
�>���G �A�/�, �i�2�H�@�y�R�y�N�8�k�y�e

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�i�2�H�@�y�R�y�N�8�k�y�e

�a�m�#�K�B�i�i�2�/ �Q�M �R�8 �.�2�+ �k�y�R�9

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�o�m�H�M�2�`���#�B�H�B�i�v �J���M���;�2�K�2�M�i �7�Q�` �a���7�2 �*�Q�M�}�;�m�`���i�B�Q�M�b �B�M
���m�i�Q�M�Q�K�B�+ �L�2�i�r�Q�`�F�b ���M�/ �a�v�b�i�2�K�b

�J���`�i�B�M �"���`�`�2�`�2

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�J���`�i�B�M �"���`�`�2�`�2�X �o�m�H�M�2�`���#�B�H�B�i�v �J���M���;�2�K�2�M�i �7�Q�` �a���7�2 �*�Q�M�}�;�m�`���i�B�Q�M�b �B�M ���m�i�Q�M�Q�K�B�+ �L�2�i�r�Q�`�F�b ���M�/ �a�v�b�@
�i�2�K�b�X �L�2�i�r�Q�`�F�B�M�; ���M�/ �A�M�i�2�`�M�2�i ���`�+�?�B�i�2�+�i�m�`�2 �(�+�b�X�L�A�)�X �l�M�B�p�2�`�b�B�i�û �/�2 �G�Q�`�`���B�M�2�- �k�y�R�9�X �1�M�;�H�B�b�?�X �I�i�2�H�@
�y�R�y�N�8�k�y�e�=

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvŽ par le jury de
soutenance et mis ˆ disposition de l'ensemble de la
communautŽ universitaire Žlargie.

Il est soumis ˆ la propriŽtŽ intellectuelle de l'auteur. Ceci
implique une obligation de citation et de rŽfŽrencement lors de
lÕutilisation de ce document.

D'autre part, toute contrefa•on, plagiat, reproduction illicite
encourt une poursuite pŽnale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la PropriŽtŽ Intellectuelle. articles L 122. 4
Code de la PropriŽtŽ Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

D«epartement de formation doctorale en informatique «Ecole doctorale IAEM
UFR STMIA Universit«e de Lorraine, France

Vulnerability Management for Safe
ConÞgurations in Autonomic Networks

and Systems

DISSERTATION

publicly presented on June 12, 2014

in partial fulÞllment of the requirements for the degree of

Doctor of Philosophy
in Information and Computer Science

by

Mart«õn BARR ÈRE CAMBR «UN

Dissertation committee:

President: Le pr«esident

Rapporteurs : Dr. Michelle SIBILLA. Professor at Universit«e Toulouse III - Paul Sabatier, France.
Dr. Raouf BOUTABA. Professor at University of Waterloo, Canada.

Examiners : Dr. Emil LUPU. Reader at Imperial College London, U.K.
Dr. Nacer BOUDJLIDA. Professor at Universit«e de Lorraine, France.
Dr. R«emi BADONNEL. Associate Professor at Universit«e de Lorraine, France.
Dr. Olivier FESTOR. Professor at Universit«e de Lorraine, France.

Laboratoire Lorrain de Recherche en Informatique et ses Applications Ñ UMR 7503

Mis en page avec la classe thloria.

Remerciements

Many people encouraged and supported this thesis. First, I would like to thank my super-
visors RŽmi Badonnel and Olivier Festor. They gave me the opportunity to join the Madynes
Research Group, encouraged my research interests, and supported me all along the way. I am
also indebted to all the members of this great team for their constant help and feedback.

During these years, I have been surrounded by bright and beautiful people at INRIA. I am
deeply grateful to Laura for her strong support and patience. I would also like to thank my friends
and colleagues Victor, Lautaro, Juan Pablo, Hern‡n, I–aki, CŽsar, Fran•ois, Ga‘tan, Emmanuel,
Renaud and Thao, for their friendship and helpful discussions.

This thesis would not have been possible if it were not for the constant encouragement and
love of my family and friends in Uruguay. I would like to thank mom and dad, my sister Gabriela,
Jesœs, my loving nieces, my grandmother, Matilde, Viterbo, Gabriel, Fernando, Nicol‡s, Braulio,
Laura, and Cristina, for supporting me in everything I do and always being there.

Finally, I would also like to thank all the people at the Computing Department of the Engi-
neering School of the University of the Republic in Uruguay, for encouraging me to pursue this
thesis. In particular, I am greatly thankful to Gustavo Betarte, Marcelo Rodr’guez, Alejandro
Blanco, and the whole Computer Security Team for their continuous support.

i

ii

A mi familia
(Dedicated to my family)

iii

iv

Table of Contents

Table of Contents v

List of Figures xi

Introduction 1

Chapter 1 General introduction 3

1.1 The context . 3

1.2 The problem . 4

1.3 Organization of the document . 5

1.3.1 Part I: State of the art . 5

1.3.2 Part II: Contributions . 5

1.3.3 Part III: Implementation . 8

Part I Autonomic environments and vulnerability management 9

Chapter 2 Network management and autonomic computing 11

2.1 Introduction . 11

2.2 Large-scale network management . 12

2.2.1 Computer networks and the Internet 12

2.2.2 Technological evolution . 13

2.2.3 End-users behavior . 15

2.3 Autonomic computing overview . 16

2.3.1 Key concepts of autonomics . 16

2.3.2 Behavioral and architectural models 18

2.4 Security issues in autonomics . 20

2.4.1 Vulnerability management in autonomic environments 21

v

Table of Contents

2.5 Synthesis . 22

Chapter 3 Vulnerability management 23

3.1 Introduction . 23

3.2 The vulnerability management process . 24

3.2.1 A brief history of vulnerability management 24

3.2.2 On the organization of vulnerability management activities 25

3.3 Discovering Vulnerabilities . 26

3.3.1 Exploiting testing methods . 26

3.3.2 Using network forensics . 27

3.3.3 Taking advantage of experience . 28

3.4 Describing Vulnerabilities . 29

3.5 Detecting vulnerabilities . 33

3.5.1 Analyzing device vulnerabilities . 33

3.5.2 Analyzing network vulnerabilities . 35

3.5.3 Correlating vulnerabilities with threats and attack graphs 36

3.6 Remediating vulnerabilities . 37

3.6.1 Change management . 38

3.6.2 Risk and impact assessment . 39

3.7 Research challenges . 40

3.8 Synthesis . 41

Part II An autonomic platform for managing conÞguration vulnerabili-

ties 43

Chapter 4 Autonomic vulnerability awareness 45

4.1 Introduction . 45

4.2 Integration of OVAL vulnerability descriptions 46

4.3 OVAL-aware self-conÞguration . 48

4.3.1 Overall architecture . 48

4.3.2 OVAL to Cfengine translation formalization 49

4.4 Experimental results . 52

4.4.1 IOS coverage and execution time . 52

4.4.2 Size of generated Cfengine policies for Cisco IOS54

4.5 Synthesis . 55

vi

Chapter 5 Extension to distributed vulnerabilities 57

5.1 Introduction . 57

5.2 SpeciÞcation of distributed vulnerabilities . 58

5.2.1 Motivation, deÞnition, and mathematical modeling 58

5.2.2 DOVAL, a distributed vulnerability description language 60

5.3 Assessing distributed vulnerabilities . 62

5.3.1 Extended architecture overview . 63

5.3.2 Assessment strategies . 64

5.4 Performance evaluation . 66

5.5 Synthesis . 69

Chapter 6 Support for past hidden vulnerable states 71

6.1 Introduction . 71

6.2 Modeling past unknown security exposures 72

6.2.1 Understanding past unknown security exposures 73

6.2.2 Specifying past unknown security exposures 74

6.3 Detecting past hidden vulnerable states . 75

6.3.1 Extended architecture overview . 75

6.3.2 Assessment strategy . 76

6.4 Experimental results . 77

6.5 Synthesis . 79

Chapter 7 Mobile security assessment 81

7.1 Introduction . 81

7.2 Background and motivations . 82

7.3 Vulnerability self-assessment . 83

7.3.1 Self-assessment process model .84

7.3.2 Assessing Android vulnerabilities . 85

7.3.3 Experimental results . 88

7.4 Probabilistic vulnerability assessment . 91

7.4.1 Probabilistic assessment model . 92

7.4.2 Ovaldroid, a probabilistic vulnerability assessment extension 95

7.4.3 Performance evaluation . 99

7.5 Synthesis . 101

Chapter 8 Remediation of conÞguration vulnerabilities 103

8.1 Introduction . 103

8.2 Background and motivations . 104

vii

Table of Contents

8.3 Remediating device-based vulnerabilities .105

8.3.1 Vulnerability remediation modeling 105

8.3.2 The X2CCDF speciÞcation language109

8.3.3 Extended framework for remediating device-based vulnerabilities . . .111

8.3.4 Performance evaluation . 113

8.4 Towards the remediation of distributed vulnerabilities 115

8.4.1 Modeling vulnerability treatments . 116

8.4.2 DXCCDF, a distributed vulnerability remediation language 117

8.4.3 A strategy for collaboratively treating distributed vulnerabilities . . . 119

8.4.4 Performance evaluation . 121

8.5 Synthesis . 123

Part III Implementation 125

Chapter 9 Development of autonomic vulnerability assessment solutions 127

9.1 Introduction . 127

9.2 Autonomic vulnerability assessment with Ovalyzer 128

9.2.1 Implementation prototype . 128

9.2.2 OVAL to Cfengine generation example with Ovalyzer 131

9.3 Extension to past hidden vulnerable states 135

9.4 Mobile security assessment with Ovaldroid 137

9.4.1 Implementation prototype . 137

9.4.2 A probabilistic extension . 141

9.5 Synthesis . 141

Conclusion 143

Chapter 10 General conclusion 145

10.1 Contributions summary . 145

10.1.1 Autonomic vulnerability management 146

10.1.2 Implementation prototypes . 147

10.2 Perspectives . 148

10.2.1 Proactive autonomic defense by anticipating future vulnerable states .148

10.2.2 UniÞed autonomic management platform148

10.2.3 Autonomic security for current and emerging technologies148

10.3 List of publications . 149

viii

Bibliography 151

Annexes 161

Annexe A CAS, a ConÞguration Assessment Service for UMF 163

A.1 Introduction and problem statement . 163

A.2 Background . 164

A.3 ConÞguration modeling for UMF . 164

A.4 ConÞguration assessment service architecture168

A.5 UMF, conclusions and perspectives .168

ix

Table of Contents

x

Table des Þgures

1.1 Organization of the document . 5
1.2 Organization of contributions . 6

2.1 Large-scale networking evolution . 13
2.2 Stages towards autonomic computing [82] . 17
2.3 Autonomic management lifecycle [81] . 18
2.4 Autonomic computing architecture [81] . 19
2.5 Positioning of vulnerability management with respect to self-management activities21
2.6 Mapping of the vulnerability management activity into the autonomic lifecycle . 22

3.1 Vulnerability assessment -D 3 classiÞcation . 25
3.2 Automated vulnerability assessment classiÞcation 26
3.3 Forensic investigation process [54] . 28
3.4 OVAL-based vulnerability assessment [117] . 34
3.5 ScientiÞc maturity of vulnerability management activities with respect to autono-

mic networks . 40

4.1 Vulnerability conception mapping . 46
4.2 OVAL example over Cisco IOS . 47
4.3 High-level architecture . 48
4.4 Basic predicate within OVAL . 49
4.5 First-order logic, OVAL and Cfengine mapping 50
4.6 IOS plugins coverage . 53
4.7 IOS translation performance . 53
4.8 IOS generation statistics . 54

5.1 Distributed vulnerability scenario . 58
5.2 Distributed vulnerability matching process . 60
5.3 DOVAL logical description . 61
5.4 Overall architecture . 63
5.5 Aggregation algorithm execution for role discovery 64
5.6 Statistics with uniform distribution on role assignment 68
5.7 Statistics with an increased device participation 68

6.1 Vulnerability lifecycle events . 73
6.2 High-level imaging and exposure detection process76
6.3 Vulnerability deÞnitions assessment time . 78
6.4 Tests assessment time . 78

xi

Table des Þgures

6.5 Repository scalability statistics . 79

7.1 OVAL-based vulnerability assessment architecture for the Android platform . . . 86
7.2 Scalability statistics in a simulated environment 90
7.3 Scalability statistics in a real device . 90
7.4 Memory load in both emulated and real device 91
7.5 Regular vs. probabilistic approach . 92
7.6 Test execution distribution . 95
7.7 Ovaldroid global architecture . 96
7.8 Ovaldroid client-server interactions . 98
7.9 Coverage convergence . 99
7.10 Collected objects . 100
7.11 Vulnerability evaluation rate . 100

8.1 Distributed vulnerability scenario with remediation tasks 105
8.2 Change sequence search example .108
8.3 VMANS high-level architecture . 111
8.4 VMANS control loop . 112
8.5 Vulnerability conversion statistics . 114
8.6 SAT solving analysis time for change detection114
8.7 NETCONF-Cisco statistics . 115
8.8 Mapping the model into the DXCCDF language 117
8.9 Collaborative treatment - High level operation . 119
8.10 Vulnerability treatment scenario . 120
8.11 Time statistics for vulnerability assessment and treatment activities 122

9.1 OvalyzerÕs high-level operation .128
9.2 JAXB process [89] . 129
9.3 OVAL vulnerability description for Cisco IOS . 131
9.4 Ovalyzer execution . 132
9.5 Cfengine code (main) . 133
9.6 Cfengine code (main) . 133
9.7 Cfengine code (method) . 134
9.8 Cfengine execution . 135
9.9 SVN-based assessment .136
9.10 Self-assessment service high-level operation .138
9.11 Ovaldroid agent . 138
9.12 Ovaldroid provider . 139
9.13 Ovaldroid reporter . 140
9.14 Ovaldroid reporter details . 141

A.1 UMF conÞguration error description with OVAL 165
A.2 UMF distributed conÞguration error description with DOVAL 166
A.3 DOVAL scenario for best practices . 167
A.4 ConÞguration assessment service architecture .168

xii

RŽsumŽ / Abstract

Le dŽploiement dÕŽquipements informatiques ˆ large Žchelle, sur les multiples infrastructures
interconnectŽes de lÕInternet, a eu un impact considŽrable sur la complexitŽ de la t‰che de gestion.
LÕinformatique autonome permet de faire face ˆ cet enjeu en spŽciÞant des objectifs de haut
niveau et en dŽlŽguant autant que possible les activitŽs de gestion aux rŽseaux et syst•mes eux-
m•mes. Cependant, lorsque des changements sont opŽrŽs par les administrateurs ou directement
par les Žquipements autonomes, des conÞgurations vulnŽrables peuvent •tre involontairement
introduites, m•me si celles-ci sont correctes dÕun point de vue opŽrationnel. Ces vulnŽrabilitŽs
o!rent un point dÕentrŽe pour des attaques de sŽcuritŽ. Les environnements autonomes doivent
•tre capables de se protŽger pour Žviter leur compromission et la perte de leur autonomie. Ë cet
Žgard, les mŽcanismes de gestion des vulnŽrabilitŽs sont essentiels pour assurer une conÞguration
sžre de ces environnements.

Cette th•se porte sur la conception et le dŽveloppement de nouvelles mŽthodes et techniques
pour la gestion des vulnŽrabilitŽs dans les rŽseaux et syst•mes autonomes, aÞn de leur permettre
de dŽtecter, dÕŽvaluer et de corriger leurs propres expositions aux failles de sŽcuritŽ. Nous prŽsen-
terons tout dÕabord un Žtat de lÕart sur lÕinformatique autonome et la gestion de vulnŽrabilitŽs, en
mettant en relief les dŽÞs importants qui doivent •tre relevŽs dans ce cadre. Nous dŽcrirons ensuite
notre approche dÕintŽgration du processus de gestion des vulnŽrabilitŽs dans ces environnements,
et en dŽtaillerons les di!Žrentes facettes, notamment : extension de lÕapproche dans le cas de
vulnŽrabilitŽs distribuŽes, prise en compte du facteur temps en considŽrant une historisation des
param•tres de conÞguration, et application en environnements contraints en utilisant des tech-
niques probabilistes. Nous prŽsenterons Žgalement les prototypes et les rŽsultats expŽrimentaux
qui ont permis dÕŽvaluer ces di!Žrentes contributions.

Mots clŽs : sŽcuritŽ, gestion de rŽseaux, informatique autonome, gestion de vulnŽrabilitŽs.

Over the last years, the massive deployment of computing devices over disparate intercon-
nected infrastructures has dramatically increased the complexity of network management. Au-
tonomic computing has emerged as a novel paradigm to cope with this challenging reality. By
specifying high-level objectives, autonomic computing aims at delegating management activi-
ties to the networks themselves. However, when changes are performed by administrators and
self-governed entities, vulnerable conÞgurations may be unknowingly introduced. Vulnerabili-
ties constitute the main entry point for security attacks. Hence, self-governed entities unable to
protect themselves will eventually get compromised and consequently, they will lose their own
autonomic nature. In that context, vulnerability management mechanisms are vital to ensure
safe conÞgurations, and with them, the survivability of any autonomic environment.

This thesis targets the design and development of novel autonomous mechanisms for dealing
with vulnerabilities, in order to increase the security of autonomic networks and systems. We
Þrst present a comprehensive state of the art in autonomic computing and vulnerability mana-
gement, and point out important challenges that should be faced in order to fully integrate the
vulnerability management process into the autonomic management plane. Afterwards, we present
our contributions which include autonomic assessment strategies for device-based vulnerabilities
and extensions in several dimensions, namely, distributed vulnerabilities (spatial), past hidden
vulnerable states (temporal), and mobile security assessment (technological). In addition, we
present vulnerability remediation approaches able to autonomously bring networks and systems
into secure states. The scientiÞc approaches presented in this thesis have been largely validated
by an extensive set of experiments which are also discussed in this manuscript.

Keywords : security, network management, autonomic computing, vulnerability management.

xiii

xiv

Introduction

1

Chapter 1

General introduction

Contents
1.1 The context . 3

1.2 The problem . 4

1.3 Organization of the document . 5

1.3.1 Part I: State of the art . 5

1.3.2 Part II: Contributions . 5

1.3.3 Part III: Implementation . 8

1.1 The context

Over the last years, the massive deployment of computer devices over interconnected hete-
rogeneous infrastructures has dramatically changed the perspective of network management. In
particular, the Internet has played a fundamental role providing a platform for thousands of
mixed technologies which currently constitute our globalized digital world. Nowadays, almost
any network including the Internet itself, is expanding as a response to many factors. As end-
users become more connected with computing technologies, or maybe technology becomes more
friendly with end-users, a growing demand for useful digital advances goes along with the pro-
cess. These new requirements appear in di!erent forms, which directly impact in the mechanisms
and resources used to meet them. In the other way around, technology can be also observed as
a proactive stream, which shapes end-usersÕ behavior to some extent. This symbiosis between
technology and end-users makes a vehicle for their evolution.

This evolution however, is not without dangers. Constructive approaches tend to test the
boundaries of current technologies. Since networks became the key platform for exchanging in-
formation and providing all kind of services on top of them, their management rapidly shifted
into higher levels of complexity. These scenarios in turn are dynamic, which challenges their
limits even more. A simple phone call over the Internet, understood as a service, may involve
dozens of underlying running software, with di!erent conÞgurations, over disparate hardware,
speaking distinct protocols, and geographically distributed all around the world. This might be
only one service, however, we should imagine hundreds of di!erent services, probably interac-
ting between them and with the end-user, which in addition may have distinct requirements
at di!erent moments. It is clear that to cope with this complex landscape, smart and scalable
management approaches are required to align the desired network behavior.

3

Chapter 1. General introduction

In that context, the autonomic computing approach has been conceived as a response to this
problem. What if speciÞc administration tasks to adapt our networks to each concrete service
are not needed anymore ? What if we can express what we need from networks, and just tell the
underlying infrastructure to manage it for us ? From a high-level viewpoint, these sentences may
provide the intuition and spirit of autonomic computing. Indeed, autonomic computing aims at
freeing administrators from the burden of heavy and error-prone management tasks. The main
idea is to specify what networks have to do by means of high-level objectives, and delegate
the responsibility of accomplishing these speciÞc goals to the networks themselves. Under this
perspective, self-governed networks and systems can positively tackle the management of the
overwhelming technological development we are witnessing today. However, in order to make
this approach work, security is essential. The ability of being autonomous implies self-protection.
If this requirement is not met, autonomous entities might get compromised, not only a!ecting
their own behavior but the surrounding environment as well. For this reason,the ability of
autonomic networks and systems to manage vulnerabilities and handle their own
exposure is a critical factor for their survivability . This matter constitutes the heart of
our work. This thesis aims at providing novel autonomous mechanisms for dealing
with vulnerabilities, in order to increase the security of self-governed networks and
systems.

1.2 The problem

In computer security, vulnerabilities are ßaws or weaknesses in the design, implementation,
or conÞguration of a system that may allow an attacker to exploit them in order to bypass the
security policies of such system. Vulnerabilities constitute the key entry point for breaking into
computer systems and gaining unauthorized access to assets within these systems. Therefore,
the ability to manage vulnerabilities is crucial for any computer system. Autonomic networks
and systems are not an exception, although their autonomous nature challenges the vulnerability
management process at higher levels. As a matter of fact, related tasks usually performed by
human administrators over regular systems, must now be performed by self-governed entities on
their own. The vulnerability management process basically involves the detection and remediation
of vulnerabilities. Nevertheless, conceiving autonomic networks and systems featuring this process
poses hard challenges.How can we provide autonomic environments with mechanisms
for increasing their vulnerability awareness ? What methods should be employed
for identifying security weaknesses in an autonomous manner ? How should they
proceed to mitigate and eradicate detected vulnerabilities while maintaining the
system operative and safe ? These and other questions constitute the issues that this thesis
aims at dealing with.

Autonomic computing has opened new horizons for addressing problems where traditional
methods seem to fail. Particularly, mechanisms able to properly scale with evolving dynamic
networks and capable of reasonably tackling their increasing management complexity are simply,
essential. Autonomic computing perfectly Þts with these requirements. However, if autonomic
infrastructures do not develop mechanisms and techniques to protect themselves from security
threats, their real power and utility will eventually come apart. The focus of this thesis is to
contribute in this direction, by providing a state of the art in autonomic computing and vulnera-
bility management, and Þlling out missing scientiÞc issues required to harden the foundations and
security of autonomic computing. In the next section, we present the structure of this manuscript,
detailing each main part of the document and their purpose.

4

1.3. Organization of the document

1.3 Organization of the document

This manuscript is organized in three main parts (Parts I, II and III). Figure 1.1 illustrates the
structure of the document. First, we present the state of the art in autonomic computing and vul-
nerability management, and the connection between both worlds (Chapters 2 and 3). The second
part presents the contributions of this thesis, which are classiÞed in two main categories according
to the vulnerability management process, namely, vulnerability assessment (Chapters 4, 5, 6, 7)
and vulnerability remediation (Chapter 8). The third part of this document presents three im-
plementation prototypes that we have developed as proof of concepts derived from our research
work (Chapter 9). The manuscript ends with general conclusions about our investigation and
describes promising perspectives of this research work (Chapter 10). The three main parts of the
document are detailed in the next subsections.

Figure 1.1 Ð Organization of the document

1.3.1 Part I: State of the art

The Þrst part of this document (Part I) describes the state of the art related to autonomic
computing and vulnerability management. This part aims at positioning the autonomic compu-
ting paradigm in the context of large scale network management, and presenting current methods
and techniques used nowadays for dealing with security vulnerabilities. Particularly, Chapter 2
brießy presents the evolution of networks during the last decades, and highlights the role of au-
tonomic computing on this evolution. In that context, we identify security issues in autonomics
that require special attention, speciÞcally those related to vulnerability management. Chapter 3
presents our research work about current mechanisms and scientiÞc approaches for managing
vulnerabilities, and discusses how they can contribute to enhance the security of autonomic en-
vironments. Indeed, we identify beneÞts and limitations of these approaches, and put forward
research challenges and open issues that must be addressed in order to achieve real autonomy
on self-governed networks and systems.

1.3.2 Part II: Contributions

The second part of this manuscript (Part II) presents the contributions of this thesis. Accor-
ding to the vulnerability management process, we classify our contributions in two main catego-
ries, vulnerability assessment and vulnerability remediation. Figure 1.2 depicts our research work
organized into di!erent chapters where dashed lines illustrate the main reading ßow across them.
The Þrst contribution, presented in Chapter 4, consists of a device-based approach for autono-
mic vulnerability assessment. From here, three dimensions represented with solid lines extend

5

Chapter 1. General introduction

Figure 1.2 Ð Organization of contributions

the vulnerability assessment activity to novel scenarios considering spatial, temporal, and tech-
nological perspectives. Chapter 5 extends the concept of device-based localized vulnerabilities
to composed vulnerabilities distributed across the network. We denominate this spatial exten-
sion, distributed vulnerabilities. Chapter 6 involves the second dimension which considers time.
Indeed, this approach allows to increase the present security of computer devices by analyzing
hidden vulnerable states in the past. Chapter 7 captures the technological dimension, where we
have investigated novel approaches for assessing vulnerabilities in constrained environments such
as mobile networks. All these chapters, from 4 to 7, fall into the vulnerability assessment category.
Chapter 8 closes the vulnerability management process by considering vulnerability remediation
activities. Contributions related to remediation activities are divided in two parts, namely, reme-
diation of device-based vulnerabilities, and distributed ones, both located in Chapter 8. In the
next subsections, we provide an overview of each chapter describing the contributions involved
on them.

¥ Autonomous vulnerability awareness

Changes that are operated by autonomic networks and systems may generate vulnerabilities
and increase their exposure to security attacks. Our objective is to enable autonomic networks
to take advantage of the knowledge provided by vulnerability descriptions in order to maintain
safe conÞgurations. In that context, our Þrst contribution presented in Chapter 4, introduces an
autonomous approach for assessing device-based vulnerabilities. To this end, we have integrated
vulnerability descriptions into the management plane of autonomic systems. We have particularly
chosen the Cisco IOS platform as a proof of concept [86]. By automatically translating these
security advisories into policy rules that are interpretable by an autonomic conÞguration system,
autonomic agents distributed across the network become able to assess their own exposure.
We have used the OVAL language [117] as a means for specifying vulnerability descriptions, and
Cfengine [38] as the autonomic component of our solution. This approach provides an autonomous
mechanism for increasing the vulnerability awareness of self-governed environments.

6

1.3. Organization of the document

¥ Distributed vulnerabilities

Vulnerability assessment is traditionally performed over individual network devices, indepen-
dently of each other. Sometimes however, two or more devices combined together may produce a
vulnerable network state that host-based approaches are not able to detect. We refer to these se-
curity weaknesses as distributed vulnerabilities, which constitute our extension within the spatial
dimension. Distributed vulnerabilities must be assessed with a consolidated view of the network
in order to detect vulnerable states that may simultaneously involve two or more network de-
vices. Chapter 5 presents our approach for describing and assessing distributed vulnerabilities
in autonomic environments. We emphasize a mathematical construction for formally specifying
distributed vulnerabilities as well as a machine-readable language for describing them. We also
present an autonomous framework for assessing distributed vulnerabilities that exploits the know-
ledge provided by such descriptions. Therefore, our strategy permits to increase the vulnerability
awareness of both individual devices and the network as a whole.

¥ Past hidden vulnerable states

Vulnerability assessment activities usually analyze new security advisories only over current
running systems. However, a system compromised in the past by a vulnerability unknown at
that moment may still constitute a potential security threat in the present. Indeed, a backdoor
installed by an attacker for instance, may remain in the system even though the original vul-
nerability has been eradicated. Accordingly, past unknown system exposures are required to be
taken into account. Chapter 6 presents our approach for increasing the overall security of compu-
ting systems by identifying past hidden vulnerable states, which constitutes our extension in the
temporal dimension. In that context, we propose a modeling for detecting unknown past system
exposures as well as an OVAL-based distributed framework for autonomously gathering network
devices information and automatically analyzing their past security exposure.

¥ Mobile security assessment

The development of mobile technologies and services has contributed to the large-scale de-
ployment of smartphones and tablets. These environments are exposed to a wide range of security
attacks and may contain critical information about users such as contact directories and phone
calls. Assessing conÞguration vulnerabilities is a key challenge for maintaining their security, but
this activity should be performed in a lightweight manner in order to minimize the impact on
their scarce resources. Chapter 7 presents two complimentary approaches for assessing conÞgu-
ration vulnerabilities in mobile devices, which constitute our extension within the technological
dimension. The Þrst approach considers a self-assessment strategy which allows mobile devices
to assess their own exposure. In order to reduce the workload on the mobile side even more,
we also propose a probabilistic cost-e"cient strategy integrated into a client-server architecture.
Both approaches target the Android platform [11] as a proof of concept, though these approaches
could be adapted to other mobile platforms as well.

¥ Remediation of conÞguration vulnerabilities

Vulnerability assessment constitutes a key activity within the vulnerability management pro-
cess. However, once a vulnerability has been detected, remediation activities to eradicate such
security weakness are essential. Indeed, the management of known vulnerabilities plays a cru-
cial role for ensuring safe conÞgurations and preventing security attacks. However, this activity

7

Chapter 1. General introduction

should not generate new vulnerable states. Chapter 8 presents two remediation approaches targe-
ted on device-based and distributed vulnerabilities respectively. Our Þrst approach formalizes the
remediation decision process of device-based vulnerabilities as a SAT problem. In that context,
we present an autonomous framework that is able to assess OVAL vulnerability descriptions and
perform corrective actions by using XCCDF-based descriptions [167] of future machine states and
the NETCONF protocol [63]. The second approach targets distributed vulnerabilities. There, we
propose an autonomous strategy where network elements collaborate to remediate the vulnera-
bilities they are involved in.

1.3.3 Part III: Implementation

In order to evaluate the feasibility and scalability of the proposed approaches, we have de-
veloped di!erent implementation prototypes that serve as the computable infrastructure for our
experiments. Chapter 9 describes three implementation prototypes targeting autonomous device-
based vulnerability awareness, past hidden vulnerable states, and mobile security assessment. Our
Þrst prototype, called Ovalyzer, is an OVAL to Cfengine translation system, which permits the
integration of OVAL vulnerability descriptions into the autonomic management plane. Ovalyzer
generates Cfengine policy rules that represent these security advisories. Then, generated Cfen-
gine policies are consumed by autonomic agents deployed in the network, thus becoming able to
assess their own security exposure. Our second implementation prototype aims at dealing with
past unknown security exposures. Reusing the idea behind Ovalyzer, this prototype is able to
autonomously generate XML-based snapshots of the state of the systems under surveillance, by
following Cfengine policy rules. These images are then e"ciently stored in an SVN-based reposi-
tory. When new vulnerability descriptions become available, an exposure analyzer automatically
assess stored images in order to identify past unknown security exposures. Our third prototype,
called Ovaldroid, targets vulnerability assessment activities on the Android platform. Indeed,
we have implemented both approaches presented in Chapter 8. First, we present a lightweight
self-assessment service able to monitor an external provider for new vulnerability deÞnitions and
assess its own security exposure. Afterwards, we present our probabilistic extension where the
assessment activities are controlled and performed by an external server, thus reducing even more
the workload on the client side.

8

Part I

Autonomic environments and
vulnerability management

9

Chapter 2

Network management and autonomic
computing

Contents
2.1 Introduction . 11

2.2 Large-scale network management 12

2.2.1 Computer networks and the Internet 12

2.2.2 Technological evolution . 13

2.2.3 End-users behavior . 15

2.3 Autonomic computing overview 16

2.3.1 Key concepts of autonomics . 16

2.3.2 Behavioral and architectural models 18

2.4 Security issues in autonomics . 20

2.4.1 Vulnerability management in autonomic environments 21

2.5 Synthesis . 22

2.1 Introduction

The growing development of networks and the multiplication of the services o!ered over them
have dramatically increased the complexity of network management. The paradigm of autonomic
computing has been introduced to address this complexity through the design of networks and
services which are responsible for their own management. While high-level objectives are provided
by network administrators, management operations are delegated to the networks themselves.
This alleviates the administrative burden required for maintaining large-scale expanding networks
as well as dozens of heterogeneous services. In this chapter, we Þrst present a holistic perspective
of evolving aspects that boost large-scale network management. We also discuss why the paradigm
of autonomic computing may deal with these management issues. Following, we illustrate the
main architectural characteristics of autonomics and put forward essential security concerns that
need to be addressed. Finally, we explain why vulnerability management constitutes a critical
activity to ensure real autonomy, and provide an overview of the approach taken in this thesis
to achieve this goal.

11

Chapter 2. Network management and autonomic computing

2.2 Large-scale network management

In the broad sense of the concept, technology has been used by men for thousands of years.
DeÞned as the creation, manipulation, and knowledge of tools and methods for solving problems,
achieving goals, and controlling the environment that surround us [149], technology constitutes
a cornerstone in the evolution of human kind. The inherent nature of technology projects a de-
pendency relationship with human beings. While the desire of exploration, discovery, automation
and innovation has made technology evolve to encompass human needs and goals, the impact
of technology on peopleÕs culture and life has also become a form of feedback that aligns its
direction. The era of information technology, where we are living now, is not an exception to
this cyclical e!ect. Within this revolution, computer technologies have played a fundamental
role, not only for end users, but also for orthogonal scientiÞc and industry domains that at the
end will eventually impact on human beings in some way or another. From small resource-less
wired computers in the early 1980Õs to ubiquitous communication devices and smart apartments
in the 2010s, the evolution of computing technologies has turned into a mesh of systems and
devices where everything gets interconnected. In that context, the management of these large-
scale, convoluted and heterogeneous networks becomes extremely challenging. The aim of this
section is to show why autonomic computing is important to address the management of current
and future networks. To that end, we analyze two aspects that directly impact on the evolution
of computer networks: technological advances and the behavior of end-users. The objective is
to provide an overview of current network trends and what we should expect, and motivate the
development of autonomic solutions to success in the design and management of future networks.

2.2.1 Computer networks and the Internet

Computer networking has its origins in the early 1960s. Aiming at interconnecting and sha-
ring computing resources, several research projects using a wide variety of protocols were de-
veloped at that time. The ARPANET project, led by the Advanced Research Projects Agency
(ARPA) within the U.S. Department of Defense, was one of them [15, 83]. The Þrst deployment
of the network ARPANET was performed in the late 1960s. Involving four nodes at four dif-
ferent American universities (University of California, Los Angeles ; Stanford Research Institute ;
University of California, Santa Barbara ; University of Utah), ARPANET became the Þrst opera-
tional packet-switching network in the world. But it was not until the 1970s that this and other
governmental and academic networks became interconnected using a common program called
the Internet Transmission Control Program [127]. The speciÞcation of this program was the Þrst
document to coin the term Internet as a shorthand forinternetworking. The fundamentals of this
program gave rise to a new networking model released in the early 1980s called the Internet Pro-
tocol suite, currently maintained by the Internet Engineering Task Force (IETF) [84]. This set
of communication protocols, commonly known as TCP/IP because of its two leading protocols,
the Transmission Control Protocol (TCP) [129] and the Internet Protocol (IP) [128], would lay
the architectural foundations of what we know today as the Internet.

The Internet is nowadays a global and decentralized system of interconnected computer net-
works. The Internet Protocol suite provides standards that allow computers within these net-
works to communicate with each other. This capability has provided a world-wide infrastructure
over which thousands of systems and services have been built, reaching millions of users every
day. The World Wide Web (WWW), whose standards are maintained by the World Wide Web
Consortium (W3C), constitutes a representative example [156]. Current computer networks as
well as the Internet itself also feature an interesting characteristic, it is an expanding technology.

12

2.2. Large-scale network management

Figure 2.1 Ð Large-scale networking evolution

Dozens of scientiÞc domains contribute to some extent in the development of current and future
networks. Some of them are focused on architectural and management issues, others deal with
challenging problems that occur on top of networked infrastructures. As an example, enabling
the interconnection of di! erent devices may be classiÞed as a networking problem. On the other
hand, extracting accurate results for a speciÞc search over thousands of gigabytes of informa-
tion may be more connected to Big Data, Semantics or Data Mining techniques [77]. However,
the interconnection of di!erent techniques coming from disparate domains to solve computing
problems is currently more and more common.

In the context of large-scale network management, it is important to have a holistic perspec-
tive of how current technologies are a!ecting and shaping the structure of today networks and
therefore, the Internet. Even though this is not an exhaustive enumeration of current scientiÞc
research domains, we consider two prominent, yet very abstract, lines that can describe the forces
that may mold future networks. These are: technological advances that provide new hardware
and software systems with more and di!erent capabilities, and end-users behavior, which guides
to some extent, the Þnal purpose of new technology and hence, how it should be constructed
to meet peopleÕs needs and expectations. This vision is illustrated in Figure 2.1, where several
interconnected research Þelds have arisen after the introduction of IP networks in the 1980s. The
management of expanding and dynamic networks, where on top, diverse approaches and tech-
niques are built to provide new services and applications, is becoming more and more complex
everyday. Transversely, we have identiÞed the autonomic computing paradigm as a perspective
that goes beyond the resolution of network management problems as explained later in this
chapter. Figure 2.1 aims at positioning network management trends under the inßuence of two
evolving paths, the advances in computer technologies and the users behavior over services built
on top of these technologies. Both aspects are discussed in the following subsections.

2.2.2 Technological evolution

Over the last decade, novel methods in engineering and electronics, non-expensive construc-
tion materials, and enhanced methodologies for large-scale production have arisen, triggering a
massive ßood of disparate powerful hardware with di!erent abilities. This aspect has made room
for new di!erent technologies to emerge. With cheaper and more powerful hardware, the idea

13

Chapter 2. Network management and autonomic computing

of virtualizing hardware platforms and general computing resources became popular [131]. The
use of virtualization techniques has augmented the amount of network resources, real or virtua-
lized, increasing the complexity of network management. With the incorporation of high-speed
communication lines, cloud computing has gone one step further [31]. Cloud computing o!ers ser-
vices whose processing is transparently performed combining resources distributed all around the
globe. The decoupling of services from underlying resources has opened new horizons for emerging
technologies such as Software-DeÞned Networks (SDN) [140, 64]. SDN allows administrators to
manage computer networks independently from the real devices that actually implement low
level network functionalities [22]. Complementary, Network Functions Virtualization (NFS) has
come up with a novel perspective that leverage technology virtualization to consolidate disparate
network devices into a single standard high-performance network platform [65]. These e!orts aim
at simplifying network management, to which autonomic computing can highly contribute.

The rapid evolution of the hardware industry has also promoted the increasing use of mobile
devices such as smartphones and tablets. Indeed, it is expected that the number of mobile-
connected devices will exceed the number of people on Earth by the end of 2013 [42]. With
thousands of applications and services, mobile end-users expect seamless service provisioning
from the cloud and clean communications on the move. This issue becomes a challenging problem
for network operators when the reality tends to fast expanding mobile networks. Even though
mobile devices spread fast, they still lack of powerful computation resources. In light of this, a new
research domain denominated mobile cloud computing is emerging, which aims at making mobile
devices resource-full in terms of computational power, memory, storage, energy, and context-
awareness. This issue makes their management even more complex.

But mobile networks are not actually the only technological Þeld with power-less devices.
Low-Power and Lossy Networks (LLN) is a classiÞcation of networking environments with re-
source constrained devices [93], which includes Wireless Sensor Networks (WSN) [14]. WSNs are
dynamic networks constituted by powerless sensors and short wireless signal range, e.g. tempera-
ture and home automation, which collaborate each other to route messages to their destination.
However, energy or range limitations might break all communication links passing through them,
posing hard management problems including routing, security and interoperability issues. In ad-
dition, WSNs use the ISM (industrial, scientiÞc and medical) radio bands to transmit packets
across the network [90]. But ISM is also used by other technologies, and therefore, the throughput
of communication links can be degraded due to sensors usually have to wait for available chan-
nels to send their packets. To overcome this and many other issues, a novel research area called
Cognitive Radio Networks (CRN) is arising [90]. CNRs feature autonomic strategies, making a
smart use of the radio-frequency spectrum for opportunistically transmitting information.

All these technologies coexist within an environment that requires to be properly managed.
Indeed, the Internet constitutes a target infrastructure where all these technologies can be inte-
grated. With the advent of IPv6, the unique identiÞcation of any network device in the world
becomes possible [125]. This has given room to a new way of understanding the Internet named
the Internet of Things (IoT) [18, 23]. IoT describes the concept of a global network where he-
terogeneous and ubiquitous devices, from standard computers to cars and appliance on-board
wireless sensors, become interconnected through high-speed communication channels. The revo-
lutionary vision of an Internet integrated by any type of object providing smart services to others
over a dense mesh of communication links, is for several scientists, the Internet of the future.

In brief, computer technologies evolve fast and constitute very complex internetworked envi-
ronments. To make their management sustainable, systems involved in these convoluted networks
must expose higher levels of autonomy, as reported in [16, 143]. To that end, autonomic computing
provides strong foundations to tackle the management complexity of current and future networks.

14

2.2. Large-scale network management

2.2.3 End-users behavior

With the overwhelming avalanche of new devices and technologies, the trend to the Internet
of Things seems indeed natural. However, there exist other inßuential factors that cannot be
ignored, for instance, peopleÕs behavior with respect to the use of these technologies. As illustra-
ted in Figure 2.1, people also determinate to some extent, in which way technology can be used,
or whether its purpose makes sense. Social networks constitute an outstanding example of tech-
nologies that have greatly inßuenced peopleÕs behavior and vice versa [95], like Facebook [67] and
LinkedIn [98]. During the last decade, it has been observed that social interactions mostly involve
exchange and sharing of information and media content. The mechanisms that provide access
to this content have dramatically evolved since then. Media aggregators such as YouTube [165],
and photo sharing sites such as Picasa [121] and Flickr [70], are some examples.

Even though these web-based technologies are used on a daily basis, they are not the only
means for accessing content. Dedicated infrastructures designed to share digital material have
also arisen such as Peer-2-Peer (P2P) overlays (e.g. BitTorrent [28], eMule [60]), and Content
Distribution Networks (CDN) (e.g. Akamai [7], Limelight [97]). The overwhelming consumption
of media content over the Internet is currently so strong that several academics and industry
entities have proposed radical approaches to deal with the burden of information exchange across
the global network. Information-Centric Networking (ICN) is a new paradigm that provides
a clean architectural approach to address these new relevant requirements [164, 3]. The main
argument is that the Internet, as originally conceived, has been designed to exchange data packets
between identiÞed machines. However, end users do not really care about who provides the
information (node endpoints), they just want to access the exact content they are looking for,
no matter where it is stored. This vision drives to radical changes on the architectural design of
the Internet itself, orienting its organization to named content, and using in-network caching for
storing popular content so close users can retrieve the same information faster. Content-Centric
Networks (CCN) is a well-known approach inside the ICN paradigm [139, 36]. The main goal
is to provide a network infrastructure service that is better suited to todayÕs use, particularly
content distribution and mobility, and more resilient to disruptions and failures [3].

These novel information-based network models appear as a response to the inability of current
networks to face end-users requirements. Therefore, a potential lecture of this phenomenon is
that the community is trying to recreate or adapt more than thirty years of IP-based technologies
to support current needs, which is indeed natural, but also extremely hard. This issue shows why
ßexible technologies are important. In that context, the adaptive nature of autonomic approaches
may better Þt current and future end-users behavior, providing more ßexibility and scalability.

In summary, we have illustrated in this and the previous section, two di!erent evolving paths
that can have a strong impact on the future Internet. The objective is not to make an exhaustive
analysis of each current edge technology, but to provide an insight of what is happening within
current networks and the Internet, as well as disparate technologies running on top of them. In
order to support their natural evolution, new perspectives to manage these evolving networks in
a smart and controlled manner, constitutes a crucial problem. These perspectives must provide
novel ways to deal with network management complexity. With this issue in mind, we have
observed that no matter what technology or trend is considered, a common feature remains
suitable to these challenges, autonomy. In order to tackle the overwhelming demand of end
users as well as the fast large-scale deployment of heterogeneous network devices, autonomous
mechanisms for managing these networks are essential to achieve scalability and reliability. In the
next section, we present an overview of autonomic computing and detail architectural aspects as
well as internal design issues.

15

Chapter 2. Network management and autonomic computing

2.3 Autonomic computing overview

The autonomic computing paradigm was born as a response to cope with the evident arising
complexity of managing computing systems [91, 57]. In 2001, IBM [80] communicated a mani-
festo where it was explained that the management methods used at that moment, including
software and hardware installation, conÞguration, integration, and maintenance, were not sui-
table to scale with the future landscape that was coming. In that context, a radical new way to
deal with computer and network management was proposed, autonomic computing. The vision
of autonomic computing is strongly inspired on the autonomous nervous system. Everyday, we,
as human beings, perform several tasks conscientiously that to some extent, are the result of
following some high-level objective within our lives. We eat when we are hungry, we sleep when
we are tired, we take decisions expecting to succeed in our goals, and so many complex tasks as
we can imagine. However, there are some other tasks, which are as much important as eating
or sleeping, that are unconsciously and automatically done by our own bodies. Indeed, every
time we breath, we do not do it conscientiously, we do not think about it. However, it is still
a vital function that actually follows a high-level human law, being alive. In the same manner,
the autonomous nervous system also governs our heart rate and body temperature, thus freeing
our conscious brain from the burden of dealing with these and many other low-level, yet vital,
functions [91]. In that context, autonomic computing aims at providing an infrastructure where
networks can be managed by establishing high level-objectives. The underlying networking com-
ponents will then perform in accordance to these rules and the changing environment, without
explicit human intervention. This perspective aims at providing strong foundations for develo-
ping scalable and ßexible infrastructures able to support a demanding and changing technological
reality [133], [79].

2.3.1 Key concepts of autonomics

The Þrst step towards the construction of autonomic solutions is in fact to understand what
autonomic actually is. In other words, we should be able to distinguish between autonomic
solutions and those that are just automatic. In 2009, NASA published a book where it is explained
how autonomic systems are applied to NASA intelligent spacecraft operations and exploration
systems [153]. There, the di!erences between automation, autonomy and autonomicity are very
well discussed. Both automation and autonomy refer to the ability of executing a complete process
without human intervention. The main di!erence is that while an automated solution sticks to
the step-by-step process it was built for, an autonomous solution may involve a decision process
under certain circumstances that a!ects the way tasks are executed, in order to accomplish its
goals or Þnal purpose. Such circumstances are usually related to the environment perceived by
the autonomous agent. In other words, automated solutions replace step-by-step processes done
by humans. Autonomic solutions on the other hand, aim at emulating human behavior during the
process, by reasoning and taking decisions for the successful operation of the system. According
to the dictionary deÞnitions used in [144], autonomous and autonomic solutions means almost
the same, except for a very slight property, spontaneity. While autonomy means self-governance
and self-direction, independent and not controlled by external forces ; autonomic means self-
management, that occurs automatically and involuntarily, just as the autonomic nervous system
does. For the sake of clarity and simplicity, we will use in this thesis both terms, autonomous and
autonomic, without distinction except where explicitly noted, considering the following deÞnition.

16

2.3. Autonomic computing overview

Figure 2.2 Ð Stages towards autonomic computing [82]

DeÞnition 1 (Autonomic system). An autonomic system is a self-governed entity, able to ma-
nage itself without any type of external control, and to perform required tasks without human
intervention in order to accomplish the goals it was created for. While the purpose of the auto-
nomic system is deÞned by high-level objectives, the achievement of this purpose is delegated to
the system itself. The internal activities performed by the autonomic system may include envi-
ronment perception, analysis, reasoning, decision making, planning and execution of actions that
must ensure the successful operation of the system.

As an e!ort to classify existing management solutions and their positioning with respect to
the autonomic vision, IBM established what they called the evolutionary path to autonomic
computing [82]. This path is represented by Þve levels as illustrated in Figure 2.2. The Þrst le-
vel depicts the basic approach where network elements are independently managed by system
administrators. Following, the managed level integrates the information collected from disparate
network systems into one consolidated view. At the predictive level, new technologies are incor-
porated for correlating information, predicting optimal conÞgurations and providing advices to
system administrators. The ability to automatically take actions based on the available infor-
mation constitutes the adaptive level. Finally, the autonomic level is achieved when the system
is governed by business policies and objectives. These objectives deÞne the purpose of the au-
tonomic system that will be inherently pursuit by its logical implementation and supported by
its internal know-how as well as its ability to sense the environment. The fact of being gover-
ned by policies or high-level objectives is what makes the key di!erence between autonomic and
automated solutions.

Autonomic solutions are usually composed of smaller components called autonomic entities.
Autonomic entities are designed to serve a speciÞc purpose such as monitoring a network device
or providing routing services. These entities can then be combined to construct more complex
autonomic solutions. In order to organize their self-governing nature, autonomic systems involve
a set of functional areas called self-* properties, deÞned as follows [105]:

Ð self-conÞguration , providing mechanisms and techniques for automatically conÞguring
components and services,

Ð self-optimization , covering methods for monitoring and adapting parameters in order to

17

Chapter 2. Network management and autonomic computing

achieve an optimal operation according to the laws that govern the system,
Ð self-healing , for automatically detecting, diagnosing and repairing localized software and

hardware problems, and
Ð self-protection , supporting activities for identifying and defending the system against

potential threats.
These areas permit to classify the mechanisms used for regulating the behavior of autonomic
entities. This aspect is discussed in the following subsection.

2.3.2 Behavioral and architectural models

From a high-level perspective, autonomic entities work under closed control loops that govern
their behavior. In control theory, a closed control loop refers to a feedback mechanism that
controls the dynamic behavior of a system based on the sensed environment as well as its own
state (feedback) [17]. As shown in Figure 2.3, the resource manager interface provides means
for monitoring and controlling the managed element (hardware, software, others). While its
sensor enables the autonomic manager to obtain data from the resource, the e!ector allows it
to perform operations on the resource. The autonomic manager is composed of a cycle of four
activities that determines the behavior of the speciÞc autonomic entity. This cycle or control
loop includes monitoring its current state, analyzing the available information, planning future
actions, and executing generated plans compliant to speciÞed high-level goals [81]. In addition,
the autonomic manager also exposes a management interface, in the same way the managed
element does. This interface allows other autonomic managers to use its services and provides
composition capabilities on distributed infrastructures.

It is important to highlight that a wide range of software and systems could embody, to
some extent, autonomic solutions. To achieve this, the involved elements should be adapted to
interact with the environment by means of sensors and e!ectors, as illustrated in Figure 2.3. In
addition, they should work guided by rules and policies intended to achieve a speciÞc purpose.
Under a behavioral perspective, the autonomic manager will continuously monitor the managed
elements and will perform an analysis of the perceived state. This information is then used to
plan and execute changes required to align the state of the managed elements with the speciÞed
high-level objectives. This process describes the internal and Þnest working level of an autonomic

Figure 2.3 Ð Autonomic management lifecycle [81]

18

2.3. Autonomic computing overview

Figure 2.4 Ð Autonomic computing architecture [81]

system. However, the management interfaces exposed by these self-governed components, permit
to combine them and to obtain easy solutions for complex problems. Indeed, the ability to
integrate autonomic solutions into broader autonomic systems provides support for accompanying
evolving technological landscapes [105].

