule : schedule (after adding τ)
(result_schedule,dearliest) := schedule_bus_communications(τ,P, input_schedule,D)
if dearliest > d(τ) then

result_schedule := invalid_schedule

else
needed_duration := WCET(τ,P)
interval_set := /0
failure := false

while needed_duration > 0 and not failure do
/*Search for a new interval*/
(interval,result_schedule):= get_first_interval(result_schedule,needed_duration,

d(τ),dearliest ,partτ , is_preemptive(τ))
if interval = invalid_interval then

/*No interval found, attempt to move the search into the next MTF*/
if deadline ≤ MTF then

failure := true

else
deadline:=deadline-MTF(D)
dearliest :=0

end if
else

/*Good interval found*/
dearliest :=end(interval)
needed_length:=needed_length-len(interval)

end if
end while
if failure then

result_schedule := invalid_schedule

end if
end if
return result_schedule

8.2. OFFLINE REAL-TIME SCHEDULING 159

a -partial- schedule of minimal cost. In our case, cost_function chooses the schedule

ensuring the earliest termination of τ. If scheduling is not possible on any of the processors

Algorithm 4 returns invalid_schedule to identify the failure.

The mapping of a task τ onto a processor P is realized through a call to sched-

ule_task_on_proc, whose code is provided in Algorithm 5. This algorithm follows a

classical ASAP (as soon as possible) scheduling strategy. The scheduling is done as fol-

lows. First, the transmission of data needed by τ and not yet present on P is scheduled for

communication on the bus using function schedule_bus_communications. This function

schedules the transmission of both input data of τ and state variables needed to compute

the execution condition of τ. We do not provide the function here, interested readers being

directed to [Potop-Butucaru et al., 2009].

Once communications are scheduled, we attempt to schedule the task at the earliest

date after the date where all needed data is available. If this is not possible without missing

the deadline, invalid_schedule is returned to identify the failure.

Looking for free intervals for the task to schedule is done by function get_first_interval,

not provided here because it is too complex and because it requires explicit manipulations

of Boolean predicates instead of the abstract exclusion relations EX .For non-preemptive

tasks, this function looks for the first free interval long enough to allow the execution of

the task and satisfying the execution condition and partitioning constraints. For preemp-

tive tasks, this function may be called several times to find the first free intervals satisfying

the execution condition and partitioning constraints and of sufficient cummulated length

to cover the needed duration. When unable to find a valid interval, this function returns

invalid_interval. For instance, consider the scheduling of the example of Fig. 3.18 to ob-

tain the scheduling table of Fig. 7.1, and assume that all tasks were scheduled save G.

Algorithm 4 will first attempt to schedule G on processor P1. We assume that the parti-

tioning of the processors is fixed as described in Section 7.2.3. Therefore, we are looking

for time intervals where P1 is not used inside the MTF windows w2 and w4. Search starts

at the earliest start date of G, which is 29 (after F2 terminates and w4 starts). Given that

G is preemptible and that the execution condition of G is exclusive with the execution

conditions of R′
2 and G′, the first free interval is [29,39]. At the end of this interval G

must be preempted and resumed in the next execution iteration of the MTF (if the other

constraints allow it). In our example, resumption is possible at date 12. It is not possible

at date 9, because the execution condition of R′
1 (the instance of the next execution cycle)

is not exclusive with that of G.

When the partitioning of the MTF is provided (fully or partially), this information is

transmitted to Algorithm 4 through parameter input_schedule. This initial state contains

no task allocation, but may constrain the free interval set due to partitioning.

8.2. OFFLINE REAL-TIME SCHEDULING 160

0 30 40 50 60 70 80 90 10010 20

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 65 7 8 9 10

Fast

GNC

T hermal

c.

b.

MT F

time

a.

Figure 8.5: Scheduling result for the examples in Figures 7.4, 7.5, and 8.4 on a single-
processor architecture (a). The result of applying the post-scheduling slot optimization of
Section 8.3 for the example in Fig. 7.4 (b) and for the example in Figures 7.5 and 8.4 (c).

8.2.3 Complexity and optimality considerations

The complexity of Algorithm 4 is linear in the number of tasks and in the number of pro-

cessors in the architecture, and the complexity of Algorithm 5 is sub-linear in the number

of tasks (which bounds the number of calls to get_first_interval). But the real complexity

of the scheduling algorithm is hidden inside function get_first_interval, which is called

by Algorithm 5. This function maintains a representation of free intervals. When work-

ing on dependent task systems without execution conditions and modes, its complexity is

bounded by the number of tasks in the system, making for a globally polynomial com-

plexity. But when execution conditions are taken into account, the representation of free

intervals can grow in size exponentially. Moreover, determining if the execution condi-

tion of a free interval is compatible with that of a task requires solving instances of the

Boolean satisfiability problem (of NP complete complexity). In practice, however, these

execution conditions remain quite simple, and both SAT instances and the representation

of free intervals remain small. Scheduling time was negligible in all our tests.

From an optimality perspective, our scheduling algorithm is a safe heuristic that never

provides an incorrect result, but may fail when a solution exists because it never recon-

siders an allocation or scheduling decision done for a task. Simple extensions of this

algorithm would allow it to be optimal under restrictive hypotheses1. However, in the

absence of extensive benchmarks it is unclear how optimality under restrictive hypothe-

ses helps when scheduling problems involving a multiprocessor architecture, a complex

control structure, and complex non-functional requirements. We therefore prefered here a

compilation-like approach using low-complexity algorithms that can be easily tailored to

take into account the previously-mentioned functional and non-functional properties.

When evaluating the software pipelining techniques described in Chapter 6, we con-

sidered the use of Integer Linear Programming (ILP) constraint solving engines to find

1Single processor, all tasks preemptive, no imposed partitioning, no execution conditions, zero commu-
nication and preemption costs. This is the same class of systems handled by Chetto et al. [Chetto et al.,
1990] and Pagetti et al. [Pagetti et al., 2011]. Obtaining optimality for this class of problems requires per-
forming the off-line deadline-driven scheduling for more than one execution cycle of the specification, and
thus increases complexity, as explained in [Leung and Merrill, 1980].

8.2. OFFLINE REAL-TIME SCHEDULING 161

0 10 20 30 40 50 60 70 80 90 100

P1

P2

1 2 3 4 5 6 7 8 9 10

Fast

GNC

time

MT F

T hermal

Figure 8.6: Scheduling result for the example in Fig. 7.4 on a two-processor architecture
with zero communication costs

optimal solutions to scheduling problems that are simpler than the ones considered here

(they involved no conditional execution, no partitioning, and none of the model exten-

sions presented in Chapter 7). As pointed out in footnote 3 of Section 6.5, this technique

doesn’t scale beyond simple systems when both allocation and scheduling are an output

to the scheduling problem. We thus considered that it was not suited for the evaluation of

our heuristic.

8.2.4 Scheduling results

We have implemented our scheduling algorithms into a tool, which allowed us to schedule

our models of the space launcher application2. We have started our evaluation with the

reduced model defined by the dependent task system of Fig. 7.4. In our model, all tasks

were preemptible.

Our first test performed the scheduling of this task system on an architecture with one

processor (P). The durations of the tasks are WCET(Fast,P) = 4, WCET(GNC,P) = 20,

and WCET(Thermal,P) = 10. We assumed that the 3 tasks have each its own partition.

We also assumed that the partitioning of the MTF was not constrained (it was fully syn-

thesized by our tool). The result of the scheduling phase is provided in Fig. 8.5(a). Like

in our example of Section 7.2.3, the partitioning of the MTF into windows is represented

by solid vertical bars. Partition changes are set only at the beginning of an interval when

this interval is allocated to a task and the previous allocated interval belongs to another

partition. In our example, there are 11 partition changes (counting the final one at the end

of the MTF). Following the graphical convention of Section 7.2.3, thicker partition sepa-

ration bars represent partition changes where a task undergoes a precomputed preemption.

