R. System and .. , 97 4.5.3 Feedback and Guidance Model, p.99

]. Barrett, N. Agmon, N. Hazon, S. Kraus, and P. Stone, Communicating with Unknown Teammates, AAMAS Adaptive Learning Agents (ALA) Workshop, p.34, 2013.

]. Barrett, P. Stone, S. Kraus, and A. Rosenfeld, Teamwork with Limited Knowledge of Teammates, Proceedings of the Twenty- Seventh AAAI Conference on Articial Intelligence, 2013.

A. Billard, J. Maja, and . Matari¢, Learning human arm movements by imitation:, Robotics and Autonomous Systems, vol.37, issue.2-3, p.145160, 2001.
DOI : 10.1016/S0921-8890(01)00155-5

. Blankertz, . Lemm, . Treder, S. Haufe, and K. Müller, Single-trial analysis and classication of ERP components: A tutorial, Neuroimage, vol.178, p.144, 2010.

]. Blumberg, M. Downie, Y. Ivanov, M. Berlin, M. P. Johnson et al., Integrated learning for interactive synthetic characters, In ACM Transactions on Graphics, vol.21, p.417426, 2002.

]. R. Brafman and M. Tennenholtz, R-max a general polynomial time algorithm for near-optimal reinforcement learning, Journal of Machine Learning Research, vol.3, 2003.

D. Srk-branavan, R. Silver, and . Barzilay, Learning to win by reading manuals in a monte-carlo framework, Proceedings of ACL, p.268277, 2011.

C. Breazeal, A. Brooks, J. Gray, G. Homan, C. Kidd et al., TUTELAGE AND COLLABORATION FOR HUMANOID ROBOTS, International Journal of Humanoid Robotics, vol.01, issue.02, p.315348, 2004.
DOI : 10.1142/S0219843604000150

]. M. Brent, Computational approaches to language acquisition, 1997.

]. M. Cakmak and A. L. Thomaz, Optimality of human teachers for robot learners, 2010 IEEE 9th International Conference on Development and Learning, 2010.
DOI : 10.1109/DEVLRN.2010.5578865

M. Cakmak, L. Andrea, and . Thomaz, Designing robot learners that ask good questions, Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction, HRI '12, pp.1724-2012, 2012.
DOI : 10.1145/2157689.2157693

]. S. Calinon, F. Guenter, and A. Billard, On Learning, Representing and Generalizing a Task in a Humanoid Robot Special issue on robot learning by observation, demonstration and imitation, IEEE Transactions on Systems, Man and Cybernetics, Part B, vol.37, issue.2, p.286298, 2007.

C. Sylvain, G. Aude, and . Billard, What is the teacher's role in robot programming by demonstration?: Toward benchmarks for improved learning, Interaction Studies, vol.8, issue.3, p.441464, 2007.

A. Cangelosi and D. Parisi, Simulating the evolution of language, 2002.
DOI : 10.1007/978-1-4471-0663-0

]. A. Cangelosi and T. Riga, An Embodied Model for Sensorimotor Grounding and Grounding Transfer: Experiments With Epigenetic Robots, Cognitive Science, vol.28, issue.4, 2006.
DOI : 10.1207/s15516709cog0000_72

]. A. Cangelosi, G. Metta, G. Sagerer, S. Nol, C. Nehaniv et al., Noriet al. Integration of action and language knowledge: A roadmap for developmental robotics. Autonomous Mental Development, IEEE Transactions on, vol.2, issue.30, pp.167195-167224, 2010.

T. Cederborg, M. Li, A. Baranes, and P. Oudeyer, Incremental local online Gaussian Mixture Regression for imitation learning of multiple tasks, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, p.2010, 2010.
DOI : 10.1109/IROS.2010.5652040

URL : https://hal.archives-ouvertes.fr/inria-00541778

]. T. Cederborg and P. Y. Oudeyer, Imitating operations on internal cognitive structures for language aquisition, 2011 11th IEEE-RAS International Conference on Humanoid Robots, p.650657, 2011.
DOI : 10.1109/Humanoids.2011.6100875

URL : https://hal.archives-ouvertes.fr/hal-00646913

C. Thomas and P. Oudeyer, From Language to Motor Gavagai: Unied Imitation Learning of Multiple Linguistic and Nonlinguistic Bibliography Sensorimotor Skills. Autonomous Mental Development, IEEE Transactions on, vol.5, issue.3, pp.222239-2013, 2013.

C. Thomas, A Formal Approach to Social Learning: Exploring Language Acquisition Through Imitation, pp.16-31, 2014.

C. Thomas and P. Oudeyer, A Social Learning Formalism for Learners Trying to Figure Out What a Teacher Wants Them to Do, Journal of Behavioral Robotics, p.16, 2014.

J. Chavarriaga and . Millán, Learning from EEG errorrelated potentials in noninvasive brain-computer interfaces, IEEE Trans Neural Syst Rehabil Eng, vol.18, issue.145, pp.37-151, 2010.