The basic architecture of the autonomic computing approach proposes a layered organization
as illustrated in Figure 2.4. Starting from the bottom, layer 1 contains managed resources over
the IT infrastructure. These resources can be hardware devices such as servers, routers and
access points, services and software components. Their management interfaces provide means
for accessing and controlling the managed resources. Layer 2 describes autonomic managers
for, but not limited to, the four aforementioned categories of self-management denominated
self-* properties, i.e., self-conÞguration, self-optimization, self-healing and self-protection. Each
autonomic manager within layer 2 is in charge of controlling a speciÞc group of resources. To
do so, these managers involve control loops for each self-* property, which control the state and
behavior of the underlying devices. In order to line up the general directives of the autonomic
system, it is required an autonomic component able to organize the overall activity of each speciÞc
self-* property across the whole system. Layer 3 contains autonomic managers that orchestrate
other autonomic managers incorporating control loops that have the broadest view of the overall
IT infrastructure. For instance, the self-conÞguration orchestrator will control the autonomic
managers underneath related to self-conÞguration. This provides a consistent outlook of the
system for each self-* property. The self-* orchestrator component is in charge of controlling
every speciÞc orchestrator, which is essential to achieve consistency with respect to the laws
that govern the autonomic system. The top layer illustrates a manual manager that provides
a common system management interface for the IT professional using an integrated solution
console. The various manual and autonomic manager layers can obtain and share knowledge via
knowledge sources.

19

Chapter 2. Network management and autonomic computing

Self-* properties are intended to autonomously solve high-level requirements, however, their
implementation is complex and poses hard challenges. Along with administration tasks done
by humans, changes performed by autonomic entities may inadvertently generate vulnerable
states when following high-level objectives. Even though these changes can operationally improve
the environment, insecure conÞgurations may be produced increasing the exposure to security
threats. Therefore, enabling autonomic networks and systems to manage vulnerabilities and
maintain safe conÞgurations constitutes a major challenge. This topic is discussed in the next
section.

2.4 Security issues in autonomics

Autonomic systems must act on their own, taking any necessary decision to obey the rules
that govern their behavior and to achieve their goals. As such, these systems must deal with
security aspects, ensuring a proper functionality and guaranteeing their results. As explained
before, autonomic systems are governed by high-level policies. Therefore, a major problem in
autonomics relies on the successful operation of the system while also respecting all the rules
that control the system. In that context, rules or policies can sometimes enter into a conßict.
As an example, we can state the question: what happens when a service X has been identiÞed
as vulnerable to some kind of attack, but other rule says that service X must be always active ?
If we do not have a countermeasure for this vulnerability, should we deactivate service X and
violate the other rule to ensure security ? Should we leave service X activated so as to respect
the other rule ? These are transversal requirements that pose consistency issues. At some point,
solving these issues autonomously might not even be possible, and they should be addressed
by human administrators. We could ask: are operational aspects more important than security
ones ? The answer to this question might be found, perhaps, in the objectives and purpose of
the speciÞc autonomic system. Nevertheless, this is not a design problem of autonomics itself.
This is a problem that human beings face everyday. Autonomic entities must be adaptive, with
respect to the environment and to their own performance. When new knowledge contradicts
information they already have, autonomic systems must be able to deal with this inconsistency
problem and ensure appropriate functionality. They must learn and make decisions to accomplish
their objectives. This problem may actually happen at any level of an autonomic architecture.
Therefore, it is important to keep this problem in mind when designing an autonomic component.

During the last years, several e!orts have been made to provide standard autonomic fra-
meworks over which autonomic solutions can be built. The European UniverSelf project is an
example to which we have contributed [154]. The UniverSelf project provides an infrastructure
called UniÞed Management Framework (UMF), composed of three main blocks, governance, co-
ordination and knowledge, which controls the overall behavior of the system. In addition, it
o!ers well structured means for developing autonomic components to be executed over this in-
frastructure. These components are called Network Empowerment Mechanisms (NEMs). In the
context of this thesis, we have contributed with a NEM for empowering vulnerability manage-
ment features in UMF. Consistency issues regarding high-level policies are managed by the UMF
framework. This thesis is oriented to deal with vulnerabilities in an autonomous manner. We
do not deal with consistency problems at other operational levels of self-governed environments.
However, we aim at providing consistent solutions so as to decrease, or at least to not increase,
the burden of dealing with broader consistency problems. Our objective is to provide autonomous
and consistent mechanisms for assessing and remediating vulnerabilities, in order to ensure safe
conÞgurations within autonomic environments as explained in the following subsection.

20

2.4. Security issues in autonomics

Figure 2.5 Ð Positioning of vulnerability management with respect to self-management activities

2.4.1 Vulnerability management in autonomic environments

In order to explain our approach, it is important to Þrst understand what a vulnerability ac-
tually is. All along this work, the concept of vulnerability in computing security will be described
by considering the following deÞnition.

DeÞnition 2 (Vulnerability). A vulnerability can be understood as a ßaw or weakness in system
security procedures, design, implementation, or internal controls that could be exercised (acci-
dentally triggered or intentionally exploited) and result in a security breach or a violation of the
systemÕs security policy [108], [85].

Under this perspective, vulnerability management is a cross-cutting concern strongly related
but not limited to self-conÞguration and self-protection activities of autonomic networks. This
process is depicted in Figure 2.5 where a control loop enables the assessment and remediation of
potential vulnerable states generated by both administrators tasks and self-management activi-
ties, thus securing the environment. The main idea is that actions and changes performed in the
system are constantly monitored and analyzed looking for vulnerabilities. When vulnerable states
are detected, corrective actions are performed until the environment is secured. The vulnerabi-
lity management control loop remains active during the whole lifetime period of the autonomic
environment under surveillance. In that context, the establishment of a secure process for dealing
with vulnerabilities requires the speciÞcation of a policy deÞning the desired system state, and a
well-known secure initial state to identify vulnerabilities and policy compliance [162]. The main
activities performed during the lifecycle of the vulnerability management process can be mapped
to the same activity line present in autonomic components. Figure 2.6 describes the general life-
cycle of an autonomic component where the main activities done for dealing with vulnerabilities
have been mapped to the task loop performed during the autonomic manager lifecycle [81]. As it
can be observed, vulnerability identiÞcation activities take place in the monitoring phase where
tasks for assessing and analyzing vulnerable states are performed (I) taking advantage of the
available security knowledge. When a security problem is found, it is classiÞed (II) and changes
for correcting the situation must be performed. Therefore, vulnerability counter-measures are
planned based on several factors such as importance, risks and impact. Finally, a change plan is
generated and remediation tasks are executed (III) in order to maintain safe conÞgurations and to
be compliant with the current policy. Figure 2.6 illustrates the overall approach taken in this the-
sis for integrating vulnerability management activities into the autonomic plane. Actual existing
methods and techniques for dealing with vulnerabilities within autonomic and non-autonomic
systems are widely discussed in Chapter 3.

Autonomic computing provides strong theoretical and practical foundations to face the large-
scale network deployment that we are observing today. However, it is essential to incorporate

21

Chapter 2. Network management and autonomic computing

Figure 2.6 Ð Mapping of the vulnerability management activity into the autonomic lifecycle

security mechanisms into autonomic environments in order to get practical and working solutions.
As happens in the real world, autonomic elements coexist within dynamic environments, interac-
ting with other autonomic and non-autonomic elements. Nevertheless, there are also continuous
threats that may compromise autonomic elements safety. If an autonomic element is compromi-
sed, its functions and abilities become untrustworthy and eventually disabled ; thus autonomic
elements that use services of the former become compromised as well. This inevitably leads to
distrust and failure of the autonomic environment. Autonomic systems must be able to manage
their own state and perform required activities to achieve secure conÞgurations. Autonomic ele-
ments unable to support this capability will age with time, becoming more vulnerable, insecure
and useless. Real automation can be possible only if autonomic networks and systems fully in-
tegrate vulnerability management mechanisms for ensuring safe conÞgurations. In that context,
this thesis aims at contributing to the security of autonomic computing, with a particular focus
on the management of conÞguration vulnerabilities.

2.5 Synthesis

In this chapter, we have presented a broad outlook of issues that are shaping the structure of
todayÕs networks and the Internet. The overwhelming advent of new technologies featuring more
power, ubiquity and usability in disparate contexts, requires novel techniques and methodologies
for managing the underlying networks that support them. The technological landscape changes
fast and users collaborate to mold its future as well. Therefore, it is important to leverage clean
and adaptive approaches to face this evolving reality. Autonomic computing provides robust
foundations that may encompass this evolution and can help to address several current network
management challenges. However, autonomic systems must ensure safe conÞgurations if we want
to trust autonomic solutions. In that context, the aim of this thesis is to provide novel autonomous
mechanisms for dealing with vulnerabilities, in order to increase the security of self-governed
networks and systems. In the next chapter, we present an in-depth investigation of current
existing methods and techniques for dealing with vulnerabilities, discussing their beneÞts and
limitations with respect to their application in autonomic systems and networks.

22

Chapter 3

Vulnerability management

Contents
3.1 Introduction . 23
3.2 The vulnerability management process 24

3.2.1 A brief history of vulnerability management 24
3.2.2 On the organization of vulnerability management activities 25

3.3 Discovering Vulnerabilities . 26
3.3.1 Exploiting testing methods . 26
3.3.2 Using network forensics . 27
3.3.3 Taking advantage of experience . 28

3.4 Describing Vulnerabilities . 29
3.5 Detecting vulnerabilities . 33

3.5.1 Analyzing device vulnerabilities . 33
3.5.2 Analyzing network vulnerabilities 35
3.5.3 Correlating vulnerabilities with threats and attack graphs 36

3.6 Remediating vulnerabilities . 37
3.6.1 Change management . 38
3.6.2 Risk and impact assessment . 39

3.7 Research challenges . 40
3.8 Synthesis . 41

3.1 Introduction

Managing large-scale networks is a complex task and by nature, humans make errors when
conÞguring them. In addition, changes performed by autonomic entities may increase their own
security exposure. Because of this, vulnerable conÞgurations are likely within such environments
and they may potentially lead to a wide spectrum of negative and unwanted issues such as
instability, unavailability, conÞdentiality problems, and many more. In that context, managing
vulnerabilities becomes a crucial and challenging activity. Autonomic computing must integrate
vulnerability management mechanisms so as to ensure safe conÞgurations. In this chapter, we
present a detailed outlook of the vulnerability management process as well as direct and or-
thogonal research e!orts that may potentially contribute to the integration of this process into
autonomic environments.

23

Chapter 3. Vulnerability management

3.2 The vulnerability management process

In the same way bank robbers prepare their strikes identifying weak points to take advantage
of, attackers seek for weaknesses that can exploit to gain access to computer systems. These
weaknesses range from end-users (e.g. we could apply social techniques on someone to obtain
critical information such as passwords), to computer vulnerabilities and network security policies.
This thesis however, is focused on the management of computer vulnerabilities. To formally deÞne
this concept, let us recall the concept of vulnerability given in DeÞnition 2. A vulnerability can
be understood as a ßaw or weakness in system security procedures, design, implementation, or
internal controls that could be exercised (accidentally triggered or intentionally exploited) and
result in a security breach or a violation of the systemÕs security policy [108], [85]. With this
concept in mind, we consider the following deÞnition for vulnerability management.

DeÞnition 3 (Vulnerability management). In computer security, vulnerability management re-
fers to a continuous process which involves the (I) identiÞcation, (II) classiÞcation, and (III) re-
mediation and mitigation of vulnerabilities [71].

The activities involved in the vulnerability management process previously mentioned are in
fact very general. They could be broken down into more granular tasks, however, they describe
well the main challenging areas within the vulnerability management process. In this thesis, we
are mainly focused on the identiÞcation and remediation activities. In this section, we Þrst pro-
vide a brief historical review that puts in context the importance of vulnerability management.
Afterwards, we present a classiÞcation of research areas that contribute to vulnerability assess-
ment, which accompanied by remediation activities, completes the vulnerability management
process.

3.2.1 A brief history of vulnerability management

The process of managing vulnerabilities has been exercised since long time ago in di!erent
Þelds. Military for instance, considers a vulnerability as the inability to withstand an adverse
circumstance produced by a hostile environment. Therefore, security procedures are deÞned to
state how to proceed in these situations, thus constituting part of a vulnerability management
program [20]. In information technology, vulnerabilities have existed from the beginning. As an
example, in 1903 the Marconi wireless telegraph was reported to contain a ßaw that allowed an
attacker to intercept any message sent by the device thus leading to unauthorized information
disclosure [114]. In 1962, the Multics CTSS operating system running on IBM 7094 was reported
to have a ßaw allowing an unauthorized user to disclose the password of every user on the system.
Reports of identiÞed vulnerabilities have continued coming up since the 60Õs until our days. With
the incursion of computing systems into human activities, the diversiÞcation of programs and
services have set up more and more vulnerabilities compromising the security of such systems.
These undesired e!ects made it clear the need of developing security programs able to deal with
such security issues. In 1972, a computer security technology planning study was created by
the U.S. Air Force Systems Command (AFSC). The objective of this program was to specify
directives for securing the use and development of computing systems [108]. Since those days,
managing vulnerabilities became an essential activity for any organization involving the use of
computers or telecommunication equipments. Nowadays, several technologies that will be later
detailed, are widely used for supporting this process such as the Common Vulnerabilities and
Exposures system (CVE) [46] for enumerating known vulnerabilities or the Security Content
Automation Protocol (SCAP) [21] for automating vulnerability management activities.

24

3.2. The vulnerability management process

Figure 3.1 Ð Vulnerability assessment -D 3 classiÞcation

3.2.2 On the organization of vulnerability management activities

During our research work, we have investigated di!erent methods and techniques contributing
to vulnerability management in autonomic environments. However, we have realised that the
identiÞcation of vulnerabilities itself constitutes a complex activity that requires to be organized
so as to be properly executed. Such a setup should clearly consider the Þnal target of this
activity, machines. Therefore, machine-readable mechanisms able to automate tasks involved
in the autonomic process are essential. In light of this, we decompose vulnerability assessment
activities by considering what we call aD 3 (D cube) classiÞcation as illustrated in Figure 3.1,
D 3 standing for Discovery, Description and Detection.

The D 3 classiÞcation provides a basis, divided into three axes, for organizing the foundations
of vulnerability assessment which constitutes the Þrst step for the vulnerability management
process to be embedded into autonomic environments. Autonomic entities must be provided
with knowledge about current vulnerabilities, either with mechanisms for discovering threats by
themselves or with machine-readable speciÞcations about security alerts. Regardless of the me-
chanism chosen, vulnerability discovery techniques (axis 1) must be analyzed in order to unveil
unknown vulnerabilities, and to explore and understand the constantly evolving threatening envi-
ronment. Taking advantage of these mechanisms, new knowledge becomes available for increasing
the vulnerability awareness of self-governed environments. Such consciousness must be formally
speciÞed in order to be understood by computing devices, thus standard languages and protocols
must be provided for describing and exchanging security advisories (axis 2). Such security know-
ledge increases the capability of autonomic networks and systems for detecting vulnerabilities in
the surrounding environment (axis 3) and provides a strong support for taking decisions when
performing self-management activities.

Vulnerability assessment activities increase the awareness of autonomic environments that
along with remediation activities complete the vulnerability management process. In order to
cover the automation of the vulnerability assessment process, we propose the classiÞcation de-
picted in Figure 3.2 where we divide the activity into three main areas following theD 3 approach.
First, we present current approaches for discovering unknown vulnerabilities connecting their ap-
plicability over autonomic environments. Then, we detail description languages able to represent
security advisories about known vulnerabilities. Afterwards, we describe techniques that take
advantage of such knowledge for performing security analysis. A section covering remediation
activities is provided at the end of this chapter, completing the vulnerability management loop.

25

Chapter 3. Vulnerability management

Figure 3.2 Ð Automated vulnerability assessment classiÞcation

3.3 Discovering Vulnerabilities

Discovering vulnerabilities is a fundamental activity which indeed gives meaning to the vul-
nerability management process itself. With no known vulnerabilities, the process would not make
sense in the Þrst place. Therefore, the ability to unveil threats present on the environment be-
comes an essential requirement. Because the whole set of potential vulnerabilities on each system
is typically unknown, techniques for learning and discovering vulnerabilities must be developed.
Under this perspective, it is also important to consider how such security information actually
becomes available for protecting autonomic networks and systems. Indeed, there is a bigger
ecosystem that not only involves vulnerabilities and security defects, but also people and their
motivations [29]. New vulnerability information usually follows complex paths before users get
beneÞts from it [72]. This security ecosystem is frequently governed by economical laws where
buyers and sellers of new security Þndings establish complex vulnerability markets. It is not the
target to discuss here how vulnerability information is traded in both white and black markets,
however it is important to keep in mind that computer security is not only about technologies
but also about peopleÕs behavior and motivations. In this section, we focus on mechanisms and
means for discovering unknown vulnerabilities. This topic has been barely addressed within the
Þeld of autonomic networks, therefore the objective is to explore di!erent approaches that can
be potentially integrated into self-governed systems. Usually, almost every solution designed for
standard systems can be embedded to some extent into autonomic closed loops. The ease of
such integration depends on the nature of these approaches. However, we can normally think or
design autonomic elements with sensors capable of consuming the required input, that will feed
the existing solution, and adapting the performed actions to be wrapped by autonomic e!ectors.
While automating the operation of these solutions might be, in some cases, quite straightfor-
ward ; making them self-adaptive to the surrounding environment as well as to work under a
policy-based perspective (autonomous), constitutes an open and highly challenging problem. In
light of this, a subset of prominent perspectives has been selected to provide an overview of
available strategies for unveiling security issues. Our research includes some of the most studied
Þelds including testing methods, network forensics techniques and case-based reasoning.

3.3.1 Exploiting testing methods

Exploiting testing methods provides a powerful approach to unknown vulnerability detection.
Software applications are commonly designed with a set of speciÞc goals in mind in order to

26

3.3. Discovering Vulnerabilities

provide e!ective solutions to the stated requirements. While developers pursue e"cient functional
constructions, testers perform tasks for identifying correctness, completeness, quality and security
of developed computer software. Several approaches under the tester point of view are used when
software tests are designed [120]. White-box testing allows testers to have access to internal
structures, algorithms and the code itself of the software being tested, e.g. static analysis, code
review. Black-box testing on the other hand does not provide information about the internal
implementation and the software is seen as an input-output black box, e.g. dynamic analysis,
performance tests. Grey-box testing combines the previous approaches by considering knowledge
about the software internals but executes the tests at a black-box level, e.g. internal database
testing. Under a self-governing perspective, autonomic elements could be analyzed using these
techniques in order to identify abnormal behavior. This Þrst step would provide useful information
to the underlying government mechanism about unsafe components. Even though traditional
testing techniques unveil an important amount of software problems, it is unfortunately common
for testers to focus on functionality correctness and to omit strong security tests. At the time
of software construction and testing, normal input tests are frequently more numerous than
anomalous input tests. Because of this, several unknown vulnerabilities remain hidden behind
untested input data. Fuzzing techniques are intended to Þnd these kind of software bugs.

The fuzzing approach complements traditional testing to discover combinations of code and
data by exploiting the power of randomness, protocol knowledge, and attack heuristics. Instead of
using normal input data, fuzzing methods generate unexpected or malformed inputs for feeding
the target software. Software behavior is then assessed in order to identify potential vulnera-
bility hotspots. A wide view of current fuzzing techniques is presented in [53] where di!erent
approaches are explored, highlighting fuzzing contributions to vulnerability detection. Since ap-
plicationÕs input space is in most cases impossible to enumerate, fuzzing techniques use two main
approaches: data generation and data mutation (randomly modifying well-formed inputs). Ho-
wever, traditional fuzzing tools present some randomness related drawbacks when working with
applications that perform various types of integrity checks (e.g. checksum). Checksum mecha-
nisms reject an important part of the generated input set at initial execution stages, decreasing
the fuzzer e!ectiveness and code coverage. The work presented in [159] identiÞes the stated pro-
blems and presents an approach to overcome early malformed input rejection due to checksum
failures. The work reported in [50] introduces a fuzzing-based methodology called conÞguration
fuzzing where the conÞguration of the running application is randomly modiÞed at certain execu-
tion points in order to check for vulnerabilities that only arise in certain conditions. Considering
the fact that autonomic systems are ruled by high-level policies, the same mechanism could be
used for specifying properties and the expected behavior of a piece of software. This would allow
testing solutions to be embedded into self-governing entities in order to analyze their operation
by checking the current state against the deÞned policies. As a Þrst step, this process could
inform administrators about abnormal or unexpected behavior. It could also be taken one step
further by automatically generating reports about the current system conÞguration for future
use, looking for available solutions, conÞguring changes, and applying patches.

3.3.2 Using network forensics

Techniques based on network forensics can also be used for discovering unknown vulnerabi-
lities. Network forensics is known as the process of archiving all network tra"c and analyzing
subsets as necessary [44]. This activity generally involves tra"c reconstruction to assess network
activity, providing useful information for further network-related events analysis. Network foren-
sics belongs to a wider computing Þeld called digital forensics. Digital forensics is deÞned as the

27

Chapter 3. Vulnerability management

Figure 3.3 Ð Forensic investigation process [54]

use of scientiÞcally derived and proven methods towards the preservation, collection, validation,
identiÞcation, analysis, interpretation, documentation and presentation of digital evidence deri-
ved from digital sources for the purpose of facilitating or furthering the reconstruction of events
found to be criminal, or helping to anticipate unauthorized actions shown to be disruptive to
planned operations [54]. Figure 3.3 shows the stages involved in a forensic investigation.

Digital forensics beneÞts go beyond criminal prosecution. Several contributions to computer
security have been born within this Þeld and they are widely used over di!erent scenarios [44, 2].
Even though they are mostly targeted on traditional networked environments and not self-
governing systems, these works provide a strong basis for being integrated into autonomic net-
works. Digital forensics provides a deep understanding of discovering mechanisms about the
anatomy of an attack, how to gather pieces of evidence and put them together in order to deter-
mine how an attack took place on the system, when it was committed, who are the perpetrators
and where they come from. Because of this, its robust technical background on data collection
and analysis establishes a solid framework for performing computer system investigations, thus
providing support to vulnerability management activities. The work presented in [2] provides an
overview of digital forensics methodologies, computer and network vulnerabilities and security
measures, and forensics tracking mechanisms to detect and deter intruders.

Forensic tools are extremely important on forensic scenarios. E!ectiveness, e"ciency, repro-
ducibility, evidence consistency and integrity, traceability, security, are some of several factors
that have to be considered when designing a forensic tool. Depending on the type of environment
where the tool will be used, the previous features are required for a successful activity execu-
tion. Fundamental concepts related to network forensics and important features that a network
forensic analysis tool (NFAT) should implement are presented in [44], namely, NFAT place and
purpose, data capture, tra"c analysis, and NFAT interaction and discovery services it should
provide. Such concepts also support decentralized approaches where various forensic tools can
collaborate in order to analyze the whole network. Evidence collection is a highly active study
Þeld as it constitutes an essential stage within digital forensic investigations. Results of this stage
feed the analysis stage. The work proposed in [160] presents a network evidence graph-based ap-
proach which facilitates evidence presentation and automated reasoning. Such approaches may
highly contribute to the integration and positioning of forensic actuators into autonomic envi-
ronments aiming at identifying, analyzing and providing reports about suspicious or abnormal
behavior, and therefore highly contributing to the Þrst dimension of theD 3 approach.

3.3.3 Taking advantage of experience

Past experience in dealing with vulnerabilities strengthens the ability to face new security
problems. Under this perspective, performing case-based reasoning also provides interesting and

28

3.4. Describing Vulnerabilities

useful outlooks for detecting unknown vulnerabilities. Case-based reasoning (CBR) is a problem
solving methodology which exploits past experience. Past experience is maintained in the form
of problem-solution pairs, also called cases. On the arrival of new problems, solutions of simi-
lar past problems are used after appropriate adaptation. The work presented on [92] applies
the CBR approach for enabling self-conÞguration capabilities in autonomic systems. This ap-
proach can be applied on unknown situations, where some kind of nearness concept may be
used in order to classify how similar the new problem is to the problems already known. Using
di!erent algorithms, solutions for known similar problems can be modiÞed to achieve the solu-
tion of the new problem. Indeed, an approach for dealing with fault management issues using
CBR has been proposed in [151]. The authors outline a distributed case-based reasoning system
over a self-organizing platform capable of assisting operators in Þnding solutions for faults. Such
approaches can provide strong support for developing autonomic solutions based on previous
experience. Such experience can be thought as part of the know-how that autonomic systems use
to operate themselves. Moreover, considering self-conÞguration as a response for repairing vulne-
rable conÞgurations, case-based reasoning strategies can provide expertise and feed a database
of known vulnerabilities, which is the heart of the next sections.

System improvements usually provide new or better technological capabilities, however, they
also carry new space for security concerns as well. Discovering unknown vulnerability consti-
tutes an important security feature of self-governing systems. A wide spectrum of methods and
techniques may be used to achieve this point. This section has covered some of the most impor-
tant and promising areas for discovering software ßaws and conÞguration misuse, from fuzzing
methods (proactive) to forensics techniques (reactive). Even though there exist autonomic ap-
proaches for unveiling vulnerable conÞgurations, our research work indicates that most of the
prominent contributions are not oriented to self-governed environments. Taking advantage of
such approaches remains as a challenging activity. Autonomic environments should incorporate
these capabilities in order to become adaptive with the changing environment being able to un-
veil potential unknown security threats. In addition, we consider that no matter what technique
is used for discovering vulnerabilities, describing vulnerabilities in a standardized and machine-
readable manner is essential for integrating such approaches into the autonomic management
plane. This topic constitutes the central point of the next section.

3.4 Describing Vulnerabilities

By the time a vulnerability is discovered, a time span will occur before system administrators
are noticed about its existence. Another time will pass before a corrective solution exists and
yet another will pass until all systems are patched. AttackerÕs activity usually takes place during
this period of time, that can last from a few hours to several months or years. Because of this,
it is important to develop a robust background as well as mechanisms and techniques in order
to establish consistent and uniform means for describing vulnerabilities, analyzing and detecting
them, and exchanging related information. The Common Vulnerabilities and Exposures or CVE
system [46] has been introduced by the MITRE Corporation [104] as an e!ort for standardizing
the enumeration of known information security vulnerabilities. The CVE dictionary, widely used
today, allows the community to be aware of current existing threats and exposures by providing
unique identiÞers to each known security alert as well as descriptions written in natural language.
This is extremely useful for increasing the security awareness of autonomic systems. However,
the CVE standard only provides means for informing about their existence but not for their
assessment. Describing the anatomy of known vulnerabilities and the techniques developed to this

29

Chapter 3. Vulnerability management

end are fundamental as they provide essential means for dealing with vulnerability management.
This knowledge can highly increase the know-how of self-governing systems providing strong
support for developing and integrating autonomic security solutions.

During the last years, several approaches on vulnerability analysis have been taken. Vulne-
rability signatures have been widely used by intrusion prevention systems (IPS) and intrusion
detection systems (IDS). They are intended to describe the characteristics of the input that lead
the execution of a speciÞc program to a vulnerable point and the state that such program must
hold for the vulnerability to be exploited [32]. Vulnerability signatures are mostly used for ana-
lyzing tra"c looking for speciÞc patterns and detecting potential attacks. The work proposed
in [32] contributes to the second dimension of theD 3 approach by automatically generating high
coverage vulnerability-based signatures. However, there are no fully developed up-to-date stan-
dards available for their representation and the generation as well as their coverage still remains
an open problem. In addition to this issue, IDSs also lack of fully mature standards for exchanging
alerts. The Intrusion Detection Message Exchange Format (IDMEF) is a data model to represent
information exported by intrusion detection systems proposed by the Internet Engineering Task
Force (IETF), but its status is currently experimental and it will not change [126]. Much of the
work done in vulnerability analysis has deÞned the assessment infrastructure using its own vul-
nerability speciÞcation language arising compatibility and interoperability problems. Languages
such as VulnXML [135] and the Application Vulnerability Description Language (ADVL) [19]
have been developed as an attempt to mitigate these problems and to promote the exchange of
security information among applications and security entities. However, these languages are only
focused on web applications covering a subset of the existing vulnerabilities in current computer
systems.

In order to cope with the problems described previously, the Open Vulnerability and As-
sessment Language (OVAL), supported by MITRE Corporation, standardizes how to assess and
report upon the machine state of computer systems [117]. OVAL is an XML-based language and
therefore, it inherits all XML features like platform independence, interoperability, transporta-
bility and readability. The OVAL speciÞcation is supported by XML schemas which serve as
both the framework and vocabulary for the language. These schemas specify what content is
valid within an OVAL document and what is not. OVAL is organized in three main XML Sche-
mas, namely, (i) the OVAL DeÞnition Schema that expresses a speciÞc machine state ; (ii) the
OVAL Characteristics Schema that stores conÞguration information gathered from a system ;
and (iii) the OVAL Results Schema that presents the output from a comparison of an OVAL
DeÞnition against an OVAL System Characteristics instance. Valid XML instances typically re-
present speciÞc machine states such as vulnerable states, conÞguration settings and patch states.
Usually, a vulnerability is considered as a logical combination of conditions that if observed on
a target system, the security problem described by such vulnerability is present on the system.
The OVAL language follows the same idea by considering a vulnerability description as an OVAL
deÞnition. An OVAL deÞnition speciÞes a criteria that logically combines a set of OVAL tests.
Each OVAL test in turn represents the process by which a speciÞc condition or property is as-
sessed on the target system. Each OVAL test examines an OVAL object looking for a speciÞc
OVAL state. Components found in the system matching the OVAL object description are called
OVAL items. These items are compared against the speciÞed OVAL state in order to build the
OVAL test result. The overall result for the criteria speciÞed in the OVAL deÞnition will be built
using the results of each referenced OVAL test.

We now put forward an illustrative OVAL example of a vulnerability description for the
Cisco Internetwork Operating System (IOS) [86]. This example aims at providing an overview of
OVALÕs main building blocks. It is based on a real vulnerability speciÞcation but it was simpliÞed

30

3.4. Describing Vulnerabilities

1 . <? xml v e r s i o n = " 1.0 " encod ing= " UTF ! 8" ?>
2 . <o v a l _ d e f i n i t i o n s x s i : s c h e m a L o c a t i o n= " ht tp: // oval . mitre . org / XMLSchema / oval ! de f i n i t i ons ! 5 oval !

de f i n i t i ons ! schema . xsd ht tp: // oval . mitre . org / XMLSchema / oval ! de f i n i t i ons ! 5# i o s ios ! de f i n i t i ons !
schema . xsd ht tp: // oval . mitre . org / XMLSchema / oval ! common ! 5 oval ! common ! schema . xsd " xmlns= " ht tp: //
oval . mitre . org / XMLSchema / oval ! de f i n i t i ons ! 5" x m l n s : x s i= " ht tp : // www . w3 . org /2001/ XMLSchema !
instance " x m l n s : o v a l= " ht tp : // oval . mitre . org / XMLSchema / oval ! common ! 5" xm lns :ova l ! d e f= " ht tp : // oval
. mitre . org / XMLSchema / oval ! de f i n i t i ons ! 5" >

3 . <g e n e r a t o r>
4 . <oval :product_name>The OVAL R e p o s i t o r y</ oval :product_name>
5 . <ova l : s chema_ve rs i on>5 . 7</ ova l : s chem a_ve rs i on>
6 . <ova l : t imes tamp>2010 ! 06 ! 18 T15 :02 :46 .614 ! 04 : 0 0</ ova l : t imes tamp>
7 . </ g e n e r a t o r>
8 . <d e f i n i t i o n s>
9 . <d e f i n i t i o n i d= " oval :org . mitre . ova l :de f :6086 " v e r s i o n = "2" c l a s s= " vu lnerab i l i t y " >

1 0 . <metadata>
1 1 . < t i t l e>C isco IOS SIP Den ia l o f S e r v i c e V u l n e r a b i l i t y</ t i t l e>
1 2 . <a f f e c t e d f a m i l y= " i o s " >
1 3 . <p l a t f o r m>C isco IOS</ p l a t f o r m>
1 4 . </ a f f e c t e d>
1 5 . <r e f e r e n c e s o u r c e= " CVE " r e f _ i d= " CVE ! 2008 ! 3800 " r e f _ u r l= " ht tp : // cve . mitre . org / cgi ! bin /

cvename . cg i ?name = CVE ! 2008 ! 3800 " />
1 6 . <d e s c r i p t i o n> Vu lne rab le SIP imp lementa t ion . . . </ d e s c r i p t i o n>
1 7 . <o v a l _ r e p o s i t o r y>
1 8 . <d a t e s> </ d a t e s>
1 9 . <s t a t u s> </ s t a t u s>
2 0 . </ o v a l _ r e p o s i t o r y>
2 1 . </ metadata>

2 2 . < c r i t e r i a o p e r a t o r= "AND " >
2 3 . < c r i t e r i o n comment= " IOS vulnerable vers ions " t e s t _ r e f= " ova l :org . mitre . ova l : t s t : 9025 " />
2 4 . < c r i t e r i o n comment= " SIP Test using runnning conf ig . resu l t con ta ins : 5060 " t e s t _ r e f= "

ova l :org . mitre . ova l : t s t :24211 " />
2 5 . </ c r i t e r i a>
2 6 . </ d e f i n i t i o n>
2 7 . </ d e f i n i t i o n s>

Listing 3.1 Ð Cisco IOS vulnerability example (part 1)

to show how a basic OVAL deÞnition looks like. An OVAL deÞnition is typically written in one
XML Þle but here we divide it in two parts just for didactic purposes. The Þrst part illustrated
in Listing 3.1 contains the OVAL deÞnition that represents our vulnerability description. A
deÞnition is the key structure in OVAL. It is analogous to the logical sentence or proposition:
if a computerÕs state matches the conÞguration parameters laid out in the criteria, then that
computer exhibits the state described. Within this example, the vulnerability deÞnition with
id oval:org.mitre.oval:def:6086 (lines 9-26) states that the referred vulnerability is present on
the system if both following conditions hold: (i) the IOS version belongs to a set of a!ected IOS
versions (line 23), and (ii) VoIP is conÞgured (line 24). The second part of our example illustrated
in Listing 3.2 deÞnes the rest of required components referred on the Þrst part, namely, OVAL
tests (lines 28-37), OVAL objects (lines 38-43) and OVAL states (lines 44-52). An OVAL Test is
used by one or more deÞnitions to compare an object(s) against a deÞned state. An OVAL Object
describes a unique set of items to look for on a system. This unique set of items can then be used
by an OVAL Test and compared against an OVAL State. An OVAL State is a collection of one
or more characteristics pertaining to a speciÞc object type. The OVAL State is used by an OVAL
Test to determine if a unique set of items identiÞed on a system meet certain characteristics. The
Þrst condition is analyzed by the Þrst test with id oval:org.mitre.oval:tst:9025 (lines 29-32). This
version test refers to one OVAL object (line 39) and one OVAL state (lines 45-47). It will be true
if and only if the speciÞed object match the speciÞed state. Thepattern match expression allows
to specify a family of IOS versions using a regular expression (line 46). The second condition
is analyzed by the second test with idoval:org.mitre.oval:tst:24211 (lines 33-36). This line test
refers to one OVAL object (lines 40-42) and one OVAL state (lines 48-51). It will be true if and
only if the sub-commandshow running-conÞgresult contains the port number 5060 (line 50).

The OVAL language currently constitutes a de facto standard for describing vulnerabilities as
well as good practices. Autonomic environments should take advantage of this capability in order

31

Chapter 3. Vulnerability management

2 8 . < t e s t s>
2 9 . <v e r s i o n 5 5 _ t e s t i d= " ova l :org . mitre . ova l : t s t : 9025 " v e r s i o n = "1" comment= " IOS vulnerable

vers ions " c h e c k _ e x i s t e n c e= " at_least_one_exists " check= " at l e a s t one " xmlns= " ht tp: // oval . mitre . org
/ XMLSchema / oval ! de f i n i t i ons ! 5# i o s " >

3 0 . <o b j e c t o b j e c t _ r e f= " ova l :org . mitre . ova l :ob j :6804 " />
3 1 . <s t a t e s t a t e _ r e f= " ova l :org . mitre . ova l : s te :4432 " />
3 2 . </ v e r s i o n 5 5 _ t e s t>
3 3 . <l i n e _ t e s t i d= " ova l :org . mitre . ova l : t s t :24211 " v e r s i o n = "1" comment= " SIP Test using ip socket .

conf ig conta ins : 5060 . may generate few f a l s e pos i t i ve " c h e c k _ e x i s t e n c e= " at_least_one_exists "
check= " at l e a s t one " xmlns= " ht tp: // oval . mitre . org / XMLSchema / oval ! de f i n i t i ons ! 5# i o s " >

3 4 . <o b j e c t o b j e c t _ r e f= " ova l :org . mitre . ova l :ob j :6385 " />
3 5 . <s t a t e s t a t e _ r e f= " ova l :org . mitre . ova l : s te :6946 " />
3 6 . </ l i n e _ t e s t>
3 7 . </ t e s t s>

3 8 . <o b j e c t s>
3 9 . <v e r s i o n 5 5 _ o b j e c t i d= " ova l :org . mitre . ova l :ob j :6804 " v e r s i o n = "1" xmlns= " ht tp: // oval . mitre . org /

XMLSchema / oval ! de f i n i t i ons ! 5# i o s " />
4 0 . <l i n e _ o b j e c t i d= " ova l :org . mitre . ova l :ob j :6385 " v e r s i o n = "1" xmlns= " ht tp: // oval . mitre . org /

XMLSchema / oval ! de f i n i t i ons ! 5# i o s " >
4 1 . <show_subcommand>show running ! c o n f i g</show_subcommand>
4 2 . </ l i n e _ o b j e c t>
4 3 . </ o b j e c t s>

4 4 . <s t a t e s>
4 5 . <v e r s i o n 5 5 _ s t a t e i d= " oval :org . mitre . ova l : s te :4432 " v e r s i o n = "1" xmlns= " ht tp: // oval . mitre . org /

XMLSchema / oval ! de f i n i t i ons ! 5# i o s " >
4 6 . <v e r s i o n _ s t r i n g o p e r a t i o n= " pattern match " >1 2 \ . 3 \ (\ d+\w " \)XF(\ d . " | $)</ v e r s i o n _ s t r i n g>
4 7 . </ v e r s i o n 5 5 _ s t a t e>
4 8 . <l i n e _ s t a t e i d= " oval :org . mitre . ova l : s te :6946 " v e r s i o n = "1" xmlns= " ht tp: // oval . mitre . org /

XMLSchema / oval ! de f i n i t i ons ! 5# i o s " >
4 9 . <show_subcommand>show running ! c o n f i g</show_subcommand>
5 0 . <c o n f i g _ l i n e o p e r a t i o n= " pattern match " >\ s +5060($ | \ s +)</ c o n f i g _ l i n e>
5 1 . </ l i n e _ s t a t e>
5 2 . </ s t a t e s>

5 3 . </ o v a l _ d e f i n i t i o n s>

Listing 3.2 Ð Cisco IOS vulnerability example (part 2)

to augment their vulnerability awareness. Within our contributions, we have heavily exploited
the beneÞts of the OVAL language as detailed later in Part II. During the last years, several
related languages have evolved around the OVAL language. The National Institute of Standards
and Technology (NIST) [108] has supported the development of the Security Content Automa-
tion Protocol (SCAP) [21]. The SCAP protocol is a suite of speciÞcations that standardize the
format and nomenclature by which security software communicate information about publicly
known software ßaws and security conÞgurations. These advisories are annotated with common
identiÞers and embedded in XML. SCAP also utilizes software ßaw and security conÞguration
standard reference data, also known as SCAP content. This reference data is provided by the
National Vulnerability Database (NVD) [111], which is managed by NIST and supported by the
Department of Homeland Security (DHS) [55]. Other public vulnerability databases exist as well,
such as the Open Source Vulnerability Database (OSVDB) [114]. However, the vulnerability des-
criptions provided by them are usually understandable by humans and not by machines, thus
di"culting an automated consumption of this security knowledge.

SCAP can be used for several purposes, including automating vulnerability checking, tech-
nical control compliance activities, and security measurement. The integration of SCAP into
self-governing environments constitutes a major challenge, however its automation-targeted na-
ture can highly beneÞt future autonomics development. The SCAP protocol includes the OVAL
language and complements it with enumeration languages such as the Common Platform Enume-
ration (CPE), a nomenclature and dictionary of hardware, operating systems, and applications
[45] ; the Common ConÞguration Enumeration (CCE), a nomenclature and dictionary of se-
curity software conÞgurations [35] ; and CVE for enumerating security-related software ßaws.
SCAP also considers the eXtensible ConÞguration Checklist Description Format (XCCDF) for
authoring security benchmarks and reporting checklist evaluation results [167], and the Common

32

3.5. Detecting vulnerabilities

Vulnerability Scoring System (CVSS) for measuring and scoring the relative severity of soft-
ware ßaw vulnerabilities [47]. The speciÞcations involved in the SCAP protocol not only allow
us to specify vulnerabilities (with OVAL), but also to bring a system into compliance through
the remediation of identiÞed vulnerabilities or misconÞgurations (with XCCDF). These features
perfectly Þt requirements for expressing which actions autonomic systems should perform when
vulnerable states are detected.

These speciÞcations highly contribute to security automation and to the vulnerability mana-
gement activity. Other works have been done as well, such as the one proposed in [158] where
an ontology-based approach for dealing with vulnerability management activities called OVM is
presented. However, its connection with autonomic technologies is not addressed, nor the scalabi-
lity or actual impact on real networks. Moreover, OVM only considers vulnerability management
activities from a high-level perspective, focusing on the process rather than Þne-grained concepts
that allow vulnerabilities to be described. Languages such as OVAL are crucial for representing
security knowledge that in turn involves technical details. The OVAL language has been further
detailed as a means for performing the assessment activity. Standardization e!orts are essential
for exchanging this knowledge and it requires a strong support of the community. Autonomic
networks and systems should be able to manage these security advisories and capitalize the
knowledge provided by vulnerability descriptions repositories in order to increase their vulnera-
bility awareness. Moreover, autonomic elements should be able to provide appropriate sensing
and actuation mechanisms, as depicted in Figure 2.3, in order to be autonomously assessed and
eventually corrected. In this section we have investigated di!erent mechanisms for describing vul-
nerabilities and exchanging related information which provide a strong solid for achieving this
goal. Next section is dedicated to explore existing methods and techniques used for detecting
computer system vulnerabilities.

3.5 Detecting vulnerabilities

Once a vulnerability is known and described, mechanisms used for detecting it constitute
a central concern on autonomic networks and systems. Self-governed environments should be
able to incorporate and take advantage of security advisories provided by di!erent sources when
vulnerability assessment activities are performed. In this section we will discuss di!erent methods
and systems for assessing both device and network vulnerabilities. These methods contribute to
the third dimension of the D 3 approach. We will also present several approaches for correlating
security information and analyzing potential attacks and security policies violations.

3.5.1 Analyzing device vulnerabilities

The assessment of local vulnerabilities on a device requires the investigation of speciÞc states
and conditions that may allow an attacker to compromise the system. While black-box techniques,
such as network scanning discussed in subsection 3.5.2, can provide useful security information
without requiring speciÞc tools in the device under analysis, grey-box techniques can highly en-
hance the obtained information by accessing the device itself and inspecting its internal state and
particular conÞgurations. Assessing vulnerabilities using the OVAL language can be understood
as a grey-box approach since it not only allows to specify vulnerability descriptions but also
standardizes the three main steps of the assessment process, namely, representing conÞguration
information of systems for testing ; analyzing the system for the presence of the speciÞed machine
state (vulnerability, conÞguration, patch state, etc.) ; and reporting the results of the assessment.
Figure 3.4 describes the main steps of the OVAL process [117]. At step 1, security advisories are

33

Chapter 3. Vulnerability management

Figure 3.4 Ð OVAL-based vulnerability assessment [117]

published and encoded as OVAL deÞnitions at step 2. These deÞnitions are then interpreted at
step 3 to gather all the required information in order to perform the analysis at step 4. Once the
OVAL analysis is done, a report is generated at step 5 identifying if the speciÞc machine states
described at step 2 are present or not on the target system. The integration of such process into
the management plane of self-governing environments provides a strong basis for autonomously
assessing the exposure of autonomic elements. This is one of the cornerstone of this thesis. It
is important to notice that OVAL is a speciÞcation language and it allows to describe content ;
real analysis is performed by OVAL interpreters. However, interpreterÕs activity is guided by the
underlying OVAL language structure, thus we can think of OVAL as a language for specifying,
analyzing and reporting vulnerabilities. Moreover, because OVAL allows to describe speciÞc ma-
chine states, semantics can be used in several ways, i.e., states that can not hold (vulnerabilities),
states that should hold (best practices).

Several OVAL-based systems have been developed since the OVAL language was released.
The work proposed in [94] presents the design and implementation of a vulnerability assessment
tool based on the OVAL language to detect weak points in Linux System. The proposed approach
has more readability, reliability, scalability and simplicity than traditional tools. Although this
work was published in 2004, it clearly highlights OVALÕs potentiality. Others up-to-date OVAL-
based tools exist as well. Ovaldi [118] is a free OVAL interpreter maintained by MITRE intended
to provide a reference implementation for evaluating OVAL deÞnitions. Current releases of the
interpreter cover a wide, but not complete, part of OVALÕs speciÞcation. This incomplete co-
verage arises di"culties to extrapolate its usage within other Þelds such as forensic scenarios.
Although Ovaldi is a robust tool, its main development language (C) is platform-dependent, thus
increasing maintenance e!orts for each OVAL supported platform. Moreover, its internal design
and continuous o"cial releases make it quite di"cult to use as a base start point for customi-
zed or extended OVAL-based tools. The work proposed in [26] presents XOvaldi, a live forensic,
multi-platform and extensible OVAL-based system for digital evidence collection. XOvaldi has
been purely written in Java [88] and its plugin-based architecture, as well as its automatic mo-
del adaptation, provide easy means for naturally evolving with dynamic forensics scenarios. As
explained later in Part III, we have heavily used XOvaldi, and also extended it, for conduc-
ting various experiments in this thesis. The e!ort invested in the development of OVAL-based
assessment systems provides a strong background for automating the detection of known vulne-
rabilities. These systems can be then combined and integrated into autonomic environments in

34

3.5. Detecting vulnerabilities

order to enhance their ability for detecting security threats.
Autonomic networks must be capable of adapting according to speciÞc policies or security

issues. Because of this, analyzing network vulnerabilities positions strong challenges that autono-
mic entities should be able to solve. Network vulnerability analysis, also known as vulnerability
scanning, involves activities to determine vulnerabilities and security holes exploitable within
the target network. In order to perform this analysis, data collection and examination has to be
done over members of the network and correlation techniques must be applied to analyze the
target network as a whole.

3.5.2 Analyzing network vulnerabilities

The ability of identifying host-based and distributed vulnerabilities constitutes the Þrst step
for the vulnerability management process to be completely embedded into the management
plane of autonomic networks and systems. Network scanning constitutes one of the most used
techniques for discovering devices in a network. This process allows to identify active hosts either
for security assessment or for performing di!erent kinds of attacks. The enumeration of a network
provides useful information such as users, groups and running services on each network member.
Port scanners are usually used within this process for analyzing each device in order to detect
which ports are open and which services are listening on them. Probes against these ports and
the behavior presented by the target device may allow port scanners to infer useful information
about the software running on each port such as the type of application and its version.

The kind of response emitted by the device under analysis indicates whether the port is in
use, and if so, it can be further explored for detecting weaknesses. Fingerprinting for instance, is
a technique used for interpreting the responses of an operating system by sending to it di!erent
combinations of data and analyzing its responses against a Þngerprint database [101]. Finger-
prints are usually generated by the application of a hash function over a speciÞc piece of data
where the obtained hash value uniquely identiÞes the input data. Behavior patterns for well and
bad-formed messages are correlated with the observed responses in order to obtain a match of
known systems and applications, and related vulnerabilities. Currently, several network scanners
exist for assessing vulnerabilities on a target network such as Nessus [106], OpenVAS [113] or
SAINT [132]. Some of them use the functionalities provided by powerful port scanners such as
Nmap [109]. However, these tools do not provide standard means for describing and exchanging
the vulnerabilities they are able to assess. Languages such as OVAL are highly required. In addi-
tion, none of them have currently shown trends or means for being embedded into self-governed
environments.

Regardless of the mechanisms used for individually assessing devices, grey-box techniques
such as agent-based vulnerability assessment or black box techniques such as network scanning,
it is essential to develop approaches capable of analyzing the network and its relations as a
whole. Steps taken by an intruder usually respond to some favorable conditions present on the
system. By modeling these capabilities and actions to take, inference can be performed. Reasoning
engines are widely used in this Þeld to achieve automated approaches. As an example, the work
presented in [116] and enhanced in [115, 130] introduces a logic-based network security analyzer
called MulVAL. MulVAL is a framework and reasoning system that conducts multi-host, multi-
stage vulnerability analysis on a network. MulVAL uses the OVAL language to analyze each host
on the network. The reasoning engine consists of a collection of Datalog rules [52] that captures
the operating system behavior and the interaction of various components in the network. After
gathering all required information from the environment, the analysis performed by MulVAL has
two main parts. First, all possible multi-steps accesses and inferred privileges on each user are

35

Chapter 3. Vulnerability management

computed. Then, results are compared against the stated global policy. If the analysis results
show a user with some kind of privilege that is not present on the global policy, a security
breach has been found. Due to autonomic networks are by nature governed by policies, such
approach and the methodology used are particularly appropriated to be embedded into policy-
driven environments such as autonomic networks and systems.

3.5.3 Correlating vulnerabilities with threats and attack graphs

The mechanisms used for detecting vulnerabilities in autonomic networks provide an extre-
mely useful overview of the potential security problems that might be exploited on a target
network. However, this information can be yet enhanced by correlating security threats found
in the assessment phase, as shown in Figure 2.3, and analyzing how the activity of an attacker
could take advantage of them. Attack modeling languages such as ACML [119] allows to express
the capability gained by an attacker at each step of the intrusion process. This approach allows
to link network events and detect multi-steps attacks. This can be very useful in the context of
autonomic environments as it could support the analysis of scenarios where an autonomic ele-
ment is compromised, and the impact over those elements connected to it and the relationships
between them, e.g. service provisioning requirements. Previous work done in [150] considers the
idea of a requires-provide model where each gained privilege by an attacker opens new intrusion
capabilities. This concept is extremely important when analyzing attack sequences and provides
robust foundations for attack graphs approaches.

A deep review on attack graphs is presented in [99] where several contributions on this topic
are analyzed. The authors make clear the achievements and limitations of attack graphs by
discussing fundamental construction concepts as well as their use in network security approaches.
In this thesis, we do not deal with attack graphs and multi-step attacks. However, insightful
research work on network security assessment and remediation techniques using attack graphs
has been previously reported in [142], [10]. Bayesian attack graphs have been also used for
assisting administrators on mitigation plans [122]. Our approach is indeed complementary. While
a vulnerability represents a potential security problem that could be exploited by an attacker
in order to compromise the system, an attack graph describes the actual activity and steps
performed by an attacker in order to achieve a desired goal. In other words, a vulnerability
is focused on the system by identifying insecure states, and an attack graph is focused on the
behavior of the attacker that takes advantage of these security weaknesses.