There are 4 of them in our example. Note how function get_first_interval loops over the

MTF in its search for reservations for tasks GNC and Thermal. For instance, the schedul-

ing of GNC is realized after the one of the Fasti tasks, and its earliest start date is given by

the end of Fast10. After reserving the interval [95,100], the search loops over and reserves

successively intervals [5,10], [15,20], and [25,26], in order to cover WCET(GNC,P).

In our second test, we scheduled the same dependent task system on an architecture

2And some toy examples, like the one in Section 7.2.3.

8.2. OFFLINE REAL-TIME SCHEDULING 162

0 10 20 30 40 50 60 70 80 90 100

Fast

GNC

T hermal

time

MT F

Figure 8.7: Scheduling result for the two-mode example of Fig. 7.3 on a single-processor
architecture

with two processors (P1 and P2) where inter-processor communication takes no time,

such as in a shared memory system, when memory access interferences are taken into

account in the WCET analysis. We assumed that the two processors are identical and that

the durations of the tasks on each processor are the ones provided above for the single-

processor. We assumed there are no allocation constraints. The resulting scheduling table

is provided in Fig. 8.6. Only 4 partition changes remain (counting the mandatory 4 at the

end of the MTF), and no pre-computed preemptions.

The third test considered the dependent task system of Fig. 7.3, which features mode-

dependent task durations. Scheduling is done here on a single processor P. We as-

sumed that the durations of the various tasks in the example are: WCET(F1,P) = 20,

WCET(F2,P)= 20, WCET(GNC1,P)= 60, WCET(GNC2,P)= 120, and WCET(Thermal,P)=

100. We also assumed that tasks Fast (F1 and F2) and GNC belong to one partition, and

that task Thermal belongs to another. Again, we assumed that partitioning is fully syn-

thesized. The resulting scheduling table is pictured in Fig. 8.7. This example shows how

taking into account execution conditions (even in the restricted form allowed by our space

launcher application) allows double reservation and (in our example) ensures schedula-

bility.

Finally, we have been able to schedule the large-scale model provided by Astrium. We

have pictured in Fig. 8.8 its architecture and the allocation of tasks to partitions and pro-

cessors. The architecture is formed of 4 processors connected by a broadcast bus. There

are 13 tasks divided in 7 partitions. Our figure also provides the periods and durations of

the tasks. The MTF is 100ms. The tasks are statically allocated to processors. The direct

communications between tasks are represented in Fig. 8.8 with directed arcs.

As explained in Section 7.3, the task periods and the information flows definitions al-

low the construction of a fully deterministic functional specification by using Giotto-like

communication rules3. For this large example, no manual modification of the dependen-

cies was needed.
3The exact rules are the following: direct communication is possible only between two tasks having

harmonic periods. In this case, the dependencies between task instances are determined as if the two tasks
form a Giotto mode of period equal to the largest of the periods of the two tasks (cf. [Henzinger et al., 2000],
figure 7). The only exception to this rule is when the two tasks belong to the same partition. In this case, if
a dependency exists from the fast task to the slow one, then it is realized inside the round, between the first
instance of the fast task and the instance of the slow task.

8.2. OFFLINE REAL-TIME SCHEDULING 163

Algorithm 6 PostSchedulingOptimizationForMonoprocessor
Input: input_schedule : schedule
Output: result_schedule : schedule (optimized)

/* Initialisation of the interval lists. */
inputIntervalList := SortReservedIntervalsByIncreasingStartDate(input_schedule)
resultIntervalList := empty_list

repeat
I1 := GetLastInterval(inputIntervalList)
inputIntervalList := RemoveLastInterval(inputIntervalList)
resultIntervalList := InsertInterval(I1,resultIntervalList)
/* Find in inputIntervalList the last interval of the same partition as I1 */
I2 := FindLast(inputIntervalList,GetPartition(I1)
if I2 6= not_ f ound then

/* Partition inputIntervalList around the start date of I2 (I2 is in
neither interval). */

(intervalsBeforeI2, intervalsAfterI2) := Partition(inputIntervalList,GetStartDate(I2))
/* If there are no other intervals between I2 and I1, there is no partition change

and therefore no need to move intervals. */
if intervalsAfterI2 6= empty_list then

/* Attempt to move I2 after the intervals of intervalsAfterI2,
if necessary also moving the intervals of intervalsAfterI2 earlier. */

/* By how much can I2 be delayed if the intervals of
intervalsAfterI2 are removed from the scheduling table? */

maxI2Delay := MaxI2Delay(I2,resultIntervalList,GetLength(input_schedule))
/* By how much can the intervals of intervalsAfterI2 be advanced

if I2 is removed from the scheduling table? */
maxAdv := MaxAdvance(intervalsAfterI2,intervalsBeforeI2,GetLength(input_schedule))

if start(I2)+maxI2Delay ≥ maxi∈intervalsAfterI2 GetEndDate(i)+maxAdv then
/* It is possible to move I2 after intervalsAfterI2.

Perform the move, interval by interval. */
I2 := MoveInterval(I2,maxI2Delay)
intervalsAfterI2 := {MoveInterval(i,maxAdvance)|i ∈ intervalsAfterI2}
inputIntervalList := Concatenate(intervalsBeforeI2,intervalsAfterI2)
inputIntervalList := Append(inputIntervalList,I2)

end if
end if

end if
until inputIntervalList = empty_list

/* Rebuild the scheduling table. */
resultSchedule := BuildScheduleFromList(resultIntervalList)

8.3. POST-SCHEDULING SLOT MINIMIZATION 164

PartitionEng

ProcessorNav ProcessorSeq ProcessorCtrl ProcessorT M

PartitionNav

PartitionGyro

IntLoop(2,10)

PartitionSeq

PartitionGui

Guidance(30,100)

GT M(2,100)

PartitionCtrl

PartitionT M

MVMSlow(20,100)

MVMFast(2,10)

Bus

GyroMgt(20,50)

NT M(2,100) CT M(2,100)

Control(5,20)

EngMgt(5,20)

CtrlLoop(2,10)

Navigation(2,10)
Telemetry(10,100)

Figure 8.8: Architecture, partitioning and task allocation for the large-scale model of
the space launcher. The two integers inside each task define its duration and period (in
milliseconds).

The specification defines ten flows (some of them ending with the same task), with

end-to-end latency constraints ranging from 100ms to 450ms. Translated into our formal-

ism they amount to the following constraints on the deadlines of tasks (after hyperperiod

expansion): d(GyroMgt2) = 75, d(EngMgt2) = 75,d(MV MSlow) = 50, d(CtrlLoop10) =

90, d(Telemetry) = 100,

Our tool built a correct scheduling table for this example, meaning that implementa-

tion is possible without manual changes to the dependencies. The 4 processors are loaded

respectively at 82%, 72%, 72%, and 10% (the 4th processor is dedicated to telemetry).

The bus is loaded at 81%.

8.3 Post-scheduling slot minimization

The algorithm of the previous section follows a classical ASAP deadline-driven schedul-

ing policy, which is good for ensuring schedulability.

However, resulting schedules may have a lot of unneeded preemptions and, most im-

portantly, partition changes which are notoriously expensive. For instance, the scheduling

table of Fig. 8.5(a) features no less than 11 partition changes.

To reduce the number of partition changes, we perform a heuristic post-scheduling

optimization of our scheduling tables. The algorithm we use in case of mono-processor

architectures featuring no conditional execution is Algorithm 6. Intuitively, the trans-

formation we apply is the following: the scheduling table is traversed from end to the

beginning. Whenever two intervals I1 and I2 allocated to tasks of the same partition are

separated by intervals of other partitions, we attempt to group I1 and I2 together. As-

suming I2 starts before I1, our technique attempts to move I2 just before I1 while moving

8.4. PARTITIONED TIME-TRIGGERED CODE GENERATION 165

all operations between I2 and I1 to earlier dates. The transformation step is only per-

formed when the resulting schedule respects the correctness properties of Section 8.2.1.

The complexity of this transformation is quadratic in the number of windows in the initial

schedule.

The result of applying this algorithm on our simple example is provided in Fig. 8.5(b).