R. Chavarriaga, A. Sobolewski, J. Del, and R. Millán, Errare machinale est: the use of error-related potentials in brain-machine interfaces, Frontiers in Neuroscience, vol.37, issue.88, pp.37-143, 2014.
DOI : 10.1016/j.patrec.2013.05.020

A. Chella, H. Dºindo, I. Infantino, and I. Macaluso, A posture sequence learning system for an anthropomorphic robotic hand, Robotics and Autonomous Systems, vol.47, issue.2-3, p.143152, 2004.
DOI : 10.1016/j.robot.2004.03.008

S. Chernova and M. Veloso, Multi-thresholded approach to demonstration selection for interactive robot learning, Proceedings of the 3rd international conference on Human robot interaction , HRI '08, p.225232, 2008.
DOI : 10.1145/1349822.1349852

S. Chernova and M. Veloso, Teaching multi-robot coordination using demonstration of communication and state sharing International Foundation for Autonomous Agents and Multiagent Systems, Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems, p.11831186, 2008.

]. S. Chernova and M. Veloso, Interactive policy learning through condence-based autonomy, J. Articial Intelligence Research, vol.34, issue.7, pp.125-147, 2009.

H. Herbert, . Clark, E. Susan, and . Brennan, Grounding in communication, Perspectives on socially shared cognition, vol.13, p.127149, 1991.

]. Clement, D. Roy, P. Oudeyer, and M. Lopes, Online Optimization of Teaching Sequences with Multi-Armed Bandits, 7th International Conference on Educational Data Mining, p.2014, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01016428

. Clouse, A. Jeery, . Clouse, E. Paul, and . Utgo, A Teaching Method for Reinforcement Learning, ML, p.92110, 1992.
DOI : 10.1016/B978-1-55860-247-2.50017-6

]. Cohn, E. Durfee, and S. Singh, Comparing actionquery strategies in semi-autonomous agents International Foundation for Autonomous Agents and Multiagent Systems, The 10th International Conference on Autonomous Agents and Multiagent Systems, p.12871288, 2011.

D. Boer, De Boer. Self-organization in vowel systems, Journal of Phonetics, vol.28, issue.4, p.441465, 2000.

. De-ruiter-peter-de-ruiter, L. Matthijs, S. Noordzij, R. Newman-norlund, P. Newman-norlund et al., Exploring the cognitive infrastructure of communication, Interaction Studies, vol.11, issue.48, pp.5177-5210, 2010.
DOI : 10.1075/bct.45.04rui

E. Delaherche, M. Chetouani, A. Mahdhaoui, C. Saint-georges, S. Viaux et al., Interpersonal Synchrony: A Survey of Evaluation Methods across Disciplines, IEEE Transactions on Affective Computing, vol.3, issue.3, pp.349365-2012, 2012.
DOI : 10.1109/T-AFFC.2012.12

P. Arthur, . Dempster, M. Nan, . Laird, B. Donald et al., Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal statistical Society, vol.39, issue.1, p.138, 1977.

P. Mwm-gamini-dissanayake, S. Newman, H. F. Clark, M. Durrant-whyte, and . Csorba, A solution to the simultaneous localization and map building (SLAM) problem. Robotics and Automation, IEEE Transactions on, vol.17, issue.3, p.229241, 2001.

]. P. Dominey and J. D. Boucher, Learning to talk about events from narrated video in a construction grammar framework, Artificial Intelligence, vol.167, issue.1-2, p.3161, 2005.
DOI : 10.1016/j.artint.2005.06.007

]. F. Doshi and N. Roy, Spoken language interaction with model uncertainty: an adaptive human???robot interaction system, Connection Science, vol.77, issue.4, p.299318, 2008.
DOI : 10.3115/1117562.1117565

M. Adam and . Johansen, A tutorial on particle ltering and smoothing: Fifteen years later. Handbook of Nonlinear Filtering, pp.656704-193, 0197.

]. M. Falkenstein, J. Hoormann, S. Christ, and J. Hohnsbein, ERP components on reaction errors and their functional signicance: A tutorial, Biological Psychology, vol.51, issue.87107, 2000.

F. Siamac-fazli, M. Popescu, B. Danóczy, K. Blankertz, C. Müller et al., Subject-independent mental state classification in single trials, Neural Networks, vol.22, issue.9, pp.1305-1312, 2009.
DOI : 10.1016/j.neunet.2009.06.003

]. Fischer, K. Lohan, J. Saunders, C. Nehaniv, B. Wrede et al., The impact of the contingency of robot feedback on HRI, 2013 International Conference on Collaboration Technologies and Systems (CTS), p.2013, 2013.
DOI : 10.1109/CTS.2013.6567231

]. Galantucci, An Experimental Study of the Emergence of Human Communication Systems, Cognitive Science, vol.19, issue.1, pp.737-767, 2005.
DOI : 10.1207/s15516709cog0000_34

]. B. Galantucci, Experimental Semiotics: A New Approach for Studying Communication as a Form of Joint Action, Topics in Cognitive Science, vol.26, issue.2, pp.393410-393442, 2009.
DOI : 10.1111/j.1756-8765.2009.01027.x

B. Galantucci and S. Garrod, Experimental Semiotics: A Review, Frontiers in Human Neuroscience, vol.5, 2011.
DOI : 10.3389/fnhum.2011.00011

A. Gelman, B. John, . Carlin, S. Hal, . Stern et al., Bayesian data analysis, p.134, 0194.

]. and J. Gibson, The ecological approach to visual perception, 1986.