Recently, the Common Attack Pattern Enumeration and ClassiÞcation (CAPEC) language [33]
has been proposed by MITRE for describing attack patterns. CAPEC involves a collection of
common methods for exploiting software systems, including network attack patterns. The CA-
PEC schema also enables the use of the Cyber Observable eXpression (CybOX) language [48] as
a means for describing cyber observables that exist for various steps and portions of the attack
pattern. Such cyber observables refer to events or stateful measures that can be observed in the
operational domain. CybOX also uses the Malware Attribute Enumeration and Characterization
language (MAEC) [102] for characterizing the behavior of malware, and the Common Event
Expression (CEE) [37] for unifying the representation and classiÞcation of events found in the
lifecycle of systems and networks. Currently, MITRE is also considering automated mechanisms
for converting MAEC and CybOX content into OVAL checks in order to detect malware artifacts
and other host-based cyber observables. These initiatives are still in an early stage though they
are quite promising as their contributions might harden the security of autonomic environments.

While some authors focus on attacks anatomy using attack graphs, other authors also pro-
pose metrics for quantifying attack potentiality which depends on several factors. For instance,

36

3.6. Remediating vulnerabilities

the work presented in [137] proposes a framework for measuring the vulnerability of individual
hosts based on current and historical operational data for vulnerabilities and attacks. Metrics
are particularly important within autonomic environments as they can be used for autonomously
parametrizing the behavior of the entire system. Such measurements can be successfully inte-
grated into the closed loop that depicts the lifecycle of self-governed elements in order to feed
and control their behavior. The work proposed in [1] presents a method for calculating a policy
security metric which can be used to evaluate how good a policy is, as well as compare policies
and assess policy changes. Such approach provides support not only for assessing the dynamics
of individual policy-based self-governed systems, but also for evaluating the overall behavior of
autonomic environments in which vulnerabilities play a critical role.

Assessing vulnerabilities constitutes a crucial activity that enables autonomic networks and
systems to identify threats that potentially may compromise their security. This ability is in turn
complemented by approaches capable of correlating exploitable network weaknesses in order to
identify potential successful attacks. The integration of such mechanisms within the management
plane of autonomic environments provides a powerful basis for assessing their own exposure. In
this section we have presented methods for detecting device and network vulnerabilities, and we
have discussed di!erent approaches for correlating security information and inferring potential
attacks. However, in order to ensure safe conÞgurations in autonomic environments, remediation
activities to eradicate these weaknesses are essential. This is the topic of the next section.

3.6 Remediating vulnerabilities

When a system is found to be vulnerable, remediation actions must be executed in order
to bring the system into a secure state. However, these actions must also encompass general
systemÕs operational policies. Indeed, every management activity, whatever its impact on the
system is, should care about respecting the overall governing rules. In autonomics, the ability to
orchestrate di!erent management aspects under a common and single vision constitutes a hard
and challenging problem. We have realised that even with optimal solutions for autonomously
managing di!erent aspects of self-governing environments, a common layer where all these com-
ponents might interact, is essential for achieving real and functional autonomic systems. Indeed,
this is one of the main goals proposed by the UniverSelf project [154]. In that context, the use
of standard languages and mechanisms that leverage interoperability becomes an important re-
quirement of autonomic approaches and solutions. As explained before, we do not deal with rule
consistency problems at other operational levels of self-governed environments ; we are focused on
autonomous solutions for vulnerability management. Nevertheless, the contributions presented
in this thesis make a vast use of standard languages and technologies. This vision not only fosters
the use of existing solutions but also makes available new scientiÞc contributions that might feed
and support future ones.

Considering a common, consistent and coherent governing framework, able to speak the
same language among di!erent constituting autonomic components, is essential to achieve real
autonomic computing. This kind of frameworks provide support to line up general policies under
a holistic perspective. Therefore, when changes are performed, global mechanisms in charge of
controlling a!ected autonomic elements, can be safely applied. Commonly, vulnerabilities can
take the form of software ßaws or misconÞguration errors, and they can be usually corrected by
means of di!erent methods such as applying software patches, adjusting conÞguration settings or
removing the a!ected software [103]. However, when corrective actions are performed, changes
are introduced in the environment, thus change management mechanisms must be taken into

37

Chapter 3. Vulnerability management

account. Risk assessment methods are also important, as they provide a strong basis for analyzing
the impact of remediation activities within the vulnerability treatment process. It is crucial to
ensure safe changes not only from an operational viewpoint but from a security perspective
too. Within this section, we point out related work about change management on networks and
systems considering vulnerability treatments, and we also cover di!erent approaches contributing
to the risk assessment activity.

3.6.1 Change management

Change management already constitutes a challenging activity when performed by human
administrators, the automation of such process is even more complex. Decisions are usually based
on factors that depend on the nature of the system, laws that rule the behavior and purpose
of the system. While some entities will prioritize functionality over security, others might follow
the other way around. But most importantly, no matter what the chosen action is, performed
changes should be e!ective as to the objective they were designed for, and consistent with the
rules that govern the system. The latter is not always easy to achieve thus mechanisms for solving
conßicts and techniques for reducing the impact of these changes must be taken into account as
well. While several works have been focused on vulnerability management such as [158], just a
few works address this topic into autonomic environments, mainly focused on the vulnerability
assessment activity [40]. Orthogonal works have been proposed in the area of change manage-
ment. They contribute to ensure the correctness of conÞguration operations and their positive
impact over services, but they do not consider security aspects with respect to vulnerable conÞ-
gurations. Therefore, vulnerability management activities and change management techniques
become interconnected. Network changes must be evaluated in order to ensure safe modiÞcations
and at the same time, vulnerable states must be remediated by performing controlled changes
in the environment.

A large variety of techniques have been proposed to deal with changes in networks and
systems. Information Technology Service Management (ITSM) is a fundamental work Þeld for
institutions and corporations ; intended to expose mechanisms for dealing with changes within an
organization, trying to minimize the impact and, at the same time, maximize the utility provided
by them [87]. The work proposed in [56] allows to determine if a given process transformation
is likely to improve business performance based on process associated complexity metrics. Some
approaches consider future changes already at system design such as design rationale, which in-
volves an explicit documentation of the reasons behind the decisions taken, as used in [148]. The
work reported in [41] presents a very interesting approach for predicting the e!ects of changes
based on dynamic modeling dependency techniques. The work presented in [8, 9] targets the
ability to validate conÞguration changes and their application on runtime, which increases the
correctness and safety of reconÞguration activities within self-managed environments. This kind
of works are very important because they provide a key support for the change management pro-
cess, particularly for taking decisions about e!ective change implementations. Even though their
analysis are usually focused on the operational impact rather than security concerns, they high-
light key challenges that must be taken into account when vulnerability management activities
are performed.

As an e!ort to automate the management of computer systems, di!erent protocols have been
also proposed in the past. As already mentioned, the SCAP protocol involves several speciÞca-
tions to automate security management mechanisms. Particularly, by using the XCCDF language,
a system can be brought into compliance through the remediation of identiÞed vulnerabilities
or misconÞgurations. In addition, the CVSS language can be used for rating IT vulnerabilities,

38

3.6. Remediating vulnerabilities

thus contributing to the classiÞcation and impact analysis of security weaknesses. In order to
deal with network management operations and changes, IETF has developed NETCONF [63], a
network conÞguration protocol that provides mechanisms to install, manipulate and delete the
conÞguration of network devices. The NETCONF protocol speciÞcation is a standard, though
its deployment, as well as complete vendors implementations, seem to be still in an early stage.
Nevertheless, very interesting works have already been presented showing evaluations of its ma-
turity as well as diverse technical aspects [152], [157]. The integration of change management
techniques into the vulnerability management plane may positively contribute to the overall
security of current and future computer systems. In that context, risk and impact assessment
techniques are also required for ensuring coherent automated security processes.

3.6.2 Risk and impact assessment

Usually, the security risk level of a system is based on three main combined factors, namely,
the potentiality of a threat in conjunction with the exposure of that system to such threat, and the
impact that a successful attack related to this threat may have in that system [49]. The exposure
of a system in turn is directly related to the vulnerabilities present in such system. Therefore,
managing vulnerabilities that might be exercised by a given threat constitutes a critical activity
for quantifying the system exposure and hence, the risk level of autonomic networks and systems.
Assessing change associated risks provides a key support for change management, as they are
used take decisions about e!ective change implementations. Sometimes however, these decisions
are not one hundred percent clear, therefore, measurable mechanisms are required to perform
appropriate cost-beneÞt analysis. The work presented in [136] describes a method for evaluating
the risk exposure associated with a change, which can be used to organize and take business-
level decisions about required changes. Other works use past experience to analyze the impact
of new changes [161]. Interconnected operational risks are considered in [138], which are used to
schedule service changes with the lowest expected impact on the business.

As the autonomic nervous system, autonomic systems and networks must be able to perform
diagnosis on the environment they are working on. Nevertheless, in practice, it is almost impos-
sible to be aware of each security and exploitable hole for each system. Vulnerability detection
provides large amounts of information that allow systems to be aware of threats, but autonomic
systems need to see the big picture, not only as a snapshot but also considering past experience,
in order to identify risk factors and perform progressive adaptation to achieve secure states. The
work presented in [5] and [4] proposes a security metric-based framework that identiÞes and
quantiÞes objectively security risk factors, including existing vulnerabilities, historical trend of
vulnerabilities of remotely accessible services, prediction of potential vulnerabilities for any gene-
ral network service and their estimated severity and Þnally propagation of an attack within the
network. From an autonomic point of view, automated techniques to assess change associated
risks like those presented here, are extremely important in order to achieve full autonomy.

Vulnerability management is an essential activity to ensure safe conÞgurations within au-
tonomic environments. When these systems are found to be vulnerable, remediation activities
must be performed in order to erradicate these security weaknesses. In that context, changes are
introduced in the environment and therefore, they must me properly managed. In this section,
we have presented di!erent change management techniques, as well as various mechanisms for
assessing and evaluating the impact and the e!ectiveness of these changes. During our research,
we have also observed that various problems still need to be addressed in order to integrate vul-
nerability management activities into autonomic environments. In the next section, we resume
our Þndings and highlight di!erent research axes that require to be further investigated.

39

Chapter 3. Vulnerability management

Figure 3.5 Ð ScientiÞc maturity of vulnerability management activities with respect to autono-
mic networks

3.7 Research challenges

During the realization of our investigation, we have detected several challenges that must be
addressed in order to be able to really integrate the autonomic computing approach into daily
computer systems and networks. In that context, Figure 3.5 summarizes the scientiÞc maturity
of the vulnerability management process with respect to autonomic environments highlighting
properties and issues that should be further investigated. As depicted in the Þrst column, tradi-
tional methods for discovering unknown vulnerabilities count with a strong foundation, though
decentralized as well as automated approaches require further investigation. Autonomic methods
for addressing this capability have been barely or even at all discussed. Autonomic computing
should incorporate these capabilities in order to unveil potential existing threats. As to descri-
bing known vulnerabilities, shown in the second column, several scientiÞc contributions have been
done, mostly from a device perspective. However, automatic generation as well as autonomic me-
chanisms for describing security problems are still in an early stage thus requiring research e!orts
in order to harden the foundations and maturity of such activity. Autonomic environments should
capitalize such security knowledge in order to analyze themselves and assess their own exposure.
A variety of methods have been proposed for detecting vulnerabilities in non-autonomic envi-
ronments as shown in the third column of Figure 3.5. However, decentralized mechanisms exist
in a minor degree, and automated and autonomic approaches have been weakly discussed. Once
security problems are detected, they need to be classiÞed according to their impact and risk,
and remediated through the application of appropriate treatments. Vulnerability classiÞcation
and treatment mechanisms, fourth and Þfth columns of Figure 3.5 respectively, have only been
partially addressed in the past for non-autonomic environments and mostly from a centralized
perspective. Automated and autonomic approaches for dealing with these activities remain an
open problem.

In light of this, we have observed several lacks mostly located on the automation and auto-
nomicity properties of Figure 3.5 that should be further investigated. We highlight here three
transversal research axes that are important to leverage the maturity and robustness of these
properties.

¥ Integration of vulnerability models into the management plane of networks and
services . This integration requires automated means for exchanging vulnerability descrip-
tions in a standardized manner as well as detecting them. Vulnerability detection can be
performed by dynamically translating vulnerability descriptions into conÞguration policy

40

3.8. Synthesis

rules interpretable by autonomic conÞguration systems. In addition, such perspective can
be enriched with automated vulnerability discovery mechanisms. This feature can enable
the alignment of network components to desired and secure states. However, mechanisms
for dealing with rules conßicts and policy consistency must be in place as well.

¥ Investigation of collaborative methods and techniques for performing vulnera-
bility management activities in a decentralized manner, with multiple vulnera-
bility description datasources . Autonomic elements need automated mechanisms for
healing security holes. Control mechanisms and algorithms for classifying vulnerabilities
and executing vulnerability treatments (apriori or aposteriori conÞguration operations) in
an optimal manner must be analyzed. The SCAP protocol and particularly, the XCCDF
language, in combination with the NETCONF protocol, can be extremely useful to achieve
this point.

¥ Formalized approaches for supporting the two previous themes are highly re-
quired . Robust data collection mechanisms, mature system assessment techniques and e"-
cient environment discovery methods constitute cornerstones within the integration of the
vulnerability management process into self-governed environments. Autonomic networks
and systems can take advantage of disparate computing Þelds such as digital forensics for
threat discovery, machine learning for adaptation, or statistical models for prediction. Me-
thods for managing and planning changes as well as techniques for assessing their impact
are essential within the vulnerability management process. Reasoning systems capable of
capitalizing security knowledge can provide new horizons for dealing with dynamic envi-
ronments, not only from an operational viewpoint but from a security perspective too.

3.8 Synthesis

The management of computer systems and networks is becoming more and more complex
over time. Conventional approaches do not scale well with respect to this evolving landscape, thus
leading to new management problems. The autonomic paradigm aims at releasing administrators
from low-level details by considering self-management approaches that work on a high-level, goal-
oriented basis. This scenario allows to specify how things work while functional details are solved
by the underlying autonomic system. Autonomics provides a scalable new perspective for dealing
with the management of growing heterogeneous networks. However, both administrators and
self-governed entities may introduce vulnerable states when perform their operations. Therefore,
vulnerability management constitutes an essential activity in order to ensure safe conÞgurations
within autonomic environments. In this chapter, we have performed a deep review of current
vulnerability management mechanisms. We have classiÞed the vulnerability assessment process
in three dimensions: discovery, description and detection (D3 approach) ; which serves as an
organizational framework for discussing di!erent existing assessment methods and techniques.
We have also discussed mechanisms that contribute to the remediation of vulnerabilities, thus
closing the vulnerability management cycle. We state thatreal autonomic solutions can only
be achieved if mechanisms for dealing with vulnerabilities are fully integrated into
the management plane of autonomic networks and systems . However, there still exist
several challenging problems that must be addressed in order to achieve this goal. The aim of
this thesis is to contribute in that direction.

Considering these research challenges, we aim at dealing with the integration of vulnerabi-
lity and remediation descriptions into the management plane of autonomic environments. These
descriptions, understood as policies, enable autonomic entities to manage their own security

41

Chapter 3. Vulnerability management

exposure. In the following chapters, we present our research work which includes autonomic
assessment strategies for device-based vulnerabilities and extensions in several dimensions, na-
mely, distributed vulnerabilities (spatial), past hidden vulnerable states (temporal), and mobile
security assessment (technological). In addition, our general approach also considers remedia-
tion activities able to bring networks and systems into secure states. In that context, we have
conducted research in remediation approaches for device-based and distributed vulnerabilities.
In particular, collaborative approaches, which constitute another axis identiÞed as a research
challenge, are also considered within distributed scenarios. In addition, our approaches are sup-
ported by mathematical models over which other scientiÞc contributions can be built upon.
Finally, the contributions presented in this thesis have been evaluated through an extensive set
of experiments which are widely discussed all along this document.

42

Part II

An autonomic platform for managing
conÞguration vulnerabilities

43

Chapter 4

Autonomic vulnerability awareness

Contents
4.1 Introduction . 45
4.2 Integration of OVAL vulnerability descriptions 46
4.3 OVAL-aware self-conÞguration . 48

4.3.1 Overall architecture . 48
4.3.2 OVAL to Cfengine translation formalization 49

4.4 Experimental results . 52
4.4.1 IOS coverage and execution time 52
4.4.2 Size of generated Cfengine policies for Cisco IOS54

4.5 Synthesis . 55

4.1 Introduction

Autonomic networks and systems are responsible for their own management. However, changes
that are performed by administrators and self-governed entities may generate vulnerabilities and
increase the exposure to security attacks. Therefore, vulnerability management is a crucial acti-
vity for ensuring safe conÞgurations and reducing the exposure of such autonomic systems. While
strong standardization e!orts have been done for describing vulnerabilities, in particular with
the OVAL language, there is no full integration of vulnerability management mechanisms within
the framework of autonomic networks and systems. Such integration constitutes the target of our
work. We consider that autonomic environments should dynamically capitalize the knowledge
provided by vulnerability descriptions repositories in order to increase their security, stability
and sustainability.

In this chapter, we present an autonomic approach for supporting vulnerability awareness
in self-governing networks and systems using the OVAL language and the Cfengine tool [38].
Cfengine is an autonomic maintenance system that provides support for automating the mana-
gement of large-scale environments based on high-level policies. Even though we are focused on
the Cfengine tool, currently used in millions of managed devices, our general approach could be
applied to other policy-based conÞguration tools such as Puppet [124] or Chef [39]. Our strategy
consists in integrating OVAL vulnerability descriptions into the management plane, in order to
enable autonomic systems to detect and prevent conÞguration vulnerabilities. For that purpose,
the OVAL vulnerability descriptions are dynamically translated into policy rules directly inter-
pretable by Cfengine. Therefore, Cfengine agents become able to autonomously assess their own

45

Chapter 4. Autonomic vulnerability awareness

security exposure. The remainder of this chapter is organized as follows. Section 4.2 presents a
review of OVAL vulnerability descriptions and discusses its integration into autonomic environ-
ments. Section 4.3 describes the underlying architecture for increasing vulnerability awareness
within autonomic networks and systems, and depicts the formalism for supporting the trans-
lation of vulnerability descriptions into Cfengine policy rules. Section 4.4 shows an extensive
set of experiments performed over the Cisco IOS platform and the obtained results. Section 4.5
concludes this chapter presenting conclusions and further work.

4.2 Integration of OVAL vulnerability descriptions

Nowadays, the OVAL language is mostly used by vendors and leading security organizations
in order to publish security related information that warns about current threats and system
vulnerabilities. OVAL repositories o!er a wide range of security advisories that can be used
for avoiding vulnerable states as well as augmenting networks and systems security considering
best practices recommendations. Previously in DeÞnition 2, we have provided the conceptual
meaning of a vulnerability in computing systems. From a technical perspective, a vulnerability
can be also considered as a combination of conditions that if observed on a target system, the
security problem described by such vulnerability is present on that system. Each condition in
turn can be understood as the state that should be observed on a speciÞc object. When the
object under analysis exhibits the speciÞed state, the condition is said to be true on that system.
In that context, the manner in which OVAL represents a vulnerability can be directly mapped
to the usual way a vulnerability is understood, as shown in Figure 4.1.

Within the OVAL language, a speciÞc vulnerability is described using anOVAL deÞnition.
An OVAL deÞnition speciÞes a criteria that logically combines a set ofOVAL tests. Each OVAL
test in turn represents the process by which a speciÞc condition or property is assessed on the
target system. EachOVAL test examines anOVAL object looking for a speciÞc state, thus an
OVAL test will be true if the referred OVAL object matches the speciÞedOVAL state. The
overall result for the criteria speciÞed in theOVAL deÞnition will be built using the results of
each referencedOVAL test.

As an example, let us consider an hypothetical situation, illustrated in Figure 4.2, where a
vulnerability for the Cisco IOS has just been disclosed. For this vulnerability to be present, two
conditions must hold simultaneously: (I) the version of the platform must be12.4 and (II) the

Figure 4.1 Ð Vulnerability conception mapping

46

4.2. Integration of OVAL vulnerability descriptions

Figure 4.2 Ð OVAL example over Cisco IOS

serviceip Þnger must be enabled (thus N would be 2 in Figure 4.1). Such vulnerability can be
expressed within anOVAL document by deÞning anOVAL deÞnition that arranges two OVAL
tests as a logical conjunction. One test is in charge of assessing the system version and the other
one must check the service status. TheOVAL objects used in these tests will be an object that
represents the version of the system and other object that represents the running conÞguration,
respectively. Finally, the OVAL states, one for the version and one for the service, will express
the states expected to be observed on each object for the tests to be true and hence, deÞning the
truth or falsehood of the OVAL deÞnition. In this particular example, it is expected to observe
the value 12.4 as the version of the system, and the running conÞguration Þle must have a line
starting with the directive ip Þnger. If these two properties are observed, then the vulnerability
is present on the target system.

Once an OVAL document has been speciÞed, the regular approach to perform its assessment
over a target system can be resumed in three main steps. As shown in Figure 4.2, step 1 consists
in interpreting the document that speciÞes the objects and tests to be evaluated. At step 2,
the target system is analyzed looking for present vulnerabilities. As a remainder, the OVAL
analysis, as previously described in Section 3.5.1, involves two parts, namely, the collection of
required OVAL objects to be analyzed, and the comparison of collected OVAL items against
the speciÞed OVAL states. Finally, a report is produced at step 3 indicating the results of the
assessment process. Our approach aims at making from this approach an autonomous process.
To do so, we automate the exploitation of OVAL descriptions warning about current threats and
system vulnerabilities, and translate them into Cfengine policy rules. In this manner, current
and future security advisories can be integrated and assessed by autonomous Cfengine agents
deployed across the network. The global architecture of the proposed approach is detailed in the
next section.

47

Chapter 4. Autonomic vulnerability awareness

4.3 OVAL-aware self-conÞguration

In autonomics, the self-conÞguration property refers to the ability of networks and systems
for automatically conÞguring themselves in order to obey high-level policies, typically linked to
business-level objectives. When autonomic networks and systems perform changes in order to be
compliant with the speciÞed policies, collateral e!ects can be introduced in an involuntary man-
ner. Such unexpected e!ects can vary from internal malfunction to the exposure of vulnerable
states, thus vulnerability management mechanisms are deeply required to ensure safe conÞgura-
tions and to reduce the probability of potential attacks and failures of the involved self-managed
entities. In this section we present our approach for supporting vulnerability awareness in au-
tonomic networks and systems. The objective is to integrate vulnerability descriptions provided
by OVAL repositories into the autonomic management plane, particularly in the context of the
Cfengine autonomic maintenance tool.

4.3.1 Overall architecture

Our work proposes the integration of vulnerability descriptions by providing an infrastructure
where OVAL vulnerabilities descriptions can be translated into policy rules interpretable by
Cfengine. Due to the automation provided by Cfengine for managing large-scale environments,
the OVAL process can be integrated into Cfengine devices when maintenance operations are
performed. The overall objective is to provide autonomic maintenance mechanisms for several
platforms using Cfengine as illustrated in Figure 4.3, and taking into account the existing and
future security related knowledge speciÞed in the OVAL language.

The proposed architecture illustrated in Figure 4.3 involves an OVAL repository where the
descriptions of known vulnerabilities are stored. Such descriptions are intended to be translated
and introduced within a distributed Cfengine conÞguration. To do so, a translation module is
placed between the OVAL repository and the Cfengine server. This module, explained in detail
in the next section, consumes available OVAL vulnerability descriptions from the repository
and produces Cfengine policy rules that allow Cfengine agents to be aware of these security
weaknesses. The Cfengine architecture is based on a client-server model. The server keeps these

Figure 4.3 Ð High-level architecture

48

4.3. OVAL-aware self-conÞguration

generated policies on its own and autonomous agents will pull these new policies from the server
when convenient. In this manner, generated policies are deployed by the Cfengine server into
its several Cfengine agents (points in the cloud). These autonomous agents are in charge of
managing the devices present in the target network, in order to detect and prevent vulnerable
conÞgurations when self-management activities are performed. When a vulnerability is found on
a speciÞc monitored device, Cfengine agents are capable of generating speciÞc alerts and shall be
able to perform correction operations. In the next section, we detail and formalize the translation
process performed to convert OVAL-based advisories into Cfengine policy rules.

4.3.2 OVAL to Cfengine translation formalization

The translation module, identiÞed in Figure 4.3, has as a main goal the generation of Cfengine
rules that accurately represent the OVAL advisories present in the OVAL repository. However,
we consider that the OVAL language should be seen from a logical perspective, as a Þrst-order
language. In our model, we understand the OVAL language as a means for predicating on the
underlying system. From a logical point of view, its discourse universe is composed of each testable
system component for each supported platform. Each OVAL object deÞnes a family ofitems to
be tested on the target system. For example, an OVALprocess objectwith name "httpd" can
deÞne a set of several processes with that name, where each one of them is an identiÞed OVAL
item and will be tested independently. The overall result will be computed according to the
parameters speciÞed in the OVAL test. Because each collected OVAL item is what is actually
tested within the OVAL process, the discourse universe of the OVAL language refers to such
OVAL items and not to the OVAL objects that represent them.

<d e f i n i t i o n s >
<d e f i n i t i o n i d= " oval : org . mitre . oval : def : PHI " . . . >

<c r i t e r i a >
< c r i t e r i o n comment= " s i ng l e formula ALPHA " t e s t _ r e f= " oval : org . mitre . oval : t s t :ALPHA "/>

</ c r i t e r i a >
</ d e f i n i t i o n >

</ d e f i n i t i o n s >

<t e s t s >
< f i l e _ t e s t i d= " oval : org . mitre . oval : t s t :ALPHA " >

<o b j e c t o b j e c t _ r e f= " oval : org . mitre . oval : obj :MyOBJ "/>
<s t a t e s t a t e _ r e f= " oval : org . mitre . oval : s te :MySTE "/>

</ f i l e _ t e s t >
</ t e s t s >

<o b j e c t s >
<f i l e _ o b j e c t i d= " oval : org . mitre . oval : obj :MyOBJ " . . . >

<path o p e r a t i o n= " equals " >/e t c / h t tpd / c o n f /</path>
<f i l e n a m e o p e r a t i o n= " equals " >ht tpd . conf </ f i l e n am e >

</ f i l e _ o b j e c t >
</o b j e c t s >

<s t a t e s >
< f i l e _ s t a t e i d= " oval : org . mitre . oval : s te :MySTE " . . . >

<user_ id o p e r a t i o n= " equals " >roo t </user_ id>
</ f i l e _ s t a t e >

</ s t a t e s >

Figure 4.4 Ð Basic predicate within OVAL
Under this perspective, we consider apredicate as the very essential construction within the

OVAL language. The most simple case can be seen as the evaluation of an OVAL item gathered
from the system against a speciÞed OVAL state. Mathematically, checking such item is the
same as verifying whether the speciÞed item belongs to a deÞned mathematical relationship. We
believe that such formalization has potential within autonomic environments and that might be
successfully exploited by reasoning engines such as done in [116] over standard networks. The

49

Chapter 4. Autonomic vulnerability awareness

example presented in Figure 4.4 depicts how the OVAL language can be used for expressing a
predicate over thehttpd.conf conÞguration Þle, assessing that its owner is the userroot. There,
the conÞguration Þle is represented by an OVAL object of typeÞle_object. In it, two attributes
specify the target object, the path and its Þlename. Finally, the predicate is completed with the
speciÞcation of the OVAL state, expressing that the user id of this Þle must be equal toroot.

As mentioned before, the main core activity within the OVAL language is about predicating
over the underlying system, i.e. identify the system items (individuals of our discourse universe)
and checking if they match speciÞc states (check if retrieved individuals belong to speciÞc ma-
thematical relationships). The properties of the system under analysis can be seen as predicates
where atomic formulas Ð OVAL tests Ð can be compounded to build more complex expressions Ð
OVAL deÞnitions Ð. Within the OVAL language, deÞnitions typically search for a combination
of speciÞc characteristics that can reveal security holes on the underlying system. Figure 4.5 pre-
sents a summarized mapping between OVAL main constructors, their corresponding components
within a Þrst-order logic and the respective Cfengine building blocks.

Mapping

First-order logic OVAL Cfengine

Arrangement of compound OVAL document Cfengine main

logical formulas configuration file

Compound logical OVAL Cfengine input

formulas definitions files

Atomic predicates OVAL tests Cfengine methods

Family of individuals in OVAL objects Cfengine

the discourse universe prepared modules

Mathematical OVAL states Cfengine control

relationships variables

Figure 4.5 Ð First-order logic, OVAL and Cfengine mapping

The following list describes the main building blocks of the OVAL language and the corres-
ponding Cfengine constructs used to represent them.

! OVAL documents . Within an OVAL document, several deÞnitions can be found within
the XML tag <deÞnitions>. This set of deÞnitions can be arranged on a high level Cfen-
gine conÞguration Þle including each one of the referred deÞnitions. The inclusion can be
made using theimport directive within the Cfengine language. Hence, for each OVAL deÞ-
nition present within the OVAL document, an import sentence will be present on the main
Cfengine conÞguration Þle.

! OVAL deÞnitions . Each OVAL deÞnition can be deÞned in a separate Cfengine conÞ-
guration Þle that will be imported by the main Cfengine conÞguration Þle. Imported Þles
are typically located on the Cfengineinput folder, hence one Þle per OVAL deÞnition will
be located there. Within each one of these Þles, the involved tests are referred, and their
results are computed to represent the same logical structure speciÞed on the original OVAL
deÞnition.
Because OVAL tests involve objects from the system that will be assessed against speciÞc
states, each Cfengine Þle corresponding to one OVAL deÞnition Þle will involve mechanisms
to collect the required objects. Collection can be made using Cfengineprepared modulesthat
are launched before any policy control sequence is executed. Once the required information
is available, the speciÞed tests can be executed. Following the Cfengine philosophy, each
test is mapped to a Cfengine method that is called when needed from any Cfengine input.

50

4.3. OVAL-aware self-conÞguration

! OVAL tests . Cfengine methods are usually located in themodulesfolder, hence, for each
OVAL test, a Þle will exist on this place that represents it. The parameters of this Cfengine
method represent the data needed to e!ectively compute the test result ; this is, the item
information to be tested and depending on the taken approach, the expected states.

! OVAL objects . As previously explained, system objects to be evaluated can be gathered
using Cfengineprepared modules. Calls to these modules are placed on the corresponding
Cfengine input Þle. Collected information will be later used by the involved tests.

! OVAL states . States are used by tests in order to verify whether gathered objects match
speciÞc properties. States deÞnitions can be speciÞed on the Cfengine method Þle using
Cfengine control variables, or they can be speciÞed on the Cfengine input Þle and provided
as parameters to the corresponding method.

Within our approach, Cfengine classes are particularly important as they are the main
constructs for expressing results of predicates over the system. For instance, when a collected item
is compared against a deÞned OVAL state, compliance truth or falsehood will be represented by
a Cfengine class. If this item has to be compared against several OVAL states, several Cfengine
classes will be deÞned. The overall result for this assessment will also be a Cfengine class based
on each one of the previous classes. On the other hand, a test result will be also represented by

Data : an OVAL document
Result: Cfengine policy rules

1 mainF ile " create < Cfengine main conÞguration Þle> ;
2 foreach def # OVAL deÞnitions do
3 defF ile " create < Cfengine input Þle> for def ;
4 add import sentence at mainF ile;
5 foreach test referred by def do
6 on defF ile do {
7 obj " OVAL object referred by test;
8 add prepared module callat Ócontrol sectionÓfor gathering obj;
9 foreach ste referred by test do

10 add ste control variables at Ócontrol sectionÓ;
11 end
12 add test call method at Ómethods sectionÓspecifying objects and states;
13 }

14 methodF ile " create < Cfengine method Þle>for test;
15 on methodF ile do {
16 add method name and parametersat Ócontrol sectionÓ;
17 add obj variable at Ócontrol sectionÓ;
18 foreach atomic predicate on the speciÞedobj do
19 add result as aCfengine classat Óclasses sectionÓ;
20 end
21 combine classesfor deÞning Þnal method resultclass;
22 }
23 end
24 add logical test criteria at Óalerts sectionÓon defF ile;
25 end

Algorithm 4.1: Translation algorithm

51

Chapter 4. Autonomic vulnerability awareness

a Cfengine class, hence, an OVAL deÞnition result will be based on the Cfengine classes deÞned
for each one of the referred tests. Considering the mapping introduced before, we present in
Algorithm 4.1 the proposed approach for translating OVAL documents into Cfengine policies.
This algorithm has been fully developed and integrated into an implementation prototype called
Ovalyzer which is described in Chapter 9.

The algorithm takes as input an OVAL document that will be represented by the main
conÞguration Þle within the Cfengine policy. Each OVAL deÞnition in turn will have its own
policy Þle that will be imported from the main Cfengine conÞguration Þle. Each OVAL test is
translated as a Cfengine method that is invoked from the Þle that represents the OVAL deÞnition.
OVAL objects are represented by Cfengine prepared modules while OVAL states are speciÞed
using Cfengine control variables. Results for OVAL tests and OVAL deÞnitions are speciÞed
using Cfengine classes that in turn are combined using the same logical structure described in
the OVAL deÞnitions. Further details on Cfengine grammar as well as technical Cfengine related
information can be found at [30].

Since the OVAL language allows to express speciÞc system states, OVAL deÞnitions can be
used in several ways ; particularly for deÞning states that should not happen (e.g. conÞguration
vulnerabilities) or states that should happen (e.g. recommendations and good practices). Under
this perspective, OVAL deÞnitions that model conÞguration vulnerabilities should generate an
alert on the translated Cfengine policy when they are true. On the other hand, OVAL deÞnitions
that model recommendations and good practices should generate an alert when they are false.
The autonomicity provided by Cfengine combined with the automated translation of security
advisories accommodates an autonomic support for increasing the vulnerability awareness of
these systems. In this approach however, only alerts are considered, and they should be taken
into account by a human administrator. The integration of remediation actions has not be done
yet though it could be performed as discussed in Chapter 8. In the next section we present a set
of experiments performed over the Cisco IOS platform and the obtained results.

4.4 Experimental results

In this section we present a case study based on the IOS Operating System for Cisco devices.
We consider an emulated environment where we show how the proposed framework can be used
for augmenting the awareness of known vulnerabilities on Cisco routers. We have developed a
Java-based implementation prototype called Ovalyzer in charge of translating OVAL security
advisories into Cfengine policy rules. OvalyzerÕs technical speciÞcation is described in Chapter 9,
which includes an example of an OVAL vulnerability description and its corresponding Cfengine
generated code. Ovalyzer has been executed on an emulated environment in order to evaluate
several factors such as functionality, performance and characteristics of the generated Cfengine
code. Cisco devices have been emulated usingDynamips / Dynagen [58] running the operating
system IOS version 12.4(4)T1. TheExpect [66] tool provided by NIST [108] has been also used for
automating the communication between Cfengine and Cisco devices. We present in this section
the results obtained from the performed experiments.

4.4.1 IOS coverage and execution time

The o"cial OVAL repository has 134 vulnerability deÞnitions for the IOS platform, by the
moment of writing this document. These deÞnitions are based on three types of OVAL tests,
namely, line_test (L), version55_test (V55) and version_test (V). Ovalyzer, as explained later
in this manuscript, has been designed using a plugin-based architecture. In that context, one

52

4.4. Experimental results

Figure 4.6 Ð IOS plugins coverage

plugin per type of OVAL test is needed in order to provide the required translation capabilities.
For this case study, three plugins have been written, namely,CfengineIosLine.jar, CfengineIos-
Version.jar and CfengineIosVersion55.jar. Such plugins together provide a coverage of 100% of
OVAL deÞnitions for the IOS platform. Figure 4.6 depicts how the addition and combination of
the required plugins increase the translation capabilities.

It can be also observed that each plugin does not provide a large coverage by itself. For
instance, line_test only covers 1.49% of the available IOS deÞnitions. This is because typically
vulnerability deÞnitions use more that one test for specifying the required conditions to be met
on the target system. When combined, plugins shall cover a wider range of OVAL deÞnitions.
Di!erent platforms may require a larger family of components to analyze, thus requiring more
types of tests and hence, more plugins. In the case of the IOS platform, only three plugins were
required for translating the 100% of available deÞnitions in the OVAL repository.

Since such translation shall be made in an automatic manner, several tests for evaluating
OvalyzerÕs performance have been done. We have particularly focused on the time required for
generating Cfengine policy Þles over di!erent sets of IOS vulnerability deÞnitions. Figure 4.7
shows the observed timing values while varying the amount of translated OVAL deÞnitions.

Figure 4.7 Ð IOS translation performance

53

Chapter 4. Autonomic vulnerability awareness

The experiment consists in executing Ovalyzer with a set of only one deÞnition and measure
the generation time, then with a set of two deÞnitions and measure the generation time, and so
on, until 134 deÞnitions. Intuitively, one might expect a curve that monotonically grows with the
number of deÞnitions to translate, however, the obtained results are quite far from what expected.
Within some executions for translating more than 100 deÞnitions, the processing time is close
to those executions translating less than 20 deÞnitions. On the other hand, executions with a
high translation time can be observed on a regular basis during the experiment. Because such
experiments are run within an emulated and non-dedicated environment, we hold the hypothesis
that this behavior is due to scheduling strategies of the operating system, not only with memory
processes but also with I/O resources. We believe that such behavior is interesting for two
reasons. First, involved equipment within autonomic networks may present similar scheduling
issues ; second, it gives a realistic overview of the expected behavior so autonomic strategies can
take such conduct into account. The graph also identiÞes the average and median time of the
executions performed, which respectively are of 9.5 and 6.1 seconds. Even when occasionally high
time values occur and hence more experiments must be done for explaining why, the extremes
seem to be bounded in the general case.

4.4.2 Size of generated Cfengine policies for Cisco IOS

As happens with the generation time, the number and size of generated Þles constitute an
important dimension for analysis as well. We have experimented with the generated policies in
the same way we did before, computing results for one deÞnition, then two deÞnitions and so
on, until 134 deÞnitions. Figure 4.8 illustrates the amount and total size of the generated Þles
according to the number of deÞnitions translated. For instance with 100 deÞnitions, the translator
generates a Þleset of 333 Þles with a total size of 775 KB.

Both, the number of Þles and the size of the generated Þleset, describe a linear growth
when the number of IOS deÞnitions is increased. This is in part due to the nature of the IOS
deÞnitions themselves, because on average, each one of them uses a similar amount of tests and
resources. With other platforms this behavior may not be observed because if we consider two
deÞnitions, one using several tests and objects and the other one, only one or two ; the former
will require several policy Þles Ð according to the way the translation is done Ð while the last
one will be represented by a smaller set of Þles. Considering the case study of the Cisco IOS

Figure 4.8 Ð IOS generation statistics

54

4.5. Synthesis

platform, the generation behavior (depicted by the Þrst derivative of the curves), is stable as
illustrated in the inner graph in Figure 4.8. Based on the experiments and results presented here,
an interesting future line of work would be to deÞne a mathematical and well founded mechanism
for determining the size of a Cfengine policy Þleset for any given set of OVAL deÞnitions.

4.5 Synthesis

In this chapter, we have presented our approach for integrating vulnerability descriptions in
the management plane of autonomic networks and systems. Taking advantage of external know-
ledge sources such as OVAL repositories enables the ability of highly increasing vulnerability
awareness in such self-managed environments. Cfengine has been taken as the autonomic part of
this approach while the OVAL language is the resource that provides support for vulnerability
descriptions. A formalization of the translation between OVAL descriptions and Cfengine poli-
cies has also been done by considering the OVAL language as a Þrst-order language. As a case
study we have chosen the IOS platform for Cisco devices, generating Cfengine policy rules ca-
pable of analyzing and detecting vulnerabilities over such platform, thus increasing vulnerability
awareness in an autonomic manner. In addition, several experiments have been performed whose
results successfully indicate the feasibility of the proposed approach in terms of functionality and
integration into the Cfengine autonomic maintenance tool. The implementation prototype used
within the experiments is fully described in Chapter 9.

Supporting vulnerability awareness constitutes the Þrst step towards secure self-managed
infrastructures capable of detecting and remediating potential security breaches. Indeed, real
autonomy can only be possible if networks and systems are able to manage the required activities
for understanding the surrounding environment, ensuring safe conÞgurations and performing
corrective actions when vulnerable states are found. The latter constitutes a hot and challenging
aspect which is deeply discussed in Chapter 8. However, assessing vulnerabilities over individual
network elements may not provide a global view of how vulnerable a network can be. Sometimes,
two or more devices may seem to be secure, but when combined, a security weakness might arise.
We call to this concept a distributed vulnerability, which is the heart of the next chapter.

55

Chapter 4. Autonomic vulnerability awareness

56

Chapter 5

Extension to distributed vulnerabilities

Contents
5.1 Introduction . 57
5.2 SpeciÞcation of distributed vulnerabilities 58

5.2.1 Motivation, deÞnition, and mathematical modeling 58
5.2.2 DOVAL, a distributed vulnerability description language 60

5.3 Assessing distributed vulnerabilities 62
5.3.1 Extended architecture overview . 63
5.3.2 Assessment strategies . 64

5.4 Performance evaluation . 66
5.5 Synthesis . 69

5.1 Introduction

As systems and technologies evolve, new space for vulnerabilities comes into scene. Auto-
nomic networks must integrate support mechanisms for preventing vulnerabilities. Nowadays,
networks are analyzed in order to detect vulnerabilities that may allow a malicious user to per-
form an attack. However, traditional mechanisms perform a global analysis by investigating each
network element individually. Indeed, our approach for increasing the vulnerability awareness of
self-governed environments previously presented in Chapter 4, considers independent analysis on
each network member. Even though such approaches can detect sets of vulnerabilities that may
allow an attacker to perform a multi-step attack, they do not provide the capability of detecting
vulnerabilities that simultaneously involve two or more devices under speciÞc conditions. The
underlying problem relies in that each network device can individually present a secure state,
but when combined across the network, a global vulnerable state may be produced. In order to
cope with this problem, the following issues must be attended. Formal mechanisms for describing
distributed vulnerabilities are required. Moreover, using standard means for achieving such ob-
jective can promote the exchange of security knowledge among practitioners and organizations.
Such descriptions in turn must be integrated into the management plane of autonomic networks
and systems. Mechanisms for interpreting and assessing theses security advisories must be pro-
vided. In addition, optimized algorithms and strategies for collaboratively assessing the network
should be developed.

In this chapter, we present a framework for describing and assessing distributed vulnerabili-
ties in autonomic networks and systems. This approach complements the host-based perspective

57

Chapter 5. Extension to distributed vulnerabilities

presented in Chapter 4. We put forward mechanisms for specifying distributed vulnerable states
that are taken into account by the proposed framework thus increasing the vulnerability aware-
ness of such self-governed environments. We also perform an analytical and technical evaluation
of the proposed approach in order to analyze and show the feasibility of our solution. The re-
mainder of this chapter is organized as follows. Section 5.2 presents the proposed approach for
specifying distributed vulnerabilities in autonomic networks and systems. In this section, we
formalize the deÞnition of distributed vulnerabilities and put forward a machine-readable lan-
guage called DOVAL for representing them. The architecture of the proposed framework as well
as algorithms and strategies for the assessment of distributed vulnerabilities are described in
Section 5.3. Section 5.4 provides an evaluation of our solution through a comprehensive set of
experiments and the obtained results. Section 5.5 concludes this chapter presenting conclusions
and further work.

5.2 SpeciÞcation of distributed vulnerabilities

During our research on vulnerability assessment, a recurrent question used to come up about
the actual deÞnition of a distributed vulnerability. Our Þndings indicate that its meaning is
currently being misused, and a revision on the conception of distributed vulnerabilities is re-
quired. In this section, we motivate and mathematically formalize the concept of distributed
vulnerabilities. In addition, we present DOVAL, a language for describing such vulnerabilities in
a machine-readable manner.

5.2.1 Motivation, deÞnition, and mathematical modeling

The concept of a distributed vulnerability may usually be understood as a set of individual
vulnerabilities distributed in the network that potentially might allow a multi-step attack. A
multi-step attack actually describes a sequence of steps performed by an attacker in order to
achieve a desired goal. Within this sequence, the attacker may exploit known vulnerabilities at
each step, in the same or a di! erent network device, in order to scale and move forward to the
Þnal objective. We think that even though this vision of individually assessing vulnerabilities
provides a useful perspective to the topic in question, it does not o!er a complete outlook of the
problem. Let us motivate this issue by considering the following example. The scenario described
in [166] and depicted in Figure 5.1 involves two related hosts, a SIP (Session Initiation Protocol)
server and a DNS (Domain Name System) server. Each one has speciÞc properties, however, they
constitute together a potential exploitable network vulnerability.

Figure 5.1 Ð Distributed vulnerability scenario

58

5.2. SpeciÞcation of distributed vulnerabilities

In this example, a denial of service (DoS) attack over the SIP server can be performed by
ßooding it with unresolvable domain names that must be solved by a local DNS server. The local
DNS server in turn, is conÞgured for requesting the resolution of unknown domains to external
servers, increasing the number of waiting requests and therefore the response time for each SIP
request. Under these conÞguration states, ßooding a SIP server with such type of messages will
prevent it to respond to legitimate requests. It is important to highlight that both servers and the
relationship between them are required conditions for the distributed vulnerability to be present.
If the DNS server is not present or if it is not compliant with the required speciÞc conditions,
the SIP server would immediately respond to a SIP client that its SIP request has failed. Even
in such a situation, thousands of SIP requests may collapse the SIP server anyway, though it is a
slightly di!erent scenario that could be speciÞed using standard OVAL deÞnitions. On the other
hand, if there is no SIP server, it is quite clear that the distributed vulnerability has no place in
this environment. Considering the insight provided by the previous example, we characterize the
concept of a distributed vulnerability by proposing the following deÞnition.

DeÞnition 4 (Distributed vulnerability). A distributed vulnerability is a security weakness that
arises when speciÞc conditions over two or more network devices occur simultaneously, providing
a potential exploitable entry point for security attacks in the network under analysis.

As a remark, it is important to distinguish the main di!erence between considering a set of
individual vulnerabilities over di!erent network devices and the proposed deÞnition. The main
di!erence is that in a distributed vulnerability, the required conditions to be observed over one
network device may not constitute a complete vulnerability description.

In order to formalize this conceptualization, we now present some required deÞnitions to
mathematically specify a distributed vulnerability.

! H = {h 1, h2, . . . } denotes the set of devices or systems in the network (e.g. hosts, routers).

! P = {p1, p2, . . . } denotes the set of device properties in the form of unary predicates
pi (h), h # H . Such predicates are used for both specifying required properties to be obser-
ved for a vulnerability to be present as well as properties the device already possesses.

! S = {s 1, s2, . . . } denotes the set of device states where a statesi describes a set of properties
required to be observed over a network device (calledrole) as well as for describing existing
speciÞc network devices states. The set S is inductively deÞned as follows:

i. if pi # P, then pi # S (i # N)

ii. if !, " # S, then (! ! ") # S ! # {$, %}

iii. if ! # S, then (Â!) # S.

! R = {r 1, r 2, . . . } denotes the set of relationships between network devices such as reachabi-
lity and service provisioning. The relationships are modeled in the form of n-ary predicates
r i (hi , ..., hj) and they are used for representing existing relationships between network de-
vices as well as those relationships required to be observed for a distributed vulnerability
to be present.

Based on the previous deÞnitions, a distributed vulnerabilityDV is deÞned as the compliant
projection of the pattern (PH , PR) over the network (H, R), illustrated in Figure 5.2, where the
constructs PH and PR are deÞned as follows:

! PH = {s 1, ..., sk} denotes the set of machine states or roles (sj # S) required to be observed
on speciÞc network devices.

! PR = {r 1, ..., r v} denotes the set of relationships (ri # R) between those devices matching
the required roles.

59

Chapter 5. Extension to distributed vulnerabilities

Figure 5.2 Ð Distributed vulnerability matching process

Under a logical perspective, a compliant projection of the pattern(PH , PR) over the network
(H, R) makes the following sentence to be true:

&(h1, ..., hn) (s1(h1) $... $ sn(hn) $ r1(hi , ..., hj) $... $ r v(hk , ..., hl)) (5.1)

We specify the previous sentence in short by considering the predicateDV (H, R) that expresses
the evaluation of a distributed vulnerability DV based on the pattern(PH , PR) over a generic
network (H, R). It is important to notice that the model allows to specify a device-based vulne-
rability by just deÞning PH = {s 1} and PR = {}, or a sequence of vulnerabilities spread across
the network by consideringPH = {s 1, ..., sk} and PR = {}.

In order to incorporate the ability to detect distributed vulnerabilities into autonomic envi-
ronments, a means for expressing these patterns is required. In that context, we have developed
DOVAL, an XML-based language built on top of OVAL for describing distributed vulnerabili-
ties. In the next section, we describe the main aspects of the DOVAL language as well as its
applicability over the motivational example previously presented.

5.2.2 DOVAL, a distributed vulnerability description language

We have designed the DOVAL language (Distributed OVAL) on top of OVAL as a means
for describing distributed vulnerabilities in a machine-readable manner. The OVAL perspective
can be seen as a host-based approach, capable of describing speciÞc host states independently.
DOVAL leverages the OVAL language by providing mechanisms for describing vulnerabilities
that involve two or more network devices at the same time. While the universe of discourse in
the OVAL language is composed of digital components (e.g. processes, Þles), DOVAL extends it
by considering network devices as well. In addition, we extend the semantics of the language by
allowing to express relationships between objects in order to describe conditions involving several
devices simultaneously. In this manner, we can for instance specify that a network is vulnerable,
if a given tra"c between speciÞc processes and devices is allowed.

Within the DOVAL language, the required conditions over each involved device are described
using standard OVAL deÞnitions. An OVAL deÞnition is intended to describe a speciÞc machine
state using a logical combination of tests that must be performed over a host. If such logical
combination is observed, then the speciÞed state is present on that host (e.g. vulnerability, speciÞc
conÞguration). As explained in the previous chapter, this combination can be understood from
a logical perspective as a Þrst order formula where each test corresponds to an atomic unary
predicate over that system. DOVAL extends this concept by enabling the expression of predicates
that involve more than one device, thus allowing the speciÞcation of required relationships over

60

5.2. SpeciÞcation of distributed vulnerabilities

The DOVAL language

DOVAL constructs Description First-order logic

DOVAL document Set of distributed Arrangement of

vulnerabilities compound logical

formulas

DOVAL definition Distributed Compound logical

vulnerability formula

DOVAL test Assessment of a Container of

condition between an atomic n-ary

several devices predicate

DOVAL object Devices with Family of

specific conditions individuals in

using OVAL the discourse

definitions universe

DOVAL state Network condition Mathematical

between devices relationship

characterized by specification

DOVAL objects

Figure 5.3 Ð DOVAL logical description

the network. Figure 5.3 depicts the main DOVAL constructs and provides a description of the
intended purpose of each main building block.