The number of partition changes is significantly reduced (from 11 to 3). Note that all

instances of task Fast inside an MT F are grouped in a single window inside the MTF.

This is possible under the release date and deadline constraints of the dependent task set

of Fig. 7.4, where no architectural constraints are taken into account (we assumed that

input buffers are infinite).

When the input buffering constrains are taken into account in the dependent task sys-

tem of Fig. 7.5, there is no change in the output of the scheduling algorithm. However, the

supplementary constraints limit the efficiency of slot optimization, leading to the schedul-

ing table of Fig. 8.5(c), which has 6 partition changes. Note that our technique also

reduces the number of preemptions. In our example, we move from 4 preemptions in the

unoptimized example to only 1.

We have extended the previous algorithm to deal with applications featuring condi-

tional execution (and modes) running on multi-processors, but yet we have not tested

these extensions enough to present them in this thesis.

8.4 Partitioned time-triggered code generation

At this point, the only missing piece of our compilation chain is the code generator that

takes as input the scheduling table generated by the algorithms of the previous sections

and synthesizes the configuration files and the C code of the partitions for an ARINC 653-

compliant operating system. Our work targeted the ARINC 653-compliant POK operating

system[POK], which has the advantage of being open-source. The work of this section

was conducted in collaboration with a French startup called OpenWide. My work was

here to provide the guidelines for the code generation, which were implemented and tested

by the engineers of OpenWide. The code generation scheme works for distributed targets.

However, generated code currently runs only on single-processor partitioned targets (more

work is needed at low levels to take into account network card drivers).

The definition of an ARINC 653-compliant and efficient code generation scheme

proved unexpectedly difficult. In this section we shall present two of the main challenges

and the solutions we proposed to them.

8.4. PARTITIONED TIME-TRIGGERED CODE GENERATION 166

8.4.1 Automatic synthesis of communication channels

The ARINC 653 standard enforces a strict spatial and temporal isolation between its par-

titions, in order to ensure that all interactions between partitions happen only through

explicitly defined communication channels. The temporal isolation is enforced through

the use of a partitioned time triggered scheduler where the time windows allocated to the

partitions do not overlap. Temporal isolation ensures that variations in the run-time be-

havior of the tasks of one partition have no effect on the behavior of the tasks of the other

partitions (so that timing variations cannot introduce hidden communication channels).

Spatial isolation consists in ensuring that two partitions share no memory zone or device

that could allow the definition of hidden communication channels.

Thus, communication channels are the only way of exchanging information between

partitions. Channels are point-to-multipoint communication devices with one source par-

tition and one or more destination partitions. Channels connect to partitions onto ports.

Both channels and ports must be explicitly defined in the OS configuration file. Once this

is done, the C code of the partitions can use calls to ARINC 653 primitives to send and

receive data through the channels.

In our approach based on off-line scheduling, the calls to these send and receive prim-

itives must be explicitly considered as operations and statically scheduled. This is due not

only to the fact that these operations may take time, but also (and mainly) to the fact that

calls to send operations must be synchronized with the reservations made on the buses.

But our functional specifications have no such send and receive operations. We there-

fore need a method of modifying a Clocked Graphs specification prior to scheduling

through the insertion of explicit send and receive operations whenever communications

cross the boundaries between partitions. To illustrate the functioning of the method we

developed we consider an example. Fig. 8.9 is the graphical representation of the initial

Clocked Graphs specification of a simple application, given in the graphical CG formal-

ism which we used in Chapter 3 (cf. Page 53)4. This application is composed of four

functional blocks:

• block F1, which produces variable v1,

• block F2, which produces variable v2,

• block F3, which produces variable v3,

• block F4, which takes as input v2 when v1 is true, and v3 otherwize.

4Given that an important step of this transformation consists in taking into account the execution clocks
of the functional blocks, we believe the presentation to be clearer if we use this representation formalism
instead of the task set formalism defined at the end of Chapter 3 which does not directly displays the
information relative to the clocks (cf. Page 62)

8.4. PARTITIONED TIME-TRIGGERED CODE GENERATION 167

F1 F3

F2 F4

true

v1

true

v3

v2

true

v1

Part2Part1

true

¬v1

Figure 8.9: Functional specification before the automatic channel generation

The four blocks of the specification are active in any execution cycle, but the two data-

flow arcs have clocks different from the base clock. Blocks F1 and F2 belong to partition

Part1, and F3 and F4 belong to Part2.

In order to comply with the ARINC 653 standard, we must add two communication

channels to this specification. Indeed, variable v2 is an input to block F4 of Part2, but

is produced in Part1, and variable v1 is needed in Part2 to allow the computation of the

clock of v3.

The result of adding the needed communication operations is pictured in Fig. 8.10.

Adding the channel for v2 is done in the following way: we start by adding two blocks

called Channel Write and Channel Read to the specification. The block Channel Write

belongs to partition Part1. It has the same clock as the producer of v2, and thus is activated

in all cycles. The block Channel Read belongs to Part2. It activates on the same clock as

the Channel Read block. Once these blocks are created, we remove the communication

between F2 and F4, and add the following communications: v2 is connected to the input

port of Channel Write, on the clock of F2 (true). p1 is connected to the input port of

Channel Read, still on the clock of F2. Finally, p2 is connected to the input port of F4,

under the condition that v1 is true (the initial communication condition).

Now, since v1 is also produced in Part1, we need to create a second channel, to make

its value available in Part2. The creation process is the same, except that since v1 is

only needed to compute clocks in Part2, the output port of the Channel Read block is

not connected to any input port. Instead, we must modify the clocks used in Part2, by

replacing any occurence of v1 by a reference to p4, the output port of the Channel Read

block.

Our channel generation process works for all correct input specifications. Performing

this transformation allows the scheduling process to actually take into account these op-

erations (and their durations). Actual code generation happens after the scheduling phase

and takes as input scheduling tables containing the communication operations. Code gen-

8.4. PARTITIONED TIME-TRIGGERED CODE GENERATION 168

F3

Channel
Read

F4
Channel

Read

Channel
Write

Channel
Write

F1

F2

true

v3

p4

true

true

Part2Part1

p3

true

v1

true
true

p4p2

true

v2 p1

true true

true

true

true

¬p4

Figure 8.10: Functional specification after the channels are generated

eration uses the queuing ports provided by the ARINC 653 standard,5 which rely on

FIFO queues to store the messages until they are consumed. This choice was motivated

by the fact that using queuing ports guarantees that no data loss will occur, even when

sending multiple variables through the same port before reading them. It thus guarantees

functional determinism in the inter-partition communication, regardless of the temporal

properties of the application. We also use the multiport channels mandated by ARINC

653 to reduce the number of generated channels.

8.4.2 Process number minimization

We have previously explained that synchronous programs and dependent task models are

formally related by a simple abstraction relation. While emphasizing this formal similarity

we have hidden a significant difference that exists between the ways the two classes of

formalisms are used for system specification in current industrial practice:

• Synchronous languages are used to define complex behavioral descriptions that in-

clude the low-level aspects in order to allow the generation of the code of tasks.

Intuitively, the data-flow synchronous specification of a complex system will fea-

ture a large number of blocks.

• Dependent task systems have few blocks.

Clearly, the blocks of the two classes of specifications are not the same. The blocks of

synchronous specifications written in Scade or SynDEx are often simple filters. On the

other hand, the blocks of a dependent task specification correspond to the tasks of the

future system, and this number must be kept low to simplify OS configuration, real-time

analysis, etc. Between the two representation levels lies a complex industrial process

(often performed manually) that takes small blocks and groups them together into larger

tasks.
5As opposed to sampling ports.

8.5. CONCLUSION 169

Clearly, the automatic compilation and code generation flow we propose faces the

same problem. One solution is to use the same approach of grouping small operations into

tasks. Our industrial case study actually uses this approach, so that a full GNC system

is represented using 3 tasks. However, this leaves unsolved the problem of grouping

operations into tasks, and its results can be significantly improved.

