
HAL Id: tel-01097418
https://inria.hal.science/tel-01097418

Submitted on 19 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trace Zero Varieties in Cryptography: Optimal
Representation and Index Calculus

Maike Massierer

To cite this version:
Maike Massierer. Trace Zero Varieties in Cryptography: Optimal Representation and Index Calculus.
Mathematics [math]. Université de Bâle, 2013. English. �NNT : urn: urn:nbn:ch:bel-bau-diss107829�.
�tel-01097418�

https://inria.hal.science/tel-01097418
https://hal.archives-ouvertes.fr

Trace Zero Varieties in Cryptography:

Optimal Representation and Index Calculus

Inauguraldissertation

zur

Erlangung der Würde eines Doktors der Philosophie

vorgelegt der

Philosophisch–Naturwissenschaftlichen Fakultät

der Universität Basel

von

Maike Massierer

aus

Nürnberg, Deutschland

Basel, 2014

Genehmigt von der Philosophisch–Naturwissenschaftlichen Fakultät
auf Antrag von

Prof. Dr. Elisa Gorla
Prof. Dr. Tanja Lange

Basel, den 10. Dezember 2013

Prof. Dr. Jörg Schibler,
Dekan

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel
http://edoc.unibas.ch

Dieses Werk ist unter dem Vertrag “Creative Commons Namensnennung – Keine kom-
merzielle Nutzung – Keine Bearbeitung 3.0 Schweiz” (CC BY–NC–ND 3.0 CH) lizenziert.
Die vollständige Lizenz kann unter
http://creativecommons.org/licenses/by-nc-nd/3.0/ch

eingesehen werden.

http://edoc.unibas.ch
http://creativecommons.org/licenses/by-nc-nd/3.0/ch

Attribution – NonCommercial – NoDerivs 3.0 Switzerland
(CC BY–NC–ND 3.0 CH)

You are free:

to Share — to copy, distribute, and transmit the work

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the work).

Noncommercial — You may not use this work for commercial purposes.

No Derivative Works — You may not alter, transform, or build upon this work.

With the understanding that:

Waiver — Any of the above conditions can be waived if you get permission from the copyright holder.

Public Domain — Where the work or any of its elements is in the public domain under applicable law,
that status is in no way affected by the license.

Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations;

• The author’s moral rights;

• Rights other persons may have either in the work itself or in how the work is used, such as publicity or
privacy rights.

Notice — For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to the page http://creativecommons.org/licenses/by-nc-nd/3.0/ch.

Disclaimer — The Commons Deed is not a license. It is simply a handy reference for understanding
the Legal Code (the full license) – it is a human-readable expression of some of its key terms. Think of
it as the user-friendly interface to the Legal Code beneath. This Deed itself has no legal value, and its
contents do not appear in the actual license. Creative Commons is not a law firm and does not provide legal
services. Distributing of, displaying of, or linking to this Commons Deed does not create an attorney-client
relationship.

http://creativecommons.org/licenses/by-nc-nd/3.0/ch

Trust in the Lord with all your heart, and do not lean on your own understanding.
In all your ways acknowledge him, and he will make straight your paths.

The Bible (ESV), Proverbs 3:5–6

Summary

The trace zero variety associated to an elliptic or hyperelliptic curve is an abelian variety
defined over a finite field Fq. Its Fq-rational points yield a finite group, the trace zero
subgroup of the degree zero Picard group of the original curve, consisting of all points of
trace zero with respect to some field extension Fqn |Fq of prime degree n. This group has
been proposed for use in cryptographic systems based on the discrete logarithm problem
by Frey, since the group arithmetic is particularly fast, and for use in pairing-based cryp-
tosystems by Rubin and Silverberg, since it produces particularly secure pairings. In this
thesis, we study two aspects of using trace zero subgroups in cryptography: optimal-size
representation of the elements and the hardness of the discrete logarithm problem.

For the efficient use of memory and bandwidth, one desires an optimal-size representa-
tion of the elements of trace zero subgroups, i.e. a representation whose size matches the
size of the group. We propose two such representations. The first one builds on an equation
for the trace zero subgroup of an elliptic curve that we derive from Semaev’s summation
polynomials. It can be made practical for small values of n. The second one is via the
coefficients of a rational function, and it works for trace zero subgroups of elliptic and hy-
perelliptic curves of any genus, with respect to a base field extension of any prime degree.
For each representation, we present efficient compression and decompression algorithms (to
compute the representation, and to recover a full point from its representation), and com-
plement them with implementation results. We discuss in detail the practically relevant
cases of small genus and extension degree, and we compare with the other known compres-
sion methods of Naumann, Lange, and Silverberg. Both representations that we propose
are compatible with scalar multiplication of points, and they are the first representations
with this property.

We also investigate the hardness of the discrete logarithm problem in trace zero sub-
groups. For this purpose, we propose an index calculus algorithm to compute discrete
logarithms in these groups, following the approach of Gaudry for index calculus in abelian
varieties of small dimension. We make the algorithm explicit for small values of n and
study its complexity as well as its practical performance with the help of our own Magma
implementation. Finally, we compare this approach with other possible attacks on the
discrete logarithm problem in trace zero subgroups and draw some general conclusions on
the suitability of these groups for cryptographic systems.

vii

Contents

List of algorithms xi

List of tables xii

List of notation xiii

Acknowledgements xv

1 Introduction 1

2 Preliminaries 7

2.1 Public key cryptography and the discrete logarithm problem 7

2.2 Elliptic and hyperelliptic curves . 9

2.3 Weil restriction . 15

2.4 The trace zero variety . 18

2.5 Optimal representation . 20

2.6 Gröbner bases . 22

2.7 Index calculus . 25

3 Equations for the trace zero subgroup 31

3.1 Equations for the trace zero variety . 32

3.1.1 Explicit equations for n = 2 . 32

3.1.2 Explicit equations for n = 3 . 33

3.1.3 Explicit equations for n = 5 . 34

3.2 Frey’s equations for n = 3 . 36

3.3 The Semaev equation . 36

3.3.1 Explicit equations for n = 3 . 39

3.3.2 Explicit equations for n = 5 . 40

3.4 The symmetrized Semaev equation . 40

3.4.1 Explicit equations for n = 3 . 41

3.4.2 Explicit equations for n = 5 . 41

3.5 Comparison . 41

4 Point compression over small degree extension fields 43

4.1 Naumann’s representation . 45

4.2 A representation from the symmetrized Semaev polynomial 45

ix

x Contents

4.3 Compression and decompression algorithms 46
4.4 Group operation . 48
4.5 Explicit equations and comparison with other representations 49

4.5.1 Explicit equations and comparison for n = 3 49
4.5.2 Explicit equations and comparison for n = 5 53

4.6 Conclusions . 55

5 An optimal representation via rational functions 57

5.1 An optimal representation via rational functions 58
5.2 Computing the rational function . 63
5.3 Compression and decompression algorithms 66
5.4 Explicit equations for g = 2, n = 3 . 70
5.5 Timings and comparison with other representations 72
5.6 Conclusions . 74

6 An optimal representation via rational functions – elliptic curves 77

6.1 An optimal representation via rational functions 77
6.2 Compression and decompression algorithms 80
6.3 Explicit equations . 81

6.3.1 Explicit equations for g = 1, n = 3 81
6.3.2 Explicit equations for g = 1, n = 5 83

6.4 Timings and comparison with other representations 84

7 An index calculus attack on the discrete logarithm problem 89

7.1 An index calculus algorithm for the trace zero variety 90
7.1.1 Setup . 91
7.1.2 Factor base . 91
7.1.3 Relation collection . 92
7.1.4 Linear algebra . 93
7.1.5 Individual logarithm . 94

7.2 Complexity analysis . 94
7.3 Explicit equations and experiments . 96

7.3.1 Explicit equations for n = 3 . 97
7.3.2 Explicit equations for n = 5 . 102

7.4 Comparison with other attacks and discussion 105
7.5 Conclusions on the hardness of the DLP . 107

References 111

Articles 123

Curriculum vitae 125

List of algorithms

2.1 Cantor’s Algorithm including rational function 14
2.2 General outline of an index calculus algorithm 26

4.1 Compression, n ≥ 3 . 46
4.2 Decompression, n ≥ 3 . 47

5.1 Miller-style double and add algorithm for computing hD 64
5.2 Compression, n ≥ 3 . 66
5.3 Decompression, n ≥ 3 . 67

6.1 Compression for elliptic curves, n ≥ 3 . 80
6.2 Decompression for elliptic curves, n ≥ 3 . 80
6.3 Miller-style double and add algorithm for computing hP , n ≥ 3 81

xi

List of tables

3.1 Comparison of equations, n = 3 . 42
3.2 Comparison of equations, n = 5 . 42

4.1 Compression/decompression time, n = 3 . 50
4.2 Compression/decompression time, n = 5 . 54

5.1 Compression/decompression time, g = 2, n = 3 74
5.2 Compression/decompression time, g ≥ 7, n = 3, log2 |Tn| ≈ 100 74
5.3 Compression/decompression time, g ≥ 5, n = 5, log2 |Tn| ≈ 160 74

6.1 Compression/decompression operation count, n = 3 85
6.2 Compression/decompression time, n = 3 . 85
6.3 Compression/decompression operation count and complexity, n = 5 86
6.4 Compression/decompression time, n = 5 . 86
6.5 Compression/decompression time, n > 5, log2 |Tn| ≈ 160 86
6.6 Compression/decompression time, n > 5, log2 |Tn| ≈ 500 87

7.1 Index calculus time, n = 3 . 101
7.2 Index calculus time, n = 5 . 104

xii

List of notation

C usually an elliptic or a hyperelliptic curve 10

C(F) F-rational points of the curve C . 11

[D] class of the divisor D in the Picard group 12

D1 ≤ D2 comparison of two degree 0 divisors D1, D2 11

D1 ∼ D2 equivalence of divisors, i.e. [D1] = [D2] 12

D1 ⊕D2 reduced divisor s.t. D1 ⊕D2 ∼ D1 +D2, elliptic curve addition law . . 12

deg(D) degree of a divisor D . 11

DivC divisor group of the curve C . 11

DivC(Fqn) group of Fqn-rational divisors on C . 11

Div0C group of degree 0 divisors on C . 11

div(h) principal divisor of a function h . 11

dreg regularity index, or degree of regularity, of an ideal 24

E usually an elliptic curve . 12

ei i-th elementary symmetric polynomial 40

ẽi Weil restriction of ei(x, x
q, . . . , xq

n−1
) 40

F factor base . 27

fm m-th summation polynomial, or Semaev polynomial 36

f̃n Weil restriction of fn(x, x
q, . . . , xq

n−1
) 39

Fq finite field with q elements . 10

Fq algebraic closure of the field Fq . 11

g usually the genus of a curve . 10

gn symmetrized n-th Semaev polynomial 40

hD in Chapters 5, 6, the rational function such that div(hD) = Tr(D) . . 58

HD in Chapters 5, 6, the polynomial HD = hD(hD ◦ w) 59

JacC Jacobian variety of the curve C . 12

[k]P scalar multiplication by k of the elliptic curve point P 14

LN (a, c) sub-exponential complexity . 9

logP Q base-P discrete logarithm of Q . 8

ℓP,Q line passing through the points P,Q 80

lt(f) leading term of a polynomial f . 22

lt(I) leading term ideal, or initial ideal, of an ideal I 23

mreg Castelnuovo–Mumford regularity of an ideal 24

n usually the prime degree of a field extension Fqn |Fq 18

Õ “soft-O”, O-notation that ignores logarithmic factors 9

O point at infinity of an elliptic or hyperelliptic curve 11

xiii

xiv List of notation

ord(P) order of P . 8
ϕ Frobenius map . 11
Pic0C Picard group, or degree zero divisor class group, of the curve C 12
Pic0C(Fqn) Fqn-rational divisor classes in Pic0C . 12
Pic0C [k] k-torsion points of Pic0C . 12
R representation of a group . 20
ResL|K V Weil restriction of the variety V w.r.t. the extension L|K 15

Tn trace zero subgroup of Pic0C(Fqn) . 19
Tr trace map . 18
[u, v] Mumford representation of a divisor 13
uϕ(x) application of ϕ to the coefficients of the polynomial u(x) 18
Vn trace zero variety associated to a curve w.r.t. the extension Fqn |Fq . . 19
vP vertical line passing through the point P 80
w hyperelliptic involution . 11

Acknowledgements

I would like to thank. . .

. . . my advisor Elisa Gorla for her competent, friendly, and patient guidance in carry-
ing out this PhD project. Her ideas, her insights, her enthusiasm, and her knowledge
inspired me, motivated me, and gave me a fresh perspective again and again, and I
could not have done this work without. Elisa always had an open door and an open
ear for my questions and concerns, she spent an incredible amount of time discussing
and working with me, she carefully read this manuscript, and we co-authored three
articles. I learned a great deal from her about math, crypto, teaching, academia, and
life in general. I sincerely appreciate her mentorship, her advice, and her interest in
every aspect of my work and career.

. . . Tanja Lange for reading this thesis in such great detail, for numerous valuable
comments and the resulting discussions, and for coming to Basel on the day of my
defense.

. . . all those people who invited me to give talks and with whom I had helpful dis-
cussions about my work: Anja Becker, Andreas Enge, Florian Heß, Pierrick Gaudry,
Damien Robert, Ben Smith, Peter Schwabe, Vanessa Vitse, and Bo-Yin Yang.

. . . Răzvan Bărbulescu for proofreading parts of this thesis.

. . . all my colleagues, office mates, and math friends, and in particular Alberto, Alex,
Ambros, Andriy, Anna-Lena, Christian, Doris, Felix, Immu, Isac, Jung Kyu, Liza,
Maria, Matey, Moritz, Peter, Răzvan, Roland, and Susanna, for discussions about
math and many other things, for help with abstract and real-life problems, and for
the fun times we spent together inside and outside of various math and computer
science departments.

. . . Richard Buckland, Christine Flaig, Jim Franklin, Florian Heß, and Joachim Rosen-
thal, who have taught me so much about mathematics, computer science, cryptog-
raphy, and life, and who have supported and encouraged me throughout the years.

. . . the math department of the University of Zürich for access to their computing
facilities, and Carsten Rose and Rafael Ostertag for their competent and friendly
support.

. . . my brother Björn for late night help with layout, design, and technical questions
on several occasions.

. . . my family for their love, encouragement, support, and prayers, and especially my
Mom for always being there for me.

xv

xvi Acknowledgements

I gratefully acknowledge financial support of the Swiss National Science Foundation
throughout my PhD studies. I am also thankful for several travel stipends that allowed
me to attend schools and workshops all over the world, including the ECC Workshops, a
number of ECRYPT II events, many meetings organized by the Swiss Doctoral Program
in Mathematics, SP-ASCrypto in São Paulo, Trends in Coding Theory in Ascona, and an
Oberwolfach Seminar.

Chapter 1

Introduction

It is hard to imagine how today’s global society could function without electronic communi-
cation via the Internet, mobile phones, and the like. Clearly, the recent rapid development
of technologies for digital message transmission has not only brought a welcome increase
in speed, reliability, and availability, but also a great need for protection of the privacy
of digital communication. The goal of public key cryptography is to achieve exactly this.
It provides methods for secure digital communication such as data encryption, digital sig-
natures, and authentication techniques. They are implemented in numerous applications
used in modern everyday life, such as online shopping and banking websites, ATMs, mo-
bile phone connections, and many European passports, in order to protect the data and
identity of the users.

Cryptographic systems are usually designed with respect to computationally hard prob-
lems in the sense that “breaking” the system (e.g. decrypting data without possessing the
private key, forging a signature, or authenticating as someone else) is shown to be com-
putationally at least as hard as solving a given problem. Then, the system is secure if
the problem is computationally hard, meaning that no “efficient” algorithm to solve the
problem exists.

Although a number of supposedly hard problems have been proposed, only two are
widely deployed in practice. The first is factoring large integers, and the corresponding
cryptosystem is called RSA. The second is the discrete logarithm problem, or DLP: Given
an element h of a finite cyclic group G = 〈g〉, the task is to compute a number ℓ ∈ Z/|G|Z
such that gℓ = h. This number is the base-g discrete logarithm of h. The most common
cryptosystems that base their security on the DLP are Diffie–Hellman key exchange, ElGa-
mal, and the Digital Signature Algorithm DSA. In fact, it was the idea of the key exchange
algorithm of Diffie and Hellman that started the field of public key cryptography and first
introduced the DLP in multiplicative groups of finite fields in 1976 [DH76].

A combination of the Pohlig–Hellman algorithm and the Pollard–Rho algorithm can
solve the DLP in any given group G in time O(

√
N), where N is the largest prime factor

of |G|. This is called a generic attack (since it does not use any specific properties of the
group) or square root attack, and its complexity is exponential in the size of the input (i.e.
log |G|). With regard to this attack, groups of prime order have the strongest DLP, and
for this reason the order of a group used in a DLP-based cryptosystem must be efficiently
computable, so that one can decide whether it has a sufficiently large prime factor.

By exploiting the specific properties of a group and its operation, discrete logarithm
algorithms can often achieve much better complexities than the Pollard–Rho algorithm.
For example, computing discrete logarithms is trivial in the additive group Z/pZ for a
prime p because one can invert h. Hence the actual hardness of the DLP depends crucially

1

2 1. Introduction

on the underlying group. The best candidates for cryptosystems are those groups where
the DLP is the hardest, in an ideal case no algorithm of complexity better than O(

√

|G|)
is known.

In order to obtain efficient cryptosystems, it is also important that the elements of
the group G are conveniently representable and that the group operation is efficiently
implementable on a computer.

Summarizing, a major goal in public key cryptography is to identify and study groups
that satisfy the following conditions (see also [Lan01]).

• There is a convenient representation of the group elements.

• Computation with the group elements is efficient.

• The group order is efficiently computable.

• There is no attack on the DLP in the group which has better complexity than generic
algorithms.

The most popular groups in this context are multiplicative groups of finite fields, but
they do not provide optimal security, since there exist sub-exponential attacks on the DLP,
namely the number field sieve and the function field sieve. Such attacks are asymptotically
better than generic (square root) attacks, which have exponential complexity. For some
fields of small characteristic, an even better attack of quasi-polynomial complexity has
recently been found, see [BGJT13].

A popular alternative are groups of Fq-rational points of elliptic curves defined over
finite fields Fq, which were first proposed for use in DLP-based cryptosystems by Koblitz
[Kob87] and Miller [Mil85] independently in 1985. For most such groups (in particular when
q is prime), no attacks are known that have better complexity than generic algorithms. A
natural generalization, suggested by Koblitz [Kob89] in 1989, is to use Picard groups of
hyperelliptic curves defined over finite fields, but only curves of small genus are interesting
(most popular is genus 2), since index calculus attacks can solve the DLP in sub-exponential
complexity for curves of medium and large genus.

A powerful tool in this context are pairings, i.e. bilinear maps defined on a product of
elliptic curves (or more general abelian varieties) and mapping into a finite field. They were
first introduced to cryptography by Menezes, Okamoto, and Vanstone [MOV93] and Frey
and Rück [FR94], who used the Weil and Tate pairings, respectively, to reduce the DLP in
Picard groups of supersingular elliptic and hyperelliptic curves to the DLP in finite fields.
A number of positive applications of pairings in cryptography were subsequently found,
the most prominent ones being tripartite Diffie–Hellman key exchange by Joux [Jou00] and
identity-based encryption invented by Boneh and Franklin [BF03] and independently by
Sakagi, Ohgishi, and Kasahara [SOK01].

The trace zero variety. In this thesis, we study the trace zero subgroup of the Picard
group of an elliptic or hyperelliptic curve, which is yet another promising candidate in the
context of DLP-based and pairing-based cryptography. Given a curve defined over a finite
field Fq and a field extension Fqn |Fq of prime degree n, the trace zero subgroup consists of
all Fqn-rational divisor classes of trace zero, i.e. of all [D] such that

D + ϕ(D) + . . .+ ϕn−1(D) ∼ 0,

where ϕ is the Frobenius endomorphism. The trace zero subgroup can be realized as the
Fq-rational points of the trace zero variety, an (n−1)g-dimensional abelian variety defined
over Fq built by Weil restriction from the original curve of genus g.

1. Introduction 3

The trace zero variety was first proposed in the context of cryptography by Frey [Fre99]
and further studied by Naumann [Nau99], Weimerskirch [Wei01], Blady [Bla02], Lange
[Lan01, Lan04b], Diem and Scholten [Die01, DS03, DS], Rubin and Silverberg [Sil05, RS09],
and Avanzi and Cesena [AC07, Ces08, Ces10]. Although the trace zero subgroup is a proper
subgroup of the Fqn-rational points of the Jacobian of the curve, it can be shown that the
DLP in both groups has the same complexity. Therefore, from a mathematical point of
view, trace zero variety cryptosystems may be regarded as the (hyper)elliptic curve analog
of torus-based cryptosystems such as LUC [SS95], Gong–Harn [GH99], XTR [LV00], and
CEILIDIH [RS03].

The trace zero subgroup is of particular interest in the context of pairing-based cryp-
tography. Rubin and Silverberg have shown in [RS02, RS09] that the security of pairing-
based cryptosystems can be improved by using supersingular abelian varieties of dimension
greater than one in place of elliptic curves. Jacobians of hyperelliptic curves and trace zero
varieties are therefore the canonical examples for such applications. E.g., over a field of
characteristic 3 the known examples of groups with highest security parameter (i.e. 7.5)
come from trace zero subgroups relative to a field extension Fq5 |Fq.

Scalar multiplication in the trace zero subgroup is particularly efficient, due to a speed-
up using the Frobenius endomorphism, see [Lan04b, AC07]. This technique is similar to the
one used on Koblitz curves [Kob91] and has afterwards been applied to GLV/GLS curves
[GLV01, GLS11], which are the basis for several recent implementation speed records for
elliptic curve arithmetic [LS12, FHLS13, BCHL13]. In [AC07], Avanzi and Cesena show
that trace zero subgroups in general deliver better scalar multiplication performance than
elliptic curves and trace zero subgroups constructed from elliptic curves over degree 5
extension fields are almost three times faster than elliptic curves for the same group size.
They conclude that trace zero subgroups are very interesting groups for the design of
cryptographic systems based on the discrete logarithm problem due to their vastly superior
performance, but that such systems sacrifice some memory and bandwidth.

Efficient representation. The first topic of this thesis is to solve this problem by devel-
oping two representations for the elements of trace zero subgroups which are both efficiently
computable and optimal in size.

There is also another motivation for studying compact representations of the trace zero
elements: The hardness of the discrete logarithm problem in a group is closely connected
with the size of the representation of the group elements. Usually, the hardness of the DLP
is measured as a function of the group size. However, for practical purposes, the comparison
with the size of the representation of group elements is a better indicator, since it quantifies
the storage and transmission costs connected with using the corresponding cryptosystem.
Therefore, in order to make the comparison between DLP complexity and group size a fair
one, we are interested in a compact representation that reflects the size of the group.

An optimal-size representation for elliptic curves is well known. In the cryptographic
setting, it is standard procedure to represent an elliptic curve point by its x-coordinate
only, since the y-coordinate can easily be recomputed, up to sign, from the curve equa-
tion. If desired, the sign can be stored in one extra bit of information. Representing a
point via its x-coordinate gives an optimal representation for the elements of the group
of Fqn-rational points of an elliptic curve: Each of the approximately qn points can be
represented by one element of Fqn , or n elements of Fq after choosing a basis of the field
extension, i.e. the representation has size log2 q

n bits. Notice moreover that storing the
sign of the y-coordinate is unnecessary, since this representation is compatible with scalar
multiplication of points (the only operation needed in many DLP-based cryptosystems,
e.g. Diffie–Hellman key exchange): For any k ∈ Z, the x-coordinates of the points [k]P

4 1. Introduction

and −[k]P coincide. Not storing the sign of y amounts to working with equivalence classes
{±P} of points.

The standard compact representation for hyperelliptic curves is a generalization of
this: A divisor class is represented by the u-polynomial of the Mumford representation, see
[HSS01, Sta04]. Again, either one stores the signs of the coefficients of the v-polynomial
in some extra bits, or one works with equivalence classes.

Since the trace zero subgroup has about q(n−1)g elements, an optimal-size representation
should consist of approximately log2 q

(n−1)g bits. A natural approach would be to represent
an element of the trace zero subgroup via (n− 1)g elements of Fq. For practical purposes,
it is important that the representation can be efficiently computed (“compression”) and
that the original point can be easily recovered, possibly up to some small ambiguity, from
the representation (“decompression”).

Such representations and algorithms have been proposed by Naumann [Nau99, Chapter
4.2] for trace zero subgroups of elliptic curves and by Lange [Lan04b] for trace zero varieties
associated to hyperelliptic curves of genus 2, both with respect to cubic field extensions,
and by Silverberg [Sil05] for trace zero subgroups of elliptic curves with respect to base
field extensions of degree 3 and 5. A compact representation for Koblitz curves has been
proposed by Eagle, Galbraith, and Ong [EGO11]. They all build on the standard compact
representation for elliptic and hyperelliptic curves mentioned above.

A common approach to compact representations is analogous to the one for elliptic
curves: One finds a suitable equation (or several equations) for the variety, one drops one
or several coordinates, and one uses the equation(s) to recompute it or them. Naumann,
Lange, and Silverberg all follow this approach.

For this reason, after giving a short overview of the mathematical background needed
in this thesis in Chapter 2, we study equations for the trace zero variety of elliptic curves
in Chapter 3. Here and throughout the thesis, we put particular emphasis on the cases
n = 3, 5, which are most relevant in practice. First we explain how to write rather straight-
forward equations in the Weil restriction coordinates x0, . . . , xn−1, y0, . . . , yn−1, which was
already done for n = 3 by Frey [Fre99], Naumann [Nau99], and Diem [Die01]. Next, us-
ing the Semaev polynomial [Sem04], we derive an equation only in the x-coordinates that
is compatible with the standard representation for elliptic curves, i.e. with dropping the
y-coordinate. We show that this equation describes the points of the trace zero subgroup
(though possibly not the points of the entire trace zero variety), up to some well-understood
exceptions. This equation leads to the representation of Naumann for n = 3. It is useful
not only for an efficient representation, but also for the index calculus attack we describe
in Chapter 7 (see below), but its drawback is that its degree grows quickly with n. By
symmetrizing the Semaev polynomial, we derive an equation of lower degree. It is also
compatible with dropping the y-coordinate, and it identifies Frobenius conjugates of trace
zero points.

We use this last equation to propose a new optimal representation for the points of the
trace zero variety of an elliptic curve in Chapter 4. Similarly to the approach of [EGO11],
our method identifies Frobenius conjugates, i.e. it yields equivalence classes

{±ϕi(P) | i = 0, . . . , n− 1}.
We also give compression and decompression algorithms and a detailed comparison of our
method with those of Naumann for n = 3 and Silverberg for n = 3, 5. We conclude that
our algorithms are more efficient than those of [Nau99, Sil05] and points are recovered with
smaller ambiguity. In addition, our representation is (to the extent of our knowledge) the
only one that is compatible with scalar multiplication of points, since for any k ∈ Z and
i ∈ {0, . . . , n− 1}, we have [k]ϕi(P) = ϕi([k]P).

1. Introduction 5

In Chapter 5 we present a different new optimal-size representation for the elements of
the trace zero subgroup associated to an elliptic or hyperelliptic curve of any genus g and
any field extension of prime degree n. It is the first representation that works for elliptic
curves with n > 5, for hyperelliptic curves of genus 2 with n > 3, and for hyperelliptic
curves of genus g > 2. The basic idea is to represent a given divisor class via the coefficients
of the rational function whose associated principal divisor is the trace of the given divisor.
This representation also identifies well-defined equivalence classes of points, and scalar
multiplication is well-defined on such classes. We give compression and decompression
algorithms, and we show that these algorithms are comparably or more efficient than all
previously known compression and decompression methods and that they are efficient even
for medium to large values of g and n.

In Chapter 6, we specialize the results of Chapter 5 to trace zero subgroups of elliptic
curves, focussing in particular on possible simplifications compared to the more general
case and also giving some self-contained and simpler proofs. We see that the algorithms
are particularly efficient here and give a detailed comparison with the other compression
methods for trace zero subgroups of elliptic curves.

Index calculus. In view of all the applications of trace zero subgroups discussed above, a
detailed assessment of the complexity of the discrete logarithm problem becomes necessary.
The second goal of this thesis is to do this by means of developing an index calculus
algorithm, following the approach of Gaudry [Gau09] for index calculus in abelian varieties.
Since the DLP in Pic0C(Fqn), where Pic0C is the Picard group of an elliptic or hyperelliptic
curve defined over Fq, has the same complexity as the DLP in the corresponding trace zero
subgroup, the results are also relevant to groups Pic0C(Fqn).

Index calculus is a classical method to compute discrete logarithms in groups where
a concept of prime elements and factorization is available. After choosing a set of small
primes, the so-called factor base, the algorithm performs two computationally costly steps.
First, it chooses a random group element and checks whether all its prime factors are
elements of the factor base. This is not very likely, but if it is true, the algorithm has found
a relation. By trying sufficiently many random group elements, the algorithm generates
about as many relations as there are factor base elements. In the second step, the algorithm
solves a sparse linear system, obtained from the relations. By doing this, it deduces the
discrete logarithms of all factor base elements, and they may then be used to compute the
desired discrete logarithm.

It is an important innovation of Gaudry’s index calculus algorithm that it works in
abelian varieties, where no concept of factorization is available a priori. His idea is to
translate the condition for a relation into a system of polynomial equations and to solve
this system using Gröbner basis techniques. For this approach, it is important that a
convenient representation of the elements and simple equations of the variety are available.
Gaudry’s algorithm has thus far been applied to algebraic tori by Granger and Vercauteren
[GV05] and the Weil restriction of elliptic and hyperelliptic curves defined over extension
fields by Gaudry himself, by Joux and Vitse, and by Nagao [Gau09, JV12, Nag10]. An
analogous algorithm for elliptic curves has been proposed independently by Diem [Die11].

In Chapter 7, we apply Gaudry’s index calculus algorithm to the trace zero variety
associated to an elliptic curve. We give a detailed description of the algorithm, using
the equations for the trace zero subgroup derived in Chapter 3 and making explicit the
choice of the factor base and the shape of the polynomial systems. We perform a heuristic
complexity analysis of the algorithm similar to the one of Gaudry, but asymptotic in both
q and n. When regarding n as a constant, as Gaudry does, the attack has complexity
Õ(q2−2/(n−1)), which means that it is better than generic (square root) attacks on the

6 1. Introduction

trace zero subgroup for n > 3. However, the complexity depends exponentially on n,
which is due to the fact that n determines the size of the polynomial system, and Gröbner
basis computations are exponential in this number. This shows that the index calculus
attack is only feasible for very moderate values of n.

We furthermore study the practicality of the attack using Magma. Our experiments
indicate that it is possible to compute a discrete logarithm in a 60-bit trace zero subgroup
when n = 3 and that it is already extremely difficult to solve one single polynomial system
when n = 5. By employing a trick from [JV12] and using a hybrid approach to solve
the system (see [YCC04, BFP08]), we are able to generate enough relations to compute a
discrete logarithm for a 36-bit trace zero subgroup for n = 5, but this method does not
seriously threaten the DLP in this group.

Finally, we compare the index calculus attack to other known attacks, namely the
Pollard–Rho algorithm, index calculus algorithms on the whole curve, and cover attacks,
and we discuss the suitability of trace zero subgroups in general for DLP-based and pairing-
based cryptosystems. Our conclusion is that there exist no attacks on the DLP in trace
zero subgroups of elliptic curves with n = 3 that are better than generic (square root)
attacks. The security of trace zero subgroups of elliptic curves with n ≥ 5 and of hy-
perelliptic curves is not optimal, since Gaudry’s index calculus algorithm is better than
generic attacks here, but we have seen that the Gröbner basis computations that are part
of this approach become infeasible very quickly. It is our impression that further study, in
particular on specialized Gröbner basis algorithms, is needed in order to make this attack a
real-life threat. We also see that the attack does not threaten the security of pairing-based
cryptosystems using the trace zero variety, provided that the curve is chosen appropriately.

Experiments and equations. We have implemented all algorithms presented in this
thesis in Magma [BCP97]. These implementations are neither specialized nor optimized
and serve mainly as a proof of concept. For the most frequently studied cases g = 1, n = 3, 5
and g = 2, n = 3, we often give timings, which serve as an indication for the feasibility and
efficiency of our methods. All computations were performed on one core of an Intel Xeon
X7550 Processor (2.00 GHz) on a Fujitsu Primergy RX900S1.

In Chapter 3, we explain how to compute explicit equations, but many of them are too
long to be printed in this thesis, even in very small font. These equations can be found
online at http://maikemassierer.wordpress.com/phdthesis.

http://maikemassierer.wordpress.com/phdthesis

Chapter 2

Preliminaries

We give the necessary mathematical background for this thesis. We try to be self-contained
but brief, and we state the relevant results without proof. In many cases, we take a very
concrete point of view and treat objects and techniques from algebra, number theory,
and algebraic geometry from a computational perspective, as needed in cryptography. In
each section, we point out references that give a more general mathematical treatment of
the subject. The Handbook of Elliptic and Hyperelliptic Curve Cryptography [ACD+06],
which covers all topics of this chapter—though often also without proofs, contains a more
comprehensive list of references to the relevant literature. For a general introduction to
cryptography, we refer the reader to the book of Stinson [Sti06].

2.1 Public key cryptography and the discrete logarithm

problem

The main goal of classical cryptography was the encryption of messages, in order to make
their content unreadable for unauthorized third parties. This was achieved with a sym-
metric setup, where the communicating parties share a common secret key, and this key is
used for both encryption and decryption.

Modern cryptography has a much wider range of applications, including not only data
encryption but also digital signatures, authentication methods, key distribution and key
agreement protocols, interactive proof systems, secret sharing schemes, and many others
(see [Sti06]). Generally speaking, all of these techniques are needed to allow secure and pri-
vate digital communication by protecting the data and the identities of the communicating
parties in the presence of (possibly malicious) third parties.

While symmetric techniques are still important today, asymmetric techniques provide
particularly powerful tools, since they do not require the prior agreement on a shared
secret key. Instead, asymmetric cryptography, also called public key cryptography, operates
with a pair of keys to perform opposite tasks: The public key is used for encryption of a
message or verification of a digital signature, and the private key is used for decryption of a
message or creation of a digital signature. Public key cryptography also provides techniques
for agreeing on a shared secret (e.g. a secret key to be used subsequently for symmetric
encryption) via an insecure channel (e.g. the Internet). In fact, the publication of the first
such algorithm in 1976 [DH76] marked the birth of public key cryptography in the public
scientific community. This algorithm is the Diffie–Hellman key exchange protocol, which
(together with its variants) is still the most widely deployed key agreement algorithm today.
The most common public key encryption algorithms are the RSA [RSA78] and ElGamal

7

8 2. Preliminaries

[ElG85] cryptosystems (and their variants), and the standard for digital signatures is the
Digital Signature Algorithm (DSA) [Nat94], which is a variant of the ElGamal signature
scheme [ElG85].

Diffie–Hellman key exchange and both ElGamal systems base their security on the
discrete logarithm problem in the sense that solving the discrete logarithm problem is
sufficient for “breaking” each of the systems. In the case of Diffie–Hellman, this means that
the shared secret can be computed just from the information sent over the channel. In the
case of ElGamal, it means that an encrypted message can be decrypted or a signature can
be forged without possessing the private key.

Definition 2.1. Let G be a finite group (here written additively). Given two elements
P ∈ G and Q ∈ 〈P 〉, the discrete logarithm problem (DLP) is

find an element ℓ ∈ Z/(ordP)Z such that ℓP = Q.

The number ℓ is called the base-P discrete logarithm of Q and denoted by logP Q.

Diffie–Hellman key exchange and the ElGamal systems can only be secure if the DLP
is computationally hard, meaning that no efficient algorithm exists to solve it (this notion
is made more precise at the end of this section). Such cryptosystems are called DLP-
based cryptosystems, since they base their security on the hardness of the DLP. Since it
is extremely difficult to show that no efficient algorithm to solve the DLP exists, a DLP-
based cryptosystem is usually considered secure as long as no efficient algorithm to solve
the DLP is known. An algorithm that solves the DLP, or more generally a hard problem
on which the security of a cryptosystem relies, is called an attack.

The actual hardness of the DLP depends crucially on the group G. For example, the
DLP is very easy in the additive group Z/pZ, since it can be solved there by a simple
division. Therefore, it makes sense only to speak of the hardness of the DLP in a certain
group, and only groups where the DLP is hard are suitable for use in cryptography.

Remark 2.2. Breaking Diffie–Hellman or ElGamal in the sense explained above is actually
equivalent (see [Sti06]) to solving the Diffie–Hellman problem (DHP), which is

given P, aP, bP ∈ G, compute abP.

Obviously, the Diffie–Hellman problem can be solved by solving a discrete logarithm prob-
lem (i.e. by computing either a from aP or b from bP). Whether the DLP can vice versa be
reduced to the DHP, however, is an open question, and the two problems are known to be
equivalent only in certain groups [Boe90, Mau94]. Nevertheless, cryptography extensively
studies the hardness of the DLP, and not the DHP, and we also concentrate only on the
DLP.

As explained in the Introduction, in order to build secure and practical DLP-based
cryptographic systems, one actually needs groups that fulfill a number of requirements,
the most important ones being that there is a convenient representation of the group
elements, that the group operation can be implemented efficiently, that the group order is
efficiently computable, and that the DLP in the group is hard. Elliptic curves and Picard
groups of hyperelliptic curves of genus 2 defined over finite fields (see Section 2.2) are
considered by many to be the best such groups, since arithmetic is efficient and they are
currently conjectured to provide the strongest instances of the DLP. Naturally, subgroups
of these groups are also good candidates (this idea goes back to Schnorr [Sch89], who was
the first to propose using prime order subgroups of F×

p). One such subgroup is the trace

2.2. Elliptic and hyperelliptic curves 9

zero subgroup (see Section 2.4), and the goal of this thesis is to study the suitability of this
group for DLP-based cryptosystems.

Before ending this section, we give some rather informal and intuitive notions concern-
ing the efficiency of algorithms. For more detailed and precise definitions on this topic, see
[CLRS09].

The efficiency of an algorithm is measured by its complexity in terms of the size of the
input. For algorithms that solve the DLP, this is log2N if N := |〈P 〉| = ord(P), i.e. the
size of the group we are computing in.

An algorithm is called polynomial-time if it has polynomial complexity in logN , i.e.
of the form O(f(logN)) where f is a polynomial. Such algorithms are considered effi-
cient. Therefore, cryptosystems based on problems that can be solved by polynomial-time
algorithms are not secure. An example for this is the DLP in Z/pZ.

An algorithm is called exponential-time if it has exponential complexity in logN , i.e. of
the form O(2logN) = O(N). Such algorithms are very inefficient, and cryptosystems based
on hard problems for which only exponential-time algorithms are known are generally
considered secure. For example, since the DLP is a finite problem, it can always be
solved by exhaustive search. However, this involves trying out all elements of 〈P 〉, which
has complexity O(N) and is therefore exponential-time. Hence the existence of such a
brute force algorithm does not threaten the security of a cryptosystem. The reasoning
behind this is that the group can always be chosen large enough (say of size 2100) to make
such attacks infeasible. Examples of groups where only exponential DLP-algorithms are
currently known are elliptic curves defined over finite prime fields and Picard groups of
hyperelliptic curves of genus 2 defined over finite fields.

Sub-exponential algorithms have complexity

LN (a, c) = exp
(
(c+ o(1))(logN)a(log logN)1−a

)
, 0 < a < 1,

which truly lies in between exponential (this would be a = 1) and polynomial (this would
be a = 0). Cryptosystems that base their security on a problem for which a sub-exponential
attack is known are considered less secure, but they are still used in practice. This must
be compensated for by choosing a larger group. Examples of such groups in the context of
the DLP are multiplicative groups of finite prime fields and Picard groups of hyperelliptic
curves of large genus defined over finite fields. This explains why many experts consider
cryptosystems that operate in groups of rational points on elliptic curves superior to cryp-
tosystems that operate in multiplicative groups of finite fields: Since the finite field DLP
is weaker than the elliptic curve DLP, finite field cryptosystems must use larger fields than
elliptic curve cryptosystems. Therefore, finite field cryptosystems use more memory and
bandwidth, and in particular, they have larger keys than elliptic curve cryptosystems.

A common notation in connection with the O-notation is Õ, often called “soft-O”. It
disregards logarithmic factors, i.e. we write f(x) = Õ(g(x)) when

f(x) = O(g(x) logk g(x))

for some number k, some function g, and some input size x.

2.2 Elliptic and hyperelliptic curves

Elliptic curves were proposed for the use in DLP-based cryptosystems by Koblitz [Kob87]
and Miller [Mil85] independently in 1985. Since elliptic curves defined over finite fields
yield groups that have both fast arithmetic and a secure DLP, they are widely used in

10 2. Preliminaries

cryptography today. Hyperelliptic curves are a generalization of elliptic curves, and Koblitz
[Kob89] first suggested them for DLP-based cryptosystems in 1989.

Although classically elliptic curves are not considered to be hyperelliptic curves, they
can be seen as hyperelliptic curves of genus 1. In this section, we present a unified treat-
ment, as is common in cryptography. We put particular emphasis on pointing out how
elliptic curves relate to hyperelliptic curves, where the differences lie, and where elliptic
curves are simpler (see especially Remark 2.7).

One major difference is that the points on an elliptic curve form a group, and finite
subgroups thereof may be used directly in cryptosystems, which is not true for hyperelliptic
curves. Instead, DLP-based hyperelliptic curve cryptosystems work in the Picard group
(see Definition 2.5 (viii)), which is a well-studied group associated to any hyperelliptic
curve. Arithmetic in this group is efficient, and the DLP is conjectured to be hard when
the genus of the curve is sufficiently small. The degree zero Picard group of an elliptic
curve is isomorphic to the curve itself.

We briefly recall the most important definitions and facts and introduce important
notation for the rest of this thesis. Washington [Was08] and Menezes, Wu, and Zuccherato
[MWZ98] cover elliptic and hyperelliptic curves with a view towards cryptographic appli-
cations, a more general exposition can be found in the book of Silverman [Sil09]. Good
references on algebraic curves are the books of Fulton [Ful08] and Stichtenoth [Sti93], the
latter is written in the language of function fields.

Let Fq be a finite field of cardinality q, where q is some prime power. Whenever we
deal with elliptic and hyperelliptic curves, we assume that Fq does not have characteristic
2. This is only for convenience, since in this case, the curves can be described by equations
of a particularly simple shape, as given below in Definition 2.3. All results of this thesis,
however, can be generalized to the case of arbitrary positive characteristic. We comment
on this with respect to each topic in the corresponding chapters.

We consider only imaginary hyperelliptic curves, since they are the ones relevant for
cryptography. Thus in this whole thesis, we use the term hyperelliptic curve to mean an
imaginary hyperelliptic curve.

Definition 2.3. Let Fq be a finite field of odd characteristic, let g ≥ 1, and let C be a
projective curve defined by an affine equation

C : y2 = f(x), (2.1)

where f ∈ Fq[x] is a monic polynomial of degree 2g+1 that has no multiple zeros. If g = 1,
then C is an elliptic curve, and if g ≥ 2, then C is a hyperelliptic curve of genus g, both
defined over Fq.

It is obvious from this definition that elliptic curves can be seen as hyperelliptic curves
of genus 1. The condition that f has no multiple zeros implies that an elliptic curve is
smooth and that the affine part of a hyperelliptic curve is smooth.

Remark 2.4. Let E be an elliptic curve. When Fq does not have characteristic 3, a simple
transformation yields an equation of short Weierstraß form

E : y2 = x3 +Ax+B,

which we will often use to write explicit formulas. In this case, smoothness is equivalent
to 4A3 + 27B2 6= 0.

2.2. Elliptic and hyperelliptic curves 11

Elliptic and hyperelliptic curves are algebraic varieties, and we use the usual ter-
minology: Let Fq denote the algebraic closure of Fq. The points on C are all points
(X,Y) ∈ Fq × Fq that satisfy equation (2.1)—these are called the affine points—together
with the point at infinity, which is denoted by O. It is given by the projective coordinates
(0 : 1 : 0), which satisfy the homogenization of equation (2.1). For any algebraic extension
field F ⊆ Fq of Fq,

C(F) = {(X,Y) ∈ F× F | Y 2 = f(X)} ∪ {O}
is the set of F-rational points of C. In particular, the point at infinity is F-rational for
every F, and C = C(Fq).

Definitions and Notation 2.5. Let C be an elliptic or hyperelliptic curve defined over
Fq.

(i) The (hyper)elliptic involution on C is

w : C → C, (X,Y) 7→ (X,−Y), O 7→ O.

(ii) The Frobenius map on C is defined as

ϕ : C → C, (X,Y) 7→ (Xq, Y q), O 7→ O.
For any n ≥ 1, the points of C(Fqn) are exactly the points of C which are fixed by
ϕn.

(iii) A divisor D on C is a formal sum of points

D =
∑

P∈C

mPP

where only finitely many mP ∈ Z are non-zero. In a natural way, these divisors form
a group, the divisor group DivC of C. Both w and ϕ extend to group homomorphisms
on DivC .

(iv) Let Fqn , n ≥ 1 be a finite extension of Fq. A divisor D is called Fqn-rational if

ϕn(D) = D.

The Fqn-rational divisors form a subgroup of DivC denoted by DivC(Fqn). We write
DivC(Fq) = DivC .

(v) The degree of D is defined as

degD =
∑

P∈C

mP .

The group of divisors of degree zero is denoted by Div0C and is a subgroup of DivC .

(vi) Let D1 = a1P1+. . .+akPk−aO, D2 = b1P1+. . .+bkPk−bO ∈ DivC , ai, bi, a, b ∈ Z≥0,
be two divisors of degree zero. If ai ≤ bi for all i we write D1 ≤ D2.

(vii) Let h ∈ Fq(C) be a function on C. Then the principal divisor of h is defined as

div(h) =
∑

P∈C

ordP (h)P,

where ordP (h) ∈ Z is the order of h at P . Principal divisors have degree 0. The
group of principal divisors PrinC is a subgroup of Div0C .

12 2. Preliminaries

(viii) The degree zero Picard group of C is

Pic0C = Div0C /PrinC .

This is also called the degree zero divisor class group of C. For brevity, we write
Picard group. For any D,D1, D2 ∈ Div0C , we write [D] for the equivalence class of
D in Pic0C and D1 ∼ D2 for [D1] = [D2]. Furthermore, we write Pic0C(Fqn) for the
subgroup of Fqn-rational divisor classes, and Pic0C(Fq) = Pic0C .

(ix) For k ≥ 1, we denote by

Pic0C [k] = {[D] ∈ Pic0C | k[D] = 0}

the k-torsion points of Pic0C .

Hyperelliptic curve cryptosystems work in the Picard group Pic0C(Fqn) of C for some
n ≥ 1. The group has approximately qng elements for large q, by the Theorem of Hasse–
Weil (see [Sti93, Theorem V.2.3]).

Cryptographic literature often mentions the Jacobian variety. The Jacobian of C is the
abelian variety JacC that contains C and has the property that for every algebraic extension
field F of Fq, the groups JacC(Fq) and Pic0C(Fq) are isomorphic. For our purposes, it will
suffice to work with the Picard group.