A DOVAL document is intended to meet the speciÞcation of several components required
to describe a set of distributed vulnerabilities. Each distributed vulnerability is speciÞed by a
DOVAL deÞnition, which provides the capability of expressing a logical formula that involves
several DOVAL tests. Each DOVAL test in turn constitutes the container of an n-ary predicate
over a set of network devices(hi , ..., hj) and it is in charge of putting together the required
devices and the states expected to be observed between them.

We consider a required network device as a device that meets certain conditions (sj) and that
is required to be present for the distributed vulnerability DV to be true in the network under
analysis (H, R). Required network devices (PH) are described by means of DOVAL objects. In
order to express DOVAL objects, we take advantage of the very Þnal objective of the OVAL
language, this is to say, to express speciÞc machine states. Thus, a DOVAL object is actually a
set of references to OVAL deÞnitions, where each one describes a required speciÞc machine state
(pi) on that device. Finally, the expected relationships over the network (PR) are expressed
using DOVAL states. A DOVAL state (r i) speciÞes properties between devices and the roles
each device has within such relationship, and can be seen as an actual predicate itself.

There exist several situations where neither individual host assessments nor inference chains
over individual exploitable vulnerabilities can expose potential security threats in a wide net-
work. Mechanisms for globally specifying and evaluating network distributed vulnerabilities are
essential. In order to illustrate the utilization of the DOVAL language for describing this kind of
situations, let us retake the example presented in Figure 5.1. The speciÞcation of such scenario
using the DOVAL language is presented in Listing 5.1.

A DOVAL deÞnition with id "doval:fr.inria.doval:def:1" identiÞes which DOVAL tests must
be performed in order to detect the distributed vulnerability that such deÞnition is intended to
describe. The DOVAL test with id "doval:fr.inria.doval:tst:4141" identiÞes the required devices
as DOVAL objects and the relationships between them by referencing DOVAL states. The re-
quired devices, namely a SIP server with no ßooding protection (s1) and a local DNS server
with external unknown domain resolution (s2), are speciÞed using two DOVAL objects,"do-
val:fr.inria.doval:dev:222" and "doval:fr.inria.doval:dev:256" respectively. Each DOVAL object
enforces the required properties over the device it describes by considering a set of OVAL de-

61

Chapter 5. Extension to distributed vulnerabilities

Þnitions, one for each needed condition. Each DOVAL state speciÞes the characteristics of the
relationship expected to be observed between both devices.

<? xml v e r s i o n = " 1.0 " encod ing= " UTF ! 8" ?>
<doval_document>

<d o v a l _ d e f i n i t i o n s>
<d o v a l _ d e f i n i t i o n i d= " dova l : f r . i n r i a . dova l :de f :1 " c l a s s= " dis t r ibuted_vulnerabi l i ty " >

<metadata>
< t i t l e>SIP DoS a t t a c k u s i n g DNS f l o o d i n g</ t i t l e>
<d e s c r i p t i o n> . . . </ d e s c r i p t i o n>
<d o v a l _ r e p o s i t o r y> . . . </ d o v a l _ r e p o s i t o r y>

</ metadata>
< c r i t e r i a>

< c r i t e r i o n comment= " . . . " t e s t _ r e f= " dova l : f r . i n r i a . dova l : t s t :4141 " />
</ c r i t e r i a>

</ d o v a l _ d e f i n i t i o n>
</ d o v a l _ d e f i n i t i o n s>

< t e s t s>
<dova l_ tes t i d= " dova l : f r . i n r i a . dova l : t s t :4141 " comment= " DOVAL tes t combining two s p e c i f i c tes ts ,

reachab i l i t y and conf igurat ion . " c h e c k _ e x i s t e n c e= " at_least_one_exists " check= " at l e a s t one " >
<o b j e c t d e v i c e _ r e f= " dova l : f r . i n r i a . doval:dev:222 " />
<o b j e c t d e v i c e _ r e f= " dova l : f r . i n r i a . doval:dev:256 " />
<s t a t e s t a t e _ r e f= " dova l : f r . i n r i a . dova l :s te :4444 " />
<s t a t e s t a t e _ r e f= " dova l : f r . i n r i a . dova l :s te :7777 " />

</ dova l_ tes t>
</ t e s t s>

<o b j e c t s> <! !! d e v i c e s !! >
<d e v i c e _ o b j e c t i d= " dova l : f r . i n r i a . doval:dev:222 " />

<prop o v a l d e f _ r e f= " ova l :org . mitre . ova l :de f :1000 " /> < ! !! SIP s e r v e r runn ing !! >
<prop o v a l d e f _ r e f= " ova l :org . mitre . ova l :de f :1001 " /> < ! !! Por t 5060 open !! >
<prop o v a l d e f _ r e f= " ova l :org . mitre . ova l :de f :1002 " /> < ! !! S e c u r i t y module not i n s t a l l e d !! >

</ d e v i c e _ o b j e c t>

<d e v i c e _ o b j e c t i d= " dova l : f r . i n r i a . doval:dev:256 " />
<prop o v a l d e f _ r e f= " ova l :org . mitre . ova l :de f :2000 " /> < ! !! DNS s e r v e r runn ing !! >
<prop o v a l d e f _ r e f= " ova l :org . mitre . ova l :de f :2001 " /> < ! !! Por t 53 open !! >
<prop o v a l d e f _ r e f= " ova l :org . mitre . ova l :de f :2002 " /> < ! !! Unknown domains s o l v e d by e x t e r n a l DNS

s e r v e r s !! >
</ d e v i c e _ o b j e c t>

</ o b j e c t s>

<s t a t e s> <! !! r e l a t i o n s h i p s !! >
<l i n k _ s t a t e i d= " dova l : f r . i n r i a . dova l :s te :4444 " /> < ! !! T r a f f i c c a p a b i l i t y !! >

<p r o t o c o l o p e r a t i o n= " equals " > udp </ p r o t o c o l>
<s rc_por t d e v i c e _ r e f= " dova l : f r . i n r i a . doval:dev:222 "
o p e r a t i o n= " pattern match " > . " </ s rc_por t>

<dst_por t d e v i c e _ r e f= " dova l : f r . i n r i a . doval:dev:256 "
o p e r a t i o n= " equals " > 53 </ dst_por t>

</ l i n k _ s t a t e>

<s e r v i c e _ s t a t e i d= " dova l : f r . i n r i a . dova l :s te :7777 " /> < ! !! S e r v i c e c o n f i g !! >
<name o p e r a t i o n= " equals " > dns </name>
<consumer d e v i c e _ r e f= " dova l : f r . i n r i a . doval:dev:222 " />
<p r o v i d e r d e v i c e _ r e f= " dova l : f r . i n r i a . doval:dev:256 " />

</ s e r v i c e _ s t a t e>
</ s t a t e s>

</ d o v a l _ d e f i n i t i o n s>

Listing 5.1 Ð DOVAL document

Within the current example, two relationships are required: (1) DNS tra"c is allowed bet-
ween the SIP server and the DNS server (r1), speciÞed by aDOVAL link_state with id "do-
val:fr.inria.doval:ste:4444", and (2) the SIP server has conÞgured the DNS server as its DNS ser-
vice provider (r2), speciÞed by aDOVAL service_state with id "doval:fr.inria.doval:ste:7777". In
order to assess such a speciÞcation, a deployable distributed infrastructure capable of enforcing
its evaluation and notiÞcation is required. This aspect is presented in the next section.

5.3 Assessing distributed vulnerabilities

The main objective of DOVAL is targeted on describing conditions involving several network
devices that if observed, the underlying network presents a vulnerable state that can be exploited
by an attacker. In order to detect such scenarios, DOVAL descriptions must be interpreted and
evaluated on the target network. We propose a framework based on Cfengine, a widely deployed

62

5.3. Assessing distributed vulnerabilities

conÞguration and administration system, capable of enforcing security policies for discovering
distributed vulnerabilities across the network.

5.3.1 Extended architecture overview

Due to the size and dynamics of current networks, the assessment and detection of vulnerable
distributed states is not a trivial task. We partition the problem into several steps, namely,
(1) generation of a minimized loop-free topology of the underlying network, (2) collection of
hosts and network information, and (3) assessment of DOVAL speciÞcations over the gathered
data. Figure 5.4 illustrates the steps and the architecture of the proposed approach.

Figure 5.4 Ð Overall architecture

Within this architecture, distributed vulnerabilities are speciÞed using the DOVAL language
and stored in a database. A Cfengine server is fed with such knowledge and translated as Cfen-
gine policy rules, in the same way we have done for host-based vulnerabilities as presented in
Chapter 4. Our approach considers a deployment of Cfengine agents across the network, where
each agent is in charge of controlling one network device. In order to evaluate the existence of a
distributed vulnerability, a spanning tree is built on top of the target network to minimize paths
and avoid network loops. The DOVAL speciÞcation is then transmitted across the tree and the
required information is gathered by performing an aggregation algorithm over the nodes. Each
Cfengine agent assesses the device it controls in order to discover which roles such device can
play within the distributed vulnerability speciÞcation. This information is returned back until
all the information is stored at the root node of the spanning tree. Finally, the speciÞcation of
the distributed vulnerability is projected over the information gathered from the network, and a
DOVAL report is generated informing about distributed vulnerable states across the network.

63

Chapter 5. Extension to distributed vulnerabilities

5.3.2 Assessment strategies

Several strategies for assessing the required properties on each network device can be used.
Considering the number of potential combinations, an optimized algorithm for evaluating the
network is required. Within our approach, we consider the aggregation algorithm proposed in [30]
for building a tree-based overlay network with the information of each device in the network
under analysis. We now proceed to explain our strategy in a constructive manner considering
two situations. The Þrst situation presents a simpliÞed scenario where full connectivity between
each pair of nodes is in place and no further relationships between nodes are required. The second
situation puts forward a more realistic scenario that extends the Þrst one by considering network
constraints such as reachability restrictions or service provisioning requirements.

When starting a DOVAL deÞnition assessment, the set of required devices for the distributed
vulnerability to be present can be seen as an empty tuplet = (1, 2, ..., k). Each blank Þeld
represents the placeholder for a required role characterized byPH = {s 1, ..., sk} according to the
deÞnitions given in Section 5.2.1. During the assessment across the spanning tree, tuplet will
be collaboratively fulÞlled as each Cfengine agent will indicate which of these Þelds the device it
controls can play. At the end, several combinations can occur thus the Þnal computation will be
performed over a setT = {t 1, ..., tw}. Let DV be a distributed vulnerability where t = { s1, s2, s3}
speciÞes the set of roles required to be observed in the network. Figure 5.5 depicts the steps
taken during the algorithm execution for discovering the roles each network device is able to
play. At the initial step, a spanning tree covering every node in the network is considered. The

Figure 5.5 Ð Aggregation algorithm execution for role discovery

64

5.3. Assessing distributed vulnerabilities

tree is explored using a post-order traversal. At Step 1, the nodeh4 is assessed reporting that
it matches roless1 and s3. Then, the nodeh2 fulÞlls its temporal role list and continues with
the node h5 as shown in Step 2. At Step 3,h2 is assessed in order to detect which roles it can
play and the role list for the sub-tree with root h2 is returned to the caller h1. The nodeh3 is
assessed at Step 4 identifying its ability to perform the roles2. At Step 5, the temporal role list
describes the roles that the nodesh2, h3, h4 and h5 are able to play. The assessment of the node
h1 will complete the role list indicating that role s1 can be performed by the nodesh4 and h5,
whereas the roles2 can be performed byh1, h3 and h5, and s3 by h1 and h4.

Usually, networks present complex topologies imposing reachability restrictions. We consider
such constraints in the second situation, where distributed vulnerabilities require the existence
of relationships among the involved network devices such as reachability or service provisioning.
Under a logical perspective, a distributed vulnerability involving n roles may require at most the
evaluation of n-ary predicatesr i (h1, ..., hn) where each devicehi covers one speciÞc rolesi though
it could cover more than one at the same time. Such scenarios require not only to discover the
roles that each network device is able to play but also to assess the relationships between them. In
order to deal with these more realistic situations, we extend the previous algorithm by performing
a neighborhood discovery at each node and assessing the relationships each node supports with its
neighbors. The idea behind this approach is toreducethe participation of nodes that can endorse
an expected role but they do not satisfy the required relationships with other nodes. Considering
the example given in Section 5.2.1, the fact of Þnding a SIP serverh1 and a DNS serverh2 under
the required conditions does not mean that the distributed vulnerability is necessarily present.
For instance, if DNS tra"c is not allowed between them, the predicate r1(h1, h2) does not hold ;
then such pair of network devices does not constitute a candidate combination for the distributed
vulnerability. In order to analyze the surrounding environment at each node, we take advantage
of CfengineÕs functionalities for performing a neighborhood discovery [30]. The process described
by Algorithm 5.1 depicts the steps performed by each Cfengine agent while assessing the roles
the device can play as well as the required relationships it supports with its neighbors.

Input: DOVAL document
Output : List of tuples specifying devices and relationships between them

1 foreach role s # DOVAL objects do
2 if currentNode n is compliant with role s then
3 N " SelectP artitionNeighbors ;
4 foreach predicate r # DOVAL states do
5 if r requires role s then
6 w " getP redicateArity (r);
7 foreach sequence{h 2, ...hw } ' N do
8 result " eval state r (n, h2, ..., hw);
9 if result is true then

10 add tuple to output list [r, (n, s), (h2, s2), ..., (hw , sw)];
11 end
12 end
13 end
14 end
15 end
16 end

Algorithm 5.1: Node roles and relationships assessment

65

Chapter 5. Extension to distributed vulnerabilities

Within our approach, a DOVAL object describes the required properties (s) that must be ob-
served over a network device (h) that is part of a distributed vulnerability. Each device compliant
with such description is able to perform the objectÕs intended role. The proposed algorithm is exe-
cuted on each agent and analyzes every role (line 1) the device it controls can perform. For each
supported role (line 2), its neighbors are stored in the setN (line 3) and the required relationships
are assessed against them (line 4). Such relationships are described by means of DOVAL states
and they can be seen as predicates involvingw network devices. Only those relationships involving
the current role s are assessed (line 5). Depending on the arity of the predicate (line 6), subsets
of w (1 network devices are built (line 7) and the relationship among them is assessed (line 8).
If such relationship holds, a tuple is added to the output list (line 10) indicating that the node n
is able to perform the roles, and that under that role, the relationship r (described by a DOVAL
state) holds when considering devices(h2, ..., hw) performing potential roles (s2, ..., sw) respec-
tively. The actual veriÞcation of devices(h2, ..., hw) performing roles (s2, ..., sw) is done at the
end, when each node in the spanning tree has been evaluated and the root node has all the
required information for the assessment of the distributed vulnerability in the network. In order
to evaluate the performance of the proposed approach, we have performed di!erent experiments
which are presented in the next section.

5.4 Performance evaluation

In this section we present an analytical evaluation and a technical discussion of the proposed
approach. We put forward the speciÞcation of two metrics in order to analyze the performance
during the evaluation of a generic distributed vulnerability, namely, (1) the number of messages
sent across the network, and (2) the total time required for the assessment. We also show the
scalability of the proposed approach by modeling di!erent scenarios based on the instantiation
of various parameters within the speciÞed metrics.

Let N be the network under analysis with a set of devicesH = {h 1, ..., hn} and relationships
R = {(hi , ..., hj))}. Let DV be a distributed vulnerability that requires a set of k roles deÞned
by PH = {s 1, ..., sk} and v relationships deÞned by the setPR = {r 1, ..., r v}. We consider the
following assumptions during the assessment ofDV over N :

! a binary spanning tree is built on top of N ,
! each deviceh has in averageq neighbors,
! each predicater i has in average arityb (we deÞne the variablea = b(1 in order to simplify

the equations),
! the probability for a device to play a role sj (event A) is given by P(A) = ! ,
! the probability for a role sj to occur on a predicater i (event B) is given by P(B) = " ,
! the evaluation of any rolesj over any deviceh takes in average# units of time,
! the evaluation of any predicater i takes in average$ units of time.

Number of messages. In order to analyze the tra"c generated across the network, we consi-
der the number of messages sent during the evaluation of a generic distributed vulnerabilityDV .
We deÞne the metricM that estimates the amount of messages transmitted as follows:

M = n) (1 + k) P(A)) P(B |A)) v) M pred)

where M pred = PR(q + 1 , a)) a = (q + 1) a) a

When traversing the spanning tree (n nodes), each node receives one message in order to
start its own evaluation. At each node,k roles must be evaluated. Because not every device will

66

5.4. Performance evaluation

play every role, we model this uncertainty as an eventA that occur with probability 1 P(A) = ! .
Given the event A for a role sj , we model the probability of such role to be involved on each
predicate r i by considering the conditional probability P(B |A) = " and the multiplier v. The
Þnal factor M pred represents an upper bound of the number of messages sent when evaluating
one single predicate among the node under analysis and its neighbors.PR(q + 1 , a) denotes
the number of a-permutations with repetition of a set of q neighbors plus the node itself. For
each possible permutation that may fulÞll the arguments (roles) required by the predicate under
analysis, a messages must be sent.M pred represents an upper bound because we consider that
multiple roles can be covered by one single device, which means that for those combinations
assigning for instance the same device to each role, only one instead ofa messages will be sent.

Assessment time. We analyze here two distributed approaches that have a direct impact on
the total assessment time for a distributed vulnerability DV . The Þrst one consists on sequentially
assessing the network, analyzing one node at a time. In this case, we deÞne the total assessment
time as:

TS = n) k) (# + P(A)) P(B |A)) v) Tpred)

where Tpred = $) PR(q + 1 , a) = $) (q + 1) a

For each node in the network,k roles are evaluated where each one takes# units of time.
The probability for the node to perform a role is given by P(A) whereasP(B |A) deÞnes the
probability for that role to be involved on each one of thev predicates.Tpred involves the same
permutations among neighbors asM pred does, but for each possible sequenceTpred considers the
parameter $ that models the average time for evaluating a predicater i .

An alternative to the sequential modality consists on using a parallel computing approach.
Such approach enables the evaluation of every node simultaneously thus reducing the sequential
assessment time. Under this perspective, the total assessment time becomes:

TP = maxnode(k) (# + P(A)) P(B |A)) v) Tpred))

and the worst case is: TP w = k) (# + v) Tpred)

TP w describes the extreme case where a node is able to perform every required role that in turn
is involved in each predicate. Such case maximizes the amount of time among the times required
by the nodes in the spanning tree.

The proposed metrics have several parameters that a!ect the Þnal result such as the number
of nodes (n) or the probability for an arbitrary node to play a given role (P(A)). Typical scenarios
usually involve predicates conceived as peer to peer properties (binary predicates,a = 1) as well
as a restricted number of roles (smallk). Each required predicate in turn usually involves all
roles, thus simplifying conditional probabilities (P (B |A) = 1). Under this perspective, we have
performed several experiments using the example illustrated at Section 5.2.2 as a case study
in order to analyze the behavior of our approach. In this scenario we havek = 2 , v = 2 ,
a = 1 and q = n (1 depicting a full mesh network. We have also simpliÞed the units of
time considering # = $ = 1 . Networks nature can vary depending on the context and the
purpose they have been built for. Therefore, we use the parametersn and P(A) for analyzing
such situations. The experiment depicted in Figure 5.6 considers a uniform distribution for role
assignment(P(A) = 1

n), meaning that only one ofn nodes may play a given rolesj . These curves

1. This is a simpliÞed measure of the likelihood for the event A to occur since depending on the network nature,
the probability of choosing, for instance, a SIP server within a standard company network will be presumably
lower than picking up a standard workstation running any version of Windows 7.

67

Chapter 5. Extension to distributed vulnerabilities

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 2000 4000 6000 8000 10000
 0

 10000

 20000

 30000

 40000

 50000

 60000

M
es

sa
ge

s
/ U

ni
ts

 o
f T

im
e

M
es

sa
ge

s
/ U

ni
ts

 o
f T

im
e

Number of Nodes

Scalability statistics using a uniform distribution on role assignment

Messages
Ts

Tpw

 0

 5

 10

 15

 0 2000 4000 6000 8000 10000

Number of Nodes

Growth Rate (First Derivative)

Messages
Ts

Tpw

Figure 5.6 Ð Statistics with uniform distribution on role assignment

depict how much grows the number of messages (solid line) as well as the assessment time under
a sequential computing approach (dotted line) and a parallel computing approach (dashed line)
when the number of nodes in the network becomes bigger. We can observe a proportional growth
on every metric (M , TS, TP w) under a constant rate. This is easily veriÞable by looking at the
inner graph of Figure 5.6 that shows the Þrst derivatives of each curve.

Considering that only one device can perform a required role may apply just on special cases
so we have analyzed the behavior of our approach when increasing the number of potential
devices able to perform the required roles. This is achieved by modifying the probability for a
device to play a role (P(A)) as shown in Figure 5.7. We observe that even though the assessment
time using a sequential approach is not linear, its growth rate illustrated in the inner graph of
Figure 5.7 remains linear. We get a maximum assessment time whenP(A) = 1 (dotted line)
because every node is able to play every role. WhenP(A) = 1

2 (solid line), a half of the network
can perform each role and the assessment time is lower though the curve demonstrates similar
behavior as with P(A) = 1 . When a parallel approach is used (dashed line), a constant behavior
is observed in the worst case (P(A) = 1) making it clear that such approach is better than the
sequential one.

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 0 2000 4000 6000 8000 10000
 0

 10000

 20000

 30000

 40000

 50000

 60000

U
ni

ts
 o

f T
im

e
(T

s)

U
ni

ts
 o

f T
im

e
(T

pw
)

Number of Nodes

Scalability statistics with an increased device participation

Ts with P(A)=1/2
Ts with P(A) = 1

Tpw

 0

 20000

 40000

 60000

 0 2000 4000 6000 8000 10000

Number of Nodes

Growth Rate (First Derivative)

Ts with P(A)=1/2
Ts with P(A) = 1

Tpw

Figure 5.7 Ð Statistics with an increased device participation

68

5.5. Synthesis

From a more technical point of view, the proposed approach requires mechanisms for in-
terpreting and assessing descriptions of distributed vulnerabilities. As indicated in the previous
chapter, we have developed Ovalyzer, a tool capable of translating OVAL advisories to Cfengine
policy rules, detailed in Chapter 9. Within our approach, the Cfengine system is the component
to be embedded within target autonomic networks and systems. It is in charge of enforcing
security policies including the assessment of distributed vulnerabilities. To achieve this, policy
rules directly interpretable by Cfengine are needed. In light of this, an extension to Ovalyzer
(not developed yet) would be able to translate DOVAL speciÞcations into Cfengine policy rules
that represent them. Such an extension, that we could call Dovalyzer, could use the functionali-
ties provided by Ovalyzer for translating OVAL deÞnitions and complement the generated code
in order to cover distributed assessment tasks speciÞed by DOVAL deÞnitions. The translator
must take as input the content of DOVAL documents and produce Cfengine code, structured as
Cfengine policy Þles, that can be later consumed by a Cfengine running instance.

5.5 Synthesis

In this chapter, we have proposed an extension to distributed vulnerabilities which enables
autonomic networks and systems to assess such security advisories. This perspective comple-
ments the approach presented in Chapter 4 for host-based vulnerabilities by considering a holistic
overview of the network. We have mathematically deÞned the concept of a distributed vulne-
rability and we have developed DOVAL, an OVAL-based language for expressing these formal
constructions. A case study has been presented showing DOVALÕs main constructs. As in OVAL,
DOVAL descriptions can constitute useful security repositories that in turn can be exploited by
self-managed environments in order to ensure safe conÞgurations. We have proposed a framework
based on the Cfengine system for assessing distributed vulnerabilities in autonomic networks as
well as optimized algorithms and collaborative strategies for performing such evaluations. We
have analyzed the proposed algorithms by mathematically deÞning computation costs that show
the feasibility of the model through a comprehensive set of experiments. We also have presen-
ted a technical discussion about implementation perspectives, where Cfengine policies could be
fed by a translator capable of producing Cfengine policy rules that represent DOVAL security
advisories.

The applicability of the DOVAL language goes beyond the expression of distributed vulne-
rabilities. Indeed, it can be used for describing general distributed scenarios involving di!erent
entities with speciÞc conÞgurations. Semantics can be used for both identifying wrong conÞgura-
tions as well as best practices. In the context of the Univerself project and the UMF framework,
we have proposed a conÞguration assessment services called CAS that involves both the OVAL
and DOVAL languages. A more detailed explanation of the CAS service can be found in Annex A.
As stated before, vulnerability assessment constitutes the Þrst step within the vulnerability ma-
nagement process. Therefore, remediation activities must be considered as well, for host-based
and distributed vulnerabilities. This topic is discussed in detail in Chapter 8. When considering
vulnerability assessment mechanisms, the extension performed from a host-based perspective,
presented in Chapter 4, to a distributed one, could be considered as a spatial dimensional exten-
sion. However, this is not the only dimension that may contribute to provide better mechanisms
to autonomic security. Indeed, the ability to understand the state of autonomic elements in the
past and potential hidden vulnerabilities, might provide robust support for enhancing security
mechanisms in the present. This perspective is presented in the next chapter.

69

Chapter 5. Extension to distributed vulnerabilities

70

Chapter 6

Support for past hidden vulnerable
states

Contents
6.1 Introduction . 71
6.2 Modeling past unknown security exposures 72

6.2.1 Understanding past unknown security exposures 73
6.2.2 Specifying past unknown security exposures 74

6.3 Detecting past hidden vulnerable states 75
6.3.1 Extended architecture overview . 75
6.3.2 Assessment strategy . 76

6.4 Experimental results . 77
6.5 Synthesis . 79

6.1 Introduction

In the previous chapter we have discussed about distributed vulnerabilities, which extends the
concept of regular host-based vulnerabilities towards complete networks as a whole. This spatial
extension constitutes an important improvement in the way autonomic networks can be analyzed
and protected. However, time is also an important dimension that must be considered when
managing vulnerabilities. By the time a piece of software is being constructed, several errors may
be unintentionally introduced providing room for security vulnerabilities. These vulnerabilities
can survive within active systems for a long period of time without being detected. During this
period, attackers may perform well-planned and clean attacks (e.g., stealing information) without
being noticed by security entities (e.g., system administrators, intrusion detection systems, self-
protection modules). Indeed, unaware entities do not even think about such a potential breach
due to the very nature of being under-informed, constituting blind and easy targets for attackers.
As a matter of fact, such attacks might never be detected. Changes in the system or even its
normal activity can alter or erase the remaining evidence. This issue makes it clear why it is
so important to increase the awareness of our systems as soon as security information becomes
available. In that context, our approach aims at taking advantage of current security information
for analyzing system security in the past. If unknown security exposures are detected, response
actions can be performed in the present for bringing system states to secure levels.

71

Chapter 6. Support for past hidden vulnerable states

The ability to identify past unknown system exposures due to hidden vulnerabilities allows
forensic activities to be performed in order to detect malicious activity [54], [2]. For instance, a
bank that has detected a potential intrusion compromising data about credit cards would be able
to take actions before consequences become out of control. It would be easier for the bank to
block compromised credit cards and make new ones than waiting for notiÞcations of anomalous
activity from its clients. Other scenarios apply as well in general computing systems. Usually,
intruders leave entry points (backdoors) to come back to compromised hosts. Later, if a past
exposure that may allow an attacker to install backdoors is detected, forensic analysis could be
performed in order to reveal such security issue. The consequences of this investigation not only
allow to know if the system has been actually compromised but also to correct a security breach
in the present that could be used for future attacks. The acknowledge of current vulnerabilities is
a critical factor for reducing the exposure of computing systems. Under this perspective, there is
a race for getting security information early. Both security entities and attackers can beneÞt from
their speed, being for self-defence or for breaking security barriers. Open and mature standards
such as the OVAL language are cornerstones at this point as they provide a strong support for
openly exchanging security information within the community.

Historical vulnerability information as well as security metrics and trends are highly useful as
proposed in [137, 1]. However, these contributions do not take advantage of new security infor-
mation that could have been useful in the past for detecting security exposures. As explained in
the next section, the exploit for a vulnerability can be released long time before the vulnerability
is publicly known. Hence, a!ected systems can be exposed during this period without actually
knowing it. To the best of our knowledge, no previous contributions have taken advantage of
current security advisories for assessing past hidden vulnerable states. This would enable current
systems to increase their own exposure awareness and to take actions in consequence if unknown
past exposures are detected.

In this chapter we propose a novel approach for increasing the overall security of computing
systems by identifying past hidden vulnerable states. This information can be used for detecting
potential unknown attacks in the past, identifying compromised assets and bringing systems up
to secure states. Taking advantage of the OVAL language for representing system states and
analyzing vulnerabilities, our strategy consists in autonomously generating images of network
devices that represent their current state, building a history of their evolution, and capitali-
zing new security advisories for automatically assessing past system states in order to detect
potential security breaches. The remainder of this chapter is organized as follows. Section 6.2
presents our approach for mathematically modeling and detecting unknown past security expo-
sures. Section 6.3 details the proposed framework describing its architecture and the strategies
for performing assessment activities. Section 6.4 provides an evaluation of our solution through a
comprehensive set of experiments. Section 6.5 concludes this chapter and discusses further work.

6.2 Modeling past unknown security exposures

Since the construction of a software program, errors are unintentionally introduced pro-
ducing security vulnerabilities. At a certain time, system administrators, security modules or
self-protection components, system security entities from now, may be unaware of these issues
permitting attackers to take advantage of them and to breach the security measures without
being noticed. However, the awareness of such potential attacks later in time provides the ability
to inspect possible security breaches and to take actions to ensure the security of the system. In
this section we present a mathematical model that deÞnes and supports the process for detecting
past unknown security exposures.

72

6.2. Modeling past unknown security exposures

Figure 6.1 Ð Vulnerability lifecycle events

6.2.1 Understanding past unknown security exposures

Security exposures can inadvertently occur during long periods of time. Unaware of this fact,
systems become victims of unnoticed security incidents that may compromise their information
and functionalities in the long term. Once a vulnerability has been introduced in a software pro-
gram, a sequence of events constitutes what is called the vulnerability lifecycle [72] described in
Figure 6.1. Event 1 indicates the vulnerability creation time denoted bytcreat . Event 2 records
the time where the vulnerability is discovered, speciÞed bytdisco. Event 3 denoted by texplo in-
dicates the Þrst time an exploit becomes available. Its disclosure time speciÞed bytdiscl occurs
in event 4 where the vulnerability information becomes freely available to the public. Since the
vulnerability discovery time until this point, the information about it is considered as private
knowledge denoted by* private = tdiscl (tdisco. Beyond this point, system security entities may
acknowledge its existence. Event 5 indicates the time where a vulnerability countermeasure be-
comes available, denoted bytcount . Vulnerable states may be partially mitigated by performing
certain actions that do not correct the problem but avoid it to be exploited. Since an exploit
exists until this point, systems are vulnerable to security attacks. This period is denoted by
* vulnerable = tcount (texplo . Event 6 speciÞed bytpatch indicates the time where a patch becomes
available to the public. System security entities can install this patch in order to eradicate the
vulnerability.

It is important to notice that such a sequence of events describes the general lifecycle of a
vulnerability but it can actually di!er from one system to another. For instance, system security
entities may acknowledge the existence of a vulnerability later in time after its disclosure. The
same happens with the application of countermeasures and patch installations. In some cases,
such actions may never occur. Because of this, we have modiÞed the original event sequence
proposed in [72]. Within our approach we consider the existence of potential countermeasures
at time tcount . We understand that its application as well as the installation of a patch are
inherent to the environment where the vulnerability lives in and not as a lifecycle component.
In addition, these events usually occur in the order they are listed. However, they also depend
on the context and may vary among di!erent vulnerabilities. For instance, the exploit might be
published after the vulnerability has been disclosed, or a countermeasure may not exist until the
patch is available thus tcount will coincide with tpatch .

Based on the previous deÞnitions, we specify a past unknown security exposure by considering
the following deÞnition.

DeÞnition 5 (Past unknown security exposure). A past unknown security exposure is an ex-
ploitable vulnerable state that exposes a system to security threats during a certain period of time
(* vulnerable) in which neither the system nor its security entities were aware of such security
weakness.

73

Chapter 6. Support for past hidden vulnerable states

In order to unveil such security exposures, an infrastructure capable of managing snapshots
of the system across time would be able to analyze past system states by taking advantage of
current security information. In this manner, exposure time gaps of the system can be detected
in order to perform further analysis such as forensic activities over valuable assets. In the next
section we present our model for supporting the proposed infrastructure.

6.2.2 Specifying past unknown security exposures

In order to deÞne a mathematical speciÞcation of unknown past security exposures, we Þrst
introduce a set of core deÞnitions that constitute the main building blocks of the model. We
present here three deÞnition groups: (1) domains, (2) predicates and (3) functions, that are used
for deÞning how a system is evaluated in order to detect past exposures. The universe of discourse
is constituted by the following domains:

! P = {p1, p2, . . . } denotes the set of device properties in the form of unary predicatespi (h)
whereh is the device under analysis. Such predicates are used for specifying both required
properties to be observed for a vulnerability to be present as well as properties the device
already possesses.

! S = {s 1, s2, . . . } denotes the set of device states where a statesi is used for describing in
a compact manner the set of properties required to be observed over the device as well as
for describing existing speciÞc device states. The set S is inductively deÞned as follows:

i. if pi # P, then pi # S (i # N)

ii. if !, " # S, then (! ! ") # S ! # {$, %}

iii. if ! # S, then (Â!) # S.

! R = {r 1, r 2, . . . } denotes the sequence of system revisions (snapshots) through time, where
a revision ri precedes a revisionr j only if i < j . R is called the revision repository.

! V = {v 1, v2, . . . } denotes the set of known vulnerability deÞnitions and it is also called the
knowledge source.

The predicates applied over individuals of our discourse universe are deÞned as follows:
! All the deÞned domains act as membership predicates, e.g.,R(r) is true if and only if r is

a system revision.
! isV ulnerable : S + V , Boolean denotes a predicate that takes a system states # S and

a vulnerability deÞnition v # V as input and returns true if and only if the vulnerability v
is present in the system states.

! isNew : V , Boolean denotes a predicate that takes a vulnerability deÞnitionv # V as
input and returns true if and only if the vulnerability v is new within the current knowledge
source.

The functions used in the approach are the following:
! revision : N , R denotes a function that takes a revision numbern # N as input and

returns the associated system revisionr # R.
! number : R , N denotes a function that takes a system revisionr # R as input and

returns the associated numbern # N .
! state : R , S denotes a function that takes a system revisionr # R as input and returns

its associated states # S.
! time R : R , N denotes a function that takes a system revisionr # R as input and returns

the time elapsed since the revision was created.
! time V : V , N denotes a function that takes a vulnerability deÞnitionv # V as input and

returns texplo if known, otherwise tdiscl is returned.

74

6.3. Detecting past hidden vulnerable states

Based on the previous core deÞnitions, we deÞneE(R, V) shown in Equation 6.1 as a predicate
that based on a revision historyR and a vulnerability knowledge sourceV , indicates if the system
under analysis has been unknowingly exposed in the past.

E (R, V) = &(r) &(v) (R(r) $ V (v) $ isNew(v)

$time V (v) - time R(r) (6.1)

$ isV ulnerable(state(r), v))

Equation 6.1 mathematically states the main concept of our approach. If a new vulnerability
is available, and exists at least one system revision made after the exploit was created or the
vulnerability was disclosed, and such revision is found to be vulnerable, then the system has
been unknowingly exposed in the past, even if the vulnerability is not observable in the present
conÞguration. This warning can be used for performing a deeper analysis within the vulnerable
period in order to detect malicious activity or compromised data. In the next section we present
a framework capable of capitalizing security advisories and analyzing historical revisions in order
to detect and warn about unknown past exposures.

6.3 Detecting past hidden vulnerable states

Detecting past unknown security exposures relies on the ability to see beyond the current
status of a given system. In order to achieve this goal, we propose a distributed autonomous
framework capable of organizing historical information about computing systems and analyzing
them when new security information is available. In this section we present the overall architec-
ture and explain our strategy for detecting past security exposures by taking advantage of new
advisories over past system states.

6.3.1 Extended architecture overview

In order to build a framework capable of identifying security exposures in the past, we consi-
der two independent cyclical processes. One process for imaging systems in an autonomous man-
ner and the second one for actually detecting past security exposures. Figure 6.2 illustrates the
proposed architecture identifying the main components as well as the communication processes
between them. The sequence denoted by Steps I, II and III constitutes the image generation
process. At Step I, the exposure analyzer provides directives for data collection that will be used
for building system images. These directives are speciÞed by means of OVAL documents that are
automatically translated to Cfengine policy rules. The ability to express OVAL objects without
actually expecting any particular state allows us to use OVAL documents as the inventory of
required objects to be collected. At Step II the generated Cfengine policy rules are transmitted
to the autonomic agents distributed in the network. These agents are in charge of controlling
network devices and they will perform data collection activities in order to build their system
images. Finally, these images are automatically stored in the revision repository at Step III. The
image generation process constitutes an autonomic activity and it is performed independently
from the past exposure detection process. The latter is composed of two steps. First at Step 1,
the exposure analyzer monitors the knowledge source on a regular basis checking for new vulne-
rability deÞnitions. When new deÞnitions become available, it analyzes system images stored in
the revision repository at Step 2 in order to detect past unknown security exposures.

75

Chapter 6. Support for past hidden vulnerable states

Figure 6.2 Ð High-level imaging and exposure detection process

This framework in fact can be easily coupled to autonomic frameworks that perform assess-
ment activities such as the one presented in Chapter 4. In this manner, a combined solution
of past and present vulnerability assessment could highly increase the security of autonomic
environments. Moreover, forensic activities could be partially automated by collecting forensic
evidence using machine-readable procedures that may warn administrators about past exposures
and current threats [26]. In addition, the proposed architecture allows to outsource assessment
activities. By analyzing system images, target devices may provide the required data while the
exposure analyzer may perform a security evaluation of it. As we mentioned before there is a
period of time, noted* private , where the information about a vulnerability is not publicly known.
The capability of outsourcing security assessment activities may allow organizations to perform
analysis with their own information without actually violating their disclosure restrictions. At
the same time, clients can be warned about security exposures and be advised about actions
to take without knowing internal mechanisms for detecting such threats. In the next section we
illustrate the proposed strategy for performing assessment activities in the past and detecting
unknown security exposures.

6.3.2 Assessment strategy

Given a new vulnerability deÞnition, the objective of our strategy is to identify a!ected sys-
tem states across time after its exploit was publicly available. This process provides a period of
time where the system was potentially exposed to the security threat represented by the spe-
ciÞed vulnerability. The steps followed by the proposed strategy are depicted in Algorithm 6.1.
First, the exposure time is set, depending on the available information, between the exploit or
vulnerability disclosure time and the current time (lines 1-2). Then, a sequence of available sys-
tem revisions during this period is gathered, ordered by time starting with the newest revision
Þrst (line 3). For each revision within the sequence (line 4), the system state is analyzed cheking
if the speciÞed vulnerability is present or not (line 5). If the system state is found to be vulne-
rable, the algorithm takes the longest period of potential exposure. If the vulnerable system state
is not the newest one (lines 6-7), the exposure end time is set to the next revision time found

76

6.4. Experimental results

Input: Vulnerability v
Output : ExposureTime e

1 e.startT ime " time V (v);
2 e.endT ime " now();
3 revs " getRevisionsF romTo(e.endT ime, e.startT ime);
4 foreach Revision r # revs do
5 if isV ulnerable(state(r), v) then
6 nextRev " revision (number(r) + 1) ;
7 if nextRev # revs then
8 e.endT ime " time R (nextRev);
9 end

10 return e ;
11 end
12 end
13 e.endT ime " time V (v) (1;
14 return e ;

Algorithm 6.1: Exposure assessment algorithm

not vulnerable (line 8). If the vulnerable system state is the newest one, the exposure end time
corresponds to the current time. Afterwards, the exposure time is returned (line 10). If none of
the revisions is found to be vulnerable, the time period is set to a negative value and the expo-
sure time is returned (lines 13-14). This strategy has been integrated within our implementation
prototype which is described in detail in Chapter 9. Considering the XML-based nature of the
OVAL language, we have taken advantage of the SVN (Apache Subversion) versioning system
to e"ciently store past system states [146]. In the next section, we present a case study where
a comprehensive set of experiments has been made for determining the feasibility and limits of
our solution.

6.4 Experimental results

Past system security exposures can provide unnoticed pathways for performing attacks on
current system states. In this section we present a case study based on the IOS operating system
for Cisco devices. We illustrate the application of the proposed approach for increasing the
present security by analyzing past hidden vulnerable states in an emulated environment. We use
the GNS3 emulator [75] over a regular laptop (2 Ghz Intel Core i7 with 8GB RAM) and present
the results obtained through an extensive set of experiments.

The complexity involved within each vulnerability description usually depends on its very
own nature, meaning that some vulnerability deÞnitions may require a small set of tests to
be evaluated while others may need a higher amount of systems checks. In order to analyze
the performance of the proposed implementation prototype, we have taken the whole set of
IOS vulnerability descriptions available within the o"cial OVAL repository [117] and we have
cyclically tested them as shown in Figure 6.3. The testing strategy consists on increasing the
number of OVAL deÞnitions by one each time and measuring the accumulated assessment time
over one system image. We observe a low time cost at the beginning of the analysis due to
deÞnitions involving a small amount of tests. The inclusion of deÞnitions with more tests clearly
increases the assessment time though its behavior depicted in the inner graph describes a general
stable execution, taking about 5 seconds of assessment time for 138 IOS vulnerability descriptions
over one system image.

77

Chapter 6. Support for past hidden vulnerable states

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120
 0

 2

 4

 6

 8

 10

T
im

e
(s

ec
)

T
im

e
(s

ec
)

Number of vulnerability definitions

Performance evaluation

Time

-4

-2

 0

 2

 4

 0 20 40 60 80 100 120

Number of vulnerability definitions

Time behavior (first derivative)

Figure 6.3 Ð Vulnerability deÞnitions assessment time

In order to avoid the nature-based size discrepancy among di!erent vulnerability descriptions,
we have increased the granularity of our experiments by independently analyzing the involved
OVAL tests. Assessing the whole set of OVAL deÞnitions for the IOS platform requires the eva-
luation of approximately 2400 OVAL tests. Figure 6.4 illustrates the accumulated time required
for assessing each system property involved in the IOS vulnerability descriptions. Within the per-
formed experiments, it takes as expected approximately 5 seconds for evaluating the whole set of
involved OVAL tests. We also observe a linear time growth rate when the number of OVAL tests
is increased as depicted in the inner graph, meaning that the proposed approach scales properly
regarding the size and nature of the IOS vulnerability descriptions.

As we mentioned before, a storage mechanism able to scale with the size of system images is
imperatively required. In order to measure the e"ciency of our SVN-based implementation, fully
detailed in Chapter 9, we have performed experiments to analyze both the size of the repository
and the assessment time required for evaluating the history of past system states when new re-
visions are generated. Figure 6.5 shows the behavior of our implementation prototype when the
number of system images is increased, instrumented as a range from 1 to 100 revisions. We have
cyclically analyzed the required assessment time (red solid line) when a new vulnerability deÞni-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 500 1000 1500 2000 2500
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

T
im

e
(s

ec
)

T
im

e
(s

ec
)

Number of tests

Performance evaluation

Time

 0

 0 500 1000 1500 2000 2500

Number of tests

Time behavior (first derivative)

Figure 6.4 Ð Tests assessment time

78

6.5. Synthesis

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90 100
 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

T
im

e
(s

ec
)

S
iz

e
(K

B
)

Number of revisions

Repository scalability statistics

Execution time (sec)
Repository size (KB)

 0

 10

 20 40 60 80 100

Number of revisions

Growth rate (first derivative)

Figure 6.5 Ð Repository scalability statistics

tion becomes available over the proposed image range. As expected, it can be clearly identiÞed a
linear time growth along the number of revisions augments. In addition, the repository size (blue
dashed line) also presents a stable growth rate in terms of storage requirements as shown in
the inner graph. The frequency with which a network device changes its conÞguration can vary
among platforms and usage. Nonetheless, our experiments performed over the IOS platform show
that the proposed implementation prototype is capable of preserving a history of about 1 year
with system images performed every 4 days in less than 1 MB of storage space. In addition, the
assessment time of the whole year history can be performed in less than 3 minutes. The results
obtained from these experiments conÞrm the feasibility and scalability of the proposed approach.

6.5 Synthesis

Vulnerability assessment tasks constitute a critical activity that is usually performed only
over running systems. However, even though a known vulnerability may not be present on a
current system, it could have been unknowingly active in the past providing an entry point for
attacks that may still constitute a potential security threat in the present. In this chapter we have
proposed an approach for increasing the overall security of computing systems by identifying past
hidden vulnerable states. We have proposed a mathematical model for describing and detecting
past unknown security exposures. Taking advantage of the OVAL language and the Cfengine-
based approach presented in Chapter 4, we have proposed a framework able to autonomously
build and monitor the evolution of network devices, and also to outsource the assessment of their
exposure in an automatic manner. We have also developed an implementation prototype, which is
described in Chapter 9, that e"ciently performs assessment activities over an SVN repository of
IOS system images. Performed experiments conÞrm the feasibility and scalability of our solution.

The integration of vulnerability management mechanisms into autonomic environments poses
hard challenges. The approach presented in this chapter considers a centralized solution for asses-
sing the security exposure of network devices. However, a mechanism for providing downloadable
exposure analyzers would allow autonomous agents to perform actions on their own in order to
move up to secure states. In that context, automated forensic investigations over past system
states could provide essential information for performing appropriate corrective activities in the
present. During the realization of this work, we have learnt that vulnerability assessment can
be understood as an autonomic function. Indeed, the ability to outsource assessment activities

79

Chapter 6. Support for past hidden vulnerable states

provides strong support to achieve autonomic features. With this concept in mind and conside-
ring the diversity of devices involved in current networks and the Internet, a challenging domain
come up, mobile devices. Mobile devices are ubiquitous computers with scarce resources that pro-
vide with applications and services to millions of users world-wide. Mobile computing exhibits
constrained scenarios where autonomic computing gets challenged. Being focused on vulnerability
management and autonomic environments, we decide to investigate to what extent autonomic
computing may increase the security of mobile devices. Our investigation is presented in the next
chapter.

80

Chapter 7

Mobile security assessment

Contents
7.1 Introduction . 81
7.2 Background and motivations . 82
7.3 Vulnerability self-assessment . 83

7.3.1 Self-assessment process model . 84
7.3.2 Assessing Android vulnerabilities 85
7.3.3 Experimental results . 88

7.4 Probabilistic vulnerability assessment 91
7.4.1 Probabilistic assessment model . 92
7.4.2 Ovaldroid, a probabilistic vulnerability assessment extension 95
7.4.3 Performance evaluation . 99

7.5 Synthesis . 101

7.1 Introduction

The overwhelming technological advances in the broad sense of mobile computing have made
end users to experience real computers in their pockets. Android2 [11], a Linux-based operating
system for mobile devices, is nowadays the election of millions of users as the platform for gover-
ning their mobile devices. Only in the second quarter of 2013, worldwide sales of smartphones to
end users reached 225 million units where Android-based devices leaded the market share owning
the 78.9% followed by iOS3 with 14.2% [74]. However, despite of the many security improvements
that have been done since AndroidÕs creation, the underlying operating system as well as services
and applications have also evolved providing room for new vulnerabilities. Moreover, the open
and barely protected mobile environment facilitates attackers to take advantage of such vulnera-
bilities. Sensitive data handled by mobile users becomes easily exposed. Under this perspective,
lightweight and e!ective mechanisms for managing vulnerabilities must be provided in order to
ensure safe conÞgurations and to increase the overall security of the system.

Mobile devices are widely used with di!erent purposes such as telephony, Internet browsing,
handling of personal information, messaging and gaming. In addition, background and trans-
parent services are also executed for controlling the overall behavior of each device. All these

2. Android is developed by Open Handset Alliance, led by Google [112]
3. Apple iOS [13]

81

Chapter 7. Mobile security assessment

activities have a consumption of resources that should be taken to a minimum in order to maxi-
mize the performance and responsiveness of these mobile devices. Sometimes users may prefer
to deactivate security processes such as antivirus software instead of having a short battery life-
time. This is a blocking point that we are trying to tackle. Indeed, the large-scale deployment of
mobile devices combined with present security issues and their limited resources poses hard chal-
lenges that must be addressed. Such scenario makes it clear the need for non-invasive, lightweight
and e!ective security solutions able to e"ciently increase vulnerability detection capabilities in
mobile environments.

In this chapter, we present our approach for increasing the security of the Android platform,
though it could be applied over other mobile platforms as well, using the OVAL language as a
means for describing Android vulnerabilities. We put forward two complementary perspectives
for increasing Android security awareness. First, we present a lightweight autonomous framework
for performing self-assessment activities on mobile devices. Afterwards, we enhance the proposed
approach by considering a probabilistic vulnerability assessment model that e"ciently reduces
the resource consumption on the mobile side. The remainder of this chapter is organized as
follows. Section 7.2 describes key concepts of Android security, identifying existing work and their
limits, which motivates in turn the approaches presented in this chapter. Section 7.3 presents
our approach for performing vulnerability self-assessment activities in the Android platform,
as well as several experiments and the obtained results. Section 7.4 describes a probabilistic
assessment framework that e"ciently reduces computation costs as illustrated in the presented
results. Section 7.5 concludes this chapter presenting conclusions and further work.

7.2 Background and motivations

Android is an open source operating system that integrates some security features by design.
It uses the Dalvik virtual machine [51] for executing end user applications written in Java [88].
It is not the same standard Java virtual machine used in most popular platforms such as Linux,
Mac OS X or Windows. It has its own API 4 that is almost the same as the standard one.
The Dalvik virtual machine takes the Java application classes and translates them into one or
more .dex (Dalvik Executable) Þles generating optimized and smaller code. The internal design
of the Android platform provides important security features such as the sandbox execution
approach [155]. Such approach executes Android applications within separate instances of the
Dalvik virtual machine that in turn are represented by di!erent Linux kernel processes. In order
to manage the underlying system resources, Android uses an access control policy based on
unique identiÞers for each application to ensure that they can not interfere between each other.

Despite of the many security features provided by the Android platform [62, 141], end users
still face a wide range of security threats such as denial of service and privacy bypass attacks.
These threats are supported by existing vulnerabilities within the system itself, misuse of per-
sonal data performed by applications and malicious third party software [61, 68]. Several ap-
proaches have been proposed for analyzing Android applications and their risks [27, 96]. These
contributions provide a strong support for increasing the security of the Android platform. Ne-
vertheless, vulnerability assessment mechanisms have been barely or not at all discussed. Cur-
rently, dozens of security applications exist for the Android platform developed by di!erent
providers [100, 110, 163]. However, they generally use private knowledge sources as well as their
own assessment techniques, and they do not provide standardized and open means for describing
and exchanging vulnerability descriptions within the community.