G. Jones, E. Gil-jones, B. Browning, B. Dias, B. Argall et al., Dynamically formed heterogeneous robot teams performing tightly-coordinated tasks, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., pp.570575-570608, 2006.
DOI : 10.1109/ROBOT.2006.1641771

J. Neil, . Gordon, J. David, . Salmond, F. Adrian et al., Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proceedings F (Radar and Signal Processing, pp.107113-193, 0197.

K. Grave and S. Behnke, Learning sequential tasks interactively from demonstrations and own experience, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.3237-3243, 2013.
DOI : 10.1109/IROS.2013.6696816

K. Shane-grith, J. Subramanian, C. Scholz, A. L. Isbell, and . Thomaz, Policy Shaping: Integrating Human Feedback with Reinforcement Learning, Advances in Neural Information Processing Systems, pp.26252633-2013, 2013.

S. Griths, S. Nol, G. Morlino, L. Schillingmann, S. Kuehnel et al., Bottom-up learning of feedback in a categorization task, Development and Learning and Epigenetic Robotics (ICDL), 2012 IEEE International Conference on, pp.16-2012, 2012.

]. Grizou, I. Iturrate, L. Montesano, and M. Lopes, Pierre-Yves Oudeyeret al. Interactive Task Estimation From Unlabelled Teaching Signals, International Workshop on Human-Machine Systems, Cyborgs and Enhancing Devices, p.2013, 2013.

]. Grizou, I. Iturrate, L. Montesano, and M. Lopes, Pierre-Yves Oudeyeret al. Zero-calibration BMIs for sequential tasks using error-related potentials, IROS 2013 Workshop on Neuroscience and Robotics, p.2013, 2013.

]. Grizou, M. Lopes, and P. Oudeyer, Robot learning simultaneously a task and how to interpret human instructions, 2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL), pp.18-19, 2013.
DOI : 10.1109/DevLrn.2013.6652523

URL : https://hal.archives-ouvertes.fr/hal-00850703

]. Grizou, I. Iturrate, L. Montesano, P. Oudeyer, and M. Lopes, Interactive Learning from Unlabeled Instructions, Proceedings of the Thirtieth Conference on Uncertainty in Articial Intelligence, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01007689

]. Grizou, I. Iturrate, and L. Montesano, Pierre-Yves Oudeyer, Manuel Lopeset al. Calibration-Free BCI Based Control, International AAAI Conference on Articial Intelligence, pp.18-19, 2014.

]. Grizou, M. Lopes, and P. Oudeyer, Robot Learning from Unlabelled Teaching Signals, HRI 2014 Pioneers Workshop, p.2014, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00963725

H. Daniel, O. Grollman, and . Jenkins, Dogged Learning for Robots, ICRA, p.24832488, 2007.

H. Daniel, O. Grollman, and . Jenkins, Learning robot soccer skills from demonstration, Development and Learning ICDL 2007. IEEE 6th International Conference on, p.276281, 2007.

]. Guenter, M. Hersch, S. Calinon, and A. Billard, Reinforcement learning for imitating constrained reaching movements, Advanced Robotics, vol.21, issue.13, p.15211544, 2007.

S. Heath, R. Schulz, D. Ball, and J. Wiles, Long summer days: grounded learning of words for the uneven cycles of real world events. Autonomous Mental Development, IEEE Transactions on, vol.4, issue.3, pp.192203-2012, 2012.

M. Heckmann, H. Brandl, J. Schmuedderich, X. Domont, B. Bolder et al., Teaching a humanoid robot: Headset-free speech interaction for audio-visual association learning, RO-MAN 2009, The 18th IEEE International Symposium on Robot and Human Interactive Communication, p.422427, 2009.
DOI : 10.1109/ROMAN.2009.5326338

]. Hester, M. Lopes, and P. Stone, Learning exploration strategies in model-based reinforcement learning, Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems, pages 10691076. International Foundation for Autonomous Agents and Multiagent Systems, p.2013, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00871861

E. William and . Hockley, Analysis of response time distributions in the study of cognitive processes, Journal of Experimental Psychology: Learning, Memory, and Cognition, vol.10, issue.4, p.598, 1984.

E. Geir, P. Hovland, . Sikka, J. Brenan, and . Mccarragher, Skill acquisition from human demonstration using a hidden markov model, Robotics and Automation IEEE International Conference on, p.27062711, 1996.

J. G. Hyon, G. Hale, and . Cheng, Full-body compliant humanhumanoid interaction: balancing in the presence of unknown external forces, Robotics IEEE Transactions on, vol.23, issue.5, p.884898, 2007.