Having a small number of tasks is particularly important in ARINC 653-based sys-

tems. Indeed, ARINC 653 imposes that all processes needed in the execution be created

in the elaboration phase, and forbids their destruction. This means, for example, that no

memory optimization can be performed by creating and destroying processes dynamically

during the execution of the system. The memory needed by all the processes of the imple-

mentation is statically reserved during the elaboration phase. Depending on the available

quantity of memory in the execution platform, this may impose a limitation of the number

of threads one can declare for an application.

In the code generation scheme for our POK target, we minimize them by creating only

one process per partition window, whenever the specification allows it. This optimization

can only be applied when the partition code has no synchronization points during the

duration of the window (e.g. no sensor reads at dates which are not window start dates).

This technique can be generalized by creating one process per point in time where a

partition synchronizes with its environment.

8.5 Conclusion

In this chapter we defined our algorithms for the automatic mapping of time-triggered

embedded applications with complex non-functional requirements. The algorithms take

as input specifications written in the language defined in Chapter 7. This language allows

the representation of non-functional requirements of the following types: preemptabil-

ity, starting offsets, deadlines, execution conditions and partitioning. Our deadline-driven

mapping algorithms perform the multi-processor pipelined scheduling under multiple re-

quirements of these types, ensuring their respect in the resulting scheduling table.

The deadline-driven nature of our mapping algorithms results in scheduling tables that

contain numerous preemptions and/or partition switches, which are very time-consuming.

In order to decrease the number of preemptions and partition switches we defined a post-

scheduling optimization which reorganizes the reservations of the scheduling table with-

out affecting its functional correctness or the respect of non-functional requirements.

We were able to successfully use our scheduling algorithms on the full industrial case

study provided by Airbus DS, thus demonstrating the efficiency of our specification and

scheduling methods.

From the produced scheduling tables, we are also capable of generating executable

8.5. CONCLUSION 170

code compatible with the ARINC 653 standard and its APEX interface. This automatic

code generation process is non-trivial. Two major difficulties that we encountered con-

cerned the automatic synthesis of inter-partition and inter-processor communication chan-

nels and associated communication primitives, and the reduction of the number of ARINC

653 processes in the final running application. We presented our solutions to these two

problems.

Chapter 9

Conclusion and perspectives

Contents
9.1 Conclusion . 171

9.2 Perspectives . 174

9.1 Conclusion

In this thesis I have taken inspiration from 3 research fields (real-time scheduling, com-

pilation, and synchronous language design and implementation) to build a compilation

technique for complex embedded control systems. The input of my technique consists in:

• A functional specification provided under the form of a synchronous program, and

which allows the definition of stateful behaviors involving data-dependent control.

• A specification of the multiprocessor/distributed execution platform defining the

computation, communication, and possibly the memory resources.

• Non-functional requirements of various types.

From these 3 inputs, our compilation technique automatically synthesizes correct-by-

construction real-time implementations. The compilation process comprises two phases.

The first is real-time scheduling, which follows an off-line paradigm and produces a

scheduling table. The second is code generation, which takes the scheduling table and

builds running code from it.

The main originality of my work is to take inspiration from the 3 fields mentioned

above, and thus to bring together the best of the three worlds:

• Our compiler generates code with hard real-time guarantees, and at the same time

uses advanced compilation techniques (software pipelining, allocation of variables

171

9.1. CONCLUSION 172

to the memory banks) so that the code efficiently uses the resources of the execution

platform, thus improving real-time schedulability results.

• Like a compiler, it allows fully automated code generation.

• It considers multiple non-functional requirements of several types.

• It works at system level, and yet considers functional specification details such as

conditional control.

To allow the definition of this compilation technique, our work has put in evidence

strong links between formal models used in compilation, real-time scheduling, and syn-

chronous programming, which allowed the joint use of scheduling and code generation

techniques coming from the 3 fields. Our work has also put in evidence differences be-

tween these fields that require non-trivial adaptation of the various models and techniques.

From a more technological point of view, my objective here was to provide models and

algorithms that facilitate the development of complex embedded systems by automating

the allocation and scheduling step. The yardstick I used to measure success was a space

launcher application case study coming from Airbus DS.

From this perspective, the main originality of my work is that it takes into account at

the same time multiple complexity elements of both functional and non-functional type.

Our off-line scheduling and optimization algorithms take into account these parameters

and synthesize scheduling tables under complex non-functional requirements that no ex-

isting tool can handle. These scheduling tables can be automatically translated into time-

triggered implementations.

We have been able to model and automatically map our aerospace case study. As all

scheduling and optimization algorithms used in our tool are fast, we were able to perform

significant design space exploration over the chosen case study. I believe that this shows

the potential for full automation in the system-level engineering of complex real-time

embedded systems.

Defining strong links between the fields of real-time scheduling and compilation has

not been easy, and was done in two clearly identifiable phases corresponding to two dif-

ferent levels of integration between the formal models and the methods of the two fields.

In both cases, models and techniques from synchronous languages design and implemen-

tation served as a formal base for the integration.

The first integration level corresponds to our work on using software pipelining tech-

niques to improve the throughput of real-time applications (Chapter 6). In this work, the

objective is the optimization of metrics such as latency and throughput. In this sense, this

first integration level remains closer to previous work on compilation, and farther from

mainstream work on real-time scheduling where the objective is not the optimization of

9.1. CONCLUSION 173

some metrics, but the respect of requirements. But while the perspective is closer to com-

pilation, there are significant differences with respect to classical compilation work:

• The main optimization objective is not throughput, but rather latency, with through-

put relegated to a second place. We found this objective to be more pertinent in our

application classes.

• Our embedded execution platforms allow a simpler exploitation of the execution

conditions (modes) present in the applications to improve the mapping results. In

particular, we allow the representation and analysis of the evolution of the execution

conditions between successive iterations.

• Dealing with the conditional control also requires a complexification of the classical

rotating registers to account for the execution conditions.

• Time is accounted for in a conservative fashion, in order to provide hard real-time

guarantees. In particular, this timing accounting covers the complex code genera-

tion process (memory replication).

The second integration level corresponds to Chapter 7 and Chapter 8. Here, we fully

assume a real-time scheduling perspective where the objective is the respect of complex

non-functional requirements. While reusing results (models and algorithms) of the first

phase, including the use of software pipelining, the second phase significantly complexi-

fies them in all aspects: modelling, real-time scheduling, and code generation by:

• Allowing the modelling of applications in a time-triggered context.

• Building multi-processor scheduling tables by performing a particular version of

list scheduling which is deadline-driven and takes into account the time partitioning

of the applications and the preemptability of the tasks.

• Including a post-scheduling optimization which aims at decreasing the number of

preemptions and of switches between the partitions.

• Automatically synthesizing full ARINC 653-compliant implementations compris-

ing both the C/APEX code of the partitions and the system configuration. We

automatically synthesize the inter-partition and inter-processor channels and com-

munication operations. We also minimize during code generation the number of

generated implementation tasks.

All these contributions were implemented in the LoPhT compiler, whose general picture

has already been pictured in Fig. 1.3 (cf. Page 25).

9.2. PERSPECTIVES 174

9.2 Perspectives

The work presented in this manuscript opens many perspectives for future work. We

present here the main axes in which we believe this work can, and should be continued in

the future:

• Accounting more precisely for the cost of the Operating System. To do so, we could

use precise WCET estimates for the cost of preemptions and of partition changes,

and apply them every time we schedule a preemption or a partition change during

the off-line scheduling process. While remaining conservative, this approach would

be more precise than accounting for preemptions/partition switches by applying

margins in the WCET estimates of the tasks before knowing exactly how many

of them will occur (in the worst case). In the same direction, taking into account

the cost of interrupt-driven code such as device drivers is more difficult due to the

inherent asynchrony. However, hardware isolation mechanisms can be used here to

provide precise and conservative accounting for the supplementary costs.

• Efficiently modelling and scheduling mixed-criticality systems by using the execu-

tion conditions, in a scheme similar to the one described in Fig. 7.3 (cf. Page 142).