4. Application Programming Interface

82

7.3. Vulnerability self-assessment

Once a vulnerability is discovered in almost any typical software product, its patch cycle
normally describes a time gap until the vulnerability is disclosed, another time span until the
patch is available and yet another time span until the end user applies the patch [72]. It is
usually during this period that attackers activity takes place. Within the Android environment,
this issue gets worse. Android is distributed as open source and device manufacturers and tele-
communications carriers customize it in order to provide speciÞc services as well as added value
to their customers. When a patch is released by Google, an extra time gap will occur until the
manufacturer adapts it to work with its own hardware and another time span will pass until the
patch is released by the carrier [155]. In addition to this problem, several application markets
allow to fast distribute third party applications with only some security checks expecting that
the community identiÞes and reports malicious software. With thousands of applications in the
market, Android users are very likely to encounter malware5 on their devices [100].

Such scenario imperatively requires solutions for rapidly identifying new vulnerabilities and
minimizing their impact. Even though no patch might be available for a new vulnerability at a
given time, countermeasures can be taken in order to mitigate the problem until the disclosure
of an o"cial patch. In that context, vulnerability assessment mechanisms are highly required in
order to increase the vulnerability awareness of the system. In addition, mobile devices usually
have limited resources thus optimized lightweight tools should be developed to ensure e"ciency
without losing functionality. Moreover, there are no current solutions built over solid foundations
as well as open and mature standards that foster its adoption and speed up general vulnerability
information exchange. Currently, OVAL repositories o!er a wide range of vulnerability descrip-
tions though Android is not yet an o"cial supported platform. In this work, we have instrumen-
ted our approach with an experimental OVAL extension for Android within the OVAL Sandbox
project [134]. Such extension enables practitioners and experts within the Þeld to specify known
vulnerabilities for Android in a machine-readable manner and at the same time, it promotes
the exchange and enrichment of Android security information within the community. Our work
aims at deÞning a solution for increasing the security of Android devices by capitalizing Android
vulnerability descriptions speciÞed with the OVAL language. Indeed, our investigation involves
two perspectives. The Þrst one considers security advisories which are automatically integrated
into an autonomous distributed architecture, where lightweight self-assessment activities are per-
formed in order to ensure safe mobile conÞgurations. Our second approach goes one step further
by considering a probabilistic model able to reduce computation costs and resource allocation.
Both approaches are presented in detail in the following sections.

7.3 Vulnerability self-assessment

The process by which vulnerabilities are assessed is critical for e"ciently analyzing a target
system and minimizing computation costs at the same time. In order to increase the security
awareness of mobile devices, our Þrst approach considers a self-assessment perspective where
mobile devices are in charge of assessing their own exposure. In this section we present a ma-
thematical model that deÞnes and e"ciently supports the vulnerability assessment process, an
autonomous framework for performing mobile vulnerability self-assessment, and several experi-
ments that show the feasibility of the proposed approach.

5. Malicious software including viruses, worms and spyware among others

83

Chapter 7. Mobile security assessment

7.3.1 Self-assessment process model

Usually, a vulnerability can be understood as a logical combination of properties that if ob-
served in a target system, the security problem associated with such vulnerability is present on
that system. Properties can vary depending on the nature of the vulnerability being described,
some examples are: a speciÞc process is running (e.g., httpd), a speciÞc port is open (e.g., 80),
the system has a speciÞc version (e.g., 2.6.10.rc). Frequently, one property is required by several
vulnerability descriptions and naturally one vulnerability description may require several pro-
perties. Under this perspective, the set of vulnerability descriptions that constitutes a knowledge
base can be compactly represented by using a boolean pattern matrixPM deÞned as follows:

P M =

!

"
"
"
#

p1 p2 á á á pn

v1 a1,1 a1,2 á á á a1,n

v2 a2,1 a2,2 á á á a2,n
...

...
...

. . .
...

vm am,1 am,2 á á á am,n

$

%
%
%
&

ai,j # { 0,1}

Each matrix row encodes the properties required to be observed for the vulnerabilityvi to be
present. Thus, each entryai,j denotes if the vulnerability vi requires the propertypj . Considering
for instance a scenario with three vulnerabilitiesv1, v2 and v3, a pattern matrix PM can be built
as follows:

v1 = (p1, p3, p5)

v2 = (p2, p4)

v3 = (p1, p2, p5)

'
()

(*
PM3,5 =

!

#
1 0 1 0 1
0 1 0 1 0
1 1 0 0 1

$

&

The pattern matrix can also provide useful information for performing statistics. Thevf latten
operation aggregates the number of times that each property occurs within the whole set of known
vulnerabilities. The resulting vector provides an indicator that helps to identify most common
properties involved in vulnerabilities. Such indicator provides valuable information that can be
used for closer monitoring and controlling critical components changes.

vf latten (P M) = (
m+

i =1

ai 1,
m+

i =1

ai 2, . . . ,
m+

i =1

ain)

Other useful metric can be extracted from the pattern matrix when the aggregation opera-
tion is performed horizontally, as indicated by hf latten . A column vector is obtained from its
application where each entryj denotes the amount of properties required by each vulnerability
vj . This metric can be utilized, among other uses, for identifying those vulnerabilities that are
most likely a!ected by changes performed in the environment, thus assessment activities should
be taken into account as well.

hf latten (P M) = (
n+

j =1

a1j ,
n+

j =1

a2j , . . . ,
n+

j =1

amj)T

The state of a system can be encoded in the same manner as done with vulnerabilities,
indicating for those properties under control, which ones are present and which ones are not.
Thus, a system state is a boolean vectors deÞned as follows:

s = (s1, s2, . . . , sn) si # { 0,1}

84

7.3. Vulnerability self-assessment

Each entry si takes the value 1 if the property pi is present in the system and 0 if it is not.
Considering these constructs, the results of performing the vulnerability assessment process over
a given system is deÞned by the following equation:

w = hf latten (PM) ([PM) sT] (7.1)

.

w =

!

"
"
"
#

, n
j =1 a1j, n
j =1 a2j

..., n
j =1 amj

$

%
%
%
&

(

-

.

.

.
/

!

"
"
"
#

a1,1 a1,2 á á á a1,n

a2,1 a2,2 á á á a2,n
...

...
. . .

...
am,1 am,2 á á á am,n

$

%
%
%
&

+

!

"
"
"
#

s1

s2
...

sn

$

%
%
%
&

0

1
1
1
2

The resulting assessment vectorw = (w1, w2, á á á, wm) denotes the status of each vulnerability
vi in the target system. The semantic of the vectorw is given by the Kronecker delta function
as follows:

$i =
3

0, if i /= 0
1, if i = 0

A null entry wi indicates that the vulnerability vi is present in the system while non null
values denotes the absence of the corresponding vulnerability. This fact can be understood as
a distance metric where a positive value indicates a positive distance between the vulnerability
and the target system, and a null distance indicates that the vulnerability is actually in the
system. Computing matrix operations in optimized manners constitutes a Þeld that has been
studied for years [145]. The integration of the proposed model into real computing systems can
take advantage of such expertise providing a compact and e"cient representation for performing
vulnerability assessment activities.

7.3.2 Assessing Android vulnerabilities

The previous model establishes a well-founded process for assessing vulnerabilities in an
e"cient manner. By taking advantage of OVAL security advisories, such model can be used
for e"ciently increasing the security of mobile computing devices. Mobile devices have become
a daily useful resource for connecting people, entertainment, working, managing personal data
and much more. This fact attracted the attention of legitimate users of these pocket-computers
but also from attackers. In only the Þrst semester of 2011, malware for the Android platform
has grown at 250% [100]. It is critical to develop open security frameworks that can speed up
the knowledge exchange among community users and also being able to take advantage of such
information in order to augment their own security. In this section we present our approach for
e"ciently increasing the security of Android-based devices by automatically evaluating OVAL-
based vulnerability descriptions and reporting analysis results.

Architecture and main components

We have designed the proposed architecture illustrated in Figure 7.1 as a distributed infra-
structure composed of three main building blocks: (1) a knowledge source that provides existing
security advisories, (2) Android-based devices running a self-assessment service and (3) a repor-
ting system for storing analysis results and performing further analysis. The overall process is
deÞned as follows. Firstly at step 1, the Android device periodically monitors and queries for
new vulnerability descriptions updates. This is achieved by using a web service provided by the

85

Chapter 7. Mobile security assessment

Figure 7.1 Ð OVAL-based vulnerability assessment architecture for the Android platform

security advisory provider. At step 2, the provider examines its database and sends back new
found entries. The updater tool running inside the Android device synchronizes then its security
advisories. When new information is available or conÞguration changes occur within the system,
a self-assessment service is launched in order to analyze the device at step 3. At step 4, the
report containing the collected data and the results of the analyzed vulnerabilities is sent to a
reporting system by means of a web service request. At step 5, the obtained results are stored in
the external database. This information could be used later for di!erent purposes such as forensic
activities or statistical analysis.

Within the proposed approach, vulnerabilities are described by using OVAL deÞnitions. As
explained before, an OVAL deÞnition is intended to describe a speciÞc machine state using a
logical combination of OVAL tests that must be performed over a host. If such logical combi-
nation is observed, then the speciÞed state is present on that host (e.g. vulnerability, speciÞc
conÞguration). Under a logical perspective, this combination can be understood as a Þrst order
formula where each OVAL test corresponds to an atomic unary predicate over that system as
presented in Chapter 4. The model presented in Section 7.3.1 denotes these predicates as the
set of propertiesP = {p1, p2, . . . , pn}. P represents all the predicates (OVAL tests) involved in
the vulnerability descriptions (OVAL deÞnitions) available within our knowledge source. In this
manner, a boolean matrixP M representing each involved OVAL test for each OVAL deÞnition
can be easily built in order to perform assessment activities. The self-assessment component de-
picted in Figure 7.1 constitutes a critical building block because it is in charge of orchestrating
the entire lifecycle of the framework in an automatic manner. Hence, optimized algorithms for
performing self-assessment activities are highly required. In order to achieve this objective, we
have designed and implemented a strategy that uses the model presented in Section 7.3.1 for
minimizing the system components required to be assessed.

Optimized assessment strategy

Due to the limited resources provided usually by mobile devices, it is important to optimize
the use of such elements without losing functionality and performance. The proposed assessment
strategy takes this issue into account and minimizes computation costs by using a boolean pat-
tern matrix PM that represents known vulnerabilities and a system state vectors that holds
the current system properties. The overall assessment is then e"ciently performed using both
the pattern matrix and the system vector deÞned in Section 7.3.1. Within our approach, two
types of events can trigger self-assessment activities: (i) when changes occur in the system and
(ii) when new vulnerability deÞnitions are available. Algorithm 7.1 depicts the overall strategy

86

7.3. Vulnerability self-assessment

for treating such events and minimizing the number of OVAL tests to be re-evaluated. In or-
der to explain the proposed algorithm, we put forward an illustrative example that considers
both situations and uses the matrixPM3,5 illustrated in Section 7.3.1. Let consider the property
p2 = {Package X has version Y} and the system states = (1 , 0,0,0,1) meaning that only the
properties p1 and p5 are present in the system. Within the OVAL language,p2 is described using
an OVAL test that involves an OVAL package_objectwith its attribute name = X and an OVAL
package_statewith its attribute version = Y .

Input: Event event, PatternMatrix matrix, SystemState state
Output : VulnerabilityList list

1 if event is of type SystemChange then
2 objs " getAf fectedObjectsByEvent(e);
3 foreach Property p # state do
4 o " getObjectF romProperty(p);
5 if o # objs then
6 result " evaluateP roperty(p);
7 updateSystemState(state, p, result);
8 end
9 end

10 end
11 if event is of type Def initionUpdate then
12 defs " getDef initionsF romEvent(e);
13 props " getP ropertiesF romDef initions(defs) ;
14 foreach Property p # props do
15 if p /# state then
16 addEmptyP ropertyColumn(matrix, p);
17 addEmptyP ropertyColumn(state, p);
18 result " evaluateP roperty(p);
19 updateSystemState(state, p, result);
20 end
21 end
22 foreach DeÞnition d # defs do
23 addAndLoadDef initionRow (matrix, d);
24 end
25 end
26 w " hSumMatrix (matrix) ((matrix) state);
27 index " 0;
28 foreach Entry v # w do
29 if v = 0 then
30 vulnDef " getV ulnDef (index) ;
31 addT oOutputList(list, vulnDef);
32 end
33 index " index + 1 ;
34 end

Algorithm 7.1: E"cient event-based vulnerability assessment algorithm

Let suppose now that an event of typepackage_updatedhas occurred in the system a!ecting
the packageX (line 1). Usually, a complete evaluation of each OVAL deÞnition involving the
OVAL test that describes the property p2 should be carried out. However, only the truth value
of the involved OVAL test for p2 is required for recomputing the results of all the descriptions

87

Chapter 7. Mobile security assessment

a!ected. In order to achieve this, the objects a!ected by the event are retrieved (line 2) and
compared with the objects related to the system properties (lines 3-4). If the object of one
property is seen to be a!ected (line 5), the property represented by an OVAL test is re-evaluated
and reßected in the system state (lines 6-7). Within our example, such optimization point will only
assess and change the second entry of the system states. Due to both events are disjoint (system
changes at line 1 and deÞnition update at line 11), we now explain the end of the algorithm for
the Þrst case and then we discuss the behavior for the second case. Let suppose that the new
value for the package version isY thus the new system state becomess = (1 , 1,0,0,1). Once the
assessment of the OVAL test forp2 has been done, the overall assessment result is achieved by
performing two operations between boolean matrices (line 26), within our example, as given by
Equation 7.2.

w =

!

#
3
2
3

$

& (

-

.

.

.

.
/

!

#
1 0 1 0 1
0 1 0 1 0
1 1 0 0 1

$

& +

!

"
"
"
"
#

1
1
0
0
1

$

%
%
%
%
&

0

1
1
1
1
2

=

!

#
1
1
0

$

& (7.2)

For each entry in the result vector w (line 28), we use theKronecker delta function (line 29)
in order to detect if the vulnerability represented by that entry is present in the target sys-
tem. If it is the case, the vulnerability deÞnition is added in the output detected vulnerability
list (lines 30-31). Within our example, it can be observed that the change performed in the
system has exposed itself to new security risks due to the presence of the vulnerabilityv3.

The second situation involves the arrival of new vulnerability descriptions (line 11). In this
case, both the pattern matrix P M and the system states have to be extended so as to cover
the new properties involved in the OVAL deÞnitions. In order to achieve this, the new deÞni-
tions are retrieved from the event (line 12), and the properties involved within such deÞnitions
are analyzed (lines 13-14). For each uncovered property (line 15), an extension process must be
applied. The extension process for the pattern matrixPM will include new columns with null en-
tries for the new properties within existing vulnerability deÞnitions (line 16). The system states
is extended (line 17) and updated as well with the result of the property assessment (lines 18-19).
It is important to notice that the arrival of new vulnerability deÞnitions does not imply changes
on the system and that the assessment results for known properties are already loaded in the
system state, thus there is no need to re-evaluate them again. Finally, for each new vulnerabi-
lity deÞnition (line 22), a new row is added in the pattern matrix PM indicating the required
properties for that vulnerability to be present (line 23). The Þnal assessment procedure is then
performed in the same manner as explained in the Þrst situation (lines 26-34). The proposed
strategy constitutes a critical part of our framework and it has been integrated into an imple-
mentation prototype, which is fully described in Chapter 9. In that context, we have performed
several experiments to measure the performance of the proposed framework. These experiments
are illustrated in the next section.

7.3.3 Experimental results

Devices with limited resources imperatively require well-designed and optimized software
that take care of such elements. In this section we present an analytical evaluation of the pro-
posed mathematical model as well as a technical evaluation that involves a comprehensive set of
experiments showing the feasibility and scalability of our solution.

88

7.3. Vulnerability self-assessment

Analytical evaluation

In the proposed approach, the vulnerability assessment process is governed by Equation 7.1.
Given n as the number of system properties being monitored andm the number of available
vulnerability deÞnitions, the complexity of computing the result vector w is n + m. Considering
the worst case (n = m), the complexity is O(n2). Being hf latten (PM) a known value, the
number of operations performed during the process aren boolean multiplications plus n (1
integer sums for each vulnerability deÞnition. Then, the total number of boolean multiplications
is m + n and the total number of integer sums ism + (n (1). Hence,m + (n + (n (1)) 0 n2

arithmetic operations are performed for assessing the entire knowledge repository in the worst
case.

Considering a knowledge repository with1000 vulnerability deÞnitions involving 1000 dif-
ferent system properties, the size of the pattern matrixPM is 106. This means that the assess-
ment process deÞned by the model will perform106 arithmetic operations for assessing the entire
knowledge base. Considering MFLOPS6 as the performance measure, though boolean and entire
operations are cheaper than ßoating point operations, the assessment requires1 MFLOP. Within
our experimental devicesSamsung Galaxy Giorunning Android 2.3.3, we have measured an ave-
rage of8.936 MFLOPS. With this information, we can infer that a dedicated application of our
strategy over a 106 size matrix takes less than1 second in almost any standard Android-based
device.

Moreover, latest models may achieve more than100 MFLOPS meaning that a knowledge
source of10000vulnerability deÞnitions involving 10000di!erent properties could be mathema-
tically assessed in less than 1 second. Currently, the OVAL repository [117] o!ers8747 UNIX
vulnerability deÞnitions including all versions and families after years of contributions made by
the community. Such scenario provides real facts making the proposed approach highly suitable
for e"ciently performing vulnerability assessment activities.

Technical experimentation

We have performed several experiments in order to analyze the behavior of our implemen-
tation prototype. The proposed methodology cyclically tests the framework without other ap-
plications running in foreground. The OVAL deÞnitions set is increased by 5 each time until a
set of 100 deÞnitions is evaluated. The used OVAL deÞnitions are similar in size containing on
average two OVAL tests. For instance, the vulnerability with the CVE-2011-3874 id permits
a locally installed application to gain root privileges by causing a bu!er overßow within libsy-
sutils. This vulnerability only a!ects speciÞc Android versions (Þrst OVAL test) and requires
the existence of the library libsysutils (second OVAL test). Figure 7.2 illustrates the behavior of
our implementation prototype over the emulated Android device. Our implementation prototype
is heavily based on XOvaldi4Android. We have developed XOvaldi4Android as an extension to
the XOvaldi OVAL interpreter [26] in order to also support the Android platform. Details of
XOvaldi4Android are presented in Chapter 9. Within our experiments, we analyze three per-
formance dimensions: (1) the CPU utilization when XOvaldi4Android is executed (red solid
line with crossings), (2) the XOvaldi4Android execution time (green dashed line with triangular
points) and (3) the total framework execution time (blue dashed line with rounded points). Du-
ring the XOvaldi4Android execution, we have observed a stable and linear behavior in terms of
CPU utilization, consuming 80% on average. Its execution time is also stable as shown by the
Þrst derivative within the inner graph. While assessing 50 deÞnitions takes about 72 seconds, 100

6. Million Floating Point Operations Per Second

89

Chapter 7. Mobile security assessment

10
20
30
40
50
60
70
80
90

100

 0 10 20 30 40 50 60 70 80 90 100

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

C
P

U
 u

til
iz

at
io

n
(%

)

T
im

e
(s

ec
)

Number of definitions

Scalability statistics (emulator)

XOvaldi4Android CPU utilization
XOvaldi4Android execution time
Total framework execution time

-10

 0

 10

 10 20 30 40 50 60 70 80 90 100

Number of definitions

Growth rate (first derivative)

Figure 7.2 Ð Scalability statistics in a simulated environment

deÞnitions takes almost twice the time. The overall execution time across the framework, inclu-
ding database updates and reporting results, shows the same behavior though slightly increased
in time due to the sequential execution of its components. It is important to notice that these
experiments consider extreme cases. As a matter of fact, only new deÞnitions or a small set of
deÞnitions a!ected by system changes will be evaluated in most situations.

In order to analyze the framework behavior using a real device, we have performed the same
experiments using a standard smartphoneSamsung Galaxy Gio S5660(CPU 800 MHz, 278 MB
of RAM, Android 2.3.3). Figure 7.3 illustrates the obtained results. We can observe the same
behavior on each curve as with the emulated device, describing a linear growth for each analysis
dimension as shown in the inner graph. Nevertheless, we have also detected an improvement
in terms of speed and resource usage. The average value for the CPU utilization is now about
65%. In addition, the execution time of XOvaldi4Android is almost half the emulator execution
time, taking 38 seconds for analyzing 50 vulnerabilities and 75 for 100 vulnerabilities. This is
probably due to a slower emulated CPU. The overall execution time is also reduced due to the
faster execution of the vulnerability assessment process. However, its growth rate, though linear,
is faster because the internetwork connections are real in this case.

As a Þnal but not less important dimension to analyze, we have experimented with the
memory load. Within this analysis, we have considered the allocated memory required by XO-

10
20
30
40
50
60
70
80
90

100

 0 10 20 30 40 50 60 70 80 90 100

 0

 20

 40

 60

 80

 100

 120

 140

C
P

U
 u

til
iz

at
io

n
(%

)

T
im

e
(s

ec
)

Number of definitions

Scalability statistics (smartphone)

XOvaldi4Android CPU utilization
XOvaldi4Android execution time
Total framework execution time

-10

 0

 10

 10 20 30 40 50 60 70 80 90 100

Number of definitions

Growth rate (first derivative)

Figure 7.3 Ð Scalability statistics in a real device

90

7.4. Probabilistic vulnerability assessment

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80 90 100

 0

 2

 4

 6

 8

 10

 12

 14

M
em

or
y

lo
ad

 (
M

b)

M
em

or
y

lo
ad

 (
M

b)

Number of definitions

Memory statistics

XOvaldi4Android on smartphone
on emulator

-1

 0

 1

 10 20 30 40 50 60 70 80 90 100

Number of definitions

Growth rate (first derivative)

Figure 7.4 Ð Memory load in both emulated and real device

valdi4Android when it is executed. The system classiÞes the allocated memory in two categories,
native and Dalvik, taking on average 40% for native memory and 60% for Dalvik memory.
Figure 7.4 illustrates the total memory load considering both, the emulator and the smartphone.
We have observed an almost constant utilization of the RAM memory. Within the emulator
(blue solid line with rounded points), XOvaldi4Android requires 12 MB on average (4.8 MB
of native memory, 7.2 MB of Dalvik memory). Within the smartphone (red dashed line with
rhomboid points), XOvaldi4Android requires a little less memory, 11 MB on average (4.4 MB of
native memory, 6.6 MB of Dalvik memory). The results obtained from the performed experiments
show good performance in terms of resource consumption and scalability. However, the ability to
outsource vulnerability assessment activities, as done in Chapter 6 for detecting past unknown
security exposures, can reduce the workload even further. Performing a smart management of
assessment activities in terms of time and type of vulnerabilities, may dramatically reduce the
resource allocation required on the mobile side. This approach is discussed in the next section.

7.4 Probabilistic vulnerability assessment

Delegating vulnerability assessment activities to mobile devices provides higher levels of au-
tonomy. However, when these activities are performed, there is still a resource consuming process
in the mobile side that must control the overall behavior of the analysis. We have realized that
the externalization of this control may still provide autonomicity and decrease the mobile work-
load. In this section, we present an extended approach that centralizes main logistic vulnerability
assessment aspects as a service. Mobile clients only need to provide the server with required data
to analyze known vulnerabilities described with the OVAL language. By conÞguring the analysis
frequency as well as the percentage of vulnerabilities to evaluate at each security assessment,
the proposed framework permits to bound client resource allocation and also to outsource the
assessment process. Our strategy consists in distributing evaluation activities across time thus
alleviating the workload on mobile devices, and simultaneously ensuring a complete and accu-
rate coverage of the vulnerability dataset. This technique results in a faster assessment process,
typically done in the cloud, and considerably reduces the resource allocation on the client side.

91

Chapter 7. Mobile security assessment

Figure 7.5 Ð Regular vs. probabilistic approach

7.4.1 Probabilistic assessment model

When developing mobile solutions, limited resources present on mobile devices must be care-
fully managed in order to increase the performance and responsiveness of such devices. In that
context, our aims at reducing the resource consumption at the target device, e.g. battery, CPU,
and at the same time increasing the vulnerability assessment accuracy.

Regular vs. probabilistic approach

Each time a security analysis is made, vulnerabilities descriptions are analyzed in order to
detect security weaknesses on a target device. As a remainder, the OVAL language represents
vulnerabilities by means of OVAL deÞnitions. Each OVAL deÞnition logically combines OVAL
tests that represent atomic checks or evaluations over the target device. Each OVAL test in turn
can be referenced by di!erent OVAL deÞnitions and contains an OVAL object that describes
the component to be analyzed, and an OVAL state that describes the properties expected to
be observed on the speciÞed component. The test result will betrue if the component actually
exhibits the speciÞed state, andfalse otherwise. Let T = {t 1, t2, . . . , tn } be the set of available
OVAL tests. Then, the set of known vulnerability descriptions V = {v 1, v2, . . . , vm } constituting
our knowledge source can be built by respecting the following rules:

i. if t i # T, then ti # V (i # N)

ii. if !, " # V , then (! ! ") # V ! # {$, %}

iii. if ! # V , then (Â!) # V .

Traditional assessment mechanisms usually evaluate these vulnerabilities in a one-step fashion
by analyzing the whole set of vulnerability descriptions at once. Such methodology is highly time
and resource-consuming. Our approach aims at dealing with this problem by probabilistically
distributing vulnerability assessment activities across time and restricting resources a!ected by
this task. Figure 7.5 exempliÞes both regular and probabilistic approaches where a set of vul-
nerabilities involving eight single tests is evaluated during four periods of time. The regular
approach analyzes the whole body of vulnerabilities at each period thus evaluating all tests each
time. This is accurate but constitutes an extremely heavy task. The probabilistic approach on
the other hand selects only a subset of tests to execute in order to cover a subset of vulnerabili-
ties each time. Tests are probabilistically selected according to their utility on the resolution of
vulnerability evaluations as well as the elapsed time since their last analysis. The test selection
process constitutes the heart of this section and it is detailed in the following subsections. By

92

7.4. Probabilistic vulnerability assessment

following this methodology, the probabilistic approach highly reduces the activity load and re-
source allocation at each security analysis while rapidly converging to a complete assessment of
the vulnerability set.

The probabilistic approach is also depicted in Figure 7.5 where only testst3 and t4 are eva-
luated and tagged at period 1. At period 2, testst5 and t6 are evaluated and tagged but alsot4,
probably due to a high utility value thus being re-evaluated once again. Testt3 has not been
selected at this period thus becoming one period older in terms of its evaluation, illustrated
with a less intense grey color. At period 3, testst1 and t2 are evaluated while testt3 becomes
two periods older, and t4, t5 and t6 only one. At period 4, tests t6, t7 and t8 are selected for
evaluation thus completing the whole vulnerability assessment. Notice the re-evaluation oft6,
probably due to a high utility value again. The selection process continues like this across time
thus t3, the oldest evaluated test so far, will have a higher probability of being selected but it will
still compete with other high utility tests during future selection processes. The idea is that high
utility tests are more frequently evaluated but low utility tests are also evaluated as they become
older. Therefore, test starvation is avoided ensuring the convergence towards the analysis of the
complete set of known vulnerabilities.

The proposed model considers di!erent parameters that allow the user to adapt it according
to speciÞc needs, namely, (1) a threshold%that indicates the percentage of vulnerabilities that
must be evaluated at each security analysis, and (2) a time interval$ that speciÞes the amount of
elapsed time between each security analysis. The overall idea is that during each security analysis
made with frequency$, an iterative evaluation process is performed, statistically guided by the
utility that each test has over the current vulnerability database as well as the elapsed time since
their last evaluation. Tests are probabilistically selected until the desired threshold%is achieved.
In order to minimize the load impact over mobile devices, the process by which tests are selected
is critical because of two reasons, Þrstly it must consider the most useful tests at each security
analysis and secondly, it must ensure that all tests will be eventually executed. These concepts
are presented in the next subsections.

Test utility analysis

Within the proposed model, the utility of a test aims at expressing a metric that combines
the ability of this test to speed up the overall evaluation and its security impact on the target
system. Such concept relies on: (1) how much the body of vulnerability descriptions can be
reduced towards a complete coverage when its value is determined, and (2) the security impact
of the vulnerabilities in which the test is involved in. The concept of reduction refers to the idea
of how much closer we are to determine the truth value of the vulnerabilities under analysis
when a test value is known. For instance, letv be a vulnerability description with the form
v = t1 $ (t2 %t3). If the value of t1 is known and it is false, then there is no need to evaluatet2

and t3 as the Þnal value forv will be false no matter what values take t2 and t3. In this case,
the utility of t1 is higher than the utility of t2 and t3 because its evaluation could potentially
eliminate the need to evaluate the remaining tests in the formula. The other way around however
is not true ; if t2 is false then t3 must be evaluated, if it is true then t1 must be evaluated. No
matter what value takes t2, a second test must always be evaluated. The same phenomenon
occurs with t3. Therefore, t1 Þts better in this situation and it will have a higher utility value
than t2 and t3. During the reduction process, if the evaluation result oft1 is false then v will
be reduced tov = false thus completing the evaluation. If the result evaluation of t1 is true
instead, then v will be reduced to v = true $ (t2 %t3) = t 2 %t3. The process will then continue
over t2 and t3 until obtaining the truth value for v.

93

Chapter 7. Mobile security assessment

In order to facilitate the quantiÞcation of the utility of a test, vulnerabilities are represented
as formulas in conjunctive normal form (CNF). A vulnerability expressed in CNF is a conjunction
of clauses where each clause is a disjunction of tests as follows:

vCNF
i =

4
(
5

(t j |Ât j)) t j # T, vi # V (7.3)

Accordingly, if the value of a test t is known, its utility over a speciÞc vulnerability databaseV
is expressed by a Þtness functionU deÞned as follows:

U(t, val, V) =

, |V |
i =1

6
testRed(vi , t, val)) I (vi)

totalT ests(vi)

7

|V |

t # T, val # Boolean, vi # V

(7.4)

The testRed function represents the number of tests whose truth values do not contribute
to the Þnal resolution of vi when the value of t is val. The totalT ests function returns the
number of tests involved in vi . The I function returns a numerical value representing the impact
security factor or criticality of vi , e.g., its CVSS score [47]. Because the function represented by
Equation 7.4 is used for selecting the next test to be executed, the evaluation values for those
tests under selection are not known yet. Therefore, we deÞne a weight functionW for determining
the average utility of a test t over a vulnerability databaseV as follows:

W (t, V) =
U(t, true, V) + U (t, false, V)

2
t # T (7.5)

In order to select the next test to be evaluated, tests are sorted by descending utility values
producing an ordered list TW = {t 1, t2, . . . , tn }. This list provides statistical-based ranking in-
formation for unevaluated tests that combined with a temporal factor supports the probabilist
test selection process.

Probabilistic test selection process

As there is a threshold%that limits the execution of the whole set of tests, not every test
will be executed during a single security analysis. If only best tests were selected at each analysis
and the device state remains the same, there would be tests that would never be evaluated. This
e!ect is called test starvation meaning that some tests might never come up with the opportunity
to be evaluated because of their low utility values. Therefore, some vulnerabilities might never
be covered either. In order to avoid test starvation, we consider two factors that shape the
overall behavior of our strategy across time. The Þrst factor is a weighted probability& for each
test that is directly proportional to its utility value. This means that even when a test has the
highest utility value, another test with a lower utility value could be selected in its place for
execution. Such approach is less elitist though still fair as it provides the opportunity for lower
tests to substitute higher tests with probabilities according to their ranking. In order to specify
the probability for a test to be chosen according to its positioning in the weighted listTW , we
deÞne the& function as follows:

&(t, V, TW) =
W(t, V)

, |TW |
i =1 W(t i , V)

t, t i # TW (7.6)

94

7.4. Probabilistic vulnerability assessment

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8 9 10 11

 0

 1

 2

 3

 4

 5

 6

T
es

t I
D

T
es

t I
D

Period

Test execution distribution

Figure 7.6 Ð Test execution distribution

The second factor to avoid test starvation is the elapsed time' between each security analysis.
The older the last evaluation of a test is, the higher is the chance for this test to be selected.
This increase however must consider their ranking status indicated by the Þrst factor& in order
to respect the statistical analysis done for each test. In order to combine both factors in the
selection process, we deÞne the selectivity value for a testt in a given time x by the following
equation:

S(t, x, V, TW) = &(t, V, TW)) ' (t, x) t # TW , x # [0..1) (7.7)

The main idea in Equation 7.7 is to prioritize high impact tests given their weighted proba-
bilities but simultaneously promoting lower tests that turn more important as long as their last
evaluations become older. The delta time' for a test t is considered as the time elapsed between
its last evaluation and a speciÞc timex. ' is deÞned as follows:

' (t, x) = x (lastEvalT ime(t) t # TW , x # [0..1) (7.8)

The behavior of the selection process is illustrated in Figure 7.6 where Þve tests constitute
the body of known vulnerabilities V and they are assessed over ten periods of time ($ = 1). Tests
have been ordered according to their utility values overV , being the Þrst test the most useful
test. It can be observed how the test with the highest utility has been selected seven times, much
more than the other tests with lower utility values. However, lower utility tests also have been
selected though in a lower rate. It can be also noticed that the fourth test is stronger than the
Þfth test in terms of utility, but in this speciÞc experiment however, the latter shows a higher
selection frequency (periods 1 and 9) than the former (period 8). This is an interesting e!ect
due to the probabilistic nature of the process though in the general case, as illustrated later
in Section 7.4.3, the test execution frequency tends to a coherent distribution according to test
utility values. In the next section we present Ovaldroid, a probabilistic vulnerability assessment
framework that integrates the proposed model in order to increase the overall security of Android
devices.

7.4.2 Ovaldroid, a probabilistic vulnerability assessment extension

Ovaldroid is a probabilistic-based framework designed for assessing conÞguration vulnerabi-
lities over Android devices. We explain here its architecture as well as the underlying strategy
that has been cautiously designed for outsourcing as much as possible the involved assessment
activities and dealing with issues such as resource usage and ubiquity.

95

Chapter 7. Mobile security assessment

Figure 7.7 Ð Ovaldroid global architecture

Architecture overview

The architecture of Ovaldroid, described in Figure 7.7, has been designed as a centralized
service-oriented infrastructure capable of analyzing vulnerabilities over Android-based devices.
It is composed of two main building blocks, namely, a server that manages the whole assessment
process and clients located on the mobile network that use the vulnerability assessment service.
Mobile clients periodically communicate with the Ovaldroid server in order to inform about
their assessment availability. This communication is started by the Ovaldroid client that sends
an identiÞedHello message using the web-service provided by the server. Based on the historical
evaluation registry, the server decides whether it is necessary to perform a new vulnerability
assessment based on the pre-established assessment frequency ($). If it does, the vulnerability
manager subsystem located on the server side sends speciÞc directives to the probabilistic-based
test analyzer in charge of orchestrating the overall assessment activity. The probability-based
test analyzer in turn, executes a sequence of OVAL tests until the speciÞed percentage of vulne-
rabilities to be evaluated (%) is reached.

In order to select which OVAL test must be evaluated at each iteration, the analyzer uses
the services of the statistical-driven test selector (step 1). The latter builds, at the Þrst call,
a local CNF database representing the vulnerability descriptions available in the vulnerability
knowledge source. Then, at each query sent by the analyzer, the statistical-driven test selector
will produce an ordered list of tests suitable to be performed over the target device based on the
impact that each unevaluated test has towards the desired vulnerability coverage. The analyzer
then chooses the test to be executed from this list by considering its ranking combined with the
elapsed time since its last evaluation as the probability to be selected. This means that high
utility tests will be more likely to be selected because of their high ranking values. However, low
utility tests still have the opportunity to be selected though in a minor rate.

Once a test has been selected for execution, the analyzer checks if a previous unexpired result
for this test exists in the cache (step 2a). If it does, it is directly used thus saving computation
resources on the client side. The cache also stores collected objects from previous tests due
to sometimes the same object is used by di!erent tests. Therefore, if no result for this test is
found, the system looks for an unexpired version of the object previously collected from the
device under analysis over which this test applies. If there is a hit, the object is used without
interacting with the target device. Otherwise, the analyzer performs a data collection request
on the target device (step 2b) in order to gather the required data and assess the corresponding
OVAL test on the server side. Cache entries do not a!ect the test selection process itself because

96

7.4. Probabilistic vulnerability assessment

the oldness of these tests is already considered in the model. Therefore, the cache and its policy
can be independently set to reduce the load even further on the target device.

Data collection is done on the client side by running a lightweight Android application (step 3).
Once the required object is available, the services of an OVAL interpreter are used in order to
evaluate the selected OVAL test (step 4). Depending on the nature of a vulnerability, di!erent
types of tests might be used when describing it, e.g., Þle tests, process tests, version tests. In
that context, the OVAL interpreter uses plugins for each type of OVAL test where each plugin
knows how to collect and analyze the information of the type of test it was created for. After the
evaluation, the collected object and the test result are stored in the cache for future use (step 5).
Finally, the test result is also placed in the results storage system on the server side (step 6). The
process continues over steps 1 to 6 until the percentage of vulnerability coverage speciÞed by the
administrator is reached. Final assessment results are also saved in the results storage system.

Assessment strategy

The proposed methodology integrates a probabilistic component for selecting which tests must
be evaluated at each security analysis. However, the spectrum of eligible tests is built following
a statistical strategy. The steps followed by the combined assessment strategy are depicted in
Algorithm 7.2. The general process consists in selecting and evaluating tests in the target device
until the speciÞed coverage threshold is reached (line 2). At each iteration, a test is selected
as described in Section 7.4.1 by considering how much it contributes to achieve the speciÞed
coverage, the impact of the vulnerabilities this test participates in, and the elapsed time since
its last evaluation (line 3). The algorithm looks for a previous unexpired evaluation result of
this test in the cache (line 4). If a result is found, it is directly used (line 5). If it is not, the
object referenced by this test is searched in the cache (line 8). If the object is found (line 9), it is
directly used. If it is not, the data collection process is launched over the target device (line 11).
After a cache hit or the collection process itself, the evaluation process is performed (line 13) and
the cache is updated with the collected object and the result (line 14). Current results are then
updated in the general assessment results (line 16). Considering these results and the remaining
tests to be assessed, the vulnerability list is reduced as explained in Section 7.4.1 by replacing
known test values within the CNF formulas that represent such vulnerabilities (line 17). Finally,
the vulnerability coverage obtained until this point is updated (line 18). The algorithm ends
when the percentage of assessed vulnerabilities satisÞes the speciÞed threshold.

The proposed strategy is performed each time the Ovaldroid server considers that a security
analysis needs to be made over a speciÞc device. However, the event that potentially triggers
such analysis is initiated by the client side. Indeed, a periodicHello message is sent by the Oval-
droid client to the server in order to indicate its assessment availability as shown in Figure 7.8.
Communication messages are always sent by the client that analyses the response of the server.
The responses of the server can be to start a new security analysis, to update the client policy
and parameters, nothing to do at that moment (OK status) or an error such as busy error. If
a new analysis is required based on the established frequency$, the server will respond with
the appropriate message and also the Þrst OVAL object description to collect. The client will
collect the items corresponding to the speciÞed OVAL object and will send a new message to the
server with the collected OVAL items. This mechanism is based on the piggybacking technique
in order to reduce the amount of network messages transmitted during the process. The server
will then respond with a new OVAL object request or a ßag indicating the end of the assessment
process. From the client point of view, it enters in a loop while the server keeps responding
ContinueAnalysis(OVAL object) until it receives the assessment results. The collection of objects

97

Chapter 7. Mobile security assessment

Input: CNFVulnList vulnList, Threshold threshold
Output : AssessmentResults results

1 coverage" 0;
2 while coverage < threshold do
3 test " computeBestUtilityTest(vulnList);
4 if test in cachethen
5 testResult " getResultF romCache(test);
6 else
7 object " getObjectDescription (test);
8 if object in cachethen
9 objectData " getF romCache(object);

10 else
11 objectData " collectF romDevice(object);
12 end
13 testResult " evaluate(test, objectData);
14 updateCache(test, objectData, testResult);
15 end
16 updateAssessmentResults(results, testResult);
17 reduceCNF V ulnList (vulnList, test, results);
18 updateCoverage(coverage, vulnList, test, results) ;
19 end

Algorithm 7.2: Probabilistic assessment algorithm

is quite simple and only uses two HTTP methods invoked from the client side. However, po-
werful network management protocols such as NETCONF [63] already exist and they could be
envisioned in the future as soon as their linkage with OVAL and the Android platform become
more mature. As shown later in Chapter 8, we have successfully used the NETCONF protocol
for performing vulnerability remediation activities over the Cisco IOS platform. In the next sec-
tion, we present the results obtained from an extensive set of experiments performed with our
probabilistic framework.

Figure 7.8 Ð Ovaldroid client-server interactions

98

7.4. Probabilistic vulnerability assessment

7.4.3 Performance evaluation

In order to provide a computable infrastructure to the proposed approach, we have developed
an implementation prototype that integrates the building blocks presented in the Ovaldroid
framework. The implementation prototype is described in Chapter 9. We have also performed a
deep behavioral analysis of the proposed framework through a comprehensive set of experiments.
In this section we detail the experiments and the obtained results.

In order to evaluate the behavior and performance of our framework, we have performed our
experiments using a regular laptop (Intel Core i7 2.20 Ghz, 8 GB of RAM, Linux kernel v.3.7.9)
running the Ovaldroid server and a Samsung I9300 Galaxy S III smartphone (Quad-core 1.4
GHz, 4 GB of RAM, Android v.4.1.0) running the Ovaldroid client. The vulnerability database
used within the experiments has been built taking real vulnerability descriptions for Android.
In order to evaluate scalability aspects we have replicated their structure to construct more
vulnerability descriptions involving two tests on average. Under a semantic perspective they
represent the same vulnerability but under a technical perspective, these vulnerabilities and the
involved tests, objects and states are di!erent as they have di!erent identiÞers. Based on this
methodology, we have constructed a database involving 500 vulnerability descriptions. Regarding
OvaldroidÕs parameters, we have experimented with several values for the vulnerability coverage%
while considering $ = 1 . As to the cache replacement policy, we have established an average
of 3 periods before stored objects and results become expired.

We now present three di!erent experiments that provide an insight of OvaldroidÕs performance
and show the feasibility of our solution. The Þrst experiment shows how the proposed approach
converges to a complete coverage of the vulnerability database across time. Indeed, one of the
characteristics of Ovaldroid is the capability of distributing the load among di!erent evaluation
periods. By providing higher priority to those tests with higher utility as explained in Section 7.4.1
but simultaneously avoiding test starvation, the progression behaves as illustrated in Figure 7.9.
We can observe that only covering the 33% of vulnerabilities at each period (solid blue line with
crossings), the whole vulnerability database can be 100% covered at the end of the sixth period.
If the vulnerability database keeps the same, following periods will re-evaluate vulnerabilities
according to their impact and importance, but always providing vulnerabilities with lower utility
to be evaluated as well. If new vulnerabilities become available, they will have higher priority as
they have never been evaluated. This re-evaluation process smooths the load impact on the target

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

C
ov

er
ag

e
(%

)

C
ov

er
ag

e
(%

)

Period

Coverage progression until convergence (cache=3 periods)

lambda= 25%
 33%
 50%
 66%
 75%

Figure 7.9 Ð Coverage convergence

99

Chapter 7. Mobile security assessment

250

500
750

1000

 0 1 2 3 4 5 6 7 8

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

P
er

io
di

c
co

lle
ct

ed
 o

bj
ec

ts

T
ot

al
 c

ol
le

ct
ed

 o
bj

ec
ts

Period

Collected objects (on Android-side data collector) until convergence (Lambda=33%, cache=3 periods)

Probabilistic - periodic
 total

Regular - periodic
 total

Figure 7.10 Ð Collected objects

device, produces frequent and more accurate results, and also Þts its potential changing nature.
By augmenting the vulnerability coverage %, our experiments have shown a faster convergence
as expected.

In order to analyze the load activity variation on the Android side, we have performed a
second experiment where we analyze the object collection behavior by measuring the standard
approach evaluating all vulnerabilities at once, and OvaldroidÕs approach distributing the assess-
ment activity across time. Figure 7.10 shows the observed behavior where two types of results are
illustrated, namely, the number of collected objects per period (solid lines) and the total amount
of collected objects (dashed lines). We can observe that while the standard approach collects
1000 objects per period (red solid line with circles), OvaldroidÕs approach collects between 200
and 250 objects on average (blue solid line with crossings). This means that our approach only
needs to collect approximately 25% of the objects required by the standard approach in this case,
thus considerably reducing the load factor. Even though the proposed approach is slower than
the standard one in terms of coverage speed, the load reduction achieved by Ovaldroid is really
high and therefore, it positively contributes to the e"ciency and responsiveness of the target
device. The curves representing total accumulated objects show more clearly how the standard
approach (dashed red line with circles) highly exceeds the interactions done by Ovaldroid with
the mobile device (dashed blue line with crossings).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 100 200 300 400 500

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

N
um

be
r

of
 e

va
lu

at
io

ns

N
um

be
r

of
 e

va
lu

at
io

ns

Vulnerabilities ordered by decreasing Impact Factor

Number of times each vulnerability has been covered until total convergence

Figure 7.11 Ð Vulnerability evaluation rate

100

7.5. Synthesis

The experiments previously described consider a vulnerability dataset where each vulnerabi-
lity has the same impact factor. In order to analyze the frequency with which each vulnerability
is evaluated across time regarding their security impact, we have performed a third experiment
depicted in Figure 7.11 involving 14 evaluation time periods. Vulnerabilities identiÞers are orde-
red by decreasing impact factor. We can observe as expected that vulnerabilities with a higher
impact factor have been evaluated more frequently than those vulnerabilities with a lower im-
pact factor. However, vulnerabilities with a lower impact factor have been analyzed several times
meaning that the model also solves the starvation problem.

7.5 Synthesis

Witnessing a strong trend to large evolving heterogeneous networks, traditional servers and
personal computers are not the only targets for attackers anymore. Mobile computing has become
a de facto technological standard in the modern society. We have already shown the power of
autonomic computing on the management of core networks. In this chapter, we have also entered
into the Þeld of mobile computing where autonomic solutions have been barely or not at all
discussed. First, we have proposed an approach that outÞts mobile devices with the capability
of assessing their own security exposure in an autonomous manner. A mathematical model, a
functional framework, and several experiments have been presented to that end. We also have
observed that outsourcing assessment activities may highly reduce the workload of mobile de-
vices. In that context, we have presented a probabilistic approach for increasing the security
of Android devices in a cost-e"cient manner. A detailed mathematical model, smart strategies
over an autonomous framework, and a comprehensive set of experiments support the proposed
approach. As stated in Chapter 2, autonomic computing transcends the barrier of technological
heterogeneity. All along this thesis, we have shown how autonomics contributes to achieve more
a!ordable ways to manage the security of disparate increasing networks. Particularly, we have
attacked core and mobile networks. However, vulnerability assessment constitutes one part of
the vulnerability management process. Indeed, real autonomy can only be achieved if this pro-
cess can be completed in a loop, permitting network devices to detect and remediate security
exposures by themselves. This is the heart of the next chapter, where we discuss approaches for
remediating host-based and distributed vulnerabilities from an autonomic perspective.

101

Chapter 7. Mobile security assessment

102

Chapter 8

Remediation of conÞguration
vulnerabilities

Contents
8.1 Introduction . 103
8.2 Background and motivations . 104
8.3 Remediating device-based vulnerabilities 105

8.3.1 Vulnerability remediation modeling 105
8.3.2 The X2CCDF speciÞcation language109
8.3.3 Extended framework for remediating device-based vulnerabilities . 111
8.3.4 Performance evaluation . 113

8.4 Towards the remediation of distributed vulnerabilities 115
8.4.1 Modeling vulnerability treatments 116
8.4.2 DXCCDF, a distributed vulnerability remediation language 117
8.4.3 A strategy for collaboratively treating distributed vulnerabilities . . 119
8.4.4 Performance evaluation . 121

8.5 Synthesis . 123

8.1 Introduction

In the previous chapters we have presented several approaches for dealing with the assess-
ment of conÞguration vulnerabilities in di!erent dimensions, namely, device-based vulnerabili-
ties, distributed vulnerabilities, past hidden vulnerabilities, and mobile security vulnerabilities.
Autonomously assessing vulnerabilities helps to address the growing complexity of network ma-
nagement by providing awareness mechanisms to these convoluted and heterogeneous networked
environments. However, remediation activities are still required in order to complete the vulne-
rability management control loop. In this chapter, we extend our previous approaches for not
only identifying but also remediating vulnerabilities based on high-level policies. These policies
describe vulnerable machine states as well as potential corrective activities in order to ensure
safe conÞgurations and prevent security attacks.

In order to achieve this goal, we present two complimentary approaches that aim at dea-
ling with remediation activities of device-based and distributed vulnerabilities. First, we tackle
the remediation of device-based vulnerabilities by proposing a SAT-based autonomous strategy.
Using our previous logical model for OVAL vulnerability descriptions, the idea is to formulate

103

Chapter 8. Remediation of conÞguration vulnerabilities

the repository of known vulnerabilities as a logical boolean expression. Then, we use a SAT sol-
ver to identify which properties must be changed in the target system in order to eradicate all
known vulnerabilities. Our second approach tackles the remediation of distributed vulnerabili-
ties. In that context, we extend our model for specifying distributed vulnerabilities presented in
Chapter 5 in order to cover distributed remediation tasks as well. We propose an infrastructure
for describing distributed treatments as well as a collaborative strategy for performing corrective
actions. For both approaches, we present several experiments that show the feasibility of the
proposed solutions.

The remainder of this chapter is organized as follows. Section 8.2 describes important concepts
related to vulnerability remediation as well as motivational issues to address this activity in the
context of autonomic environments. Section 8.3 presents the proposed approach for dealing with
device-based environment using a SAT-based strategy. Section 8.4 illustrates our approach for
tackling the remediation of distributed vulnerabilities in an autonomous manner. Section 8.5
concludes this chapter and points out further work.

8.2 Background and motivations

The vulnerability remediation activity constitutes itself as a hard and challenging task. From a
proactive perspective, it should be able to decide which potential states could be dangerous for the
security of the system. In the same manner, but under a reactive perspective, e!ective vulnerable
states should be rapidly eradicated to avoid potential attacks that could compromise the system.
Finding those changes that can ensure the security of the system is also a complex activity. One
single change may impact or activate other vulnerable states that were not present before the
change. The same e!ect could occur over other system policies, in this work however, we only
deal with security conÞguration vulnerabilities. In that context, looking for correct changes that
together can provide a safe system conÞguration becomes an explosive combinatorial activity.
This is indeed a decision problem classiÞed as an NP-complete problem [43].

In order to cope with this problem, we propose to formalize the change decision problem as
a satisÞability or SAT problem [123]. Given a boolean expression, the SAT problem consists of
Þnding an assignment for variables such that the formula evaluates totrue . By specifying our
vulnerability knowledge source as a propositional logical formula, we Þx those system properties
that we cannot change and free those variables for which changes are available. We use a SAT
solving engine to determine which changes have to be made to secure the system. In order to
provide proactive and reactive solutions, we propose the concept of a future state. This des-
cribes how a system will look after applying a speciÞc change. These descriptions can be used
for analyzing the security impact of changes without actually changing the system. When this
information is not available, we use the NETCONF protocol [63] and its notion of candidate
state where changes can be applied, analyzed and rolled back if necessary.