Definition 2.6. Let r ≥ 0. A divisor D = P1+ . . .+Pr−rO ∈ DivC is called semi-reduced
if

• Pi ∈ C \ {O} and

• Pi 6= w(Pj) for i 6= j (while Pi = Pj is possible).

If in addition r ≤ g, then D is called reduced.

It follows from the Riemann–Roch Theorem (see [Sti93, Theorem I.5.15]) that every
divisor class can be represented by a unique reduced divisor. Notice that r = 0 if and
only if [D] = 0. We have D ∈ DivC(Fqn) if and only if ϕn({P1, . . . , Pr}) = {P1, . . . , Pr}
as multisets. For any divisors D1 and D2, we denote by D1 ⊕D2 the reduced divisor such
that D1 ⊕D2 ∼ D1 +D2.

Remark 2.7. When C = E is an elliptic curve, then each non-zero element of Pic0E is
uniquely represented by a divisor of the form P −O with P ∈ E. In fact,

P 7→ [P −O]

gives a bijection between E and Pic0E , and the points on E itself form a group. Therefore,
E is isomorphic to its Jacobian variety and is itself an abelian variety. Whenever we deal
with an elliptic curve, we work directly with the points on E. (One might say that we
denote a divisor class by the unique P ∈ E corresponding to [P − O] ∈ Pic0E , and in
particular, that we denote 0 ∈ Pic0E by the point O—notice that this is not the reduced
representation of the divisor zero).

We denote the group law on E induced by the group law on Pic0E again by ⊕. It can
be given by simple rational functions, see e.g. [ACD+06, Chapter 13.1.1] for the general
formulas or [Was08, Chapter 2.2] for charFq 6= 2, 3. For elliptic curves defined over the
real numbers, this group law has a popular geometric interpretation known as the chord
and tangent rule (see Figure 2.1). The neutral element of the group is the point at infinity

2.2. Elliptic and hyperelliptic curves 13

Figure 2.1 Chord and tangent rule for elliptic curve point addition (over R)

x

y

y2 = x3 − x+ 2

P

Q

P +Q

O. The inverse of an affine point P = (X,Y) is w(P) = ⊖P = (X,−Y). The Frobenius
map on E is a group homomorphism.

We have E(Fqn) ∼= Pic0E(Fqn) for all n ≥ 1. Elliptic curve cryptography usually uses
E(Fqn), which is a finite subgroup of E of cardinality about qn.

Another very useful representation of divisor classes is the following.

Definition 2.8. Let [D] ∈ Pic0C with D = P1 + . . .+ Pr − rO a semi-reduced divisor and
Pi = (Xi, Yi). The Mumford representation of [D] is the pair of polynomials [u(x), v(x)]
where

• u(x) =
∏r

i=1(x−Xi)

• v(x) is such that deg v < deg u and u divides v2 − f .

There is a one-to-one correspondence between reduced divisors D and pairs [u, v] such
that u is monic, deg v < deg u ≤ g, and u | v2 − f : Given the divisor D, then u(x) =
∏r

i=1(x − Xi) and v(x) is the unique polynomial such that v(Xi) = Yi with multiplicity
equal to the multiplicity of Pi in D. The polynomial v(x) may be computed by solving
a linear system. Conversely, given the Mumford representation [u, v], the corresponding
reduced divisor is the D with defining ideal ID = (u(x), y − v(x)). Notice that the curve
equation y2 − f becomes superfluous, since y2 − f ∈ (u, y − v).

A convenient property of the Mumford representation is that Fqn-rationality of divisor
classes becomes easily visible: We have [u, v] ∈ Pic0C(Fqn) if and only if u, v ∈ Fqn [x]. It
follows from the definition that the Mumford representation of [0] is [1, 0].

Remark 2.9. If C = E is an elliptic curve, then the Mumford representation of P =
(X,Y) ∈ E is [x−X,Y].

Definition 2.10. Let F|Fq be an algebraic field extension. A divisor D ∈ DivC(F) with
Mumford representation [u, v] is prime if u ∈ F[x] is an irreducible polynomial.

Notice that being prime depends on the choice of F. When F = Fqn , n ≥ 1, it will
sometimes be convenient to write a divisor as a sum of prime divisors: D = D1+ . . .+Dt,
Di ∈ DivC(Fqn) prime. Notice that we may have Di = Dj for i 6= j and D1, . . . , Dt are
unique up to permutation.

14 2. Preliminaries

The Mumford representation is particularly useful when computing with divisor classes
of hyperelliptic curves, and all algorithms given in Chapter 5 make use of this representa-
tion. Cantor’s Algorithm [Can87] performs the addition of divisor classes in the Mumford
representation. An easy modification computes not only D1 ⊕ D2, but also a function a
such that D1 +D2 = D1⊕D2 +div(a). For future reference, we give this algorithm in Al-
gorithm 2.1. For elliptic curves, the standard addition formulas are easier to use and more
efficient than Cantor’s Algorithm. Also for genus 2 curves, there exist explicit addition
formulas that are more efficient than Cantor’s Algorithm, see [LS04, Lan05].

Algorithm 2.1 Cantor’s Algorithm including rational function

Input: [u1, v1], [u2, v2] ∈ Pic0C in Mumford representation
Output: [u, v] in Mumford representation, a such that [u, v] + div(a) = [u1, v1] + [u2, v2]
1: a← gcd(u1, u2, v1 + v2), find e1, e2, e3 such that a = e1u1 + e2u2 + e3(v1 + v2)
2: u← u1u2/a

2

3: v ← (u1v2e1 + u2v1e2 + (v1v2 + f)e3)/a mod u
4: while deg u > g do

5: ũ← monic((f − v2)/u), ṽ ← −v mod ũ
6: a← a · (y − v)/ũ
7: u← ũ, v ← ṽ
8: end while

9: return [u, v], a

The most frequent operation in the context of DLP-based cryptography is scalar mul-
tiplication, i.e. the computation of k[D] = [kD] from [D] ∈ Pic0C for some k ≥ 1. When
working with an elliptic curve, we use the notation

[k]P = P ⊕ P ⊕ . . .⊕ P
︸ ︷︷ ︸

k−times

.

The standard way to perform scalar multiplication is with a double and add algorithm, as
given e.g. in [ACD+06, Algorithm 13.6]. It computes k[D] via a sequence of doublings and
additions in log2 k steps. This procedure is analogous to the square and multiply algorithm
for exponentiation.

A number of more efficient variants of the square-and-multiply and double-and-add
algorithms exist. They include using the non-adjacent form (NAF) in order to reduce
the number of additions (see [ACD+06, Chapter 9.1.4]) and sliding-window methods (see
[ACD+06, Algorithm 9.10]). A particularly clever variant developed especially for elliptic
curves is the Montgomery ladder [Mon87], which computes the x-coordinate of [k]P directly
from the x-coordinate of P . It provides built-in protection against side-channel attacks,
since it carries out an addition in each step, regardless of the shape of the binary representa-
tion of k. It has been generalized to hyperelliptic curves of genus 2 [Duq04, Lan04a, Gau07].

Efficient elliptic and hyperelliptic curve arithmetic is, in fact, a large and active field of
research, and we do not go into detail here. A good overview is given in [ACD+06, Chapter
13, 14]. We point out that the implementation of efficient (hyper)elliptic curve arithmetic
always builds on an efficient implementation of finite field arithmetic (cf. [ACD+06, Chap-
ter 11]).

Another important topic in (hyper)elliptic curve cryptography are point counting al-
gorithms, which compute the order of Pic0C(Fq). This usually amounts to computing the
characteristic polynomial of the Frobenius endomorphism. The standard method for ellip-
tic curves is Schoof’s Algorithm [Sch85] and its variants, in particular the improvements

2.3. Weil restriction 15

due to Atkin and Elkies, resulting in the SEA Algorithm. It can handle groups of cryp-
tographic size. For hyperelliptic curves, point counting is still a bottleneck today. The
record for genus 2 curves over prime fields is held by Gaudry and Schost [GS12], using
an extension of Schoof’s algorithm. For more information on this topic, see [ACD+06,
Chapter 17].

2.3 Weil restriction

Scalar restriction, first introduced by Weil [Wei58] and therefore often called Weil restric-
tion or Weil descent, is a well-known technique in arithmetic algebraic geometry. It can
be applied to many geometric objects, for example algebraic varieties. For a given fi-
nite separable field extension L|K of degree n, it relates d-dimensional objects over L to
nd-dimensional objects over K.

Frey [Fre99] first suggested to study Weil restriction of abelian varieties in the context
of DLP-based cryptography, since the structure of the object after scalar restriction can be
much richer than that of the original variety. He suggests both constructive and destructive
applications of this concept, the constructive one being the use of the trace zero variety,
which is a subvariety of the Weil restriction of an elliptic curve or the Jacobian variety
associated to a hyperelliptic curve and the object of study of this thesis.

We give only a very superficial introduction to the topic, which will be sufficient for
the content of this thesis. For a through treatment, we refer to [BLR80, Die01] and the
references therein. For a description more dedicated to the purposes of cryptography, see
[ACD+06, Chapter 7].

Definition 2.11. Let L|K be a finite Galois extension of degree n, and let V be an affine
(resp. projective) algebraic variety V defined over L of dimension d. The Weil restriction
of V is an affine (resp. projective) algebraic variety ResL|K V defined over K of dimension
nd such that for every field extension F |K there is a functorial bijection

(ResL|K V)(F) ∼= V (F ⊗K L). (2.2)

More generally, ResL|K is a functor fulfilling a certain universal property and mapping
schemes to sets. Naturally, the Weil restriction of an object inherits many properties from
the original object. In particular, it can be shown that the Weil restriction of an affine
(resp. projective) variety always exists and is again an affine (resp. projective) variety.

Here we are interested in much more concrete matters concerning Weil restriction of
varieties. Most importantly, there is a simple procedure for writing equations for the affine
variety ResL|K V from equations of the affine variety V . By a slight abuse of terminology,
we use the term Weil restriction not only for the object obtained by this procedure (i.e.
a variety), but also for the procedure itself, although some may prefer to call the latter
Weil descent. In particular for us, Weil restriction with respect to the extension L|K is a
procedure that can be applied to a multivariate polynomial with coefficients in L and results
in n polynomials with coefficients in K. In this process, the number of indeterminates is
multiplied by n.

Definition 2.12. Let L|K be a Galois extension of degree n, and let {ζ1, . . . , ζn} be a
basis of L as a K-vector space. For a polynomial G ∈ L[x1, . . . , xℓ], carry out the following
steps:

• Define ℓn indeterminates xik by

xi = xi1ζ1 + xi2ζ2 + . . .+ xinζn for i = 1, . . . , ℓ.

16 2. Preliminaries

• Replace the indeterminates xi in G(x1, . . . , xℓ) by the above expressions, which gives

G

(
n∑

k=1

x1kζk, . . . ,

n∑

k=1

xℓkζk

)

.

• Write the coefficients of G (which are in L) as K-linear combinations of the basis
{ζ1, . . . , ζn} and sort the terms according to this basis, giving

n∑

k=1

gk(x11, . . . , xℓn)ζk.

Then we call the polynomials g1, . . . , gn ∈ K[x11, . . . , xℓn] the Weil restriction of the poly-
nomial G, and we refer to this procedure as Weil restricting G.

Theorem 2.13. Let V be an affine variety defined over L by m equations

G1, . . . , Gm ∈ L[x1, . . . , xℓ],

i.e. we have

V = {(X1, . . . , Xℓ) | Gj(X1, . . . , Xℓ) = 0 for j = 1, . . . ,m}.

For each j = 1, . . . ,m, let gj1, . . . , gjn ∈ K[x11, . . . , xℓn] be the Weil restriction of Gj.
Then we have

ResL|K V = {(X11, . . . , Xℓn) | gjk(X11, . . . , Xℓn) = 0 for j = 1, . . . ,m, k = 1, . . . , n},

i.e. the variety ResL|K V is defined over K by the mn polynomials gjk ∈ K[x11, . . . , xℓn].

This construction makes explicit the most important special case of property (2.2): For
F = K, we get

(ResL|K V)(K) ∼= V (L),

i.e. the K-points of ResL|K V correspond to the L-points of V via the map

(X11, . . . , Xℓn)←→
(

n∑

k=1

X1kζk, . . . ,

n∑

k=1

Xℓkζk

)

.

The Weil restriction process explained above can also be applied to projective varieties,
since any projective variety V can be covered by affine subvarieties Vi. By Weil restricting
the Vi, one gets a collection of affine varieties Wi := ResL|K Vi. When a suitable covering is
chosen and the Wi are glued together in projective space in a suitable way (see [ACD+06,
Chapter 7.2]), one obtains a projective variety W = ResL|K V .

It is also intuitive (and can, of course, be proven rigorously) that the Weil restriction of
an abelian variety is again an abelian variety. This is because the group law of the original
variety, defined by rational functions, naturally carries over into the Weil restriction. Its
defining rational functions can be found by Weil restricting the original rational functions.
Therefore, the Weil restriction of both elliptic curves and Jacobians of hyperelliptic curves
are again abelian varieties.

In cryptography, where one uses elliptic curves and Jacobians of hyperelliptic curves
defined over finite fields Fqn , Weil restriction with respect to the extension Fqn |Fq yields
associated abelian varieties defined over Fq. It is the study of these varieties that Frey

2.3. Weil restriction 17

suggests in [Fre99] for constructive and destructive applications. For example, when E
is an elliptic curve defined over Fqn for some n ≥ 1, then its Weil restriction WE is an
n-dimensional variety that satisfies

WE(Fq) ∼= E(Fqn).

We study an example of this in Example 2.14. More generally, for a hyperelliptic curve
C of genus g, we have the Weil restriction WC of the Jacobian variety of C, which has
dimension ng and satisfies

WC(Fq) ∼= Pic0C(Fqn).

In both cases, the functorial bijection gives a group isomorphism, and the group law
translates naturally from the group on the right to the one on the left. The trace zero
variety, which we introduce in the next section, is a subvariety of WE resp. WC , and its
Fq-rational points yield a subgroup of E(Fqn) resp. Pic0C(Fqn).

Example 2.14. We apply Weil restriction to the affine part of an elliptic curve given by
the equation

y2 − x3 −Ax−B = 0.

For simplicity and because this case will be relevant later on, we assume that E is defined
over Fq, where 3 | q − 1. We perform Weil descent with respect to a Kummer extension
Fq3 |Fq, where Fq3 = Fq[ζ]/(ζ

3 − µ) for some µ ∈ Fq that is not a third power. Then
{1, ζ, ζ2} is a basis of Fq3 |Fq. We write

x = x0 + x1ζ + x2ζ
2

y = y0 + y1ζ + y2ζ
2

and plug this into the curve equation, which gives

(y0 + y1ζ + y2ζ
2)2 − (x0 + x1ζ + x2ζ

2)3 −A(x0 + x1ζ + x2ζ
2)−B = 0.

Multiplying this out, substituting ζ3 = µ, and collecting the coefficients of 1, ζ, ζ2, we get

y20 + 2µy1y2 − x30 − µx31 − µ2x32 − 6µx0x1x2 −Ax0 −B = 0

2y0y1 + µy22 − 3x20x1 − 3µx0x
2
2 − 3µx21x2 −Ax1 = 0

2y0y2 + y21 − 3x20x2 − 3x0x
2
1 − 3µx1x

2
2 −Ax2 = 0.

So from one equation in two indeterminates x, y, which describes a one-dimensional variety
in affine 2-space, we have produced three equations in six variables x0, x1, x2, y0, y1, y2,
which describe a three-dimensional variety in affine 6-space. If WE is the projective Weil
restriction of the projective variety E, then these equations describe the affine part of WE .
We have

WE(Fq) ∼= E(Fqn)

(X0, X1, X2, Y0, Y1, Y2) ↔ (X,Y) = (X0 +X1ζ +X2ζ
2, Y0 + Y1ζ + Y2ζ

2).

The group law in WE can be defined in terms of the coordinates x0, x1, x2, y0, y1, y2.

18 2. Preliminaries

2.4 The trace zero variety

The trace zero variety associated to an elliptic or hyperelliptic curve was first proposed
in the context of cryptography by Frey [Fre99] and further studied by Naumann [Nau99],
Weimerskirch [Wei01], Blady [Bla02], Lange [Lan01, Lan04b], Diem and Scholten [Die01,
DS03, DS], Rubin and Silverberg [Sil05, RS09], and Avanzi and Cesena [AC07, Ces08,
Ces10]. It gives rise to subgroups of the (Picard group of the) associated curve that are
interesting in the context of DLP-based cryptography. We will explain this after giving
the definition and some basic facts.

Throughout this section, we let C be an elliptic or hyperelliptic curve defined over a
finite field Fq.

Definition 2.15. The trace endomorphism in the divisor group of C with respect to the
extension Fqn |Fq, n ≥ 1, is defined by

Tr : DivC(Fqn)→ DivC(Fq), D 7→ D + ϕ(D) + . . .+ ϕn−1(D).

The following properties of the trace will be useful in Chapter 5.

Lemma 2.16. The trace homomorphism Tr : DivC(Fqn) → DivC(Fq) has the following
properties:

(i) For any prime divisor D we have Tr−1(Tr(D)) = {D,ϕ(D), . . . , ϕn−1(D)}.

(ii) D ∈ DivC(Fqn) \ DivC(Fq) is a prime divisor if and only if Tr(D) ∈ DivC(Fq) is a
prime divisor.

Proof. We denote by uϕ the application of the finite field Frobenius automorphism ϕ :

Fq → Fq to the coefficients of a polynomial u. We denote the product uuϕ · · ·uϕn−1
by

u1+ϕ+...+ϕn−1
.

(i) Let D ∈ DivC(Fqn) be given with u-polynomial u ∈ Fqn [x] irreducible. Then Tr(D)

has u-polynomial N(u) = uuϕ · · ·uϕn−1
, where all the uϕ

j
are irreducible over Fqn . Hence

any D′ with Tr(D′) = Tr(D) has to have as u-polynomial one of the uϕ
j
, and therefore

D′ = ϕj(D) for some j ∈ {0, . . . , n− 1}. Conversely, Tr(ϕj(D)) = Tr(D) for all j.

(ii) We need to show that u ∈ Fqn [x] is irreducible if and only if N(u) = uuϕ · · ·uϕn−1 ∈
Fq[x] is irreducible. So first suppose that u = u1u2 with u1, u2 ∈ Fqn [x]. Then N(u) =
N(u1u2) = N(u1)N(u2) with N(u1), N(u2) ∈ Fq[x]. Conversely, suppose that N(u) =

U1U2 with U1, U2 ∈ Fq[x] \ Fq. Now since N(u) = uuϕ · · ·uϕn−1
is the factorization of

N(u) into irreducible polynomials over Fqn , we have

Ui =
∏

j∈Si

uϕ
j

for i = 1, 2 and S1∪̇S2 = {0, . . . , n−1}, S1, S2 6= ∅. But Ui ∈ Fq[x] implies Uϕ
i = Ui, which

yields a contradiction unless u ∈ Fq[x].

Since the Frobenius map is well-defined as an endomorphism on divisor classes, we also
have a trace endomorphism [Tr] in the Picard group

[Tr] : Pic0C(Fqn)→ Pic0C(Fq), [D] 7→ [D + ϕ(D) + . . .+ ϕn−1(D)].

We are interested in the kernel of this map.

2.4. The trace zero variety 19

Definition 2.17. Let n be a prime number. Then the trace zero subgroup of Pic0C(Fqn) is

Tn = {[D] ∈ Pic0C(Fqn) | Tr(D) ∼ 0}.

Theorem 2.18. The points of Tn can be viewed as the Fq-rational points of the trace zero
variety. This is an (n− 1)g-dimensional subvariety of the Weil restriction with respect to
Fqn |Fq of the Jacobian variety of C. The trace zero variety is therefore defined over Fq.
Throughout this work, we denote it by Vn.

For a proof and more details, see [ACD+06, Chapters 7.4.2 and 15.3]. We explain how
to write equations for the trace zero variety in Chapter 3. From Theorem 2.13, we obtain
a natural correspondence between the points of Tn and the points of Vn(Fq). Namely, for
a fixed polynomial basis {1, ζ . . . , ζn−1} of Fqn |Fq we have

Vn(Fq) ∼= Tn

(X0, . . . , Xn−1, Y0, . . . , Yn−1) ↔ (X,Y) = (X0 + . . .+Xn−1ζ
n−1, Y0 + . . .+ Yn−1ζ

n−1).

We often identify Tn = Vn(Fq) via this correspondence without mentioning it. Since Vn

has dimension (n− 1)g, we have that |Tn| = |Vn(Fq)| ≈ q(n−1)g by [LW54].
As mentioned before, interest in the trace zero variety in the cryptographic context was

first raised by Frey in [Fre99]. One of the motivations for using the trace zero subgroup
in cryptosystems is that it allows in principle to reduce the key length. In Chapter 4, we
show how to do this for elliptic curves and small n, and in Chapters 5 and 6, we show how
to do this for elliptic and hyperelliptic curves of any genus g and with respect to any prime
n.

Moreover, addition in the trace zero subgroup may be sped up considerably by using the
Frobenius endomorphism. The idea is that in a cyclic group, ϕ operates as multiplication
by some number s, which may be computed from the characteristic polynomial of ϕ. If

k = k0 + k1s+ . . .+ kts
t

is the base-s expansion of k, then k[D] may be computed as

k[D] = k0[D] + k1ϕ([D]) + . . .+ ktϕ
t([D]).

This is more efficient than computing k[D] with double-and-add directly, since applying ϕ
to [D] is very cheap. This method was studied in detail by Lange (see [Lan01, Lan04b])
and by Avanzi and Cesena (see [AC07, Ces08]). The approach is similar to the one used
for Koblitz curves (see [Kob91]) and was later applied to GLV/GLS curves (see [GLV01,
GLS11]).

Furthermore, Rubin and Silverberg showed in [RS09] that pairings defined on higher di-
mensional abelian varieties, such as the trace zero variety, yield exceptionally high security
parameters for some values of n and g.

Finally, the trace zero subgroup captures the hardness of the DLP over extension fields.
More specifically, the DLP in Pic0C(Fqn) is as hard as the DLP in Tn when C is defined
over Fq.

Proposition 2.19. We have a short exact sequence

0 −→ Pic0C(Fq) −→ Pic0C(Fqn)
[ϕ−id]−→ Tn −→ 0.

In particular, solving a DLP in Pic0C(Fqn) has the same complexity as solving a DLP in Tn

and a DLP in Pic0C(Fq).

20 2. Preliminaries

Proof. Surjectivity of [ϕ− id] holds according to [ACD+06, Proposition 7.13]. This proves
that we have a short exact sequence as claimed.

As explained in [GV05] for the analogous case of algebraic tori, a DLP in Pic0C(Fqn)
may be mapped to a DLP in Pic0C(Fq) by the trace map, and it may be solved in Pic0C(Fq)
modulo the order of that group. The remaining modular information required to compute
a discrete logarithm in Pic0C(Fqn) comes from solving a DLP in Tn. A formal argument
stating that solving a DLP in Pic0C(Fqn) has the same complexity as solving a DLP in Tn

and solving a DLP in Pic0C(Fq) is given by Galbraith and Smith [GS06].

As a consequence of the exact sequence in Proposition 2.19 we obtain

|Tn| =
|Pic0C(Fqn)|
|Pic0C(Fq)|

.

The Hasse–Weil Theorem states that

|Pic0C(Fqn)| =
2g
∏

i=1

(1− τni),

where τi are the roots of the characteristic polynomial of ϕ. This may be used to give simple
formulas for the cardinality of the trace zero subgroup in terms of the coefficients of the
characteristic polynomial, see [ACD+06, Chapter 15.3.1]. This shows another advantage of
using trace zero subgroups in the cryptographic setting, where it is essential to work with
a group of known prime or almost prime order: Counting the number of points in Tn only
requires determining the characteristic polynomial of a curve defined over Fq. Counting
the number of points of an elliptic or hyperelliptic curve of, e.g., the same genus and
comparable group size would require determining the characteristic polynomial of a curve
defined over Fqn−1 .

Remark 2.20. The choice of good parameters is crucial for the security of trace zero
cryptosystems. While Lange [Lan04b], Avanzi and Cesena [AC07], and Rubin and Silver-
berg [RS09] have shown that for certain choices of n and g trace zero subgroups are useful
and secure in the context of pairing-based cryptography, there may be security issues in
connection with DLP-based cryptosystems for some parameters. See Chapter 7.5 for a
discussion.

2.5 Optimal representation

One of the goals of this work is finding an optimal-size representation for the elements
of the trace zero subgroup. This is a natural question, which has been investigated in
previous works both for elliptic and hyperelliptic curves [Nau99, Lan01, Lan04b, Sil05], as
well as in the analogous case of torus-based cryptography [RS03]. It is also stated as an
open problem in the conclusions of [AC07] and in [RS09]. For further discussion on the
significance of compact representations, see [Gor11].

Definition 2.21. A representation of size ℓ for the elements of a finite set G is an injection

R : G −→ Fℓ
2.

A representation R is optimal if it is of size log2 |G| + O(1). Given γ ∈ G and x ∈ ImR,
we refer to computing R(γ) as compression and R−1(x) as decompression.

2.5. Optimal representation 21

Abusing terminology, in this thesis we call representation a map R with the property
that an element of Fℓ

2 has at most d inverse images, for some small fixed d. In this case,
we say that x ∈ ImR is a representation for the class R−1(x). Notice that the number
of classes is about |G|/d ≈ |G|, if d is a small constant. Moreover, we call R optimal if
ℓ ≈ log2 |G|, or equivalently |G| ≈ 2ℓ, since intuitively the representation is optimal if its
size is close to log2 |G|.

Remark 2.22. Since the elements of Fq can be represented via binary strings of length
log2 q, an optimal representation for a set G with |G| ≈ qm can be given via R : G −→ Fm

q .

Example 2.23. Consider the usual representation for points on an elliptic curve E defined
over Fq

R : E(Fq) \ {O} −→ Fq

(X,Y) 7−→ X.

Compression has no computational cost, and decompression is efficient, since Y can be
recomputed, up to sign, from the equation of the curve at the cost of computing a square
root in Fq. The representation is optimal, since |E(Fq)| ≈ q by Hasse’s Theorem.

For any X ∈ R(E(Fq)) we haveR−1(X) = {(X,Y), (X,−Y)}, hence the representation
identifies each point with its negative. We can therefore think of working with classes of
size two. This is compatible with scalar multiplication, since −k(X,Y) = k(X,−Y) for all
(X,Y) ∈ E and for all k ∈ N.

A simple way to make the above representation bijective is to append to the image
of each point an extra bit corresponding to the sign of the y-coordinate. This gives a
representation

R′ : E(Fq) \ {0} −→ Fq × F2

of size log2 q + 1, which is optimal for large q, since log2 |E(Fq)| ≈ log2 q ≈ log2 q + 1.
In fact, we cannot expect to find a bijective representation smaller than log2 q + 1 bits

for general elliptic curves since by Hasse’s bound, which is actually attained for most fields
(see [Wat69]), E(Fq) can have up to ⌊q+2

√
q+1⌋ elements, and log2 q < log2(q+2

√
q+1) ≤

log2 q + 1 for sufficiently large q.

The above logic can also be applied to hyperelliptic curves.

Example 2.24. Let C be a hyperelliptic curve of genus g defined over Fq. Using the
u-polynomial u(x) ∈ Fq[x] of the Mumford representation to represent a point [u, v] ∈
Pic0C(Fq) gives an optimal representation. In fact, u has degree r ≤ g, and |Pic0C(Fq)| ≈ qg

by the Theorem of Hasse–Weil. Intuitively, since u is monic, we do not need to store its
leading coefficient, but rather at most g coefficients and the degree of u. Concretely, since
deg u = g for most divisors, and in order to have representations all of the same length,
we choose to represent u via the coefficients of xg−1, . . . , 1, plus an extra bit δ which is 1
if the degree of u is g and 0 otherwise. More precisely, we let

R : Pic0C(Fq) −→ Fg
q × F2

[u =
∑g

i=0 uix
i, v] 7−→ (u0, . . . , ug−1, δ)

where ui = 0 for i > r = deg u, δ = 1 if r = g, and 0 otherwise.
The polynomial u contains all the information about the x-coordinates of the points

Pi in the reduced representation of D = P1 + . . . + Pr − rO, but not about the signs of
the corresponding y-coordinates. As before, one can either use g extra bits to store these
signs (see Hess, Seroussi, and Smart [HSS01]), or one can work with classes {[wi1(P1) +
wi2(P2)+ . . .+wir(Pr)− rO] | ij ∈ {0, 1}}, thus identifying up to 2g elements of Pic0C(Fq).

22 2. Preliminaries

For small g, these classes are not too large. A different representation for the elements of
Pic0C(Fq) of size g log2 q + g is given by Stahlke [Sta04].

Remark 2.25. Since Tn ⊆ Pic0C(Fqn), we may use the representation of Example 2.24
for points of the trace zero subgroup. However this is not optimal, since log2 |Tn| ≈
(n − 1)g log2 q 6≈ ng log2 q. In Chapters 4, 5, and 6, we study optimal representations for
the elements of Tn.

2.6 Gröbner bases

A Gröbner basis is a special generating set of an ideal in a multivariate polynomial ring.
It is a powerful tool when studying such ideals in computational algebraic geometry and
commutative algebra, and one important application is that a Gröbner basis can be used
to solve a system of multivariate polynomial equations. The concept was introduced by
Buchberger [Buc65] (and independently by several others, see [Eis04, Chapter 15.6] for
further names and references), and standard references on the topic are [CLO92, KR00,
KR05].

Let F [x] = F [x1, . . . , xm] be a polynomial ring in m variables over any field F . For
α = (α1, . . . , αm) ∈ Zm

≥0, we write monomials as xα = xα1
1 · . . . · xαm

m . Then cxα for some
c ∈ F and some exponent vector α is a term. The (total) degree of a monomial xα is
deg(xα) =

∑m
i=1 αi, and its multidegree is α.

Definition 2.26. A monomial order or term order on F [x] is a relation > on Zm
≥0, or

equivalently on the set {xα | α ∈ Z≥0}, satisfying

(i) > is a total order on Zm
≥0,

(ii) if α > β and γ ∈ Zm
≥0, then α+ γ > β + γ, and

(iii) α ≥ 0 for all α ∈ Zm
≥0.

Examples 2.27. Some common term orders are the following. Let α = (α1, . . . , αm),
β = (β1, . . . , βm) ∈ Zm

≥0.

(i) The lexicographic order is defined by: xα > xβ if the first non-zero entry in the vector
difference α− β ∈ Zm is positive.

(ii) The degree reverse lexicographic order is defined by: xα > xβ if deg(xα) > deg(xβ), or
if deg(xα) = deg(xβ) and the last non-zero entry in the vector difference α−β ∈ Zm

is negative. Because of the first condition, this is often called a degree-compatible
order.

(iii) For 1 ≤ j < m, the j-th elimination order is defined by: xα > xβ if α1 + . . .+ αj >
β1 + . . . + βj , or if α1 + . . . + αj = β1 + . . . + βj and xα > xβ with respect to the
degree reverse lexicographic term order.

By attaching a term order > to a multivariate polynomial ring, one may define the
leading monomial of a polynomial, which is the monomial of maximum multidegree with
respect to >. The leading coefficient is the coefficient of the leading monomial, and the
leading term is the product of the leading coefficient and the leading monomial.

For the following definitions and statements, let us fix a term order > on F [x]. For
f ∈ F [x], we write lt(f) for the leading term of f with respect to >.

2.6. Gröbner bases 23

Definition 2.28. Let I 6= {0} be an ideal in F [x]. The ideal

lt(I) = 〈lt(f) | f ∈ I〉

generated by the leading terms of the elements of I is called the leading term ideal, or
initial ideal, of I.

According to the Hilbert Basis Theorem, every ideal I ⊆ F [x] has a finite generating
set. If I = 〈f1, . . . , fs〉, then it is always true that

〈lt(f1), . . . , lt(fs)〉 ⊆ lt(I),

but the initial ideal can be strictly larger.

Definition 2.29. A Gröbner basis of {0} 6= I ⊆ F [x] is a finite subset G = {g1, . . . , gt} of
I such that

〈lt(g1), . . . , lt(gt)〉 = lt(I).

It follows from the Hilbert Basis Theorem that a Gröbner basis exists for any non-zero
ideal and I = 〈g1, . . . , gt〉. A Gröbner basis is not unique, but uniqueness can be achieved
by requiring additional properties, namely that all elements of G have leading coefficient 1
and that no monomial of fi lies in lt(G \ {fi}) for all i = 1, . . . , t. This is called a reduced
Gröbner basis.

It is essential that a Gröbner basis is always defined with respect to a certain term
order. In fact, the term order crucially influences its properties. In the following, we
briefly explain two useful properties of Gröbner bases with respect to lexicographic and
elimination term orders, respectively.

Theorem 2.30 (Shape Lemma, [KR00, Theorem 3.7.25]). Let F be a perfect field. Let I ⊆
F [x] be a zero-dimensional radical ideal, where any two zeros (a1, . . . , am), (b1, . . . , bm) ∈
F̄m of I satisfy am 6= bm. Then the reduced Gröbner basis of I with respect to the lexico-
graphic term order is of the form

G = {x1 − g1(xm), . . . , xm−1 − gm−1(xm), gm(xm)}.

Moreover, if d = deg(gm), then gm has d distinct zeros c1, . . . , cd ∈ F̄ , and the set of zeros
of I is

Z(I) = {(g1(ci), . . . , gm−1(ci), ci) | i = 1, . . . , d}.

This lemma shows how to solve a system

fi(x1, . . . , xm) = 0, i = 1, . . . , s

of s ≥ m polynomial equations fi ∈ F [x] in m indeterminates, assuming that there are
only finitely many solutions over F̄ . Then the fi generate a zero-dimensional ideal I, and
if the technical conditions of the Shape Lemma are satisfied, then it guarantees that the
lexicographic Gröbner basis of I is triangular, and hence the solutions of the system may
easily be deduced after factoring gm. In practice, this works most of the time and there is
no need to verify the technical conditions.

Theorem 2.31 (Elimination Theorem, [KR00, Theorem 3.4.5]). Let 1 ≤ j < m. If I is
an ideal in F [x] and G a Gröbner basis of I with respect to the j-th elimination order, then
G ∩ F [xj+1, . . . , xm] is a Gröbner basis of the j-th elimination ideal I ∩ F [xj+1, . . . , xm].

24 2. Preliminaries

This means that Gröbner bases are useful for eliminating indeterminates from a poly-
nomial system: In order to eliminate x1, . . . , xj from the system

fi(x1, . . . , xm) = 0, i = 1, . . . , s

of polynomial equations, we find a Gröbner basis of the ideal 〈f1, . . . , fs〉 with respect to the
j-th elimination order. The result gives a system only in the indeterminates xj+1, . . . , xm,
i.e. where the first j indeterminates have been eliminated.

An important question that remains is how to obtain a Gröbner basis of a given
ideal. A number of algorithms have been proposed for this purpose, including Buch-
berger’s algorithm [Buc65], Faugère’s F4 and F5 algorithms [Fau99, Fau02], and the XL
algorithm [CKPS00], which was originally introduced to solve overdetermined systems of
polynomial equations and later shown to be a Gröbner basis algorithm similar to F4 (see
[AFI+04]). Buchberger’s algorithm and F4 are most commonly used, and they are im-
plemented in many computer algebra systems, including CoCoA [CoC], Macaulay2 [GS],
Singular [DGPS12], Magma [BCP97], and Maple [Map].

Computing a Gröbner basis with such algorithms is often very costly. It was shown
by Mayr and Meyer [MM82] that computing a Gröbner basis can take doubly exponential
time in the degrees of the equations. While examples that have this property are specially
constructed and problem instances that arise naturally are usually less costly, it is very
difficult to give precise complexity bounds, see [GvzG99, Chapter 21.7] for a discussion.

The Castelnuovo–Mumford regularity gives an indication of the complexity of a Gröbner
basis computation for a specific ideal. It is an invariant mreg associated to any homogeneous
multivariate ideal I, for a definition see [Eis04, Chapter 20.5]. Bayer and Stillman [BS88]
proved that, after a generic change of coordinates, the polynomials in a reduced Gröbner
basis with respect to the degree reverse lexicographic term order have degree at most
mreg. This means also that the degree of all polynomials that arise during the execution
of Buchberger’s algorithm is bounded by mreg.

A closely related concept is the regularity index or degree of regularity of a homogeneous
ideal, which roughly speaking is the smallest index dreg where the Hilbert function agrees
with the Hilbert polynomial, see [KR05, Definition 5.4.11]. This number is in general
at most as large as the Castelnuovo–Mumford regularity, and for zero-dimensional ideals
the two values are the same. There exists an explicit bound on the complexity of the F5
algorithm (for computing a degree reverse lexicographic Gröbner basis) which depends on
the degree of regularity of the input ideal [BFP08, Proposition 2.2], and it can be improved
assuming that the input to the algorithm is a semi-regular sequence (see [BFS04, BFSY05]
for the definition of semi-regular and the bound). Since F5 has the same asymptotics as the
XL algorithm, bounds on XL also apply, see [YC04a, YC04b, YCC04, YCY13]. However,
computing dreg is usually not easier than computing a Gröbner basis itself, and finding
bounds on dreg is difficult.

A way to bound dreg is to use standard bounds on mreg from commutative algebra,
such as

dreg ≤ mreg ≤
s∑

i=1

(di − 1) + 1, (2.3)

where d1, . . . , ds are the degrees of the input polynomials, see [Laz83]. But such bounds
are usually not tight, and plugging them into the complexity of F5 yields just a doubly
exponential bound.

A related and practically relevant result is that the reverse lexicographic order leads
to Gröbner bases of the lowest degree (again after a generic change of coordinates), while

2.7. Index calculus 25

bases with respect to the lexicographic term order have the largest degrees. Therefore,
computing degree reverse lexicographic Gröbner bases is usually the fastest. This has led
to the following approach when computing Gröbner bases in practice. One first computes a
degree reverse lexicographic basis, using one of the algorithms mentioned above. Then one
applies a Gröbner walk algorithm [CKM97] to convert this basis to a basis of the desired
term order, say lexicographic. When working with a zero-dimensional ideal, one may use
the more efficient FGLM algorithm [FGLM93]. In practice, this approach is much faster
than computing a lexicographic basis directly, and e.g. Magma does this automatically.

2.7 Index calculus

An important branch of cryptographic research is dedicated to studying the hardness of
the discrete logarithm problem in different groups, since this determines the security of
DLP-based cryptographic systems (see Section 2.1). This is usually done by means of
developing algorithms that compute discrete logarithms and by studying their complexity
and practical performance.

Let us assume that the goal is to compute a discrete logarithm ℓ = logP Q of an element
Q ∈ 〈P 〉 in some additively written group G (see Definition 2.1). Since we are only working
in the cyclic subgroup, we write G = 〈P 〉, and we let N := |G| = ord(P).

A combination of the Pollard–Rho Algorithm [Pol78] and the Pohlig–Hellman Algo-
rithm [PH78] can solve any instance of the DLP in G in time O(

√
p), where p is the largest

prime factor of N . In such an approach, if N =
∏k

i=1 p
ei
i is the prime factorization of N ,

the Pollard–Rho algorithm (or alternatively Shanks’ Baby Step Giant Step Algorithm) is
used to compute the discrete logarithm modulo pi with complexity O(

√
pi) for all i, and

the Pohlig–Hellman Algorithm is then used to compute the discrete logarithm modulo peii
for all i via a method called Hensel lifting, and finally modulo N via an explicit version of
the Chinese Remainder Theorem.

It is thanks to the Pohlig–Hellman algorithm that cryptographers usually prefer to
work in cyclic groups of prime order. Such groups yield the strongest instances of the DLP
from a complexity theoretic point of view. For this reason, it is often assumed from the
start that N is prime, and when dealing with attacks on the DLP, we shall do the same.

The methods of Pohlig–Hellman and Pollard–Rho work for any group G, regardless
of its structure or the representation of its elements. Such algorithms are called generic
attacks on the DLP. In fact, using a more precise definition of “generic algorithms” as
given e.g. in [Sti06, Chapter 6.3], it has been shown that such algorithms never achieve
better complexity than the Pollard–Rho Algorithm, namely O(

√
N), see [Nec94, Sho97].

Therefore, such generic attacks on the DLP are often also called square root algorithms.
However, when a concrete group is given, its properties can often be exploited in order to

devise more efficient attacks. A particularly powerful such class of attacks are index calculus
algorithms [EG02], which exploit the algebraic structure of the groups that they work in.
There are index calculus algorithms that compute the DLP in multiplicative groups of
finite fields (namely the number field sieve for prime fields [Adl79, Gor93, JL03] and the
function field sieve for fields of small to medium characteristic [Cop84, Adl94, ADH94,
Sch02, JL02, JL06, Jou13a, GGMZ13a, Jou13b, GGMZ13b, BBD+14, BGJT13]), elliptic
curves over extension fields [Sem04, Gau09, Die11, Die13], Picard groups of hyperelliptic
curves and more generally Ca,b curves [ADH94, Gau00, Eng02, Die06, DT08, EG07, Eng08,
EGT11, VJS14], and even general abelian varieties [Gau09].

The general outline of an index calculus algorithm to compute ℓ = logP Q in G is given
in Algorithm 2.2. It is easy to see that this gives the correct result: Since γ is in the right

26 2. Preliminaries

Algorithm 2.2 General outline of an index calculus algorithm

Input: Q ∈ G = 〈P 〉, N = |G|
Output: ℓ = logP Q
1: Factor base: Choose a factor base F = {P1, . . . , Pk} ⊆ G.
2: Relation collection: Construct relations of the form αjP + βjQ =

∑k
i=1mijPi for

j = 1, . . . , r > k.
3: Linear algebra: Given the matrix M = (mij) ∈ (Z/NZ)k×r, compute a non-zero

column vector γ = (γ1, . . . , γr)
⊺ in the right kernel of M .

4: Individual logarithm: Output ℓ = −(∑r
j=1 αjγj)(

∑r
j=1 βjγj)

−1 if
∑

βjγj is invert-
ible in Z/NZ, otherwise return to step 2.

kernel of M , we have Mγ = 0, or equivalently

r∑

j=1

mijγj = 0 for all i = 1, . . . , k.

Multiplying all relations from step 2 by γj , summing over j, and using the above equality
gives

r∑

j=1

αjγjP +

r∑

j=1

βjγjQ =

r∑

j=1

k∑

i=1

mijγjPi =

k∑

i=1





r∑

j=1

mijγj



Pi = 0.

Therefore,

Q = −





r∑

j=1

αjγj









r∑

j=1

βjγj





−1

P = ℓP.

This algorithm assumes that there are efficient methods to determine whether an ele-
ment αjP + βjQ decomposes into a sum of elements of the factor base (if so, it is called
smooth) and to actually compute this decomposition. How this is done, and therefore the
details of steps 1 and 2, depend on the properties of G, and when G contains complicated
elements such as divisor classes, one of the major challenges in applying index calculus is
finding suitable concepts of smoothness and decomposition.

The easiest case, and the case for which this algorithm was originally developed, is
when working with integers. Then the natural choice for the factor base is the set of all
primes below a certain smoothness bound b. A number is smooth if all of its prime factors
are smaller than b, and its decomposition is obtained by computing the prime factorization.
Similarly, when the group elements can be represented by polynomials (e.g. when G = F×

qn

for n≫ 1 as is the case for the function field sieve), the factor base can be taken to consist
of all irreducible polynomials of degree less than some bound b. Checking for smoothness
and obtaining the decomposition can then be achieved via polynomial factorization.

Index calculus in abelian varieties. The major innovation of Gaudry’s index calculus
algorithm for abelian varieties [Gau09] is that it computes relations algebraically. To this
end, a relation is translated into a system of polynomial equations using the equations
of the variety, and in order to find relations, one must find solutions to this system, for
example via a Gröbner basis computation.

We sketch only the main ideas of Gaudry’s algorithm. For further technical assumptions
and details, see [Gau09]. We include a brief explanation of Gaudry’s complexity analysis,
which is for q →∞ for a family of abelian varieties with fixed parameters, i.e. the dimension

2.7. Index calculus 27

d, the number m defining the size of the representation (see below), and the degrees of the
equations defining the variety and the group law are taken to be constants.

Let V be an abelian variety defined over a finite field Fq of dimension d ≥ 2, and
suppose we want to compute a discrete logarithm logP Q in the group G = V (Fq), which
has cardinality N ≈ qd.

For the algorithm to work, it is necessary that the elements of V and the group law are
given in a representation that is convenient for computation. Therefore, we assume that
there is an explicit embedding of an open subset of V into an affine space of dimension
d+m, and hence that almost all elements of V can be written in the affine coordinates

(x1, . . . , xd, y1, . . . , ym).

These elements satisfy a set of m polynomial equations in the indeterminates x1, . . . , xd,
y1, . . . , ym, and the group law is given via rational functions in these coordinates. We also
assume that P and Q are representable with these coordinates. Whenever the algorithm
encounters an element in its computations that is not representable by these coordinates,
it is discarded, but this happens only very rarely.

The factor base in step 1 is defined to consist of the Fq-rational points of an absolutely
irreducible one-dimensional subvariety of V (i.e. a curve in V), obtained by intersecting V
with d− 1 hyperplanes:

F = {(X1, 0, . . . , 0, Y1, . . . , Ym) ∈ V | X1, Y1, . . . , Ym ∈ Fq}.

It has about q elements. It is important that the curve is not included in a proper abelian
subvariety of V , so that the set generated by the elements of F is as large as possible.

In step 2, the algorithm searches for relations of the form

αP + βQ = P1 + . . .+ Pd

with P1, . . . , Pd ∈ F . It chooses α, β randomly and computes R = αP + βQ. Then
it solves a system of polynomial equations, where the coordinates of P1, . . . , Pd are the
indeterminates. The system consists of d+m equations describing the fact that the sum of
the Pi is equal to R (one equation for each coordinate resulting from the formulas for the
group law) and additionally a number of equations that ensure that the Pi are indeed in F .
This produces a system with more equations than unknowns, therefore it is (generically)
of dimension 0. Now the system is solved by computing a Gröbner basis with respect to a
lexicographic order and the subsequent factorization of a univariate polynomial. In most
cases, the system does not have a solution over Fq, since most points R do not decompose
over the factor base. Whenever R decomposes, the relation can be recovered from an
Fq-solution of the system.

Since the parameters of the system (namely, the number of indeterminates, the number
of equations, and the degrees of the equations) are assumed to be constant, the Gröbner
basis computation can be performed in time polynomial in log q using Buchberger’s algo-
rithm. The same is true for the factorization of the univariate polynomial.

This procedure is repeated until more than |F| relations have been produced, i.e. until
about q relations are found. The overall complexity of this step depends on the proba-
bility that a given point R can be decomposed over the factor base. Under the heuristic
assumption that different unordered d-tuples of factor base elements have different sums,
the sums of d factor base elements produce about qd/d! different elements of V (Fq). Since
|V (Fq)| ≈ qd, this means that one has to try out about d! points R in order to find one
actual relation. Therefore, it takes d!q steps to produce q relations. Since d is taken to be

28 2. Preliminaries

constant and testing for or computing a decomposition is polynomial in log q, the relation
generation phase has a total complexity of Õ(q).