Work must be done on the characterization and modelling of how the system can

detect an enforce mode changes related to criticality during execution.

• Going further into building links between compilation and real-time scheduling. We

could for example investigate the adaptability of polyhedral compilation methods:

these are powerful optimization methods which were first aimed at optimizing the

throughput (like software pipelining) of nested loops. Since then they have been ex-

tended to optimize various criteria, and have proven very efficient. Other techniques

inherited from the compilation domain that could be adapted are for example loop

unrolling, that we could automatize in order to exhibit an adequate level of paral-

lelism compared to the capacities of the considered execution platform (for example

in the context of many-core architectures). Another interesting approach could be to

mix speculative branching with probabilistic real-time approaches in the presence

of execution modes accounting for a failure or breakdown inside the system. In this

context, it could be possible to attach a low probability of occurence to the tasks

corresponding to the fail-safe mode, and to optimize more the schedule of the tasks

of the nominal mode, while preserving (probabilistic) real-time guarantees for the

whole system.

• Defining a generalist architecture description language tailored for our real-time

problems. We are currently capable of handling several kinds of execution archi-

9.2. PERSPECTIVES 175

tectures in the LoPhT tool (Noc-based many-core architectures, broadcast buses1),

but each of them is characterized using a separate language, and thus needs a par-

tially different treatment in the scheduling and code generation phase. Part of our

future work should be dedicated to the definition of a unique language capable of

modelling execution platforms for a unified treatment for scheduling purposes.

• Proving the correctness of our methods. For instance, if we consider just the schedul-

ing phase, we have two ways of proving the correctness of its result: by proving the

compiler itself, or by formally validating its output (the scheduling table). This

manuscript provides the complete formalization of input and output models and al-

gorithms, as well as the formal definition of the functional and non-functional cor-

rectness properties that must be respected by the resulting scheduling tables. Since

our algorithms remain rather simple, we believe it is feasible without major diffi-

culties to use this manuscript as a basis for extending a CompCert-like approach

[Leroy, 2009] to LoPhT.

• Increasing the integration level between WCET analysis and scheduling. For exam-

ple, we could take advantage of our offline scheduling scheme which takes decisions

for each task instance one by one without backtracking, and model at each step pre-

cise information concerning memory and for example the state of the caches, to use

it in turn for the WCET analysis of the future tasks to schedule. This could help the

analysis to reach more precise WCET estimates, and thus increase the efficiency of

the scheduling technique in terms of schedulability.

• Investigating a way of finding a good tradeoff between simplicity of representation

of the specification and efficiency of the scheduling method in terms of schedula-

bility. As we saw, using the hyperperiod expansion technique can lead in the worst

case to an exponential explosion in the number of tasks to consider in the scheduling

and code generation processes (and thus, a large amount of implementation code).

On the other hand, we also explained that using simpler models such as multiperi-

odic task systems do not yield the same results in terms of schedulability. A very

interesting question would be that of finding intermediate representations models

which would limit the number of tasks replicas to consider while offering a rather

good scheduling freedom to the method.

Last, but not least, we believe that prototypes such as LoPhT pave the way to the

construction of industry-strength tools able to support a change of practices in the industry,

most notably a move from manual techniques to formally-proven automatic or assisted

implementation methods.

1Taking into account TTEthernet communication networks for deterministic communications over par-
ticular ethernet architectures is current work in progress.

Appendix A

Modeling NoC-based many-cores

Throughout Chapter 4, we explained that our architecture model could only support se-

quential processing units interconnected by a single message-passing broadcast bus. In

fact we extended the model, the scheduling algorithmics and the code generation process

in order to take into account Massively Parallel Processor Arrays whose communication

is based on a mesh Network-on-Chip. The main differences with the original model are:

• concerning processors: the number of processors is largely superior in MPPA than

in classical distributed architures. Moreover, the processors are organized in clus-

ters, called tiles, which usually contain up to 16 processors and their shared mem-

ory, and are interconnected via the NoC. For tractability reasons, we model the

processors and memory inside each tile as one sequential processing resource. This

is achieved using results on the precise WCET analysis for distributed architectures

and parallel code [Potop-Butucaru and Puaut, 2013]. By parallelizing regular code

on the various processors of a given tile, and using precise WCET analysis, we can

obtain a good bound for the execution of the parallel code, and thus amalgamate the

processors inside one abstract sequential computation resource.

• concerning the transmission media: the broadcast bus is replaced by a complex

network on chip (NoC) which links the computation tiles using FIFO-like unidirec-

tional resources and routers. Switching follows a wormhole paradigm instead of the

store-and-forward switching of classical embedded networks. In store and forward

switching, each data packet arriving on a router is entirely stored in the router be-

fore being forwarded again. Wormhole switching is suited for architectures where

the routers have limited buffering capabilities which make it impossible to store full

packets inside the router. In this approach, packets are seen as sequences of flits

which are sent on the network in a pipelined fashion, each router of the communi-

cation path being able to buffer only a few flits (typically 2 or 3). The first flit of a

packet contains the routing information which sets the path for all other packets. As

the first flit progresses through the network towards its destination, by hopping from

176

Extensions of the basic formalism 177

one router to the next, all the other flits must follow it and occupy the routers lo-

cated on the communication path. Starting from the first flit, one single packet may

stretch over several routers1. The flits of a packet advance synchronously (no gap

exists between successive flits), which strongly synchronizes the functioning of the

routers storing its flits. By consequence, the resources of the NoC (the inter-router

links) must be reserved in a synchronized fashion [Djemal et al., 2012].

• concerning the target execution model: the code generated for MPPA architectures

is not time triggered. Instead LoPhT generates traditional C code, with a com-

pletely static memory allocation for the variables of the system. The synchroniza-

tions between the various computations running on different resources are managed

through the use of hardware locks. Finally, LoPhT generates specific code for the

NoC routers, corresponding to the communications schedule.

In this context, LoPhT was able to generate schedules close to the optimum on our ex-

amples. Moreover, the corresponding code which was generated automatically by LoPhT

executes in times that are very close to the end-to-end latency bounds derived from the

schedule. In other terms, the computed conservative bounds are very tight. These results

are one of the main contributions of Manel Djemal’s thesis, and are presented in [Carle

et al., 2013].

1If packets are limited to 20 flits and the buffering capacity of a router along a path is of 3 flits, then a
packet may stretch along 7 routers.

List of Publications

1. Carle,T., Potop Butucaru,D. Predicate-aware, makespan-preserving software pipelin-

ing of scheduling tables. In ACM Transactions on Architecture and Code Opti-

mization (TACO), Vol. 11, 1, Feb. 2014.

2. Carle,T., Djemal,M., Potop Butucaru,D., de Simone,R., Zhang,Z. Static mapping

of real-time applications onto massively parallel processor arrays. In Proceed-

ings of the IEEE international conference on Application of Concurrency to System

Design (ACSD’14), Tunis, Tunisia

3. Carle,T., Djemal,M., Potop Butucaru,D., de Simone,R., Zhang,Z., Pechêux,F., and

Wajsbürt, F. Reconciling performance and predictability on a many-core through

off-line mapping. In Reconciling Performance and Predictability Workshop (REPP’14),

Grenoble, France

4. Carle,T., Djemal,M., Genius,D., Pechêux,F., Potop Butucaru,D., de Simone,R., Wa-

jsbürt,F., and Zhang,Z. Reconciling performance and predictability on a many-

core through off-line mapping. In 9th International Symposium on Reconfig-

urable Communication-centric Systems-on-chip (ReCoSoC’14), Montpellier, France

178

Bibliography

V. Allan, R. Jones, R. Lee, and S. Allan. Software pipelining. ACM Comput. Surv., 27(3),

September 1995. 61, 62, 97, 103, 112

M. Alras, P. Caspi, A. Girault, and P. Raymond. Model-based design of embedded control

systems by means of a synchronous intermediate model. In Proceedings ICESS, pages

3–10, Zhejiang, China, May 2009. 131

C. André, F. Mallet, and M.-A. Peraldi-Frati. A multiform time approach to real-time

system modeling; application to an automotive system. In Proceedings SIES, Lisbon,

Portugal, July 2007. 97, 98, 123

ARINC. ARINC 653: Avionics application software standard interface.

www.arinc.org, 2005. 72, 82, 97, 99, 129, 130, 135

AUTOSAR. Autosar (automotive open system architecture), release 4.

http://www.autosar.org/, 2009. 72, 97, 135

S. Baruah. Dynamic- and static-priority scheduling of recurring real-time tasks. Real-

Time Systems, 24:93–128, 2003. 133

A. Benoît, V. Rehn-Sonigo, and Y. Robert. Multi-criteria scheduling of pipeline work-

flows. In Proceedings of the International Conference on Cluster Computing, Austin,

TX, USA, Sep 2007. 102

A. Benveniste and P. Le Guernic. Hybrid dynamical systems theory and the signal lan-

guage. Automatic Control, IEEE Transactions on, 35(5):535–546, May 1990. ISSN

0018-9286. doi: 10.1109/9.53519. 32

A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone.