NETCONF has been developed by IETF [84] in order to deal with network management
operations and changes. NETCONF is a network conÞguration protocol that provides mecha-
nisms to install, manipulate and delete the conÞguration of network devices. Its speciÞcation
constitutes a standard, though its deployment, as well as complete vendors implementations,
seem to be still in an early stage. However, very interesting works have already been presented
showing evaluations of its maturity as well as diverse technical aspects [152], [157]. To the best
of our knowledge, the integration of change management techniques into the vulnerability mana-
gement plane constitutes a novel approach that may positively contribute to the overall security
of current and future computer systems.

104

8.3. Remediating device-based vulnerabilities

Figure 8.1 Ð Distributed vulnerability scenario with remediation tasks

On the other hand, remediating distributed vulnerabilities in an autonomous manner also re-
mains a challenging problem. We have introduced in Chapter 5 a mechanism for specifying and
assessing distributed vulnerabilities involving several devices simultaneously, and also covering
device-based vulnerabilities as a particular case. Now, the idea is to provide a collaborative stra-
tegy for remediating both distributed and device-based vulnerabilities. The scenario presented
in Figure 8.1 shows the same scenario illustrated in Chapter 5 but now considering remediation
tasks as well. As a remainder, this scenario involves two devices, a SIP server with no ßooding
protection and a local DNS server with external unknown name resolution. Together, they consti-
tute a distributed vulnerable state. In this situation, an attacker can perform a denial of service
attack by ßooding the SIP server with unresolvable domains that must be solved by a local DNS
server. The local DNS server in turn is conÞgured for solving unknown domains querying exter-
nal servers, thus increasing the number of waiting requests as well as the response time for each
SIP request. If at least one of the servers is not present or is not compliant with the required
speciÞc state, the distributed vulnerability has no place in the environment. In order to correct
such security problem, di!erent remediation tasks could be performed in the SIP server or in the
DNS server. A key challenge is to deÞne a strategy for determining how and by which devices
the distributed vulnerability can be remediated. In the next section, we present our approach for
dealing with device-based vulnerabilities. Subsequently, we describe our autonomous strategy for
collaboratively remediating distributed vulnerabilities found across the network.

8.3 Remediating device-based vulnerabilities

Remediating device-based vulnerabilities constitutes a critical activity for ensuring secure
network conÞgurations. In this section, we put forward a mathematical model for performing
device-based vulnerability assessment as well as remediation activities. We present a SAT-based
autonomous framework able to capture these mathematical concepts and execute vulnerability
management activities. The feasibility of the proposed approach is illustrated by several experi-
ments presented at the end of this section.

8.3.1 Vulnerability remediation modeling

In order to provide sound foundations for performing vulnerability remediation tasks, we
propose here a model that formalizes the main building blocks involved in the process. We also
discuss the exponential nature of Þnding appropriate changes for securing a vulnerable system
and we propose a SAT-based approach for dealing with this issue.

105

Chapter 8. Remediation of conÞguration vulnerabilities

Specifying corrective changes

Previously in Section 5.2, we have mathematically described the main concepts involved in
the OVAL language. As a remainder, we retake a few deÞnitions in the following list.

! H = {h 1, h2, . . . } denotes the set of devices or systems in the network (e.g. hosts, routers).
! P = {p1, p2, . . . } denotes the set of device properties in the form of unary predicates

pi (h), h # H . Such predicates are used for both specifying required properties to be obser-
ved for a vulnerability to be present as well as properties the device already possesses.

! S = {s 1, s2, . . . } denotes the set of device states where a statesi is used for describing in a
compact manner a set of properties required to be observed over a network device as well
as for describing existing speciÞc network devices states.

! state : H , S 2 function that takes a deviceh # H as input and returns its current state
s # S.

In the OVAL language, an OVAL deÞnition representing a vulnerability v is actually a speciÞc
machine state s # S where the involved propertiespi # P are evaluated by OVAL tests. We
therefore consider the set of known vulnerability descriptions constituting our knowledge source
as V = {v 1, v2, . . . , vm }. As each vulnerability vi # V can be speciÞed as a logical formula, we
can describe the whole vulnerability dataset as a disjunction of formulas as follows:

(= v1 %v2 . . . %vm =
5

(vi) vi # V (8.1)

Considering this deÞnition, we specify an evaluation function! : S , Boolean that classiÞes
a systemh # H as vulnerable underV if and only if the assessment of(over the state of h is
true , i.e., !(state(h)) = true . From a logical point of view, (is a logical consequence of those
formulas constituting the state of the deviceh, i.e., state(h) |= (.

In order to remediate conÞguration vulnerabilities, corrective changes must be performed on
the target system. However, a change aimed at solving a speciÞc vulnerability may introduce
or activate other vulnerabilities. If this e!ect is not properly managed, this process would still
expose the system to security threats. A system could be re-assessed after a change is made,
and undo such modiÞcation if other vulnerabilities arise. Nevertheless, this approach does not
take the big picture into account. Introduced vulnerabilities may also have potential Þxes that
would lead the system into a secure state. In that context, we consider the available information
about known vulnerabilities and corrective tasks, as a whole. This potentially allows us to Þnd a
sequence of changes or Þxes such that the Þnal machine state is secure. Even though intermediate
states in the sequence are vulnerable.

During the search of such sequence, changes could be applied on the target system and
immediately assessed in a backtracking fashion. However, the ability to project the consequences
of a vulnerability Þx or change, i.e., how the a!ected part of the system will look after applying
such change, allows us to analyze change sequences without actually changing the target system.
This is one of the cornerstones of our approach. In order to formalize this concept, our remediation
model involves the following deÞnitions:

! C = {c1, c2, . . . } denotes the set of changes or corrective actions applicable over network
devices.

! change: H + C , H 2 function that takes a deviceh # H as input and returns the same
deviceh after performing a changec # C that produces an observable change on its state.
The following property holds in the considered model:state(h) /= state(change(h, c)),
3h # H, 3c # C.

! future : C , S 2 function that takes a changec # C as input and returns a states # S
that projects the a!ected characteristics of a system after applying the changec.

106

8.3. Remediating device-based vulnerabilities

! " : S + S , S 2 function that takes a projected system states1 # S and a machine system
state s2 # S as input and returns s2 updated with the properties of s1.

In order to analyze the impact of a changeci over a systemh, the future and projection "
functions are combined with the ! formula to check present vulnerabilities as follows:

!("(future (ci), state(h)) ci # C, h # H (8.2)

From a technical point of view, the future function can be intuitively understood as observing the
resulting state of a change over a rollback-capable system. However, this can be also achieved by
considering a speciÞcation mechanism for describing those system properties that will be modiÞed
once the change is applied. Our approach considers both techniques, which are discussed in the
following sections. In light of these deÞnitions, we deÞne a sequence of changes) as follows:

) = c1 4 c2 4 . . . 4 cn ci # C (8.3)

We say that) constitutes a secure sequence of changes for a systemh # H if and only if
!() (h)) = false . Finding such a sequence for di!erent system states and contexts constitutes
an NP-complete problem as explained in the following section.

Addressing complexity of change sequence analysis

Each time a single change is made to Þx a speciÞc vulnerability, some system properties
are naturally modiÞed and therefore, the state for the next corrective change in the sequence is
modiÞed. In that context, the order and the combination of distinct changes for each vulnerability
induce several di!erent possible combinations. This issue falls into a family of problems called
NP-complete where no solution in polynomial time is known. In this section, we Þrst present an
illustrative example that shows the exponential nature of Þnding a suitable change sequence)
and then we formalize our approach as a satisÞability (SAT) problem.

Let h # H be a target device wheres # S constitutes its current state as follows: s =
state(h) = {p1, p2, p3, p4}, meaning that properties p1, p2, p3 and p4 are present on the system.
Let us also consider a vulnerability databaseV and a vulnerability Þx databaseCV as follows:

V 2 { v1 = p1 $ p2 $ p3, v2 = (Âp1 % Âp2) $ p4, v3 = Âp1 $ p3 $ Âp4} pi # P, vi # V (8.4)

CV 2 { c1a 5, Âp1, c1b 5, Âp2, c2 5, Âp4} pi # P, ci # C (8.5)

This example is based on three real Cisco IOS vulnerabilities identiÞed byCVE-2008-3812,
CVE-2008-3798 and CVE-2008-3821 respectively [111]. Within our model, properties are map-
ped to the following propositions:

! p1 2 IOS Þrewall is enabled.
! p2 2 Deep Packet Inspection (DPI) is enabled.
! p3 2 HTTP server is enabled.
! p4 2 SSL/TLS is enabled.

As explained before, vulnerabilities are represented as speciÞc machine states that are speciÞed
by logical formulas. For instance, vulnerability v1 requires p1, p2 and p3 to be active for the
vulnerability to be present. Within the set of available changesCV , c1a and c1b are alternatives
changes for Þxing vulnerabilityv1 while c2 constitutes the only remediation action for vulnera-
bility v2. No Þx action is available for vulnerability v3. In this scenario, it can be observed that

107

Chapter 8. Remediation of conÞguration vulnerabilities

Figure 8.2 Ð Change sequence search example

the vulnerability v1 is a semantic consequence of the properties present in the system, which are
compactly represented ass. This means that v1 is logically true under these hypothesis. This
fact is represented by a node labeledv1 in the graph illustrated in Figure 8.2. Beginning at this
node, a search for a secure change sequence is launched. Two alternative changes are available
for Þxing the vulnerability v1. Changec1a deactivates the property p1, changing the system state
to s = {Â p1, p2, p3, p4}. Under these conditions, v2 becomes present in the system. However, a
Þx for v2 exists so the changec2 is applied. Such modiÞcation brings the state of the system
to s = {Â p1, p2, p3, Âp4} activating the vulnerability v3. As no remediation action is available
for v3, this change sequence is considered as invalid. Backtracking to the beginning, Þxc1b is
applied activating again the vulnerability v2. Once again, changec2 is applied but this time,
the combination of remediation actions leaves the system ass = {p1, Âp2, p3, Âp4} successfully
eradicating all vulnerabilities. It can be noticed from this example that a naive approach for
assessing all possible combinations cannot provide solutions in polynomial time.

This problem constitutes a decision problem that relies on changes being applied to ensure a
secure system state. In our model, we have a boolean expression(that indicates the vulnerable
nature of a system when it is evaluated astrue . Considering * = Â(, we can say that a target
systemh is secure, or not vulnerable, when* is true . Our problem therefore consists of Þnding
such a propositional assignment that makes the* formula true . In computational complexity
theory, this is known as a satisÞability or SAT problem. Given the current state of a target
system, * can be instantiated and evaluated, and changes can be understood as actions that
can assign a speciÞc value to the properties involved in the formula. Considering the proposed
example, the* formula states that none of the known vulnerabilities in V can occur:

* = Â(p1 $ p2 $ p3) $ Â((Âp1 % Âp2) $ p4) $ Â(Âp1 $ p3 $ Âp4) (8.6)

Because we usually only know a small set of actions to remediate vulnerabilities, not every
property is likely to be changed. In that context, we need to Þnd solutions for* respecting those
property values that are not changeable, i.e., there are no available actions for modifying their
states. This in turn reduces the search space. Within our example, propertyp3 is not changeable,
and therefore, it must take its current system value,true , giving the following expression:

* = p1 $ Âp2 $ Âp4 (8.7)

The solution in this case is trivial. It states that our target system can be classiÞed as secure
only if those properties not matching the current state are changed, i.e.,p2 and p4. Therefore,
changesc1b and c2 must be applied, deactivating or updating the DPI engine as well as the
SSL/TLS service. In the worst case, these changes could consist in deactivating or uninstalling

108

8.3. Remediating device-based vulnerabilities

the services themselves, nevertheless, the idea is that changes might generally patch or update
to newer versions that do not present the characteristics involved in the vulnerabilities. The
proposed example constitutes a simple scenario aimed at showing the insight of our general
approach. However, versions can also be modeled as properties, thus enriching the expressiveness
of our vulnerability descriptions and the accuracy of our solutions.

8.3.2 The X2CCDF speciÞcation language

We have designed the X2CCDF language, built on top of the XCCDF language [167], in order
to express the future state of target systems after applying vulnerability remediation actions. In
this section we present the core building blocks of X2CCDF and explain its use in the context
of change analysis.

Specifying corrective changes for remediating known vulnerabilities in such a way machines
can interpret them is crucial to achieve higher levels of security automation. The XCCDF lan-
guage provides great support for this point by allowing referenced vulnerability descriptions
expressed with the OVAL language and linking them to rules that can be applied to correct the
speciÞed security weaknesses. Nevertheless, applying changes blindly, without actually analyzing
the impact of such changes, does not ensure a secure corrective process. In that context, we
introduce the idea of future or post-action states. Future states are intended to describe how the
system will look like after applying a speciÞc change. They do not describe the entire system
but only the components a!ected by changes. In light of this and being designed for describing
computer machine states, the OVAL language suitably Þts for representing future machine states.
Its interpretation however changes, i.e., in the general case, data is usually collected and compa-
red against OVAL vulnerability descriptions. Within our approach, collected data is mixed with
OVAL-based future states descriptions and compared against OVAL vulnerability descriptions.

The ability to express this concept in a machine-readable manner provides new capabilities
for analyzing di!erent ways of modifying and correcting computer systems without actually
changing them. The main objective in describing future states within X2CCDF is to complement
management protocols such as NETCONF [63] by allowing the projection of changes using the
current system state combined with future states of known remediation actions. While XCCDF
provides means for specifying remediation actions when speciÞc states are detected, X2CCDF
extends its capabilities by specifying also the consequences of such actions when performed by
means of the OVAL language.

Listing 8.1 presents an illustrative example where X2CCDF is used for specifying the two
alternative actions for vulnerability v1 as described in Section 8.3.1. For the sake of clarity, we
have omitted some XCCDF components that should be present in valid instances. Within this
example, only one XCCDF group of management rules is deÞned (lines 3-5). The only referenced
rule v1-treatment is declared below (lines 6-14). X2CCDF extends XCCDF by considering a new
building block named complex-Rule under the x2ccdf namespace. This extension, permits the
speciÞcation of a boolean expression involving alternative actions (lines 10-13) that can change
di!erent properties of a speciÞc vulnerability (lines 7-9). Corrective changes from the model,
c1a (lines 15-20) andc1b (lines 21-26), are described using standard XCCDF rules. However,
the semantics of these rules express the future or post-action state of each change. While the
particular actions to perform are speciÞed inside theÞx tag (lines 16 and 22 respectively), the
check tag under the x2ccdf namespace serves as a semantic indicator for automated interpreters.
It is a common practice to use scripts in XCCDF. It should be noticed that the example in
Section 8.3.1 only deals with atomic changes and that is why theOR operator appears in Lis-
ting 8.1. However, the logical composition of changes constitutes an important issue to address

109

Chapter 8. Remediation of conÞguration vulnerabilities

1 . <cdf :Benchmark i d= " X2CCDF ! test ! 1" x m l n s : x 2 c c d f= " . . . " x m l n s : c d f= " . . . " . . . >

2 . < c d f : t i t l e> X2CCDF example </ c d f : t i t l e>
3 . <cd f :Group i d= " vu lnerab i l i t y ! treatment ! with ! future ! s ta te " s e l e c t e d= "1" >
4 . <c d f : r e q u i r e s i d r e f= " v1 ! treatment " />
5 . </ cd f :Group>

6 . <x2ccd f : comp lex ! Rule i d= " v1 ! treatment " s e l e c t e d= "1" check= "1" >
7 . <x 2 c c d f : c h e c k system= " ht tp: // oval . mitre . org / XMLSchema / oval " >
8 . <x 2 c c d f : c h e c k ! con ten t ! r e f h r e f= " iosDefns . xml " name= " ova l :mi t re :de f :5302 " />
9 . </ x 2 c c d f : c h e c k>

1 0 . < x 2 c c d f : c r i t e r i a o p e r a t o r= " OR " >
1 1 . <x 2 c c d f : c r i t e r i o n i d r e f= " v1 ! f i x ! 1a" check= "1" />
1 2 . <x 2 c c d f : c r i t e r i o n i d r e f= " v1 ! f i x ! 1b" check= "1" />
1 3 . </ x 2 c c d f : c r i t e r i a>
1 4 . </ x2ccd f : comp lex ! Rule>

1 5 . <c d f : R u l e i d= " v1 ! f i x ! 1a" s e l e c t e d= "1" >
1 6 . < c d f : f i x> . / d i s a b l e F i r e w a l l . sh </ c d f : f i x>
1 7 . <x 2 c c d f : c h e c k system= " ht tp: // oval . mitre . org / XMLSchema / oval " >
1 8 . <x 2 c c d f : f u t u r e ! con ten t ! r e f h r e f= " iosFuture . xml " name= " x 2 c c d f : i n r i a : d e f : 1 " />
1 9 . </ x 2 c c d f : c h e c k>
2 0 . </ c d f : R u l e>

2 1 . <c d f : R u l e i d= " v1 ! f i x ! 1b" s e l e c t e d= "1" >
2 2 . < c d f : f i x> . / d i sab leDPIEng ine . sh </ c d f : f i x>
2 3 . <x 2 c c d f : c h e c k system= " ht tp: // oval . mitre . org / XMLSchema / oval " >
2 4 . <x 2 c c d f : f u t u r e ! con ten t ! r e f h r e f= " iosFuture . xml " name= " x 2 c c d f : i n r i a : d e f : 2 " />
2 5 . </ x 2 c c d f : c h e c k>
2 6 . </ c d f : R u l e>

2 7 . </ cdf :Benchmark>

Listing 8.1 Ð X2CCDF example

that X2CCDF already supports using the AND, OR and NOT operators. This point has been
already scheduled for future work.

In order to describe future or post-action states, we also use the OVAL language. However,
its interpretation is di!erent since we are comparing OVAL states against OVAL states, and
not speciÞc collected information (OVAL system characteristics) against OVAL states. The main
idea is as follows. Each change is represented as a pair of OVAL object and OVAL state. The
OVAL object represents the component over which the speciÞc change is applied. The OVAL
state represents the characteristics the object will present after applying this speciÞc change.
Finally, the impact of a change can be analyzed by looking for vulnerabilities which involve
OVAL tests using the same OVAL object as the speciÞed change. A!ected OVAL tests are
evaluated by comparing their OVAL states against the future OVAL-based state involved in the
change. Other OVAL tests involved in the a!ected vulnerabilities are evaluated following the
standard process, i.e., OVAL system characteristics against OVAL states.

While specifying the modiÞcations that a change will have on a target system, the attributes
inside an OVAL state are used to express the characteristics that the OVAL object will present.
For instance, if a change is designed to change the version of a Cisco IOS system, the OVAL
object will be the version_object while the version_state will contain the new version value, e.g.,
12.4. Comparing instances of OVAL simple datatypes, such as integers and booleans, does not
present di"culties. This can be done in the same way OVAL characteristics are compared against
OVAL states. However, in future states, regular expressions can be utilized for specifying certain
values inside information blocks that are a priori unknown. An example of this could be to look
for a particular conÞguration line inside the running conÞguration Þle of a Cisco device. In that
case, we need to potentially compare a regular expression against another regular expressions
within OVAL states. According to the principles established in automata theory, the intersection
of two regular languagese1 and e2 is a regular languagee3 [78]. Therefore, we can compute
whether e1 ' e2 by verifying if e1 = e1 6 e2. By operating over these regular expressions, we can
say if a projected state might match the expressions present in the vulnerability descriptions.

110

8.3. Remediating device-based vulnerabilities

Within our experiments, we have used the Greenery tool to support these operations on regular
expressions [76].

8.3.3 Extended framework for remediating device-based vulnerabilities

In order to assess and remediate device-based vulnerabilities over computer systems, we pro-
pose an autonomous framework calledVMANS which is presented in this section. We explain its
architecture as well as the underlying strategy in charge of orchestrating the overall vulnerability
management process.

Architecture overview

The proposed architecture, illustrated in Figure 8.3, comprises two independent processes,
namely, one process for maintaining logical representations of OVAL vulnerabilities descriptions
up-to-date, and a second process for performing vulnerability management activities. The Þrst
process is in charge of monitoring the OVAL vulnerability descriptions database (step I) and
converting new vulnerability descriptions into equivalent boolean expressions when they become
available (step II). Independently, a second process is in charge of dealing with vulnerabilities,
which is orchestrated by the vulnerability manager component. At step 1, it communicates with
the OVAL analyzer in order to launch the assessment process. The analyzer consumes OVAL
vulnerability descriptions from the repository at step 2 and collects the required data from those
devices under control at step 3. Once the assessment is performed, the analyzer sends the results
back to the vulnerability manager. If the system is found to be vulnerable, the vulnerability
manager analyzes the available remediation descriptions at step 4 and correlates them with the
properties that can be changed in the target system. Considering the current system state and
the available changeable properties, the SAT solver engine is used at step 5 to decide which
changes must be applied in order to secure the system. At step 6, the SAT solver uses a logical

Figure 8.3 ÐVMANS high-level architecture

111

Chapter 8. Remediation of conÞguration vulnerabilities

representation* , such as the one illustrated in Eq. 8.7, specifying that none of the vulnerabilities
can occur. A solution provided by the SAT solver indicates which properties must be changed
in the system to present a secure state. The vulnerability manager interprets this information
and sends speciÞc directives to the NETCONF-based change manager subsystem at step 7 in
order to e!ectuate these changes. At step 8, the NETCONF protocol is used to communicate
and perform the speciÞed changes on the target system. Finally, the obtained results are sent to
the reporting system at step 9.

Vulnerability management strategy

In order to autonomously deal with vulnerabilities, the proposed strategy illustrated in
Figure 8.4 is a closed control loop where three classes of events may potentially trigger vul-
nerability management activities. These activities can happen when new vulnerability or reme-
diation descriptions become available and when the system presents changes that may com-
promise its security. In that context, an event monitoring component is in charge of observing
these events and triggering the vulnerability management process when required. Once this pro-
cess has been launched, vulnerabilities a! ected by the event that has triggered the process are
computed (step 1). Depending on the case, these vulnerabilities can be recently added vulne-
rability descriptions, or vulnerabilities referenced by new remediation descriptions, or known
vulnerabilities involving components that have been changed on the target system. Afterwards,

Figure 8.4 ÐVMANS control loop

112

8.3. Remediating device-based vulnerabilities

these vulnerability descriptions are evaluated on the system (steps 2-4). If the system is not
found to be vulnerable, the process ends and returns to the initial monitoring state. If it is
vulnerable, then available remediation descriptions are consumed (step 5). If no remediation is
available for treating the security issues, then a system warning is produced (step 6) and an
analysis report is created and stored (step 7) ending the process and returning to the initial
state. Otherwise, remediation descriptions are analyzed (step 8). In the case every remediation
description provides a speciÞcation of the future state after applying the involved changes, the
process continues with the change selection process (step 9). Considering the current properties
present in the target system and the properties that can potentially change by applying the
available vulnerability treatments, a SAT solver is used to provide a logical assignment of every
property related to any vulnerability to ensure a secure system state. Once the changes have
been identiÞed, they are applied within a NETCONF session (steps 10-13) and an analysis re-
port is generated (step 7) going back to the initial state. When a remediation description does
not specify a future state, its impact is empirically evaluated by applying the involved changes
on a candidate state of the target system (steps 14-19). To do so, the candidate state feature
included in the NETCONF speciÞcation is considered. For each remediation description under
these circumstances, involved changes are applied (step 17), modiÞed properties are collected and
stored (step 18) and Þnally modiÞcations are rolled back (step 19). When the loop is Þnished,
the NETCONF session is closed (step 20) and the process continues normally with the change
selection stage (step 9) as described before.

8.3.4 Performance evaluation

In order to evaluate the proposed approach, we have developed an implementation prototype
able to perform the main activities shown in theVMANS framework. We have also performed a
deep behavioral analysis using the Cisco IOS platform as a case study. In this section we illustrate
the performed experiments and the obtained results. The model of Cisco routers used is c3725
with IOS version 12.4. This model implements a subset of NETCONF operations that permits the
execution of basic conÞguration management activities. Cisco routers have been emulated using
GNS3 [75] over a regular laptop (2 Ghz Intel Core i7 with 8GB RAM). The OVAL analyzer is an
extension of XOvaldi [26] for Cisco IOS. OVAL vulnerability descriptions have been taken from
the public OVAL repository [117]. We have used the SAT solver engine provided by theAima
project [6]. Operations between regular expressions for analyzing future states are performed with
the Greenery tool [76]. We have used and slightly modiÞed the Netconf4J project library [107]
to communicate with Cisco routers via NETCONF.

In order to analyze the scalability of our framework, we have performed several experiments
involving vulnerability representations as boolean expressions, SAT solving analysis time and
behavioral aspects of the NETCONF protocol over Cisco. Our Þrst experiment, illustrated in
Figure 8.5, shows the behavior ofVMANS while dealing with vulnerability logical represen-
tations. In the general case, SAT solvers consume boolean expressions in conjunctive normal
form (CNF). If the input formula is not in CNF, SAT solvers transform it internally. In that
context, we have measured the time required to load standard logical representations into me-
mory (red solid line) as well as their transformation to CNF (blue dashed line). We have repeated
this measurement while varying the amount of vulnerability descriptions. When all the OVAL
descriptions for IOS are considered (around 140), their representations are loaded in 53 millise-
conds while their transformation to CNF takes 7.5 seconds approximately. We have observed a
stable behavior for both activities in the general case as shown by the Þrst derivatives depicted
in the inner graph of the Þgure.

113

Chapter 8. Remediation of conÞguration vulnerabilities

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140
 0

 1

 2

 3

 4

 5

 6

 7

 8

T
im

e
(m

ill
is

ec
on

ds
)

T
im

e
(s

ec
on

ds
)

Number of known vulnerabilities

Vulnerability descriptions conversion statistics

Memory representation load (ms)
Conversion to CNF (sec)

-5

 0

 5

 10

 15

 0 20 40 60 80 100 120 140

-0.4

-0.2

 0

 0.2

 0.4

Growth Rate (First Derivative)

Mem. load
CNF conv.

Figure 8.5 Ð Vulnerability conversion statistics

One of the critical points in the vulnerability remediation process is the change selection
activity. We have analyzed the SAT solving time for di!erent scenarios as shown in Figure 8.6.
We have evaluated the same system with one, three, Þve and ten active vulnerabilities each
time, while varying the amount of vulnerability descriptions in the database. In addition, a set
of available changes has been provided to the framework to detect which corrective actions must
be performed. In all cases, we have observed a linear behavior as illustrated in the inner graph
of the Þgure, taking around 2 seconds in average to provide the answers for the whole dataset.
Often, the SAT solving time depends on the nature of the equations being solved. The observed
behavior is partially supported by the fact that the sets of properties (OVAL tests) involved in
the IOS vulnerability descriptions are mostly disjoint. Thus, the SAT process is faster because
each part of the formula does not impact on the other clauses. In addition, we have observed
two interesting phenomena. The Þrst one is that the SAT solving time (around 2 seconds), which
includes a CNF transformation process, is faster than the CNF transformation time depicted in
Figure 8.5 (around 7.5 seconds). After investigating this behavior, we have realized that only
changeable properties participate actively in the SAT solving process. The remaining properties
take their truth values from the system, so they are Þxed and ignored, making the internal CNF

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120 140
 0

 0.5

 1

 1.5

 2

T
im

e
(s

ec
on

ds
)

T
im

e
(s

ec
on

ds
)

Number of known vulnerabilities

Cumulated SAT analysis time

1 present vulnerability
3 present vulnerabilities
5 present vulnerabilities

10 present vulnerabilities

-0.4

-0.2

 0

 0.2

 0.4

 0 30 60 90 120
 0

 0.5

 1

 1.5

 2

Growth Rate (First Derivative)

1 vuln.
3 vulns.
5 vulns.

10 vulns.

Figure 8.6 Ð SAT solving analysis time for change detection

114

8.4. Towards the remediation of distributed vulnerabilities

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

T
im

e
(s

ec
on

ds
)

T
im

e
(s

ec
on

ds
)

Number of atomic changes

NETCONF-based configuration changes statistics

Edit config
Get config

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 0 50 100 150 200 250 300
 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4

T
im

e
(s

ec
on

ds
)

Growth Rate (First Derivative)

Edit config
Get config

Figure 8.7 Ð NETCONF-Cisco statistics

transformation faster. The second phenomenon is that the curve depicting the system with ten
present vulnerabilities (violet dashed lines with rounded points) has lower values that the one
with Þve vulnerabilities (red dashed line with square points). Sometimes, more available changes
facilitates the search of the SAT solver though this fact also leaves more free assignable variables
increasing the search space. Even though this depends on the mechanisms used by the SAT
solver, the general behavior for remediating IOS vulnerabilities has been observed to be linearly
stable.

Finally, we also have measured the time required to query and perform atomic changes over
Cisco IOS via NETCONF. A complete NETCONF session for getting the current conÞguration
in our scenario, including network delays, takes around 2 seconds in average (blue dashed line).
NETCONF also allows us to perform a set of various changes in one single session. We have varied
the size of this change set from 1 to 300 as shown in Figure 8.7 (red bars). We have observed
that the time grows linearly, as shown in the inner graph, and that it only requires about 2.5
seconds for performing 300 changes. Considering the overall behavior, these sets of experiments
have shown the scalability of the proposed strategy in our context, in terms of representation
conversion time, SAT solving time and NETCONF performance.

8.4 Towards the remediation of distributed vulnerabilities

In the previous section we have presented an approach for individually remediating vulnera-
bilities in network devices. However, there also exist situations in which security issues become
visible when an upper view of the network is taken. This global perspective may show network
weaknesses that otherwise could not be detected. In that context, the purpose of describing
and detecting distributed vulnerabilities is to provide support for increasing network security
awareness as a whole. In Chapter 5 we have presented the conceptualization of distributed vul-
nerabilities as well as a mathematical modeling and a framework for detecting them. In this
section, we present an approach for supporting the remediation of distributed vulnerabilities.
We put forward a mathematical model that formally supports the remediation activity, as well
as a language for expressing remediation tasks. Finally, we propose an extension to the frame-
work presented in Chapter 5 for remediating distributed vulnerabilities, and perform di!erent
experiments to analyze the feasibility of our solution.

115

Chapter 8. Remediation of conÞguration vulnerabilities

8.4.1 Modeling vulnerability treatments

In this section we formalize conÞguration vulnerability treatments by extending and enhan-
cing our previous mathematical presented in Chapter 5. A distributed vulnerability is deÞned as
a set of conditions over two or more network devices that if observed simultaneously, a potential
threat is present on that network. It is important to remark that the required conditions to be ob-
served over a speciÞc device do not necessarily constitutes a complete device-based vulnerability
description.

Specifying distributed treatments

As explained in Chapter 5, a distributed vulnerability is mathematically deÞned as a com-
pliant projection of the pattern (PH , PR) over the network (H, R) that makes true the predicate
deÞned in Equation 5.1. As a reminder, the predicate is deÞned as follows:

DV (H, R) 2 &(h1, ..., hn) (s1(h1) $... $ sn(hn) $ r1(hi , ..., hj) $... $ r v(hk , ..., hl))

We recall that this predicate expresses the evaluation of a distributed vulnerabilityDV based
on the pattern (PH , PR) over a generic network(H, R). Based on this modeling, we consider
a distributed treatment DT as a body of tasks performed over a set of network devices that
introduces conÞguration changes in order to eliminate the security weakness described by a
speciÞc distributed vulnerability DV . In order to formally deÞne what a distributed treatment
is, we extend the description model explained in Chapter 5 by deÞning the following domains:

! A = {a 1, a2, . . . } denotes the set of actions applicable over network devices.

! T = {t 1, t2, . . . } denotes the set of tasks applicable over network devices. A taskt i is a
logical combination of actions and its logical value is computed based on the successful
application of each action. The set T is inductively deÞned as follows:

i if ai # A, then ai # T (i # N)

ii if !, " # T, then (! ! ") # T ! # {$, %}

In order to deÞne the application of remediation tasks over the network, we specify the
following set of core functions:

! stateH : H , S 2 function that takes a device h # H as input and returns its current
state s # S.

! stateR : R , 2S 2 function that takes a network relationship r # R as input and returns a
set with the current state si # S of each involved network devicehi # H in the relationship.

! action : H + A , H 2 function that takes a deviceh # H as input and returns the same
deviceh after performing an action a # A.

! taskH : H + T , H 2 function that takes a device h # H as input and returns the same
device h after performing a task t # T that produces an observable change on its state.
This means that at least one actionai # A must introduce a change that cannot be rolled
back by any other action in the task nor a combination of them. The following property
holds in the considered model:stateH (h) /= stateH (taskH (h, t)), 3t # T, 3h # H .

! taskR : R + T , R 2 function that takes a network relationship r # R as input and
returns the same network relationshipr after performing a task t # T over its member

116

8.4. Towards the remediation of distributed vulnerabilities

devices. Based on the deÞnition of T, is can be noticed that the taskt will produce an
observable change on its state and that the following property also holds:stateR(r) /=
stateR(taskR(r, t)), 3t # T, 3r # R.

! TH = {t H
1 , ..., TH

n } denotes the body of available tasks for performing over network devices
where each tasktH

i is semantically related to a speciÞc statesi . Usually, the following
equation can hold|TH | < |PH |, meaning that treatment tasks are not always available for
correcting certain device states.

! TR = {t R
1 , ..., tR

v } denotes the body of available tasks for performing over network rela-
tionships where each tasktR

i is semantically related to a speciÞc relationshipr i . Usually,
the following equation can hold|TR| < |PR|, meaning that treatment tasks are not always
available for correcting certain network relationships.

We therefore deÞne a distributed treatmentDT as the compliant application of(TH , TR) over
the network (H, R) that eliminates every possible matching projection of the pattern(PH , PR)
over (H, R). Under a logical perspective,DT (H, R) is deÞned as the disjunction of task applica-
tions "(TH , TR) over each potential combination of devices and network relationships(H !, R!)
performing the roles required by the distributed vulnerability DV as follows:

DT (H, R) = taskH (h1, tH
1) %. . . %taskH (hn , tH

n) %taskR(r 1, tR
1) %. . . %taskR(r v, tR

v)

3H ! = {h 1, ..., hn} ' H, R ! = {r 1, ..., r v} ' R, such that DV (H !, R!) holds.
(8.8)

Changes done for correcting di!erent instances(H !, R!) of the distributed vulnerability must
not shadow those remediation actions performed for any other observed vulnerable instances of
DV . Therefore,ÂDV (H, R) must hold after the DT application. In the next section, we present
an XML-based language able to capture these mathematical constructions.

8.4.2 DXCCDF, a distributed vulnerability remediation language

We have conceived the DXCCDF language, built on top of XCCDF, as a means for ex-
pressing vulnerability treatments in a machine-readable manner. XCCDF rules allow to specify
remediation information that can be used by automated systems to perform corrective actions
when speciÞc states are detected. These states can be speciÞed by languages such as OVAL and
DOVAL. DXCCDF extends XCCDF by considering a new building block named complex-Rule
under the dxccdf namespace. This extension provides the ability to specify a boolean expression
involving all the potential tasks that can be performed for remediating a speciÞc machine state.
Figure 8.8 depicts the mapping between the main components involved in the mathematical
model and their representatives constructs within the DXCCDF language. An actionai can be

The model and the DXCCDF language

Model block Insight Applies to Expressed with

Action ai chmod 644 Property pi XCCDF rule

passwd

Task t i a1 ! State si DXCCDF complex

(a 2 " a3) rule

Distributed t 1 ! t 2 ! . . . Distributed DXCCDF complex

treatment DT ! t k ! . . . vulnerability rule

Distributed {DT 1 , DT 2 , {DV 1 , DV 2 , XCCDF group of

treatments . . . } . . . } complex rules

Figure 8.8 Ð Mapping the model into the DXCCDF language

117

Chapter 8. Remediation of conÞguration vulnerabilities

understood as a simple operation, i.e. a shell command, that is performed for changing a system
property pi . This property can be checked and remediated using an XCCDF rule. A taskt i is a
combination of actions in the form of a boolean expression intended to correct a speciÞc state
si . Tasks are represented by means of DXCCDF complex rules. A distributed treatmentDT is
also represented using DXCCDF complex rules and they are Þnally put together into XCCDF
groups.

We now put forward an illustrative DXCCDF example illustrated in Listing 8.2 where a
distributed treatment is speciÞed in order to provide directives for remediating the distribu-
ted vulnerability previously depicted in Figure 8.1. For the sake of clarity, we have omitted
some XCCDF components that should be present in valid instances. Within this document, the
group for vulnerability treatments is selected for evaluation containing only one treatment. The
construct DXCCDF complex rule represents the distributed treatment itself. A DXCCDF com-
plex rule allows to refer a check system for assessing the distributed vulnerability under analysis
by means of a DOVAL reference, and also to specify a logical criterion involving both XCCDF
rules and DXCCDF complex rules. In the proposed scenario there exist two involved roles, the
SIP server and the DNS server. Within the DXCCDF example, one remediation task has been
deÞned for each role, namely,TSIP and TDNS . The task TSIP is in turn a non-atomic task since
two corrective tasks, namely,TSIP

yum and TSIP
web , can be alternatively performed. Thus, the distri-

buted treatment expressed by the DXCCDF complex rule corresponds to the logical expression
(TSIP

yum %TSIP
web %TDNS) where each one of the referenced standard XCCDF rules are deÞned in the

<cdf :Benchmark i d= " sip ! dos ! test ! 1" x m l n s : d x c c d f= " . . . " x m l n s : c d f= " . . . " . . . >

< c d f : t i t l e> DXCCDF example </ c d f : t i t l e>
<cd f :Group i d= " vu lnerab i l i t y ! treatments " s e l e c t e d= "1" >

<c d f : r e q u i r e s i d r e f= " dv1 ! treatment " />
</ cd f :Group>

<dxccd f : comp lex ! Rule i d= " dv1 ! treatment " s e l e c t e d= "1" check= "1" >
<d x c c d f : c h e c k system= " ht tp: // doval . i n r i a . f r / XMLSchema / doval " >

<d x c c d f : c h e c k ! con ten t ! r e f h r e f= " dvDefns . xml " name= " d o v a l : i n r i a : d e f : 1 " />
</ d x c c d f : c h e c k>
< d x c c d f : c r i t e r i a o p e r a t o r= " OR " >

< d x c c d f : c r i t e r i a o p e r a t o r= " OR " >
<d x c c d f : c r i t e r i o n i d r e f= " f looding ! protect ion ! yum " check= "0" />
<d x c c d f : c r i t e r i o n i d r e f= " f looding ! protect ion ! custom " check= "0" />

</ d x c c d f : c r i t e r i a>
<d x c c d f : c r i t e r i o n i d r e f= " stop ! bind ! daemon " check= "0" />

</ d x c c d f : c r i t e r i a>
</ dxccd f : comp lex ! Rule>

<c d f : R u l e i d= " f looding ! protect ion ! yum " s e l e c t e d= "1" >
< c d f : f i x> yum i n s t a l l a s t e r i s k ! s i p ! dos ! patch </ c d f : f i x>
<c d f : c h e c k system= " ht tp: // oval . mitre . org / XMLSchema / oval " >

<c d f : c h e c k ! con ten t ! r e f h r e f= " sipDefns . xml " name= " ova l :mi t re :de f :1002 " />
</ c d f : c h e c k>

</ c d f : R u l e>

<c d f : R u l e i d= " f looding ! protect ion ! custom " s e l e c t e d= "1" >
< c d f : f i x>

wget h t t p : // dova l . i n r i a . f r / f i x e s / s i p / a s t e r i s k ! s i p ! dos ! patch ! r0 . 2 . rpm
rpm ! Uvh a s t e r i s k ! s i p ! dos ! patch ! r0 . 2 . rpm

</ c d f : f i x>
<c d f : c h e c k system= " ht tp: // oval . mitre . org / XMLSchema / oval " >

<c d f : c h e c k ! con ten t ! r e f h r e f= " sipDefns . xml " name= " ova l :mi t re :de f :1002 " />
</ c d f : c h e c k>

</ c d f : R u l e>

<c d f : R u l e i d= " stop ! bind ! daemon " s e l e c t e d= "1" >
< c d f : f i x> s e r v i c e named s top </ c d f : f i x>
<c d f : c h e c k system= " ht tp: // oval . mitre . org / XMLSchema / oval " >

<c d f : c h e c k ! con ten t ! r e f h r e f= " unixDefns . xml " name= " ova l :mi t re :de f :2000 " />
</ c d f : c h e c k>

</ c d f : R u l e>

</ cdf :Benchmark>

Listing 8.2 Ð DXCCDF vulnerability treatment

118

8.4. Towards the remediation of distributed vulnerabilities

Þnal part of the document. These XCCDF rules deÞne the actual corrective actions to perform
over the involved devices and they are orchestrated by the DXCCDF complex rule in order to
remediate the speciÞc distributed vulnerability.

8.4.3 A strategy for collaboratively treating distributed vulnerabilities

The DXCCDF language provides the capability of describing remediation activities that can
be consumed by autonomic entities in order to secure the environment. In this section we propose
a framework for supporting collaborative treatments speciÞed in DXCCDF considering the main
building blocks of our previous DOVAL-based assessment framework presented in Chapter 5.

Architecture overview

In order to remediate a distributed vulnerability several tasks may be performed on di!erent
devices. At the moment of the analysis however, some of the involved devices may present par-
ticular states that do not allow them or make it more expensive to perform speciÞc corrective
actions than other involved devices. Factors such as availability, capability, or even policy consis-
tency must be considered during the remediation process. We refer to this spectrum of factors as

Figure 8.9 Ð Collaborative treatment - High level operation

119

8.4. Towards the remediation of distributed vulnerabilities

tributed vulnerability described in Figure 8.1 is present in the form of many instances. Within
the example illustrated in Figure 8.10, a network with a Cfengine server and Þve devices is
considered. Devicesh1, h2 and h3 are involved in the instances of the distributed vulnerability
described by a DOVAL document. Once the assessment has been performed at Step 1, a DO-
VAL report identifying detected vulnerability instances is generated. In order to collect required
information, a spanning tree is generated at Step 2 by means of CfengineÕs functionalities [30]
as shown in Section 5.3. The Cfengine server traverses the network starting at the root of the
spanning tree where each node will inform on how it can collaborate in the corrective tasks and
at what cost, as depicted in Algorithm 8.1 that we explain later. At Step 3, a report is generated
including the cost of each node for correcting the roles that each one is performing. Based on
this information, the Cfengine server selects a node for applying corrective actions at Step 4 and
a report indicating the results of the remediation activity is generated.

Input: TreeNode h, DOVAL document dv, DXCCDF document dt, CostTable ct.
Output : Table with costs for each node on each role.

1 if currentNode h is alive then
2 roleList " f indRolesF orDevice (h, dv);
3 foreach role s # roleList do
4 taskList " f indT asksF orRole (s, dt);
5 foreach task t # taskList do
6 cost " queryNodeF orT askCost(h, t);
7 updateCostTable(ct, h, s, cost);
8 end
9 end

10 gatherTasksCosts(lef tT reeNode(h), dv, dt, ct);
11 gatherTasksCosts(rigthT reeNode(h), dv, dt, ct);
12 end

Algorithm 8.1: gatherTasksCosts (recursive)

In the proposed approach, a spanning tree is built in order to explore the network. Algo-
rithm 8.1 presents the activity performed at each active node of the tree (line 1) for gathering
and analyzing devices information. Each nodeh reads the list of roles involved in the vulne-
rability instances given in the DOVAL document dv, identiÞes itself in the list (lines 2-3), and
for each task t found in the DXCCDF document dt applicable on each speciÞc roles that h
plays (lines 4-5), the task cost is computed by the node itself and attached to the general cost
table ct (lines 6-7). The traversal continues on the left and right sub-trees (lines 10-11) until
the whole spanning tree has been explored. This strategy can be easily integrated if treatments
are available during the assessment process. By computing task costs at the same time network
devices are evaluated looking for speciÞc states, the Cfengine server will have all the required
information for deciding which nodes will execute remediation tasks. Already scheduled as future
work, a decentralized distributed strategy would allow any agent to start a vulnerability treat-
ment though distributed algorithms such as leader election algorithms [73], [34], are necessary
for deciding which node will execute corrective tasks.

8.4.4 Performance evaluation

Within the proposed framework, the complexity of the process is dominated by the number
of nodes in the network and Algorithm 8.1 isO(n). This means that the treatment process can be

121

Chapter 8. Remediation of conÞguration vulnerabilities

coupled with the assessment process without increasing its growth rate. Given a distributed vul-
nerability, the total assessment time under both a sequential (TAS) and a parallel (TA

P) approach
has been mathematically deÞned in Section 5.4. In order to evaluate the whole time process
involving assessment and treatment activities (A+ T), we have extended these deÞnitions by
considering two additional parameters, namely,%that denotes the average number of available
tasks for each rolesj , and w denoting the average time for computing the cost of a single task.
The new equations are deÞned as follows:

TA+T
S = TA

S + (n) k) P(A)) %) w) (8.9)

TA+T
P w = TA

P w + (k) %) w) (8.10)

Using a sequential approach (TA+T
S), the total time is given by the time required for assessing

the distributed vulnerability plus the time needed for each node (n nodes in the network) to assess
its k potential roles. The probability for a node to play a certain role sj is expressed byP(A) .
For those roles present in the node, the number of tasks%multiplied by the average time each
task takes w is considered. Under a parallel approach (TA+T

P w) and considering the worst case,
the total time is given by the time required for assessing the distributed vulnerability in the
worst case plus the time needed for a node to compute the cost of every available task (%tasks)
for every role sj considering an average timew for each task. In order to prove the scalability
of the proposed approach, we have performed several analytical experiments that combine the
assessment and treatment processes at the same time as shown in Figure 8.11. Both solid blue
lines with rounded and triangular points represent the time growth when the number of network
devices is increased and only the assessment process is performed under a sequential (TS(A)) and
a parallel (TP w(A)) approach. Dashed red lines show the time behavior when assessment and
treatment activities are performed at the same time (A+ T). TS(A + T) illustrated by the dashed
red line with rounded points shows the same growth rate thanTS(A) . The same phenomenon can
be observed when a parallel approach is taken as depicted byTP w(A) and TP w(A + T). Within
our experiments we have overvalued the parameterw in order to obtain a visible distance between
curves and be able to notice the same growth behavior. First derivatives drawn in the inner graph
conÞrms the same growth rates for both sequential (green solid line) and parallel (green dashed
line) approaches, considering only the assessment (A), and both the assessment plus treatment
(A + T) activities.

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 0 2000 4000 6000 8000 10000
 0

 10000

 20000

 30000

 40000

 50000

 60000

U
ni

ts
 o

f T
im

e
(T

s)

U
ni

ts
 o

f T
im

e
(T

pw
)

Number of Nodes

Time scalability statistics using role assignment with probability 1/2

Ts(A)
Tpw(A)

Ts(A+T)
Tpw(A+T)

 0

 40000

 80000

 0 2000 4000 6000 8000 10000

Number of Nodes

Growth Rate (First Derivative)

Ts(A) - Ts(A+T)
Tpw(A) - Tpw(A+T)

Figure 8.11 Ð Time statistics for vulnerability assessment and treatment activities

122

8.5. Synthesis

In order to perform treatment activities for distributed vulnerabilities, a technical and de-
ployable infrastructure is required. Indeed, a system capable of interpreting OVAL and DOVAL
vulnerability descriptions would be necessary for assessing vulnerabilities, while an interpreter
of XCCDF and DXCCDF treatment descriptions would be required to perform corrective ac-
tions. We have already developed Ovalyzer, an OVAL to Cfengine translator. Although this
has not been done yet, Ovalyzer could be extended so as to cover DOVAL documents as well.
XCCDF and DXCCDF are XML-based languages, so the approach used for prototyping XML-
based interpreters could be reused for these languages too. In particular, we have used the JAXB
framework [89] for managing XML related issues as explained in detail in Part III. JAXB enables
our system to seamlessly evolve with new versions of vulnerability and remediation description
languages by automatically regenerating its internal data model. In that context, we would be
able to develop new extended tools for consuming XCCDF and DXCCDF treatment descriptions
and producing the appropriate assessment and corrective Cfengine policy rules.

8.5 Synthesis

The constant evolution of computer and network systems dramatically increases the ma-
nagement of these infrastructures and the services they o!er. The vulnerability management
process constitutes a key activity in that context for ensuring safe conÞgurations and preventing
security attacks. In this chapter, we have presented two complimentary approaches for comple-
ting the vulnerability management lifecycle in both device-based and distributed scenarios. To
do so, we leverage the use and integration of standard description languages into self-governed
environments. In order to tackle device-based vulnerabilities, we have proposed a SAT-based au-
tonomous strategy which is able to successfully identify, and apply by means of the NETCONF
protocol, required changes to eradicate known vulnerabilities. We have also gone one step further
and proposed a collaborative approach for integrating distributed remediation descriptions into
the autonomic management plane. Our approach involves a mathematical model and a novel
description language for specifying distributed vulnerability treatments. In addition, we have
proposed a Cfengine-based framework that provides a robust foundation for its technical implan-
tation. For both approaches, we have conducted several experiments whose results validate the
feasibility and scalability of our solutions.

Overall speaking, treating and remediating vulnerabilities opens a wide spectrum of challenges
that must be addressed in order to fully integrate the vulnerability management process into au-
tonomic networks and systems. Our SAT-based approach only considers remediation actions as
atomic changes that can be embedded within a SAT problem. However, some corrective activities
may consider several changes at once. Therefore, SAT solving techniques and sophisticated me-
chanisms for considering interactions, coherence and consistency, must be further investigated.
These solutions should be also integrated in distributed scenarios. In addition, protocols able
to manage changes in a try-rollback manner such as NETCONF are not yet widely deployed
and standardized. Even though some equipments implement NETCONF agents such as some
versions of Cisco IOS, most of them do not cover the complete speciÞcation. Cisco IOS and other
platforms must be investigated deeper to further validate our approach. In the context of distri-
buted vulnerabilities, our approach still requires metrics for quantifying the costs of corrective
remediation tasks with respect to device capacities, service dependencies and policy consistency.
Finally, centralized approaches may generate bottleneck issues, implying poor performance in
certain situations. Therefore, decentralized management strategies able to balance the work-
load in the network must be investigated as well. In the next section, we describe in detail our
implementation prototypes where these and other technical issues are deeply discussed.

123

Chapter 8. Remediation of conÞguration vulnerabilities

124

Part III

Implementation

125

Chapter 9

Development of autonomic
vulnerability assessment solutions

Contents
9.1 Introduction . 127

9.2 Autonomic vulnerability assessment with Ovalyzer 128

9.2.1 Implementation prototype . 128

9.2.2 OVAL to Cfengine generation example with Ovalyzer 131

9.3 Extension to past hidden vulnerable states 135

9.4 Mobile security assessment with Ovaldroid 137

9.4.1 Implementation prototype . 137

9.4.2 A probabilistic extension . 141

9.5 Synthesis . 141

9.1 Introduction

In the previous chapters, we have presented several approaches for addressing autonomic vul-
nerability management in di!erent contexts. In order to evaluate the viability and feasibility of
these approaches, we have developed various implementation prototypes that allowed us to expe-
riment our concepts. In this chapter, we present three prototypes with which we have conducted
our experiments in di!erent themes, namely, autonomous vulnerability awareness, detection of
past security exposures, and mobile security assessment.