S. Nakanishi and . Schaal, Learning rhythmic movements by demonstration using nonlinear oscillators, Proceedings of the ieee/rsj int. conference on intelligent robots and systems (iros2002), numéro BIOROB-CONF-2002-003, p.958963, 2002.

C. R. Isbell, M. Shelton, and . Kearns, Satinder Singh and Peter Stone. A social reinforcement learning agent, Proceedings of the fth international conference on Autonomous agents, p.377384, 2001.

L. Inaki-iturrate, J. Montesano, and . Minguez, Single trial recognition of error-related potentials during observation of robot operation, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, p.160, 2010.
DOI : 10.1109/IEMBS.2010.5627380

]. I. Iturrate, L. Montesano, and J. Minguez, Shared-control braincomputer interface for a two dimensional reaching task using EEG errorrelated potentials, Int. Conf, p.2013, 2013.

]. I. Iturrate, L. Montesano, and J. Minguez, Task-dependent signal variations in EEG error-related potentials for brain???computer interfaces, Journal of Neural Engineering, vol.10, issue.2, 2013.
DOI : 10.1088/1741-2560/10/2/026024

]. K. Judah, S. Roy, A. Fern, and T. G. Dietterich, Reinforcement Learning Via Practice and Critique Advice, Twenty-Fourth AAAI Conference on Articial Intelligence (AAAI-10), p.2010, 2010.

]. Judah, A. Fern, G. Thomas, and . Dietterich, Active Imitation Learning via Reduction to IID Active Learning, AAAI Fall Symposium: Robots Learning Interactively from Human Teachers, p.2012, 2012.

]. T. Kailath, The Divergence and Bhattacharyya Distance Measures in Signal Selection, IEEE Transactions on Communications, vol.15, issue.1, p.5260, 1967.
DOI : 10.1109/TCOM.1967.1089532

]. T. Kaochar, R. Peralta, C. Morrison, I. Fasel, T. Walsh et al., Towards Understanding How Humans Teach Robots. User Modeling, Adaption and Personalization, pp.347352-347375, 2011.

P. Frédéric-kaplan, E. Oudeyer, A. Kubinyi, and . Miklósi, Robotic clicker training, Robotics and Autonomous Systems, vol.38, issue.3, pp.22-83, 2002.

]. F. Kaplan and V. V. Hafner, The challenges of joint attention, Interaction Studies, vol.7, issue.2, p.135169, 2006.

]. F. Kaplan, P. Y. Oudeyer, and B. Bergen, Computational models in the debate over language learnability. infant and child development, p.5580, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00348493

]. J. Kim and R. J. Mooney, Unsupervised PCFG induction for grounded language learning with highly ambiguous supervision, 2012.

P. Kindermans, D. Verstraeten, and B. Schrauwen, A Bayesian Model for Exploiting Application Constraints to Enable Unsupervised Training of a P300-based BCI, PLoS ONE, vol.39, issue.4, pp.33758-33796, 2012.
DOI : 10.1371/journal.pone.0033758.s002

H. Pj-kindermans and . Verschore, A P300 BCI for the Masses: Prior Information Enables Instant Unsupervised Spelling, NIPS, p.2012, 2012.

P. Kindermans, M. Tangermann, K. Müller, and B. Schrauwen, Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller, Journal of Neural Engineering, vol.11, issue.3, pp.35005-35043, 2014.
DOI : 10.1088/1741-2560/11/3/035005

B. Knox, I. Fasel, and P. Stone, Design Principles for Creating Human-Shapable Agents, AAAI Spring Symposium: Agents that Learn from Human Teachers, p.7986, 2009.

]. W. Knox and P. Stone, Interactively shaping agents via human reinforcement, Proceedings of the fifth international conference on Knowledge capture, K-CAP '09, pp.916-938, 2009.
DOI : 10.1145/1597735.1597738

B. Knox and P. Stone, Combining manual feedback with subsequent MDP reward signals for reinforcement learning International Foundation for Autonomous Agents and Multiagent Systems, Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, p.512, 2010.

]. W. Knox, B. Glass, B. Love, W. Maddox, and P. Stone, How Humans Teach Agents, International Journal of Social Robotics, vol.10, issue.2, p.2012, 2012.
DOI : 10.1007/s12369-012-0163-x

Z. Kolter, P. Abbeel, Y. Andrew, and . Ng, Hierarchical apprenticeship learning with application to quadruped locomotion, Advances in Neural Information Processing Systems, p.769776, 2007.

Z. Kolter, Y. Andrew, and . Ng, Near-Bayesian exploration in polynomial time, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, 2009.
DOI : 10.1145/1553374.1553441

]. Kopp, Social resonance and embodied coordination in faceto-face conversation with articial interlocutors, Speech Communication, vol.52, issue.6, p.587597, 2010.