The synchronous languages 12 years later. Proceedings of the IEEE, 91(1):64–83,

January 2003. 11, 22, 29

G. Berry. The constructive semantics of pure esterel, 1996. 30, 32

179

www.arinc.org
http://www.autosar.org/

BIBLIOGRAPHY 180

J. Blazewicz. Scheduling dependent tasks with different arrival times to meet

deadlines. In Proceedings of the International Workshop organized by the

Commision of the European Communities on Modelling and Performance Eval-

uation of Computer Systems, pages 57–65, Amsterdam, The Netherlands, The

Netherlands, 1977. North-Holland Publishing Co. ISBN 0-7204-0554-8. URL

http://dl.acm.org/citation.cfm?id=647407.724282. 61, 131, 154,

155

V. Brocal, M. Masmano, I. Ripoll, A. Crespo, and P. Balbastre. Xoncrete: a scheduling

tool for partitioned real-time systems. In Proceedings ERTS, Toulouse, France, 2010.

133

G. Butazzo. Hard real-time computing systems. Predictable scheduling, algorithms and

applications. Kluwer, 2002. 7, 19

P.-Y. Calland, A. Darte, and Y. Robert. Circuit retiming applied to decomposed software

pipelining. Parallel and Distributed Systems, IEEE Transactions on, 9(1):24–35, 1998.

98, 100

T. Carle and D. Potop-Butucaru. Predicate-aware, makespan-preserving software

pipelining of scheduling tables. ACM Trans. Archit. Code Optim., 11(1):12:1–

12:26, February 2014. ISSN 1544-3566. doi: 10.1145/2579676. URL

http://doi.acm.org/10.1145/2579676. 72

T. Carle, D. Potop-Butucaru, Y. Sorel, and D. Lesens. From dataflow specification to

multiprocessor partitioned time-triggered real-time implementation. Technical report,

INRIA, October 2012. URL http://hal.inria.fr/hal-00742908. 72, 100

T. Carle, M. Djemal, D. Potop-Butucaru, R. De Simone, and Z. Zhang. Off-line

mapping of real-time applications onto massively parallel processor arrays. Rap-

port de recherche, to appear in ACSD ’14 RR-8429, INRIA, December 2013. URL

http://hal.inria.fr/hal-00919411. 13, 24, 177

T. Carle, M. Djemal, D. Genius, F. Pecheux, D. Potop Butucaru, R. De Simone, F. Wa-

jsburt, and Z. Zhang. Reconciling performance and predictability on a many-core

through off-line mapping. In Reconfigurable and Communication-Centric Systems-

on-Chip (ReCoSoC), 2014 9th International Symposium on, pages 1–8, May 2014. doi:

10.1109/ReCoSoC.2014.6861367. 13, 24, 72

P. Caspi, A. Curic, A. Magnan, C. Sofronis, S. Tripakis, and P. Niebert. From Simulink to

SCADE/Lustre to TTA: a layered approach for distributed embedded applications. In

Proceedings LCTES, San Diego, CA, USA, June 2003. 61, 97, 98, 103, 104, 132

http://dl.acm.org/citation.cfm?id=647407.724282
http://doi.acm.org/10.1145/2579676
http://hal.inria.fr/hal-00742908
http://hal.inria.fr/hal-00919411

BIBLIOGRAPHY 181

D. Chabrol, C. Aussaguès, and V. David. A spatial and temporal partitioning approach

for dependable automotive systems. In Proceedings ETFA, Mallorca, Spain, 2009. 32,

132, 133

K. S. Chatha and R. Vemuri. Hardware-software partitioning and pipelined scheduling of

transformative applications. IEEE Trans. Very Large Scale Integr. Syst., 10:193–208,

2002. 104

H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling of real-time tasks under

precedence constraints. Real-Time Systems, 2, 1990. ISSN 0922-6443. 61, 62, 65, 131,

154, 155, 160

Y.-S. Chiu, C.-S. Shih, and S.-H. Hung. Pipeline schedule synthesis for real-time stream-

ing tasks with inter/intra-instance precedence constraints. In DATE, Grenoble, France,

2011. 62, 104

A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and M. Pouzet. N-

synchronous kahn networks: a relaxed model of synchrony for real-time systems. In

Proceedings POPL’06. ACM Press, 2006. 65

S. Conchon and J. Kanigand S. Lescuyer. SAT-MICRO: petit mais costaud ! In JFLA

(Journées Francophones des Langages Applicatifs), pages 91–106, Etretat, France,

2008. URL http://hal.inria.fr/inria-00202831. 118

M. Cordovilla, F. Boniol, J. Forget, E. Noulard, and C. Pagetti. Developing critical em-

bedded systems on multicore architectures: the Prelude-SchedMCore toolset. In 19th

International Conference on Real-Time and Network Systems, Nantes, France, Septem-

ber 2011. Irccyn. URL http://hal.inria.fr/inria-00618587. 81

J. B. Dennis. First version of a data flow procedure language. In B. Robi-

net, editor, Programming Symposium, volume 19 of Lecture Notes in

Computer Science, pages 362–376. Springer Berlin Heidelberg, 1974.

ISBN 978-3-540-06859-4. doi: 10.1007/3-540-06859-7_145. URL

http://dx.doi.org/10.1007/3-540-06859-7_145. 57

M. Djemal, R. De Simone, F. Pêcheux, F. Wajsbürt, D. Potop-Butucaru, and Z. Zhang.

Programmable routers for efficient mapping of applications onto noc-based mpsocs. In

DASIP, pages 1–8, 2012. 177

J. C. Doyle, B. A. Francis, and A. R. Tannenbaum. Feedback Control Theory. Macmillan

Publishing Co., 1990. 6, 18

http://hal.inria.fr/inria-00202831
http://hal.inria.fr/inria-00618587
http://dx.doi.org/10.1007/3-540-06859-7_145

BIBLIOGRAPHY 182

S.A. Edwards and E.A. Lee. The case for the precision timed (pret) machine. In Proceed-

ings DAC, 2007. 133

S.A. Edwards, S. Kim, E.A. Lee, I. Liu, H.D. Patel, and M. Schoeberl. A disruptive

computer design idea: Architectures with repeatable timing. In Proceedings ICCD.

IEEE, October 2009. Lake Tahoe, CA. 135

P. Eles, A. Doboli, P. Pop, and Z. Peng. Scheduling with bus access optimization for

distributed embedded systems. IEEE Transactions on VLSI Systems, 8(5), Oct 2000.

97, 98, 103

S. Fischmeister, O. Sokolsky, and I. Lee. Network-code machine: Programmable real-

time communication schedules. In Proceedings RTAS 2006., april 2006. 134

G. Fohler. Changing operational modes in the context of pre run-time scheduling, 1993.

132

G. Fohler and K. Ramamritham. Static scheduling of pipelined periodic tasks in dis-

tributed real-time systems. In In Procs. of EUROMICRO-RTS97, pages 128–135, 1997.