The remainder of this chapter is organized as follows. Section 9.2 details Ovalyzer, an OVAL
to Cfengine translator, able to integrate OVAL vulnerability descriptions into the autonomic ma-
nagement plane, by automatically generating Cfengine policies that represent them. Section 9.3
presents an extension to device-based vulnerability assessment by also considering past hidden
vulnerable states. Section 9.4 describes the internals of Ovaldroid, a vulnerability assessment
framework for mobile environments, particularly focused on the Android platform. Section 9.5
concludes this chapter and discusses further work.

127

Chapter 9. Development of autonomic vulnerability assessment solutions

9.2 Autonomic vulnerability assessment with Ovalyzer

In Chapter 4 we have presented an approach for increasing the vulnerability awareness of
autonomic networks and systems. Our approach aims at analyzing and integrating OVAL vulne-
rability descriptions into the management plane of self-governing environments. To that end, we
have developed Ovalyzer, an OVAL to Cfengine translator, capable of automatically generating
Cfengine policies that represent OVAL security advisories about known vulnerabilities. In that
manner, Cfengine agents can autonomously assess their own security exposure. Ovalyzer takes
up the role of the translation module depicted in Figure 4.3 within Section 4.3.1. In this section,
we present the implementation details of Ovalyzer and put forward an insightful example which
shows how the translation between OVAL and Cfengine is made, and the obtained results.

9.2.1 Implementation prototype

The main objective of Ovalyzer is to support the translation of OVAL documents to Cfengine
policy rules that represent them. The translator takes as input the content of OVAL documents
and produces Cfengine code that is structured as Cfengine policy Þles. These policies can be later
consumed by a Cfengine running instance. Figure 9.1 describes OvalyzerÕs main components and
the high-level interaction between them.

At step 1, an OVAL document is consumed as the input of the translator. An OVAL pre-
processor is in charge of parsing the content of the speciÞcation, adjusting conÞguration aspects,
and feeding the OVAL analyzer module with a memory representation of the speciÞed input at
step 2. The OVAL analyzer module is the component that orchestrates the translation ßow and
provides the required directives for generating Cfengine code at step 3.i. Several calls are made
by the OVAL analyzer module to the Cfengine policy writer depending on the content of the
OVAL document. The Cfengine policy writer is in charge of generating the main Cfengine policy
entries at step 4.1. In addition, it delegates at step 4.2, the generation of speciÞc platform rules
to plugins speciÞcally designed for this type of Cfengine code. Plugins will produce the required
platform-dependent Cfengine code that will be included at step 5 inside the generated Cfengine
policy Þles.

Figure 9.1 Ð OvalyzerÕs high-level operation

128

9.2. Autonomic vulnerability assessment with Ovalyzer

Ovalyzer has been purely written inJava 1.6 [88]. Within Ovalyzer, the translator core is in
charge of managing every high-level aspect of the OVAL documents it processes. The required
functionality for generating speciÞc platform-dependent Cfengine code is provided by plugins.
This functional separation makes of Ovalyzer an extensible translation tool. In addition, the
OVAL data model used by Ovalyzer is automatically generated. In order to do this, we use the
JAXB (Java Architecture for XML Binding) technology [89]. JAXB provides means not only
for modeling XML documents within a Java application data model, but also for automatically
reading and writing them. Such feature provides to Ovalyzer with the ability to evolve with new
OVAL versions with almost no developing cost. While declarative extensibility of the translator
is achieved by automatic code generation using the JAXB technology, functional extensibility
is supported by its plugin-based architecture. These two aspects are explained in detail in the
following sections.

OVAL memory model

XML OVAL documents conform the main input for Ovalyzer and their treatment requires
special attention. In particular, three main points must be attended when the source input is
based on XML documents which follow a well-deÞned structure (XML Schemas). These key
points are indicated in the following list.

! Memory representation of types deÞned within XML Schemas.
! Parsing process of instances (XML documents) of these XML Schemas.
! Writing process of results that are also XML instances of XML Schemas.

When a change is performed over one of these XML Schemas, it a!ects the three points
mentioned before. This is because the types deÞned within the schemas may be changed and
consequently, their memory representation. With a di!erent structure and memory represen-
tation, the process of reading and writing XML documents according to these schemas also
changes. In order to provide scalability and development fastness, a mechanism for automate
these changes and reduce the code impact is required. In light of this, we use JAXB, a Java
technology provided by Sun Microsystems that provides three powerful features directly related
to the previous three points.

! Schema binding. It generates a set of Java classes that represent an XML Schema.
! Unmarshalling. It creates a tree of content objects that represent the content and organi-

zation of an XML document.
! Marshalling. It is the opposite of unmarshalling. It creates an XML document from a

content tree.

Figure 9.2 Ð JAXB process [89]

129

Chapter 9. Development of autonomic vulnerability assessment solutions

These three features provided by JAXB solve the issues mentioned before, which must be
taken into account when dealing with XML documents and changing XML Schemas. The diagram
illustrated in Figure 9.2 shows the working process of the JAXB technology. This technology
allows Ovalyzer to easily evolve with new versions of the OVAL language. In order to provide
speciÞc translation capabilities, Ovalyzer uses a plugin-based mechanism which is explained in
the next section.

Plugins model

Plugins can be added on the plugin repository providing new translation capabilities. Each
plugin knows how to translate a speciÞc type of OVAL test to the appropriate Cfengine rules.
This approach provides extensibility features, enabling a seamless functional evolution with the
OVAL language. Moreover, plugin developers have access to the same data model built as a JAR
library, simplifying eventual OVAL evolution impacts. When an OVAL document is processed
by Ovalyzer, the required plugins are loaded at runtime from the plugins repository and the
operations available in the plugins API are executed.

Plugins discovery . Within the OVAL language, an OVAL deÞnition can be seen as a lo-
gical formula compounded by OVAL tests. Because each type of test has it associated plugin,
an OVAL deÞnition can be translated only if the required plugins are present in the repository.
Ovalyzer implements a plugin search mechanism based on name patterns. For example, if the
name of the test belonging to the IOS platform isline_test , its associated plugin will beCfengi-
neIosLine.jar. On the other hand, if the name of the test isversion55_test, its associated plugin
will be CfengineIosVersion55.jar. During the translation, Ovalyzer relies on the functionality
of plugins for generating Cfengine code, thus an API has been speciÞed in order to deÞne the
required methods for achieving a successful translation. Such methods have been speciÞed based
on how the Cfengine language structures its content. The current version of Ovalyzer provides
an API with only Þve methods that plugins must implement.

Plugins API. We have previously shown in Figure 4.5 how OVAL components are mapped
to Cfengine building blocks. In order to achieve a successful translation, we follow this approach
and deÞne the following set of methods which plugins must implement.

! public void setPluginConfiguration(PluginConfiguration config);
Sets plugin conÞguration from plugin conÞguration Þle.

! public void generateMethodForTest(TestType test, ObjectType object,
ArrayList<StateType> states, TestStatesManager statesManager,
String testMethodName, String destination);
Generates Cfengine code for the method that represents the speciÞed test.

! public String getPreparationModuleSentence(ObjectType object);
Generates Cfengine code for collecting the speciÞed object from the system.

! public ArrayList<String> getCallMethodArguments(TestType test,
ObjectType object, ArrayList<StateType> states);
Returns the required arguments used on method invocation.

! public StateController pupulateStateController(StateType state);
Loads state attributes for code generation.

130

9.2. Autonomic vulnerability assessment with Ovalyzer

1 . <?xml v e r s i o n= " 1.0 " encod ing= " UTF ! 8" ?>
2 . <o v a l _ d e f i n i t i o n s >

3 . <d e f i n i t i o n s >
4 . <d e f i n i t i o n i d= " oval : org . mitre . oval : def :15 " >
5 . < c r i t e r i a o p e r a t o r= "AND " >
6 . < c r i t e r i o n comment= " IOS vulnerable version " t e s t _ r e f= " oval : org . mitre . oval : t s t :1 " />
7 . < c r i t e r i o n comment= " IP f inge r serv ice tes t . " t e s t _ r e f= " oval : org . mitre . oval : t s t :2 " />
8 . </ c r i t e r i a >
9 . </ d e f i n i t i o n >

1 0 . </ d e f i n i t i o n s >

1 1 . <t e s t s >
1 2 . <v e r s i o n 5 5 _ t e s t i d= " oval : org . mitre . oval : t s t :1 " >
1 3 . <o b j e c t o b j e c t _ r e f= " oval : org . mitre . oval : obj :100 "/>
1 4 . <s t a t e s t a t e _ r e f= " oval : org . mitre . oval : s te :200 " />
1 5 . </v e r s i o n 5 5 _ t e s t >
1 6 . <l i n e _ t e s t i d= " oval : org . mitre . oval : t s t :2 " >
1 7 . <o b j e c t o b j e c t _ r e f= " oval : org . mitre . oval : obj :101 "/>
1 8 . <s t a t e s t a t e _ r e f= " oval : org . mitre . oval : s te :201 " />
1 9 . </ l i n e _ t e s t >
2 0 . </ t e s t s >

2 1 . <o b j e c t s >
2 2 . <v e r s i o n 5 5 _ o b j e c t i d= " oval : org . mitre . oval : obj :100 "/>
2 3 . <l i n e _ o b j e c t i d= " oval : org . mitre . oval : obj :101 " >
2 4 . <show_subcommand> show running ! c o n f i g </show_subcommand>
2 5 . </ l i n e _ o b j e c t >
2 6 . </o b j e c t s >

2 7 . <s t a t e s >
2 8 . <v e r s i o n 5 5 _ s t a t e i d= " oval : org . mitre . oval : s te :200 " >
2 9 . <v e r s i o n _ s t r i n g o p e r a t i o n= " pattern match " > 1 2 \ . 4 . " </ v e r s i o n _ s t r i n g >
3 0 . </v e r s i o n 5 5 _ s t a t e >
3 1 . <l i n e _ s t a t e i d= " oval : org . mitre . oval : s te :201 " >
3 2 . <show_subcommand> show running ! c o n f i g </show_subcommand>
3 3 . <c o n f i g _ l i n e o p e r a t i o n= " pattern match " > ^ i p \ f i n g e r </ c o n f i g _ l i n e >
3 4 . </ l i n e _ s t a t e >
3 5 . </ s t a t e s >

3 6 . </ o v a l _ d e f i n i t i o n s >

Figure 9.3 Ð OVAL vulnerability description for Cisco IOS

Available plugins . Ovalyzer has been developed as a proof of concept, particularly focu-
sed on the Cisco IOS platform. However, it can be easily extended in order to support other
platforms as well. At the moment of writing this document, the o"cial OVAL repository has
134 vulnerability deÞnitions for the IOS platform. These deÞnitions are based on three types
of test, namely, line_test , version55_test and version_test. As we mentioned before, writing a
plugin for each type of used test enables the translation of OVAL deÞnitions that use these type
of OVAL tests. Therefore, we have written three plugins, namely,CfengineIosLine.jar, Cfengi-
neIosVersion.jar and CfengineIosVersion55.jar, which provide a coverage of 100% considering
the OVAL deÞnitions for the Cisco IOS platform.

It is important to observe that the approach presented in Chapter 4, involving Ovalyzer, is
mainly focused on integrating vulnerability descriptions in the management plane of autonomic
networks and systems. Cfengine has been taken as the autonomic part of the approach, while
the OVAL language is the resource that provides support for vulnerability descriptions. In that
context, Ovalyzer is in charge of interconnecting both worlds. In the next section, we present
an example of Ovalyzer in action, showing how the generated Cfengine code looks like and its
execution by a Cfengine agent.

9.2.2 OVAL to Cfengine generation example with Ovalyzer

In this section, we illustrate with an example, the mechanism used for integrating vulnerability
descriptions in the management plane of autonomic environments. To do so, we refer to the

131

Chapter 9. Development of autonomic vulnerability assessment solutions

scenario shown in Section 4.2 where a vulnerability for the Cisco IOS platform is considered. As
a reminder, the vulnerability involves to conditions that must hold simultaneously: the version
of the platform must be 12.4 and the serviceip Þnger must be enabled. This security weakness
is speciÞed with the OVAL language as illustrated in Figure 9.3.

The OVAL document shown in Figure 9.3 contains one OVAL deÞnition that represents our
vulnerability description. The OVAL deÞnition, with id oval:org.mitre.oval:def:15 (lines 4-9),
states that this vulnerability is present on a target system if both following conditions hold:
(i) the IOS version belongs to a set of a!ected IOS versions (line 6), and (ii) the IP Þnger service
is enabled (line 7). These conditions are speciÞed by means of OVAL tests, which are speciÞed
below, inside the <tests> tag (lines 11-20). The Þrst condition is analyzed by the Þrst test with
id oval:org.mitre.oval:tst:1 (lines 12-15). This version test refers to one OVAL object (line 22)
and one OVAL state (lines 28-30). It will be true if and only if the speciÞed object match the
speciÞed state. Thepattern match expression allows to specify a family of IOS versions using
a regular expression (line 29). The second condition is analyzed by the second test with id
oval:org.mitre.oval:tst:2 (lines 16-19). This line test refers to one OVAL object (lines 23-25) and
one OVAL state (lines 31-34). It will be true if and only if the sub-commandshow running-conÞg
result contains a conÞguration line starting with the string ip Þnger (line 33).

The execution of Ovalyzer, illustrated in Figure 9.4, produces the corresponding Cfengine
code required to be executed by a Cfengine agent. Considering the translation algorithm depicted
in Algorithm 4.1, we outline the output obtained from Ovalyzer once the translation is done. First,
the main Cfengine conÞguration Þle is generated, which in this case involves only one vulnerability
deÞnition, as shown in Figure 9.5. Theimport directive indicates that the vulnerability deÞnition

Figure 9.4 Ð Ovalyzer execution

132

9.2. Autonomic vulnerability assessment with Ovalyzer

impor t :
any : :
o v a l : o rg . m i t re . o v a l : d e f : 1 5

Figure 9.5 Ð Cfengine code (main)

with id oval:org.mitre.oval:def:15 must be evaluated.
The OVAL deÞnition in turn, has its own generated Cfengine conÞguration Þle, as depicted in

Figure 9.6. Two OVAL tests are referenced by this OVAL deÞnition, and each one of these tests
references one object and one state respectively. At thecontrol section, it can be observed the
directives for collecting the required objects from the system. The objects are collected by means
of Cfengineprepared modules. These prepared modules are in fact scripts. In the case of Cisco
IOS, we use the Expect language for the communication between Cfengine agents and routers.
The control section also includes the deÞnition of the OVAL expected states, which are expressed
by means of Cfengine variables. In order to perform the evaluation of the involved OVAL tests,
the methodssection deÞnes the required calls to execute each required method representing one
speciÞc test. These methods are in charge of comparing the collected objects with the speciÞed
states. Indeed, for each OVAL test referenced in the OVAL deÞnition, a Cfenginemethod is
automatically generated, and its Cfengine implementation is materialized as one single Þle as
explained later. In the example, two Cfengine methods with namesEvalTest1 and EvalTest2 are
generated. The truth or falsehood of these methods are represented by means of Cfengine classes.
It can be observed that for each method, there is a class namedResultTest which is created as
the return class when the method is executed. Therefore, once the evaluation is done for each

Cfeng ine p o l i c y f i l e f o r OVAL d e f i n i t i o n o v a l : o rg . m i t re . o v a l : d e f : 1 5 .
C l a s s : VULNERABILITY
D e s c r i p t i o n : . . .

c o n t r o l :
. . .
d e f i n i t i o n I d = (" oval : org . mitre . oval : def :15 ")

o b j e c t 1 0 0 = (PrepModule (module : r e t r i e v e O b j e c t , " \" show version \" \" out / obj :100\" "))
o b j e c t 1 0 1 = (PrepModule (module : r e t r i e v e O b j e c t , " \" show running !conf ig \" \" out / obj :101\" "))

a c t i o n s e q u e n c e = (shel lcommands methods)
. . .
s t e _ 2 0 0 _ v e r s i o n s t r i n g = (" 12\ .4. ! ")
s t e _ 2 0 1 _ c o n f i g l i n e = ("^ ip \ f i nge r ")

shel lcommands :
. . .

methods :
Eva lTest1 (" out / obj :100 " , $ { s t e _ 2 0 0 _ v e r s i o n s t r i n g })
a c t i o n=o v a l : o rg . m i t re . o v a l : t s t : 1
r e t u r n c l a s s e s=Resu l tTes t
. . .

Eva lTest2 (" out / obj :101 " , $ { s t e _ 2 0 1 _ c o n f i g l i n e })
a c t i o n=o v a l : o rg . m i t re . o v a l : t s t : 2
r e t u r n c l a s s e s=Resu l tTes t
. . .

a l e r t s :
eve ry : :

(Eva lTest1_Resu l tTest . Eva lTest2_Resu l tTes t) : :
"${ de f i n i t i on Id } ! Result : TRUE "

! (Eva lTes t1_Resu l tTes t . Eva lTest2_Resu l tTes t) : :
"${ de f i n i t i on Id } ! Result : FALSE "

Figure 9.6 Ð Cfengine code (main)

133

Chapter 9. Development of autonomic vulnerability assessment solutions

method, the Þnal result is computed in thealerts section, according to the classiÞcation obtained
from the existing classes.

For each OVAL test referenced in the OVAL deÞnition, one Cfengine method implemented
in a separated Þle is automatically generated. Figure 9.7 shows the main structure for the Þrst
method, which corresponds to the OVAL version test. The second method is similar to the
Þrst one so we omit it here. At the control section, several Cfengine variables which deÞne
the behavior of the method are declared. The variableMethodName contains the name of this
method, which is invoked from the vulnerability deÞnition conÞguration Þle. Because several
vulnerability deÞnitions may reference the same OVAL tests, this approach avoids redundancy
in the code generation process. The variableMethodParametersspeciÞes the accepted arguments
for this method, which are the path to the collected object and the expected state. The variable
object contains the information corresponding to the collected object. For each attribute speciÞed
in the expected OVAL state, a variable is generated which will contain the real value extracted
from the collected object. The variableobj_ste_200_versionstring contains the real version of
the target system.

As explained before, all this code is generated automatically by Ovalyzer. However, it must
be noticed that the generated code can be executed on Cfengine agents running over the Linux
platform. When all this information is gathered in the control section, the classessection will
evaluate the Þnal method result. In this example, the gathered version is compared with the
expected version, and a Cfengine class calledResultTest will be generated depending on the
truth value obtained from the comparison. The existence of the classResultTest indicates true
as the method result andfalse otherwise. This class will be used by the caller, which in this

c o n t r o l :
. . .

MethodName = (Eva lTest1)
MethodParameters = (a rg1 s t e _ 2 0 0 _ v e r s i o n s t r i n g)
t e s t I d = (" oval : org . mitre . oval : t s t :1 ")
a c t i o n s e q u e n c e = (shel lcommands)

f i l e n a m e = ("${ arg1 }")
var1 = (" Filename : ${ f i lename }")
o b j e c t = (E x e c S h e l l R e s u l t (/ b in / c a t $ { a rg1 }))

ob j _ s te_20 0_ve rs i ons t r i ng = (E x e c S h e l l R e s u l t ("/ bin / cat ${ arg1 } | grep \ Õ Cisco \ IOS \ Software \ Õ |
grep ! o ! E \ Õ Version . ! , \ Õ

| grep ! o ! E \ Õ[0 ! 9]{1 ,2}\ . [0 ! 9]{1 ,2}(\ ([0 ! 9]{1 ,2}(\ . [0 ! 9]{1 ,2}) ?\)) ? (([A! Z] | [a! z]) {0 ,2}) (([A! Z
] | [a! z]) {0 ,1}) (([0 ! 9]) {0 ,2}) (([A! K] | [a! k]) {0 ,1}) \ Õ "))

shel lcommands :
. . .

c l a s s e s : # C l a s s r e q u i r e d by a l e r t s
eve ry = (any)
R e s u l t T e s t _ s t e _ 2 0 0 _ v e r s i o n s t r i n g = (Regcmp (${ s t e _ 2 0 0 _ v e r s i o n s t r i n g } , $ { o b j _ s t e _ 2 0 0 _ v e r s i o n s t r i n g })

)
Resul tTest_s te_200 = ((R e s u l t T e s t _ s t e _ 2 0 0 _ v e r s i o n s t r i n g))

Res u l tTes t = ((Resul tTest_ste_200))

a l e r t s :
eve ry : :

R e t u r n V a r i a b l e s ("${ var1 }")
R e t u rn C l a s s e s (Resu l tTes t)

Res u l tTes t : :
"> Test ${ tes t Id } Method : Result i s true . "

! Resu l tTes t : :
"> Test ${ tes t Id } Method : Result i s f a l s e . "

Figure 9.7 Ð Cfengine code (method)

134

9.3. Extension to past hidden vulnerable states

case is the Cfengine input Þle for the vulnerability, in order to assess the entire vulnerability
deÞnition.

Figure 9.8 illustrates a partial log generated by a Cfengine agent while executing the code
produced by Ovalyzer. It can be observed information about the running conÞguration on the top,
and the obtained results at the end of the execution. Within the example, we have emulated our
router using Dynamips/Dynagen, a Cisco router emulator system [58]. In this case, the version
of the running operating system is 12.4, in which we have enabled theip Þnger service, and
therefore, the vulnerability under analysis is present on the target system.

Figure 9.8 Ð Cfengine execution
In the next section, we extend the concept of autonomous vulnerability assessment by also

considering past hidden vulnerable states. This extension opens a new temporal dimension that
allows to increase the security of present computer systems by observing into their past.

9.3 Extension to past hidden vulnerable states

In Chapter 6 we have presented an approach for detecting past hidden vulnerable states.
These past vulnerabilities might have given access to security breaches that may still be active
in the present, even though the vulnerabilities that originated such violation have been already
eliminated. In order to implement such an approach, we have proposed a framework which is
described in Section 6.3. The actual implementation of the framework requires several challenges
to be addressed. First, a mechanism for describing and automatically generating and deploying
system images or snapshots is required. Second, an e"cient representation and storage approach
able to scale with the size of the system needs to be incorporated. Third, tools and techniques for

135

Chapter 9. Development of autonomic vulnerability assessment solutions

Figure 9.9 Ð SVN-based assessment

actually assessing system images must be provided. In this section we present our implementation
prototype as well as the main artifacts that constitute the proposed solution.

In the previous sections, we have presented Ovalyzer, capable of integrating OVAL advisories
into the autonomic management plane by means of automatic policy generation that represents
such security information. Within the detection of past unknown security exposures, we consider
a similar approach for generating data collection policy rules that will be used for automatically
building system images. Under this perspective, autonomic agents can decide given high-level
objectives, when to perform new system revisions based on di!erent factors such as system
changes and programmed tasks. While data collection policies are speciÞed as OVAL deÞnitions
that indicate what to collect, an OVAL system characteristics document [117] includes all the
information required for outsourcing vulnerability assessment activities.

Computing systems are usually constituted by large sets of conÞguration Þles and data,
making it hard to build historical repositories of system images. Considering the XML-based
representation used within the OVAL language, we take advantage of versioning systems such
as SVN (Apache Subversion) [146] in order to e"ciently represent past system states. Within
the proposed approach, each system image is composed of system properties that are used for
assessing vulnerabilities. Indeed, such system properties are speciÞed as OVAL tests that indicate
which OVAL objects must be collected. Figure 9.9 shows how system properties are e"ciently
stored by means of an SVN repository.

The main idea is that after a baseline representing the system has been made (timeT1), the
SVN repository will only register those changes that di!er from the previous version minimizing
the required storage space for each system image. If a system change modiÞes system properties,
a new system image will be generated (timeT2) but only the information associated to the
modiÞed properties (2 andN) will be actually stored in the new SVN revision. These changed
properties are now represented as2.1 and N.1 following the dashed lines fromT1 to T2. At

136

9.4. Mobile security assessment with Ovaldroid

time T3, properties 1, 3 andN are changed and a new revision is created. Within this scenario,
the latest system image can be built by taking the latest modiÞcations of each property following
the solid line (1.1, 2.1, 3.1, N.2). The same idea can be applied over any revision to analyze system
images in the past. Our prototype uses the SVNKit [147] technology for performing activities
over the SVN repository.

When new vulnerability deÞnitions become available, represented in Figure 9.9 as the transi-
tion between the vulnerability repository v1 and v2, the exposure analyzer described in the pro-
posed architecture (see Figure 6.2) will assess those devices under control traversing the history
of system images as explained in Algorithm 6.1. Within the proposed scenario, the vulnerability
repository v1 exists during timesT1 and T2. The assessment over the baseline detects one vulne-
rability and corrective changes performed in the system makes the transition to the snapshot at
time T2. When the repository is updated (v2), the exposure analyzer uses this new information
for assessing past system states. In the example, seven vulnerabilities are detected in snapshot
T1 while three are identiÞed in snapshotT2. It can be inferred that four vulnerabilities have
been removed by the changes made betweenT1 and T2. Corrective modiÞcations for eliminating
those three vulnerabilities in snapshotT2 produces a new snapshot at timeT3 where no more
known vulnerabilities are detected by the exposure analyzer with the repositoryv2.

In order to analyze the exposure of past system states, we have extended XOvaldi [26] for
assessing system images represented by means of OVAL system characteristics Þles. As explained
before, XOvaldi is a live forensic, multi-platform and extensible OVAL-based system analyzer.
It uses the JAXB technology for automatically generating its internal OVAL-based data model,
in the same way Ovalyzer does. In addition, XOvaldi also presents a plugin-based architecture
that permits to evaluate new types of OVAL tests without actually rebuilding the tool. The
XOvaldi extension we have developed allows to outsource vulnerability assessment activities.
By consuming OVAL system characteristics Þles, XOvaldi is not required to be executed on
each device under control. Instead, system images are generated independently, by means of
collection policies generated by Cfengine rules, and preserved in an optimized storage system
using the SVN technology. By using XOvaldi services, the exposure analyzer is able to evaluate
and detect past system exposures due to unknown vulnerabilities in an independent manner. In
the next section, we present a di!erent technological scenario where vulnerability assessment gets
challenged. Mobile environments are dynamic and involve ubiquitous and resourceless devices.
Therefore, novel approaches are required to obtain accurate and performant solutions.

9.4 Mobile security assessment with Ovaldroid

In Chapter 7 we have presented an approach for analyzing and detecting security vulnerabi-
lities in mobile environments, with a particular focus on the Android platform. In this section
we present the implementation prototype developed to this end. First, we illustrate a lightweight
mechanism for performing self-assessment activities on mobile clients. Finally, we present a pro-
babilistic extension which orchestrates and outsources the assessment of vulnerabilities, thus
reducing the workload on the mobile side.

9.4.1 Implementation prototype

In order to provide a computable infrastructure to the proposed approach, a running software
component inside Android capable of performing self-assessment activities is required. By the
time of writing this document, 60.3% of Android users operate their devices usingGingerbread
(versions 2.3.3 to 2.3.7, API level 10) and a total of 79.3% operate versions starting at 2.3.3 until

137

Chapter 9. Development of autonomic vulnerability assessment solutions

Figure 9.10 Ð Self-assessment service high-level operation

its last releaseJelly Bean (version 4.1, API level 16) [12]. Our implementation prototype has
been developed to be compliant with Android platforms starting at version 2.3.3, thus covering
almost 80% of the Android market share. In this section, we describe the prototyping of our
solution as well as the high-level operation performed during the assessment activity.

The implementation prototype has been purely written in Java [88] and is composed of four
main components: (1) an update system that keeps the internal database up-to-date, (2) a vulne-
rability management system in charge of orchestrating the assessment activities when required,
(3) an OVAL interpreter for the Android platform and (4) a reporting system that stores the
analysis results internally and sends them to an external reporting system. Figure 9.10 depicts

Figure 9.11 Ð Ovaldroid agent

138

9.4. Mobile security assessment with Ovaldroid

the main operational steps performed during the self-assessment activity and the connection with
the mentioned four main components. The prototype is executed as a lightweight service that
is running on background and that can be awakened by two potential reasons. The Þrst one is
that the update system in charge of monitoring external knowledge sources has obtained new
vulnerability deÞnitions ; the second one is that changes in the system have occurred hence it is
highly possible that some vulnerability deÞnitions need to be re-evaluated. The prototype is still
in an early development phase so we only cover some system events such as when a package has
been installed. Figure 9.11 shows the mains screen of the Ovaldroid client running on an emula-
ted Android-based device, which allows to control the service and conÞgure di!erent parameters
such as the IP address of the Ovaldroid server.

In order to be aware of the two aforementioned self-assessment triggers, two listeners remain
active as shown at step 1 in Figure 9.10. The updater listener listens the vulnerability database
updater component and will be notiÞed when new vulnerability deÞnitions become available.
The event bus listener uses the Android broadcast bus to capture notiÞcations about system
changes. If new vulnerability deÞnitions are available or system changes have been detected,
a vulnerability deÞnition selection process is launched at step 2. This process is in charge of
analyzing the cause that has triggered the self-assessment activity and deciding which assessment
tasks must be performed by actually implementing the Algorithm 7.1. At step 3, the vulnerability
manager component uses the services of XOvaldi4Android in order to perform the corresponding

Figure 9.12 Ð Ovaldroid provider

139

Chapter 9. Development of autonomic vulnerability assessment solutions

assessment activity. At step 4, the results of the assessment are stored in the internal results
database and sent to the external reporting system by performing a web service request. Finally,
a local notiÞcation is displayed to the user if new vulnerabilities have been found in the system.

Figure 9.12 depicts the web-based front-end of the Ovaldroid provider system, where the
Ovaldroid client has been already registered. Only one vulnerability deÞnition is available in the
database, and there are three plugins for analyzing three di!erent types of OVAL tests. The status
for the client indicates up-to-date, which means that the client has performed self-assessment
activities according to the latest vulnerability descriptions available in the server. In this case,
the target device has detected a vulnerability on the system, which has been reported to the
Ovaldroid reporting system. Figure 9.13 shows the main screen of the reporting system, indicating
that one analysis has been performed by the client. Last results are shown in a new window after
clicking the seelink. There, the reporting system indicates that the device is vulnerable according
to the security advisory described in the OVAL deÞnition with ID oval:fr.inria.madynes:def:2.

During the assessment activity, XOvaldi4Android plays a fundamental role within the propo-
sed framework because it is in charge of actually assessing the Android system. XOvaldi4Android
is an extension of XOvaldi [26]. We have ported the XOvaldi system to the Android platform
obtaining a 94 KB size library. We have used the Eclipse development environment [59] and the
ADT plugin [12] for Eclipse to easily manage development projects for Android. As explained
before, the JAXB technology allows us to easily extend the data model of a Java application. In
that context, we have extended XOvaldi by regenerating its internal data model to also support
the Android platform. In order to specify OVAL vulnerability descriptions for this platform, we
have used the experimental OVAL sandbox for Android [134]. In addition, we have developed
some plugins in order to support the involved OVAL tests. As shown in Figure 9.10, the high-
level operation performed by XOvaldi4Android follows the same assessment process proposed by
OVAL. In order to provide extensibility features, the interpreter decouples the analysis of the
OVAL structure from the actual collection and evaluation activities by using a plugin repository.
While the former is implemented as the core of the interpreter, each plugin provides injectable
functionality (collection and evaluation) for the speciÞc type of OVAL test it was built for.

Figure 9.13 Ð Ovaldroid reporter

140

9.5. Synthesis

Figure 9.14 Ð Ovaldroid reporter details

9.4.2 A probabilistic extension

As explained in Chapter 7, a probabilistic approach for analyzing vulnerabilities can dramati-
cally decrease the workload on mobile clients. Considering that current mobile devices have very
scarce resources, this advantage cannot be underestimated. In order to evaluate the feasibility of
the proposed approach, we have developed an extension to the previous prototype by considering
a client-server architecture. On the server side, a RESTful web service [69] enables mobile clients
to communicate with the server and start new vulnerability evaluations. All the architectural
components described in Figure 7.7 have been purely implemented in Java 1.6 SE. Databases
have been implemented using MySQL 5.1. OVAL-based vulnerabilities for the Android platform
are described, as before, using the OVAL Sandbox project [134]. Within this extension, CNF
representations of these vulnerability descriptions are required. To that end, we have used the
CNF transformer provided by the Aima project [6]. XOvaldi in its full version has been used
as the OVAL interpreter on the server side. On the client side, the XOvaldi4Android library
has been used as the data collector subsystem. XOvaldi4Android is executed by theVMANS
client, implemented as a small Android service in charge of communicating the server according
to its preconÞgured frequency. The prototype has been developed to be compliant with Android
versions starting at 2.3.3 thus supporting almost 80% of current operating versions.

Both mechanisms, following the self-assessment and the probabilistic approach, have been
exhaustively evaluated. Indeed, several experiments have been conducted using these imple-
mentation prototypes. The results indicate so far good and reasonable performance in terms of
scalability, speed, and workload on the client side.

9.5 Synthesis

In autonomic computing, self-governed networks and systems are responsible for their own
management. In that context, the ability to analyze their own exposure in order to prevent
security attacks becomes essential. In this chapter, we have presented three implementation
prototypes which provide a computable infrastructure for performing vulnerability assessment
activities. In the Þrst place, we have described Ovalyzer, an OVAL to Cfengine translation sys-
tem. Ovalyzer makes possible the integration of OVAL security advisories into the autonomic
management plane, by automatically generating Cfengine policies that represent them. Cfen-
gine constitutes the autonomic part of our approach, where Cfengine agents become capable of
autonomously analyzing security weaknesses over the devices they control.

141

Chapter 9. Development of autonomic vulnerability assessment solutions

These weaknesses are security issues that are analyzed only over current running systems.
However, we have shown in Chapter 6 that past hidden vulnerable states may still a! ect current
systems in the present, even though such vulnerabilities are not present anymore. This extension
within a temporal dimension allows to increase the security of autonomic entities even more. To
that end, we have developed a prototype able to autonomously generate images of the systems
under control, and analyze their history when new security advisories become available. Our pro-
totype can identify periods of security exposure due to unknown vulnerabilities at that moment.
This approach provides a connection for system administrators to carry out forensic activities in
the present in order to detect if these vulnerabilities have been exploited, and identify what are
consequences of such unknown past security exposures.

Finally, we have also experimented with a di!erent technological scenario. All along this the-
sis, we have argued that autonomic computing transcends the frontiers of technological diversity.
In that context, we have conducted research work within mobile environments. In this chapter,
we have also presented a prototype for increasing the vulnerability awareness of Android-based
devices. Our prototype aims at providing to the Android platform, the ability to assess their
own exposure, i.e., self-assessment capabilities. In other words, we have experimented with the
integration of autonomic solutions within mobile systems. In addition, due to the scarce resources
present in this kind of devices, we have extended our approach to outsource assessment activi-
ties, thus decreasing the workload on the client side even more. By using a probabilistic approach
over a client-server architecture, our prototype is able to highly reduce the resource allocation
on mobile devices due to vulnerability assessment activities.

A comprehensive set of experiments has been performed using these prototypes in their
respective scenarios. Even though these prototypes are in an early development stage, and they
can be clearly enhanced and further extended, they have provided a strong support to prove the
scientiÞc approaches presented in the previous chapters. Indeed, the obtained results are very
promising. Therefore, we believe that it is worth to further investigate in the research axes we
have presented in this chapter, as well as autonomic solutions for distributed vulnerabilities and
remediation activities in an consistent and uniÞed manner.

142

Conclusion

143

Chapter 10

General conclusion

Contents
10.1 Contributions summary . 145

10.1.1 Autonomic vulnerability management 146
10.1.2 Implementation prototypes . 147

10.2 Perspectives . 148
10.2.1 Proactive autonomic defense by anticipating future vulnerable states148
10.2.2 UniÞed autonomic management platform 148
10.2.3 Autonomic security for current and emerging technologies 148

10.3 List of publications . 149

10.1 Contributions summary

The large-scale deployment of disparate computing devices over evolving dynamic networks
has profusely augmented the complexity of network management. Indeed, computing technologies
spread fast, the number of end-users increases rapidly, and there is a constant demand for more
and better services. Underneath, computer networks constitute the platform of this convoluted
digital world. This accelerated evolution has tested the boundaries of traditional network ma-
nagement approaches, which do not scale properly with todayÕs network requirements. In other
words, network management tasks have become so intensive and diversiÞed, that the model,one
administrator per n computers, is not e!ective anymore. Therefore, a need for new management
approaches became evident. In light of this, the autonomic computing paradigm has emerged
in order to cope with this new and challenging landscape. By specifying high-level objectives,
autonomic computing aims at delegating management activities to the networks themselves. In
this manner, human administrators avoid the execution of heavy and error-prone tasks, beco-
ming able to focus on higher levels of management issues, with a simpler and cleaner view of the
network.

Autonomic computing has become a very important research Þeld within the scientiÞc com-
munity, featuring strong foundations and promising perspectives. However, two main points
require special attention. First, security issues have been poorly discussed in autonomic environ-
ments, particularly, vulnerability management mechanisms. Second, the expertise obtained from
autonomic approaches has been barely experimented in non-autonomic environments. In this
thesis, we have pursued both goals ; to investigate and develop novel vulnerability management
approaches for autonomic environments, and to transfer autonomic principles to non-autonomic

145

Chapter 10. General conclusion

scenarios. In this chapter, we provide general conclusions about our research work as well as our
technical implementations. Finally, we present research perspectives and further work.

10.1.1 Autonomic vulnerability management

Our contributions can be classiÞed in two main categories according to the vulnerability ma-
nagement process, namely, vulnerability assessment and vulnerability remediation. We describe
both in the following subsections.

Autonomic vulnerability assessment

Vulnerability assessment constitutes the Þrst step within the vulnerability management pro-
cess. It is a critical activity that enables computer systems to increase their awareness about
security threats. In this thesis, we have presented several approaches for autonomously assessing
vulnerabilities in di!erent scenarios. First, we have proposed an approach that integrates OVAL
vulnerability descriptions into the autonomic management plane. By translating these security
advisories into Cfengine policy rules, autonomic agents deployed across the network become
able to analyze their own security exposure. This approach targets the autonomic assessment of
device-based vulnerabilities, with a particular focus on the Cisco IOS platform. However, there
exist other scenarios where vulnerability assessment techniques are required as well. In that
context, we have proposed three dimensional research axes which involves distributed vulnerabi-
lities (spatial dimension), past hidden vulnerable states (temporal dimension), and mobile
security assessment (technological dimension).

Our Þrst research axis involves distributed vulnerabilities, which constitute an extension to
the concept of device-based vulnerabilities within the spatial dimension. The concept of distri-
buted vulnerabilities considers situations where two or more devices under speciÞc conditions
may present safe states, but when combined across the network, a vulnerable state arises. These
scenarios are real and must be taken into account by vulnerability assessment approaches. Our
second research axis involves the time dimension, where we have presented an approach for
autonomously increasing the security of present computer systems by analyzing past hidden vul-
nerable states. Security advisories may be available late in time, but the vulnerabilities expressed
by them can have been unknowingly active in the past. By autonomously building an historical
image repository of the systems under surveillance, our approach is able to identify periods of se-
curity exposure due to unknown vulnerabilities at that time, where malicious activities may have
taken place. This feature may allow forensic activities to be performed in order to identify current
security breaches. Our third and Þnal research axis in the context of vulnerability assessment
involves the technological dimension, where we have presented an approach for autonomously
assessing vulnerabilities in mobile environments. Indeed, we have proposed two complimentary
approaches that deal with the assessment activity over resource-constrained devices. First, we
have introduced a lightweight autonomous vulnerability assessment service that permits Android
devices to assess their own exposure. Then, we have extended this approach by considering a
probabilistic framework where assessment activities are outsourced to an external server which
controls the overall assessment process, thus decreasing the workload of mobile clients even more.

Autonomic vulnerability remediation

In order to close the vulnerability management control loop, vulnerability remediation mecha-
nisms are required. In that context, we have proposed two autonomic vulnerability remediation
approaches focused on device-based and distributed vulnerabilities respectively. These activities

146

10.1. Contributions summary

however, are particularly challenging because they should not generate new vulnerable states
when perform their operations. In order to remediate device-based vulnerabilities, we have mo-
deled the set of all known vulnerability descriptions as a conjunction of propositional logical
formulas. A vulnerable device will therefore make this formula evaluate totrue. Because we look
for safe conÞgurations, we need to Þnd which properties must be modiÞed to make this formula
evaluate to false, or which amounts to the same, make its negation evaluate totrue. To this end,
we have encoded our problem as a SAT problem, where properties that cannot be changed are
Þxed, and those for which correction actions exist are freed. A solution provided by a SAT solver
describes a safe conÞguration. Within our experiments, we have used the NETCONF protocol
for performing e!ective management operations over the Cisco IOS platform. The obtained re-
sults conÞrm the feasibility of our approach. Within our second approach, we have proposed a
collaborative mechanism for describing and performing treatments of distributed vulnerabilities
in autonomic networks and systems. This approach also considers correction advisories that are
taken into account by our framework, which is able to remediate vulnerable states found across
the network. To do this, a distributed algorithm is executed over the Cfengine system. There,
each Cfengine agent involved in the vulnerability under analysis will report the activities it can
perform to eradicate the threat as well as the cost to do this. This information is collected from
all the involved nodes and analyzed at the Cfengine server. The Cfengine server then selects a
node to apply corrective actions based on the reported costs. Even though there is not a complete
prototype implementation of our second approach, we have performed an analytical evaluation
of its performance, obtaining successful linear costs when it is integrated into the vulnerability
management process.

10.1.2 Implementation prototypes

With the objective of technically proving the feasibility of our previous contributions, we
have developed three implementation prototypes which correspond to three di!erent vulnerabi-
lity assessment scenarios. First, we have developed Ovalyzer, an OVAL to Cfengine translation
system. Ovalyzer enables the generation of Cfengine policy rules that represent OVAL vulnerabi-
lity descriptions. In this manner, these policies are deployed to autonomic agents which become
able to perform self-assessment activities. Second, we have implemented a prototype for iden-
tifying past unknown security exposures. We have reused the idea behind Ovalyzer, but this
time for autonomously generating XML-based images of the states of the systems being monito-
red. These images are stored in a cost-e"cient manner by using an SVN repository. When new
vulnerability descriptions become available, our prototype is able to analyze the history of sys-
tem images looking for vulnerable periods according to this new information. Therefore, forensic
activities can be performed over those identiÞed exposure periods in order to analyze security
breaches that may still compromise the security policies in the present. Finally, we have deve-
loped Ovaldroid, an OVAL-based vulnerability assessment framework for Android. Indeed, our
Þrst approach considers a lightweight self-assessment service running inside the mobile device.
In order to further reduce the load on the mobile side, we have implemented our probabilistic
approach that free mobile devices from performing assessment activities themselves. Instead, mo-
bile devices periodically notify their availability for being analyzed, and receive directives from
the server indicating which data must be collected and reported. Vulnerability assessment acti-
vities are outsourced in the server and then notiÞed to the mobile client. In addition, the server
conducts special algorithms that allows to decrease the communication with mobile devices even
more. All these prototypes have served as a computational infrastructure to prove the feasibility
and scalability of our autonomic approaches.

147

Chapter 10. General conclusion

10.2 Perspectives

10.2.1 Proactive autonomic defense by anticipating future vulnerable states

During our research work, we have analyzed di!erent research dimensions for vulnerability
management. In particular, we have proposed approaches for analyzing vulnerabilities in the
present and the past, which in turn are complemented with vulnerability remediation approaches.
However, what if we could anticipate the trajectory of a system, considering its dynamic state,
and avoid changes that will lead the system to known vulnerable spaces ? In other words, we have
shown in this thesis how system states can be characterized by the properties they present. We
also know how to model vulnerabilities by characterizing the properties expected to be observed
on a target system. Considering that we haven properties we can model, a target system could
be graphically located on a single point of ann-dimensional space. In the same manner, known
vulnerabilities would have their corresponding points in such space. Similar vulnerabilities would
probably conform clusters or vulnerable subspaces. Our idea is that observing the movement of
a target system, its trend could be monitored and determined on this space. If such a trajectory
indicates high closeness levels to vulnerable states, it could be deviated by averting changes that
may get the system closer or even fall into these vulnerable subspaces. This approach could
provide autonomic systems with a continuous metric of vulnerability awareness that can be
taken into account when management operations are performed, and therefore enabling systems
to anticipate and avoid vulnerable conÞguration states.

10.2.2 UniÞed autonomic management platform

In this thesis we have presented several approaches for tackling di!erent needs of vulnerability
management in the context of autonomic environments. However, these approaches need to be
uniÞed, over a common and consistent platform, able to provide all these features in a seamless
manner. Changes that can lead a system to secure states may contradict existing operational
requirements. This issue poses a hard problem that should be addressed. Therefore, a main
challenge is to provide mechanisms able to coexist with other policy-based systems, maintaining
coherency at all levels, including operational and security perspectives. The approaches proposed
in this work reinforce the security of a network from di!erent perspectives, making it more reliable
and stronger. However, our models should be extended and uniÞed so as to cover these activities
as a whole. In particular, our approach for managing distributed vulnerabilities requires more
technical work, as well as further investigation on the metrics required to collaboratively perform
forensic and remediation tasks. Therefore, the construction of a standard model and a system
able to contemplate all these aspects under a single view, would be extremely useful for the
community of autonomic computing, as a basis for autonomously managing vulnerabilities.

10.2.3 Autonomic security for current and emerging technologies

The security enhancement of current paradigms such as cloud computing, and emerging
models like software-deÞned networks (SDN) and Internet of Things (IoT), is also extremely
challenging. Brießy, cloud computing tackles availability and processing power by decoupling ser-
vices from the underlying hardware. More recently, SDNs also separate the management (control
plane) from the hardware that actually implement network functionalities (data plane). Both
approaches aim at providing reliable and scalable services while decreasing the complexity of
their management and accomplishment. This is where the autonomic perspective can be extre-
mely helpful. By providing self-conÞguration and self-protection mechanisms, these operational

148

10.3. List of publications

management models can also become scalable and resilient in the security plane, which is es-
sential to achieve reliability. IoT on the other hand, gives rise to a tremendous and vertiginous
growth of disparate interconnected devices. This trend clearly states a need for scalable and
adaptive management mechanisms, where their security must be also as much autonomous as
these mechanisms will be. In that context, autonomic security solutions might be a key element
in the evolution of this new challenging landscape.

10.3 List of publications

International peer-reviewed journals

! Mart’n Barr•re, RŽmi Badonnel, and Olivier Festor. Vulnerability Assessment in Auto-
nomic Networks and Services: a Survey. IEEE Communications Surveys & Tutorials,
16(2):988-1004, May 2014. (Impact factor at acceptance date: 6.311).

Book chapters

! Mart’n Barr•re , Ga‘tan Hurel, RŽmi Badonnel, and Olivier Festor. Increasing Android
Security using a Lightweight OVAL-based Vulnerability Assessment Framework. In Auto-
mated Security Management, E. Al-Shaer et al, Eds. Springer International Publishing,
2013, ch. 3, pp. 41-58, ISBN: 978-3-319-01432-6. Book chapter based on our paper selec-
ted from the 5th International Symposium on ConÞguration Analytics and Automation
(SafeConÞgÕ12), October 3-4, 2012, Baltimore, USA.

International peer-reviewed conferences

! Mart’n Barr•re, RŽmi Badonnel, and Olivier Festor. A SAT-based Autonomous Stra-
tegy for Security Vulnerability Management. In Proceedings of the IEEE/IFIP Network
Operations and Management Symposium (NOMSÕ14), Mini-Conference, May 5-9, 2014,
Krakow, Poland.

! Mart’n Barr•re, Ga‘tan Hurel, RŽmi Badonnel, and Olivier Festor. A Probabilistic Cost-
e!cient Approach for Mobile Security Assessment. In Proceedings of the 9th IEEE Inter-
national Conference on Network and Service Management (CNSMÕ13), October 14-18,
2013, ZŸrich, Switzerland. (Acceptance rate 18.1%, 21 out of 116 papers).

! Mart’n Barr•re, RŽmi Badonnel, and Olivier Festor. Improving Present Security through
the Detection of Past Hidden Vulnerable States. In Proceedings of the IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IMÕ13), Mini-Conference, May
27-31, 2013, Ghent, Belgium.

! Mart’n Barr•re, RŽmi Badonnel, and Olivier Festor. Collaborative Remediation of ConÞ-
guration Vulnerabilities in Autonomic Networks and Systems. In Proceedings of the 8th
IEEE International Conference on Network and Service Management (CNSMÕ12), Mini-
Conference, October 22-26, 2012, Las Vegas, USA.

149

Chapter 10. General conclusion

! Mart’n Barr•re, RŽmi Badonnel, and Olivier Festor. Towards the Assessment of Distribu-
ted Vulnerabilities in Autonomic Networks and Systems. In Proceedings of the IEEE/IFIP
International Network Operations and Management Symposium (NOMSÕ12), April 16-20,
2012, Maui, Hawaii, USA. (Acceptance rate 26.2%, 55 out of 210 papers).

! Mart’n Barr•re, RŽmi Badonnel, and Olivier Festor. Supporting Vulnerability Awareness
in Autonomic Networks and Systems with OVAL. In Proceedings of the 7th IEEE Inter-
national Conference on Network and Service Management (CNSMÕ11), October 24-28,
2011, Paris, France. (Acceptance rate 14.6%, 24 out of 164 papers).

! Mart’n Barr•re, Gustavo Betarte, and Marcelo Rodr’guez. Towards Machine-assisted
Formal Procedures for the Collection of Digital Evidence. In Proceedings of the 9th IEEE
Annual International Conference on Privacy, Security and Trust (PSTÕ11), July 19-21,
2011, Montreal, Canada.

! Mart’n Barr•re, RŽmi Badonnel, and Olivier Festor. Towards Vulnerability Prevention
in Autonomic Networks and Systems. In Proceedings of the 5th International Conference
on Autonomous Infrastructure, Management and Security (AIMSÕ11), Ph.D. Symposium,
Springer, June 13-17, 2011, Nancy, France.

Demonstrations and seminars

! Mart’n Barr•re, Ga‘tan Hurel, RŽmi Badonnel, and Olivier Festor. Ovaldroid: an OVAL-
based Vulnerability Assessment Framework for Android. Demonstration Sessions of the
IFIP/IEEE International Symposium on Integrated Network Management (IMÕ13), May
27-31, 2013, Ghent, Belgium.

! Mart’n Barr•re. Vulnerability Management for Safe ConÞgurations in Autonomic Net-
works and Systems. Ph.D. Seminar, NSS Department of Loria, March 28, 2013, Nancy,
France.

! Mart’n Barr•re , RŽmi Badonnel, and Olivier Festor.Ovalyzer: an OVAL to Cfengine
Translator . Ph.D. Student Demo Contest of the IEEE/IFIP International Network Opera-
tions and Management Symposium (NOMSÕ12), April 16-20, 2012, Maui, Hawaii, USA.

150

Bibliography

[1] M. Abedin, S. Nessa, E. Al-Shaer, and L. Khan. Vulnerability Analysis for Evaluating
Quality of Protection of Security Policies. In Proceedings of the 2nd ACM Workshop on
Quality of Protection (QoPÕ06), 2006.