The relation collection step produces a sparse matrix of size about q × q with at most
d non-zero entries in each column. Using standard techniques for the resolution of large
sparse linear systems, such as Lanczos’ or Wiedemann’s algorithm (see [Wie86, LO90]),
the cost of step 3 is Õ(q2).

The computation of the individual logarithm in step 4 is easy, provided that
∑

βjγj is
invertible modulo N . This is true with large probability, especially if N is prime. If not,
one must collect new relations, i.e. go back to step 2.

The computationally intensive steps are step 2, which has complexity Õ(q), and step
3, which has complexity Õ(q2), provided that the factor base has size q. The double large
prime variation [Thé03, Nag04, GTTD07, Die06] was designed to rebalance the complexity
of these two steps and produce a better total complexity for the algorithm. It reduces the
size of the factor base by defining a small proportion of 1/d of the original factor base
elements to be “large primes”. In the relation generation phase, all relations that involve
more than two large primes are discarded. Then the large prime parts of the relations are
eliminated to produce relations that involve no large primes. This is a bit more work than
the straightforward approach would be, but it creates a smaller linear system of size only
q1−1/d× q1−1/d, thus transferring some of the cost of the linear algebra step to the relation
search step. Using this trick, one obtains a complexity of Õ(q2−2/d) for both the relation
generation and the linear algebra step.

Using many heuristic arguments and assumptions, in particular that the objects the
algorithm encounters behave like randomly chosen elements, the above considerations give
the following theorem. Gaudry [Gau09] gives more technical details and arguments to
support the heuristics, but the result remains heuristic in nature.

Theorem 2.32 ([Gau09, Heuristic result 3]). Let us consider a family (Vi)i≥1 of abelian
varieties of dimension d ≥ 2 given by explicit equations of the same form, where the cardi-
nality of the field of definition Fqi of Vi tends to infinity. Then there exists a probabilistic
algorithm that can solve discrete logarithm problems in an abelian variety V over Fq in
that family in heuristic time Õ(q2−2/d). The constant in the Õ depends on d and on the
family, but not on q.

Generic attacks on the DLP in V (Fq) have complexity O(qd/2), since |V (Fq)| ≈ qd.
Gaudry’s algorithm has lower complexity for d ≥ 3. However, since there are large con-
stants hidden in the O-notation of the complexity of Gaudry’s attack, it can be made
practical only for abelian varieties of small dimension that are given by equations in a
small number of indeterminates and of small degree. Moreover, Gaudry’s algorithm is
expected to be more efficient in practice than generic methods only for very large values
of q, and the precise crossover point is not known.

Since its publication, Gaudry’s algorithm has been applied mostly to the Weil restric-
tion of elliptic curves defined over extension fields. In fact, Gaudry suggests this application
himself in his original article [Gau09]. A similar algorithm for elliptic curves was developed
independently by Diem [Die11]. This algorithm of Gaudry and Diem was implemented by
Joux and Vitse [JV12], and with several further improvements and variations, including a
specialized implementation of the Gröbner basis algorithm F4 [JV11], they were able to
solve an instance of an oracle-assisted static Diffie–Hellman problem in E(F2155), which is
related to but easier than the DLP in the same group [GJV10]. Faugère, Perret, Petit, and
Renault [FPPR12], Petit and Quisquater [PQ12], and Shantz and Teske [ST13] study the
polynomial systems that arise during this attack. They come to the conclusion that these

2.7. Index calculus 29

systems are of a special shape and that special-purpose Gröbner basis techniques may lead
to a significant speed-up. The application of the algorithm to Edwards curves was studied
by Faugère, Gaudry, Huot, and Renault in [FGHR12, FGHR13].

Notice that this approach only threatens elliptic curves defined over extension fields
and does not affect groups E(Fp) where p is a prime. The best attack on such groups
is the Pollard–Rho attack, and the current record for computing a discrete logarithm in
E(Fp), for p a 112-bit prime, is held by Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
[BKK+09], using a parallelized version of the Pollard–Rho algorithm.

Besides elliptic curves, Gaudry’s algorithm for abelian varieties has been applied to the
Weil restriction of hyperelliptic curves of small genus by Nagao [Nag10] and to algebraic
tori by Granger and Vercauteren [GV05].

Chapter 3

Equations for the trace zero

subgroup

We derive equations for the trace zero subgroup Tn ⊆ E(Fqn) of an elliptic curve E defined
over Fq. More precisely, the goal is to give a set of polynomial equations with coefficients
in Fq such that the Fq-rational solutions are exactly the Fq-rational points of the trace zero
variety Vn, thus corresponding to the points of Tn. However, in order to obtain a set of
equations that is as simple as possible, we will be satisfied with equations that describe a
large subset of Tn, and possibly a small set of extra points, as long as the exceptions are
well understood. We put particular emphasis on the cases n = 3, 5, since these are most
relevant in practice.

The equations presented here are used in Chapter 7, where we study the application
of the index calculus attack of Gaudry for abelian varieties [Gau09] to the trace zero
variety. This attack requires the availability of suitable equations for the variety, and its
practicality depends crucially on finding convenient equations. In fact, since the index
calculus attack attempts to solve the DLP in the group Vn(Fq), any set of equations that
describes Vn(Fq) suffices. Therefore, we are more interested in simple equations with the
“correct” Fq-solutions than in equations that correctly describe Vn over Fq.

Finding convenient equations for Vn(Fq) is also an important step towards an efficient
representation for the elements of Tn, since the usual approach to an efficient representation
is to drop some coordinates of a point for compression and then recompute them with the
help of a suitable set of equations for decompression. The equation derived in Section 3.3
might be used for such an approach, and the equation given in Section 3.4 is the basis of
a more sophisticated efficient representation presented in Chapter 4.

Assumptions and Notation. In this chapter, let Tn be the trace zero subgroup of an
elliptic curve E defined over a finite field Fq with respect to the extension Fqn |Fq of prime
degree n. Whenever we write explicit equations, we assume in addition that Fq does not
have characteristic 2 or 3 and that E is defined by an affine Weierstraß equation

E : y2 = x3 +Ax+B. (3.1)

This is only for simplicity, and all our formulas may be adjusted to general finite fields and
elliptic curves, see also Remark 3.9.

In order to write explicit equations, we also need a concrete representation of the field
extension Fqn |Fq, and for this purpose we fix the following. For the sake of simplicity, we
assume that n | q − 1. All of our arguments work, however, for any n and q, see also

31

32 3. Equations for the trace zero subgroup

Remark 3.1. If n | q − 1, thanks to Kummer theory we can write the extension field as

Fqn = Fq[ζ]/(ζ
n − µ),

where µ is not an n-th power in Fq. Where necessary, we take 1, ζ, . . . , ζn−1 as a polynomial
basis of the field extension. When writing equations for the Weil restriction, we choose the
coordinates

x = x0 + x1ζ + . . .+ xn−1ζ
n−1

y = y0 + y1ζ + . . .+ yn−1ζ
n−1.

(3.2)

Remark 3.1. If n does not divide q − 1, we choose a normal basis {α, αq, . . . , αqn−1} of
Fqn over Fq and Weil restriction coordinates

x = x0α+ x1α
q + . . .+ xn−1α

qn−1

y = y0α+ y1α
q + . . .+ yn−1α

qn−1
.

They always yield similar but more dense equations than the coordinates resulting from a
polynomial basis (3.2).

Roadmap. This chapter is organized as follows. In Section 3.1, we explain how to write
straightforward equations for the trace zero variety. This was already done for n = 3 by
Frey, Naumann, and Diem, and they also show how to eliminate some variables from the
system, which we briefly recall in Section 3.2. Afterwards, we derive a new equation for the
trace zero subgroup from the Semaev polynomial in Section 3.3 (this equation agrees with
the equation of Frey, Naumann, and Diem from Section 3.2 for n = 3), and a symmetrized
version of this in Section 3.4. We close with a comparison of all equations in Section
3.5. Throughout, we put particular emphasis on the cases n = 3, 5 and write down the
equations explicitly for these cases whenever possible.

3.1 Equations for the trace zero variety

Using the Weil restriction coordinates (3.2), it is not difficult to write a straightforward
system of at least n + 1 equations in Fq[x0, . . . , xn−1, y0, . . . , yn−1] for the affine part of
Vn. Of these equations, n come from the Weil restriction of the elliptic curve and have
degree 3, and at least one additional equation comes from the trace zero condition. These
equations can be written down explicitly for fixed n, q, and µ.

3.1.1 Explicit equations for n = 2

The description of the trace zero points is particularly simple for n = 2.

Proposition 3.2. The trace zero subgroup T2 of E(Fq2) can be described as

T2 = {(X,Y) ∈ E(Fq2) | X ∈ Fq, Y /∈ Fq} ∪ E[2](Fq).

Proof. We first prove that T2 is contained in the union of sets on the right hand side of
the equality. Let P ∈ T2, P 6= O, so P = (X,Y) ∈ E(Fq2). If P ∈ E(Fq), then [2]P = O,
hence P ∈ E[2](Fq). If P /∈ E(Fq), then (X,Y) = ⊖(Xq, Y q). In particular X = Xq, so
X ∈ Fq, which also implies Y /∈ Fq.

To prove the other inclusion, observe that by definition P ∈ E[2](Fq) satisfies [2]P = O,
so P ∈ T2. Let P = (X,Y) ∈ E(Fq2) with X ∈ Fq, Y /∈ Fq. Since X ∈ Fq, the points
(X,Y) and ϕ(X,Y) = (X,Y q) are distinct points on E which lie on the same vertical line
x−X = 0. Hence (X,Y)⊕ ϕ(X,Y) = O and (X,Y) ∈ T2.

3.1. Equations for the trace zero variety 33

In order to write down the equations, we let Fq2 = Fq[ζ]/(ζ
2−µ) and x = x0+x1ζ, y =

y0 + y1ζ. Plugging this into the elliptic curve equation (3.1) gives two equations for the
affine part of the Weil restriction of E:

y20 + µy21 = x30 + 3µx0x
2
1 +Ax0 +B

2y0y1 = µx31 + 3x20x1 +Ax1.

Now thanks to Proposition 3.2, a point (X,Y) = (X0+X1ζ, Y0+Y1ζ) ∈ E(Fq2) \E(Fq) is
in T2 if and only if X ∈ Fq, i.e. if and only if X1 = 0. By plugging x1 = 0 into the above
system we get

y20 + µy21 = x30 +Ax0 +B

y0y1 = 0

x1 = 0,

which describes the points of V2(Fq) when y1 6= 0 (this comes from Y /∈ Fq, see Proposition
3.2). But y1 6= 0, together with the second equation, implies y0 = 0. Therefore, the system
simplifies to

µy21 = x30 +Ax0 +B.

For solutions (X0, Y1) ∈ F2
q with Y1 6= 0 of this equation, (X0, Y1ζ) ∈ E(Fq2) are exactly the

points of T2 \E(Fq). The other elements of T2, namely those in T2∩E(Fq) = E[2](Fq), are
O and at most three 2-torsion points (X0, 0), which are the solutions of the above equation
when Y1 = 0. Therefore, the solutions (X0, Y1) ∈ F2

q of this equation give precisely the
affine points of T2.

Remark 3.3. Our way of deriving the system shows only that it describes T2, which
suffices for the purpose of this work. However, an argumentation similar to the one given
for n = 3 in [Nau99, Chapter 4.2] and [Die01, Chapter 2.4.1] shows that these equations
actually describe the affine part of the entire trace zero variety. See also Remark 3.4.

3.1.2 Explicit equations for n = 3

For n = 3, letting Fq3 = Fq[ζ]/(ζ
3 − µ) and using (3.2), we compute the system

y20 + 2µy1y2 = x30 + µx31 + µ2x32 + 6µx0x1x2 +Ax0 +B
2y0y1 + µy22 = 3x20x1 + 3µx0x

2
2 + 3µx21x2 +Ax1

2y0y2 + y21 = 3x20x2 + 3x0x
2
1 + 3µx1x

2
2 +Ax2

x1y2 = x2y1.

(3.3)

It describes the open affine part of the trace zero variety given by the equation x1x2 6= 0.
The first 3 equations are the Weil restriction of the elliptic curve equation (3.1), as explained
in Example 2.14.

The fourth equation comes from the trace zero condition: Let (X,Y) ∈ E(Fq3) \
E(Fq), which, with X = X0 + X1ζ + X2ζ

2 and Y = Y0 + Y1ζ + Y2ζ
2, is equivalent

to X1, X2, Y1, Y2 not all = 0 (notice that this is true if X1X2 6= 0). Then the points
(X,Y), (Xq, Y q), (Xq2 , Y q2) are distinct. Now (X,Y) ∈ T3 if and only if (X,Y)⊕(Xq, Y q)⊕
(Xq2 , Y q2) = O. It follows from the chord and tangent rule that three distinct points on
an elliptic curve sum to zero if and only if they lie on a line. In our case, this means that
there are a1, a2, a3 not all zero such that

a1X + a2Y + a3 = 0
a1X

q + a2Y
q + a3 = 0

a1X
q2 + a2Y

q2 + a3 = 0,

34 3. Equations for the trace zero subgroup

which is equivalent to

det





X Y 1
Xq Y q 1

Xq2 Y q2 1



 = 0.

Therefore, the points of T3 \ E(Fq) are exactly the Fq3-solutions of

y2 = x3 +Ax+B

0 = det





x y 1
xq yq 1

xq
2

yq
2

1



 = xyq − xqy − xyq
2
+ xq

2
y + xqyq

2 − xq
2
yq (3.4)

where not both coordinates are in Fq. Weil restriction of these two equations now yields
system (3.3). Its Fq-solutions (X0, X1, X2, Y0, Y1, Y2) such that X1, X2, Y1, Y2 are not all
= 0 give all points of Tn \ E(Fq). The remaining points, namely those in T3 ∩ E(Fq) =
E(Fq)[3], are the Fq-rational 3-torsion points and can be determined easily.

For the purpose of Weil restricting equation (3.4), we observe that it can be written as

t+ tq + tq
2
= 0 for t := det

(
x y
xq yq

)

= xyq − xqy. (3.5)

From x = x0 + x1ζ + x2ζ
2, we get

x = x0 + x1ζ + x2ζ
2

xq = x0 + µbx1ζ + µ2bx2ζ
2

xq
2

= x0 + µ2bx1ζ + µbx2ζ
2,

(3.6)

where b = q−1
3 . The second and third equalities follow from observing that we can sub-

stitute xi for xqi when looking for Fq-solutions. Analogous equations hold for y and t.
Plugging this into equation (3.5) gives

3t0 = 0

where
t0 = (µ2b+1 − µb+1)(x1y2 − x2y1).

This gives the last equation of system (3.3), since (µ2b+1 − µb+1) 6= 0 because µ is not a
third power in Fq.

Remark 3.4. Frey [Fre99], Naumann [Nau99], and Diem [Die01] also derive System (3.3).
Again, while our way of deriving the system shows only that its Fq-solutions are the points
of V3(Fq), more general arguments in [Nau99, Chapter 4.2] and [Die01, Chapter 2.4.1]
show that the system has not only the correct Fq-rational solutions but describes in fact
the affine open part of the trace zero variety over Fq where x1x2 6= 0.

3.1.3 Explicit equations for n = 5

An analogous approach is possible for n = 5. We compute a system of 6 equations in 10
indeterminates x0, . . . , x4, y0, . . . , y4. The first five equations come from the elliptic curve
equation and have degree 3. The last equation comes from the trace zero condition. It
has degree 4 in x1, x2, x3, x4, degree 2 in y1, y2, y3, y4, and total degree 6. It is too long
to be printed here, but we have computed it using Maple [Map] as follows. Examples for
some fixed values of q, µ,A,B are available at http://maikemassierer.wordpress.com/

phdthesis.

http://maikemassierer.wordpress.com/phdthesis
http://maikemassierer.wordpress.com/phdthesis

3.1. Equations for the trace zero variety 35

Lemma 3.5. Let P1, . . . , P6 be distinct points on E. Then P1 ⊕ . . .⊕ P6 = O if and only
if there exists a non-trivial quadric F with F (P1) = . . . = F (P6) = 0.

Proof. The result follows directly from the fact that P1 ⊕ . . . ⊕ P6 = O on E if and only
if P1 + . . . + P6 − 6O is the principal divisor of a function F on E (see [Was08, Theorem
11.2]), the fact that a function which has its only pole at O is a polynomial, and Bézout’s
Theorem (see [Ful08, Chapter 5.3]).

Now let P = (X,Y) ∈ E(Fq5) \ E(Fq). As before, we derive an equation only for such
trace zero points, since the points of T5 ∩E(Fq) = E(Fq)[5] can be determined easily. The
points P,ϕ(P), . . . , ϕ4(P),O are all distinct, and P ∈ T5 if and only if

P ⊕ ϕ(P)⊕ . . .⊕ ϕ4(P)⊕O = O.

According to Lemma 3.5, this is equivalent to there existing a non-zero quadric

F (x, y) = a1x
2 + a2xy + a3y

2 + a4x+ a5y + a6

which passes through the points P,ϕ(P), . . . , ϕ4(P),O, and the condition that O lies on
F implies a3 = 0. Such a quadric exists if and only if the system

a1X
2 + a2XY + a4X + a5Y + a6 = 0

a1X
2q + a2X

qY q + a4X
q + a5Y

q + a6 = 0

a1X
2q2 + a2X

q2Y q2 + a4X
q2 + a5Y

q2 + a6 = 0

a1X
2q3 + a2X

q3Y q3 + a4X
q3 + a5Y

q3 + a6 = 0

a1X
2q4 + a2X

q4Y q4 + a4X
q4 + a5Y

q4 + a6 = 0

has a non-trivial solution, i.e. if and only if

det










X2 XY X Y 1
X2q XqY q Xq Y q 1

X2q2 Xq2Y q2 Xq2 Y q2 1

X2q3 Xq3Y q3 Xq3 Y q3 1

X2q4 Xq4Y q4 Xq4 Y q4 1










= 0.

Hence the equation describing the trace zero condition is

det










x2 xy x y 1
x2q xqyq xq yq 1

x2q
2

xq
2
yq

2
xq

2
yq

2
1

x2q
3

xq
3
yq

3
xq

3
yq

3
1

x2q
4

xq
4
yq

4
xq

4
yq

4
1










= t+ tq + tq
2
+ tq

3
+ tq

4
= 0,

where

t = det







x2 xy x y
x2q xqyq xq yq

x2q
2

xq
2
yq

2
xq

2
yq

2

x2q
3

xq
3
yq

3
xq

3
yq

3







.

Weil restriction yields 5t0 = 0, where t0 is a polynomial of degree 6 in x1, . . . , x4, y1, . . . , y4.

36 3. Equations for the trace zero subgroup

3.2 Frey’s equations for n = 3

Frey [Fre99, Section 3.2], Naumann [Nau99, Chapter 4.2], and Diem [Die01, Chapter 2.4.1]
study the equations from Section 3.1.2 in more detail. They show how the system can be
manipulated in order to eliminate the indeterminates y1 and y2. Hence, an open affine
part of the trace zero variety can be described by just two equations:

(3x20 + 3µx1x2 +A)2 = 12x0(x
3
0 + µx31 + µ2x32 +Ax0 +B) (3.7)

y20 = x30 + µx31 + µ2x32 +Ax0 +B.

Remark 3.6. Naumann suggests to use equation (3.7) for an efficient representation of
the points in T3, see Chapter 4.1.

In principle, such an approach works also for larger n. However, the clever manipulation
of such a system with 2n indeterminates becomes very difficult already for n = 5. The
elimination of indeterminates with the help of a computer (e.g. using Gröbner bases) is
also very costly. Therefore in the following section, we propose a method that directly
produces an equation only in the x-coordinates. We will see that for n = 3, our method
produces the same equation as Frey, Naumann, and Diem, namely, equation (3.7) is the
same as equation (3.9).

3.3 The Semaev equation

In this section we use Semaev’s summation polynomials [Sem04] to write an equation for
the set of Fq-rational points of the trace zero variety in the x-coordinates only. Proposition
3.2 shows that the case n = 2 is particularly simple. Therefore in this and the following
section, we concentrate only on the case n ≥ 3.

Semaev introduced summation polynomials in the context of attacking the elliptic curve
discrete logarithm problem. They give polynomial conditions describing when a fixed
number of points on an elliptic curve sum to O, involving only the x-coordinates of the
points.

Definition 3.7. Let Fq be a finite field of characteristic different from 2 and 3, and let E
be a smooth elliptic curve defined by the affine equation (3.1) with coefficients A,B ∈ Fq.
Define the m-th summation polynomial fm recursively by

f2(z1, z2) = z1 − z2
f3(z1, z2, z3) = (z1 − z2)

2z23 − 2((z1 + z2)(z1z2 +A) + 2B)z3
+(z1z2 −A)2 − 4B(z1 + z2)

fm(z1, . . . , zm) = Resz(fm−k(z1, . . . , zm−k−1, z), fk+2(zm−k, . . . , zm, z))

for m ≥ 4 and m− 3 ≥ k ≥ 1, where Res denotes the resultant.

We briefly recall the properties of summation polynomials that we will need.

Theorem 3.8 ([Sem04, Theorem 1]). For any m ≥ 2, let Z1, . . . , Zm be elements of the
algebraic closure Fq of Fq. Then fm(Z1, . . . , Zm) = 0 if and only if there exist Y1, . . . , Ym ∈
Fq such that the points (Zi, Yi) are on E and

(Z1, Y1)⊕ . . .⊕ (Zm, Ym) = O

in the group E(Fq). Furthermore, fm has degree 2m−2 in each variable and total degree
(m− 1)2m−2, and it is absolutely irreducible. For m ≥ 3, the polynomial fm is symmetric.

3.3. The Semaev equation 37

Remark 3.9. Definition 3.7 is the original definition that Semaev gave in [Sem04]. Semaev
polynomials can be defined and computed also over a finite field of characteristic 2 or
3. Although the formulas look different, the properties are analogous to those stated in
Theorem 3.8. Hence all results of this and the following section hold, with the appropriate
adjustments, over a finite field of any characteristic.

Since the points in Tn are characterized by the condition that their Frobenius conjugates
sum to zero, we can use the Semaev polynomial to give an equation only in x. It is clear
that (X,Y) ∈ Tn implies fn(X,Xq, . . . , Xqn−1

) = 0. The opposite implication has some
obvious exceptions.

Lemma 3.10. For any prime n, let Tn denote the trace zero subgroup associated with the
field extension Fqn |Fq. We have

⌊n
2
⌋−1
⋃

k=0

(E[n− 2k](Fq)⊕E[2] ∩ Tn) ⊆ {(X,Y) ∈ E(Fqn) | fn(X,Xq, . . . , Xqn−1
) = 0} ∪ {O}.

Proof. Let k ∈ {0, . . . , ⌊n2 ⌋}, and let P = Q ⊕ R with Q ∈ E[n − 2k](Fq), R ∈ E[2] ∩ Tn.
Then we have

P ⊕ ϕ(P)⊕ . . .⊕ ϕn−2k−1(P)
︸ ︷︷ ︸

n−2k summands

⊕ϕn−2k(P)⊖ ϕn−2k+1(P)⊕ . . .⊖ ϕn−1(P)
︸ ︷︷ ︸

2k summands with alternating signs

= Q⊕ . . .⊕Q
︸ ︷︷ ︸

n−2k summands

⊕ Q⊖Q⊕ . . .⊖Q
︸ ︷︷ ︸

2k summands with alternating signs

⊕R⊕ ϕ(R)⊕ . . .⊕ ϕn−1(R)

= [n− 2k]Q⊕ Tr(R)

= O,

where for the first equality, we have used that Q ∈ E(Fq) and R ∈ E[2], and for the third
equality, we have used that Q ∈ E[n− 2k] and R ∈ Tn.

Notice that the points of the form P = Q⊕R with Q ∈ E[n−2k](Fq) and R ∈ E[2]∩Tn

are not trace zero points if Q 6= O and 3 ≤ n− 2k ≤ n− 2. For the interesting cases n = 3
and 5 we prove that these are the only exceptions.

Proposition 3.11. Let Tn be the trace zero subgroup associated with the field extension
Fqn |Fq. We have

T3 = {(X,Y) ∈ E(Fq3) | f3(X,Xq, Xq2) = 0} ∪ {O}
T5 ∪ (E[3](Fq)⊕ (E[2] ∩ T5)) = {(X,Y) ∈ E(Fq5) | f5(X,Xq, . . . , Xq4) = 0} ∪ {O}.

Proof. Let P = (X,Y) ∈ E(Fq3) with f3(X,Xq, Xq2) = 0. Then by the properties of the

Semaev polynomial, there exist Y0, Y1, Y2 ∈ Fq such that (X,Y0)⊕(Xq, Y1)⊕(Xq2 , Y2) = O.

Obviously we have Yi = Y qi or Yi = ⊖Y qi , i = 0, 1, 2, so P ± ϕ(P) ± ϕ2(P) = O. We
have to show that all signs are “⊕”. Suppose P ⊖ ϕ(P) ⊕ ϕ2(P) = O. By applying ϕ,
we get ϕ(P) ⊖ ϕ2(P) ⊕ P = O. Adding these two equations gives [2]P = O, implying
that P = ⊖P , hence P ⊕ ϕ(P) ⊕ ϕ2(P) = O. In particular, P ∈ T3. The rest follows by
symmetry.

Now let P = (X,Y) ∈ E(Fq5) with f5(X,Xq, . . . , Xq4) = 0. Then as before, P ±
ϕ(P)± ϕ2(P)± ϕ3(P)± ϕ4(P) = O. If all signs are “⊕”, then P ∈ T5. We treat all other
cases below.

38 3. Equations for the trace zero subgroup

[one minus] Assume P ⊕ ϕ(P) ⊕ ϕ2(P) ⊕ ϕ3(P) ⊖ ϕ4(P) = O. Applying ϕ to the
equation and adding the two equations, we get [2]ϕ(P) ⊕ [2]ϕ2(P) ⊕ [2]ϕ3(P) = O, and
by substituting into twice the first equation, [2]P = ϕ4([2]P). Hence [2]P ∈ E(Fq4) ∩
E(Fq5) = E(Fq), so [2]P ∈ E[3](Fq). Now P = Q ⊕ R ∈ E[6] is the sum of Q ∈ E[3]
and R ∈ E[2]. We have Q = ⊖2Q = ⊖2P ∈ E[3](Fq). From the original equation
P ⊕ ϕ(P) ⊕ ϕ2(P) ⊕ ϕ3(P) ⊖ ϕ4(P) = O, we get an analogous equation in R, which
together with R ∈ E[2] gives R ∈ T5.

[two minuses in a row] Assume P ⊕ϕ(P)⊕ϕ2(P)⊖ϕ3(P)⊖ϕ4(P) = O. Applying ϕ2

and adding, we get [2]ϕ2(P) = O, hence P = ⊖P and therefore P ∈ T5.
[two minuses not in a row] Finally, assume P ⊕ ϕ(P) ⊖ ϕ2(P) ⊕ ϕ3(P) ⊖ ϕ4(P) = O.

Applying ϕ and adding, we get [2]ϕ(P) = O, hence P = ⊖P and therefore P ∈ T5.
The other cases follow by symmetry.

Remark 3.12. The polynomial fn is a convenient equation for Tn, since in practice, for
any root X ∈ Fqn of fn(x, x

q, . . . , xq
n−1

) we can decide efficiently whether (X,Y) ∈ Tn.
For n = 3 we only need to check that Y ∈ Fq3 . This guarantees that (X,Y) ∈ T3, by

Proposition 3.11.
For n = 5, by Proposition 3.11 we have to exclude from the solutions of f5 = 0

the points (X,Y) ∈ E such that Y /∈ Fq5 and the points of the form Q ⊕ R where
O 6= Q ∈ E[3](Fq) and R ∈ E[2]∩T5. Let L be the set of the x-coordinates of the elements
Q ⊕ R ∈ E[3](Fq) ⊕ (E[2] ∩ T5) with Q 6= O. Then L has cardinality at most 16. A root

X ∈ Fq5 of f5(x, x
q, . . . , xq

4
) corresponds to a point (X,Y) ∈ T5 if and only if X /∈ L and

Y ∈ Fq5 .

Lemma 3.13. Let h ∈ Fq[x0, . . . , xn−1] be a polynomial with h(X0, . . . , Xn−1) = 0 for all
(X0, . . . , Xn−1) ∈ Fn

q , and assume that degxi
(h) < q for i ∈ {0, . . . , n− 1}. Then h is the

zero polynomial.

Proof. Write

V (h) = {(X0, . . . , Xn−1) ∈ F
n
q | h(X0, . . . , Xn−1) = 0} ⊆ F

n
q

for the zero locus of h over the algebraic closure of Fq and

I(V) = {f ∈ Fq[x0, . . . , xn−1] | f(X0, . . . , Xn−1) = 0 for all (X0, . . . , Xn−1) ∈ V }
for the ideal of the polynomials vanishing on some V ⊆ F

n
q .

First we show that I(Fn
q) = Jn where Jn = (xq0 − x0, . . . , x

q
n−1 − xn−1). We proceed

by induction on n. The claim holds for n = 1 since the elements of Fq are exactly those
elements of Fq that satisfy the equation xq0 − x0. Assuming that the statement is true for
n− 1, we have

I(Fn
q) =

⋂

(α0,...,αn−1)∈Fn
q

(x0 − α0, . . . , xn−1 − αn−1)

=
⋂

α0∈Fq

⋂

(α1,...,αn−1)∈F
n−1
q

(x0 − α0, . . . , xn−1 − αn−1)

=
⋂

α0∈Fq

(x0 − α0, x
q
1 − x1, . . . , x

q
n−1 − xn−1)

=




∏

α0∈Fq

(x0 − α0), x
q
1 − x1, . . . , x

q
n−1 − xn−1





= Jn.

3.3. The Semaev equation 39

Now we show that h = 0. Since h vanishes on Fn
q , we have Fn

q ⊆ V (h) ⊆ F
n
q , which

implies h ∈ I(V (h)) ⊆ I(Fn
q) = Jn. The leading terms of xq0 − x0, . . . , x

q
n−1 − xn−1 with

respect to any term order are xq0, . . . , x
q
n−1, in particular they are pairwise coprime. Hence

the polynomials xq0 − x0, . . . , x
q
n−1 − xn−1 are a Gröbner basis of Jn. Therefore, h ∈ Jn

implies that h reduces to zero using the generators of Jn, i.e. if we divide h by xqi − xi
whenever the leading term of h is divisible by xqi , we must obtain remainder zero when no
more division is possible. But since degxi

(h) < q for all i, h is equal to the remainder of
the division of h by xq0 − x0, . . . , x

q
n−1 − xn−1, hence h = 0.

The x-coordinates of the points of Vn(Fq) correspond to zeros of the Weil restriction of

fn(x, . . . , x
qn−1

). Notice that since we are only interested in Fq-solutions of the equations
resulting from the Weil restriction, we may reduce all equations modulo xqi − xi for i =
0, . . . , n − 1. Then all resulting equations have degree less than q in each indeterminate.
Now Lemma 3.13 implies that the last n − 1 equations disappear, since the trace of any
Fqn-rational point is Fq-rational. Therefore, although Weil restriction could produce up to
n equations, by reducing modulo the equations xqi −xi we obtain only one equation at the
end. We denote this new equation by

f̃n(x0, . . . , xn−1) = 0. (3.8)

We stress that its Fq-solutions are x-coordinates of Fq-points of the trace zero variety,
together with some extra points described in Lemma 3.10 and Proposition 3.11. In Re-
mark 3.12 we discussed how to distinguish the extra solutions. Conveniently, the q-th
powers disappear thanks to the reduction modulo xqi −xi, and we are left with an equation
f̃n of the same degree as the original Semaev polynomial fn.

Summarizing, compared to the straightforward system of equations describing the trace
zero variety (as explained in Section 3.2, these are at least n + 1 equations in the 2n
indeterminates xi and yi), we are able to eliminate all y-coordinates and all equations but
one, leaving us with only one equation in n indeterminates. We pay for this with a slightly
higher degree, see Section 3.5 for a detailed comparison.

3.3.1 Explicit equations for n = 3

For n = 3 and Fq3 = Fq[ζ]/(ζ
3 − µ), we have

f3(x, x
q, xq

2
) = x2q

2+2q − 2x2q
2+q+1 + x2q

2+q − 2xq
2+2q+1 − 2xq

2+q+2 − 2Axq
2+q

−2Axq2+1 − 4Bxq
2
+ x2q+2 − 2Axq+1 − 4Bxq − 4Bx+A2.

For Weil restriction, we use (3.6), which gives

f̃3(x0, x1, x2) = −3x40 − 12µ2x0x
3
2 − 12µx0x

3
1 + 18µx20x1x2

+9µ2x21x
2
2 − 6Ax20 + 6Aµx1x2 − 12Bx0 +A2.

(3.9)

As explained above, this equation is equal to the one computed by Frey, Naumann, and
Diem, i.e. equation (3.7). The advantage of our approach is, however, that we are able to
produce this equation only in the x-coordinates in a direct way, without first computing
and eliminating from a system of equations for the trace zero variety and that it works
also for larger n.

40 3. Equations for the trace zero subgroup

3.3.2 Explicit equations for n = 5

The fifth Semaev polynomial f5 is too big to be printed here, but a computer program
can easily work with it, in fact we did this in Magma [BCP97]. It has total degree 32
and degree 8 in each indeterminate. Computing f̃5(x0, . . . , x4) takes some time (about 7
hours with Magma). It has total degree 32, degree 32 in x0 and degree 31 in x1, . . . , x4.
Examples are available at http://maikemassierer.wordpress.com/phdthesis for some
fixed values of q, µ,A,B.

3.4 The symmetrized Semaev equation

We take the approach from the previous section a step further in order to produce an even
more convenient equation for the x-coordinates of trace zero points. As before, we consider
only the case n ≥ 3.

As the Semaev polynomials are symmetric in nature, they can be written in terms of
the symmetric functions. This fact was first exploited by Gaudry in the context of index
calculus for elliptic curves [Gau04]. We write

fn(z1, . . . , zn) = gn(e1(z1, . . . , zn), . . . , en(z1, . . . , zn)), (3.10)

where ei are the elementary symmetric polynomials

ei(z1, . . . , zn) =
∑

1≤j1<...<ji≤n

zj1 · . . . · zji ,

and call gn the “symmetrized” n-th Semaev polynomial. The advantage over the original
Semaev polynomial is that gn has lower degree (it has total degree 2n−2, while fn has
total degree (n− 1)2n−2) and fewer Fqn-solutions, as it respects the inherent symmetry of
the sum (i.e. where fn has as solutions all permutations of possible x-coordinates, gn has
only one solution, the symmetric functions of these coordinates). See [JV12] for how to
efficiently compute the symmetrized Semaev polynomials. In this sense,

gn(s1, . . . , sn) = 0 (3.11)

also describes the points of Tn via the relations

si = ei(x, x
q, . . . , xq

n−1
), i = 1, . . . , n.

Notice that for X ∈ Fqn , we have ei(X,Xq, . . . , Xqn−1
) ∈ Fq. Summarizing, gn is a

polynomial with Fq-coefficients by equation (3.10), as well as the polynomials ẽi that we
obtain by Weil descent from the symmetric functions in the q-powers of x:

si = ẽi(x0, . . . , xn−1), i = 1, . . . , n. (3.12)

Furthermore, we get exactly one new relation per equation (reducing modulo xqi − xi and
applying Lemma 3.13, as before). Hence we have a total of n equations in the coordinates of
the Weil restriction describing the symmetric functions. The q-th powers in the exponents
disappear thanks to the reduction, and each ẽi is homogeneous of degree i.

http://maikemassierer.wordpress.com/phdthesis

3.5. Comparison 41

3.4.1 Explicit equations for n = 3

The symmetrized third Semaev polynomial is

g3(s1, s2, s3) = s22 − 4s1s3 − 4Bs1 − 2As2 +A2 (3.13)

and describes the trace zero subgroup via

s1 = x+ xq + xq
2

= 3x0
s2 = x1+q + x1+q2 + xq+q2 = 3x20 − 3µx1x2
s3 = x1+q+q2 = x30 − 3µx0x1x2 + µx31 + µ2x32.

(3.14)

3.4.2 Explicit equations for n = 5

The symmetrized fifth Semaev polynomial has total degree 8. It has degree 6 in the first,
third, and fifth indeterminate and degree 8 in the second and fourth indeterminate. We can
compute it efficiently with Magma (about 10 seconds with a Gröbner basis elimination). It
has a small number of terms compared to the original polynomial, but printing it here would
still take several pages. Some examples for fixed values of q, µ,A,B can be downloaded
from http://maikemassierer.wordpress.com/phdthesis. The Weil restriction of the
symmetric functions is

s1 = 5x0

s2 = 10x20 − 5µx1x4 − 5µx2x3

s3 = 10x30 + 5µ2x23x4 + 5µ2x2x
2
4 + 5µx1x

2
2 + 5µx21x3 − 15µx0x1x4 − 15µx0x2x3

s4 = 5x40 − 15µx20x1x4 − 15µx20x2x3 − 5µx31x2 − 5µ2x1x
3
3 − 5µ2x32x4 − 5µ3x3x

3
4

+5µ2x22x
2
3 + 5µ2x21x

2
4 + 10µx0x

2
1x3 + 10µx0x1x

2
2 + 10µ2x0x

2
3x4 + 10µ2x0x2x

2
4

−5µ2x1x2x3x4

s5 = x50 + µ3x53 + µ4x54 + µx51 + µ2x52 − 5µ2x1x
3
2x3 − 5µ3x1x2x

3
4 − 5µ3x2x

3
3x4

−5µx0x31x2 − 5µ2x0x1x
3
3 − 5µ2x0x

3
2x4 − 5µ3x0x3x

3
4 − 5µ2x31x3x4 − 5µx30x1x4

−5µx30x2x3 + 5µx20x
2
1x3 + 5µx20x1x

2
2 + 5µ2x20x2x

2
4 + 5µ2x20x

2
3x4 + 5µ2x0x

2
1x

2
4

+5µ2x0x
2
2x

2
3 + 5µ2x21x

2
2x4 + 5µ2x21x2x

2
3 + 5µ3x1x

2
3x

2
4 + 5µ3x22x3x

2
4

−5µ2x0x1x2x3x4.

3.5 Comparison

The equations given in this chapter describe different sets: The equations from Sections
3.1 and 3.2 describe open subsets of the trace zero variety, whereas the equations from
Sections 3.3 and 3.4 describe only the x-coordinates of trace zero points. In particular,
an Fq-solution of one of the Semaev equations is not guaranteed to produce a point of
Tn because the corresponding y-coordinate may be in the wrong field. Nevertheless, the
simpler Semaev equations prove particularly useful for finding an efficient representation
and applying index calculus to trace zero subgroups (see Chapters 4 and 7). Therefore, we
give a brief comparison of all (systems of) equations below. We compare

1. the system of equations for the trace zero variety from Section 3.1,

2. the system of equations given by Frey for n = 3, as presented in Section 3.2,

3. the Semaev equation from Section 3.3, and

4. the symmetrized Semaev equation from Section 3.4.

http://maikemassierer.wordpress.com/phdthesis

42 3. Equations for the trace zero subgroup

Table 3.1 Comparison of equations for n = 3

n = 3 System 1 System 2 System 3 System 4

number of equations 4 2 1 1
number of indeterminates 6 4 3 3
total degree 3 4 4 2
degree in x0 3 4 4 –
degree in x1 3 3 3 –
degree in x2 3 3 3 –
degree in y0 2 2 – –
degree in y1 2 – – –
degree in y2 2 – – –
degree in s0 – – – 1
degree in s1 – – – 2
degree in s2 – – – 1

Table 3.2 Comparison of equations for n = 5

n = 5 System 1 System 3 System 4

number of equations 6 1 1
number of indeterminates 10 5 5
total degree 6 32 8
degree in x0 3 32 –
degree in x1 4 31 –
degree in x2 4 31 –
degree in x3 4 31 –
degree in x4 4 31 –
degree in y0 2 – –
degree in y1 2 – –
degree in y2 2 – –
degree in y3 2 – –
degree in y4 2 – –
degree in s0 – – 6
degree in s1 – – 8
degree in s2 – – 6
degree in s3 – – 8
degree in s4 – – 6

We consider the cases n = 3 and n = 5 separately in Tables 3.1 and 3.2, respectively, and
we are particularly interested in the degrees of the equations.

The degree, the number of indeterminates, and hence also the number of terms grows
quickly with n. Therefore, the equations are difficult to compute even for relatively small n.
The degree of the Semaev polynomial grows exponentially in n (precisely, it is (n−1)2n−2),
which makes the polynomial hard to compute already for n ≥ 8. Although the degree of
the symmetrized Semaev polynomial is only 2n−2, it still depends exponentially on n. This
is the main drawback of the Semaev equations. The major advantage, however, is that the
Semaev polynomials describe the trace zero subgroup using only half as many variables as
the standard equations (n compared to 2n) and only one equation (as compared to n+1).

Chapter 4

Point compression over small degree

extension fields

In the conclusions of [AC07], large bandwidth is mentioned as the only drawback of using
trace zero subgroups in pairing-based cryptography. In this chapter we solve this problem
by finding an optimal representation for the elements of the trace zero subgroup of an
elliptic curve. It builds on the symmetrized Semaev equation for the trace zero subgroup
presented in Chapter 3.4, and in principle it works for trace zero subgroups of elliptic
curves with respect to any small prime extension degree n. It can be made practical for
n = 3, 5.

Two representations that work for these parameters have already been proposed. Nau-
mann [Nau99, Chapter 5.2.3] suggests to use equation (3.7) for an efficient representation
for n = 3, see Section 4.1, and Silverberg [Sil05] gives a different representation for n = 3, 5.
The representation we propose here is new and conceptually different from the existing
ones. Our compression and decompression algorithms are more efficient than those of both
[Nau99] and [Sil05], and points are recovered with smaller ambiguity. In addition, our
representation is (to the extent of our knowledge) the only one that is compatible with
scalar multiplication of points, which is the only operation needed in many DLP-based
cryptographic protocols such as Diffie–Hellman.

Assumptions and Notation. In this chapter, let Fq be a finite field with q elements, and
let E be an elliptic curve defined over Fq by an affine Weierstraß equation. We study the
trace zero subgroup Tn of E(Fqn), where n is prime.

Remark 4.1. The content of this chapter builds on the equations derived from the Semaev
polynomial in Chapter 3. They are written down explicitly only for elliptic curves with
short Weierstraß equation

E : y2 = x3 +Ax+B

over fields of characteristic not equal to 2 or 3. We often use those equations here, thus
implicitly assuming that Fq has characteristic at least 5. However, as explained in Remark
3.9, such equations can be obtained for elliptic curves defined over a field of any charac-
teristic. Hence all results of this chapter also hold, with the appropriate adjustments, over
a finite field of any characteristic.

We recall from Chapter 2.5 that it is customary to represent a point (X,Y) ∈ E(Fqn)
via its x-coordinate X ∈ Fqn and that this yields an optimal representation of E(Fqn)
(see Example 2.23). Since a point P = (X,Y) ∈ Tn is an element of E(Fqn), we can also

43

44 4. Point compression over small degree extension fields

represent P via X ∈ Fqn . This representation however is not optimal, since |Tn| ≈ qn−1 6≈
qn for large q (see Remark 2.25). In this chapter we find a representation for the elements
of Tn via n− 1 coordinates in Fq. This is optimal.

Recall also that the representation mentioned above identifies pairs of points, since P
and ⊖P have the same x-coordinate. We often say that the x-coordinate is a representation
for the equivalence class consisting of P and ⊖P . The representation that we propose here
identifies a small number of points as well.

Before we present our new representation, we notice that the case n = 2 allows a trivial
optimal representation for the elements of Tn. This follows directly from Proposition 3.2.
Hence in the next sections we concentrate on the more interesting case of odd primes n.

Corollary 4.2. Representing a point (X,Y) ∈ T2 by X yields a representation of optimal
size.

Proof. From Proposition 3.2, we know that

T2 = {(X,Y) ∈ E(Fq2) | X ∈ Fq, Y /∈ Fq} ∪ E[2](Fq).

This means that we have X ∈ Fq for all (X,Y) ∈ T2. This representation is optimal, since
|T2| ≈ q.

Since it is our goal to find a representation for the elements of Tn via n− 1 coordinates
in Fq, it is convenient to use the identification Tn = Vn(Fq) via the Weil restriction coordi-
nates. Whenever writing explicit equations in these coordinates, we need to choose a basis
of the extension Fqn |Fq. For this purpose, we fix the following.

Assumptions and Notation. We use the same notation as in Chapter 3. Specifically,
we assume that n > 2 (we may do this thanks to Corollary 4.2) and that

Fqn = Fq[ζ]/(ζ
n − µ)

is a Kummer extension of Fq. We use the Weil restriction coordinates (3.2).

As explained in Chapter 3.1, these coordinates may be used to write a total of n + 1
equations or more in Fq[x0, . . . , xn−1, y0, . . . , yn−1] defining the affine part of Vn. The Fq-
rational points of Vn correspond in a natural way to the points of Tn (which are Fqn-rational
points of E), and the group law on E translates directly into Vn.

When Fqn cannot be written as a Kummer extension, we choose a normal basis, see
Remark 3.1. This produces equations for the affine part of Vn with the same properties.

With this notation, the coordinates (x0, . . . , xn−1, y0, . . . , yn−1) are the obvious way
of representing points in Vn(Fq), but this representation is far from optimal in size. By
dropping the yi, we obtain a representation of size n, which is still not optimal, as discussed
in Remark 2.25. It is our goal to find a representation using exactly n − 1 coordinates in
Fq.

Roadmap. The rest of this chapter is organized as follows. First we briefly recall the
representation for n = 3 from [Nau99] in Section 4.1. Then in Section 4.2, using the
symmetrized Semaev equation from Chapter 3.4, we propose a new representation for
the points on the trace zero variety. The size of the representation is optimal, and we
give efficient compression and decompression algorithms in Section 4.3. We briefly discuss
arithmetic in compressed coordinates in Section 4.4. In Section 4.5 we analyze in detail
what our method produces for the cases n = 3 and 5. We give explicit equations and
concrete examples computed with Magma. It is generally agreed that 3 and 5 are the
practically relevant extension degrees in the case of elliptic curves (see e.g. [Lan04b]).

4.1. Naumann’s representation 45

4.1 Naumann’s representation

When constructing an efficient representation for the points of Tn using n− 1 coordinates
in Fq, it is a natural idea to search for a suitable equation in the coordinates x0, . . . , xn−1,
since such an equation is compatible with dropping the y-coordinate. Then the compression
algorithm can simply drop one of the xi, and the decompression algorithm can use the
equation to recompute it. When the equation does not have degree 1 in the chosen xi, the
missing coordinate cannot be recovered uniquely. In such a case, it is necessary to use some
extra bits ν to remember which solution corresponds to the original value of xi. Naumann
[Nau99], Lange [Lan04b], and Silverberg [Sil05] all follow this approach. The drawback of
such an approach is that the equation has to be solved twice: during compression in order
to determine ν, and again during decompression in order to determine xi. Alternatively,
one may choose to identify all points obtained from decompression, but it is not clear that
the equivalence classes this gives are compatible with the group operation.

