Skip to Main content Skip to Navigation

Hybridization of dynamic optimization methodologies

Abstract : This thesis is dedicated to sequential decision making (also known as multistage optimization) in uncertain complex environments. Studied algorithms are essentially applied to electricity production ("Unit Commitment" problems) and energy stock management (hydropower), in front of stochastic demand and water inflows. The manuscript is divided in 7 chapters and 4 parts: Part I, "General Introduction", Part II, "Background Review", Part III, "Contributions" and Part IV, "General Conclusion". This first chapter (Part I) introduces the context and motivation of our work, namely energy stock management. "Unit Commitment" (UC) problems are a classical example of "Sequential Decision Making" problem (SDM) applied to energy stock management. They are the central application of our work and in this chapter we explain main challenges arising with them (e.g. stochasticity, constraints, curse of dimensionality, ...). Classical frameworks for SDM problems are also introduced and common mistakes arising with them are be discussed. We also emphasize the consequences of these - too often neglected - mistakes and the importance of not underestimating their effects. Along this chapter, fundamental definitions commonly used with SDM problems are described. An overview of our main contributions concludes this first chapter. The second chapter (Part II) is a background review of the most classical algorithms used to solve SDM problems. Since the applications we try to solve are stochastic, we there focus on resolution methods for stochastic problems. We begin our study with classical Dynamic Programming methods to solve "Markov Decision Processes" (a special kind of SDM problems with Markovian random processes). We then introduce "Direct Policy Search", a widely used method in the Reinforcement Learning community. A distinction is be made between "Value Based" and "Policy Based" exploration methods. The third chapter (Part II) extends the previous one by covering the most classical algorithms used to solve UC's subtleties. It contains a state of the art of algorithms commonly used for energy stock management, mainly "Model Predictive Control", "Stochastic Dynamic Programming" and "Stochastic Dual Dynamic Programming". We briefly overview distinctive features and limitations of these methods. The fourth chapter (Part III) presents our main contribution: a new algorithm named "Direct Value Search" (DVS), designed to solve large scale unit commitment problems. We describe how it outperforms classical methods presented in the third chapter. We show that DVS is an "anytime" algorithm (users immediately get approximate results) which can handle large state spaces and large action spaces with non convexity constraints, and without assumption on the random process. Moreover, we explain how DVS can reduce modelling errors and can tackle challenges described in the first chapter, working on the "real" detailed problem without "cast" into a simplified model. Noisy optimisation is a key component of DVS algorithm; the fifth chapter (Part III) is dedicated to it. In this chapter, some theoretical convergence rate are studied and new convergence bounds are proved - under some assumptions and for given families of objective functions. Some variance reduction techniques aimed at improving the convergence rate of graybox noisy optimization problems are studied too in the last part of this chapter. Chapter sixth (Part III) is devoted to non-quasi-convex optimization. We prove that a variant of evolution strategy can reach a log-linear convergence rate with non-quasi-convex objective functions. Finally, the seventh chapter (Part IV) concludes and suggests some directions for future work.
Complete list of metadatas

Cited literature [95 references]  Display  Hide  Download
Contributor : Jérémie Decock <>
Submitted on : Saturday, July 2, 2016 - 11:26:01 PM
Last modification on : Friday, October 23, 2020 - 4:54:42 PM
Long-term archiving on: : Monday, October 3, 2016 - 11:07:03 AM


  • HAL Id : tel-01103935, version 1



Jérémie Decock. Hybridization of dynamic optimization methodologies. Computational Complexity [cs.CC]. Université Paris Sud - Paris XI, 2014. English. ⟨NNT : 2014PA112359⟩. ⟨tel-01103935⟩



Record views


Files downloads