[2] H. Achi, A. Hellany, and M. Nagrial. Network Security Approach for Digital Forensics
Analysis. In Proceedings of the International Conference on Computer Engineering and
Systems (CCESÕ08), pages 263Ð267, November 2008.

[3] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman. A Survey of
Information-Centric Networking. IEEE Communications Magazine, 50(7):26Ð36, 2012.

[4] M. S. Ahmed, E. Al-Shaer, and L. Khan. A Novel Quantitative Approach For Measuring
Network Security. In Proceedings of the 27th IEEE Conference on Computer Communica-
tions (INFOCOMÕ08), pages 1957 Ð1965, April 2008.

[5] M. S. Ahmed, E. Al-Shaer, M. M. Taibah, M. Abedin, and L. Khan. Towards Autono-
mic Risk-aware Security ConÞguration.Proceedings of the IEEE Network Operations and
Management Symposium (NOMSÕ08), pages 722Ð725, April 2008.

[6] CNF Transformer. https://code.google.com/p/aima-java/. Last visited on No-
vember, 2013.

[7] Akamai Technologies, Inc.http://www.akamai.com/. Last visited on November, 2013.

[8] L. Akue, E. Lavinal, T. Desprats, and M. Sibilla. Runtime ConÞguration Validation for
Self-ConÞgurable Systems. InProceedings of the IFIP/IEEE International Symposium on
Integrated Network Management (IMÕ13), pages 712Ð715, 2013.

[9] L. Akue, E. Lavinal, and M. Sibilla. Towards a Validation Framework for Dynamic Re-
conÞguration. In Proceedings of the 6th IEEE International Conference on Network and
Service Management (CNSMÕ10), pages 314Ð317, 2010.

[10] M. Albanese, S. Jajodia, and S. Noel. Time-E"cient and Cost-E!ective Network Harde-
ning Using Attack Graphs. In Proceedings of the 42nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSNÕ12), pages 1Ð12, 2012.

[11] Android. http://www.android.com/. Last visited on November, 2013.

[12] Android Developers. http://developer.android.com/. Last visited on November,
2013.

[13] Apple iOS. http://www.apple.com/ios/. Last visited on November, 2013.

[14] Th. Arampatzis, J. Lygeros, and S. Manesis. A Survey of Applications of Wireless Sensors
and Wireless Sensor Networks. InProceedings of the 13th Mediterrean Conference on
Control and Automation, pages 719Ð724, 2005.

[15] The Advanced Research Projects Agency Network (ARPANET). http://en.
wikipedia.org/wiki/ARPANET. Last visited on November, 2013.

151

Bibliography

[16] E. Asmare, A. Gopalan, M. Sloman, N. Dulay, and E. Lupu. Self-Management Framework
for Mobile Autonomous Systems.J. Network Syst. Manage., 20(2):244Ð275, 2012.

[17] K. J. Astrom and R. M. Murray. Feedback Systems: An Introduction for Scientists and
Engineers. Princeton University Press, April 2008.

[18] L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A survey. Computer Networks,
54(15):2787Ð2805, October 2010.

[19] AVDL. http://www.oasis-open.org/. Last visited on November, 2013.

[20] R. E. Ball. The Fundamentals of Aircraft Combat Survivability Analysis and Design, 2nd
Edition . AIAA Education Series. American Institute of Aeronautics and Astronautics, Inc.,
2003.

[21] J. Banghart and C. Johnson. The Technical SpeciÞcation for the Security Content Automa-
tion Protocol (SCAP). Nist Special Publication. http://scap.nist.gov/revision/,
2011. Last visited on January, 2013.

[22] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G. Rabbani, Q. Zhang,
and M. F. Zhani. Data Center Network Virtualization: A Survey. IEEE Communications
Surveys & Tutorials, 15(2):909Ð928, 2013.

[23] N. Bari, G. Mani, and S. Berkovich. Internet of Things as a Methodological Concept. In
Proceedings of the Fourth International Conference on Computing for Geospatial Research
and Application (COM.Geo), pages 48Ð55, 2013.

[24] M. Barr•re, R. Badonnel, and O. Festor. Supporting Vulnerability Awareness in Auto-
nomic Networks and Systems with OVAL. In Proceedings of the 7th IEEE International
Conference on Network and Service Management (CNSMÕ11), October 2011.

[25] M. Barr•re, R. Badonnel, and O. Festor. Towards the Assessment of Distributed Vulne-
rabilities in Autonomic Networks and Systems. In Proceedings of the IEEE/IFIP Network
Operations and Management Symposium (NOMSÕ12), pages 335Ð342, April 2012.

[26] M. Barr•re, G. Betarte, and M. Rodr’guez. Towards Machine-assisted Formal Procedures
for the Collection of Digital Evidence. In Proceedings of the 9th Annual International
Conference on Privacy, Security and Trust (PSTÕ11), pages 32 Ð35, July 2011.

[27] A. Bartel, J. Klein, M. Monperrus, and Y. L. Traon. Automatically Securing Permission-
Based Software by Reducing the Attack Surface: An Application to Android. CoRR,
abs/1206.5829, 2012.

[28] BitTorrent. http://www.bittorrent.com/. Last visited on November, 2013.

[29] R. Bohme. Vulnerability Markets. What is the Economic Value of a Zero-Day Exploit ? In
Proceedings of the 22nd Chaos Communication Congress, December 2005.

[30] M. Burgess and ®. Frisch. A System EngineerÕs Guide to Host ConÞguration and Main-
tenance Using Cfengine, volume 16 of Short Topics in System Administration. USENIX
Association, 2007.

[31] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic.
Cloud computing and emerging {IT} platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation Computer Systems, 25(6):599 Ð 616, 2009.

[32] J. Caballero, Z. Liang, P. Poosankam, and D. Song. Towards Generating High Coverage
Vulnerability-Based Signatures with Protocol-Level Constraint-Guided Exploration. In
Proceedings of the 12th International Symposium on Recent Advances in Intrusion Detec-
tion (RAIDÕ09), pages 161Ð181. Springer-Verlag, 2009.

152

[33] CAPEC, Common Attack Pattern Enumeration and ClassiÞcation. http://capec.
mitre.org/. Last visited on November, 2013.

[34] M. Castillo, F. Farina, A. Cordoba, and J. Villadangos. A ModiÞed O(n) Leader Election
Algorithm for Complete Networks. In Proceedings of the 15th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing, PDP Õ07, pages 189Ð
198, Washington, DC, USA, 2007. IEEE Computer Society.

[35] CCE, Common ConÞguration Enumeration.http://cce.mitre.org/. Last visited on
November, 2013.

[36] The Content-Centric Network Project. http://www.ccnx.org/. Last visited on No-
vember, 2013.

[37] CEE, Common Event Expression.http://cee.mitre.org/. Last visited on November,
2013.

[38] Cfengine. http://www.cfengine.com/. Last visited on November, 2013.

[39] Chef. http://www.getchef.com/chef/. Last visited on November, 2013.

[40] F. Chiang, J. Agbinya, and R. Braun. Risk and Vulnerability Assessment of Secure Au-
tonomic Communication Networks. In Proceedings of the 2nd International Conference
on Wireless Broadband and Ultra Wideband Communications (AusWireless 2007), pages
40Ð40. IEEE, August 2007.

[41] M. Chiarini and A. Couch. Dynamic Dependencies and Performance Improvement. InPro-
ceedings of the 22nd conference on Large Installation System Administration Conference,
pages 9Ð21. USENIX, 2008.

[42] Cisco Visual Networking Index. http://www.cisco.com/en/US/solutions/
collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.
html. Last visited on November, 2013.

[43] S. A. Cook. The Complexity of Theorem-Proving Procedures. InProceedings of the Third
Annual ACM Symposium on Theory of Computing, STOC Õ71, pages 151Ð158, New York,
NY, USA, 1971. ACM.

[44] V. Corey, C. Peterman, S. Shearin, M.S. Greenberg, and J. Van Bokkelen. Network Foren-
sics Analysis. Internet Computing, IEEE, 6(6):60 Ð 66, Nov 2002.

[45] CPE, Common Platform Enumeration. http://cpe.mitre.org/. Last visited on
November, 2013.

[46] CVE, Common Vulnerabilities and Exposures.http://cve.mitre.org/. Last visited
on November, 2013.

[47] CVSS, Common Vulnerability Scoring System.http://www.first.org/cvss/. Last
visited on November, 2013.

[48] CybOX, Cyber Observable eXpression.http://cybox.mitre.org/. Last visited on
November, 2013.

[49] O. Dabbebi, R. Badonnel, and O. Festor. Dynamic Exposure Control in P2PSIP Net-
works. In Proceedings of the IEEE/IFIP Network Operations and Management Symposium
(NOMSÕ12), pages 261Ð268, April 2012.

[50] H. Dai, C. Murphy, and G. Kaiser. ConÞguration Fuzzing for Software Vulnerability Detec-
tion. 2010 International Conference on Availability, Reliability and Security, pages 525Ð530,
February 2010.

153

Bibliography

[51] Dalvik Virtual Machine. http://www.dalvikvm.com/. Last visited on November,
2013.

[52] Datalog User Manual. http://www.ccs.neu.edu/home/ramsdell/tools/
datalog/datalog.html. Last visited on November, 2013.

[53] J. Demott. The Evolving Art of Fuzzing. Software Testing. http://vdalabs.com/
tools/The_Evolving_Art_of_Fuzzing.pdf, 2006. Last visited on January, 2013.

[54] A Road Map for Digital Forensic Research. In Report From the First Digital Forensic
Research Workshop (DFRWS). http://www.dfrws.org/2001/dfrws-rm-final.
pdf, August 2001.

[55] DHS, Department of Homeland Security. http://www.dhs.gov/. Last visited on No-
vember, 2013.

[56] Y. Diao, A. Keller, S. Parekh, and V. V. Marinov. Predicting Labor Cost through IT
Management Complexity Metrics. In Proceedings of the 10th IFIP/IEEE International
Symposium on Integrated Network Management (IMÕ07), pages 274Ð283. IEEE, May 2007.

[57] S. Dobson, F. Zambonelli, S. Denazis, A. Fern‡ndez, D. Ga•ti, E. Gelenbe, F. Massacci,
P. Nixon, F. Sa!re, and N. Schmidt. A Survey of Autonomic Communications. ACM
Transactions on Autonomous and Adaptive Systems, 1(2):223Ð259, December 2006.

[58] Dynamips/Dynagen Cisco Router Emulator. http://www.dynagen.org/. Last visited
on November, 2013.

[59] Eclipse. http://www.eclipse.org/. Last visited on November, 2013.

[60] eMule. http://www.emule-project.net/. Last visited on November, 2013.

[61] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A Study of Android Application
Security. In Proceedings of the 20th USENIX Conference on Security, SECÕ11. USENIX
Association, 2011.

[62] W. Enck, M. Ongtang, and P. McDaniel. Understanding android security.Security Privacy,
IEEE, 7(1):50Ð57, January-February 2009.

[63] R. Enns, M. Bjorklund, J. SchšnwŠlder, and A. Bierman. RFC 6241, Network ConÞguration
Protocol (NETCONF). http://tools.ietf.org/html/rfc6241, June 2011.

[64] R. P. Esteves, L. Z. Granville, and R. Boutaba. On the Management of Virtual Networks.
IEEE Communications Magazine, 51(7):80Ð88, 2013.

[65] European Telecommunications Standards Institute (ETSI). Network Functions Virtua-
lisation: Introductory White Paper. http://portal.etsi.org/NFV/NFV_White_
Paper.pdf. Last visited on November, 2013.

[66] Expect, NIST. http://www.nist.gov/el/msid/expect.cfm. Last visited on No-
vember, 2013.

[67] Facebook. http://www.facebook.com/. Last visited on November, 2013.

[68] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A Survey of Mobile Malware in
the Wild. In Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones
and Mobile Devices, SPSM Õ11, pages 3Ð14, New York, NY, USA, 2011. ACM.

[69] R. Fielding. Architectural Styles and the Design of Network-based Software Archi-
tectures, PhD. Dissertation, 2000. http://www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm. Last visited on November, 2013.

[70] Flickr. http://www.flickr.com/. Last visited on November, 2013.

154

[71] P. Foreman. Vulnerability Management. Information Security. CRC Press, 2009.

[72] S. Frei, D. Schatzmann, B. Plattner, and B. Trammel. Modelling the Security Ecosystem
- The Dynamics of (In)Security. In Proceedings of the Workshop on the Economics of
Information Security (WEISÕ09), June 2009.

[73] H. Garcia-Molina. Elections in a Distributed Computing System. IEEE Trans. Comput. ,
31(1):48Ð59, January 1982.

[74] Gartner. http://www.gartner.com. Last visited on November, 2013.

[75] GNS3. http://www.gns3.net/. Last visited on November, 2013.

[76] The Greenery Project. http://qntm.org/greenery. Last visited on November, 2013.

[77] D. J. Hand, P. Smyth, and H. Mannila. Principles of Data Mining. MIT Press, Cambridge,
MA, USA, 2001.

[78] John E. Hopcroft, Rajeev Motwani, and Je!rey D. Ullman. Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2006.

[79] M. C. Huebscher and J. A. McCann. A Survey of Autonomic ComputingÐDegrees, Models,
and Applications. ACM Comput. Surv., 40:7:1Ð7:28, August 2008.

[80] IBM. http://www.ibm.com/. Last visited on November, 2013.

[81] IBM. An Architectural Blueprint for Autonomic Computing. IBM White Paper, 2006.

[82] IBM Autonomic Computing Deployment Model. http://www-03.ibm.com/press/
us/en/pressrelease/464.wss. Last visited on November, 2013.

[83] Milestones:Inception of the ARPANET, 1969. http://www.ieeeghn.org/wiki/
index.php/Milestones:Inception_of_the_ARPANET,_1969. Last visited on
November, 2013.

[84] The Internet Engineering Task Force (IETF). http://www.ietf.org/. Last visited on
November, 2013.

[85] V. Igure and R. Williams. Taxonomies of Attacks and Vulnerabilities in Computer Systems.
IEEE Communications Surveys & Tutorials, 10(1):6Ð19, January 2008.

[86] Cisco IOS. http://www.cisco.com/. Last visited on November, 2013.

[87] ITSM - IT Service Management. http://www.itsm.info/. Last visited on November,
2013.

[88] Java technology. http://www.oracle.com/technetwork/java/. Last visited on
November, 2013.

[89] Java Architecture for XML Binding. http://java.sun.com/developer/
technicalArticles/WebServices/jaxb/. Last visited on November, 2013.

[90] G. P. Joshi, S. Y. Nam, and S. W. Kim. Cognitive Radio Wireless Sensor Networks:
Applications, Challenges and Research Trends.Sensors, 13(9):11196Ð11228, 2013.

[91] J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing. Computer, 36(1):41Ð
50, January 2003.

[92] M. J. Khan, M. M. Awais, and S. Shamail. Enabling Self-ConÞguration in Autonomic
Systems Using Case-Based Reasoning with Improved E"ciency.In Proceedings of the
4th International Conference on Autonomic and Autonomous Systems (ICASÕ08), pages
112Ð117, March 2008.

155

Bibliography

[93] J. Ko, A. Terzis, S. Dawson-Haggerty, D. E. Culler, J. W. Hui, and P. Levis. Connec-
ting Low-Power and Lossy Networks to the Internet. IEEE Communications Magazine,
49(4):96Ð101, April 2011.

[94] Y. Kwon, H. J. Lee, and G. Lee. A Vulnerability Assessment Tool Based on OVAL in
Linux System. Network and Parallel Computing, pages 653Ð660, 2004.

[95] D. Lazer, A. Pentland, L. Adamic, S. Aral, A. L. Barab‡si, D. Brewer, N. Christakis,
N. Contractor, J. Fowler, M. Gutmann, T. Jebara, G. King, M. Macy, D. Roy, and
M. Van Alstyne. Life in the Network: The Coming Age of Computational Social. Science,
323(5915):721Ð723, 2009.

[96] S. Li. Juxtapp and DStruct: Detection of Similarity Among Android Applications. MasterÕs
thesis, EECS Department, University of California, Berkeley, May 2012.

[97] Limelight Networks. http://www.limelight.com/. Last visited on November, 2013.

[98] LinkedIn. http://www.linkedin.com/. Last visited on November, 2013.

[99] R.P. Lippmann, K.W. Ingols, and Lincoln Laboratory. An Annotated Review of Past
Papers on Attack Graphs. Project report IA. Massachusetts Institute of Technology, Lincoln
Laboratory, 2005.

[100] Lookout Mobile Security. https://www.mylookout.com/mobile-threat-report.
Last visited on November, 2013.

[101] G. F. Lyon. Nmap Network Scanning: The O!cial Nmap Project Guide to Network Dis-
covery and Security Scanning. Insecure, USA, 2009.

[102] MAEC, Malware Attribute Enumeration and Characterization. http://maec.mitre.
org/. Last visited on November, 2013.

[103] P. Mell, T. Bergeron, and D. Henning. Creating a Patch and Vulnerability Management
Program. NIST, November 2005.

[104] MITRE Corporation. http://www.mitre.org/. Last visited on November, 2013.

[105] Z. Movahedi, M. Ayari, R. Langar, and G. Pujolle. A Survey of Autonomic Network
Architectures and Evaluation Criteria. IEEE Communications Surveys & Tutorials, PP:1Ð
27, May 2011.

[106] Nessus. http://www.tenable.com/products/nessus. Last visited on November,
2013.

[107] Netconf4J. https://github.com/dana-i2cat/netconf4j. Last visited on Novem-
ber, 2013.

[108] NIST, National Institute of Standards and Technology. http://www.nist.gov/. Last
visited on November, 2013.

[109] Nmap. http://nmap.org/. Last visited on November, 2013.

[110] Norton Mobile Security. http://us.norton.com/norton-mobile-security/.
Last visited on November, 2013.

[111] NVD, National Vulnerability Database. http://nvd.nist.gov/. Last visited on No-
vember, 2013.

[112] Open Handset Alliance. http://www.openhandsetalliance.com/. Last visited on
November, 2013.

[113] OpenVAS. http://www.openvas.org/. Last visited on November, 2013.

156

[114] OSVDB, The Open Source Vulnerability Database. http://osvdb.org/. Last visited
on November, 2013.

[115] X. Ou, W. F. Boyer, and M. A. McQueen. A Scalable Approach to Attack Graph Ge-
neration. In Proceedings of the 13th ACM Conference on Computer and Communications
Security (CCSÕ06), pages 336Ð345. ACM Press, 2006.

[116] X. Ou, S. Govindavajhala, and A. W. Appel. MulVAL: A Logic-based Network Security
Analyzer. on USENIX Security, 2005.

[117] The OVAL Language. http://oval.mitre.org/. Last visited on November, 2013.

[118] Ovaldi, the OVAL Interpreter reference implementation. http://oval.mitre.org/
language/interpreter.html. Last visited on November, 2013.

[119] N. K. Pandey, S. K. Gupta, S. Leekha, and J. Zhou. ACML: Capability Based Attack
Modeling Language. In Proceedings of the 4th International Conference on Information
Assurance and Security, pages 147Ð154, September 2008.

[120] R. Patton. Software Testing (2nd Edition). Sams, 2005.

[121] Picasa. http://picasa.google.com/. Last visited on November, 2013.

[122] N. Poolsappasit, R. Dewri, and I. Ray. Dynamic Security Risk Management Using Bayesian
Attack Graphs. IEEE Transactions on Dependable and Secure Computing, 9(1):61Ð74,
2012.

[123] M.R. Prasad, A. Biere, and A. Gupta. A Survey of Recent Advances in SAT-Based Formal
VeriÞcation. STTT, 7(2):156Ð173, 2005.

[124] Puppet. http://www.puppetlabs.com/. Last visited on November, 2013.

[125] RFC 2460, Internet Protocol (IPv6). http://www.ietf.org/rfc/rfc2460.txt.
Last visited on November, 2013.

[126] RFC 4765. http://www.ietf.org/rfc/rfc4765.txt. Last visited on November,
2013.

[127] RFC 675, Internet Transmission Control Program. http://tools.ietf.org/html/
rfc675. Last visited on November, 2013.

[128] RFC 791, Internet Protocol (IPv4). http://tools.ietf.org/html/rfc791. Last
visited on November, 2013.

[129] RFC 793, Transmission Control Protocol. http://tools.ietf.org/html/rfc793.
Last visited on November, 2013.

[130] D. Saha. Extending Logical Attack Graphs for E"cient Vulnerability Analysis. In Procee-
dings of the 15th ACM Conference on Computer and Communications Security (CCSÕ08),
pages 63Ð74, New York, NY, USA, 2008. ACM.

[131] J. Sahoo, S. Mohapatra, and R. Lath. Virtualization: A Survey on Concepts, Taxonomy
and Associated Security Issues. InProceedings of the Second International Conference on
Computer and Network Technology (ICCNTÕ10), pages 222Ð226. IEEE, April 2010.

[132] Saint. http://www.saintcorporation.com/. Last visited on November, 2013.

[133] N. Samaan and A. Karmouch. Towards Autonomic Network Management: an Analysis
of Current and Future Research Directions. IEEE Communications Surveys & Tutorials,
11(3):22Ð36, July 2009.

[134] OVAL Language Sandbox. http://oval.mitre.org/language/sandbox.html.
Last visited on November, 2013.

157

Bibliography

[135] Vulnerability Naming Schemas and Description Languages: CVE, Bugtraq, AVDL and
VulnXML. The SANS Institute. http://www.sans.org/. Last visited on November,
2013.

[136] J. Sauve, R. Santos, R. Reboucas, A. Moura, and C. Bartolini. Change Priority Determina-
tion in IT Service Management Based on Risk Exposure.IEEE Transactions on Network
and Service Management, 5(3):178Ð187, September 2008.

[137] K. Scarfone and T. Grance. A Framework for Measuring the Vulnerability of Hosts.In Pro-
ceedings of the 1st International Conference on Information Technology (ICITÕ08), pages
1Ð4, May 2008.

[138] T. Setzer, K. Bhattacharya, and H. Ludwig. Decision Support for Service Transition Ma-
nagement - Enforce Change Scheduling by Performing Change Risk and Business Impact
Analysis. In Proceedings of the IEEE Network Operations and Management Symposium
(NOMSÕ08), pages 200Ð207, April 2008.

[139] C. Severance. Van Jacobson: Content-Centric Networking.Computer, 46(1):11Ð13, 2013.

[140] S. Sezer, S. Scott-Hayward, P.K. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen,
M. Miller, and N. Rao. Are We Ready for SDN ? Implementation Challenges for Software-
DeÞned Networks.IEEE Communications Magazine, 51(7):36Ð43, 2013.

[141] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and C. Glezer. Google Android:
A Comprehensive Security Assessment.Security Privacy, IEEE, 8(2):35Ð44, March-April
2010.

[142] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated Generation and
Analysis of Attack Graphs. In Proceedings of the 2002 IEEE Symposium on Security and
Privacy, SP Õ02, pages 273Ð, Washington, DC, USA, 2002. IEEE Computer Society.

[143] M. Sloman and E. Lupu. Engineering Policy-Based Ubiquitous Systems.The Computer
Journal, 53(7):1113Ð1127, 2010.

[144] R. Sterritt, G. Garrity, E. Hanna, and P. OÕHagan. Survivable Security Systems Through
Autonomicity. In Proceedings of the Second international Conference on Radical Agent
Concepts: innovative Concepts for Autonomic and Agent-Based Systems, WRACÕ05, pages
379Ð389, Berlin, Heidelberg, 2006. Springer-Verlag.

[145] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354Ð356,
1969. 10.1007/BF02165411.

[146] Apache Subversion. http://subversion.apache.org/. Last visited on November,
2013.

[147] SVNKit. http://svnkit.com/. Last visited on November, 2013.

[148] A. Tang, A. Nicholson, Y. Jin, and J. Han. Using Bayesian Belief Networks for Change
Impact Analysis in Architecture Design. Journal of Systems and Software, 80(1):127Ð148,
January 2007.

[149] Technology deÞnition.http://en.wikipedia.org/wiki/Technology. Last visited
on November, 2013.

[150] S. J. Templeton and K. Levitt. A Requires/Provides Model for Computer Attacks. In
Proceedings of the Workshop on New Security Paradigms (NSPWÕ00), pages 31Ð38, 2000.

[151] H. M. Tran and J. SchšnwŠlder. Distributed Case-Based Reasoning for Fault Manage-
ment. In Proceedings of the 1st international conference on Autonomous Infrastructure,
Management and Security: Inter-Domain Management (AIMSÕ07), pages 200Ð203, Berlin,
Heidelberg, 2007. Springer-Verlag.

158

[152] H. M. Tran, I. Tumar, and J. SchšnwŠlder. NETCONF Interoperability Testing. In Procee-
dings of the Third International Conference on Autonomous Infrastructure, Management
and Security (AIMSÕ09), pages 83Ð94, 2009.

[153] W. Truszkowski, H. Hallock, C. Rou!, J. Karlin, J. Rash, M. Hinchey, and R. Sterritt.
Autonomous and Autonomic Systems: With Applications to NASA Intelligent Spacecraft
Operations and Exploration Systems. Springer, 2009.

[154] The UniverSelf Project. http://www.univerself-project.eu/ . Last visited on
November, 2013.

[155] T. Vidas, D. Votipka, and N. Christin. All Your Droid Are Belong To Us: A Survey of
Current Android Attacks. In Proceedings of the 5th USENIX Conference on O"ensive
Technologies, WOOTÕ11, pages 10Ð10, Berkeley, CA, USA, 2011. USENIX Association.

[156] World Wide Web Consortium (W3C). http://www.w3.org/. Last visited on November,
2013.

[157] S. Wallin and C. Wikstršm. Automating Network and Service ConÞguration using NET-
CONF and YANG. In Proceedings of the 25th International Conference on Large Instal-
lation System Administration, LISAÕ11, pages 22Ð22, Berkeley, CA, USA, 2011. USENIX
Association.

[158] J. A. Wang and M. Guo. OVM: An Ontology for Vulnerability Management. In Proceedings
of the 5th Annual Workshop on Cyber Security and Information Intelligence Research:
Cyber Security and Information Intelligence Challenges and Strategies (CSIIRWÕ09), pages
34:1Ð34:4, New York, NY, USA, 2009. ACM.

[159] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A Checksum-Aware Directed Fuz-
zing Tool for Automatic Software Vulnerability Detection. In Proceedings of the IEEE
Symposium on Security and Privacy (SPÕ10), pages 497 Ð512, May 2010.

[160] W. Wang and T. E. Daniels. A Graph-based Approach Toward Network Forensics Analysis.
ACM Transactions on Information and System Security (TISSEC), 12(1), 2008.

[161] J. A. Wickboldt, L. A. Bianchin, and R. C. Lunardi. Improving IT Change Management
Processes with Automated Risk Assessment.In Proceedings of the IEEE International
Workshop on Distributed Systems: Operations and Management (DSOMÕ09), pages 71Ð84,
2009.

[162] A. Williams and M. Nicolett. Improve IT Security with Vulnerability Management. http:
//www.gartner.com/id=480703, 2005. Last visited on November, 2013.

[163] X-Ray for Android. http://www.xray.io/. Last visited on November, 2013.

[164] G. Xylomenos, C. Ververidis, V. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos, K. Katsaros,
and G. Polyzos. A Survey of Information-Centric Networking Research.IEEE Communi-
cations Surveys & Tutorials, PP(99):1Ð26, 2013.

[165] YouTube. http://www.youtube.com/. Last visited on November, 2013.

[166] G. Zhang, S. Ehlert, T. Magedanz, and D. Sisalem. Denial of Service Attack and Pre-
vention on SIP VoIP Infrastructures using DNS Flooding. In Proceedings of the 1st In-
ternational Conference on Principles, Systems and Applications of IP Telecommunications
(IPTCommÕ07), pages 57Ð66, New York, NY, USA, 2007. ACM.

[167] N. Ziring and S. D. Quinn. SpeciÞcation for the Extensible ConÞguration Checklist
Description Format (XCCDF). NIST (National Institute of Standards and Technology).
http://scap.nist.gov/specifications/xccdf/. Last visited on January, 2013.

159

Bibliography

160

Annexes

161

Annexe A

CAS, a ConÞguration Assessment
Service for UMF

Contents
A.1 Introduction and problem statement 163

A.2 Background . 164

A.3 ConÞguration modeling for UMF 164

A.4 ConÞguration assessment service architecture 168

A.5 UMF, conclusions and perspectives 168

A.1 Introduction and problem statement

The UMF framework has been created with the purpose of providing a single and simple
platform where autonomic elements (NEMs) can be deployed and activated in order to perform
the actions and achieve the objectives the were built for [154]. However, each NEM has particular
requirements and speciÞc conÞgurations in order to work properly. In addition, the interconnec-
tions between hundreds of NEMs and the services provided by them increase the complexity of
their conÞguration. In that context, management problems such as conÞguration errors, conßicts
between services and inconsistencies can occur leading to severe operational problems as well as
security issues within the framework itself. Even though operating systems where NEMs are de-
ployed and also the NEMs themselves may have security solutions to be protected, such fact does
not ensure the security of the whole framework. Unexpected behaviour, failures, service unavai-
lability and many other problems may occur if the UMF framework is not conÞgured properly. In
light of this, we propose in this document a conÞguration assessment service (CAS) for the UMF
framework that provides the ability to both identify conÞguration errors and inconstancies, and
at the same time, it can be used for evaluating whether recommendations and best practices are
being considered as well. We propose the use of the OVAL [117] and DOVAL [25] languages for
expressing expected or wrong conÞgurations within standalone and distributed scenarios respec-
tively. In this document we show how these languages can be used in the context of UMF and
we also present an architecture that illustrates how the conÞguration assessment service can be
integrated into the UMF framework.

163

Annexe A. CAS, a ConÞguration Assessment Service for UMF

A.2 Background

The OVAL language has been developed mostly thinking about describing vulnerabilities.
However, its potential goes beyond such objective, it allows to describe machine states that de-
pending on the context, these states can be understood as a bad thing (vulnerabilities) or a
good thing (best practices). At the end, machine conÞgurations and states are what OVAL is all
about, and this adequately Þts to the UMF requirements for analysing potential conÞguration
problems such as service dependency inconsistencies, combinations of wrong NEM versions, in-
correct values within conÞguration parameters and also known vulnerable NEMS. It also can be
used for controlling the application of best practices. The usual or intuitive way to think about a
vulnerability is to consider it as a combination of conditions or properties that if hold on a target
system, the potential exploitable security problem described by such vulnerability is present on
that system. Each condition in turn can be understood as the state that should be observed on
a speciÞc object. When the object under analysis exhibits the speciÞed state, the condition is
said to be true on that system. In the OVAL language, a speciÞc vulnerability is described using
an OVAL deÞnition. An OVAL deÞnition speciÞes criteria that logically combine a set of OVAL
tests. Each OVAL test in turn represents the process by which a speciÞc condition or property is
assessed on the target system. Each OVAL test examines an OVAL object looking for a speciÞc
state, thus an OVAL test will be true if the referred OVAL object matches the speciÞed OVAL
state. The overall result for the criteria speciÞed in the OVAL deÞnition will be built using the
results of each referenced OVAL test. The OVAL language provides a powerful basis for expres-
sing conÞguration conditions of NEMs loaded in the framework that can be used for increasing
their control and ensuring secure conÞgurations. However, under a logical perspective, the OVAL
language only allows to predicate over one component at a time, i.e., only unary predicates are
possible [24]. Being NEMs the individuals of the universe over we are predicating on, such issue
restricts the ability to deÞne a predicate between two or more NEMs, i.e., n-ary predicates. In
light of this, the DOVAL language has been proposed for covering distributed scenarios where the
involvement of two or more devices is necessary to describe a distributed vulnerability. As explai-
ned before, the OVAL and DOVAL approach can be used not only for vulnerabilities but also for
describing general conÞgurations and states. The DOVAL language extends OVAL by permitting
to express relationships between identiÞed objects thus providing the ability to simultaneously
predicate over a set of network devices more than standalone machines or systems.

A.3 ConÞguration modeling for UMF

In order to explain the proposed approach, we put forward three di!erent scenarios using
OVAL and DOVAL in the context of the UMF framework. Within these examples, we show
features and limitations that need to be addressed in order to capture the characteristics of these
scenarios. The Þrst scenario uses the OVAL language and it is depicted in Figure A.1. Within
such scenario, we aim at describing the conÞguration of two NEMs where one of them requires
the other to be active. The Þrst NEM acts as a SIP management NEM where audio calls can be
performed through it. The second NEM provides load-balancing services including the ability to
guarantee a minimum bandwidth for speciÞc clients. In order to ensure quality in audio calls,
the SIP management NEM requires the load-balancing service provided by the second NEM to
be active. In that context, we need to specify two OVAL objects representing the NEMs (lines
21-28), on which two OVAL tests will be applied (lines 11-20), one test for each object (lines
12-15 and 16-19). In order to identify the required NEMs we use the entry <nem_name> to

164

A.3. ConÞguration modeling for UMF

specify the NEM name, sip_management for the Þrst NEM (line 23) and load_balancing for
the second one (line 26). Within the tests, the conditions we expect to see over the objects are
represented by OVAL states (lines 29-44). It is important to notice that the connection between
one object and one state is deÞned by the test structure and the references used in it (lines 11-20).
The Þrst OVAL state (lines 30-36) applies over the Þrst NEM, the SIP management service. In
the proposed state, it is being declared that the SIP management NEM must have any version
in the family 1.4. In addition, it is speciÞed that the property active of this NEM must have
the value 1. Usually, stateÕs attributes used in the OVAL language are atomic. The structured
attribute called nem_property with children nem_property_key and nem_property_value is
an extension in terms of its normal use. With this OVAL state specifying a speciÞc version
and that the NEM must be active, we are expressing one of the two conditions (line 6) for our
OVAL deÞnition representing a conÞguration error (line 4). The second condition follows the
same idea where the load_balancing NEM must be inactive no matter what the version is. If
both conditions hold (line 5), the speciÞed conÞguration error is present in the UMF framework.

<?xml v e r s i o n= " 1.0 " encod ing= " UTF ! 8" ?>
<o v a l _ d e f i n i t i o n s . . . >

<d e f i n i t i o n s >
<d e f i n i t i o n i d= " oval : umf : def :1 " c l a s s = " conf igurat ion error " >

< c r i t e r i a o p e r a t o r= "AND " >
< c r i t e r i o n t e s t _ r e f= " oval : umf : t s t :1 " />
< c r i t e r i o n t e s t _ r e f= " oval : umf : t s t :2 " />

</ c r i t e r i a >
</ d e f i n i t i o n >

</ d e f i n i t i o n s >

<t e s t s >
<umf_nem_test i d= " oval : umf : t s t :1 " >

<o b j e c t o b j e c t _ r e f= " oval : umf : obj :101 " />
<s t a t e s t a t e _ r e f= " oval : umf : s te :201 "/>

</umf_nem_test>

<umf_nem_test i d= " oval : umf : t s t :2 " >
<o b j e c t o b j e c t _ r e f= " oval : umf : obj :102 " />
<s t a t e s t a t e _ r e f= " oval : umf : s te :202 "/>

</umf_nem_test>
</ t e s t s >

<o b j e c t s >
<umf_nem_object i d= " oval : umf : obj :101 " >

<nem_name>s i p _ s e r v e r </nem_name>
</umf_nem_object>

<umf_nem_object i d= " oval : umf : obj :102 " >
<nem_name>load_ba lancer </nem_name >

</umf_nem_object>
</o b j e c t s >

<s t a t e s >
<umf_nem_state i d= " oval : umf : s te :201 " >

<nem_version o p e r a t i o n= " pattern match " > 1 \ . 4 \ . " </nem_version>
<nem_property o p e r a t i o n= " map " >

<nem_property_key> a c t i v e </nem_property_key>
<nem_property_value> 1 </nem_property_value>

</nem_property>
</umf_nem_state>

<umf_nem_state i d= " oval : umf : s te :202 " >
<nem_version o p e r a t i o n= " pattern match " > . " </nem_version>
<nem_property o p e r a t i o n= " map " >

<nem_property_key> a c t i v e </nem_property_key>
<nem_property_value> 0 </nem_property_value>

</nem_property>
</umf_nem_state>

</ s t a t e s >

</ o v a l _ d e f i n i t i o n s >

Figure A.1 Ð UMF conÞguration error description with OVAL

165

Annexe A. CAS, a ConÞguration Assessment Service for UMF

Even though the OVAL language can be very useful for describing NEM conÞgurations as
shown in the previous example, the relationship between them cannot be formally represented.
In that context, we now present the same scenario using the DOVAL language, depicted in
Figure A.2. The proposed DOVAL speciÞcation reuses existing OVAL tests and objects (NEMs)
and provides the ability to describe relationships between those NEMs. The structure of a DOVAL
document follows the same philosophy as an OVAL document, i.e., tests over objects expecting
speciÞc states. The main di!erence is that DOVAL allows referring more than one object within
the DOVAL test section thus permitting to analyse states over such objects simultaneously. Wi-
thin this scenario, only one test is deÞned (line 11) involving the two NEMs with their speciÞc
characteristics previously deÞned in the OVAL document. NEMs are referenced by using their
OVAL ids (lines 12-13) so there is no need to redeÞne these objects in the DOVAL document. The
expected state between these two objects is referenced in the test section (line 14) and speciÞed
in the state section (lines 26-30). The service state speciÞes that the service with name band-
width_assurance (line 27) is set between the SIP management NEM as its consumer (line 28)
and the load-balancing NEM as its provider (line 29). Such DOVAL document speciÞes the same
situation shown in the Þrst scenario but now the relationship between both NEMs is formally
declared.

<?xml v e r s i o n= " 1.0 " encod ing= " UTF ! 8" ?>
<doval_document>

<d o v a l _ d e f i n i t i o n s >
<d o v a l _ d e f i n i t i o n i d= " doval : f r . i n r i a . doval : def :1 " c l a s s = " distr ibuted_configuration_error " >

<c r i t e r i a >
< c r i t e r i o n t e s t _ r e f= " doval : f r . i n r i a . doval : t s t :4141 " />

</ c r i t e r i a >
</d o v a l _ d e f i n i t i o n >

</ d o v a l _ d e f i n i t i o n s >

<t e s t s >
<dova l_ tes t i d= " doval : f r . i n r i a . doval : t s t :4141 " comment= " DOVAL tes t spec i fy ing serv ice

provis ioning between 2 NEMs . " c h e c k _ e x i s t e n c e= " at_least_one_exists " check= " at l e a s t one " >
<o b j e c t d e v i c e _ r e f= " doval : f r . i n r i a . doval : dev :222 " />
<o b j e c t d e v i c e _ r e f= " doval : f r . i n r i a . doval : dev :256 " />
<s t a t e s t a t e _ r e f= " doval : f r . i n r i a . doval : s te :7777 "/>

</dova l_ tes t >
</ t e s t s >

<o b j e c t s > <! !! d e v i c e s !!>
<d e v i c e _ o b j e c t i d= " doval : f r . i n r i a . doval : dev :222 " >

<prop o v a l t e s t _ r e f= " oval : umf : t s t :1 " /> <! !! SIP s e r v e r NEM running !! >
</dev i ce_ob jec t >

<d e v i c e _ o b j e c t i d= " doval : f r . i n r i a . doval : dev :256 " >
<prop o v a l t e s t _ r e f= " oval : umf : t s t :2 " /> <! !! Load b a l a n c e r NEM i n a c t i v e !! >

</dev i ce_ob jec t >
</o b j e c t s >

<s t a t e s > <! !! r e l a t i o n s h i p s !!>
<s e r v i c e _ s t a t e i d= " doval : f r . i n r i a . doval : s te :7777 " > <! !! S e r v i c e c o n f i g !! >

<name o p e r a t i o n= " equals " > bandwidth_assurance </name>
<consumer d e v i c e _ r e f= " doval : f r . i n r i a . doval : dev :222 " />
<p r o v i d e r d e v i c e _ r e f= " doval : f r . i n r i a . doval : dev :256 " />

</ s e r v i c e _ s t a t e >
</ s t a t e s >

</ d o v a l _ d e f i n i t i o n s >

Figure A.2 Ð UMF distributed conÞguration error description with DOVAL

166

A.3. ConÞguration modeling for UMF

Both OVAL and DOVAL can be used for specifying best practices as well. We now present
a more complex scenario illustrated in Figure A.3 using the DOVAL language and involving
the same two NEMs, the SIP management service and the load balancer linked by a consumer-
provider relationship, but now both of them are active. In addition, we want to express a condition
between attributes of both NEMs that should always hold. Let us suppose that the SIP mana-
gement service uses G.711 for encoding its phone calls, i.e., 64 Kb/s for each call. In addition,
let us assume that the maximum number of clients while assuring certain quality threshold is set
to 100. In its limit, the SIP management NEM would require at least 64*100=6400Kb=800KB
assured bandwidth for e!ectively ensuring the expected quality. This means that the NEM in
charge of ensuring the minimum bandwidth level, the load balancer NEM in this case, should
be conÞgured to provide at least this capacity. In order to specify this context, we use the same
test reference for the SIP management NEM (line 20) though the test for the load-balancing
NEM has been changed because it has to be active now (line 23). If these two NEMs are active
and related (lines 27-31), we need to ensure that the capacity provided by the load-balancing
NEM is su"cient enough for the SIP management NEM to ensure its quality service. To do so, a
conÞguration state is deÞned (lines 32-40) stating that the bit rate used by the SIP service (line
35) multiplied by its maximum number of clients (line 36) should be less than or equals to the
minimum assured bandwidth by the load-balancing NEM (line 38). Such description provides a
formal speciÞcation of a conÞguration that should be taken into account (best practices) in order
to avoid unexpected behaviour.

<?xml v e r s i o n= " 1.0 " encod ing= " UTF ! 8" ?>
<doval_document>

<d o v a l _ d e f i n i t i o n s >
<d o v a l _ d e f i n i t i o n i d= " doval : f r . i n r i a . doval : def :2 " c l a s s = " distr ibuted_configuration_best_practices

" >
<c r i t e r i a >

< c r i t e r i o n t e s t _ r e f= " doval : f r . i n r i a . doval : t s t :6262 " />
</ c r i t e r i a >

</d o v a l _ d e f i n i t i o n >
</ d o v a l _ d e f i n i t i o n s >

<t e s t s >
<dova l_ tes t i d= " doval : f r . i n r i a . doval : t s t :6262 " comment= " DOVAL tes t spec i fy ing best p rac t i ces

between 2 NEMS . " c h e c k _ e x i s t e n c e= " at_least_one_exists " check= " at l e a s t one " >
<o b j e c t d e v i c e _ r e f= " doval : f r . i n r i a . doval : dev :222 "/>
<o b j e c t d e v i c e _ r e f= " doval : f r . i n r i a . doval : dev :300 "/>
<s t a t e s t a t e _ r e f= " doval : f r . i n r i a . doval : s te :4444 "/>

</dova l_ tes t >
</ t e s t s >

<o b j e c t s > <! !! d e v i c e s !!>
<d e v i c e _ o b j e c t i d= " doval : f r . i n r i a . doval : dev :222 " >

<prop o v a l t e s t _ r e f= " oval : umf : t s t :1 " /> <! !! SIP s e r v e r NEM running !! >
</dev i ce_ob jec t >

<d e v i c e _ o b j e c t i d= " doval : f r . i n r i a . doval : dev :300 " >
<prop o v a l t e s t _ r e f= " oval : umf : t s t :3 " /> <! !! Load b a l a n c e r NEM a c t i v e !! >

</dev i ce_ob jec t >
</o b j e c t s >

<s t a t e s > <! !! r e l a t i o n s h i p s !!>
<c o n f i g _ s t a t e i d= " doval : f r . i n r i a . doval : s te :4444 " > <! !! Con f ig . requ i remen ts !! >

<o p e r a t i o n type= " comparison " name= " greater_than " >
<o p e r a t i o n type= " ari thmetic " name= " mul t ip l i ca t ion " >

<a t t r i b u t e name= " bit_rate " d e v i c e _ r e f= " doval : f r . i n r i a . doval : dev :222 "/>
<a t t r i b u t e name= " number_of_clients " d e v i c e _ r e f= " doval : f r . i n r i a . doval : dev :222 " />

</o p e r a t i o n >
<a t t r i b u t e name= " min_assured_bandwidth " d e v i c e _ r e f= " doval : f r . i n r i a . doval : dev :300 " />

</o p e r a t i o n >
</c o n f i g _ s t a t e >

</ s t a t e s >

</ d o v a l _ d e f i n i t i o n s >

Figure A.3 Ð DOVAL scenario for best practices

167

Annexe A. CAS, a ConÞguration Assessment Service for UMF

A.4 ConÞguration assessment service architecture

The ability to automatically assess conÞguration errors, vulnerabilities and also best prac-
tices provides a strong support for increasing the security awareness of the UMF framework. By
consuming security advisories and conÞguration descriptions from a database, the CAS service
gathers the required information from the UMF framework and analyses the conÞguration of
components (typically NEMs) loaded in the framework in order to detect conÞguration inconsis-
tencies that may lead to operational and security problems. The assessment results become then
available for the UMF framework thus corrective actions can be performed if necessary.

Figure A.4 Ð ConÞguration assessment service architecture

The positioning of the conÞguration assessment service is illustrated in Figure A.4. Within
this architecture, the CAS service provides the UMF framework with the ability to analyse
the conÞguration of NEMs loaded in the framework and to identify potential conÞguration and
security problems. In order to do this, the UMF framework should provide through a web service
for instance, information about the NEMs under control while the CAS service is in charge of
correlating such information with security advisories and conÞguration descriptions present in the
conÞguration database. These descriptions are speciÞed with the OVAL and DOVAL languages
for capturing standalone and distributed scenarios respectively. The integration of CAS within
the UMF framework leverages the latter by providing self-assessment capabilities and increasing
its overall security as well.

A.5 UMF, conclusions and perspectives

The UMF framework provides a uniÞed platform for embedding autonomic solutions targeted
on speciÞc objectives called NEMs that together can provide autonomic management solutions for
di!erent needs and contexts. The integration of a conÞguration assessment service into the UMF
framework can highly increase its security and stability by ensuring safe conÞgurations among
NEMs loaded in the platform. In this proposal, we have presented an approach for integrating
such a service that provides the UMF framework with the ability to assess its own internal
conÞguration. Our approach relies on the use of the OVAL and DOVAL languages for specifying
conÞguration errors or situations that should not happen as well as best practices that should
be integrated into the NEM management plane. Both OVAL and DOVAL require extensions
to be integrated into the UMF framework so as interpreters, though it is feasible. The DOVAL
language is currently under development though its applicability has already been shown in [25].

168

A.5. UMF, conclusions and perspectives

In order to integrate our solution into UMF it is also required to deÞne interfaces, web services for
instance, for exchanging required information between the UMF framework and the conÞguration
assessment service. The formalization of the data required to analyse NEMs conÞgurations has
to be performed in order to extend the DOVAL language as to cover such requirements. In this
document we have proposed some scenarios that exemplify and illustrate how our approach can
be used for expressing conÞguration problems and best practices in the context of UMF. The
integration of such service may highly enhance the overall stability of the UMF framework itself
by increasing its conÞguration and security awareness.

169

RŽsumŽ / Abstract

Le dŽploiement dÕŽquipements informatiques ˆ large Žchelle, sur les multiples infrastructures
interconnectŽes de lÕInternet, a eu un impact considŽrable sur la complexitŽ de la t‰che de gestion.
LÕinformatique autonome permet de faire face ˆ cet enjeu en spŽciÞant des objectifs de haut
niveau et en dŽlŽguant autant que possible les activitŽs de gestion aux rŽseaux et syst•mes eux-
m•mes. Cependant, lorsque des changements sont opŽrŽs par les administrateurs ou directement
par les Žquipements autonomes, des conÞgurations vulnŽrables peuvent •tre involontairement
introduites, m•me si celles-ci sont correctes dÕun point de vue opŽrationnel. Ces vulnŽrabilitŽs
o!rent un point dÕentrŽe pour des attaques de sŽcuritŽ. Les environnements autonomes doivent
•tre capables de se protŽger pour Žviter leur compromission et la perte de leur autonomie. Ë cet
Žgard, les mŽcanismes de gestion des vulnŽrabilitŽs sont essentiels pour assurer une conÞguration
sžre de ces environnements.

Cette th•se porte sur la conception et le dŽveloppement de nouvelles mŽthodes et techniques
pour la gestion des vulnŽrabilitŽs dans les rŽseaux et syst•mes autonomes, aÞn de leur permettre
de dŽtecter, dÕŽvaluer et de corriger leurs propres expositions aux failles de sŽcuritŽ. Nous prŽsen-
terons tout dÕabord un Žtat de lÕart sur lÕinformatique autonome et la gestion de vulnŽrabilitŽs, en
mettant en relief les dŽÞs importants qui doivent •tre relevŽs dans ce cadre. Nous dŽcrirons ensuite
notre approche dÕintŽgration du processus de gestion des vulnŽrabilitŽs dans ces environnements,
et en dŽtaillerons les di!Žrentes facettes, notamment : extension de lÕapproche dans le cas de
vulnŽrabilitŽs distribuŽes, prise en compte du facteur temps en considŽrant une historisation des
param•tres de conÞguration, et application en environnements contraints en utilisant des tech-
niques probabilistes. Nous prŽsenterons Žgalement les prototypes et les rŽsultats expŽrimentaux
qui ont permis dÕŽvaluer ces di!Žrentes contributions.

Mots clŽs : sŽcuritŽ, gestion de rŽseaux, informatique autonome, gestion de vulnŽrabilitŽs.

Over the last years, the massive deployment of computing devices over disparate intercon-
nected infrastructures has dramatically increased the complexity of network management. Au-
tonomic computing has emerged as a novel paradigm to cope with this challenging reality. By
specifying high-level objectives, autonomic computing aims at delegating management activi-
ties to the networks themselves. However, when changes are performed by administrators and
self-governed entities, vulnerable conÞgurations may be unknowingly introduced. Vulnerabili-
ties constitute the main entry point for security attacks. Hence, self-governed entities unable to
protect themselves will eventually get compromised and consequently, they will lose their own
autonomic nature. In that context, vulnerability management mechanisms are vital to ensure
safe conÞgurations, and with them, the survivability of any autonomic environment.

This thesis targets the design and development of novel autonomous mechanisms for dealing
with vulnerabilities, in order to increase the security of autonomic networks and systems. We
Þrst present a comprehensive state of the art in autonomic computing and vulnerability mana-
gement, and point out important challenges that should be faced in order to fully integrate the
vulnerability management process into the autonomic management plane. Afterwards, we present
our contributions which include autonomic assessment strategies for device-based vulnerabilities
and extensions in several dimensions, namely, distributed vulnerabilities (spatial), past hidden
vulnerable states (temporal), and mobile security assessment (technological). In addition, we
present vulnerability remediation approaches able to autonomously bring networks and systems
into secure states. The scientiÞc approaches presented in this thesis have been largely validated
by an extensive set of experiments which are also discussed in this manuscript.

Keywords : security, network management, autonomic computing, vulnerability management.

	Table of Contents
	List of Figures