Naumann [Nau99, Chapter 5.2.3] suggests to use equation (3.7)

(3x20 + 3µx1x2 +A)2 = 12x0(x
3
0 + µx31 + µ2x32 +Ax0 +B),

which he obtains by eliminating the indeterminates y0, y1, y2 from system (3.3), for an
efficient representation of points (X,Y) = (X0, X1, X2, Y0, Y1, Y2) ∈ T3 = V3(Fq) via the
coordinates (X1, X2, ν, λ). The equation is used to recover X0 from X1, X2, where the
number 0 ≤ ν ≤ 3 indicates which of the solutions corresponds to X0, using some fixed
ordering of Fq. The curve equation is then used to recompute Y , and λ determines its
sign. The numbers ν and λ can be saved in a total of 3 bits.

Another slightly more efficient approach would be to represent (X,Y) via (X0, X1, ν, λ)
or (X0, X2, ν, λ), since the polynomial has only degree 3 in x1, x2. In this case, we would
have 0 ≤ ν ≤ 2, and ν and λ together would still take 3 bits.

We derived in Chapter 3.3 a single equation whose Fq-solutions describe the Fq-points
of the trace zero variety, up to a few well-described exceptions (see Lemma 3.10 and
Proposition 3.11). Namely, this is equation (3.8)

f̃n(x0, . . . , xn−1) = 0,

the Weil restriction of the n-th Semaev polynomial. This may be seen as a generalization
of the equation of Naumann and can therefore be used for an efficient representation for
the points of Tn in the same spirit: The compression algorithm drops one xi in order to
obtain a compact representation, and the decompression algorithm uses f̃n to recompute
the missing coordinate. However, since f̃n has relatively large degree, this would identify
more points than desired (3 for n = 3 and 31 for n = 5). Moreover, the computation of
the Weil restriction of the Semaev polynomials requires a large amount of memory. It is
already very demanding for n = 5. We present a different approach to the problem in the
next section.

4.2 A representation from the symmetrized Semaev

polynomial

We propose a compact representation of the points of Tn = Vn(Fq) using the equations
derived in Chapter 3.4. We recall them briefly. The equation (3.11)

gn(s1, . . . , sn) = 0

46 4. Point compression over small degree extension fields

describes the points of Tn via the relations (3.12)

si = ẽi(x0, . . . , xn−1), i = 1, . . . , n.

Here gn is the symmetrized n-th Semaev polynomial, and its degree is much lower than
that of the Weil restricted Semaev polynomial f̃n. The polynomials ẽi are obtained by Weil
descent from the symmetric functions in the q-powers of x. All equations have coefficients
in Fq, and hence for a point P = (X0, . . . , Xn−1, Y0, . . . , Yn−1) ∈ Vn(Fq) we have

Si = ẽi(X0, . . . , Xn−1) ∈ Fq, i = 1, . . . , n.

Therefore, we may define the representation

R : Vn(Fq) \ {0} −→ Fn−1
q

(X0, . . . , Yn−1) 7−→ (ẽi(X0, . . . , Xn−1))
n−1
i=1 .

It is clear that R has optimal size, since |Tn| ≈ qn−1.

Remark 4.3. Mapping to the vector (ẽi(X0, . . . , Xn−1)) with an arbitrary, fixed ẽi omitted
is obviously an optimal representation. However, as we will see in the next section, the
decompression algorithm recovers points with the smallest possible ambiguity when i is
chosen such that the degree of gn in si is minimal. One such choice is i = n, and therefore
we choose to omit ẽn.

4.3 Compression and decompression algorithms

In Algorithms 4.1 and 4.2 we show how to compute the representation via a compression al-
gorithm and how to recover the full point (up to some small ambiguity) via a decompression
algorithm. Afterwards we discuss how many points are identified by this representation.

Algorithm 4.1 Compression, n ≥ 3

Input: P = (X0, . . . , Xn−1, Y0, . . . , Yn−1) ∈ Vn(Fq)
Output: Representation (S1, . . . , Sn−1) ∈ Fn−1

q of P
1: for i = 1, . . . , n− 1 do

2: Si ← ẽi(X0, . . . , Xn−1)
3: end for

4: return (S1, . . . , Sn−1)

Remark 4.4. Because of Lemma 3.10, in line 10 of the decompression algorithm, for each
solution X of system (4.1) one needs to check that the point (X,Y) ∈ Tn. This step can
in practice be eliminated for n = 3, 5, as discussed in Remark 3.12.

For a small set of points, equation (3.11) vanishes when evaluated in the given numbers
S1, . . . , Sn−1. For such points P , any t ∈ Fq solves the equation gn(S1, . . . , Sn−1, t) = 0,
making the computational effort for decompressing Compress(P) very large. Therefore,
our decompression algorithm is not practical for such points. However, for almost all points
P ∈ Vn(Fq) the polynomial gn(S1, . . . , Sn−1, t) has only a small number of roots in t (upper
bounded by the degree of gn in the variable t). For our analysis, we assume that we are
in the latter case. We have P ∈ Decompress(Compress(P)), since the points of Vn(Fq)
are described by gn(ẽ1(x0, . . . , xn−1), . . . , ẽn(x0, . . . , xn−1)). The relevant question is how
many more points the output may contain.

4.3. Compression and decompression algorithms 47

Algorithm 4.2 Decompression, n ≥ 3

Input: (S1, . . . , Sn−1) ∈ Fq
n−1

Output: All points of Tn = Vn(Fq) that have (S1, . . . , Sn−1) as compact representation
1: L← empty list
2: T ← set of solutions of gn(S1, . . . , Sn−1, t) = 0 in t
3: for each τ ∈ T do

4: find one solution (X0, . . . , Xn−1), if it exists, of the system

S1 = ẽ1(x0, . . . , xn−1)
...

Sn−1 = ẽn−1(x0, . . . , xn−1)
τ = ẽn(x0, . . . , xn−1)

(4.1)

5: if no solution exists then

6: continue with the next τ
7: end if

8: X ← X0 + . . .+Xn−1ζ
n−1

9: Y ← a y-coordinate corresponding to X, computed from the curve equation
10: if (X,Y) ∈ Tn then

11: append ±P = (X,±Y) and all their Frobenius conjugates to L
12: end if

13: end for

14: return L

First of all, by compressing a point, we lose the ability to distinguish between Frobenius
conjugates of points, since for each solution of system (4.1), all Frobenius conjugates are
also solutions. This can be compared to the fact that when using the “standard” com-
pression, we lose the ability to distinguish between a point and its negative. If desired, a
few extra bits can be used to remember that information. Alternatively, we can think of
working in Tn modulo an equivalence relation that identifies the Frobenius conjugates of
each point and its negative. This reduces the size of the group Tn by a factor 2n, which
is a small price to pay considering the amount of memory saved by applying the compres-
sion, especially since n is small in practice. In addition, this corresponds to the loss in
Pollard–Rho security, since the algorithm can work in equivalence classes (see [DGM99]).
Notice also that it is enough to compute one solution of system (4.1), since the set of all
solutions consists precisely of the Frobenius conjugates of one point. This is because any
polynomial in n variables which is left invariant by any permutation of the variables can
be written uniquely as a polynomial in the elementary symmetric functions e1, . . . , en.

Now, how many different equivalence classes of points can be output by the decom-
pression algorithm depends only on the degree of gn in the last indeterminate. For n = 3
the degree is one and decompression therefore outputs only a single class. As n grows,
the degree of the Semaev polynomial also grows, thus producing more ambiguity in the
recovery process. This also reflects the growth in the number of extra points which satisfy
the equation coming from the Semaev polynomial, as seen in Lemma 3.10.

Notice moreover that there may be solutions τ of gn(S1, . . . , Sn−1, t) = 0 for which
system (4.1) has no solutions, and that not all the solutions of system (4.1) produce an
equivalence class of points on the trace zero variety. For example, if X ∈ Fqn satisfies

fn(X,Xq, . . . , Xqn−1
) = 0, the corresponding point P = (X,Y) ∈ E may have Y ∈

Fq2n \ Fqn . In this case P /∈ Tn.

48 4. Point compression over small degree extension fields

Since our algorithms are most useful for n = 3 and 5, an asymptotic complexity analysis
for general n does not make much sense. In fact, it is easy to count the number of additions,
multiplications, and squarings in Fq needed to compute the representation just from looking
at the formulas for s1, . . . , sn−1. We do this for the cases n = 3 and 5 in Sections 4.5.1 and
4.5.2, respectively. There, we also discuss the efficiency of our decompression algorithm
and how it compares to the approaches of [Nau99, Sil05].

4.4 Group operation

In order to compute with points of Tn, we suggest to decompress a point, perform the
operation in E(Fqn), and compress again the result. Since compression and decompression
is very efficient, this adds only little overhead. In an environment with little storage and/or
bandwidth capacity, the memory savings of compressed points may well be worth this small
trade-off with the efficiency of the arithmetic. Also notice that scalar multiplication of
trace zero points in E(Fqn) is more efficient than scalar multiplication of arbitrary points
of E(Fqn), due to a speed-up using the Frobenius endomorphism, as pointed out by Frey
[Fre99] and studied in detail by Lange [Lan01, Lan04b] and subsequently by Avanzi and
Cesena [AC07], see also [ACD+06, Chapter 15.3.2].

Our recommendation corresponds to usual implementation practice in the setting of
point compression: Even when a method to compute with compressed points is available,
it is usually preferable to perform decompression, compute with the point in its original
representation, and compress the result. For example, Galbraith and Lin show in [GL09]
that although it is possible to compute pairings using the x-coordinates of the input points
only, it is more efficient in most cases (namely, whenever the embedding degree is greater
than 2) to recompute the y-coordinates of the input points and perform the pairing com-
putation on the full input points. As a second example, let us consider the following two
methods for scalar multiplication by k of an elliptic curve point P = (X,Y) when only X
is given:

(i) Use the Montgomery ladder, which computes the x-coordinate of [k]P from X only.

(ii) Find Y by computing a square root, apply a fast scalar multiplication algorithm to
(X,Y), and return only the x-coordinate of the result.

Most recent speed records for scalar multiplication on elliptic curves have been set using
algorithms that need the full point P , in other words with the second approach, see e.g.
[BDL+12, LS12, OLAR13, FHLS13]. Timings typically ignore the additional cost for point
decompression, but there is strong evidence that on a large class of elliptic curves the second
approach is faster and therefore preferable whenever protection against side channel attacks
(i.e. timing invariance) is not required. Moreover, whenever automorphisms are used to
speed up scalar multiplication (e.g. GLV/GLS curves and the trace zero subgroup, see
Section 2.4 for how to do this), point addition (and not just scalar multiplication) is
needed, and therefore the Montgomery ladder cannot be applied directly. This is the basis
for our suggestion to follow the second approach when working with compressed points of
Tn.

Remark 4.5. When performing the group operation, it is not necessary to compute the
entire equivalence class (i.e. all preimages) of a given point during decompression. Instead,
it suffices to compute one arbitrary representative of the class, perform the scalar multi-
plication on this representative, and compress the result again. Since scalar multiplication
commutes with both the Frobenius map and the negation of a point, the final result is

4.5. Explicit equations and comparison with other representations 49

independent of the choice of representative, as long as the representation identifies only
one class of Frobenius conjugates for that particular point.

In Diffie–Hellman key exchange, the goal is to agree on a unique common secret, while
when following our approach of computing with compressed coordinates that represent
equivalence classes of points, two parties a priori only agree on a shared equivalence class
instead of a single point. Since the compressed coordinates are a unique representation
of the equivalence class, we suggest to apply a key derivation function directly to these
coordinates. This means that an execution of the compression algorithm is necessary just
before the key derivation function is applied.

Alternatively, one could fix an order on the elements of F2
qn , choose the representative

of the class which has the smallest coordinates with respect to this order, and then apply a
key derivation function to this point. For this approach, it would be necessary to compute
all elements of the equivalence class (and not just one representative).

4.5 Explicit equations and comparison with other

representations

We present explicit equations and experimental results for n = 3, 5. All computations
were done with Magma version 2.19.3 [BCP97], running on one core of an Intel Xeon
X7550 Processor (2.00 GHz) on a Fujitsu Primergy RX900S1. Our Magma programs are
straightforward implementations of the methods presented here and are only meant as an
indication. No particular effort has been put into optimizing them.

We also give a detailed analysis of our compression and decompression algorithms for
n = 3, 5. Where possible, we count squarings (S), multiplications (M), and inversions (I)
in Fq. We do not count multiplication by constants, since they can often be chosen small
(see [Lan04b]), and multiplication can then be performed by repeated addition.

On the basis of this analysis, we compare our algorithms to those of Naumann [Nau99]
for n = 3 and Silverberg [Sil05] for n = 3, 5.

4.5.1 Explicit equations and comparison for n = 3

We give explicit equations for n = 3, where Fq3 = Fq[ζ]/(ζ
3 − µ) is a Kummer extension

of Fq. Some of them were already presented in Chapter 3.4.1. The symmetrized third
Semaev polynomial is equation (3.13)

g3(s1, s2, s3) = s22 − 4s1s3 − 4Bs1 − 2As2 +A2

and describes the trace zero subgroup via system (3.14)

s1 = x+ xq + xq
2

= 3x0
s2 = x1+q + x1+q2 + xq+q2 = 3x20 − 3µx1x2
s3 = x1+q+q2 = x30 − 3µx0x1x2 + µx31 + µ2x32.

So for compression of a point (x0, x1, x2, y0, y1, y2), we use the coordinates

(s1, s2) = (3x0, 3x
2
0 − 3µx1x2),

and for decompression, we have to solve g3(s1, s2, s3) = 0 for s3, where g3 is given by
equation (3.13). Since the equation is linear in s3, the missing coordinate can be recovered
uniquely, except when s1 = 0. This is the case only for a small set of points. Notice

50 4. Point compression over small degree extension fields

Table 4.1 Average time in milliseconds for compression/decompression of one point,
n = 3, smallest values in italics

q 210 − 3 220 − 3 240 − 87 260 − 93 279 − 67

Compression si 0.007 0.014 0.028 0.039 0.064
Compression ti 0.002 0.007 0.008 0.010 0.015

Decompression si 0.124 0.159 0.731 0.987 1.586
Decompression ti 0.090 0.132 0.610 0.956 1.545

moreover that the points (0, s2, s3) with s22 − 2As2 + A2 = 0 satisfy equation (3.13) for
every s3. The only ambiguity in decompression comes from solving system (3.14), which
yields the Frobenius conjugates x, xq, xq

2
of the original x. So for n = 3 this gives an

optimal representation in our sense.
The following representation is equivalent to the above but easier to compute. Set

t1 = x0, t2 = x1x2, t3 = x31 + µx32, (4.2)

and take (t1, t2) as a representation. The relation between the two sets of coordinates is

s1 = 3t1, s2 = 3t21 − 3µt2, s3 = t31 − 3µt1t2 + µt3.

In this case, we recover t3 from the equation

−3t41 + 18µt21t2 + 9µ2t22 − 12µt1t3 − 12Bt1 − 6At21 + 6Aµt2 +A2 = 0.

The equation is linear in t3, thus making point recovery unique whenever t1 6= 0, but the
total degree is higher. Compared to the representation (s1, s2), fewer operations are needed
for compression and for computing the solutions of the system during decompression. Thus,
compression and decompression for this variant of the representation are more efficient.
We give timings for 10, 20, 40, 60, and 79 bit fields in Table 4.1. The smallest values
for compression and decompression respectively are emphasized in italics, and we see that
compression is about a factor 3 to 4 faster and decompression is slightly faster for the
second method. Notice that decompression timings are for recomputing the x-coordinate
only.

Example 4.6. Let E be the curve y2 = x3 + x + 368 over Fq, where q = 279 − 67 is a
79-bit prime and µ = 3. The trace zero subgroup of E(Fq3) has prime order of 158 bits.
We choose a random point in T3 (to save some space, we write only x-coordinates)

P = 260970034280824124824722 + 431820813779055023676698ζ + 496444425404915392572065ζ2

and compute

Compress(P) = (178447193035157787121145, 159414355696879147312583)

Decompress(178447193035157787121145, 159414355696879147312583) =
{260970034280824124824722 + 431820813779055023676698ζ + 496444425404915392572065ζ2,
260970034280824124824722 + 318397306102476549147695ζ + 124410673032925784958936ζ2,
260970034280824124824722 + 458707699733097601881649ζ + 88070721176787997175041ζ2}

where the results of decompression are exactly the Frobenius conjugates of P . In our
Magma implementation, we solve system (3.14) over Fq similarly to how one would do it

4.5. Explicit equations and comparison with other representations 51

by hand, as described below. Notice that the solutions could also be found by computing
the roots of the polynomial x3− s1x

2+ s2x− s3 over Fq3 , but since the system is so simple
for n = 3, solving it directly is faster in all instances.

When using the second variant of the representation, we compute

(t1, t2) = (260970034280824124824722, 492721032528256431308437)

and naturally get the same result for decompression by solving system (4.2) in a similar
way.

Operation count for representation in the si. Compressing a point clearly takes
1S+1M. Decompression requires the following steps.

• Evaluating g3(s1, s2, s3) in the first two indeterminates and solving for the third
indeterminate means computing s3 = 1

4s1
(s2(s2 − 2A) − 4Bs1 + A2), which takes

2M+1I.

• Given s1, s2, s3, we need to solve system (3.14) for x, or for x0, x1, x2. The most
obvious way would be to compute the roots of the univariate polynomial x3 −
s1x

2 + s2x − s3 over Fq3 . Finding all roots of a degree d polynomial over Fqn takes
O(nlog2 3dlog2 3 log d log(dqn)) operations in Fq using Karatsuba’s algorithm for poly-
nomial multiplication (see [GvzG99]). In our case, the degree and n are constants,
and hence factoring this polynomial takes O(log q) operations in Fq. However, since
the system is so simple, in practice it is better to solve directly for x0, x1, x2 over
Fq. We know that the system has exactly three solutions (except in very few cases,
where it has a unique solution in Fq, i.e. x1 = x2 = 0). We get x0 from s1 for
free. Assuming that x1 6= 0 (the special case when x0 = 0 is easier than this general
case), we can solve the second equation for x2, plug this into the third equation, and
multiply by the common denominator 27µ3x31. In this way, we obtain the equation

27µ4x61 + 27µ3(x0(s2 − 2x20)− s3)x
3
1 + µ2(3x20 − s2)

3 = 0,

which must be solved for x1. The coefficient of x61 is a constant, the coefficient of x31
can be computed with 1S+1M, and the constant term can then be computed with
1S+1M. Now we can solve for x31 with the quadratic formula, which takes 1S and a
square root in Fq for the first value, which will have either no or three distinct cube
roots. In case it has none, we compute the second value for x31, using only an extra
addition, and the three distinct cube roots of this number. This gives a total of 3

values for x1. Finally, we can compute x2 =
3x2

0−s2
3µx1

, which takes 1M+1I for the first,
and a multiplication by the inverse of a cube root of unity for the other two values.
Altogether, solving system (3.14) takes a total of at most 3S+3M+1I, 1 square root,
and 2 cube roots in Fq.

• Finally, for each of the at most 3 values for x, we recompute a corresponding y-
coordinate from the curve equation and check that it belongs to Fq3 . Since these are
standard procedures for elliptic curves, we do not count operations for these tasks.

Therefore, the decompression algorithm takes at most 3S+5M+2I, one square root, and
two cube roots in Fq. The cost of computing the roots depends on the specific choice of
the field and on the implementation, but it clearly dominates this computation.

Operation count for representation in the ti. In this case, compression takes only
1M. For decompression, we proceed as follows.

52 4. Point compression over small degree extension fields

• Given t1 and t2, we recover t3 from the equation t3 =
1

12µt1
(−3t41 + (18µt21 + 9µ2t2 +

6Aµ)t2 − 12Bt1 − 6At21 +A2). This takes 2S+2M+1I.

• To solve system (4.2), again assuming x1 6= 0, we have to find the roots of the
equation

x61 − t3x
3
1 + µt32 = 0.

The coefficients of this equation can be computed with a total of 1S+1M. We proceed
as above to compute 3 values for x1 using 1S, 1 square root, and 2 cube roots. Finally,
we compute x2 =

t2
x1

using 1M+1I. Thus, solving the system takes a total of at most
2S+2M+1I, 1 square root, and 2 cube roots.

In total, decompression takes at most 4S+4M+2I, 1 square root, and 2 cube roots. The
cost of this computation is comparable to the decompression using si. This corresponds
to our experimental results with Magma (see Table 4.1).

Comparison with Silverberg’s method. The representation of [Sil05] consists of the
last n − 1 Weil restriction coordinates, together with three extra bits, say 0 ≤ ν ≤ 3 to
resolve ambiguity in recovering the x-coordinate and 0 ≤ λ ≤ 1 to determine the sign of
the y-coordinate. So in our notation, Silverberg’s representation of a point (x, y) ∈ T3

is via the coordinates (x1, x2, ν, λ). The compression and decompression algorithms (in
characteristic not equal to 3) carry out essentially the same steps:

• Compute a univariate polynomial of degree 4. The coefficients are polynomials over
Fq in 2 indeterminates of degree at most 4.

• Compute the (up to 4) roots of this polynomial. During compression, this determines
ν. During decompression, ν determines which root is the correct one, and it is then
used to compute x0 via addition and multiplication with constants.

• During decompression, compute the y-coordinate from the curve equation, using λ
to determine its sign. As above, we disregard this step.

Since [Sil05] does not contain a detailed analysis of the decompression algorithm, we can-
not compare the exact number of operations. However, the essential difference with our
approach is that Silverberg’s compression and decompression algorithms both require com-
puting the roots of a degree 4 polynomial over Fq. For compression, this is clearly more
expensive than our method, which consists only of evaluating some small expressions. For
decompression, this is also less efficient than our method, which computes only a root of
a quadratic polynomial, since running a root finding algorithm, or using explicit formu-
las for the solutions (i.e. solving the quartic by radicals), is much more complicated than
computing the roots of our equation.

One might argue that it is possible to represent (x, y) via the coordinates (x1, x2). In
such a case, compression would consist simply of dropping y and x0 and would therefore
have no computational cost. Without remembering ν and λ to resolve ambiguity, this
representation would identify up to 4 x-coordinates and up to 8 full points. This is not
much worse than our representation, which identifies up to 3 x-coordinates and 6 full points.
However, it is not clear that this identification is compatible with scalar multiplication of
points. Therefore, one may want to use at least ν to distinguish between the recovered x-
coordinates. This is in contrast with our situation, where we know exactly which points are
recovered during decompression (i.e. the three Frobenius conjugates of the original point).

4.5. Explicit equations and comparison with other representations 53

Identifying these three points is compatible with scalar multiplication, since P = ϕi(Q)
implies [k]P = ϕi([k]Q) for all k ∈ N and P,Q ∈ T3, and so no extra bits are necessary.

Comparison with Naumann’s method. Naumann’s method, as explained in Section
4.1, is analogous to the one of Silverberg. He drops x0 and uses a quartic equation to
recompute it. His equation is a different one, yet the analysis of his method is analogous to
that of Silverberg’s method, and the conclusions are the same. In particular, his algorithms
are less efficient than ours, and it is not clear whether it is possible to drop ν from the
representation and still have a well-defined scalar multiplication.

4.5.2 Explicit equations and comparison for n = 5

As explained in Chapter 3.4.2, the symmetrized fifth Semaev polynomial is too big to be
printed here, but a computer program can easily work with it. It has total degree 8 and
degree 6 in the last indeterminate.

The fact that we recover the missing coordinate from a degree 6 polynomial introduces
some indeterminacy in the decompression process. However, extensive Magma experiments
for different field sizes and curves show that for more than 90% of all points in T5, only
a single class of Frobenius conjugates is recovered. For another 9%, two classes (corre-
sponding to 10 x-coordinates) are recovered. Thus the ambiguity is very small for a great
majority of points. In any case, this improves upon the approach of [Sil05], where the
missing coordinate is recovered from a degree 27 polynomial, thus possibly yielding 27
different x-coordinates.

The Weil restriction of the symmetric functions is given in Section 3.4.2. The compres-
sion algorithm computes s1, . . . , s4 according to these formulas over Fq. The decompression
algorithm solves a degree 6 equation for s5 and then recomputes the x-coordinate of the
point. For the last step, we test two methods: We compute x by factoring the polynomial
x5 − s1x

4 + s2x
3 − s3x

2 + s4x − s5 over Fq5 , and we compute x0, . . . , x4 by solving the
system over Fq with a Gröbner basis computation. Our experiments show that polynomial
factorization can be up to 20 times as fast as computing a lexicographic Gröbner basis
in Magma for some choices of q, and the entire decompression algorithm can be up to a
factor 6 faster when implementing the polynomial factorization method. We give some
exemplary timings for both methods for fields of 10, 20, 30, 40, 50 and 60 bits in Table
4.2, where as before the smallest values are printed in italics. However, these experimental
results can only be an indication. In Magma, the performance of the algorithms depends
on the specific choice of q. In addition, any implementation exploiting a special shape of
q would most likely produce better results.

As for n = 3, we suggest an equivalent representation (t1, t2, t3, t4) where

t1 = x0
t2 = x1x4 + x2x3
t3 = x21x3 + x1x

2
2 + µx23x4 + µx2x

2
4

t4 = µx22x
2
3 + µx21x

2
4 − µx1x

3
3 − x31x2 − µx32x4 − µ2x3x

3
4 + µx1x2x3x4

t5 = x51 + µx52 + µ2x53 + µ3x54 + 5µx21x2x
2
3 + 5µx21x

2
2x4 + 5µ2x22x3x

2
4

+5µ2x1x
2
3x

2
4 − 5µx31x3x4 − 5µ2x2x

3
3x4 − 5µ2x1x2x

3
4 − 5µx1x

3
2x3

(4.3)

and
s1 = 5t1
s2 = 10t21 − 5µt2
s3 = 10t31 − 15µt1t2 + 5µt3
s4 = 5t41 − 15µt21t2 + 10µt1t3 + 5µt4
s5 = t51 − 5µt31t2 + 5µt21t3 + 5µt1t4 + µt5.

(4.4)

54 4. Point compression over small degree extension fields

Table 4.2 Average time in milliseconds for compression/decompression of one point,
n = 5, smallest values in italics

q 210 − 3 220 − 5 230 − 173 240 − 195 250 − 113 260 − 695

Compression si 0.041 0.048 0.052 0.106 0.108 0.112
Compression ti 0.017 0.022 0.024 0.031 0.021 0.048

Decompression si poly factorization 5.536 16.480 21.423 45.080 55.872 59.520

Decompression si Gröbner basis 24.134 26.470 39.593 101.559 104.490 118.991
Decompression ti Gröbner basis 38.375 40.198 60.438 132.484 133.088 150.083

Compared to the representation in the si, this representation gives a faster compression
but a slower decompression. Therefore, this approach may be useful in a setting where
compression must be particularly efficient.

For decompression, the missing coordinate t5 can be recomputed from a degree 6 equa-
tion, which we obtain by substituting the relations (4.4) into the symmetrized fifth Semaev
polynomial. Afterwards we may either recompute s1, . . . , s5 from t1, . . . , t5 according to
system (4.4) and solve x5 − s1x

4 + s2x
3 − s3x

2 + s4x − s5 for x, or else we may solve
system (4.3) directly for x0, . . . , x4 with Gröbner basis techniques. The polynomial fac-
torization method is equivalent to using the representation in the si, only that some of
the computations are shifted from the compression to the decompression algorithm. The
Gröbner basis method (use ti and compute Gröbner basis, “second method”) compares to
using si with Gröbner basis (“first method”) as given in Table 4.2. We see that the second
method is a factor 2 to 3 faster in compression but slower in decompression. The reason for
this is that the polynomial used to recompute the missing coordinate is more complicated
for the second method and evaluation of polynomials is quite slow in Magma. Solving
for the missing coordinate takes 5 times longer for the second method. The solution of
system (4.1), which we achieve by computing a lexicographic Gröbner basis and solving
the resulting triangular system in the obvious way, takes the same amount of time in both
cases.

We now give an example of our compression/decompression algorithms including two
points P on the trace zero variety where Decompress(Compress(P)) produces the minimum
and maximum possible number of outputs.

Example 4.7. Let E be the curve y2 = x3 + x + 12 over Fq, where q = 240 − 195 is a
40-bit prime, and µ = 2. The trace zero subgroup of E(Fq5) has prime order of 160 bits.
We choose a random point in T5

P = 825957898670 + 728788139043ζ + 852868227354ζ2 + 795116698017ζ3 + 343259616641ζ4

and compute

Compress(P) = (831254610607, 6785365592, 993014138866, 657582814119)

Decompress(831254610607, 6785365592, 993014138866, 657582814119) =
{825957898670 + 728788139043ζ + 852868227354ζ2 + 795116698017ζ3 + 343259616641ζ4,
825957898670 + 993461058450ζ + 986548584673ζ2 + 439026061373ζ3 + 212468827743ζ4,
825957898670 + 114573116312ζ + 987359757846ζ2 + 813883702713ζ3 + 872169726781ζ4,
825957898670 + 866712637108ζ + 837469697186ζ2 + 806866513841ζ3 + 685256896367ζ4,
825957898670 + 728788139043ζ + 852868227354ζ2 + 795116698017ζ3 + 343259616641ζ4}.

When using the second variant of the representation, we compute

(t1, t2, t3, t4) = (825957898670, 1041513998836, 427081277156, 473899514349).

4.6. Conclusions 55

For this point, the results of decompression are exactly the Frobenius conjugates of P .
However, this is not always the case. In rare cases, the algorithm may recover up to six
classes of Frobenius conjugates. In a one week search, we were able to find a point for
which this happens:

P = 365893271595 + 768380540925ζ + 160045289383ζ2 + 935066355789ζ3 + 312458428681ζ4.

Operation count for representation in the si. Given x0, . . . , x4, the numbers t1, . . . , t4
can be computed with a total of 5S+13M according to (4.3). Then s1, . . . , s4 can be
computed from those numbers with 2S+3M as given in (4.4). This seems to be the best
way to compute s1, . . . , s4, since these formulas group the terms that appear several times.
Hence compression takes a total of 7S+16M.

For decompression, the most costly part of the algorithm is factoring the polynomials.
First, the algorithm has to factor a degree 6 polynomial over Fq, and next, a degree 5
polynomial over Fq5 . The asymptotic complexity for both of these is O(log q) operations
in Fq.

Operation count for representation in the ti. Compression takes 5S+13M. For de-
compression, we can either recompute s1, . . . , s5 from t1, . . . , t5 and factor the polynomial,
in which case this approach is exactly the same as the above. Or else we can solve system
(4.3) by means of a Gröbner basis computation over Fq. Since there are no practically
meaningful bounds for Gröbner basis computations, a complexity analysis of this approach
makes no sense.

Comparison with Silverberg’s method. Concrete equations are presented in [Sil05] for
the case where the ground field has characteristic 3. The most costly parts of the algorithms
are computing the resultant of two polynomials of degree 6 and 8 with coefficients in Fq

and finding the roots of a degree 27 polynomial over Fq. In general, resultant computations
are difficult, and the polynomial to be factored has much larger degree than those in our
algorithm. In Silverberg’s approach, five extra bits are required to distinguish between the
possible 27 roots of the polynomial.

Although neither Silverberg nor we give explicit equations for larger n, our understand-
ing is that our algorithm scales better with increasing n, since our method is more natural
and respects the structure of the group.

4.6 Conclusions

The Semaev polynomials give rise to a useful equation describing the Fq-rational points of
the trace zero variety. Its significance is that it is one single equation in the x-coordinates
of the elliptic curve points, but unfortunately its degree grows quickly with n. Using
this equation, we obtain an efficient method of point compression and decompression. It
computes a representation for the Fq-points of the trace zero variety that is optimal for
n = 3 and optimal in practice n = 5. Our polynomials have lower degree than those used in
the representations of [Sil05] (1 compared to 4 for n = 3, and 6 compared to 27 for n = 5)
and [Nau99] (1 compared to 4 for n = 3), thus allowing more efficient decompression and
less ambiguity in the recovery process. Finally, our representation is interesting from a
mathematical point of view, since it is the first representation (to our knowledge) that is
compatible with scalar multiplication of points.

Chapter 5

An optimal representation via

rational functions

In this chapter we propose a new optimal-size representation for the elements of the trace
zero subgroup associated to an elliptic or hyperelliptic curve of any genus g and any field
extension of prime degree n. It is conceptually different from all previous representations,
including the one of Chapter 4 of this thesis, and it is the first representation that works
for elliptic curves with n > 5, for hyperelliptic curves of genus 2 with n > 3, and for
hyperelliptic curves of genus g > 2. The basic idea is to represent a given divisor class via
the coefficients of the rational function whose associated principal divisor is the trace of
the given divisor. Our representation enjoys convenient properties, for example it identifies
well-defined equivalence classes of points, and scalar multiplication is well-defined on such
classes. In the context of many DLP-based cryptosystems such as Diffie–Hellman, where
the only operation required is scalar multiplication of points, this enables us to compute
with equivalence classes of trace zero elements, and no extra bits are required to distinguish
between the different representatives.

Moreover, we give a compression algorithm to compute the representation of a given
point and a decompression algorithm to compute (a representative of the equivalence class
of) the original point. We show that these algorithms are comparably or more efficient than
all previously known compression and decompression methods and that they are efficient
even for medium to large values of g and n.

Assumptions and Notation. In this chapter, let C be a projective elliptic or hyperelliptic
curve of genus g defined over a finite field Fq of odd characteristic and given by an affine
equation of the form

C : y2 = f(x),

where f ∈ Fq[x] is monic of degree 2g+1 and has no multiple zeros. We assume that Fq does
not have characteristic 2 only for convenience and ease of exposition, all our statements
carry over to the characteristic 2 case with some minor adjustments. See also Remark 5.4.

Roadmap. In this chapter, we give a unified treatment of the new representation for
elliptic and hyperelliptic curves, using the notation introduced in Chapter 2.2. In Chapter
6 we then specialize these results to elliptic curves, where a number of simplifications can
be made. This chapter is organized as follows. In Section 5.1 we discuss the representation.
We explain how to compute the rational function in Section 5.2 and give full compression
and decompression algorithms in Section 5.3. We study explicit equations for the case
g = 2, n = 3 in Section 5.4 and present some implementation results, as well as a detailed

57

58 5. An optimal representation via rational functions

comparison with the other compression methods, in Section 5.5. Explicit equations for
g = 1, n = 3, 5 are postponed to Chapter 6.

5.1 An optimal representation via rational functions

We propose an optimal representation for the trace zero variety. Our representation relies
on the observation that for every [D] ∈ Tn there is a rational function hD on C with

Tr(D) = div(hD).

In this section we discuss how to represent hD via g(n− 1) elements of Fq. Such a repre-
sentation is optimal, since |Tn| ≈ qg(n−1).

A rather trivial example is the case of elliptic curves E and extension degree n = 2,
where

T2 = {(X,Y) ∈ E(Fq2) | X ∈ Fq, Y ∈ (Fq2 \ Fq) ∪ {0}} ∪ {O}.
In particular, if D = (X,Y)−O, then hD = x−X, and the x-coordinate of the points of
T2 yields an optimal representation (see Proposition 3.2, Corollary 4.2). This statement
can be generalized to higher genus curves when n = 2: The u-polynomial of the Mumford
representation yields an optimal-size representation.

Proposition 5.1. Let C be an elliptic or hyperelliptic curve of genus g ≥ 1 defined over
Fq, and let T2 ⊆ Pic0C(Fq2) be the trace zero subgroup corresponding to the field extension
Fq2 |Fq. Then for every reduced divisor D = [u, v] with [D] ∈ T2 we have u ∈ Fq[x].
Therefore, the map

R : T2 −→ Fq[x]≤g

[u, v] 7−→ u

yields an optimal representation for the elements of T2, where Fq[x]≤g denotes the poly-
nomials of degree smaller than or equal to g with coefficients in Fq. This representa-
tion has length g log2 q + 1, and it identifies every divisor class [D] with its conjugate
[w(D)] = [ϕ(D)].

This proposition is a special case of Theorem 5.3, but a direct proof is very easy:

Proof. Let D be a reduced divisor with Mumford representation [u, v]. Assume [D] ∈ T2,
or equivalently D ∼ w(ϕ(D)). Since D is reduced, w(ϕ(D)) is also reduced, hence D =
w(ϕ(D)). Since the Mumford representation of w(ϕ(D)) is [uϕ,−vϕ], we have u = uϕ and
therefore u ∈ Fq[x].

Remark 5.2. Notice that if g = 1 and D = (X,Y)−O, then u(x) = x−X is a vertical
line, from which (X,Y) can be recovered up to sign. Since u(x) is determined by the
coefficient X, the representation consists only of the x-coordinate of the point. Moreover,
we do not need to include the extra bit in the representation, since we always have r = 1
for D 6= 0. Hence this representation coincides with the trivial optimal representation from
Corollary 4.2.

We now proceed to solve the problem in the case when n is any prime. Let D be a
reduced divisor. We propose to represent an element [D] of Tn via the rational function
hD on C with divisor

div(hD) = Tr(D).

Such a function is unique up to multiplication by a constant. We now establish some
properties of hD. In particular, we show that a normalized form of hD can be represented

5.1. An optimal representation via rational functions 59

via g(n − 1) elements of Fq. This gives an optimal representation for the elements of Tn

which identifies at most ng divisor classes. After proving the theorem, we discuss how to
compute the representation via a Miller-type algorithm (compression) and how to recover
the original divisor or class of divisors (decompression).

Theorem 5.3. Let D = P1 + . . .+ Pr − rO be a reduced divisor such that [D] ∈ Tn, and
let hD ∈ Fq(C) be a function such that div(hD) = Tr(D). Write D = D1+ . . .+Dt, where
Di are reduced prime divisors defined over Fqn . Then:

(i) hD = hD,1(x) + yhD,2(x) with hD,1, hD,2 ∈ Fq[x].

(ii) HD(x) := hD,1(x)
2 − f(x)hD,2(x)

2 ∈ Fq[x] has degree rn, and its zeros over Fq

are exactly the x-coordinates of the points ϕj(P1), . . . , ϕ
j(Pr) for j = 0, . . . , n − 1.

Equivalently, HD = N(u), where D = [u, v].

(iii) deg hD,1 ≤ ⌊nr2 ⌋ and deg hD,2 ≤ ⌊nr−2g−1
2 ⌋, where equality holds for the degree of

hD,1 if r is even or n = 2 and equality holds for the degree of hD,2 if r is odd and
n 6= 2.

(iv) Up to multiplication by a constant, the function hD is uniquely determined by g(n−1)
elements of Fq and δ ∈ F2, where δ = 1 if and only if r = g. If g = 1, then we always
have r = g, so we do not need to store δ ∈ F2 in the representation.

(v) Let F be a reduced divisor. Then hD = hF ∈ Fq(C) if and only if F is of the form
F = ϕj1(D1) + . . .+ϕjt(Dt) for some 0 ≤ j1, . . . , jt ≤ n− 1. In particular, there are
at most ng reduced divisors F such that hF = hD.

(vi) Let Di = [ui, vi] be a prime divisor, i ∈ {1, . . . , t}. Then: hD,2 ≡ 0 mod ui if and
only if w(Di) = ϕj(Dk) for some j ∈ {0, . . . , n − 1} and some k ∈ {1, . . . , t} if and
only if Tr(Di) = w(Tr(Dk)). Suppose in addition that n 6= 2, then: w(Di) = ϕj(Di)
for some j ∈ {0, . . . , n− 1} if and only if Di = w(Di).

(vii) Let n 6= 2, let Di = [ui, vi] ≤ D be a reduced prime divisor with Di 6= w(Di), and
let ℓ,m ≥ 0. Then we have Tr(D) = mTr(Di) + ℓTr(w(Di)) + Tr(G) for some G,
where Tr(Di) 6≤ Tr(G) and Tr(w(Di)) 6≤ Tr(G), if and only if N(ui)

min{ℓ,m} exactly
divides hD (as polynomials).

Proof. Since [D] ∈ Tn, we have 0 ∼ Tr(D) ∈ DivC(Fq). Hence there exists an hD ∈ Fq(C)
such that div(hD) = Tr(D). The function hD is uniquely determined up to multiplication
by a constant.

(i) The function hD is a polynomial, since it has its only pole at O. Using the curve
equation y2 = f(x), higher powers of y can be replaced by polynomials in x, and hD has
the desired shape.

(ii) It is clear that HD is a polynomial in Fq[x]. By definition, the zeros of hD are
exactly ϕj(P1), . . . , ϕ

j(Pr), j = 0, . . . , n − 1, and its poles are nrO. Therefore, hD ◦ w =
hD,1(x) − yhD,2(x) has w(ϕj(P1)), . . . , w(ϕ

j(Pr)), j = 0, . . . , n − 1 as zeros and nrO as
poles. Since HD(x) = hD(hD ◦ w) as functions on C, then HD has precisely the zeros
ϕj(P1), . . . , ϕ

j(Pr), w(ϕ
j(P1)), . . . , w(ϕ

j(Pr)) for j = 0, . . . , n−1 and the poles 2nrO. But
a function with this property is

b(x) =
r∏

i=1

n−1∏

j=0

(x−Xqj

i),

60 5. An optimal representation via rational functions

where the Xi are the x-coordinates of the Pi. Therefore, HD = b up to multiplication by
a constant.

(iii) From the fact that degHD = nr and deg f = 2g + 1, we immediately deduce the
bounds on the degrees. Now if r or n is even, then ⌊nr2 ⌋ = nr

2 and ⌊nr−2g−1
2 ⌋ = nr

2 − g− 1.
Therefore deg(h2D,1) ≤ nr and deg(fh2D,2) ≤ nr − 1 and we see that deg hD,1 = nr

2 . An

analogous computation for r and n both odd shows that in this case deg hD,2 =
nr−1
2 −g =

⌊
nr−2g−1

2

⌋

.

(iv) If r < g, then the total number of coefficients required to store both hD,1 and hD,2

is

deg hD1 + deg hD,2 + 2 ≤
⌊nr

2

⌋

+

⌊
nr − 2g − 1

2

⌋

+ 2 = nr − g + 1 ≤ (n− 1)(g − 1).

If r = g we normalize hD in a suitable way, depending on the parity of g and n. Set

d1 =
⌊ng

2

⌋

, d2 =

⌊
ng − 2g − 1

2

⌋

.

If n = 2, then deg hD,2 ≤ d2 < 0, hence hD = hD,1 = u, where [u, v] is the Mumford
representation of D. Since deg u = d1 = g and u is monic, we need g elements of Fq to
represent it.

If n is odd and g is even, then we multiply hD by a constant such that hD,1 is monic.
Then hD,1 is given by d1 = ng

2 elements of Fq, namely the coefficients of 1, x, . . . , xd1−1,
while hD,2 is given by at most d2 + 1 = ng

2 − g coefficients. Thus we need a total of
d1 + d2 + 1 = (n− 1)g coefficients in Fq in order to store hD,1 and hD,2.

In the case that g and n are both odd, we multiply hD by a constant such that hD,2 is
monic. Then hD,1 is given by at most d1 + 1 = ng+1

2 coefficients, and hD,2 is given by the

d2 =
ng−1

2 −g coefficients of 1, x, . . . , xd2−1. Again we need a total of d1+d2+1 = (n−1)g
coefficients in Fq in order to store hD,1 and hD,2.

Let δ ∈ F2 be 0 if r < g and 1 if r = g. Then the polynomial hD can be represented
via (n− 1)g coefficients in Fq, together with δ ∈ F2.

(v) Let F ∈ DivC(Fqn) be a reduced divisor such that hF = hD ∈ Fq(C). Then

Tr(F) = div(hF) = div(hD) = Tr(D) ∈ DivC(Fq).

Write Tr(D) = Tr(D1)+. . .+Tr(Dt) = Tr(F), where Tr(Di) ∈ DivC(Fq) are prime divisors
by Lemma 2.16 (ii). By Lemma 2.16 (i), Tr−1(Tr(Di)) = {Di, ϕ(Di), . . . , ϕ

n−1(Di)} for
all i, hence F = ϕj1(D1) + . . .+ ϕjt(Dt) for some j1, . . . , jt ∈ {0, . . . , n− 1}. The number
of such F is nt ≤ ng.

(vi) We have hD,2(x) ≡ 0 mod ui if and only if hD(x, y) ≡ hD,1(x) ≡ hw(D)(x, y) mod
ui. Since Di ≤ Tr(D), this is also equivalent to w(Di) ≤ Tr(D). Since Di is prime, w(Di)
is also prime and w(Di) ≤ Tr(D) if and only if w(Di) = ϕj(Dk) for some j ∈ {0, . . . , n−1}
and some k ∈ {1, . . . , t} by Lemma 2.16 (i).

Now suppose that n 6= 2 and w(Di) = ϕj(Di) for some j 6= 0. Then ui ∈ Fq[x] and

−vi = vϕ
j

i , hence −ν = νϕ
j

for all coefficients ν of vi. But this implies ν2 = (ν2)ϕ
j

and
hence ν ∈ Fq2j ∩ Fqn = Fq. Therefore we have vi ∈ Fq[x], but this implies vi = 0 and
therefore Di = w(Di).

(vii) Let Tr(D) = mTr(Di)+ℓTr(w(Di))+Tr(G) for some G, with Tr(Di),Tr(w(Di)) 6≤
Tr(G), and assume that m ≥ ℓ. The other case follows by symmetry. Then

div(N(ui)
ℓh(m−ℓ)Di+G) = ℓTr(Di) + ℓTr(w(Di)) + (m− ℓ) Tr(Di) + Tr(G)

= ℓTr(w(Di)) +mTr(Di) + Tr(G)

= Tr(D) = div(hD),

5.1. An optimal representation via rational functions 61

so hD = N(ui)
ℓh(m−ℓ)Di+G up to multiplication by a constant. Hence N(ui)

ℓ divides hD.
Notice that (m−ℓ)Di+G has trace zero, since D does. Now assume that N(ui) also divides
h(m−ℓ)Di+G. Then Tr(Di)+Tr(w(Di)) ≤ (m−ℓ) Tr(Di)+Tr(G). Since Tr(w(Di)) 6≤ Tr(G)
by assumption, this implies Tr(w(Di)) ≤ (m−ℓ) Tr(Di) and therefore Tr(Di) = w(Tr(Di)).
But this implies Di = w(Di) by (vi), which contradicts our assumption. Therefore, N(ui)

ℓ

exactly divides hD.
Conversely, assume that hD = N(ui)

ℓh for some ℓ, where h is a polynomial and N(ui) ∤
h. Then Tr(D) = div(hD) = ℓTr(Di) + ℓTr(w(Di)) + div(h), and not both Tr(Di) and
Tr(w(Di)) are ≤ div(h). Say Tr(w(Di)) 6≤ div(h), and k is maximal such that kTr(Di) ≤
div(h). Then

Tr(D) = ℓTr(Di) + ℓTr(w(Di)) + kTr(Di) + Tr(G) = mTr(Di) + ℓTr(w(Di)) + Tr(G)

where m = ℓ+ k and Tr(Di),Tr(w(Di)) 6≤ div(h)− kTr(Di) = Tr(G).

Remark 5.4. The results of Theorem 5.3 may be generalized to elliptic and hyperelliptic
curves over fields of characteristic 2 by defining HD = hD(hD ◦w). It is not hard to check
that we obtain a function hD with the same properties as in (i)–(vii). Special caution
needs to be used in adapting (vi). Since the existence of this function is the basis for
the representation we propose in this chapter, all our results and methods work, with the
necessary adjustments, over a finite field of any characteristic.