K. Kose-bagci-hatice-kose-bagci, . Dautenhahn, L. Chrystopher, and . Nehaniv, Emergent dynamics of turn-taking interaction in drumming games with a humanoid robot, RO-MAN 2008, The 17th IEEE International Symposium on Robot and Human Interactive Communication, p.346353, 2008.
DOI : 10.1109/ROMAN.2008.4600690

A. Peter and . Lachenbruch, Discriminant analysis, 1975.

]. Lin, S. Ren, M. Clevenger, and Y. Sun, Learning grasping force from demonstration, 2012 IEEE International Conference on Robotics and Automation, pp.15261531-2012, 2012.
DOI : 10.1109/ICRA.2012.6225222

A. Lockerd and C. Breazeal, Tutelage and socially guided robot learning, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), p.34753480, 2004.
DOI : 10.1109/IROS.2004.1389954

]. Loftin, B. Peng, J. Macglashan, L. Michael, . Littman et al., Learning something from nothing: Leveraging implicit human feedback strategies, The 23rd IEEE International Symposium on Robot and Human Interactive Communication, p.24, 2014.
DOI : 10.1109/ROMAN.2014.6926319

M. Lopes, J. Santos, and . Victor, Visual Learning by Imitation With Motor Representations, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.35, issue.3, p.438449, 2005.
DOI : 10.1109/TSMCB.2005.846654

]. Lopes, F. S. Melo, and L. Montesano, Aordancebased imitation learning in robots, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'07), p.10151021, 2007.

M. Lopes, J. Santos, and . Victor, A Developmental Roadmap for Learning by Imitation in Robots, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.37, issue.2, p.308321, 2007.
DOI : 10.1109/TSMCB.2006.886949

]. Lopes, S. Francisco, B. Melo, J. Kenward, . Santos et al., A Computational Model of Social-Learning Mechanisms, Adaptive Behavior, vol.17, issue.6, p.467483, 2009.
DOI : 10.1177/1059712309342757

]. Lopes, F. S. Melo, and L. Montesano, Active Learning for Reward Estimation in Inverse Reinforcement Learning, Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: Part II, ECML PKDD '09, pp.3146-3174, 2009.
DOI : 10.1007/978-3-642-04174-7_3

M. Lopes, F. Melo, L. Montesano, J. Santos, and . Victor, Abstraction Levels for Robotic Imitation: Overview and Computational Approaches Peters, editeurs, From Motor to Interaction Learning in Robots, Studies in Computational Intelligence, vol.264, pp.313355-2010, 2010.

]. M. Lopes, T. Cederborg, and P. Oudeyer, Simultaneous acquisition of task and feedback models, 2011 IEEE International Conference on Development and Learning (ICDL), pp.26-131, 2011.
DOI : 10.1109/DEVLRN.2011.6037359

URL : https://hal.archives-ouvertes.fr/hal-00636166

M. ]-fabien-lotte, A. Congedo, F. Lécuyer, B. Lamarche, and . Arnaldi, A review of classication algorithms for EEG-based braincomputer interfaces, Journal of neural engineering, vol.4, issue.178, p.144, 2007.

]. Lu, C. Guan, and H. Zhang, Unsupervised brain computer interface based on intersubject information and online adaptation, Neural Systems and Rehabilitation Engineering IEEE Transactions on, vol.17, issue.2, p.135145, 2009.

]. Lungarella, G. Metta, R. Pfeifer, and G. Sandini, Developmental robotics: a survey, Connection Science, vol.1, issue.4, p.151190, 2003.
DOI : 10.2307/1131322

]. C. Lyon, C. L. Nehaniv, and J. Saunders, Interactive Language Learning by Robots: The Transition from Babbling to Word Forms, PLoS ONE, vol.2, issue.3, pp.38236-2012, 2012.
DOI : 10.1371/journal.pone.0038236.s002

J. Richard-maclin, L. Shavlik, T. Torrey, E. Walker, and . Wild, Giving advice about preferred actions to reinforcement learners via knowledge-based kernel regression, Proceedings of the National Conference on Articial intelligence, p.819, 2005.

P. Olivier-mangin and . Oudeyer, Learning semantic components from subsymbolic multimodal perception, Development and Learning and Epigenetic Robotics (ICDL), 2013 IEEE Third Joint International Conference on, pp.17-2013, 2013.

B. Henry, . Mann, R. Donald, and . Whitney, On a test of whether one of two random variables is stochastically larger than the other. The annals of mathematical statistics, p.5060, 1947.

M. Martin and M. Lopes, Robot Self-Initiative and Personalization by Learning through Repeated Interactions, 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI'11), p.22, 2011.

J. Maja and . Mataric, Sensory-motor primitives as a basis for imitation: Linking perception to action and biology to robotics, Imitation in animals and artifacts. Citeseer, 2000.

S. Francisco, M. Melo, and . Lopes, Learning from demonstration using mdp induced metrics, Machine Learning and Knowledge Discovery in Databases, p.385401, 2010.

P. Marek, S. Michalowski, H. Sabanovic, and . Kozima, A dancing robot for rhythmic social interaction, Human-Robot Interaction (HRI) 2nd ACM/IEEE International Conference on, p.8996, 2007.

. Jdr, R. Millán, G. R. Rupp, R. Müller-putz, C. Murray-smith et al., Combining braincomputer interfaces and assistive technologies: state-of-the-art and challenges, Front Neurosci, vol.4, 2010.