132

G. Fohler, A. Neundorf, K.-E. Årzén, C. Lucarz, M. Mattavelli, V. Noel, C. von Platen,

G. Butazzo, E. Bini, and C. Scordino. EU FP7 ACTORS project. Deliverable

D7a: State of the art assessment. Ch. 5: Resource reservation in real-time systems.

http://www3.control.lth.se/user/karlerik/Actors/d7a-rev.pdf,

2008. 97

J. Forget, F. Boniol, D. Lesens, and C. Pagetti. A real-time architecture design language

for multi-rate embedded control systems. In In Procs. of SAC ’10, SAC ’10. ACM,

2010. 32

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman and Company, 1979. 98

F. Gasperoni and U. Schwiegelshohn. Generating close to optimum loop schedules on

parallel processors. Parallel Processing Letters, 4(4):391–404, December 1994. 98,

100

K. Goossens, J. Dielissen, and A. Radulescu. Aethereal network on chip: concepts, archi-

tectures, and implementations. Design Test of Computers, IEEE, 22(5):414–421, Sept

2005. 82

http://www3.control.lth.se/user/karlerik/Actors/d7a-rev.pdf

BIBLIOGRAPHY 183

R. Govindarajan, E. Altman, and G. Gao. Minimizing register requirements under

resource-constrained rate-optimal software pipelining. In Proceedings of the 27th an-

nual international symposium on Microarchitecture, MICRO 27, 1994. 102

T. Grandpierre and Y. Sorel. From algorithm and architecture specification to automatic

generation of distributed real-time executives. In Proceedings MEMOCODE, Mont St

Michel, France, 2003. 98, 103, 122

P. Le Guernic, A. Benveniste, P. Bournai, and T. Gautier. Signal, a data-flow oriented

language for signal processing. Acoustics, Speech, and Signal Processing (see IEEE

Transactions on Signal Processing), 34:362–374, 1986. 32

P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for system design. Journal for

Circuits, Systems and Computers, April 2003. Special Issue on Application Specific

Hardware Design. 32, 63

N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer academic Pub-

lishers, 1993. 29

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow program-

ming language lustre. In Proceedings of the IEEE, pages 1305–1320, 1991. 32

D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer

Programming, 8:231–274, 1987. 7, 19

J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kaufmann, 4th edition, 2007. 97, 111

T.A. Henzinger and C. Kirsch. The embedded machine: Predictable, portable real-time

code. ACM Transactions on Programming Languages and Systems, 29(6), Oct 2007.

131, 132, 134

T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: A time-triggered language for

embedded programming. In Proceedings of the IEEE, pages 166–184. Springer-Verlag,

2000. 32, 129, 131, 132, 140, 162

R.A. Huff. Lifetime-sensitive modulo scheduling. In In Proc. of the ACM SIGPLAN ’93

Conf. on Programming Language Design and Implementation, pages 258–267, 1993.

102

SAE international. The AADL formalism page: http://www.aadl.info/, 2014. 139

D. Isovic and G. Fohler. Handling mixed sets of tasks in combined offline and online

scheduled real-time systems. Real-Time Systems, 43:296–325, 2009. 132

BIBLIOGRAPHY 184

A. Kent and J. G. Williams, editors. Encyclopedia of Computer Science and Technology:

Volume 45 - Supplement 30, chapter Real-Time Constraints, pages 285–309. CRC

Press, 2002. 7, 19

W. Kim, D. Yoo, H. Park, and M. Ahn. Scc based modulo scheduling for coarse-grained

reconfigurable processors. In Field-Programmable Technology (FPT), 2012 Interna-

tional Conference on, Seoul, Korea, 2012. 104

H. Kopetz. Event-triggered versus time-triggered real-time systems. In LNCS 563, volume

563 of Lecture Notes in Computer Science, pages 87–101, 1991. 134, 136

H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the IEEE, 91

(1):112–126, 2003. 72, 129, 134, 135, 136

M. Lam. Software pipelining : An effective scheduling technique for vliw machines. In

Proceedings of the SIGPLAN 88 Conference on Programming Language Design and

Implementation, pages 318–328, 1988. 101, 104, 119

E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow programs

for digital signal processing. IEEE Trans. Computers, 36(1):24–35, 1987a. URL

http://doi.ieeecomputersociety.org/10.1109/TC.1987.5009446.

81

E. A. Lee and S. A. Seshia. Introduction to embedded systems, a cyber-physical systems

approach, 2011. URL http://LeeSeshia.org. 6, 18

E.A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceeding of the IEEE, 75

(9):1235–1245, Sep. 1987b. 61

C. Leiserson and J. Saxe. Retiming synchronous circuitry. Algorithmica, 6:5–35, 1991.

100

Xavier Leroy. Formal verification of a realistic compiler.

Communications of the ACM, 52(7):107–115, 2009. URL

http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf.

175

J.Y.-T. Leung and M.L. Merrill. A note on preemptive scheduling of periodic, real-time

tasks. Information Processing Letters, 11(3):115 – 118, 1980. 160

C. L. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real-time

environment. Journal of the ACM, 20(1):46–61, January 1973. 10, 21, 34, 82

http://doi.ieeecomputersociety.org/10.1109/TC.1987.5009446
http://LeeSeshia.org
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf

BIBLIOGRAPHY 185

M. Marouf, L. George, and Y. Sorel. Schedulability analysis for a combination of

non-preemptive strict periodic tasks and preemptive sporadic tasks. In Proceedings

ETFA’12, Kraków, Poland, September 2012. 131

J.F. Mason, K. R. Luecke, and J.A. Luke. Device drivers in time and space partitioned

operating systems. In 25th Digital Avionics Systems Conference, IEEE/AIAA, Portland,

OR, USA, Oct. 2006. 135

A. Monot, N. Navet, F. Simonot, and B. Bavoux. Multicore scheduling in automotive

ECUs. In Proceedings ERTSS, Toulouse, France, 2010. 97

L. Morel. Exploitation des structures régulières et des spécifications locales pour le de-

veloppement correct de systèmes réactifs de grande taille. PhD thesis, Institut National

Polytechnique de Grenoble, 2005. 104

S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufman, 1997.

113, 114

A. Munier. The basic cyclic scheduling problem with linear precedence constraints. Dis-

crete Applied Mathematics, 64(3):219 – 238, 1996. 65, 66

C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens. Multi-task implementation

of multi-periodic synchronous programs. Discrete Event Dynamic Systems, 21(3):307–

338, 2011. 65, 129, 131, 132, 133, 160

Q. Pan, T. Gautier, L. Besnard, and Y. Sorel. Signal to syn-

dex: Translation between synchronous formalisms. internal report,

2003. Internal report, INRIA, Rocquencourt, France, 2003. URL

http://www-rocq.inria.fr/syndex/publications/pubs/signalSyndex03/signalSyndex0

57

L.T.X. Phan, S. Chakraborty, and P. S. Thiagarajan. A multi-mode real-time calculus. In

Real-Time Systems Symposium, 2008, pages 59–69, Nov 2008. 82

POK. Pok, a partitionned operating system. http://pok.tuxfamily.org/, 2008.