Let [D] ∈ Tn \ {0}. One of the consequences of Theorem 5.3 is that, depending on
the parity of r and n, we know the exact degree of either hD,1 or hD,2. By making
the appropriate one monic, we can represent hD by (n − 1)g elements of Fq, namely the
coefficients of hD,1 and hD,2, plus one bit which indicates whether r = g. This is an optimal
representation, since (n− 1)g log2 q + 1 ≈ (n− 1)g log2 q ≈ log2 |Tn|. See Remark 5.12 for
an alternative approach that does not require storing the extra bit δ.

Corollary 5.5. Under the assumptions and following the notation of Theorem 5.3, we
represent a reduced divisor D ∈ Div0C(Fqn) such that [D] ∈ Tn as follows. Let [u, v] be
the Mumford representation of D, where u(x) = ugx

g + . . . + u1x + u0 has degree r ≤ g

(i.e. ug = . . . = ur+1 = 0) and ur = 1. Set d1 =
⌊ng

2

⌋
and d2 =

⌊
(n−2)g−1

2

⌋

. Let

hD,1(x) = γd1x
d1 + . . .+ γ1x+ γ0, hD,2(x) = βd2x

d2 + βd2−1x
d2−1 + . . .+ β1x+ β0, where

hD,1 is monic if nr is even and hD,2 is monic if nr is odd. If r = g let δ = 1, else let
δ = 0. Define:

• If n = 2, then R : T2 −→ Fg
q × F2

[D] 7−→ (u0, . . . , ug−1, δ).

• If n is odd and g is even, then

R : Tn −→ F
(n−1)g
q × F2

[D] 7−→ (β0, . . . , βd2 , γ0, . . . , γd1−1, δ).

• If n and g are odd, then

R : Tn −→ F
(n−1)g
q × F2

[D] 7−→ (γ0, . . . , γd1 , β0, . . . , βd2−1, δ).

Then R is an optimal representation for the non-zero elements of Tn. This representation
identifies at most ng elements, as stated in Theorem 5.3 (v).

62 5. An optimal representation via rational functions

Proof. If n = 2 the statement follows from Proposition 5.1. For n ≥ 3, the statement is a
direct consequence of the proof of Theorem 5.3 (iii) and (iv). Observe that if r < g, then

deg hD,1 =
⌊rn

2

⌋

≤ n(g − 1)− 1

2
=

ng

2
− n+ 1

2
≤ d1 − 2

if g is even and

deg hD,2 =

⌊
nr − 2g − 1

2

⌋

≤ n(g − 1)− 2g − 2

2
=

(n− 2)g − 1

2
− n+ 1

2
≤ d2 − 2

if g is odd. In particular, the polynomials hD,1 and hD,2 can always be represented using
the number of coefficients claimed. Moreover, if r < g some of the coefficients that we
store are zero. In particular, γi = 0 for i > ⌊ rn2 ⌋ and βi = 0 for i > ⌊nr−2g−1

2 ⌋. Since

d1 + d2 + 1 =
⌊ng

2

⌋

+

⌊
(n− 2)g − 1

2

⌋

+ 1 = (n− 1)g,

we store the correct number of Fq-coefficients in all cases.

Finally, the representation identifies at most ng elements by Theorem 5.3 (v).

Remarks 5.6. (i) Let D ∈ DivC(Fqn) be a reduced divisor, D = D1 + . . . + Dt with
Di ∈ DivC(Fqn) reduced prime divisors. Notice that not all the divisors F of the
form F = ϕj1(D1) + . . . + ϕjt(Dt) for some j1, . . . , jt ∈ {0, . . . , n − 1} are reduced.
E.g., let C be a hyperelliptic curve of genus 2 and let P ∈ C(Fqn)\C(Fq) be a point.
Then ϕ(P) 6= P and D = P + w(ϕ(P)) − 2O is a reduced divisor. But a divisor
F = ϕj1(P) + w(ϕj2(P)) is reduced if and only if j1 6= j2.

Because of this, when decompressing R([D]) one needs to discard all the divisor
classes [F] ∈ Tn where Tr(F) = Tr(D) but F is not a reduced divisor. E.g., in the
previous example we would discard the elements F = ϕj(P) + w(ϕj(P)) ∼ 0. In
Algorithm 5.3, for a given α = R([D]) we recover one reduced F ∈ DivC(Fqn) such
that R([F]) = α. Because of what we just discussed, F identifies the equivalence
class of D.

(ii) If r < g, the choice of making the polynomial hD,1 monic if nr is even and making
hD,2 monic otherwise is not necessary in order to have an optimal representation
for the elements of Tn. However, this normalization makes the representation of
the polynomial hD standard, since otherwise hD is only determined up to a non-
zero constant multiple. In particular, two reduced divisors D,F ∈ DivC such that
[D], [F] ∈ Tn have Tr(D) = Tr(F) ∈ DivC if and only if R(D) = R(F).

Remark 5.7. If only the u-polynomial of the Mumford representation of [D] is available
(e.g. when using the representation for elements of Pic0C(Fqn) which we discuss in Exam-

ple 2.24), one can still compute HD = u1+ϕ+...+ϕn−1 ∈ Fq[x]. From HD = h2D,1 − fh2D,2,
the polynomials hD,1, hD,2 may be recovered up to some indeterminacy by solving a linear
system in their (unknown) coefficients. If u =

∏
ui where ui are irreducible over Fqn , then

the indeterminacy comes from the fact that for each i we cannot distinguish between ui
and its Frobenius conjugates (since we only know the norm of ui) and we do not know the
sign of vi. Hence representing a [D] ∈ Tn via a pair of polynomials hD,1, hD,2 obtained as
above still has optimal size, but it identifies up to (2n)g elements. In practice however, in
order to compress it suffices to find one solution of the linear system.

5.2. Computing the rational function 63

5.2 Computing the rational function

It is easy to compute hD using Cantor’s Algorithm (see [Can87]) and a generalization
of Miller’s Algorithm (see [Mil04]) as follows. For [D1], [D2] ∈ Pic0C given in Mumford
representation, Cantor’s Algorithm returns a reduced divisor D1 ⊕ D2 and a function a
such that D1+D2 = D1⊕D2+div(a). We denote this as Cantor(D1, D2) = (D1⊕D2, a).
Cantor’s Algorithm is detailed in Algorithm 2.1. Lines 1-3 are the composition of the
divisors to be added, and the result of this is reduced in lines 4-8.

The following iterative definition will allow us to compute hD with a Miller-style algo-
rithm. For a function h we denote by hϕ the application of the Frobenius field automor-
phism ϕ : Fq → Fq coefficient-wise to the function h.

Lemma 5.8. Let D = [u, v] be a divisor on C, and let Di = ϕi(D) for i ≥ 0. Let h(1) = u
as a function on C, and define recursively the functions

h(i+j) = h(i) · (h(j))ϕi · a−1,

where a is given by Cantor’s algorithm according to

w(D0 ⊕ . . .⊕Di−1) + w(Di ⊕ . . .⊕Di+j−1) = w(D0 ⊕ . . .⊕Di+j−1) + div(a)

for i, j ≥ 1. Then for all i ≥ 1 we have

div(h(i)) = D0 + . . .+Di−1 + w(D0 ⊕ . . .⊕Di−1).

If [D] ∈ Tn, then
h(n−1) = hD.

Proof. It is clear that div(h(1)) = div(u) = D + w(D) = D0 + w(D0). By induction, we
have

div(h(i+j)) = div(h(i)) + div((h(j))ϕ
i

) + div(a−1)

= D0 + . . .+Di−1 + w(D0 ⊕ . . .⊕Di−1)

+ϕi(D0 + . . .+Dj−1 + w(D0 ⊕ . . .⊕Dj−1))

−w(D0 ⊕ . . .⊕Di−1)− w(Di ⊕ . . .⊕Di+j−1) + w(D0 ⊕ . . .⊕Di+j−1)

= D0 + . . .+Di+j−1 + w(D0 ⊕ . . .⊕Di+j−1).

When [D] ∈ Tn, then D0⊕ . . .⊕Dn−1 = D⊕ϕ(D)⊕ . . .⊕ϕn−1(D) = 0, and therefore
w(D0 ⊕ . . .⊕Dn−2) = Dn−1. Hence we have

div
(

h(n−1)
)

= D0 + . . .+Dn−2 + w(D0 ⊕ . . .⊕Dn−2) = D0 + . . .+Dn−1 = Tr(D)

as claimed.

The functions h(i) of Lemma 5.8 can be computed using a Miller-style algorithm, where
at each step we apply Cantor’s Algorithm to compute the function a. When [D] ∈ Tn,
then the (n − 1)-th iteration h(n−1) agrees with the desired function hD. Hence hD can
easily be computed with a Miller-style algorithm, as in Algorithm 5.1.

Theorem 5.9. Algorithm 5.1 computes hD correctly. Computing hD has a complexity of
O(g4 log2 n+ g3n+ glog2 33log2 n) operations in Fqn .

64 5. An optimal representation via rational functions

Algorithm 5.1 Miller-style double and add algorithm for computing hD

Input: [D] = [u, v] ∈ Tn and n− 1 =
∑s

j=0 nj2
j

Output: hD
1: h← u,R← w(D), Q← w(ϕ(D)), i← 1
2: for j = s− 1, s− 2, . . . , 1, 0 do

3: (R, a)← Cantor(R,ϕi(R)), h← h · hϕi · a−1, Q← ϕi(Q), i← 2i
4: if nj = 1 then

5: (R, a)← Cantor(R,Q), h← h · uϕi · a−1, Q← ϕ(Q), i← i+ 1
6: end if

7: end for

8: return h

Proof. Correctness: Denote by Ri, Qi, hi, ai the values of the variables R,Q, h, a at step i of
the execution of the algorithm. We claim that for every i we have Ri = w(D0⊕ . . .⊕Di−1),
Qi = w(Di), and hi = h(i). We prove the claim by induction on i ≥ 1. For i = 1 there
is nothing to prove, so we assume that the statement holds for i and prove it for 2i and
2i+ 1. In a “doubling” step, we compute

(R2i, a2i) = Cantor(Ri, ϕ
i(Ri)) = Cantor(w(D0 ⊕ . . .⊕Di−1), w(Di ⊕ . . .⊕D2i−1)),

hence R2i = w(D0 ⊕ . . .⊕D2i−1). Moreover,

Q2i = ϕi(Qi) = ϕi(w(Di)) = w(D2i).

Finally, by Lemma 5.8

h2i = hi · hϕ
i

i · a−1
2i = h(i) · (h(i))ϕi · a−1

2i = h(2i).

In an “addition” step, we compute

(R2i+1, a2i+1) = Cantor(R2i, Q2i) = Cantor(w(D0 ⊕ . . .⊕D2i−1), w(D2i)),

hence R2i+1 = w(D0 ⊕ . . .⊕D2i). Moreover,

Q2i+1 = ϕ(Q2i) = ϕ(w(D2i)) = w(D2i+1).

Finally,
h2i+1 = h2i · uϕ

i · a−1
2i+1 = h(2i) · (h(1))ϕ2i · a−1

2i+1 = h(2i+1)

according to Lemma 5.8. So the output of Algorithm 5.1 is h(n−1), a function with divisor
Tr(D), as desired.

Complexity: The algorithm takes log2(n−1) iterations, which we approximate by log2 n.
We concentrate only on the doublings, since they dominate the complexity of each step.
The crucial operations are the execution of Cantor’s Algorithm and the computation of
h(2i) from h(i).

Let us first consider Cantor’s Algorithm. According to [Can87], the algorithm has a
complexity of O(g2 log g) field operations. This does, however, not include the computation
of the function a. Nevertheless, computing a according to the explicit formula given in
equation (5.1) is not more expensive than computing h, since the computation of h involves
multiplication by a−1. For this reason, we disregard the computation of a in the complexity
analysis. However, we study the shape of a, since this will be important for the analysis
of the computation of h.

5.2. Computing the rational function 65

We assume that the input divisors to Cantor’s Algorithm have u-polynomials of degree
g, and that they are coprime (this is true generically). Then, at the end of the composition
(after line 3 in Algorithm 2.1), we have deg u = 2g and a = 1. Let us call [u0, v0] and
a0 = 1 the input to the reduction procedure (lines 4-8 of Algorithm 2.1) and ui, vi, ai the
values of u, v, a after the i-th iteration of the while loop. Then, following through the
algorithm, one can easily check that

ai =

{

u0
(y−v1)(y−v3)···(y−vi−2)
(y+v0)(y+v2)···(y+vi−1)

if i is odd
(y−v0)(y−v2)···(y−vi−2)
(y+v1)(y+v3)···(y+vi−1)

if i is even.
(5.1)

Since in most cases the degree of u decreases by 2 at each step, as observed already by
Cantor [Can87], and since we assume that u0 has degree 2g, we expect to go through about
g/2 reduction steps. Therefore, the final a has about g/4 terms in both the numerator and
the denominator. Since deg vi ≤ 2g for all i and computing modulo the curve equation,
we get

a =
b(x) + yc(x)

d(x) + ye(x)

where b, c, d, e ∈ Fqn [x] are polynomials of degree in the order of g2.

Next we analyze the computation of h(2i) as h(i) · (h(i))ϕi · a−1. Notice that h(i) is a
polynomial for all i, since the corresponding principal divisor has its only pole at infinity.

Therefore, by using the curve equation we obtain h(i) = h
(i)
1 + yh

(i)
2 . By an inductive

argument, it is easy to show that ig is a good approximation of (the upper bound on) the

degrees of h
(i)
1 and h

(i)
2 . Writing h(i) · (h(i))ϕi · (d+ ye) = h′1 + yh′2 with deg h′1 and deg h′2

in the order of g2 + ig, we obtain

(h
(2i)
1 + yh

(2i)
2)(b+ yc) = h′1 + yh′2,

and hence

h
(2i)
1 =

bh′1 − fch′2
b2 − fc2

, h
(2i)
2 =

h′2 − ch
(2i)
1

b
,

where the divisions are exact since the results must be polynomials. The most expensive
multiplications involved are those by h′1 and h′2, since those have the largest degree, namely
about g2 + ig. Using Karatsuba multiplication, we can thus compute the numerators and
denominators above in a total of O((g2 + ig)log2 3) operations. The two long divisions take
O(g3(i + g)) each, since both numerators have degree in the order of g(i + g) and both
denominators have degree in the order of g2. Hence the entire computation of h(2i) takes
O(g4 + g3i+ (gi)log2 3) operations.

Finally, we sum over all log2 n steps to obtain a total complexity of

O





log2 n∑

i=0

(g4 + g32i + (g2i)log2 3)



 = O
(

g4 log2 n+ g3n+ glog2 33log2 n
)

as claimed.

Remark 5.10. It is also possible to determine hD by solving a linear system of size
about gn × gn for the coefficients. Using standard Gaussian elimination techniques, this
has complexity O((gn)3). This is larger in n but smaller in g than the complexity of
Algorithm 5.1. Therefore, the linear algebra method is preferable when n is small and g is
large.

66 5. An optimal representation via rational functions

5.3 Compression and decompression algorithms

We propose the compression and decompression algorithms detailed in Algorithms 5.2 and
5.3. We denote by lc the leading coefficient of a polynomial. We only discuss the case
n ≥ 3, since in the case n = 2 the representation consists of u(x) (see Proposition 5.1,
Theorem 5.3 (iv), and Corollary 5.5).

The compression algorithm follows immediately from the results of the previous sec-
tion. The strategy of the decompression algorithm is as follows. From the input α =
Compress(D), we recompute hD,1 and hD,2 and then HD. Then we factor HD in order to
obtain the u-polynomials of (one Frobenius conjugate of each of) the Fqn-rational prime
divisors in D. This is consistent with the fact that Tr(D) only contains information about
the conjugacy classes of these prime divisors. Afterwards, we compute the corresponding
v-polynomial for each u-polynomial. In this way, if D = D1 + . . . + Dt is the decom-
position of D as a sum of Fqn-rational prime divisors, we recover an Fqn-rational prime
divisor D′

1 + . . . + D′
t, where each D′

i is one of the Frobenius conjugates of Di. The di-
visor D′

1 + . . . + D′
t corresponds to the class R−1(α), since every F ∈ R−1(α) is of the

form ϕj1(D′
1) + . . . + ϕjt(D′

t) for some j1, . . . , jt ∈ {0, . . . , n − 1} (see Theorem 5.3 (v)).
Since we know that α is the representation of a reduced divisor, we compute a reduced
representative D′

1 + . . .+D′
t of the class R−1(α) (see also Remark 5.6).

In the compression and the decompression algorithms we treat the last element of the
vector which gives the representation sometimes as an element of Fq and sometimes as an
element of F2, since it is an element of Fq which is either 0 or 1.

Algorithm 5.2 Compression, n ≥ 3

Input: [D] = [u, v] ∈ Tn

Output: Representation (α0, . . . , α(n−1)g) ∈ Fq
(n−1)g × F2 of [D]

1: r ← deg u
2: compute hD(x, y) = hD,1(x) + yhD,2(x) (see Algorithm 5.1)
3: d1 ← ⌊ng2 ⌋
4: d2 ← ⌊ng−2g−1

2 ⌋
5: if r even then

6: hD,1 ← hD,1/ lc(hD,1) ⊲ Notation: hD,1 = γd1x
d1 + γd1−1x

d1−1 + . . .+ γ0 monic
7: hD,2 ← hD,2/ lc(hD,1) ⊲ Notation: hD,2 = βd2x

d2 + βd2−1x
d2−1 + . . .+ β1x+ β0

8: else

9: hD,1 ← hD,1/ lc(hD,2) ⊲ Notation: hD,1 = γd1x
d1 + γd1−1x

d1−1 + . . .+ γ1x+ γ0
10: hD,2 ← hD,2/ lc(hD,2) ⊲ Notation: hD,2 = βd2x

d2 + βd2−1x
d2−1 + . . .+ β0 monic

11: end if

12: if g even then

13: return (β0, . . . , βd2 , γ0, . . . , γd1)
14: else

15: return (γ0, . . . , γd1 , β0, . . . , βd2)
16: end if

Theorem 5.11. (i) Compression Algorithm 5.2 computes a unique optimal represen-
tation of a given [D] ∈ Tn, for D a reduced divisor. It takes O(g4 log2 n + g3n +
glog2 33log2 n) operations in Fqn .

(ii) Decompression Algorithm 5.3 operates correctly: for any input Compress(D), where
[D] ∈ Tn, it returns a reduced divisor D′ such that [D′] ∈ Tn and Compress(D) =
Compress(D′).

(iii) Decompression Algorithm 5.3 takes O((ng)1+log2 3 log(qnng)) operations in Fqn .

5.3. Compression and decompression algorithms 67

Algorithm 5.3 Decompression, n ≥ 3

Input: (α0, . . . , α(n−1)g) ∈ Fq
(n−1)g × F2

Output: one reduced D ∈ DivC(Fqn) s.t. [D] ∈ Tn has representation (α0, . . . , α(n−1)g)
1: d1 ← ⌊ng2 ⌋
2: d2 ← ⌊ng−2g−1

2 ⌋
3: if g even then

4: hD,1(x)← α(n−1)gx
d1 + . . .+ αd2+2x+ αd2+1

5: hD,2(x)← αd2x
d2 + αd2−1x

d2−1 + . . .+ α1x+ α0

6: else

7: hD,1(x)← αd1x
d1 + . . .+ α1x+ α0

8: hD,2(x)← α(n−1)gx
d2 + . . .+ αd1+2x+ αd1+1

9: end if

10: HD(x)← hD,1(x)
2 − f(x)hD,2(x)

2

11: factor HD(x) = U1(x)
e1 · . . . ·Um(x)em with Ui ∈ Fq[x] irred., distinct, ei ∈ {1, . . . , gn}

12: L← empty list
13: for i = 1, . . . ,m do

14: if Ui(x) is irreducible over Fqn then ⊲ Ui comes from Fq-rational prime divisor
15: ei ← ei/n
16: end if

17: U(x)← one irreducible factor over Fqn of Ui(x)
18: if hD,2(x) 6≡ 0 mod U(x) then

19: V (x)← −hD,1(x)hD,2(x)
−1 mod U(x)

20: append [U(x), V (x)] to L, ei times
21: else ⊲ hD,2(x) ≡ 0 mod U(x)
22: if f(x) ≡ 0 mod U(x) then ⊲ V (x) = 0 and Di = w(Di)
23: append [U(x), 0], [U(x)ϕ, 0], . . . , [U(x)ϕ

ei−1
, 0] to L

24: else ⊲ V (x) 6= 0 and Di 6= w(Di)
25: compute ℓ, h′D such that hD = Ui(x)

ℓh′D and Ui(x) ∤ h
′
D

26: if ℓ < ei/2 then

27: V (x)← −h′D,1(x)h
′
D,2(x)

−1 mod U(x)
28: append [U(x), V (x)] to L, ei − ℓ times
29: append [U(x)ϕ,−V (x)ϕ] to L, ℓ times
30: else ⊲ ℓ = ei/2
31: V (x)←

√

f(x) mod U(x)
32: append [U(x), V (x)], [U(x)ϕ,−V (x)ϕ] to L, ℓ times
33: end if

34: end if

35: end if

36: end for ⊲ Notation: L = [D1, . . . , Dt]
37: return D = D1 + . . .+Dt

68 5. An optimal representation via rational functions

Proof. (i) Correctness and optimality of the representation computed by Algorithm 5.2
follow from Corollary 5.5. The complexity of computing the representation is the same as
the complexity of computing hD, which is given in Theorem 5.9.

(ii) Let D = D1 + . . . + Dt, where Di are reduced prime divisors defined over Fqn ,
possibly not all distinct. The reduced divisors D′ such that [D′] ∈ Tn and Compress(D) =
Compress(D′) are exactly those for which hD′ = hD. By Theorem 5.3 (v), they are of the
form D′ = ϕj1(D1) + . . .+ ϕjt(Dt) for some 0 ≤ j1, . . . , jt ≤ n− 1, and we will show that
Algorithm 5.3 computes such a divisor D′ for some j1, . . . , jt.

Let [ui, vi] be the Mumford representation of Di, ui ∈ Fqn [x] irreducible. We have

HD(x) = HD′(x) =

t∏

i=1

u1+ϕ+...+ϕn−1

i =

m∏

i=1

Ui(x)
ei ,

where Ui ∈ Fq[x] are irreducible and Ui 6= Uj if i 6= j, m ≤ t. Up to reindexing, Ui = ui if

ui ∈ Fq[x] and Ui = N(ui) otherwise, for i ≤ m. If ui ∈ Fq[x], then u1+ϕ+...+ϕn−1

i = uni =
Un
i , hence n | ei and we replace ei by ei/n, since Tr(Di) = nDi. Notice that by Lemma 2.16

(ii) Ui is an Fq[x]-irreducible factor of HD(x) independently of whether ui ∈ Fq[x] or not.
Notice moreover that ui ∈ Fq[x] if and only if Ui is irreducible in Fqn [x]. Conversely, Ui is
reducible in Fqn [x] if and only if ui ∈ Fqn [x] is one of its irreducible factors. Summarizing,
each Di corresponds exactly to a set of n Fqn [x]-irreducible factors of HD, and these factors
can be correctly grouped by first computing the Fq[x]-factorization of HD = N(u).

Fix i ∈ {1, . . . ,m} and let U(x) be an Fqn [x]-irreducible factor of Ui(x), i.e., U(x) is a
Frobenius conjugate of ui(x). We now discuss: how to compute the corresponding V (x),
so that [U, V] is the Mumford representation of some Frobenius conjugate of Di, and how
to determine the cardinality m of the set of j ∈ {1, . . . , t} such that Dj ≤ D is a Frobenius
conjugate of Di, respectively the cardinality ℓ of the set of j ∈ {1, . . . , t} such that Dj ≤ D
is a Frobenius conjugate of w(Di). If Di 6= w(Di) we have that HD = N(u) is divisible by
Um
i U ℓ

i and by no higher power of Ui by Theorem 5.3 (ii), hence ei = m+ ℓ. If Di = w(Di)
by definition m = ℓ and HD = N(u) is divisible by Um

i and by no higher power of Ui by
Theorem 5.3 (ii), hence ei = m.

By Theorem 5.3 (vi), if U ∤ hD,2 then ℓ = 0 and no Frobenius conjugate of w(Di)
appears among the prime divisors Dj ≤ D. Moreover, there exist polynomials k(x), l(x) ∈
Fqn [x] such that k(x)hD,2 = 1 + l(x)U(x). Hence k(x)(hD,1(x) + yhD,2(x)) ≡ y +
k(x)hD,1 mod U. Since hD,1+yhD,2 ≡ 0 mod (U, y−V), then y−V divides y+k(x)hD,1 mod
U . It follows that y − V ≡ y + k(x)hD,1 mod U , hence

V ≡ −hD,1h
−1
D,2 mod U.

Notice that in this case V 6= 0, since Di 6= w(Di), and m = ei.

If U | hD,2, it follows from Theorem 5.3 (vi) that w(Di) = ϕj(Dk) for some 0 ≤ j ≤ n−1
and 1 ≤ k ≤ t. In other words, both [ui, vi] = Di and some Frobenius conjugate of
[ui,−vi] = w(Di) = ϕj(Dk) appear in D. We distinguish the cases

(a) Di = w(Di),

(b) Di 6= w(Di).

Case (a) is treated in lines 22–23 of the algorithm. In this case m = ℓ = ei. Since
Di = w(Di) is equivalent to vi = 0, case (a) can be detected by checking whether U | f . If
this is the case, it suffices to set V = 0.

5.3. Compression and decompression algorithms 69

Case (b) is treated in lines 25–33 of the algorithm. In this case i 6= k by Theorem
5.3 (vi) since n 6= 2. By Theorem 5.3 (vii), Tr(D) = mTr(Di) + ℓTr(w(Di)) + Tr(G)
where Tr(Di),Tr(w(Di)) 6≤ Tr(G) and s := min{m, ℓ} may be computed as the exponent
for which U s

i | hD and U s+1
i ∤ hD. Let hD = U s

i h
′
D, h′D = h′D,1 + yh′D,2. Notice that

U,Ui ∤ h
′
D,2, since Tr(Di) + Tr(w(Di)) 6≤ div(h′D). Then: s = m = ℓ = ei/2 if and only if

Tr(Di),Tr(w(Di)) 6≤ div(h′D) if and only if U ∤ V 2 − f , where V = −h′D,1h
′
D,2

−1 mod U .

In this case, we can let V =
√
f mod U , and D contains exactly ei/2 Frobenius conjugates

of [U, V] and ei/2 Frobenius conjugates of [U,−V]. If instead s = ℓ < m, then hD = U ℓ
i h

′
D

and div(h′D) ≥ Tr(Di), div(h
′
D) 6≥ Tr(w(Di)). Therefore, U ∤ h′D,2 and V can be computed

as V = −h′D,1h
′
D,2

−1 mod U . In this case, D contains exactly m = ei − ℓ Frobenius
conjugates of [U, V] and ℓ Frobenius conjugates of [U,−V].

Notice that U ∤ hD,2 is the generic case, and it is treated in lines 19–20 of the algorithm.
Lines 21–34 are only needed to treat the special case U | hD,2 and distinguish the special
cases that we just discussed.

Finally, we show that the D′ returned by Algorithm 5.3 is reduced. To this end, we
check that the algorithm does not add both a divisor and its involution to the list L, and
in particular when a divisor is 2-torsion, we check that it is added with multiplicity 1.
Since for each i such that U ∤ hD,2 we have computed a unique V 6= 0, we only need to
consider the cases where U | hD,2. In case (a) we have Di = w(Di), and we need to check
that D′

i, ϕ(D
′
i), . . . , ϕ

ei−1(D′
i) are distinct, where D′

i = [U, 0]. In particular, we check that
ei < n. But if D′

i, hence Di, were Fq-rational or ei > n, then D would not be reduced. In
case (b) we have Di 6= w(Di) and hence w(ϕ(Di)) 6= ϕ(Di), so we may add several times
D′

i = [U, V] and w(ϕ(D′
i)) = [Uϕ,−V ϕ]. Furthermore, we have D′

i 6= ϕ(D′
i). Indeed, if

D′
i = ϕ(D′

i) then it follows that D′
i, Di and Dk are Fq-rational. Hence Di = w(Dk), a

contradiction to the fact that D is reduced, since i 6= k in this case.
(iii) We assume that the degrees of hD,1 and hD,2 are maximal, which is the generic

case. The complexity of the algorithm is dominated by the polynomial factorizations.
The factorization of HD, which has degree ng, takes O((ng)1+log2 3 log(qng)) operations
over Fq (see [GvzG99, Theorem 14.14]). In the loop over i, a polynomial Ui must be
factored over Fqn in each iteration. Write degUi = ki. Factoring Ui has complexity
O((ki)

1+log2 3 log(qnki)) over Fqn (as above). Inverting hD,2 modulo U is in O(k2i) and is
therefore cheaper. Hence the overall complexity of the loop is

O

(
ℓ∑

i=1

k
1+log2 3
i log(qnki)

)

.

This is largest in the extreme case where ℓ = 1 and k1 = ng, which yields the statement
of the theorem.

Remark 5.12. The representation computed by Algorithm 5.2 has size (n−1)g log2 q+1.
If one chooses to work only with divisors of the form D = P1+ . . .+Pg− gO, then the last
bit may be dropped and we have a representation of size (n − 1)g log2 q. Divisor classes
whose reduced representative has this form constitute the majority of the elements of Tn.
Moreover, there are cases in which the trace zero subgroup consists only of divisor classes
represented by reduced divisors of this shape. This is the case for elliptic curves, where
r = 1 if D 6= 0. Moreover, Lange [Lan04b, Theorem 2.2] proves that for g = 2 and n = 3,
all non-trivial elements of T3 are represented by reduced divisors with r = 2 = g.

Remark 5.13. On the basis of the results discussed in Chapter 4.4, we suggest the follow-
ing procedure for adding points in compressed coordinates: Decompress the point, perform

70 5. An optimal representation via rational functions

the operation in Pic0C(Fqn), and compress the result. Since our compression and decom-
pression algorithms are very efficient, this adds only little overhead. Moreover, scalar
multiplication is considerably more efficient for trace zero points than for general points in
Pic0C(Fqn), due to the speed-up using the Frobenius endomorphism.

5.4 Explicit equations for g = 2, n = 3

For small n and g, it is possible to give explicit equations for compression and decom-
pression. In addition to making the computation more efficient, they allow us to perform
precise operation counts and thus to compare our method to the other existing compression
methods in Section 5.5. We postpone explicit equations for elliptic curves to Chapter 6
and consider here only the case of trace zero subgroups associated to hyperelliptic curves
of genus 2 with respect to field extensions of degree 3.

For these parameters, the trace zero variety was studied in detail by Lange [Lan01,
Lan04b]. One of her results is that divisor classes in T3 are always represented by reduced
divisors of a certain shape.

Theorem 5.14 ([Lan04b, Theorem 2.2]). Assume that C has genus 2 and that 2, 3 ∤
|Pic0C(Fq3)|. Then all non-trivial elements of T3 are represented by reduced divisors of the
form

P1 + P2 − 2O /∈ DivC(Fq),

where P1, P2 6= O and P1 /∈ {P2, ϕ(P2), ϕ
2(P2)}.

Corollary 5.15. Assume that C has genus 2 and that 2, 3 ∤ |Pic0C(Fq3)|. Then all non-
trivial elements of T3 are represented by reduced divisors of the form D = P1 + P2 − 2O /∈
DivC(Fq), and one of the following mutually exclusive facts holds:

(i) P1, P2 ∈ C(Fq3) \ {O} and P1 ∈ {w(ϕ(P2)), w(ϕ
2(P2))},

(ii) P1, P2 ∈ C(Fq3) \ {O} and P1 /∈ {P2, ϕ(P2), ϕ
2(P2), w(ϕ(P2)), w(ϕ

2(P2))},

(iii) P1 ∈ C(Fq6) \ C(Fq3) and P2 = ϕ3(P1).

Let [u, v] be the Mumford representation of [D]. Then in cases (ii) and (iii) the divisor
D + ϕ(D) is semi-reduced and u ∤ hD,2, in particular hD,2 6= 0.

Proof. (ii) By contradiction, assume that hD,2 ≡ 0 mod u. Let Pj = (Xj , Yj), j = 1, 2.
Pj −O ∈ DivC(Fq3) is a reduced prime divisor. Since hD,2(Xj) = 0, by Theorem 5.3 (vi)
we have w(Pj) = ϕi(Pj). Then Xj ∈ Fq3 ∩ Fqi = Fq and Yj ∈ Fq3 ∩ Fq2i = Fq. Hence
D = P1 + P2 − 2O ∈ DivC(Fq), which contradicts Theorem 5.14.

(iii) Let D = P1+P2−2O ∈ DivC(Fq3)\DivC(Fq), and assume that P1 6∈ C(Fq3). Then
also P2 6∈ C(Fq3) and ϕ3(D) = D forces P1 = ϕ3(P2) and P2 = ϕ3(P1). If w(D) = ϕi(D)
for some i = 1, 2, then either w(P1) = ϕi(P1) or w(P1) = ϕi+3(P1). Hence P1 = (X,Y)
and ϕj(P1) = (Xqj , Y qj) lie on the same vertical line for some j ∈ {i, i + 3}, therefore
X = Xqj ∈ Fq6 ∩ Fqj ⊆ Fq2 and Y = −Y qj ∈ Fq6 ∩ Fq2j ⊆ Fq2 . This shows that
D ∈ DivC(Fq2) ∩ DivC(Fq3) = DivC(Fq), which contradicts Theorem 5.14. Therefore
w(D) 6= ϕi(D) for i = 0, 1, 2, which by Theorem 5.3 (vi) implies that u ∤ hD,2, where [u, v]
is the Mumford representation of [D]. In particular, hD,2 6= 0.

We assume 2, 3 ∤ |Pic0C(Fq3)| throughout this section. Hence we know that the Mumford
representation of all non-trivial elements of T3 has a u-polynomial of degree 2 in Fq3 [x].

5.4. Explicit equations for g = 2, n = 3 71

Furthermore, we assume that the characteristic of Fq is not equal to 2 or 5. In such a case,
a simple transformation yields a curve equation of the shape

C : y2 = x5 + f3x
3 + f2x

2 + f1x+ f0.

We assume here that C is given in this form, which slightly simplifies the explicit equations
given below. Formulas for the more general case can be worked out easily.

Compression. We consider elements 0 6= [D] = [u, v] ∈ T3 with D = P1 +P2− 2O where
u and uϕ are coprime. This is true under the additional assumption that the x-coordinates
of both P1, P2 are not in Fq. In addition we assume that P1 /∈ {w(ϕ(P2)), w(ϕ

2(P2))},
which by Corollary 5.15 implies that hD,2 is not the zero polynomial. The other special
cases can be worked out separately, and we do not treat them here.

Proposition 5.16. Let 0 6= [D] = [u, v] ∈ T3 such that gcd(u, uϕ) = 1 and hD,2 is not
the zero polynomial. Let [U, V] be the Mumford representation of the semi-reduced divisor
D + ϕ(D). Then

hD = y − V where V = su+ v, s ≡ (vϕ − v)/u mod uϕ.

Proof. The divisor D+ϕ(D) is semi-reduced by Corollary 5.15. According to Theorem 5.3
(iii), we have hD = hD,1 + yhD,2 with deg hD,1 = 3 and deg hD,2 ≤ 0. Since hD,2 6= 0 by
assumption, and after multiplication by a constant, we have hD = y−γ(x) where γ ∈ Fq[x]

of degree 3. Now if D = P1 + P2 − 2O with Pi = (Xi, Yi), then hD(X
qj

i , Y qj

i) = 0 and

hence γ(Xqj

i) = Y qj

i for i = 1, 2, j = 0, 1, 2. But V is the unique polynomial of degree ≤ 3

with V (Xqj

i) = Y qj

i for i = 1, 2, j = 0, 1, 2, and therefore γ = V .

In order to compute V , observe that V is the unique polynomial of degree < deg(uuϕ) =
4 such that

V ≡ v mod u and V ≡ vϕ mod uϕ.

Keeping in mind that u, uϕ are coprime, and using the Chinese Remainder Theorem (or
following the explicit formulas in [Lan05]), we get

V = su+ v where s ≡ (vϕ − v)/u mod uϕ

with deg s ≤ 1 and hence deg V ≤ 3.

Denoting u(x) = x2 + u1x + u0 and v(x) = v1x + v0, we compute the compression
(β0, γ0, γ1, γ2, 1) of D according to the following formulas. We abbreviate

U0 = u0 − uq0, U1 = u1 − uq1, V0 = v0 − vq0, V1 = v1 − vq1.

Then

d = (U1V0 − U0V1)
−1

β0 = ((u0u
q
1 − uq0u1)U1 − U2

0)d

γ0 = ((u0v
q
0 − uq0v0)U0 + (uq0u1v0 − u0u

q
1v

q
0 − uq+1

0 V1)U1)d

γ1 = ((u0v
q
1 − uq0v1)U0 + (uq1v0 + uq0v

q
1)u1U1 + (uq0u1 − u0u

q
1)V0

+(u0v1 + u1v
q
0)(u

2q
1 − uq+1

1))d

γ2 = (((u1 + uq1)U1 − U0)V0 − (u0u1 − uq0u
q
1)V1)d.

72 5. An optimal representation via rational functions

Counting squarings (S), multiplications (M), and inversions (I) but not the multiplication
by constants (and therefore also not the application of the Frobenius), we see that com-
puting these values in a straightforward way takes 2S+32M+1I in Fq3 . This number could
probably be optimized by regrouping the terms in a more sophisticated way. This is the
total compression cost.

Decompression. Since decompression is dominated by factoring polynomials, we do not
perform an exact operation count here. The algorithm computes

S1 = −2γ2 + β2
0

S2 = 2γ1 + γ22

S3 = −2γ0 − 2γ1γ2 + β2
0f3

S4 = 2γ0γ2 + γ21 − β2
0f2

S5 = −2γ0γ1 + β2
0f1

S6 = γ20 − β2
0f0

over Fq to obtain HD = x6−S1x
5+S2x

4−S3x
3+S4x

2−S5x+S6. In almost all cases we are
decompressing a point of the shape that we have considered above for compression. HD will
either split over Fq into two factors of degree 3 or it will be irreducible over Fq. Factoring
HD over Fq takes O(log q) operations in Fq. Then we factor either two polynomials of
degree 3 over Fq3 or one degree 6 polynomial over Fq3 in O(log q) operations in Fq3 . In
both cases, we then compute the corresponding v-polynomial(s). It follows that the overall
complexity is O(log q) operations in Fq.

5.5 Timings and comparison with other representations

Important achievements of this new representation are that it works for any prime n
and any genus and can be made practical for large values of n and/or g. Moreover our
decompression algorithm allows the unique recovery of one well-defined class of conjugates
of the original point. For elliptic curves, such a class consists exactly of the Frobenius
conjugates of the original point, and for higher genus curves, classes are as described in
Theorem 5.3 (v) and Corollary 5.5. Identifying these conjugates is the natural choice from
a mathematical point of view, since it respects the structure of our object and is compatible
with scalar multiplication of points.

There are only three other known methods for point compression in trace zero varieties
over elliptic curves, namely [Nau99], [Sil05], and the one from Chapter 4 of this thesis.
While [Nau99] only applies to extension degree 3, [Sil05] and the one of Chapter 4 can
be made practical for n = 3, 5. The approach of Chapter 4 allows unique recovery of
an equivalence class for n = 3 and for most points for n = 5. The methods of [Nau99,
Sil05] recover sets of points with an unclear mathematical relationship, and they appear
to not be compatible with scalar multiplication. Because of this, they require extra bits
to resolve ambiguity. There is only one known method for point compression in trace zero
varieties over hyperelliptic curves from [Lan04b]. This method can be made practical for
the parameters g = 2, n = 3.

One advantage of our representation with respect to the previous ones is that it is
the only one that does not identify the positive and negative of a point, thus allowing
a recovery of the v-polynomial of a compressed point that does not require computing
square roots. For small values of n, this gives a noticeable advantage in efficiency. In
addition, our method works for all affine points on the trace zero variety, without having

5.5. Timings and comparison with other representations 73

to disregard a closed subset as it is done in [Sil05, Lan04b]. Furthermore, our compression
and decompression algorithms do not require a costly precomputation, such as that of the
Semaev polynomial in Chapter 4 or the elimination of variables from a polynomial system
in [Lan04b].

In terms of efficiency, our compression algorithm is faster than all the other ones for
elliptic curves except for our algorithm from Chapter 4, and our decompression algorithm
is faster in all cases. For g = 1 and n = 3, 5, the time for compression and decompression
together is comparable for n = 3, and smaller for n = 5, than that of Chapter 4. That is
to say, the faster decompression makes up for the slower compression. Although here we
concentrate on the case of odd characteristic, our method can be adapted to fields of even
characteristic, just like all other methods from [Sil05, Lan04b, Nau99] and Chapter 4.

A detailed comparison of efficiency for elliptic curves is given in Chapter 6.4, so for the
rest of this section we consider only hyperelliptic curves of genus g ≥ 2. For g = 2 and
n = 3, we compare the efficiency of our method with that of [Lan04b].

We have implemented all our algorithms in Magma [BCP97], and we give some timings
to show how our implementation performs in practice. Notice however that our programs
are straightforward implementations of the methods described here, and they are only
meant as a proof of concept. Absolute timings with nothing to compare them to are not
very significant, and we include them simply to be consistent with Chapter 6, where we
compare our method for elliptic curves with the method from Chapter 4 on the basis of our
own Magma implementations. In such a relative context, the timings are more meaningful.

All computations were done with Magma version 2.19.3 [BCP97], running on one core
of an Intel Xeon X7550 Processor (2.00 GHz) on a Fujitsu Primergy RX900S1. Our timings
are average values for one execution of the algorithm, where averages are computed over
10000 executions with random inputs.

Comparison and Timings for g = 2, n = 3. We present timings for trace zero subgroups
of 20, 30, 40, 50, and 60 bits in Table 5.1. The reason for testing only such small groups is
that it is difficult to produce larger ones in Magma without writing dedicated code. Since
our implementation serves mostly as a proof of concept, and since this is not the focus of
our work, we did not put much effort into producing suitable curves for larger trace zero
subgroups. Avanzi and Cesena report in [AC07] that they were able to produce trace zero
subgroups of 160 and 190 bits for curves of genus 2 over fields of even characteristic by
modifying a software package written by Frederik Vercauteren.

The representation of [Lan04b] consists of 4 (out of 6) Weil restriction coordinates of
the coefficients of the u-polynomial of a point plus two small numbers to resolve ambi-
guity. Following the notation of the original paper, we call the transmitted coordinates
u12, u11, u10, u02, the two small numbers a, b, and the dropped coordinates u01, u00. This
approach requires as a precomputation the elimination of 4 variables from a system of 6
equations of degree 3 in 10 variables. The result is a triangular system of 2 equations in
6 indeterminates. The compression algorithm plugs the values of u12, u11, u10, u02 into the
system and solves for the two missing values in order to determine a, b, which in turn de-
termine the roots coinciding with u01, u00. The decompression algorithm uses a, b to decide
which among the solutions of the system are the coordinates it recovers. The advantage
of this algorithm is that it works entirely over Fq. Nevertheless, compression is much
less efficient than our compression algorithm, since we only need to evaluate a number of
expressions (and we do not need to compute roots or factor polynomials), while Lange
has to solve a triangular system, which involves computing roots. While our decompres-
sion algorithm requires the factorization of one or two polynomials, which has complexity
O(log q), Lange’s decompression algorithm solves again the same triangular system. Since

74 5. An optimal representation via rational functions

Table 5.1 Average time in milliseconds for compression/decompression of one point
when g = 2, n = 3

q 25 − 1 28 − 75 210 − 3 213 − 2401 215 − 19

Compression 0.10 0.11 0.19 0.19 0.17
Full decompression 0.28 4.78 19.87 3.07 3.82

Table 5.2 Average time in milliseconds for compression/decompression of one point
when g ≥ 7, n = 3, log2 |Tn| ≈ 100

g 7 8 9 10 11
q 28 − 117 27 − 55 26 − 21 25 − 1 25 − 13

Compression 3.81 0.92 0.93 1.22 2.07
Full decompression 5.46 27.39 5.03 6.81 5.93

g 12 13 14 15 16
q 24 − 3 24 − 3 23 − 1 23 − 1 23 − 1

Compression 2.08 2.04 6.46 8.60 3.67
Full decompression 18.32 19.73 13.33 12.79 13.45

Table 5.3 Average time in milliseconds for compression/decompression of one point
when g ≥ 5, n = 5, log2 |Tn| ≈ 160

g 5 6 7 8 9 10 11
q 28 − 5 27 − 27 26 − 23 25 − 1 24 − 5 24 − 5 24 − 5

Compression 6.53 7.48 9.89 11.83 1.90 2.93 3.24
Full decompression 4.35 13.91 12.61 10.27 29.30 33.83 42.97

this involves computing roots in Fq, which has complexity O(log4 q) using standard meth-
ods (and can be as low as O(log2 q) for special choices of parameters, see [BV06]), it is
less efficient than the decompression algorithm proposed in this chapter. Notice also that
Lange’s approach does not give the v-polynomial, which needs to be computed separately,
adding to the complexity of decompression.

Timings for g > 2, n > 3. As a proof of concept, we provide timings in Table 5.2 for trace
zero subgroups of approximately 100 bits when n = 3 and g = 7, 8, . . . , 16 and in Table 5.3
for trace zero subgroups of approximately 160 bits when n = 5 and g = 5, 6, . . . , 11. The
reason for this choice is simply that we are able to find suitable curves for these parameters.
We stress again that the limitation here is not our compression method but finding trace
zero subgroups of known group order, so we expect that our method will work for much
larger values of n and g (e.g. we are able to compute an example for g = 2, n = 23, where
the group has 173 bits).

5.6 Conclusions

In this chapter, we propose a representation of elements of the trace zero subgroup via ra-
tional functions. This representation is the only one (to the extent of our knowledge) that

5.6. Conclusions 75

works for elliptic and hyperelliptic curves of any genus and field extensions of any prime de-
gree. Our representation has convenient mathematical properties: It identifies well-defined
equivalence classes of points, it is compatible with scalar multiplication, and it does not
discard the v-polynomial of the Mumford representation (or the y-coordinate of an ellip-
tic curve point), thus avoiding expensive square root computations in the decompression
process.

Our compression and decompression algorithms are efficient, even for medium to large
values of n and g. For those parameters where other compression methods are available
(namely, for very small n and g), our algorithms are comparable with or more efficient
than the previously known ones. No costly precomputation is required during the setup of
the system.

Our optimal-sized and efficiently-computable representation, together with previous
results on the security and on efficient arithmetic, make trace zero subgroups a very inter-
esting class of groups in the context of public key cryptography.

Chapter 6

An optimal representation via

rational functions – elliptic curves

We now specialize the results of Chapter 5 to elliptic curves, since elliptic curves are simpler
and better studied than hyperelliptic curves. In particular, the Picard group of an elliptic
curve is isomorphic to the curve itself. Therefore one can work with the group of points
of the curve, and point addition is given by simple, explicit formulas. As we will see, it
is also much easier to find a rational function with a given principal divisor. For all these
reasons, the results and methods from Chapter 5 can be simplified and made explicit for
elliptic curves.