Y. Mohammad and T. Nishida, Constrained Motif Discovery in Time Series, New Generation Computing, vol.24, issue.1, p.319346, 2009.
DOI : 10.1007/s00354-009-0068-x

]. Mohammad, T. Nishida, and S. Okada, Unsupervised simultaneous learning of gestures, actions and their associations for Human-Robot Interaction, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, p.25372544, 2009.
DOI : 10.1109/IROS.2009.5353987

Y. Mohammad and T. Nishida, Learning interaction protocols using Augmented Baysian Networks applied to guided navigation, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, p.36, 2010.
DOI : 10.1109/IROS.2010.5651719

M. Luis-montesano, A. Lopes, J. Bernardino, . Santos, and . Victor, Learning object aordances: From sensorymotor coordination to imitation, Robotics IEEE Transactions on, vol.24, issue.1, p.1526, 2008.

L. Montesano and M. Lopes, Learning grasping aordances from local visual descriptors, Development and Learning ICDL 2009. IEEE 8th International Conference on, p.16, 2009.

L. Montesano and M. Lopes, Active learning of visual descriptors for grasping using non-parametric smoothed beta distributions, Robotics and Autonomous Systems, vol.60, issue.3, pp.452462-452489, 2012.
DOI : 10.1016/j.robot.2011.07.013

URL : https://hal.archives-ouvertes.fr/hal-00637575

]. Morlino, C. Gianelli, M. Anna, S. Borghi, and . Nol, Developing the Ability to Manipulate Objects: A Comparative Study with Human and Articial Agents, Processings of the Tenth International Conference on Epigenetic Robotics, p.169170, 2010.

S. Natarajan, S. Joshi, P. Tadepalli, K. Kersting, and J. Shavlik, Imitation learning in relational domains: A functionalgradient boosting approach, Proceedings of the Twenty-Second international joint conference on Articial Intelligence-Volume Volume Two, p.14141420, 2011.

L. Chrystopher, K. Nehaniv, and . Dautenhahn, The Correspondence Problem. Imitation in animals and artifacts, p.41, 2002.

Y. Andrew, . Ng, J. Stuart, and . Russell, Algorithms for inverse reinforcement learning, Icml, 2000.

M. Sao, P. Nguyen, and . Oudeyer, Active choice of teachers, learning strategies and goals for a socially guided intrinsic motivation learner, Paladyn Journal of Behavioural Robotics, vol.3, issue.3, pp.136146-2012, 2012.

S. Raymond and . Nickerson, Conrmation bias: A ubiquitous phenomenon in many guises, Review of general psychology, vol.2, issue.2, p.175, 1998.

]. M. Nicolescu and M. J. Mataric, Natural methods for robot task learning, Proceedings of the second international joint conference on Autonomous agents and multiagent systems , AAMAS '03, p.241248, 2003.
DOI : 10.1145/860575.860614

E. Catherine and . Snow, Pragmatic development, pp.11-46, 1996.

]. A. Nouri and M. L. Littman, Dimension reduction and its application to model-based exploration in continuous spaces, Machine Learning, vol.1, issue.4, p.8598, 2010.
DOI : 10.1007/s10994-010-5202-y

]. Ochs, B. Bambi, M. Schieelin, and . Platt, Propositions across utterances and speakers. Developmental pragmatics, pp.251268-60, 1979.

]. A. Orsborn, H. G. Dangi, J. M. Moorman, and . Carmena, Closed-Loop Decoder Adaptation on Intermediate Time-Scales Facilitates Rapid BMI Performance Improvements Independent of Decoder Initialization Conditions, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.20, issue.4, 2012.
DOI : 10.1109/TNSRE.2012.2185066

]. P. Oudeyer and J. R. Hurford, Self-organization in the evolution of speech, 2006.
DOI : 10.1093/acprof:oso/9780199289158.001.0001

URL : https://hal.archives-ouvertes.fr/hal-00818204

R. Michael-pardowitz, R. Zollner, and . Dillmann, Learning sequential constraints of tasks from user demonstrations, Humanoid Robots 5th IEEE-RAS International Conference on, p.424429, 2005.

M. Pardowitz, S. Knoop, R. Dillmann, and R. Zollner, Incremental Learning of Tasks From User Demonstrations, Past Experiences, and Vocal Comments, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.37, issue.2, p.322332, 2007.
DOI : 10.1109/TSMCB.2006.886951

J. Martin, S. Pickering, and . Garrod, Toward a mechanistic psychology of dialogue, Behavioral and brain sciences, vol.27, issue.2, p.169189, 2004.

M. Patrick, . Pilarski, S. Richard, and . Sutton, Between Instruction and Reward: Human-Prompted Switching, AAAI Fall Symposium: Robots Learning Interactively from Human Teachers, p.2012, 2012.

K. Pitsch, A. Vollmer, and M. Muhlig, Robot feedback shapes the tutor's presentation How a robot's online gaze strategies lead to micro-adaptation of the human's conduct, Interaction Studies, vol.14, issue.2, p.2013, 2013.

]. J. Platt, Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods Advances in large margin classiers, p.6174, 1999.