165

P. Pop, P. Eles, and Z. Peng. Scheduling with optimized communication for time-triggered

embedded systems. In Proceedings CODES’99, 1999. 132

D. Potop-Butucaru and I. Puaut. Integrated Worst-Case Execution Time Es-

timation of Multicore Applications. In Claire Maiza, editor, 13th Inter-

national Workshop on Worst-Case Execution Time Analysis, volume 30 of

http://www-rocq.inria.fr/syndex/publications/pubs/signalSyndex03/signalSyndex03.pdf
http://pok.tuxfamily.org/

BIBLIOGRAPHY 186

OpenAccess Series in Informatics (OASIcs), pages 21–31, Dagstuhl, Ger-

many, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-

3-939897-54-5. doi: http://dx.doi.org/10.4230/OASIcs.WCET.2013.21. URL

http://drops.dagstuhl.de/opus/volltexte/2013/4119. 176

D. Potop-Butucaru and Y. Sorel. Chapter 12: Approche synchrone et ordonnance-

ment. In Ordonnancement dans les systèmes temps réel, pages 325–364, 2014. URL

http://iste-editions.fr/products/ordonnancement-dans-les-systemes-temps-

29

D. Potop-butucaru, R. De Simone, and J. p. Talpin. The synchronous hypothesis and

synchronous languages, in embedded systems handbook, 2005. 29

D. Potop-Butucaru, R. De Simone, Y. Sorel, and J.-P. Talpin. Clock-driven distributed

real-time implementation of endochronous synchronous programs. In ACM, editor,

EMSOFT ’09 Proceedings of the seventh ACM international conference on Embedded

software, pages 147–156, 2009. 37, 52, 84, 106, 122, 155, 159

D. Potop-Butucaru, A. Azim, and S. Fischmeister. Semantics-preserving implementa-

tion of synchronous specifications over dynamic TDMA distributed architectures. In

Proceedings EMSOFT, Scottsdale, Arizona, USA, 2010. 97, 98, 103, 134, 135, 143

C. Pradalier, J. Hermosillo, C. Koike, C. Braillon, P. Bessière, and C. Laugier. The CyCab:

a car-like robot navigating autonomously and safely among pedestrians. Robotics and

Autonomous Systems, 50(1), 2005. 123

W. Puffitsch, E. Noulard, and C. Pagetti. Mapping a multi-rate synchronous language to

a many-core processor. In Proceedings RTAS, 2013. 132

K. Ramamritham, G. Fohler, and J. M. Adan. Issues in the static allocation and scheduling

of complex periodic tasks. In In Proc. 10th IEEE Workshop on Real-Time Operating

Systems and Software, 1993. 132

B.R. Rau. Iterative modulo scheduling. International Journal of Parallel Programming,

24(1):3–64, 1996. 99, 103, 104, 118

B.R. Rau and C.D. Glaeser. Some scheduling techniques and an easily schedulable hor-

izontal architecture for high performance scientific computing. In Proceedings of the

14th annual workshop on Microprogramming, IEEE, 1981. 97, 113

B.R. Rau, M. Lee, P.P. Tirumalai, and M.S. Schlansker. Register allocation for software

pipelined loops. In Proceedings PLDI’92, San Francisco, CA, USA, June 1992. 119

http://drops.dagstuhl.de/opus/volltexte/2013/4119
http://iste-editions.fr/products/ordonnancement-dans-les-systemes-temps-reel

BIBLIOGRAPHY 187

P. Richard, F. Cottet, and C. Kaiser. Précédences généralisées et ordonnançabilité des

tâches de suivi temps réel d’un laminoir. Journal européen des systèmes automatisés,

35, 2001. 65

J. Rushby. Bus architectures for safety-critical embedded systems. In Proceedings EM-

SOFT’01, volume 2211 of LNCS, Tahoe City, CA, USA, 2001. 97, 129, 135, 146

A. Al Sheikh, O. Brun, P.-E. Hladik, and B.J. Prabhu. Strictly periodic schedul-

ing in ima-based architectures. Real-Time Systems, 48(4):359–386, 2012. URL

http://dx.doi.org/10.1007/s11241-012-9148-y. 133

M. Smelyanskyi, S. Mahlke, E. Davidson, and H.-H. Lee. Predicate-aware scheduling: A

technique for reducing resource constraints. In Proceedings CGO, San Francisco, CA,

USA, March 2003. 103

Y. Sorel. From modeling/simulation with scilab/scicos to optimized distributed embedded

real-time implementation with syndex. In Proceedings of the International Workshop

On Scilab and Open Source Software Engineering, SOSSE’05, Wuhan, China, October

2005. 57, 69

L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard real-

time systems. In Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The

2000 IEEE International Symposium on, volume 4, pages 101–104 vol.4, 2000. 81

J. Wang and C. Eisenbeis. Decomposed software pipelining.

http://hal.inria.fr/inria-00074834, 1993. 98, 100, 102, 122,

124, 125

N.J. Warter, D. M. Lavery, and W.W. Hwu. The benefit of predicated execution for soft-

ware pipelining. In HICSS-26 Conference Proceedings, Houston, Texas, USA, 1993.

103, 113

J. Xu. Multiprocessor scheduling of processes with release times, deadlines, precedence,

and exclusion relations. Software Engineering, IEEE Transactions on, 19(2):139–154,

1993. ISSN 0098-5589. 133

H. Yang and S. Ha. Pipelined data parallel task mapping/scheduling technique for mpsoc.

In Design, Automation Test in Europe Conference Exhibition (DATE), Nice, France,

2009. 104

H.-S. Yun, J. Kim, and S.-M. Moon. Time optimal software pipelining of loops with

control flows. International Journal of Parallel Programming, 31(5):339–391, October

2003. 102, 103

http://dx.doi.org/10.1007/s11241-012-9148-y
http://hal.inria.fr/inria-00074834

BIBLIOGRAPHY 188

J. Zalamea, J. Llosa, E. Ayguade, and M. Valero. Register constrained modulo scheduling.

Parallel and Distributed Systems, IEEE Transactions on, 15(5):417–430, 2004. 102

W. Zheng, J. Chong, C. Pinello, S. Kanajan, and A. Sangiovanni-Vincentelli. Extensible

and scalable time-triggered scheduling. In Proceedings ACSD, St. Malo, France, June

2005. 65, 97, 98, 103, 132

Q. Zhuge, Z. Shao, and E.H. Sha. Optimal code size reduction for software-pipelined

loops on dsp applications. In Proceedings of the International Conference on Parallel

Processing, 2002. 102

	Remerciements
	Table of Contents
	Résumé
	Abstract
	Introduction
	Embedded systems design
	Compilation vs. Real-time scheduling
	Contribution

	I Offline scheduling: fundamental notions and contributions on the specification models for embedded systems
	Introduction to synchronous formalisms
	The synchronous model of computation
	Abstraction issues
	Clocks and Single-clock synchronous languages
	Polychronous languages
	Languages with affine clocks
	From logical time to real time

	Functional specification
	Introduction
	The Clocked Graph synchronous language
	Host language and global definitions
	Dataflow definition
	Well-formed properties
	Example

	Translation from higher-level specifications
	Functional specifications in SynDEx
	Translation technique

	Abstraction as single-period task systems
	Modeling multi-period task systems
	Conclusion

	Modeling resources and resource allocation
	Resource description formalism
	Scheduling tables
	Table-based off-line scheduling (the principle)
	Scheduling tables in LoPhT

	Conclusion

	II Software pipelining of scheduling tables
	Extensions of the basic formalism
	Memory representation for pipelining
	Architecture model
	Implementation model
	A simple example
	Well-formed properties

	Conclusion

	Throughput optimization by software pipelining of conditional reservation tables
	Related work and originality
	Decomposed software pipelining
	Originality
	Other aspects

	Pipelining technique overview
	Representing a pipelined scheduling table

	Optimization algorithms
	Dependency graph and maximal throughput
	Dependency analysis and main routine
	Complexity considerations

	Code generation
	Memory management issues

	Experimental results
	Conclusion

	III Real-time scheduling and code generation under complex non-functional constraints
	Extensions of the Clocked Graph formalism
	Related work
	Architecture model
	Time-triggered systems
	Temporal partitioning
	Example

	Modeling of the aerospace case study
	From non-determinism to determinism
	Representing execution modes

	Non-functional properties
	Period, release dates, and deadlines
	Worst-case durations, allocations, preemptability
	Partitioning
	Syntax extensions

	Conclusion

	Real-Time scheduling under complex non-functional requirements
	Removal of delayed dependencies
	Offline real-time scheduling
	Basic principles
	Scheduling algorithm
	Complexity and optimality considerations
	Scheduling results

	Post-scheduling slot minimization
	Partitioned time-triggered code generation
	Automatic synthesis of communication channels
	Process number minimization

	Conclusion

	Conclusion and perspectives
	Conclusion
	Perspectives

	Modeling NoC-based many-cores
	List of Publications
	Bibliography