Assumptions and Notation. Throughout this chapter, let

E : y2 = f(x)

denote an elliptic curve defined over Fq. The trace zero subgroup Tn of E(Fqn) is the group
of all points P with trace equal to zero. In this chapter we consider only n ≥ 3, since the
case n = 2 is rather trivial, as explained at the beginning of Section 5.1. As in Chapter 5,
we assume that Fq does not have characteristic 2, see Remark 5.4.

Roadmap. The organization of this chapter is analogous to that of Chapter 5: We in-
troduce the representation in Section 6.1 and give the corresponding compression and
decompression algorithms in Section 6.2. We present explicit equations in Section 6.3 and
experimental results as well as a comparison with other representations in Section 6.4.

6.1 An optimal representation via rational functions

We have an analogous but more explicit version of Theorem 5.3. Although almost all
statements follow from Theorem 5.3, we give direct and more elementary proofs below.

Notation 6.1. Write Pi = ϕi(P) for i = 0, . . . , n− 1. Let

ℓj(x, y) = 0, j = 1, . . . , n− 2,

be the equation of the line passing through the points P0 ⊕ . . .⊕ Pj−1 and Pj . We follow
the usual convention that the line passing through P with multiplicity two is the tangent
line to the curve at P . Let

vj(x, y) = 0, j = 1, . . . , n− 3,

be the equation of the vertical line passing through the point P0 ⊕ . . .⊕ Pj .

77

78 6. An optimal representation via rational functions – elliptic curves

Theorem 6.2. Let n ≥ 3 prime. For any P ∈ Tn \ {O}, let

hP =
ℓ1 · . . . · ℓn−2

v1 · . . . · vn−3
∈ Fq(E),

where ℓj and vj are the lines defined in Notation 6.1. Then:

(i) None of the lines ℓ1, . . . , ℓn−2 are vertical.

(ii) div(hP) = P0 + . . .+ Pn−1 − nO.

(iii) hP (x, y) = hP,1(x) + yhP,2(x) for some hP,1, hP,2 ∈ Fq[x].

(iv) deg hP,1 ≤ n−1
2 and deg hP,2 =

n−3
2 .

(v) Let hP,2 be monic, then hP is uniquely determined by n− 1 coefficients in Fq.

(vi) HP = h2P,1 − fh2P,2 has degree n, and its zeros are exactly the x-coordinates of
P0, . . . , Pn−1.

(vii) If Q is such that hP = hQ, then Q = ϕj(P) for some j ∈ {0, . . . , n− 1}.

(viii) hP,2(X) 6= 0 for all x-coordinates X of P0, . . . , Pn−1.

Proof. (i) Assume on the contrary that at least one of the lines is vertical. Let j ∈
{2, . . . , n−1} be minimal such that ℓj−1 is vertical. Since ℓj−1 passes through P0⊕. . .⊕Pj−2

and Pj−1, this implies P0 ⊕ . . . ⊕ Pj−2 = w(Pj−1), or P0 ⊕ . . . ⊕ Pj−1 = O. By applying
ϕj , we may “shift” this equation and obtain Pmj ⊕ . . .⊕P(m+1)j−1 = O for all m ≥ 0 such
that (m + 1)j ≤ n. We plug this into the trace zero equation P0 ⊕ . . . ⊕ Pn−1 = O and
apply an appropriate power of ϕ to get P0 ⊕ . . . ⊕ P(n mod j)−1 = O. Now we start from
the two smaller equations P0 ⊕ . . .⊕ Pj−1 = O and P0 ⊕ . . .⊕ P(n mod j)−1 = O and apply
an analogous procedure to further reduce the number of points in the sum. Similarly to
the Euclidean Algorithm, we can keep reducing the larger index modulo the smaller one.
Finally, we obtain an equation of the form P0⊕ . . .⊕Pgcd(n,j)−1 = O. Since n is prime, we
have P0 = O, a contradiction.

(ii) We have div(ℓj) = (P0⊕. . .⊕Pj−1)+Pj+w(P0⊕. . .⊕Pj)−3O for j ∈ {1, . . . , n−2}
and div(vj) = (P0 ⊕ . . . ⊕ Pj) + w(P0 ⊕ . . . ⊕ Pj) − 2O for j ∈ {1, . . . , n − 3}. Now we
compute

div

(
ℓ1 · . . . · ℓn−2

v1 · . . . · vn−3

)

=
n−2∑

j=1

div(ℓj)−
n−3∑

j=1

div(vj)

= P0 + P1 + . . .+ Pn−2 + w(P0 ⊕ . . .⊕ Pn−2)− nO
= P0 + P1 + . . .+ Pn−1 − nO,

where w(P0 ⊕ . . .⊕ Pn−2) = Pn−1 since P is a trace zero point.
(iii) For i ∈ {2, . . . , n− 1}, let

h
(i)
P (x, y) =

ℓ1 · . . . · ℓi−1

v1 · . . . · vi−2
(x, y) ∈ Fqn(E).

We first show that h
(i)
P (x, y) = h

(i)
P,1(x) + yh

(i)
P,2(x) for some polynomials h

(i)
P,1 and h

(i)
P,2 in

Fqn [x] by induction on i. The base case i = 2 is easy: h
(2)
P = ℓ1 is a line. For the induction

step, we have h
(i)
P = h

(i−1)
P

ℓi−1

vi−2
, hence we need to show that vi−2 divides h

(i−1)
P ℓi−1 in

6.1. An optimal representation via rational functions 79

Fq[x, y]/(y
2 − f(x)). We write P0 ⊕ . . . ⊕ Pi−2 = (X,Y). Since vi−2 is the vertical line

passing through (X,Y), we have vi−2(x, y) = x−X. Hence to prove our claim, we check

that h
(i−1)
P ℓi−1 = 0 in Fq[x, y]/(y

2 − f(x), x−X). In this ring, we have

h
(i−1)
P (x, y)ℓi−1(x, y) = (h

(i−1)
P,1 (x) + yh

(i−1)
P,2 (x))ℓi−1(x, y)

= (h
(i−1)
P,1 (X) + yh

(i−1)
P,2 (X))ℓi−1(X, y)

= c(y + Y)(y − Y) = c(y2 − Y 2)

= c(f(x)− Y 2) = c(f(X)− Y 2) = 0

for some constant c 6= 0. The first equality is the induction hypothesis. For the third equal-

ity, we use that h
(i−1)
P (X,−Y) = 0 and h

(i−1)
P (x, y) is linear in y, and that ℓi−1(X,Y) = 0

and ℓi−1(x, y) is linear in y. In other words, we have a product of two linear polynomials
in y, i.e. a quadratic polynomial in y, with zeros ±Y . Therefore, the polynomial must be
equal to (y + Y)(y − Y) up to multiplication by a constant c.

The claim now follows for i = n− 1, where hP,1, hP,2 ∈ Fq[x] since hP ∈ Fq(E) (recall
that Tr(P) is Fq-rational).

(iv) An easy induction on i, starting with h
(2)
P = ℓ1 a line and h

(3)
P = ℓ1ℓ2/v1, shows

that

deg h
(i)
P,1 ≤

{
i+1
2 if i is odd

i
2 if i is even

and deg h
(i)
P,2 ≤

{
i−3
2 if i is odd

i−2
2 if i is even.

Then the inequalities deg hP,1 ≤ n−1
2 and deg hP,2 ≤ n−3

2 follow for i = n − 1, since
n − 1 is even. Equality for the degree of hP,2 follows from (i): Since the ℓj are never

vertical, they have equations of the form y + µ1x + µ0. Hence the numerator of ℓ1···ℓn−2

v1···vn−3

has a term yn−2 = yyn−3 = yx3(n−3)/2. The denominator is a polynomial in x of degree
n− 3. Therefore, the leading term of hP,2 is x3(n−3)/2−(n−3) = x(n−3)/2.

(v) This follows directly from (iv).
(vi) The degree of h2P,1 is at most n− 1, while the degree of h2P,2 is exactly n− 3. This

implies that HP has degree n. We have HP (x) = (hP,1(x) + yhP,2(x))(hP,1(x)− yhP,2(x))
as functions on E. Now from looking at the divisor (see (ii)), we see that the affine zeros of
hP,1(x)+yhP,2(x) on E are P0, . . . , Pn−1, and hence the affine zeros of hP,1(x)−yhP,2(x) on
E are w(P0), . . . , w(Pn−1). Therefore, the affine zeros of HP (x) on E are ±P0, . . . ,±Pn−1.
Now since HP (x) has degree n, its zeros (as a polynomial) are exactly the x-coordinates
of those points.

(vii) If hP = hQ, then div(hP) = div(hQ), i.e. Tr(P) = Tr(Q) and therefore P and Q
must be Frobenius conjugates.

(viii) Since hP,2 is defined over Fq, it suffices to show hP,2(X) 6= 0 for the x-coordinate of
P . By (iv) and (vi), hP,2 is not the zero polynomial, since otherwise degHP = 2deg hP,1 ≤
n − 1. If n = 3 then deg hP,2 = 0 by (iv), hence hP,2(X) is a non-zero constant for every
X. Now suppose n > 3 and hP,2(X) = 0, then hP (X,Y) = hP (X,−Y) = 0 and it follows
that w(P) = ϕj(P) for some j (this is analogous to Theorem 5.3 (vi)). If j 6= 0, then
X ∈ Fqn ∩Fqj = Fq and Y ∈ Fqn ∩Fq2j = Fq. Hence P = w(P), i.e. P and all its Frobenius
conjugates are 2-torsion points. On the other hand, P ∈ Tn implies

P ⊕ ϕ(P)⊕ . . .⊕ ϕn−1(P) = O.

Now if P ∈ E(Fq) then this implies P ∈ E[n] ∩ E[2] = {O}. If P /∈ E(Fq) then the
Frobenius conjugates of P are all distinct, a contradiction for n > 3 since E has only three
2-torsion points.

80 6. An optimal representation via rational functions – elliptic curves

Since the exact degree of hP,2 is known, hP can be normalized by making hP,2 monic.
Hence one obtains an optimal representation for trace zero points on an elliptic curve.

Corollary 6.3. Let n ≥ 3 prime, and let d1 = (n − 1)/2, d2 = (n − 3)/2. Write hP,1 =
γd1x

d1 + . . .+ γ0 and hP,2 = xd2 + βd2−1x
d2−1 + . . .+ β0. Define

R : Tn \ {O} −→ Fq
n−1

P 7−→ (γ0, . . . , γd1 , β0, . . . , βd2−1).

Then R is an optimal representation for the elements of Tn \ {O} and

R−1(R(P)) = {P,ϕ(P), . . . , ϕn−1(P)} for all P ∈ Tn \ {O}.

6.2 Compression and decompression algorithms

We detail in Algorithms 6.1 and 6.2 the simplified compression and decompression algo-
rithms for elliptic curves. It is obvious that they are much shorter and simpler than the
algorithms for hyperelliptic curves (see Algorithms 5.2 and 5.3).

Algorithm 6.1 Compression for elliptic curves, n ≥ 3

Input: P ∈ Tn

Output: representation (α0, . . . , αn−2) ∈ Fn−1
q of P

1: compute hP (x, y) = hP,1(x) + yhP,2(x)← ℓ1·...·ℓn−2

v1·...·vn−3
(x, y) (see Algorithm 6.3) where

2: hP,1(x) = γd1x
d1 + . . .+ γ0 and

3: hP,2(x) = xd2 + βd2−1x
d2−1 + . . .+ β0

4: return (γ0, . . . , γd1 , β0, . . . , βd2−1)

Algorithm 6.2 Decompression for elliptic curves, n ≥ 3

Input: (α0, . . . , αn−2) ∈ Fn−1
q

Output: one point P ∈ Tn \ {O} with representation (α0, . . . , αn−2)
1: hP,1(x)← α(n−1)/2x

(n−1)/2 + α(n−3)/2x
(n−3)/2 + . . .+ α1x+ α0

2: hP,2(x)← x(n−3)/2 + αn−2x
(n−5)/2 + . . .+ α(n+3)/2x+ α(n+1)/2

3: HP (x)← hP,1(x)
2 − f(x)hP,2(x)

2

4: X ← one root of HP (x)
5: Y ← −hP,1(X)/hP,2(X)
6: return P = (X,Y)

Finally, we discuss how to compute hP for a given P ∈ Tn. Explicit formulas can
be computed in the special cases n = 3, 5. We do this in the next section. For general
n, a straightforward computation of hP is possible, since we have an explicit formula
given in terms of lines whose equations we know. Such a computation can be made more
efficient by employing the usual divide and conquer strategy. Computing hP via a Miller-
style algorithm analogous to Algorithm 5.1 is also possible. The latter is advantageous
for medium and large values of n, while for small values of n (for which we do not have
explicit formulas) a straightforward computation using a divide and conquer approach
seems preferable.

In Algorithm 6.3 we give a Miller-style algorithm to compute hP . We denote by ℓP,Q the
line through the points P and Q and by vP the vertical line through P . All computations
are done with functions on E, i.e. in Fqn(E).

6.3. Explicit equations 81

Algorithm 6.3 Miller-style double and add algorithm for computing hP , n ≥ 3

Input: P ∈ Tn \ {O} and n− 1 =
∑s

j=0 nj2
j

Output: hP
1: Q← ϕ(P)
2: h← ℓP,Q, R← P ⊕Q, Q← ϕ(Q), i← 2
3: if ns−1 = 1 then

4: h← h · ℓR,Q

vR
, R← R⊕Q, Q← ϕ(Q), i← 3

5: end if

6: for j = s− 2, s− 3, . . . , 1, 0 do

7: h← h · hϕi · v
R+ϕi(R)

ℓ
w(R),w(ϕi(R))

, R← R⊕ ϕi(R), Q← ϕi(Q), i← 2i

8: if nj = 1 then

9: h← h · ℓR,Q

vR
, R← R+Q, Q← ϕ(Q), i← i+ 1

10: end if

11: end for

12: return h

Corollary 6.4. (i) The execution of Algorithm 6.3, and therefore also of compression
Algorithm 6.1, requires O(3logn) operations in Fqn .

(ii) Decompress(Compress(P)) is one of the Frobenius conjugates of P . The complexity
of decompression Algorithm 6.2 is O(nlog2 3+1 log n log(nq)) operations in Fqn .

Proof. (i) See Theorem 5.9.
(ii) Theorem 5.11 (iii) would give a complexity of O(nlog2 3+2 log(nq)) operations in

Fqn . However, the situation here is simpler, since we know that HP must split into linear
factors over Fqn . Therefore, we apply the root finding algorithm of [GvzG99, Algorithm
14.15], which has a better complexity of O(nlog2 3+1 log n log(nq)) operations in Fqn .

Remark 6.5. A more careful analysis of Algorithm 6.3 (using the bounds on the degrees
of h(i) from the proof of Theorem 6.2 (iv)) shows that the compression complexity that we
give in the previous corollary is not only an asymptotic one, but a rather precise operation
count. Therefore, we can predict the behavior of the compression algorithm for relatively
small values of n. In practice it behaves better than the obvious way of computing hP (i.e.
iteratively multiplying by ℓi

vi−1
) for n > 10 and better than a divide and conquer approach

for n > 20.

6.3 Explicit equations

For the simple cases, we give explicit equations for compression and decompression. In
addition to making the computation more efficient, they allow us to perform precise oper-
ation counts and thus to compare our method to the other existing compression methods
in Section 6.4.

6.3.1 Explicit equations for g = 1, n = 3

This case is particularly simple, since hP = ℓ1 is just a line through the points P,ϕ(P),
and ϕ2(P). For the sake of concreteness, we assume that Fq does not have characteristic
2 or 3 and that E is given by an equation in short Weierstraß form

E : y2 = x3 +Ax+B.

82 6. An optimal representation via rational functions – elliptic curves

Formulas and operation counts can easily be adjusted to the other cases. It will also be
useful to choose a basis of the field extension Fq3 |Fq. For simplicity, we also assume that
3 | q − 1 and write Fq3 = Fq[ζ]/(ζ

3 − µ) as a Kummer extension, where µ ∈ Fq is not a
third power. Then 1, ζ, ζ2 is a basis of Fq3 |Fq. It is highly likely that there exists a suitable
µ of small size, see [Lan04b, Section 3.1].

Remark 6.6. When required to work with a field extension where 3 ∤ q − 1, one may
choose a normal basis, which yields similar but dense equations, see Remark 3.1.

Compression. If P = (X,Y) /∈ E(Fq), then the equation of hP = ℓ1 is

hP = y − Y q − Y

Xq −X
x+

Y q − Y

Xq −X
X − Y = yhP,2(x) + hP,1(x).

Therefore, we have hP,2(x) = 1 and hP,1(x) = γ1x+ γ0, where

γ1 = −
Y q − Y

Xq −X

γ0 = −γ1X − Y,

and Compress(P) = (γ0, γ1).

Since γ0, γ1 are in Fq, it is more efficient to carry out the entire computation in Fq.
Using the basis 1, ζ, ζ2 of Fq3 |Fq, we write

X = X0 +X1ζ +X2ζ
2

Y = Y0 + Y1ζ + Y2ζ
2.

(6.1)

Then γ0 and γ1 can be computed directly from X0, X1, X2, Y0, Y1, Y2 over Fq as

γ1 =
c1X

2
1Y1 + c2X

2
2Y2

c1X3
1 + c2X3

2

γ0 = −γ1X0 − Y0,

where

c1 = 1− µ(q−1)/3

c2 = µ1+(q−1)/3 − µ = −µc1

are constants and can be precomputed during the setup phase of the algorithm.

When P ∈ E(Fq), the line ℓ1 is a tangent and we have

γ1 =
3X2 +A

2Y
γ0 = −γ1X − Y.

Notice that such points are in E[3](Fq) and therefore very few. In the general case P /∈
E(Fq), compression takes 2S+6M+1I in Fq.

Decompression. This algorithm computes the polynomial HP and its roots over Fq3 . We
have

HP (x) = x3 − S1x
2 + S2x− S3

6.3. Explicit equations 83

where

S1 = γ21

S2 = A− 2γ0γ1

S3 = γ20 −B.

Computing the coefficients of HP therefore takes 2S+1M in Fq. Since the roots of this

polynomial are X,Xq, Xq2 , and using (6.1), we get

S1 = X +Xq +Xq2 = 3X0

S2 = X1+q +X1+q2 +Xq+q2 = 3X2
0 − 3µX1X2

S3 = X1+q+q2 = X3
0 − 3µX0X1X2 + µX3

1 + µ2X3
2 .

Hence one can solve the system

S1 = 3x0
S2 = 3x20 − 3µx1x2
S3 = x30 − 3µx0x1x2 + µx31 + µ2x32

over Fq to recover (X0, X1, X2). Since the solutions of the system are exactly the Frobenius
conjugates of X via (6.1), it suffices to find a single solution. This takes at most 3S+3M+1I,
one square root, and two cube roots in Fq (see Chapter 4.5.1). Notice that, since this system
is so simple, this is more efficient than factoring the polynomial HP over Fq3 .

Finally, Y = −γ1X − γ0, so recomputing one y-coordinate takes 1M in Fq, and the
other ones can be recovered via the Frobenius map.

In total, decompression takes at most 5S+5M+1I, one square root, and two cube roots
in Fq.

6.3.2 Explicit equations for g = 1, n = 5

We also give explicit formulas for elliptic curves and field extensions of degree 5. Our
experimental results show that these formulas are the fastest way to compress and decom-
press points, and we use them in our implementation, as discussed in Section 6.4. Again,
we assume that E is given in short Weierstraß form E : y2 = x3 + Ax+ B over a field of
characteristic not equal to 2 or 3.

Compression. Let P = (X,Y) ∈ T5, and denote by λ1, λ2, λ3 the slopes of the lines
ℓ1, ℓ2, ℓ3, respectively. We have

hP =
ℓ1ℓ2ℓ3
v1v2

= (γ2x
2 + γ1x+ γ0) + y(x+ β0),

where

γ2 = −λ1 − λ2 − λ3

β0 = −λ2γ2 + λ1λ3 −Xq2

γ1 = −λ2β0 − γ2X
q2 + λ1X + λ3X

q3 − Y − Y q2 − Y q3

γ0 = γ1(λ
2
2 −Xq2) + γ2((X +Xq)(X +Xq −Xq2 − 2λ2

1 + λ2
2) + λ4

1 +A+ λ2
1X

q2)

+λ1λ2λ3(X +Xq2 +Xq3)− λ1λ2Y
q3 − λ1λ3Y

q2 − λ2λ3Y

+λ3λ
2
1λ

2
2 + λ3

1λ
2
2 + λ2

1λ
3
2.

84 6. An optimal representation via rational functions – elliptic curves

Here, we do arithmetic in Fq5 and therefore count operations in Fq5 . Computing λ1, λ2, λ3

takes a total of 3M+3I. Then, β0, γ0, γ1, γ2 can be computed with a total of 3S+15M. Thus,
compression takes a total of 3S+18M+3I in Fq5 .

Decompression. We compute

S1 = γ22 − 2β0

S2 = β2
0 +A− 2γ1γ2

S3 = γ21 + 2γ0γ2 − 2Aβ0 −B

S4 = Aβ2
0 + 2Bβ0 − 2γ0γ1

S5 = γ20 −Bβ2
0

using 4S+3M in Fq. Then we factor the polynomial HP (x) = x5 − S1x
4 + S2x

3 − S3x
2 +

S4x−S5, which takes O(log q) operations in Fq. Finally, recovering Y costs 1S+3M+1I in
Fq5 .

6.4 Timings and comparison with other representations

A general discussion about how this compression method compares to the other known
approaches is given in Chapter 5.5, including the case of elliptic curves. Here, we compare
the efficiency of our algorithms with those of Chapter 4 and [Sil05, Nau99] in more detail.
The comparison of our method with that of Chapter 4 is on the basis of a precise opera-
tion count, complexity analysis, and our own Magma implementations. Our timings are
average values for one execution of the algorithm, where averages are computed over 10000
executions with random inputs. Our comparison with [Nau99, Sil05] is rougher, since no
precise operation counts, complexity analyses or implementations of those methods are
available. Nevertheless, our analysis leads to a meaningful comparison of efficiency in all
cases.

Comparison and Timings for g = 1, n = 3. We compare our method with the better
method of Chapter 4 (there called “compression in ti”) in terms of operations in Table 6.1
and timings in Table 6.2, where we highlight the best (i.e. smallest) times in italics. We
choose arbitrary elliptic curves such that the associated trace zero subgroups have prime or-
der for fields of 20, 40, 60, and 79 bits. We see that the compression algorithm from Chapter
4 requires fewer operations, but not in a significant way. These small differences are obvi-
ously not measured accurately in our tests. Our measurements for decompression are more
meaningful, however. We compare “full decompression”, where one entire point (including
the y-coordinate) is recomputed. Here, the method of Chapter 4 is much slower (roughly
a factor 10), due to the necessary square root extraction. This shows one major efficiency
advantage of the approach that we follow in this chapter: Recovering the y-coordinate is
much faster, since no square root computation is necessary. For a different point of view,
we also compare “decompression in x only”, where no y-coordinate is computed. In this
case, the algorithm proposed in this chapter and the one from Chapter 4 behave similarly.

Naumann’s method [Nau99], as explained in Chapter 4.1, requires the factorization of
a degree 4 polynomial for both compression and decompression. For decompression, the y-
coordinate must then be recomputed as a square root. This is clearly more expensive than
the decompression algorithm presented in this chapter, which does not require polynomial
factorization or square root extraction. Our compression algorithm is also more efficient,
since it computes only some very simple expressions over Fq.

6.4. Timings and comparison with other representations 85

Table 6.1 Number of operations in Fq for compression/decompression of one point when
n = 3, smallest values in italics

Compression 2S+6M+1I
Compression Chapter 4 1M

Full decompression 5S+5M+1I, 1 square root, 2 cube roots
Full decompression Chapter 4 4S+3M+2I, 1 sqrt, 2 cube roots, and 1 sqrt in Fq3

Decompression x only 5S+4M+1I, 1 square root, 2 cube roots
Decompression x only Chapter 4 4S+3M+2I, 1 square root, 2 cube roots

Table 6.2 Average time in milliseconds for compression/decompression of one point
when n = 3, smallest values in italics

q 220 − 3 240 − 87 260 − 93 279 − 67

Compression 0.01 0.03 0.03 0.04
Compression Chapter 4 0.01 0.02 0.03 0.04

Full decompression 0.18 0.71 0.89 1.52
Full decompression Chapter 4 0.84 7.62 10.62 17.58
Decompression x only 0.15 0.63 0.87 1.40
Decompression x only Chapter 4 0.15 0.68 0.87 1.44

In [Sil05], compression requires computing the root of a degree 4 polynomial. As
explained above, our compression algorithm is faster. The bulk of the work in the decom-
pression algorithm is factoring a degree 4 polynomial and recomputing the y-coordinate
from the curve equation. This is clearly more expensive than the decompression algorithm
in this chapter. See Chapter 4.5.1 for a more detailed discussion of the decompression
algorithm from [Sil05].

Comparison and Timings for g = 1, n = 5. A similar comparison for extension degree
5 (see Tables 6.3 and 6.4, best times in italics) shows that the compression algorithm
proposed in this chapter is less efficient than that of Chapter 4, but the decompression
algorithm is faster. Although the bulk of the work in both decompression algorithms
is polynomial factorization, following the approach proposed in this chapter we have to
factor one polynomial of degree 5 over Fq5 , where the algorithm of Chapter 4 first factors
a polynomial of degree 6 over Fq and then at least one polynomial of degree 5 over Fq5 .
For this reason, the decompression algorithm proposed in this chapter performs much
better than that of Chapter 4, regardless of whether we include the recovery of the y-
coordinate. Notice that we again compare with the best method from Chapter 4, there
called “compression/decompression in the si with polynomial factorization”.

In comparison to [Sil05], both our compression and our decompression methods are
much more efficient. The algorithms of Silverberg involve resultant computations and the
factorization of a degree 27 polynomial. For more detail, see Chapter 4.5.2.

Timings for g = 1, n > 5. We study the performance of our algorithms by means of
experimental results for n > 5. First, for comparison with the last column of Tables 6.2 and
6.4, we give in Table 6.5 timings for n = 7, 11, 13, 19, 23 and corresponding randomly chosen
values of q, A, and B that produce prime order trace zero subgroups of approximately
160 bits. From the different values for decompression times (due to the fact that the

86 6. An optimal representation via rational functions – elliptic curves

Table 6.3 Operations/complexity for compression/decompression of one point when
n = 5, smallest values in italics

Compression 3S+18M+3I in Fq5

Compression Chapter 4 5S+13M in Fq

Full decompression O(log q) operations in Fq

Full decompression Chapter 4 O(log q) operations in Fq, and 1 square root in Fq5

Decompression x only O(log q) operations in Fq

Decompression x only Chapter 4 O(log q) operations in Fq

Table 6.4 Average time in milliseconds for compression/decompression of one point
when n = 5, smallest values in italics

q 210 − 3 220 − 5 230 − 173 240 − 195

Compression 0.21 0.25 0.46 0.80
Compression Chapter 4 0.04 0.04 0.05 0.10

Full decompression 0.82 9.39 4.26 10.13
Full decompression Chapter 4 5.89 17.90 30.21 63.60
Decompression x only 0.77 9.36 4.01 9.82
Decompression x only Chapter 4 5.53 16.48 21.42 45.08

Table 6.5 Average time in milliseconds for compression/decompression of one point
when n > 5, log2 |Tn| ≈ 160

n 7 11 13 19 23
q 227 − 27689095 216 − 129 214 − 6113 29 − 55 28 − 117

Compression 1.80 2.84 3.89 8.82 12.90
Full decompression 20.90 10.16 4.03 119.75 58.15

performance of the polynomial factorization algorithm in Magma depends heavily on the
specific choice of q and n), we see that there is much room for optimization in the choice
of these parameters.

For a better overview on how our algorithms behave for larger n, we also give time
measurements for trace zero subgroups of approximately 500 bits in Table 6.6. These
groups are, of course, much larger than those used for cryptosystems in practice.

In each case, we choose the fastest method of computing hP during compression. As
discussed in Remark 6.5, this is an iterative approach for n = 7, a divide and conquer
approach for n = 11, 13, 19, and Algorithm 6.3 for n ≥ 23. During decompression we
compute the y-coordinate of the point as well, since the difference with computing the
x-coordinate only is negligible.

We also report that we are able to apply our method to much larger trace zero subgroups
and much larger values of n. More specifically, our implementation works for trace zero
subgroups of more than 3000 bits and for values of n larger than 300. For even larger
values of n, the limitation is not our compression/decompression approach, but rather the
fact that the trace zero subgroup becomes very large, even for small fields.

6.4. Timings and comparison with other representations 87

Table 6.6 Average time in milliseconds for compression/decompression of one point
when n > 5, log2 |Tn| ≈ 500

n 7 11 13
q 284 − 7157604410682997677625737 250 − 431 242 − 907314682077

Compression 4.439 9.860 14.986
Full decompression 50.772 2539.269 959.298

n 19 23 29
q 228 − 38321553 223 − 1445367 218 − 24981

Compression 16.123 13.884 22.250
Full decompression 264.201 18.471 103.363

n 31 37 41
q 217 − 27159 214 − 1731 213 − 2451

Compression 25.938 36.818 45.191
Full decompression 768.097 526.804 116.639

n 42 47 53
q 212 − 483 211 − 261 210 − 281

Compression 50.110 62.002 82.214
Full decompression 568.539 314.462 49.198

Chapter 7

An index calculus attack on the

discrete logarithm problem

Let Tn be the trace zero variety of an elliptic curve E defined over Fq. Then solving a
DLP in E(Fqn) has the same complexity as solving a DLP in Tn (see Proposition 2.19).
In other words, the DLP in E(Fqn) is as hard as the DLP in Tn, although Tn is a proper
subgroup of E(Fqn). Given that the complexity of discrete logarithm algorithms often
depends mainly on the group size, this means that it can be advantageous to attack the
DLP in the smaller group Tn, rather than in E(Fqn). Moreover, Tn has been proposed for
pairing-based cryptosystems, since it yields a particularly high security parameter, and for
DLP-based cryptosystems, due to its efficient arithmetic. Therefore, we study the DLP in
Tn in this chapter.

More specifically, we present an index calculus algorithm for Tn = Vn(Fq), following the
approach of Gaudry [Gau09] for index calculus in abelian varieties (see Chapter 2.7) and
making crucial use of the Semaev polynomials [Sem04] (see Chapter 3.3). The complexity
of this attack depends on the size of Fq and the dimension of the variety: Asymptotically
in q (and considering n to be a constant), it has complexity Õ(q2−2/(n−1)), which is lower
than that of generic attacks on Tn for n > 3 and lower than that of generic attacks on
E(Fqn) for n > 2. This leads to the best known attack on the DLP in E(Fqn) for prime n.
Here we demonstrate that the attack is feasible for n = 3 and q up to about 30 bits (then
E(Fq3) is a 90-bit group). Our computations show that when n = 3, the index calculus
attack is faster than a Pollard–Rho attack on E(Fq3) for log2 q ≥ 30 approximately. The
attack does not affect groups E(Fp) where p is a prime.

We also analyze the algorithm asymptotically in n and q, and we see that the complexity
is exponential in n. This is mostly due to the fact that in order to produce relations,
the algorithm has to solve polynomial systems whose size (number of equations, number
of indeterminates, degrees of the equations) depends on n and that the Gröbner basis
methods that we use to solve these systems have a large complexity in these parameters.
We conclude that one can only hope to produce relations with this method for small values
of n.

For the cases n = 3, 5 we write down explicitly the systems that one gets, and we
experiment how to solve them with Magma [BCP97]. Based on this data, we discuss the
practicality of the attack. For n = 3 we find that the systems can be solved easily and that
the index calculus attack is hence feasible for q up to about 30 bits. For n = 5 we see that
solving the polynomial system is extremely difficult already. Using some tricks (suggested
in [BFP08, JV12]), we are able to produce relations and to solve a DLP for very small q,

89

90 7. An index calculus attack on the discrete logarithm problem

but the attack this yields is not better than generic attacks in overall complexity, therefore
it is not a threat to the DLP in T5 or E(Fq5).

Finally, we compare this algorithm to other existing attacks and draw some general
conclusion on the DLP in Tn.

Assumptions and Notation. In this chapter, let Tn = Vn(Fq) be the trace zero subgroup
of an elliptic curve E over a finite field Fq, where n ≥ 3 is prime.

Roadmap. We describe the application of Gaudry’s algorithm to Vn in Section 7.1. Then
we analyze its complexity in Section 7.2. In Section 7.3, we present explicit equations and
Magma experiments for n = 3, 5. Finally, we compare the index calculus attack with other
attacks on the DLP in Tn in Section 7.4 and discuss the implications of our results for
trace zero elliptic curve cryptosystems (including pairing-based ones) in Section 7.5.

7.1 An index calculus algorithm for the trace zero variety

Background on index calculus in general and on Gaudry’s algorithm [Gau09] in particular is
given in Section 2.7. Following the ideas of Gaudry, we propose the following index calculus
algorithm to compute discrete logarithms in Tn. When n = 2, then Vn is one-dimensional
and the attack cannot be applied. Therefore, we only consider n ≥ 3. Furthermore, we
assume that Tn is cyclic, which is a common assumption in cryptography (it is true if |Tn|
is prime). For given q and n, curves E such that Tn is cyclic are easy to find, in fact in our
experiments we did not encounter a single pair (q, n) where we could not find a suitable
elliptic curve E.

Remark 7.1. When Tn is not cyclic, some of the probability estimates in Section 7.2 may
be wrong and the algorithm may not function as expected. However, these problems can
be overcome using classical randomization techniques (see [Gau09, Remark 2], [EG02]).

Remark 7.2. In the description and analysis of his algorithm, Gaudry often makes the
assumption that the involved objects behave like “random” or generic ones, although in
reality they are not random at all. Rather, they are specially constructed to have certain
properties. For example, he defines the factor base as the Fq-rational points of a curve,
which he obtains by intersecting the d-dimensional variety with d−1 hyperplanes. Although
this produces a one-dimensional subvariety generically, that may not be true in some cases.
Furthermore, Gaudry assumes that the curve one obtains is absolutely irreducible and
smooth, since then he may use the Theorem of Hasse–Weil to conclude that the number of
Fq-rational points on the curve is about q. As a justification for these assumptions, Gaudry
suggests to “randomize coordinates”, i.e. apply a random linear change of coordinates, as a
first step of the algorithm. While this does not change the complexity of the algorithm, it
implies that with high probability, the objects encountered during the algorithm behave like
generic ones, or in other words, the probability that an undesired event happens is small.
Whenever the algorithm runs into a case where the objects do not behave as desired, it
starts over with a new change of coordinates. Therefore in our exposition of the algorithm
for the trace zero variety, we also assume that the objects behave like generic objects,
keeping in mind that otherwise, we may just apply a random change of coordinates and
start over. However, our experiments suggest that this is not necessary and that the choices
we describe work in many cases, in fact in all cases we have tried.

The algorithm takes as input two points P,Q ∈ Tn such that Tn = 〈P 〉, and it outputs
the discrete logarithm logP Q, i.e. a number ℓ = logP Q ∈ Z/ ord(P)Z such that [ℓ]P = Q
in Tn. Below, we describe the different steps of the algorithm in detail.

7.1. An index calculus algorithm for the trace zero variety 91

7.1.1 Setup

Following the suggestion of Semaev [Sem04], we carry out the index calculus algorithm
working only with the x-coordinates of points in Tn. We choose a basis {1, ζ, . . . , ζn−1} of
the extension Fqn |Fq and represent an affine point P = (X,Y) ∈ Tn via the coordinates

P = (X0, . . . , Xn−1),

where X = X0 +X1ζ + . . .+Xn−1ζ
n−1. So by writing (X0, . . . , Xn−1) ∈ Tn we mean that

there exists a Y such that (X,Y) ∈ Tn.

As in Chapter 3.3, denote by fn(z1, . . . , zn) the n-th Semaev polynomial (see Definition
3.7). Then the Weil restriction of fn(x, x

q, . . . , xq
n−1

), using x = x0+x1ζ+ . . .+xn−1ζ
n−1

and reducing modulo xqi − xi for all i, yields one single equation, which we denote by
f̃n(x0, . . . , xn−1). All points P ∈ Tn satisfy f̃n(X0, . . . , Xn−1) = 0, and conversely the
Fq-solutions (X0, . . . , Xn−1) of the equation

f̃n(x0, . . . , xn−1) = 0 (7.1)

yield x-coordinates of points in Tn via (X0, . . . , Xn−1) 7→ X = X0+X1ζ+ . . .+Xn−1ζ
n−1,

provided that the corresponding y-coordinates are in Fqn and up to some exceptions (see
Lemma 3.10). For n = 3, 5, these exceptions are well-understood and their number is very
small (see Proposition 3.11 and Remark 3.12). Therefore, we henceforth use (7.1) as an
equation for the trace zero subgroup. It has total degree (n− 1)2n−2.

7.1.2 Factor base

We define the factor base

F = {(0, . . . , 0, Xn−2, Xn−1) ∈ Tn}.

These are the Fq-rational points of a curve in Vn obtained by intersecting Vn with the
hyperplanes {x0 = 0}, . . . , {xn−3 = 0}. Since Vn has dimension n−1, intersecting with n−2
hyperplanes generically gives a subvariety of dimension 1. Thus F has about q elements
by the Hasse–Weil Theorem, provided that this subvariety is absolutely irreducible.

Remark 7.3. Important properties of the factor base are that it has about q elements
(this will be used in the complexity analysis, see Section 7.2) and that its elements can be
described via algebraic equations (this will allow us to describe relations via a polynomial
system, see Section 7.1.3). A further very important property is that the factor base must
generate a large part of Tn, so that many elements of Tn decompose over the factor base.
For this reason, the curve should not be contained in any proper abelian subvariety of
Vn. Moreover, the fact that |F| ≈ q can be proven (with the Theorem of Hasse–Weil)
only if we assume that the curve is smooth and absolutely irreducible. Notice, however,
that intersecting Vn with any choice of n − 2 hyperplanes, or equivalently, setting any
n− 2 of the xi equal to zero, may give a factor base with q elements. Therefore, if setting
x0 = . . . = xn−3 = 0 happens to be a bad choice, we simply make a different one. In our
current exposition we assume that the choice we have made is a good one. This is true in
all our experiments.

92 7. An index calculus attack on the discrete logarithm problem

Using equation (7.1), we see that any element (X0, . . . , Xn−1) ∈ F satisfies the equa-
tions

f̃n(X0, . . . , Xn−1) = 0

X0 = 0
...

Xn−3 = 0,

or, by plugging the last equations into the first one,

f̃n(0, . . . , 0, Xn−2, Xn−1) = 0.

Conversely, the Fq-solutions (Xn−2, Xn−1) of

f̃n(0, . . . , 0, xn−2, xn−1) = 0 (7.2)

yield x-coordinates of points in F via (Xn−2, Xn−1) 7→ Xn−2ζ
n−2 + Xn−1ζ

n−1, provided
that the corresponding y-coordinates are in Fqn and up to a few exceptions, as explained
above (see also Lemma 3.10, Proposition 3.11, Remark 3.12).

7.1.3 Relation collection

Since Vn has dimension n− 1, we search for relations of the form

R = P0 ⊕ . . .⊕ Pn−2, (7.3)

where R = [α]P ⊕ [β]Q ∈ Tn is given and P0, . . . , Pn−2 ∈ F are to be found. We write
U = U0 + U1ζ + . . .+ Un−1ζ

n−1 for the x-coordinate of R.

We use the Semaev polynomial to describe a relation. This is the purpose for which
Semaev originally proposed his summation polynomials. If the points P0, . . . , Pn−2 with
x-coordinates XP0 , . . . , XPn−2 are given, then according to Theorem 3.8 they satisfy (7.3)
if and only if

fn(XP0 , . . . , XPn−2 , U) = 0.

Therefore, candidates for x-coordinates of the Pi can be found by solving

fn(xP0 , . . . , xPn−2 , U) = 0 (7.4)

for the xPi
. We Weil restrict equation (7.4) using the coordinates

xPi
= xi,0 + xi,1ζ + . . .+ xi,n−1ζ

n−1

and obtain n equations

Fj(x0,0, . . . , xn−2,n−1, U0, . . . , Un−1) = 0, j = 0, . . . , n− 1. (7.5)

Solving this system over Fq is equivalent to solving equation (7.4) over Fqn and yields
possible x-coordinates for the points Pi.

In addition to requiring that the Pi sum to R, we must ensure that they are in the
factor base. Therefore, we set xi,0 = . . . = xi,n−2 = 0 for i = 0, . . . , n− 1, and we include

7.1. An index calculus algorithm for the trace zero variety 93

an equation of the form (7.2) in system (7.5) for each Pi. This means that in order to find
a relation, we have to solve

F0(0, . . . , 0, x0,n−2, x0,n−1, . . . , 0, . . . , 0, xn−2,n−2, xn−2,n−1, U0, . . . , Un−1) = 0
...

Fn−1(0, . . . , 0, x0,n−2, x0,n−1, . . . , 0, . . . , 0, xn−2,n−2, xn−2,n−1, U0, . . . , Un−1) = 0

f̃n(0, . . . , 0, x0,n−2, x0,n−1) = 0
...

f̃n(0, . . . , 0, xn−2,n−2, xn−2,n−1) = 0

(7.6)

over Fq. The system has 2n−1 equations in 2(n−1) indeterminates, two indeterminates for
each of the Pi. The first n equations are the Weil descent of the n-th Semaev polynomial,
where a constant has been plugged in for the last indeterminate. Therefore, they each
have total degree (n− 1)2n−2. They describe that the points Pi, whose x-coordinates are
described by the solutions of the system, sum to R, whose x-coordinate is U . The last
n−1 equations also have total degree (n−1)2n−2. They guarantee that the solution points
Pi are in the factor base.

Since the system has more equations than unknowns, it is generically of dimension 0,
i.e. it has a finite number of solutions over Fq (and it is actually of dimension 0 in all our
experiments). Thus, using the Shape Lemma (cf. Theorem 2.30), the system may be solved
by computing a lexicographic Gröbner basis and then factoring a univariate polynomial.

Whenever a given point R decomposes over the factor base, i.e. when a relation of
the form (7.3) exists, this gives a solution of system (7.6). The converse, however, is not
true. For example, when the solutions of the system give x-coordinates where one of the
corresponding y-coordinates is not in Fqn , then this does not produce a valid relation.

Remark 7.4. Joux and Vitse [JV12] propose considering relations that involve one factor
base point less than suggested by Gaudry, i.e. only n − 2 points Pi in our case. This
reduces the probability of finding relations by a factor q, but in some cases it can make
the difference between a manageable and an unmanageable system. We consider this idea
in Section 7.3.2.

Finally, we need to produce more relations than there are factor base elements, i.e.
about q, by solving the system sufficiently many times (see Section 7.2 for an estimate) for
different random points R, keeping in mind that often the system will have no solution or
a solution that does not produce a valid relation.

7.1.4 Linear algebra

The relation collection phase of the algorithm produces a sparse matrix of size about q× q
with entries 0 or 1. The rows correspond to the factor base elements, and the columns
correspond to the different relations involving a point R, each given by the values α and β.
Each column has n− 1 non-zero entries, one for each factor base element that appears in
the corresponding relation. Assuming that more relations have been produced than there
are factor base elements, the matrix has more columns than rows. Therefore, there exists
a non-zero vector in its right kernel. The task of the linear algebra step is to find such a
vector, where the computations must be performed not over Z, but modulo the order of P
in Tn. Standard methods to solve such sparse linear systems are Wiedemann’s Algorithm
and Lanczos’ Algorithm (see [Wie86, LO90]).

94 7. An index calculus attack on the discrete logarithm problem

Remark 7.5. Since there are efficient and well-studied methods for solving sparse linear
systems, we do not treat them in detail here. Notice however that the efficient imple-
mentation of the linear algebra step is far from trivial, especially since the algorithms are
hard to parallelize. One recent record-breaking implementation on GPUs is presented in
[Jel13, Jel14]. Moreover, in practice a filtering step can make a big difference, see e.g.
[Bou12]. This is a preprocessing of the matrix, where duplicate relations are removed,
points (corresponding to rows) that appear in only one relation are removed, and excess
relations are removed until there are exactly |F|+ 1 of them left. We do not employ such
sophisticated techniques in our experiments, since we treat only small examples and our
emphasis is on finding relations and not on the linear algebra step.

7.1.5 Individual logarithm

Once the linear system has been solved, computing the actual discrete logarithm is easy.
Denoting by γ1, . . . , γr the entries of the vector in the kernel of the matrix computed in the
previous step and by αj , βj the values of α, β corresponding to the j-th relation we have

logP Q = −





r∑

j=1

γjαj









r∑

j=1

γjβj





−1

,

provided that
∑

γjβj is invertible modulo the order or P . If not, one must collect more
relations in order to produce a different matrix and find a different vector γ. Notice,
however, that

∑
γjβj is invertible with high probability, especially if ord(P) is prime.

Remark 7.6. We point out that this algorithm works for elliptic curves defined over finite
fields of any characteristic. Although the original definition of the Semaev polynomial in
[Sem04] is only for curves in short Weierstraß form, it may easily be adjusted to fields of
characteristic 2 and 3 (see also Remark 3.9).

7.2 Complexity analysis

We now analyze the complexity of the index calculus algorithm presented in the previous
section. We make the same heuristic assumptions as Gaudry [Gau09] and other work
based on Gaudry’s results, e.g. [GV05, JV12]. Our analysis is in q and n and therefore
more precise than that of Gaudry, who considers only varieties of constant dimension. By
setting n to be a constant in our analysis, one obtains the result of Gaudry. For simplicity,
we use Õ-notation, which ignores logarithmic factors in both n and q.

Setup. Diem [Die11] shows that the n-th Semaev polynomial and its Weil restriction can
be computed with a randomized algorithm in expected time polynomial in Õ(en

2
).

Remark 7.7. We do not have to compute the full Weil restriction of fn(xi, x
q
i , . . . , x

qn−1

i)
or of fn(xP0 , xP1 , . . . , xPn−2 , u), since we only need them for the x-coordinates xPi

of points
in the factor base. Therefore, when computing the Weil restriction, we may immediately
work with the Weil restriction coordinates xPi

= xi,n−2ζ
n−2 + xi,n−1ζ

n−1. In practice,
this is much quicker than first computing the standard Weil restriction and then setting
xi0 = . . . = xi,n−3 = 0. However, we treat u, the x-coordinate of R, as an indeterminate.
Then we only have to compute the Weil restriction once to obtain system (7.6), and we
may plug the value of the x-coordinate of R into the system directly.

7.2. Complexity analysis 95

Factor base. In order to enumerate the factor base, we go through all values Xn−2 ∈ Fq,
compute the solutions of f̃n(0, . . . , 0, Xn−2, xn−1) = 0 over Fq, and check whether the so-
lution gives a point in Tn. Since the degree of f̃n in xn−1 is bounded by (n − 1)2n−2,
computing all solutions takes Õ((n − 1)2n−2) operations in Fq (see [GvzG99, Corollary
14.16]). Typically, there are only few solutions. Checking whether the y-coordinate corre-
sponding to X = Xn−2ζ

n−2+Xn−1ζ
n−1 is in Fqn is much cheaper. Altogether, enumerating

the factor base costs

Õ(q(n− 1)2n−2).