J. Polich, On the relationship between EEG and P300: individual differences, aging, and ultradian rhythms, International Journal of Psychophysiology, vol.26, issue.1-3, 1997.
DOI : 10.1016/S0167-8760(97)00772-1

A. Dean and . Pomerleau, Ecient training of articial neural networks for autonomous navigation, Neural Computation, vol.3, issue.1, p.8897, 1991.

]. K. Rohlng, J. Fritsch, B. Wrede, and T. Jungmann, How can multimodal cues from child-directed interaction reduce learning complexity in robots?, Advanced Robotics, vol.20, issue.10, p.11831199, 2006.

J. Katharina-rohlng, J. Salas-poblete, and . Frank, Learning new words in unfamiliar frames from direct and indirect teaching, pp.11-46, 2013.

]. Rouanet, P. Oudeyer, F. Danieau, and D. Filliat, The impact of humanrobot interfaces on the learning of visual objects, Robotics IEEE Transactions on, vol.29, issue.2, pp.525541-2013, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00758241

]. D. Roy and A. Pentland, Learning words from sights and sounds: a computational model, Cognitive Science, vol.55, issue.3, p.113146, 2002.
DOI : 10.1207/s15516709cog2601_4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

]. D. Roy, Semiotic schemas: A framework for grounding language in action and perception, Artificial Intelligence, vol.167, issue.1-2, p.170205, 2005.
DOI : 10.1016/j.artint.2005.04.007

]. H. Sakoe and S. Chiba, Dynamic programming algorithm optimization for spoken word recognition, Acoustics, Speech and Signal Processing IEEE Transactions on, vol.26, issue.1, p.4349, 1978.

]. Saunders, L. Chrystopher, K. Nehaniv, and . Dautenhahn, Teaching robots by moulding behavior and scaolding the environment, Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-robot interaction, p.118125, 2006.

D. Sternad, Programmable pattern generators, 3rd International Conference on Computational Intelligence in Neuroscience, p.4851, 1998.

]. L. Schillingmann, P. Wagner, C. Munier, B. Wrede, and K. Rohlng, Acoustic Packaging and the Learning of Words, Frontiers in Computational Neuroscience, vol.5, p.20, 2011.

]. Schulz, A. Glover, G. Wyeth, and J. Wiles, Robots, communication, and language: An overview of the Lingodroid project, Australasian Conference on Robotics and Automation (ACRA), 2010.

]. Schulz, G. Wyeth, and J. Wiles, Lingodroids: socially grounding place names in privately grounded cognitive maps, Adaptive Behavior, vol.20, issue.2, p.1059712311421437, 2011.
DOI : 10.1037/10096-006

D. William, L. P. Smart, and . Kaelbling, Eective reinforcement learning for mobile robots, Robotics and Automation, 2002.

]. Smith, M. Self, and P. Cheeseman, Estimating uncertain spatial relationships in robotics, Proceedings. 1987 IEEE International Conference on Robotics and Automation, p.167193, 1990.
DOI : 10.1109/ROBOT.1987.1087846

]. L. Smith and C. Yu, Infants rapidly learn word-referent mappings via cross-situational statistics, Cognition, vol.106, issue.3, p.15581568, 2008.
DOI : 10.1016/j.cognition.2007.06.010

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2271000

]. Spranger, The co-evolution of basic spatial terms and categories . Experiments in cultural language evolution, Benjamins, pp.111141-2012, 2012.

M. Spranger and L. Steels, Emergent functional grammar for space. Experiments in Cultural Language Evolution, John Benjamins, p.2012, 2012.

]. L. Steels and F. Kaplan, Aibos rst words: The social learning of language and meaning, Evolution of communication, vol.4, issue.29, pp.332-344, 2002.

]. L. Steels, Evolving grounded communication for robots, Trends in Cognitive Sciences, vol.7, issue.7, p.308312, 2003.
DOI : 10.1016/S1364-6613(03)00129-3

L. Steels and M. Loetzsch, Perspective Alignment in Spatial Language, Spatial Language and Dialogue, 2007.
DOI : 10.1093/acprof:oso/9780199554201.003.0006

]. L. Steels and M. Spranger, Can body language shape body image, 2008.

]. L. Steels and M. Spranger, The robot in the mirror, Connection Science, vol.28, issue.4, p.337358, 2008.
DOI : 10.1016/0031-3203(95)00069-0

]. L. Steels, Grounding Language through Evolutionary Language Games. Language Grounding in Robots, pp.122-151, 2012.
DOI : 10.1007/978-1-4614-3064-3_1

URL : https://digital.csic.es/bitstream/10261/128293/1/accesoRestringido.pdf

]. Steels, J. Beule, and P. Wellens, Fluid Construction Grammar on Real Robots. Language Grounding in Robots, p.2012, 2012.
DOI : 10.1007/978-1-4614-3064-3_10

P. Stone and S. Kraus, To teach or not to teach?: decision making under uncertainty in ad hoc teams International Foundation for Autonomous Agents and Multiagent Systems, Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, p.117124, 2010.