Relation generation. Let us assume, like Gaudry does, that different unordered (n−1)-
tuples of factor base elements sum to different points in Tn most of the time. Then
|F|n−1/(n− 1)! points of Tn decompose over the factor base, and since Tn has about qn−1

elements, this means that the probability of a point R ∈ Tn splitting over the factor base
is 1/(n − 1)!. Therefore, in order to generate q relations, we expect to have to try to
decompose q(n− 1)! points, i.e. solve q(n− 1)! systems.

In order to solve each system, we follow the approach that is most efficient in prac-
tice: We first compute a Gröbner basis of the system with respect to the degree reverse
lexicographic term order, and we then use a Gröbner walk algorithm to convert it to a
lexicographic Gröbner basis. Afterwards, we factor a univariate polynomial. The last step
is negligible compared to the first two.

To estimate the complexity of the Gröbner basis computation, we use the bound on the
complexity of Faugère’s F5 algorithm [Fau02]. We assume that the system is semi-regular,
which is true generically. Then according to [BFSY05, Proposition 6], the complexity
of computing a degree reverse lexicographic Gröbner basis of our system, which is zero-
dimensional and in 2n− 2 variables, is

O

((
dreg + 2n− 2

2n− 2

)ω)

,

where 2 ≤ ω ≤ 3 is the linear algebra constant (i.e. the exponent in the complexity of
matrix multiplication) and dreg is the degree of regularity of the system (this is also called
the regularity index, see [KR05, Definition 5.1.8]).

We estimate dreg using a standard bound from commutative algebra (see (2.3) or e.g.
[Laz83], this is called Macaulay bound in [BFSY05]):

dreg ≤ (2n− 1)((n− 1)2n−2 − 1) + 1 = (2n− 1)(n− 1)2n−2 − 2n+ 2.

Hence the complexity of computing a degree reverse lexicographic Gröbner basis of our
system is bounded by

O

((
(2n− 1)(n− 1)2n−2

2n− 2

)ω)

.

Now using the FGLM algorithm [FGLM93], we may compute from this basis a lexicographic
Gröbner basis in

O((2n− 2) ·D3),

where D is the degree of the ideal generated by the degree reverse lexicographic Gröbner
basis (i.e. the number of solutions counted with multiplicity in Fq). Using as a bound on
D the product of the degrees of the equations of the system, this is not more expensive
than F5.

96 7. An index calculus attack on the discrete logarithm problem

Taking into account that we have to do this q(n−1)! times, the total cost of the relation
collection step is

O

((
(2n− 1)(n− 1)2n−2

2n− 2

)ω

(n− 1)!q

)

.

Linear algebra. Using Lanczos’ or Wiedemann’s Algorithm, the cost of solving a sparse
linear system of size about q × q, where each column has n− 1 non-zero entries, is

O((n− 1)q2)

(see e.g. [EK97]).

Individual logarithm. The cost of computing the individual logarithm is clearly negli-
gible compared to the complexities above.

Putting everything together, we get that the algorithm has a total complexity of

Õ

((
(2n− 1)(n− 1)2n−2

2n− 2

)ω

(n− 1)!q2
)

.

Double large prime variation. As suggested by Gaudry, we may use the double large
prime variation [Thé03, GTTD07] in order to rebalance the complexity of the relation
collection and the linear algebra step in q. Then one must collect q2−2/(n−1) relations
instead of q and solve a linear system of size q1−1/(n−1)× q1−1/(n−1) instead of q× q. Then
the overall cost of the algorithm becomes

Õ

((
(2n− 1)(n− 1)2n−2

2n− 2

)ω

(n− 1)!q2−2/(n−1)

)

.

Hence we have proven the following heuristic result.

Theorem 7.8. Let Tn, n ≥ 3, be the trace zero subgroup of an elliptic curve. Then there
exists a probabilistic algorithm that computes discrete logarithms in Tn in heuristic time

Õ

((
(2n− 1)(n− 1)2n−2

2n− 2

)ω

(n− 1)!q2−2/(n−1)

)

when q and n tend to infinity.

When considering n to be constant, this gives precisely the heuristic complexity of
Õ(q2−2/(n−1)) from [Gau09]. Our analysis makes explicit the exponential dependency on n
already pointed out by Gaudry. This is due to the cost of the Gröbner basis computation
and cannot be improved for generic systems (it is a well-known fact that in the worst case,
Gröbner basis computations are doubly exponential in the degrees of the input equations
[MM82]).

7.3 Explicit equations and experiments

We now study the systems of polynomial equations that describe the relations and the
overall behavior of our algorithm for n = 3, 5. All computations were done with Magma
version 2.19.3 [BCP97] on one core of an Intel Xeon X7550 Processor (2.00 GHz) on a Fu-
jitsu Primergy RX900S1. As in the other chapters, we stress that all our implementations

7.3. Explicit equations and experiments 97

are only meant to be a proof of concept. In this section, we use a straightforward implemen-
tation of the algorithm described in Section 7.1, and we use the built-in Magma routines
wherever possible, e.g. for Gröbner basis computation, polynomial factorization, and linear
algebra. Our timings are only meant as an indication, and they could be improved signif-
icantly by a special-purpose implementation, using current state-of-the-art methods from
index calculus research such as [BBD+14], and by choosing convenient parameters, such
as finite fields where particularly efficient arithmetic is possible. We concentrate mostly
on the computation of the equations of the trace zero subgroup, the factor base, and the
relation generation. In particular, we did not implement any filtering (preprocessing of
the matrix, see Remark 7.5), except that we do not allow duplicate relations, we did not
implement the double large prime variation, and our implementation is not parallelized.

7.3.1 Explicit equations for n = 3

When n = 3, the trace zero variety has dimension 2. Therefore, the index calculus attack
on T3 is not better than generic (square root) attacks on T3. Since n = 3 is the case where
all equations are small enough to be written down explicitly, we present them nevertheless,
together with some experimental data that allows us to make predictions on the feasibility
of this attack for different values of q.

As in previous chapters, we assume that 3 | q − 1 and write Fq3 = Fq[ζ]/(ζ
3 − µ) as

a Kummer extension of Fq with basis 1, ζ, ζ2. For cases where this is not possible, see
Remark 3.1. We also assume that Fq does not have characteristic 2 or 3 and that E is
given by an equation in short Weierstraß form

E : y2 = x3 +Ax+B.

Our approach also works when Fq has characteristic 2 or 3, but in this case the definition
of the Semaev polynomial and all equations given below must be adjusted accordingly (see
Remark 7.6).

The third Semaev polynomial is

f3(z1, z2, z3) = (z1 − z2)
2z23 − 2((z1 + z2)(z1z2 +A) + 2B)z3 + (z1z2 −A)2 − 4B(z1 + z2),

and the Weil restriction of f3(x, x
q, xq

2
) is

f̃3(x0, x1, x2) = −3x40 − 12µ2x0x
3
2 − 12µx0x

3
1 + 18µx20x1x2

+9µ2x21x
2
2 − 6Ax20 + 6Aµx1x2 − 12Bx0 +A2,

(7.7)

see also equation (3.9). We write the points of T3 as tuples (X0, X1, X2) that satisfy
f̃3(X0, X1, X2) = 0. For the factor base, we choose those points with X0 = 0, namely

F = {(0, X1, X2) ∈ T3}.

These are precisely the points in Tn that satisfy

f̃3(0, X1, X2) = 9µ2X2
1X

2
2 + 6AµX1X2 +A2 = (3µX1X2 +A)2 = 0. (7.8)

If A = 0, then this is equivalent to

X1X2 = 0,

and it is particularly easy to enumerate the factor base: One simply checks which x-
coordinates (0, X1, 0) and (0, 0, X2), for X1, X2 ∈ Fq, give points in T3. If, on the other

98 7. An index calculus attack on the discrete logarithm problem

hand, A 6= 0, then every solution of (7.8) satisfies X1 6= 0, and moreover (7.8) is equivalent
to

X2 = −
A

3µX1
. (7.9)

In this case, it is also fairly easy to enumerate the factor base: For every X1 ∈ F×
q , one

computes X2 according to (7.9) and checks whether this yields a point of T3.
Now we need to find relations of the form

R = P0 ⊕ P1,

where R with x-coordinate U = U0 + U1ζ + U2ζ
2 is given and P1, P2 are in F . We denote

by xP0 = x01ζ + x02ζ
2 the indeterminates representing the x-coordinate of P0 and by

xP1 = x11ζ + x12ζ
2 those representing the x-coordinate of P1. Then we have to solve

f3(xP0 , xP1 , U) = 0,

or equivalently, its Weil restriction

0 = −4BU0 +A2 + 4µ2x01x11x02x12 − 4µ2x01x02x11U2 − 4µ2x01x02x12U1

−4µ2x11x01x12U2 − 4µ2x11x02x12U1 − 4µ2x02x11U1U2 + 4µ2x11x12U1U2

−4µ2x02x12U0U2 + 4µ2x01x02U1U2 − 4µ2x01x12U1U2 + 2µ2x02
2U0U2

+2µ2x12
2U0U2 − 2µ2x02x12U1

2 − 2µ2x01x11U2
2 − 2µ2x02

2x11U1

−2µ2x02
2x12U0 − 2µ2x11

2x02U2 − 2µ2x12
2x01U1 − 2µ2x12

2x02U0

−2µ2x01
2x12U2 − 2µx02AU1 − 2µx11

2x01u0 − 2µx11AU2 − 2µx12AU1

−2µx01AU2 + 2µx01
2U0U1 + 2µx11

2U0U1 + 2µx01x02U0
2 − 2µx01x12U0

2

−2µx02x11U0
2 + 2µx11x12U0

2 − 2µx01
2x11U0 − 2µx01x12A− 2µx02x11A

+µ2x11
2U2

2 + µ2x02
2U1

2 + µ2x01
2x12

2 + µ2x02
2x11

2 + µ2x01
2U2

2

+µ2x12
2U1

2 − 4µx01x11U0U1

0 = −4BU1 − 2x11AU0 − 2x01AU0 − 4Bx01 − 4Bx11 − 4µ2x01x02x12U2

−4µ2x11x02x12U2 − 4µ2x02x12U1U2 − 4µx01x02x11U0 − 4µx11x01x12U0

−4µx02x11U0U1 + 4µx11x12U0U1 − 4µx01x11U0U2 + 4µx01x02U0U1

−4µx01x12U0U1 + 2µx01
2U0U2 + 2µx11

2U0U2 − 2µx02x12U0
2 − 2µx01x11U1

2

−2µx01
2x11U1 − 2µx02x12A− 2µx02AU2 − 2µx11

2x01U1 − 2µx11
2x02U0

−2µx12AU2 − 2µx01
2x12U0 + 2µ2x02

2U1U2 + 2µ2x12
2U1U2 + 2µ2x01x02U2

2

−2µ2x01x12U2
2 − 2µ2x02x11U2

2 + 2µ2x11x12U2
2 − 2µ2x02

2x11U2

+2µ2x01x12
2x02 + 2µ2x02

2x11x12 − 2µ2x02
2x12U1 − 2µ2x12

2x01U2

−2µ2x12
2x02U1 + µx01

2U1
2 + µx01

2x11
2 + µx11

2U1
2 + µx12

2U0
2 + µx02

2U0
2

0 = −4BU2 − 2x01x11A− 2x02AU0 − 2x11AU1 − 2x12AU0 − 2x01AU1

−2x01x11U0
2 + x01

2U0
2 + x11

2U0
2 − 4Bx02 − 4Bx12 + 4µx11x12U0U2

−4µx02x12U0U1 − 4µx01x11u1U2 + 4µx01x02U0U2 − 4µx01x12U0U2

−4µx01x02x11U1 − 4µx01x02x12U0 − 4µx11x01x12U1 − 4µx11x02x12U0

−4µx02x11U0U2 − 2µx02x11U1
2 + 2µx11x12U1

2 − 2µx01
2x11U2

−2µx02
2x11U0 + 2µx01

2x11x12 + 2µx01x11
2x02 − 2µx11

2x01U2

−2µx11
2x02U1 − 2µx12

2x01U0 − 2µx01
2x12U1 − 2µ2x02x12U2

2

−2µ2x02
2x12U2 − 2µ2x12

2x02U2 + 2µx01
2U1U2 + 2µx02

2U0U1

+2µx11
2U1U2 + 2µx12

2U0U1 + 2µx01x02U1
2 − 2µx01x12U1

2

+µ2x12
2U2

2 + µ2x02
2x12

2 + µ2x02
2U2

2.

Assuming that A 6= 0, which is the general case, from (7.9) we get

x02 = −
A

3µx01
and x12 = −

A

3µx11
.

Plugging this into the above system and multiplying the first two equations by 27µx201x
2
11

and the third equation by 81µ2x201x
2
11 allows us to eliminate the two indeterminates x02

7.3. Explicit equations and experiments 99

and x12 from the system that describes a relation. We obtain

0 = 36x01
3x11µ

2AU1U2 + 36x01x11
3µ2AU1U2 − 72x01

2x11
2µ2AU1U2

−12x01x11A
2U0U2µ+ 54x01

4x11
2µ2U0U1 + 54x01

2x11
4µ2U0U1

−18x01
3x11

2µ2AU2 − 18x01
2x11

3µ2AU2 − 108x01
3x11

3µ2U0U1

+18x01x11
4µ2AU2 + 18x01

4x11µ
2AU2 + 6x01

2A2U0U2µ+ 6x11
2A2U0U2µ

−108x01
2x11

2BU0µ− 36x01
2x11

2AU0
2µ+ 6x01

2x11A
2U1µ+ 6x01x11

2A2U1µ
+18x01

3x11AU0
2µ− 6x01x11A

2U1
2µ+ 18x01x11

3AU0
2µ+ 3x11

4A2µ
+3x01

4A2µ− 54x01
4x11

3µ2U0 − 54x01
3x11

4µ2U0 − 54x01
3x11

3µ3U2
2

+27x01
2x11

4µ3U2
2 + 27x01

4x11
2µ3U2

2 + 18x01x11
3A2µ+ 18x01

3x11A
2µ

+39x01
2x11

2A2µ+ 3x11
2A2U1

2µ+ 3x01
2A2U1

2µ− 6x01
3A2U1µ

−6x11
3A2U1µ+ 2x01A

3U0 + 2x11A
3U0

0 = −72x01
2x11

2AU0U1µ+ 36x01x11
3AU0U1µ− 12x01x11A

2U1U2µ
+36x01

3x11AU0U1µ− 6x01x11A
3 + 3x01

2A2U0
2 + 2x11A

3U1 + 2x01A
3U1

+3x11
2A2U0

2 − 54x01
3x11

4µ2U1 + 27x01
2x11

4µ2U1
2 + 27x01

4x11
2µ2U1

2

−54x01
3x11

3µ2U1
2 − 54x01

4x11
3µ2U1 − 6x11

3A2U2µ− 6x01
3A2U2µ

−108x01
2x11

3Bµ− 108x01
3x11

2Bµ− 2x11
2A3 + 27x01

4x11
4µ2 − 2x01

2A3

−6x01x11A
2U0

2 + 54x01
2x11

4µ2U0U2 + 54x01
4x11

2µ2U0U2

−108x01
3x11

3µ2U0U2 − 36x01
2x11

2µ2AU2
2 + 18x01x11

3µ2AU2
2

+18x01
3x11µ

2AU2
2 − 18x01

3x11
2AU0µ− 18x01

2x11
3AU0µ+ 6x01x11

2A2U2µ
+6x01

2x11A
2U2µ− 108x01

2x11
2BU1µ+ 18x01x11

4AU0µ+ 18x01
4x11AU0µ

+6x01
2A2U1U2µ+ 6x11

2A2U1U2µ
0 = −216x01

2x11
2AU0U2µ

2 + 108x01x11
3AU0U2µ

2 + 108x01
3x11AU0U2µ

2

+18x11
2A2U0U1µ+ 18x01

2A2U0U1µ+ 18x01
2x11A

2U0µ+ 108x01x11
2BAµ

+18x01x11
2A2U0µ+ 108x01

2x11BAµ− 36x01x11A
2U0U1µ− 162x01

4x11
3µ3U2

−162x01
3x11

4µ3U2 + 9x11
2A2U2

2µ2 + 9x01
2A2U2

2µ2 − 162x01
3x11

3Aµ2

+81x01
2x11

4U0
2µ2 − 54x01

2x11
4Aµ2 + 81x01

4x11
2U0

2µ2 − 162x01
3x11

3U0
2µ2

−54x01
4x11

2Aµ2 +A4 − 324x01
2x11

2BU2µ
2 + 54x01

4x11AU1µ
2

+54x01
3x11AU1

2µ2 − 18x01x11A
2U2

2µ2 + 54x01x11
4AU1µ

2 + 54x01x11
3AU1

2µ2

−54x01
3x11

2AU1µ
2 − 54x01

2x11
3AU1µ

2 − 108x01
2x11

2AU1
2µ2

+162x01
4x11

2µ3U1U2 − 324x01
3x11

3µ3U1U2 + 162x01
2x11

4µ3U1U2

−18x11
3A2U0µ+ 6x11A

3U2µ− 18x01
3A2U0µ+ 6x01A

3U2µ.

(7.10)

This system is defined only in the two indeterminates x01, x11. All equations have degree
4 in both x01 and x11. The first and third equations have total degree 7, and the second
equation has total degree 8. We have computed that the system (7.10) has regularity 14
for almost all points R (and regularity 12 or 13 for some special choices of R). This means
that the highest degree of all polynomials appearing during the Gröbner basis computation
is at most 14. This moderate number suggests that the Gröbner basis computation is not
very costly, and our experiments (see below) show that this is indeed true.

For a given x-coordinate U of a point R ∈ Tn, the Fq-solutions (X01, X11) of the above
system with X01, X11 6= 0 give candidates for x-coordinates

X0 = X01ζ −
A

3µX01
ζ2 and X1 = X11ζ −

A

3µX11
ζ2

of the points P0, P1 in the relation.

Example 7.9. We give a toy example. Let q = 212 − 3,Fq3 = Fq/(ζ
3 − 2), and E : y2 =

x3 + x+ 21. Then T3 has order 16715869, which is a 24-bit prime, and we take

P = 3961 + 199ζ + 4028ζ2

as a generator. We choose a random

Q = 3342 + 3020ζ + 4031ζ2,

100 7. An index calculus attack on the discrete logarithm problem

of which we wish to compute the discrete logarithm. The elements of the factor base satisfy

6xi1xi2 + 1 = 0, i = 0, 1,

and we compute that there are exactly 4002 such points. Now we choose random α =
4297188 and β = 10382682, which gives U = 2960 + 1129ζ + 1917ζ2, and we solve the
system

0 = 439x4

01
x3

11
+ 1215x4

01
x2

11
+ 2556x4

01
x11 + 2274x4

01
+ 439x3

01
x4

11
+ 1663x3

01
x3

11

+1537x3

01
x2

11
+ 3403x3

01
x11 + 2023x3

01
+ 1215x2

01
x4

11
+ 1537x2

01
x3

11
+ 1961x2

01
x2

11

+2070x2

01
x11 + 2326x2

01
+ 2556x01x

4

11
+ 3403x01x

3

11
+ 2070x01x

2

11
+ 3534x01x11

+716x01 + 2274x4

11
+ 2023x3

11
+ 2326x2

11
+ 716x11

0 = 2x4

01
x4

11
+ 3670x4

01
x3

11
+ 938x4

01
x2

11
+ 609x4

01
x11 + 3670x3

01
x4

11
+ 2217x3

01
x3

11

+3400x3

01
x2

11
+ 405x3

01
x11 + 3667x3

01
+ 938x2

01
x4

11
+ 3400x2

01
x3

11
+ 2586x2

01
x2

11

+426x2

01
x11 + 94x2

01
+ 609x01x

4

11
+ 405x01x

3

11
+ 426x01x

2

11
+ 115x01x11

+345x01 + 3667x3

11
+ 94x2

11
+ 345x11

0 = 518x4

01
x3

11
+ 1692x4

01
x2

11
+ 2117x4

01
x11 + 518x3

01
x4

11
+ 2070x3

01
x3

11
+ 1976x3

01
x2

11

+1677x3

01
x11 + 1945x3

01
+ 1692x2

01
x4

11
+ 1976x2

01
x3

11
+ 3431x2

01
x2

11
+ 2162x2

01
x11

+1057x2

01
+ 2117x01x

4

11
+ 1677x01x

3

11
+ 2162x01x

2

11
+ 1979x01x11 + 71x01

+1945x3

11
+ 1057x2

11
+ 71x11 + 3474.

We get X01 = 1770, X11 = 1515, and from these we compute X02 = 338, X12 = 3029,
which gives a relation

P0 ⊕ P1 = R

for some choice of y-coordinates. After collecting 4002 more such relations and solving the
linear system, we obtain logP Q = 419.

Remark 7.10. During the relation collection phase, a system of similar shape must be
solved many times. This is typical for such an index calculus attack, and different tech-
niques exist to make relation generation more efficient. One idea is to compute a parametric
Gröbner basis [Wei92, MW10], where U0, . . . , Un−1 are treated as parameters. The idea
is to carry out a Gröbner basis computation only once, and afterwards, to immediately
obtain a Gröbner basis of of the system where numbers are plugged in for the parameters
by plugging the numbers into the parametric Gröbner basis. However, the cost of such
computations is very large, and we were not able to compute a parametric Gröbner basis
even in this small case where n = 3. A more efficient approach, called Gröbner trace algo-
rithm, is due to Traverso [Tra88] and was implemented by Joux and Vitse [JV11]. Their
variant of the F4 Gröbner basis algorithm is particularly suitable for computing Gröbner
bases of a number of systems of the same shape, since it can reuse information from the
first computation for all subsequent ones. However, since we were readily able to solve our
system for n = 3, and since this is not the interesting case in terms of complexity, we did
not try to use their algorithm.

Finally, we present implementation results for fields of different size in Table 7.1. For
primes q of 10, 12, 14, 16, 18, 20, 30, 40, 50, 60, 70, and 80 bits, we chose the smallest possible
value µ, and we chose curves E, given by the coefficients A,B, that yield cyclic trace zero
subgroups T3 of prime order. Where we were able to compute it, we list the exact size of
the factor base. In all cases, it is close to q− q1/2. We also list the number of points R we
had to try in order to find |F|+ 1 distinct relations.

Times are given in seconds, and numbers in normal font stand for computations that we
were able to perform, while numbers in bold represent expected times, extrapolated from
timings we were able to obtain. For example, when we are able to compute one relation,

7.3. Explicit equations and experiments 101

Table 7.1 Index calculus algorithm for n = 3, timings in seconds

log2 |T3| 20 24 28 32 36 40

q 210 − 3 212 − 3 214 − 3 216 − 15 218 − 93 220 − 3

µ 5 2 2 2 2 2
A 2 1 1 1 1 1
B 0 21 11 5 10 25
|F| 900 4002 16380 65388 261822 1045962
number of R’s tried 2208 8263 32828 130533 522935 2091965
time for GB of large system 0.01773 0.01698 0.01705 0.01792 0.01686 0.01703
time for GB of small system 0.00102 0.00169 0.00167 0.00124 0.00146 0.00135
time to solve small system 0.00115 0.00180 0.00173 0.00134 0.00159 0.00136
time to enumerate F 0.07 0.28 1.15 5.24 23.59 104.86
time to collect relations 3.52 13.53 49.71 197.17 803.95 2845.01
time linear algebra 0.01 0.30 5.22 108.29 129.69 –
total time 3.60 14.25 56.08 310.70 957.23 –

log2 |T3| 60 80 100 120 140 160

q 230 − 105 240 − 87 250 − 51 260 − 93 270 − 267 279 − 67

µ 2 2 2 2 5 3
A 1 1 1 1 1 1
B 24 49 40 193 15 368
|F| 2

30
2
40

2
50

2
60

2
70

2
79

number of R’s tried 2
31

2
41

2
51

2
61

2
71

2
80

time for GB of large system 0.02683 0.12645 0.12817 0.13431 0.15000 0.14102
time for GB of small system 0.00146 0.00231 0.00244 0.00249 0.00304 0.00262
time to solve small system 0.00171 0.00291 0.00342 0.00351 0.00467 0.00442
time to enumerate F 2

17.2
2
28.3

2
38.5

2
48.7

2
59.4

2
68.4

time to collect relations 2
21.8

2
32.5

2
42.8

2
52.8

2
63.2

2
72.1

this allows us to predict the time it would take to collect q relations (this requires solving
about 2q polynomial systems). Where we were not able to carry out a computation or
make a prediction, we write “–”.

For all field sizes, we were able to solve the system at least a few times. For comparison,
we give the time taken to compute a lexicographic Gröbner basis of the straightforward
system consisting of 5 equations in 4 indeterminates (“large system”), as well as the time
taken to compute a lexicographic Gröbner basis of system (7.10) consisting of 3 equations
in 2 indeterminates (“small system”). This shows that this little trick to simplify the system
saves a considerable amount of time in practice. Therefore, in the following, we work with
the small system.

Next we list in the table the average time taken to solve the small system once. This
includes computing the lexicographic Gröbner basis, factoring a univariate polynomial (of
degree 6 in our experiments), which gives the value(s) of one indeterminate, and computing
the corresponding value(s) of the other indeterminate. For the Gröbner basis computation,
we use Magma’s GroebnerBasis(), which computes a degree reverse lexicographic Gröbner
basis using Faugère’s F4 algorithm [Fau99] and subsequently a lexicographic Gröbner basis
using the FGLM algorithm [FGLM93].

Finally, we give the actual or conjectured times for the full execution of the different
steps of our algorithm. First we give the time to enumerate the factor base, then the
time to collect |F| + 1 relations, and then the time to solve the linear system, using the
sparse linear algebra routine ModularSolution(Lanczos:=true) of Magma, which is an
implementation of Lanczos’ algorithm. We also give the total time to compute one discrete
logarithm with our algorithm.

102 7. An index calculus attack on the discrete logarithm problem

We see that the largest trace zero subgroup where we can compute a full discrete
logarithm has 36-bit size. The attack takes approximately 15 minutes. For the 40-bit trace
zero subgroup, we can compute sufficiently many relations in about 47 minutes, but we
are not able to solve the linear system of size about 220 × 220 in Magma. A specialized
implementation presented in [BBD+14, Jel13, Jel14] solves a linear system of size about
222 × 222 in less than 5 days using a sophisticated implementation of Lanczos’ algorithm,
running on a high performance computer. This means that our attack is certainly feasible
for a 40-bit trace zero subgroup. However, we can do much better by rebalancing the cost
of relation collection and linear algebra.

Let us consider the group T3 of 60 bits, with q ≈ 230, as given in Table 7.1. We rebalance
the complexity with a relatively straightforward approach. Using a factor base of qr = 230r

elements, where 0 < r < 1, the probability of finding a relation becomes q2r−2/2. Hence
in order to find qr relations, we need to solve 2q2−r = 261−30r systems. Since we know
that solving a linear system of size 222 × 222 is possible, we set qr = 222 and get r = 0.73.
This means that we would have to collect 239 relations, which would take 239.8 seconds
or about 30 years. Assuming that solving a linear system of size 223 × 223 is possible,
we would need about 15 years to collect relations, etc. We stress that these predictions
correspond to the time required by our simple implementation. With an optimized and
parallel implementation of the relation collection step (notice that the relation search
can trivially be parallelized), it would become faster by a considerable factor. Hence we
conclude that with an optimized implementation, computing a discrete logarithm in a
60-bit trace zero subgroup with this index calculus algorithm is feasible.

Interestingly, the crossover point between a Pollard–Rho attack on E(Fq3) and an index
calculus attack in T3 is also at about q = 230. For the curve listed in Table 7.1, Magma can
perform about 66000 point additions per second. Since |E(Fq3)| ≈ 290, the Pollard–Rho
algorithm would have to perform about 245 point additions, which would take about 17
years. However, we computed this number only for interest. If one seriously wanted to
attack the DLP in E(Fq3), one should use the Pollard–Rho algorithm in T3, which would
require 230 point additions in T3. This would take only about 5 minutes.

7.3.2 Explicit equations for n = 5

We proceed similarly for n = 5, but we cannot write down the equations in this case
because they are too large. We assume that 5 | q−1 and write Fq5 = Fq(ζ)/(ζ

5−µ). Then
1, ζ, ζ2, ζ3, ζ4 is a basis of Fq5 |Fq, which we use for Weil restriction.

The fifth Semaev polynomial f5 has total degree 32. The same is true for f̃(x0, . . . , x4)
(see also Chapter 3.3.2), which we use as an equation for T5. The factor base is

F = {(0, 0, 0, X3, X4) ∈ T5},

and all its elements satisfy the equation

f̃(0, 0, 0, x3, x4) = 0.

It has total degree 32 and degree 30 in each x3 and x4. Although this polynomial does not
have such a simple shape as the corresponding one for n = 3, it is still easy to enumerate
the factor base: For every X3 ∈ Fq, solve f̃(0, 0, 0, X3, x4) = 0 for x4 in Fq.

In order to find relations of the form

R = P0 ⊕ P1 ⊕ P2 ⊕ P3,

7.3. Explicit equations and experiments 103

we compute the Weil descent of f5(xP0 , xP1 , xP2 , xP3 , U). This gives five equations, each
of total degree 32, in 8 indeterminates xi3, xi4, i = 0, 1, 2, 3. For a given U , we must solve
this system in order to obtain possible relations.

Following the idea of Joux and Vitse [JV12] (see Remark 7.4), where R is decomposed
into a sum of 3 factor base elements, we obtain a system of 8 equations in 6 indeterminates,
where the first 5 equations (describing that the points sum to R, this is the Weil restriction
of f4(xP0 , xP1 , xP2 , U)) have total degree 12 and degree 4 in each indeterminate, and the
last 3 equations (describing that the points are in the factor base) are as above. However,
this system is too large to be solved with Magma, even over a relatively small field (F1021

in our experiments) and after several weeks of computation and using more than 300 GB
of memory.

Since we are not able to solve even one instance of system (7.6) directly, we use a
hybrid approach [YCC04, BFP08]. This allows us to find some relations, but it is not
fast enough for an attack of realistic cryptographic size. Nevertheless, we give some ex-
perimental results, timings, and extrapolations. The hybrid method is often used where a
direct Gröbner basis computation is too costly, since it is a trade-off between exhaustive
search and Gröbner basis techniques. The main idea is to choose fixed values for a small
number of variables and to solve the system in the remaining indeterminates. In order
to find all solutions of the system, all possible choices for the fixed variables have to be
tried. Therefore, this requires computing many Gröbner bases of smaller systems instead
of computing one Gröbner basis of a larger system.

In our case, it is enough to choose one fixed value in order to solve the system readily.
We start from the system that describes a relation with 3 factor base elements (i.e. following
the approach of [JV12]) and fix x03 = X03 ∈ Fq. We then use the factor base equation
f̃5(0, 0, 0, X03, x04) = 0 to determine possible values of x04. Although this equation has
degree 30 in x04, there are usually only very few solutions, most frequently 1, 2, or 3.
In every case where x04 = X04 gives a point in the factor base, we plug x03 = X03 and
x04 = X04 into the system to obtain a new system of 7 equations in the 4 indeterminates
x13, x14, x23, x24. The first five equations each have total degree 8 and degree 4 in every
indeterminate. By trying all X03 ∈ Fq, we find out whether R decomposes over the factor
base.

We give some timings and extrapolations in Table 7.2. As before, numbers in normal
font are times we measured, and numbers in bold are predictions. After giving the pa-
rameters of the fields and curves we used, we indicate the number of points R which we
tried to decompose (we expect 6q), the total number of polynomial systems to be solved
for this (we expect 6q2), the time for the solution of one system (this is equal to the time
for computing a Gröbner basis, since the rest of the computation to solve the system is
negligible), the time to enumerate the factor base, the time to collect about q relations,
the time for the linear algebra step, and the time for the total attack.

The numbers show that we are able to compute a discrete logarithm in the 27-bit group
T5 in about 2 days and that a discrete logarithm in the 32-bit, 36-bit, and 40-bit groups
T5 can be computed in about 10, 44, and 165 days, respectively. Clearly, this is approach
is far from feasible for any group of cryptographic size.

We see that it is very costly to find a relation with this approach, for two reasons.
Firstly, we are searching for relations that involve only 3 points of the factor base. While the
probability that a point decomposes into a sum of 4 points of the factor base is 1/4! = 1/24,
the probability that it decomposes into a sum of 3 points of the factor base is 1/3!q = 1/6q
(using similar heuristics as the complexity analysis, see Section 7.2). This means that we
expect to have to try about 6q points R in order to find one that decomposes. Notice that

104 7. An index calculus attack on the discrete logarithm problem

Table 7.2 Index calculus algorithm for n = 5, timings in seconds

log2 |T5| 20 22 27 32 36 40

q 25 − 1 26 − 23 27 − 27 28 − 15 29 − 21 210 − 3

µ 2 2 2 3 2 2
A 1 1 1 1 1 1
B 16 3 3 13 18 1
|F| 40 70 110 230 520 970
number of R’s tried 886 884 2424 5784 11784 24528

number of systems solved 17719 30934 244824 1393944 5785944 25043088

time for GB of one system 1.30 1.31 1.28 1.21 1.22 1.32
time to enumerate F 0.02 0.04 0.07 0.18 0.43 0.89
time to collect relations 25004 38219 171085 821328 3818016 15084720

time linear algebra 0.01 0.01 0.01 0.01 0.01 0.01
total time 25164 43618 171085 821328 3818016 15084720

log2 |T5| 60 80 100 120 140 160

q 215 − 157 220 − 5 225 − 61 230 − 173 235 − 547 240 − 195

µ 3 2 2 2 5 2
A 1 1 1 1 1 1
B 7 10 17 5 3 12
|F| 32600 1051440 2

25
2
30

2
35

2
40

number of R’s tried 2
20

2
25

2
30

2
35

2
40

2
45

number of systems solved 2
35

2
45

2
55

2
65

2
75

2
85

time for GB of one system 1.34 1.33 7.09 6.93 146.16 147.89
time to enumerate F 38.80 1530.91 2

17.1
2
22.9

2
28.7

2
34.0

time to collect relations 2
34.3

2
45.4

2
57.8

2
67.7

2
82.2

2
92.2

time linear algebra 89.12 – – – – –
total time 2

34.3
2
45.4

2
57.8

2
67.7

2
82.2

2
92.2

we can hope to find enough relations, even though the probability of finding a relation
has decreased by a factor q (Joux and Vitse [JV12] have shown that such an approach
is indeed advantageous in certain situations): Assuming that distinct unordered 3-tuples
of factor base elements usually sum to distinct points of Tn, this means that about q3/6
points R ∈ Tn decompose into a sum of 3 factor base elements. This number is much larger
than q. Therefore, it is a realistic assumption that we find about q relations.

Secondly, every time we wish to check whether a given point R decomposes into a sum
of 3 factor base points, we do not have to solve one system, but O(q) systems, namely
a small number of systems for every X03 ∈ Fq. In practice, not all X03 yield valid X04,
therefore the number of systems to be solved is actually smaller.

Example 7.11. Finally, we give a toy example for our approach. Let q = 41,Fq5 =
Fq/(ζ

5− 2), and E : y2 = x3 + x+3. Then T5 has order 2970161, which is a 22-bit prime,
and we take

P = 5 + 40ζ + 37ζ2 + 38ζ3 + 33ζ4

as a generator. We choose a random

Q = 17 + 39ζ + 34ζ2 + 10ζ3 + 27ζ4,

7.4. Comparison with other attacks and discussion 105

of which we wish to compute the discrete logarithm. The elements of the factor base satisfy

0 = 37x30

i3 + 13x28

i3x
4

i4 + 5x27

i3xi4 + 11x26

i3x
3

i4 + 32x25

i3x
5

i4 + 19x25

i3 + 21x24

i3x
2

i4 + 29x23

i3x
9

i4

+12x23

i3x
4

i4 + 33x22

i3x
6

i4 + 5x22

i3xi4 + 6x21

i3x
8

i4 + 29x21

i3x
3

i4 + 19x20

i3x
10

i4 + 33x20

i3x
5

i4

+24x20

i3 + 30x19

i3x
7

i4 + 23x19

i3x
2

i4 + 9x18

i3x
14

i4 + 35x18

i3x
9

i4 + 9x18

i3x
4

i4 + x17

i3x
11

i4

+32x17

i3x
6

i4 + 27x17

i3xi4 + 6x16

i3x
13

i4 + 31x16

i3x
8

i4 + 11x16

i3x
3

i4 + 28x15

i3x
10

i4 + 40x15

i3x
5

i4

+26x15

i3 + 33x14

i3x
12

i4 + 35x14

i3x
7

i4 + 2x14

i3x
2

i4 + 14x13

i3x
19

i4 + 40x13

i3x
14

i4 + 35x13

i3x
9

i4

+5x13

i3x
4

i4 + 2x12

i3x
16

i4 + 25x12

i3x
11

i4 + 9x12

i3x
6

i4 + 4x12

i3xi4 + 34x11

i3x
18

i4 + 11x11

i3x
13

i4

+x11

i3x
8

i4 + 23x11

i3x
3

i4 + 27x10

i3x
20

i4 + 21x10

i3x
15

i4 + 8x10

i3x
10

i4 + 18x10

i3x
5

i4 + 38x10

i3

+3x9

i3x
17

i4 + 6x9

i3x
12

i4 + 18x9

i3x
7

i4 + 36x9

i3x
2

i4 + 37x8

i3x
24

i4 + 3x8

i3x
19

i4 + 36x8

i3x
14

i4

+36x8

i3x
9

i4 + 33x8

i3x
4

i4 + 21x7

i3x
16

i4 + 10x7

i3x
11

i4 + 38x7

i3x
6

i4 + 29x7

i3xi4 + 27x6

i3x
23

i4

+19x6

i3x
18

i4 + 3x6

i3x
13

i4 + 11x6

i3x
8

i4 + 8x6

i3x
3

i4 + 12x5

i3x
25

i4 + 24x5

i3x
20

i4 + 9x5

i3x
15

i4

+33x5

i3x
10

i4 + 23x5

i3x
5

i4 + 7x5

i3 + 11x4

i3x
22

i4 + 13x4

i3x
17

i4 + 19x4

i3x
12

i4 + 26x4

i3x
7

i4

+35x4

i3x
2

i4 + 40x3

i3x
29

i4 + 34x3

i3x
24

i4 + 29x3

i3x
19

i4 + 21x3

i3x
14

i4 + 6x3

i3x
9

i4 + 2x3

i3x
4

i4

+31x2

i3x
26

i4 + 20x2

i3x
21

i4 + 21x2

i3x
16

i4 + 17x2

i3x
11

i4 + 5x2

i3x
6

i4 + 8x2

i3xi4 + 17xi3x
28

i4

+39xi3x
23

i4 + 12xi3x
18

i4 + 24xi3x
13

i4 + 32xi3x
8

i4 + 26xi3x
3

i4 + 31x30

i4 + 34x25

i4 + 15x20

i4

+3x15

i4 + 29x10

i4 + 14x5

i4 + 10

for i = 0, 1, 2, and we compute that there are exactly 70 such points. Now we choose
randomly α = 1432283 and β = 659863, which gives U = 3+32ζ+14ζ2+13ζ3+37ζ4. We
pick X03 = 6 and solve for X04 = 24, then the system has the solution X13 = 21, X14 =
24, X23 = 32, X24 = 8, which gives a relation. After collecting 70 more such relations and
solving the linear system, we obtain logP Q = 1041379.

7.4 Comparison with other attacks and discussion

We now compare the index calculus attack on the DLP in Tn with other known attacks.

Pollard–Rho. Assuming that Tn is cyclic of prime order (i.e. the prime has size qn−1),
the Pollard–Rho algorithm performs O(q(n−1)/2) steps, and each step consists essentially
of a point addition and hence has complexity Õ(1). Comparing this to the complexity of
the index calculus algorithm in q, which is Õ(q2−2/(n−1)), we see that the index calculus
algorithm has smaller complexity for n > 3. More precisely, when n = 3 then Pollard–
Rho and index calculus have the same complexity, when n = 5 the advantage of the
index calculus attack comes only from the large prime variation (because without the large
prime variation, index calculus has complexity Õ(q2)), and when n > 5, the index calculus
method is always better, independently of the large prime trick. The larger n, the larger
the advantage of the index calculus algorithm over Pollard–Rho in this analysis.

However, the Pollard–Rho algorithm has to perform only an elliptic curve point addition
in each step, while the index calculus algorithm has to compute a Gröbner basis, which is
much more expensive. Even in the case n = 3, where the system is much more manageable
than for larger n, we can solve less than a thousand systems per second (cf. Table 7.1),
whereas elliptic curve point addition can be performed at a rate of 25000 to 150000 per
second (depending on the size of the field; we measured this by adding random points of
T3 in Magma, an optimized implementation can achieve much better values). For larger
values of n, the difference becomes much more extreme, since the cost of elliptic curve point
addition increases only at the same rate as that of finite field arithmetic in Fqn , whereas
the cost of the Gröbner basis computation increases considerably, since the degree of the
equations grows exponentially and the number of equations and variables grows linearly
in n. This becomes very obvious in our experiments, where we conclude that we cannot
solve one single system for n = 5, and it is reflected also in the large complexity in n of
the index calculus algorithm (see Theorem 7.8).

106 7. An index calculus attack on the discrete logarithm problem

We conclude that in practice index calculus can beat Pollard–Rho only for moderate
values of n > 3 and very large values of q. The precise crossover point is not known.

Notice also that the variant of the index calculus algorithm for T5 that uses the trick
of Joux and Vitse and the hybrid approach has complexity Õ(q3) in q, therefore it is not
better than the Pollard–Rho algorithm for n = 5. It would be better only for n > 5.

Index calculus on the whole curve. The index calculus algorithm of Gaudry may also
be used to compute discrete logarithms in E(Fqn) by working in the n-dimensional Weil
restriction of E with respect to Fqn |Fq. This is one of the original applications suggested
by Gaudry in [Gau09]. From a complexity theoretic point of view, it does not make sense
to attack the DLP in E(Fqn) when one wants to solve a DLP in Tn, since the complexity
of Gaudry’s algorithm in q depends on the dimension of the variety and therefore has
complexity Õ(q2−2/n) in E(Fqn) and complexity Õ(q2−2/(n−2)) in Tn.

From a practical point of view, however, the systems one gets when performing index
calculus on the whole curve may be more manageable, since they consist only of the
Weil restriction of the Semaev polynomial, whereas in our approach, the system contains
also the equations of the factor base. Moreover, when working in the whole curve, the
Semaev polynomial may easily be symmetrized, which gives a system of smaller degree
and with fewer solutions, whereas it is not obvious how to do this in our case. Also, when
working in the whole curve, factor base elements may be represented by one Fq-coordinate
only, where we need two for the trace zero variety. Therefore, our system has twice as
many indeterminates. On the other hand, the advantage of working in the trace zero
variety is that relations contain n − 1 factor base elements, and therefore one uses fn to
describe relations, whereas when working on the whole curve, relations contain n factor
base elements, thus one has to use fn+1. Summarizing, when working on the whole curve,
one has a system of n equations in n indeterminates of total degree 2n−1. In contrast,
when working in the trace zero variety one has a system of 2n − 1 equations in 2n − 2
indeterminates of total degree (n− 1)2n−2.

Such subtleties are not evident in the original complexity analysis of Gaudry, which is
only in q (and n is taken to be constant) and where the Gröbner basis computation thus
has constant complexity. When performing an analysis similar to the one of Section 7.2
for Gaudry’s algorithm on the whole curve, one obtains

Õ

((
n2n−1 + 1

n

)ω

n!q2−2/n

)

,

which is smaller in n. Therefore, which attack is better depends on the ratio of q and n.

It is difficult to determine the exact crossover point, since the cases where one can do
experiments are rather limited. As an example, let us consider n = 5. In this case, the
system one obtains for index calculus in the whole curve cannot be solved. For this reason,
Joux and Vitse [JV12] propose searching for relations with n− 1 factor base elements, and
they can readily solve the system in this case, at the expense of multiplying the complexity
by a factor q. When working in the trace zero variety, since it has dimension n−1 we have
to search for relations involving n − 1 factor base elements from the start. However, we
cannot solve this system (compared to the one of Joux and Vitse, our system also comes
from the n-th Semaev polynomial, but it has more equations, more indeterminates, and
higher degree), which is why we consider relations involving n − 2 factor base elements,
also at the expense of a factor q in complexity. Unfortunately, we cannot solve this system
either, which is why we use the hybrid method, which finally enables us to solve our system,
at the expense of another factor q in the complexity.

7.5. Conclusions on the hardness of the DLP 107

All of this shows that it is difficult to accurately predict the running time of such index
calculus algorithms and that the feasibility of the Gröbner basis computation plays an
important role in practice.

Furthermore, the work of Diem [Die11], Faugère, Perret, Petit, and Renault [FPPR12],
Petit and Quisquater [PQ12], and Shantz and Teske [ST13] suggests that the index calcu-
lus algorithm in E(Fqn) may even have sub-exponential complexity, since the polynomial
systems that appear in this setting have a special shape, and special-purpose Gröbner
basis techniques yield a significant speed-up. Some of these papers consider curves over
characteristic 2 fields only.

Cover attacks. Cover attacks, also referred to as transfer attacks, were first proposed by
Frey [Fre99] and further studied by many authors, including Galbraith and Smart [GS99],
Gaudry, Hess, and Smart [GHS02], and Diem [Die03]. The aim of such attacks is to
transfer the DLP from the algebraic variety one is considering into the Picard group of
a curve of larger (but still rather low) genus, where the DLP is then solved using index
calculus methods. There exist different constructions, each of them specific to a certain
type of curve or variety, and there are constructions for cover attacks on E(Fqn) and on
Tn directly.

For example, combining the results of [Die03] and [DK13], it is sometimes possible to
map the DLP into the Picard group of a genus 5 curve (which is usually not hyperelliptic),
where it can be solved in Õ(q4/3) . This is better than Gaudry’s index calculus in E(Fq5),

which has complexity Õ(q8/5), and the index calculus attack on T5, which has complexity
Õ(q3/2). However, the index calculus attack on T5 applies to all curves, whereas only a
very small proportion of curves is affected by the cover attack.

Diem and Scholten [DS, DS03] propose a cover attack for the trace zero variety directly.
It works best for trace zero varieties of genus 2 curves, but it also applies to some trace
zero varieties of elliptic curves. Namely, when g = 1 and n = 5, the DLP may sometimes
be transferred to a curve of genus 4, where it can be solved in Õ(q4/3). Again, this is
better than the complexity of the index calculus attack, but it only affects a small number
of curves (in fact, in [DS03] the authors find only one curve vulnerable to this attack). The
same is true for g = 1 and n = 7, where the DLP may sometimes be mapped to a curve of
genus 8 (and in this case, the authors cannot find any examples, although they can show
that vulnerable curves exist in theory).

Joux and Vitse [JV12] propose a cover and decomposition attack, which combines
a cover attack with index calculus. However, this only applies to elliptic curves over
composite degree extension fields, and therefore it does not threaten the trace zero variety.

7.5 Conclusions on the hardness of the DLP

We conclude that applying Gaudry’s index calculus algorithm for abelian varieties to the
trace zero variety, as presented in this chapter, yields an attack in Tn that has smaller
complexity than generic algorithms whenever n > 3 when the complexity is measured
asymptotically in q. Although there sometimes exist cover attacks with even better com-
plexity, the index calculus attack can be applied to trace zero varieties of all elliptic curves,
while cover attacks apply only to a small proportion of curves.