. Peter-stone, A. Gal, S. Kaminka, J. R. Kraus, N. Rosenschein et al., Teaching and leading an ad hoc teammate: Collaboration without pre-coordination, Articial Intelligence, vol.203, p.3565, 2013.

]. Y. Sugita and J. Tani, Learning Semantic Combinatoriality from the Interaction between Linguistic and Behavioral Processes, Adaptive Behavior, vol.3, issue.1, pp.3352-3381, 2005.
DOI : 10.1177/105971230501300102

]. R. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, IEEE Transactions on Neural Networks, vol.9, issue.5, pp.133-185, 1998.
DOI : 10.1109/TNN.1998.712192

E. Matthew, H. B. Taylor, S. Suay, and . Chernova, Integrating reinforcement learning with human demonstrations of varying ability International Foundation for Autonomous Agents and Multiagent Systems, The 10th International Conference on Autonomous Agents and Multiagent Systems, p.617624, 2011.

]. Tegin, S. Ekvall, D. K. Wikander, and B. Iliev, Demonstration-based learning and control for automatic grasping, Intelligent Service Robotics, vol.38, issue.11, p.2330, 2009.
DOI : 10.1007/s11370-008-0026-3

]. Theolis, K. Solveig-lohan, L. Chrystopher, K. Nehaniv, B. Dautenhahn et al., Temporal emphasis for goal extraction in task demonstration to a humanoid robot by naive users, Development and Learning and Epigenetic Robotics (ICDL), 2013 IEEE Third Joint International Conference on, pp.16-2013, 2013.

]. A. Thomaz and C. Breazeal, Teachable robots: Understanding human teaching behavior to build more effective robot learners, Artificial Intelligence, vol.172, issue.6-7, pp.716737-716759, 2008.
DOI : 10.1016/j.artint.2007.09.009

URL : http://doi.org/10.1016/j.artint.2007.09.009

L. Torrey and M. Taylor, Teaching on a budget: Agents advising agents in reinforcement learning International Foundation for Autonomous Agents and Multiagent Systems, Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems, pp.10531060-2013, 2013.

]. C. Vidaurre and B. Blankertz, Towards a Cure for BCI Illiteracy, Brain Topography, vol.113, issue.1, 2010.
DOI : 10.1007/s10548-009-0121-6

. Vidaurre, . Kawanabe, . Bünau, K. Blankertz, and . Müller, Toward Unsupervised Adaptation of LDA for Brain–Computer Interfaces, IEEE Transactions on Biomedical Engineering, vol.58, issue.3, p.2011, 2011.
DOI : 10.1109/TBME.2010.2093133

A. Vollmer, J. Grizou, M. Lopes, K. Rohlng, and P. Oudeyer, Studying the co-construction of interaction protocols in collaborative tasks with humans, 4th International Conference on Development and Learning and on Epigenetic Robotics, pp.2014-2033
DOI : 10.1109/DEVLRN.2014.6982983

URL : https://hal.archives-ouvertes.fr/hal-01090934

A. Vollmer, M. Mühlig, J. Jochen, K. Steil, J. Pitsch et al., Robots Show Us How to Teach Them: Feedback from Robots Shapes Tutoring Behavior during Action Learning, PLoS ONE, vol.8, issue.8, pp.91349-2014
DOI : 10.1371/journal.pone.0091349.s006

J. Christopher, P. Watkins, and . Dayan, Q-learning, Machine learning, vol.8, issue.3, p.279292, 1992.

]. Wilson, A. Fern, and P. Tadepalli, A bayesian approach for policy learning from trajectory preference queries, Advances in Neural Information Processing Systems, pp.11331141-2012, 2012.

H. Peter-wittenburg, A. Brugman, A. Russel, H. Klassmann, and . Sloetjes, Elan: a professional framework for multimodality research, Proceedings of LREC, 2006.

S. Britta-wrede, K. Kopp, M. Rohlng, C. Lohse, and . Muhl, Appropriate feedback in asymmetric interactions, Journal of Pragmatics, vol.42, issue.9, p.23692384, 2010.

]. F. Xu and J. B. Tenenbaum, Word learning as Bayesian inference., Psychological Review, vol.114, issue.2, p.245, 2007.
DOI : 10.1037/0033-295X.114.2.245

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

]. C. Yu and D. H. Ballard, A multimodal learning interface for grounding spoken language in sensory perceptions, ACM Transactions on Applied Perception (TAP), vol.1, issue.1, p.5780, 2004.

]. C. Yu, D. H. Ballard, and R. N. Aslin, The Role of Embodied Intention in Early Lexical Acquisition, Cognitive Science, vol.1, issue.1, p.9611005, 2005.
DOI : 10.1207/s15516709cog0000_40

]. C. Yu and D. H. Ballard, A unied model of early word learning: Integrating statistical and social cues, Neurocomputing, vol.70, issue.30, pp.21492165-21492194, 2007.

]. F. Zheng, G. Zhang, and Z. Song, Comparison of dierent implementations of MFCC, Journal of Computer Science and Technology, vol.16, issue.6, p.582589, 2001.