Since the DLP in Tn has the same complexity as the DLP in E(Fqn), we get that the
DLP in E(Fqn) may, in fact, be attacked in complexity Õ(q2−2/(n−1)) when E is defined
over Fq. This is better than all known direct attacks on the DLP in E(Fqn) for n > 2.
The most interesting case in this context is when n = 3. Here generic attacks on E(Fq3)

108 7. An index calculus attack on the discrete logarithm problem

have complexity O(q3/2), Gaudry’s index calculus attack applied to E(Fq3) has complexity

Õ(q4/3), and our index calculus attack on T3 has complexity Õ(q). Moreover, we have seen
that our algorithm is practical for small q in this case, since the system has a particularly
simple shape and can be solved rapidly. This becomes faster than Pollard–Rho for values of
q larger than about 60 bits, and asymptotically, it yields one of the currently best attacks
on the DLP in E(Fq3). Notice, however, that the Pollard–Rho algorithm in T3 has the
same complexity and is much faster in practice.

For general n, we have seen that the complexity of our index calculus attack on Tn

depends exponentially on n and that it becomes infeasible for rather small values of n.
This is due to the fact that the algorithm has to solve many polynomial systems, whose size
(i.e. number of equations, number of indeterminates, degrees of the equations) depends on
n, and that a Gröbner basis computation quickly becomes unmanageable. In fact, already
for n = 5 it is impossible to solve the system with standard Gröbner basis software.
By using some tricks (namely, considering relations that involve one point less, using a
hybrid approach), we were nevertheless able to produce relations, but this does not yield
a practical attack, since it multiplies the complexity of the relation search by a factor q2.

Specialized Gröbner basis techniques in the spirit of [JV11, FPPR12, PQ12] would be
needed in order to efficiently solve the systems that arise in this index calculus attack, and
more research needs to be done on this topic in order to make our index calculus attack
feasible in practice.

We finish with some remarks on the security of trace zero subgroups of elliptic curves
for DLP-based cryptosystems for the practically most relevant cases of n = 3, 5.

Extension degree n = 3. To the extent of our knowledge (see also [ACD+06, Example
23.7]), there are no known attacks on the DLP in T3 whose complexity is lower than that
of generic (square root) attacks, provided that one chooses the curve according to usual
cryptographic practice. In particular, the group should have prime or almost prime order
and be sufficiently large (e.g. 160 or 200 bits). We stress that the index calculus attack,
as detailed in this chapter, is not better than generic (square root) attacks in this setting,
since the trace zero variety has dimension 2.

Extension degree n = 5. Since T5 is a group of size q4, generic attacks have complexity
O(q2). Security threats are posed by algorithms for solving the DLP that achieve lower
complexity. This is the case for the index calculus algorithm, which has complexity Õ(q3/2).
However, we have seen that it is not practical using standard Gröbner basis software. A
more in depth study of specialized Gröbner basis methods is needed in order to determine
to what extent the index calculus algorithm is a practical threat to T5. As explained
in Section 7.4, cover attacks can solve the DLP in E(Fq5) or T5 in complexity O(q4/3)
for a small number of curves. Such curves should, of course, be avoided in trace zero
cryptosystems.

Hyperelliptic curves. Although this chapter is not concerned with trace zero sub-
groups of Picard groups of hyperelliptic curves, we comment briefly on this case, since
such groups have been proposed for cryptosystems. The parameters proposed by Lange
[Lan04b, Lan01], namely genus 2 and n = 3, are threatened only by an index calculus
attack in the same spirit as the one presented in this chapter, i.e. following Gaudry’s
approach. Since the trace zero variety has dimension 4 in this case, generic attacks have
complexity O(q2), whereas the index calculus attack would have complexity Õ(q3/2). How-
ever, the details of such an attack, and in particular the shape of the polynomial systems,
has not yet been studied. For larger values of n and g, the gain of such an attack becomes

7.5. Conclusions on the hardness of the DLP 109

more extreme, but the polynomial systems may very well be unmanageable. Moreover,
for genus 2 and n = 3, a small proportion of trace zero subgroups is vulnerable to cover
attacks, see [DS, DS03], and such curves must be avoided. Finally, it is well known that
curves of larger genus may be attacked by sub-exponential index calculus algorithms (see
e.g. [EGT11]), therefore using trace zero varieties associated to higher genus hyperelliptic
curves in cryptosystems is not advisable.

Pairing-based cryptography. We finish by pointing out that—if the curve and the
parameters are chosen carefully—the attacks on the DLP in Tn discussed above do not pose
a threat to pairing-based cryptosystems based on the trace zero variety as suggested by
Rubin and Silverberg in [RS09], where the authors show that supersingular abelian varieties
of dimension greater than one offer more security than supersingular elliptic curves, for
the same group size.

As an example, let us consider n = 5, which is mentioned as a particularly interesting
case in [RS09]. In order to estimate the security of T5 in pairing-based cryptosystems,
one needs to compare the complexities of solving the DLP in T5 and in Fq5k , where k
is the embedding degree, i.e. the smallest integer k such that Fq5k contains the image of
the pairing. A first observation is that, since the results of [RS09] hold over fields of any
characteristic, one should avoid fields of small characteristic, so that the recent attacks
from [GGMZ13a, Jou13b, GGMZ13b, BBD+14, BGJT13, AMOR13] do not apply. Over
a field of large characteristic, the cover and index calculus attacks that we discussed in
Section 7.4 do not seem to pose a serious security concern in the context of pairing-based
cryptography. This is due to the fact that, for most supersingular elliptic curves, the
Frey–Rück or the MOV attack [FR94, MOV93] have lower complexity than index calculus
attacks and cover attacks. In some cases however, the choice of the security parameter
may need to be adjusted, according to the complexity of these attacks.

As a concrete example, let us discuss the choice of parameters for a pairing with 80-bit
security. One needs a field of about 1024 bits as the target of the pairing (avoiding fields
of small characteristic). If we assume that the pairing maps to an extension field of degree
k = 2 of the original field Fq5 (this is the case for most supersingular elliptic curves),

then q should be a 102-bit number. A q3/2 attack on the group T5 on which the pairing is
defined would result in 153-bit security, while a q4/3 attack would result in 136-bit security.
However, on the side of the finite field the system has 80-bit security, so the index calculus
attack ends up not influencing the overall security of the pairing-based cryptosystem in
this case.

A related comment is that an interesting case for pairings is when the DLP in T5 and in
the finite field extension Fq5k where the pairing maps have the same complexity. In order
to accomplish this in our previous example, we would need to have a security parameter
k = 4, which can be achieved by supersingular trace zero varieties. In this case, a 53-bit q
yields a complexity of about 80 bits for solving both a DLP in T5 (with the q3/2 attack)
and a DLP in Fq20 .

Summarizing, the complexity of index calculus and cover attacks on the DLP in T5

influences the choice of the specific curves that we use in pairing-based applications, since
it influences the security parameter k that makes the hardness of solving the DLP in T5

and in Fq5k comparable, and the value of k depends on the choice of the curve. However,
in general it does not influence the size q of the field that we work with, since an attack
can influence the value of q only if it has lower complexity than the Frey–Rück or the
MOV attack for supersingular elliptic curves. Therefore, using trace zero varieties instead
of elliptic curve groups in pairing-based cryptography has the advantages of enhancing the
security and allowing for more flexibility in the setup of the system.

References

[AMOR13] G. Adj, A. Menezes, T. Oliveira, and F. Rodríguez-Henríquez. Weakness of
F36·509 for discrete logarithm cryptography. In Z. Cao and F. Zhang, editors,
Pairing-Based Cryptography – Pairing 2013, volume 8365 of LNCS, pages
20–44. Springer, 2013.

[Adl79] L. M. Adleman. A subexponential algorithm for discrete logarithms with
applications to cryptography. In Proceedings of the 20th Annual Symposium
on Foundations of Computer Science, pages 55–60. IEEE, 1979.

[Adl94] L. M. Adleman. The function field sieve. In Algorithmic Number Theory
(ANTS I), volume 877 of LNCS, pages 108–121. Springer, 1994.

[ADH94] L. M. Adleman, J. DeMarrais, and M.-D. A. Huang. A subexponential al-
gorithm for discrete logrithms over the rational subgroup of the Jacobians
of large genus hyperelliptic curves over finite fields. In L. M. Adleman and
M.-D. A. Huang, editors, Algorithmic Number Theory (ANTS I), volume 877
of LNCS, pages 28–40. Springer, 1994.

[AFI+04] G. Ars, J.-C. Faugère, H. Imai, M. Kawazoe, and M. Sugita. Comparison
between XL and Gröbner basis algorithms. In P. J. Lee, editor, Advances in
Cryptology: Proceedings of ASIACRYPT ’04, volume 3329 of LNCS, pages
338–353. Springer, 2004.

[ACD+06] R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Ver-
cauteren. Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete
Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton, 2006.

[AC07] R. M. Avanzi and E. Cesena. Trace zero varieties over fields of characteristic
2 for cryptographic applications. In Proceedings of the First Symposium on
Algebraic Geometry and Its Applications (SAGA ’07), pages 188–215, 2007.

[BFS04] M. Bardet, J.-C. Faugère, and B. Salvy. On the complexity of Gröbner basis
computation of semi-regular overdetermined algebraic equations. In Proceed-
ings of ICPSS ’04, pages 71–75, 2004.

[BFSY05] M. Bardet, J.-C. Faugère, B. Salvy, and B.-Y. Yang. Asymptotic behaviour
of the index of regularity of quadratic semi-regular polynomial systems. In
P. Gianni, editor, The Effective Methods in Algebraic Geometry Conference
(MEGA ’05), pages 1–14, 2005.

[BV06] P. S. L. M. Barreto and J. S. Voloch. Efficient computation of roots in finite
fields. Des. Codes Crytogr., 39(2):275–280, 2006.

111

112 References

[BS88] D. Bayer and M. Stillman. On the complexity of computing syzygies. J.
Symbolic Comput., 6:135–147, 1988.

[BDL+12] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed
high-security signatures. J. Cryptogr. Eng., 2(2):77–89, 2012.

[BFP08] L. Bettale, J.-C. Faugère, and L. Perret. Hybrid approach for solving multi-
variate systems over finite fields. J. Math. Cryptol., 2:1–22, 2008.

[Bla02] G. Blady. Die Weil-Restriktion elliptischer Kurven in der Kryptographie.
Master’s thesis, Univerität GHS Essen, 2002.

[Boe90] B. den Boer. Diffie–Hellman is as strong as discrete log for certain primes. In
S. Goldwasser, editor, Advances in Cryptology: Proceedings of CRYPTO ’88,
volume 403 of LNCS, pages 530–539. Springer, 1990.

[BF03] D. Boneh and M. Franklin. Identity based encryption from the Weil pairing.
SIAM J. of Computing, 32(3):586–615, 2003.

[BCHL13] J. W. Bos, C. Costello, H. Hisil, and K. Lauter. High-performance scalar
multiplication using 8-dimensional GLV/GLS decomposition. In G. Bertoni
and J.-S. Coron, editors, Cryptographic Hardware and Embedded Systems –
CHES 2013, volume 8086 of LNCS, pages 331–338. Springer, 2013.

[BKK+09] J. W. Bos, M. E. Kaihara, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery.
Playstation 3 computing breaks 260 barrier: 112-bit prime ECDLP solved.
Available at http://lacal.epfl.ch/112bit_prime, 2009.

[BLR80] S. Bosch, W. Lütkebohmert, and M. Raynaud. Néron Models. Springer,
Berlin–Heidelberg–New York, 1980.

[BCP97] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The
user language. J. Symbolic Comput., 24:235–265, 1997.

[Bou12] C. Bouvier. The filtering step of discrete logarithm and integer factorization
algorithms. Available at http://hal.inria.fr/hal-00734654, 2012.

[BBD+14] R. Bărbulescu, C. Bouvier, J. Detrey, P. Gaudry, H. Jeljeli, E. Thomé,
M. Videau, and P. Zimmermann. Discrete logarithm in GF(2809) with FFS.
In H. Krawczyk, editor, Public-Key Cryptography – PKC 2014, volume 8383
of LNCS, pages 221–238. Springer, 2014.

[BGJT13] R. Bărbulescu, P. Gaudry, A. Joux, and E. Thomé. A quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. To
appear in Proceedings of EUROCRYPT ’14, available at http://arxiv.org/
abs/1306.4244, 2013.

[Buc65] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis,
Leopold-Franzens-Univerisät Innsbruck, 1965.

[Can87] D. G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Math.
Comp., 48(177):95–101, 1987.

[Ces08] E. Cesena. Pairing with supersingular trace zero varieties revisited. Available
at http://eprint.iacr.org/2008/404, 2008.

[Ces10] E. Cesena. Trace Zero Varieties in Pairing-based Cryptography. PhD the-
sis, Università degli studi Roma Tre, Available at http://ricerca.mat.

uniroma3.it/dottorato/Tesi/tesicesena.pdf, 2010.

http://lacal.epfl.ch/112bit_prime
http://hal.inria.fr/hal-00734654
http://arxiv.org/abs/1306.4244
http://arxiv.org/abs/1306.4244
http://eprint.iacr.org/2008/404
http://ricerca.mat.uniroma3.it/dottorato/Tesi/tesicesena.pdf
http://ricerca.mat.uniroma3.it/dottorato/Tesi/tesicesena.pdf

References 113

[CoC] CoCoATeam. CoCoA: a system for doing computations in commutative al-
gebra. Available at http://cocoa.dima.unige.it.

[CKM97] S. Collart, M. Kalkbrenner, and D. Mall. Converting bases with the Gröbner
walk. J. Symbolic Comput., 24:465–469, 1997.

[Cop84] D. Coppersmith. Fast evalution of logarithms in fields of characteristic two.
IEEE Trans. Inform. Theory, 30:587–594, 1984.

[CLRS09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, Cambridge–London, third edition, 2009.

[CKPS00] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient algorithms for
solving overdefined systems of multivariate polynomial equations. In B. Pre-
neel, editor, Advances in Cryptology: Proceedings of EUROCRYPT ’00, vol-
ume 1807 of LNCS, pages 392–407. Springer, 2000.

[CLO92] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An
Introduction to Computational Algebraic Geometry and Commutative Algebra.
Springer, Berlin–Heidelberg–New York, 1992.

[DGPS12] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular – A
computer algebra system for polynomial computations. Available at http:

//www.singular.uni-kl.de, 2012.

[Die01] C. Diem. A Study on Theoretical and Practical Aspects of Weil-Restrictions
of Varieties. PhD thesis, Univerität GHS Essen, Available at http://www.

math.uni-leipzig.de/~diem/preprints, 2001.

[Die03] C. Diem. The GHS attack in odd characteristic. Ramanujan Math. Soc.,
18(1):1–32, 2003.

[Die06] C. Diem. An index calculus algorithm for plane curves of small degree. In
F. Hess, S. Pauli, and M. Pohst, editors, Algorithmic Number Theory (ANTS
VII), volume 4076 of LNCS, pages 543–557. Springer, 2006.

[Die11] C. Diem. On the discrete logarithm problem in elliptic curves. Compos.
Math., 147:75–104, 2011.

[Die13] C. Diem. On the discrete logarithm problem in elliptic curves II. Algebra &
Number Theory, 7:1281–1323, 2013.

[DK13] C. Diem and S. Kochinke. Computing discrete logarithms with special linear
systems. Available at http://www.math.uni-leipzig.de/~diem/preprints,
2013.

[DS] C. Diem and J. Scholten. An attack on a trace-zero cryptosystem. Available
at http://www.math.uni-leipzig.de/diem/preprints.

[DS03] C. Diem and J. Scholten. Cover attacks – A report for the AREHCC project.
Available at http://www.math.uni-leipzig.de/~diem/preprints, 2003.

[DT08] C. Diem and E. Thomé. Index calculus in class groups of non-hyperelliptic
curves of genus three. J. Cryptology, 21:593–611, 2008.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans.
Inform. Theory, 22(6):644–654, 1976.

[Duq04] S. Duquesne. Montgomery scalar multiplication for genus 2 curves. In
D. Buell, editor, Algorithmic Number Theory (ANTS VI), volume 3076 of
LNCS, pages 153–168. Springer, 2004.

http://cocoa.dima.unige.it
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
http://www.math.uni-leipzig.de/~diem/preprints
http://www.math.uni-leipzig.de/~diem/preprints
http://www.math.uni-leipzig.de/~diem/preprints
http://www.math.uni-leipzig.de/diem/preprints
http://www.math.uni-leipzig.de/~diem/preprints

114 References

[DGM99] I. Duursma, P. Gaudry, and F. Morain. Speeding up the discrete log com-
putation on curves with automorphisms. In K. Y. Lam, E. Okamoto, and
C. Xing, editors, Advances in Cryptology: Proceedings of ASIACRYPT ’99,
volume 1716 of LNCS, pages 103–121. Springer, 1999.

[EGO11] P. N. J. Eagle, S. D. Galbraith, and J. Ong. Point compression for Koblitz
curves. Adv. Math. Commun., 5(1):1–10, 2011.

[EK97] E. Eberly and K. Kaltofen. On randomized Lanczos algorithms. In W. W.
Küchlin, editor, Proceedings of the 1997 international symposium on Symbolic
and algebraic computation (ISSAC ’97), pages 176–183. ACM, 1997.

[Eis04] D. Eisenbud. Commutative algebra with a view towards algebraic geometry,
volume 150 of Graduate Texts in Mathematics. Springer, Berlin–Heidelberg–
New York, 2004.

[ElG85] T. ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. Inform. Theory, 31:469–472, 1985.

[Eng02] A. Enge. Computing discrete logarithms in high-genus hyperelliptic Jacobians
in provably subexponential time. Math. Comp., 71:729–742, 2002.

[Eng08] A. Enge. Computing discrete logarithms in curves over finite fields. In G. L.
Mullen, D. Panario, and I. E. Shparlinski, editors, Finite Fields Appl., volume
461 of Contemp. Math., pages 119–139. AMS, 2008.

[EG02] A. Enge and P. Gaudry. A general framework for subexponential discrete
logarithm algorithms. Acta Arith., 102:83–103, 2002.

[EG07] A. Enge and P. Gaudry. An L(1/3 + ε) algorithm for the discrete logarithm
problem for low degree curves. In M. Naor, editor, Advances in Cryptol-
ogy: Proceedings of EUROCRYPT ’07, volume 4515 of LNCS, pages 379–393.
Springer, 2007.

[EGT11] A. Enge, P. Gaudry, and E. Thomé. An L(1/3) discrete logarithm algorithm
for low degree curves. J. Cryptology, 24:24–41, 2011.

[Fau99] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4).
J. Pure Appl. Algebra, 139(1):61–88, 1999.

[Fau02] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In Proceedings of the 2002 international symposium on
Symbolic and algebraic computation (ISSAC ’02), pages 75–83. ACM, 2002.

[FGHR12] J.-C. Faugère, P. Gaudry, L. Huot, and G. Renault. Using symmetries and
fast change of ordering in the index calculus for elliptic curves discrete log-
arithm. In Proceedings of the Third International Conference on Symbolic
Computation and Cryptography (SCC ’12), pages 113–118, 2012.

[FGHR13] J.-C. Faugère, P. Gaudry, L. Huot, and G. Renault. Using symmetries in
the index calculus for elliptic curves discrete logarithm. To appear in J.
Cryptology, Springer, DOI: 10.1007/s00145-013-9158-5, 2013.

[FGLM93] J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of
zero-dimensional Gröbner bases by change of ordering. J. Symbolic Comput.,
16(4):329–344, 1993.

[FPPR12] J.-C. Faugère, L. Perret, C. Petit, and G. Renault. Improving the com-
plexity of index calculus algorithms in elliptic curves over binary fields. In

References 115

D. Pointcheval and T. Johansson, editors, Advances in Cryptology: Proceed-
ings of EUROCRYPT ’12, volume 7237 of LNCS, pages 27–44. Springer,
2012.

[FHLS13] A. Faz-Hernández, P. Longa, and A. H. Sánchez. Efficient and secure al-
gorithms for GLV-based scalar multiplication and their implementation on
GLV-GLS curves. Available at http://eprint.iacr.org/2013/158, 2013.

[Fre99] G. Frey. Applications of arithmetical geometry to cryptographic construc-
tions. In Proceedings of the 5th International Conference on Finite Fields
and Applications, pages 128–161. Springer, 1999.

[FR94] G. Frey and H. Rück. A remark concerning m-divisibility and the discrete
logarithm in the divisor class group of curves. Math. Comp., 62:865–874,
1994.

[Ful08] W. Fulton. Algebraic Curves. An Introduction to Algebraic Geometry. Avail-
able at http://www.math.lsa.umich.edu/~wfulton, 2008.

[GL09] S. D. Galbraith and X. Lin. Computing pairings using x-coordinates only.
Des. Codes Crytogr., 50(3):305–324, 2009.

[GLS11] S. D. Galbraith, X. Lin, and M. Scott. Endomorphisms for faster elliptic
curve cryptography on a large class of curves. J. Cryptology, 24(3):446–469,
2011.

[GS99] S. D. Galbraith and N. P. Smart. A cryptographic application of Weil descent.
In M. Walker, editor, Cryptography and Coding. Proceedings of the 7th IMA
International Conference, volume 1746 of LNCS, pages 191–200. Springer,
1999.

[GS06] S. D. Galbraith and B. A. Smith. Discrete logarithms in generalized Jacobians.
Available at http://uk.arxiv.org/abs/math.NT/0610073, 2006.

[GLV01] R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Faster point multiplication
on elliptic curves with efficient endomorphisms. In J. Kilian, editor, Advances
in Cryptology: Proceedings of CRYPTO ’01, volume 2139 of LNCS, pages
190–200. Springer, 2001.

[Gau00] P. Gaudry. An algorithm for solving the discrete log problem on hyperel-
liptic curves. In B. Preneel, editor, Advances in Cryptology: Proceedings of
EUROCRYPT ’00, volume 1807 of LNCS, pages 19–34. Springer, 2000.

[Gau04] P. Gaudry. Discrete logarithm in elliptic curves over extension fields of
small degree, Talk at the Workshop on Elliptic Curve Cryptography in
Bochum, Germany. Available at http://cacr.uwaterloo.ca/conferences/
2004/ecc2004/slides.html, 2004.

[Gau07] P. Gaudry. Fast genus 2 arithmetic based on Theta functions. J. Math.
Cryptol., 1:243–265, 2007.

[Gau09] P. Gaudry. Index calculus for abelian varieties of small dimension and the
elliptic curve discrete logarithm problem. J. Symbolic Comput., 44(12):1690–
1702, 2009.

[GHS02] P. Gaudry, F. Hess, and N.P. Smart. Constructive and destructive facets of
Weil descent. J. Cryptology, 15(1):19–46, 2002.

[GS12] P. Gaudry and E. Schost. Genus 2 point counting over prime fields. J.
Symbolic Comput., 47(4):368–400, 2012.

http://eprint.iacr.org/2013/158
http://www.math.lsa.umich.edu/~wfulton
http://uk.arxiv.org/abs/math.NT/0610073
http://cacr.uwaterloo.ca/conferences/2004/ecc2004/slides.html
http://cacr.uwaterloo.ca/conferences/2004/ecc2004/slides.html

116 References

[GTTD07] P. Gaudry, E. Thomé, N. Thériault, and C. Diem. A double large prime
variation for small genus hyperelliptic index calculus. Math. Comp., 76:475–
492, 2007.

[GvzG99] J. Gerhard and J. von zur Gathen. Modern Computer Algebra. Cambridge
University Press, Cambridge, 1999.

[GGMZ13a] F. Göloğlu, R. Granger, G. McGuire, and J. Zumbrägel. On the function field
sieve and the impact of higher splitting probabilities: Application to discrete
logarithms in F21971 . To appear in Proceedings of CRYPTO ’13, available at
http://eprint.iacr.org/2013/074, 2013.

[GGMZ13b] F. Göloğlu, R. Granger, G. McGuire, and J. Zumbrägel. Solving a 6120-bit
DLP on a desktop computer. To appear in Proceedings of SAC ’13, available
at http://eprint.iacr.org/2013/306, 2013.

[GH99] G. Gong and L. Harn. Public-key cryptosystems based on cubic finite field
extensions. IEEE Trans. Inform. Theory, 45(7):2601–2605, 1999.

[Gor93] D. M. Gordon. Discrete logarithms in GF(p) using the number field sieve.
SIAM J. Discrete Math., 6(1):124–138, 1993.

[Gor11] E. Gorla. Torus-based cryptography. In S. Jajodia and H. v. Tilborg, editors,
Encyclopedia of Cryptography, pages 1306–1308. Springer, Berlin–Heidelberg–
New York, 2nd edition, 2011.

[GJV10] R. Granger, A. Joux, and V. Vitse. New timings for oracle-assisted
SDHP on the IPSEC Oakley ‘well known group’ 3 curve. NM-
BRTHRY list, available at https://listserv.nodak.edu/cgi-bin/

wa.exe?A2=ind1007&L=NMBRTHRY&P=R156&1=NMBRTHRY&9=A&J=on&d=No+

Match%3BMatch%3BMatches&z=4, 2010.

[GV05] R. Granger and F. Vercauteren. On the discrete logarithm problem on al-
gebraic tori. In V. Shoup, editor, Advances in Cryptology: Proceedings of
CRYPTO ’05, volume 3621 of LNCS, pages 66–85. Springer, 2005.

[GS] D. R. Grayson and M. E. Stillman. Macaulay2, a software system for research
in algebraic geometry. Available at www.math.uiuc.edu/Macaulay2.

[HSS01] F. Hess, G. Seroussi, and N. P. Smart. Two topics in hyperelliptic cryptog-
raphy. In S. Vaudenay and A. M. Youssef, editors, Proceedings of SAC ’01,
volume 2259 of LNCS, pages 181–189. Springer, 2001.

[Jel13] H. Jeljeli. Accelerating iterative SpMV for discrete logarithm problem using
GPUs. Available at http://hal.inria.fr/hal-00734975, 2013.

[Jel14] H. Jeljeli. Resolution of linear algebra for the discrete logarithm problem
using GPU and multi-core architectures. Available at http://hal.inria.

fr/hal-00946895, 2014.

[Jou00] A. Joux. A one round protocol for tripartite Diffie–Hellman. In W. Bosma,
editor, Algorithmic Number Theory (ANTS IV), volume 1838 of LNCS, pages
385–393. Springer, 2000.

[Jou13a] A. Joux. Faster index calculus for the medium prime case: Application to
1175-bit and 1425-bit finite fields. In T. Johansson and P. Nguyen, editors,
Advances in Cryptology: Proceedings of EUROCRYPT ’13, volume 7881 of
LNCS, pages 177–193. Springer, 2013.

http://eprint.iacr.org/2013/074
http://eprint.iacr.org/2013/306
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind1007&L=NMBRTHRY&P=R156&1=NMBRTHRY&9=A&J=on&d=No+Match%3BMatch%3BMatches&z=4
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind1007&L=NMBRTHRY&P=R156&1=NMBRTHRY&9=A&J=on&d=No+Match%3BMatch%3BMatches&z=4
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind1007&L=NMBRTHRY&P=R156&1=NMBRTHRY&9=A&J=on&d=No+Match%3BMatch%3BMatches&z=4
www.math.uiuc.edu/Macaulay2
http://hal.inria.fr/hal-00734975
http://hal.inria.fr/hal-00946895
http://hal.inria.fr/hal-00946895

References 117

[Jou13b] A. Joux. A new index calculus algorithm with complexity L(1/4 + o(1)) in
very small characteristic. To appear in Proceedings of SAC ’13, available at
http://eprint.iacr.org/2013/095, 2013.

[JL02] A. Joux and R. Lercier. The function field sieve is quite special. In C. Fieker
and D. R. Kohel, editors, Algorithmic Number Theory (ANTS V), volume
2369 of LNCS, pages 431–445. Springer, 2002.

[JL03] A. Joux and R. Lercier. Improvements to the general number field sieve for
discrete logarithms in prime fields. A comparison with the Gaussian integer
method. Math. Comp., 72(242):953–976, 2003.

[JL06] A. Joux and R. Lercier. The function field sieve in the medium prime case. In
S. Vaudenay, editor, Advances in Cryptology: Proceedings of EUROCRYPT
’06, volume 4004 of LNCS, pages 254–270. Springer, 2006.

[JV11] A. Joux and V. Vitse. A variant of the F4 algorithm. In Topics in cryptology
CT-RSA 2011, volume 6558 of LNCS, pages 356–375. Springer, 2011.

[JV12] A. Joux and V. Vitse. Elliptic curve discrete logarithm problem over small
degree extension fields. Application to the static Diffie-Hellman problem on
E(Fq5). To appear in J. Cryptology, Springer, DOI: 10.1007/s00145-011-9116-
z, 2012.

[Kob87] N. Koblitz. Elliptic curve cryptosystems. Math. Comp., 48:203–209, 1987.

[Kob89] N. Koblitz. Hyperelliptic cryptosystems. J. Cryptology, 1(3):139–150, 1989.

[Kob91] N. Koblitz. CM-curves with good cryptographic properties. In J. Feigenbaum,
editor, Advances in Cryptology: Proceedings of CRYPTO ’91, volume 576 of
LNCS, pages 179–287. Springer, 1991.

[KR00] M. Kreuzer and L. Robbiano. Computational Commutative Algebra 1.
Springer, Berlin–Heidelberg–New York, 2000.

[KR05] M. Kreuzer and L. Robbiano. Computational Commutative Algebra 2.
Springer, Berlin–Heidelberg–New York, 2005.

[LO90] B. A. LaMacchia and A. M. Odlyzko. Solving large sparse linear systems
over finite fields. In A. J. Menezes and S. A. Vanstone, editors, Advances in
Cryptology: Proceedings of CRYPTO ’90, volume 537 of LNCS, pages 109–
133. Springer, 1990.

[LW54] S. Lang and A. Weil. Number of points of varieties in finite fields. Amer. J.
Math., 76(4):819–827, 1954.

[Lan01] T. Lange. Efficient Arithmetic on Hyperelliptic Curves. PhD thesis, Uni-
verität GHS Essen, Available at http://www.hyperelliptic.org/tanja/

preprints.html, 2001.

[Lan04a] T. Lange. Montgomery addition for genus two curves. In D. Buell, editor,
Algorithmic Number Theory (ANTS VI), volume 3076 of LNCS, pages 309–
317. Springer, 2004.

[Lan04b] T. Lange. Trace zero subvarieties of genus 2 curves for cryptosystem. Ra-
manujan Math. Soc., 19(1):15–33, 2004.

[Lan05] T. Lange. Formulae for arithmetic on genus 2 hyperelliptic curves. Appl.
Algebra Engrg. Comm. Comput., 15:295–328, 2005.

http://eprint.iacr.org/2013/095
http://www.hyperelliptic.org/tanja/preprints.html
http://www.hyperelliptic.org/tanja/preprints.html

118 References

[LS04] T. Lange and M. Stevens. Efficient doubling for genus two curves over binary
fields. In H. Handschuh and M. A. Hasan, editors, Proceedings of SAC ’04,
volume 3375 of LNCS, pages 170–181. Springer, 2004.

[Laz83] D. Lazard. Gröbner bases, Gaussian elimination and resolution of systems of
algebraic equations. In Proceedings of EUROCAL ’83, volume 162 of LNCS,
pages 146–156. Springer, 1983.

[LV00] A. K. Lenstra and E. R. Verheul. The XTR public key system. In M. Bellare,
editor, Advances in Cryptology: Proceedings of CRYPTO ’00, volume 1880 of
LNCS, pages 1–19. Springer, 2000.

[LS12] P. Longa and F. Sica. Four-dimensional Gallant–Lambert–Vanstone scalar
multiplication. In X. Wang and K. Sako, editors, Advances in Cryptol-
ogy: Proceedings of ASIACRYPT ’12, volume 7658 of LNCS, pages 718–739.
Springer, 2012.

[Map] Maplesoft, a division of Waterloo Maple Inc. Maple 16 ™. Waterloo, Ontario.

[Mau94] U. Maurer. Towards the equivalence of breaking the Diffie–Hellman proto-
col and computing discrete logarithms. In Y. Desmedt, editor, Advances in
Cryptology: Proceedings of CRYPTO ’94, volume 839 of LNCS, pages 271–
281. Springer, 1994.

[MM82] E. W. Mayr and A. R. Meyer. The complexity of the word problems for
commutative semigroups and polynomial ideals. Adv. Math., 46:305–329,
1982.

[MOV93] A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve logarithms
to logarithms in a finite field. IEEE Trans. Inform. Theory, 39:1639–1646,
1993.

[MWZ98] A. Menezes, Y. Wu, and R. Zuccherato. An elementary introduction to hy-
perelliptic curves. Appendix in Algebraic Aspects of Cryptography by N.
Koblitz, pages 155–178. Springer, Berlin–Heidelberg–New York, 1998.

[Mil85] V. S. Miller. Use of elliptic curves in cryptography. In A. J. Menezes and
S. A. Vanstone, editors, Advances in Cryptology: Proceedings of CRYPTO
’85, volume 218 of LNCS, pages 417–426. Springer, 1985.

[Mil04] V. S. Miller. The Weil pairing, and its efficient calculation. J. Cryptology,
17(4):235–261, 2004.

[MW10] A. Montes and M. Wimber. Gröbner bases for polynomial systems with
parameters. J. Symbolic Comput., 45(12):1391–1425, 2010.

[Mon87] P. L. Montgomery. Speeding the Pollard and elliptic curve methods of fac-
torization. Math. Comp., 48(177):243–264, 1987.

[Nag04] K. Nagao. Improvement of Thériault algorithm of index calculus of Jacobian
of hyperelliptic curves of small genus. Available at http://eprint.iacr.

org/2004/161, 2004.

[Nag10] K. Nagao. Decomposition attack for the Jacobian of a hyperelliptic curve
over an extension field. In G. Hanrot, F. Morain, and E. Thomé, editors,
Algorithmic Number Theory (ANTS IX), volume 6197 of LNCS, pages 285–
300. Springer, 2010.

[Nat94] National Institute of Standards and Technology. Digital signature standard.
Federal Information Processing Standard (FIPS) Publication 186, 1994.

http://eprint.iacr.org/2004/161
http://eprint.iacr.org/2004/161

References 119

[Nau99] N. Naumann. Weil-Restriktion abelscher Varietäten. Master’s the-
sis, Univerität GHS Essen, Available at http://web.iem.uni-due.de/ag/

numbertheory/dissertationen, 1999.

[Nec94] V. I. Nechaev. On the complexity of a deterministic algorithm for a discrete
logarithm. Math. Zametki, 55:91–101, 1994.

[OLAR13] T. Oliveira, J. López, D. F. Aranha, and F. Rodríguez-Henríquez. Lambda
coordinates for binary elliptic curves. In G. Bertoni and J.-S. Coron, editors,
Cryptographic Hardware and Embedded Systems – CHES 2013, volume 8086
of LNCS, pages 311–330. Springer, 2013.

[PQ12] C. Petit and J. Quisquater. On polynomial systems arising from a Weil de-
scent. In X. Wang and K. Sako, editors, Advances in Cryptology: Proceedings
of ASIACRYPT ’12, volume 7658 of LNCS, pages 451–466. Springer, 2012.

[PH78] S. C. Pohlig and M. E. Hellman. An improved algorithm for computing log-
arithms over GF(p) and its cryptographic significance. IEEE Trans. Inform.
Theory, 24:106–110, 1978.

[Pol78] J. M. Pollard. Monte Carlo methods for index computation (mod p). Math.
Comp., 32:918–924, 1978.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public key cryptosystems. Commun. ACM, 21:120–126, 1978.

[RS02] K. Rubin and A. Silverberg. Supersingular abelian varieties in cryptology.
In M. Yung, editor, Advances in Cryptology: Proceedings of CRYPTO ’02,
volume 2442 of LNCS, pages 336–353. Springer, 2002.

[RS03] K. Rubin and A. Silverberg. Torus-based cryptography. In D. Boneh, editor,
Advances in Cryptology: Proceedings of CRYPTO ’03, volume 2729 of LNCS,
pages 349–365. Springer, 2003.

[RS09] K. Rubin and A. Silverberg. Using abelian varieties to improve pairing-based
cryptography. J. Cryptology, 22(3):330–364, 2009.

[SOK01] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing over
elliptic curve (in Japanese). Presented at The 2001 Symposium on Cryptog-
raphy and Information Security, Oiso, Japan, 2001.

[Sch02] O. Schirokauer. The special function field sieve. SIAM J. Discrete Math.,
16:81–98, 2002.

[Sch89] C.-P. Schnorr. Efficient identification and signatures for smart cards. In
G. Brassard, editor, Advances in Cryptology: Proceedings of CRYPTO ’89,
volume 435 of LNCS, pages 239–252, Berlin–Heidelberg–New York, 1989.
Springer.

[Sch85] R. Schoof. Elliptic curves over finite fields and the computation of square
roots mod p. Math. Comp., 44(170):483–494, 1985.

[Sem04] I. Semaev. Summation polynomials of the discrete logarithm problem on
elliptic curves. Available at http://eprint.iacr.org/2004/031, 2004.

[ST13] M. Shantz and E. Teske. Solving the elliptic curve discrete logarithm problem
using Semaev polynomials, Weil descent and Gröbner basis methods – an
experimental study. Available at http://eprint.iacr.org/2013/596, 2013.

http://web.iem.uni-due.de/ag/numbertheory/dissertationen
http://web.iem.uni-due.de/ag/numbertheory/dissertationen
http://eprint.iacr.org/2004/031
http://eprint.iacr.org/2013/596

120 References

[Sho97] V. Shoup. Lower bounds for discrete logarithms and related problems. In
W. Fumy, editor, Advances in Cryptology: Proceedings of EUROCRYPT ’97,
volume 1233 of LNCS, pages 256–266. Springer, 1997.

[Sil05] A. Silverberg. Compression for trace zero subgroups of elliptic curves. Trends
Math., 8:93–100, 2005.

[Sil09] J. H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate
Texts in Mathematics. Springer, Berlin–Heidelberg–New York, second edition,
2009.

[SS95] P. Smith and C. Skinner. A public-key cryptosystem and a digital signa-
ture system based on the Lucas function analogue to discrete logarithms. In
J. Pieprzyk and R. Safavi-Naini, editors, Advances in Cryptology: Proceedings
of ASIACRYPT ’94, volume 917 of LNCS, pages 357–364. Springer, 1995.

[Sta04] C. Stahlke. Point compression on Jacobians of hyperelliptic curves over Fq.
Available at http://eprint.iacr.org/2004/030, 2004.

[Sti93] H. Stichtenoth. Algebraic Function Fields and Codes. Springer, Berlin–
Heidelberg–New York, 1993.

[Sti06] D. R. Stinson. Cryptography. Theory and Practice. Discrete Mathematics and
its Applications. Chapman & Hall/CRC, Boca Raton, third edition, 2006.

[Thé03] N. Thériault. Index calculus attack for hyperelliptic curves of small genus. In
C. S. Laih, editor, Advances in Cryptology: Proceedings of ASIACRYPT ’03,
volume 2894 of LNCS, pages 75–92. Springer, 2003.

[Tra88] C. Traverso. Gröbner trace algorithms. In Proceedings of the 1988 interna-
tional symposium on Symbolic and algebraic computation (ISSAC ’88), vol-
ume 358 of LNCS, pages 125–138. Springer, 1988.

[VJS14] M. D. Velichka, M. J. Jacobson, Jr., and A. Stein. Computing discrete log-
arithms in the Jacobian of high-genus hyperelliptic curves over even charac-
teristic finite fields. Math. Comp., 83(286):935–963, 2014.

[Was08] L. C. Washington. Elliptic Curves: Number Theory and Cryptography. Dis-
crete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton–
London–New York, second edition, 2008.

[Wat69] W. C. Waterhouse. Abelian varieties over finite fields. Ann. Sci. Éc. Norm.
Supér. (4), 2(4):521–560, 1969.

[Wei58] A. Weil. The field of definition of a variety. Amer. J. Math., 78:509–524,
1958.

[Wei01] A. Weimerskirch. The application of the Mordell–Weil group to
cryptographic systems. Master’s thesis, Worcester Polytechnic Insti-
tute, Available at http://www.emsec.rub.de/media/crypto/attachments/

files/2010/04/ms_weika.pdf, 2001.

[Wei92] V. Weispfenning. Comprehensive Gröbner bases. J. Symbolic Comput., 14:1–
29, 1992.

[Wie86] D. H. Wiedemann. Solving sparse linear equations over finite fields. IEEE
Trans. Inform. Theory, IT-32(1):54–62, 1986.

[YC04a] B.-Y. Yang and J.-M. Chen. All in the XL family: Theory and practice. In
C. Park and S. Chee, editors, Information Security and Cryptology (ICISC
’04), volume 3506 of LNCS, pages 67–86. Springer, 2004.

http://eprint.iacr.org/2004/030
http://www.emsec.rub.de/media/crypto/attachments/files/2010/04/ms_weika.pdf
http://www.emsec.rub.de/media/crypto/attachments/files/2010/04/ms_weika.pdf

References 121

[YC04b] B.-Y. Yang and J.-M. Chen. Theoretical analysis of XL over small fields. In
H. Wang, J. Pieprzyk, and V. Varadharajan, editors, Information Security
and Privacy (ACISP ’04), volume 3108 of LNCS, pages 277–288. Springer,
2004.

[YCC04] B.-Y. Yang, J.-M. Chen, and N. T. Courtois. On asymptotic security esti-
mates in XL and Gröbner bases-related algebraic cryptanalysis. In J. López,
S. Qing, and E. Okamoto, editors, Information and Communications Security
(ICICS ’04), volume 3269 of LNCS, pages 401–413. Springer, 2004.

[YCY13] J. Y.-C. Yeh, C.-M. Cheng, and B.-Y. Yang. Operating degrees for XL vs.
F4/F5 for genericMQ with number of equations linear in that of variables. In
M. Fischlin and S. Katzenbeisser, editors, Number Theory and Cryptography
(Buchmann Festschrift), volume 8260 of LNCS, pages 19–33. Springer, 2013.

Articles

The following articles include material from this thesis.

E. Gorla and M. Massierer. Point compression for the trace zero subgroup over a small
degree extension field. To appear in Des. Codes Cryptogr., Springer, DOI: 10.1007/s10623-
014-9921-0, 2014.

E. Gorla and M. Massierer. An optimal representation for the trace zero variety. Preprint,
2013.

E. Gorla and M. Massierer. Index calculus in the trace zero variety. Preprint, 2014.

123

Curriculum vitae

Personal information. Maike Kerstin Massierer, born in Nürnberg (Germany)

Education.

12/2013 Ph.D. in mathematics
Universität Basel (Switzerland)
Thesis: Trace zero varieties in cryptography: optimal representation and index calculus

Advisor: Prof. Dr. Elisa Gorla

08/2009 Diplom (equivalent to M.Sc.) in mathematics (major) and computer science (minor)
Technische Universität Berlin (Germany)
Thesis: Class field theory for global function fields and applications

Advisor: Prof. Dr. Florian Heß

12/2006 Study abroad program equivalent to the degree
B.Sc. (Hons) in pure mathematics and computer science
University of New South Wales, Sydney (Australia)
Thesis: Provably secure cryptographic hash functions

Advisors: Dr. Richard Buckland and Prof. Dr. James Franklin

04/2005 Vordiplom in mathematics (major) and computer science (minor)
Friedrich–Alexander–Universität Erlangen–Nürnberg (Germany)

07/2003 Abitur
Goethe Gymnasium Ludwigsburg (Germany)

Talks. SIAM conference on applied algebraic geometry, Colorado State University (USA), Work-
shop algebra and geometry, Universität Bern (Switzerland), Basel–Dublin–Zürich workshop on
crypto and coding, Universität Zürich (Switzerland), CrossFyre, Katholieke Universiteit Leuven
(Belgium), 8th Swiss graduate colloquium, Universität Basel (Switzerland); seminars at Université
de Bordeaux (France), École polytechnique (France), INRIA Nancy (France), Université de Ver-
sailles (France), Universität Oldenburg (Germany), Universität Zürich (Switzerland), Universität
Basel (Switzerland), Technische Univerität Berlin (Germany)

Workshops, conferences, schools. ECC 2013, Katholieke Universiteit Leuven (Belgium),
Tutorials in the mountains on numerical algebraic geometry, Colorado State University (USA),
Oberwolfach seminar on algorithms for complex multiplication over finite fields, Mathematisches
Forschungsinstitut Oberwolfach (Germany), Trends in coding theory, Ascona (Switzerland), Game
theory, evolutionary game theory, and learning in games, Les Diablerets (Switzerland), ECRYPT
II summer school on tools, Mykonos (Greece), SP-ASCrypto, Universidade Estadual de Cam-
pinas (Brazil), ECC 2011, INRIA Nancy (France), ACAGM summer school, Katholieke Univer-
siteit Leuven (Belgium), ECC 2010, Microsoft Research, Redmond (USA), b-it summer school
on cryptography, Bonn–Aachen International Center for Information Technology (Germany), 10.
Kryptotag, Technische Universität Berlin (Germany), ECRYPT II winter school on mathematical
foundations in cryptography, École Polytechnique Fédérale de Lausanne (Switzerland), ECM-EM
RNSA workshop on recent advances in stream ciphers and hash functions, Queensland University
of Technology (Australia)

125

	List of algorithms
	List of tables
	List of notation
	Acknowledgements
	Introduction
	Preliminaries
	Public key cryptography and the discrete logarithm problem
	Elliptic and hyperelliptic curves
	Weil restriction
	The trace zero variety
	Optimal representation
	Gröbner bases
	Index calculus

	Equations for the trace zero subgroup
	Equations for the trace zero variety
	Explicit equations for n=2
	Explicit equations for n=3
	Explicit equations for n=5

	Frey's equations for n=3
	The Semaev equation
	Explicit equations for n=3
	Explicit equations for n=5

	The symmetrized Semaev equation
	Explicit equations for n=3
	Explicit equations for n=5

	Comparison

	Point compression over small degree extension fields
	Naumann's representation
	A representation from the symmetrized Semaev polynomial
	Compression and decompression algorithms
	Group operation
	Explicit equations and comparison with other representations
	Explicit equations and comparison for n=3
	Explicit equations and comparison for n=5

	Conclusions

	An optimal representation via rational functions
	An optimal representation via rational functions
	Computing the rational function
	Compression and decompression algorithms
	Explicit equations for g=2,n=3
	Timings and comparison with other representations
	Conclusions

	An optimal representation via rational functions – elliptic curves
	An optimal representation via rational functions
	Compression and decompression algorithms
	Explicit equations
	Explicit equations for g=1,n=3
	Explicit equations for g=1, n=5

	Timings and comparison with other representations

	An index calculus attack on the discrete logarithm problem
	An index calculus algorithm for the trace zero variety
	Setup
	Factor base
	Relation collection
	Linear algebra
	Individual logarithm

	Complexity analysis
	Explicit equations and experiments
	Explicit equations for n=3
	Explicit equations for n=5

	Comparison with other attacks and discussion
	Conclusions on the hardness of the DLP

	References
	Articles
	Curriculum vitae

