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The summary
This thesis summarizes my experience in the attractive academic research of embedded

systems that started at November 2004 as a PhD student at the University of Lille1. Actually,
I prepared my PhD thesis in Computer Science in the frame of the European Interreg
project ModEasy that stands for MOdel Driven dEsign for Automotive Safety embedded
systems. In March 2008, I defended my research work entitled "Multiprocessor system-
on-chip modeling and simulation - performance and energy consumption estimation".
This experience gave me the opportunity to discover the embedded system domain that
enables innovation through intelligent products covering a large spectrum of industries
(multimedia, communication, transportation, etc.). During this period, I made pro�t of
being a member of the DaRT1 INRIA team to learn about different research areas. Indeed,
this team gathered several researchers from different backgrounds (parallel architecture,
modeling, compilation, etc.), all contributing in one project called Gaspard. At the end of
my PhD, I succeeded to ef�ciently contribute in this project by publishing with all the
team members and by presenting the Gaspardtool at FDL 2 2008 in a tutorial session. This
successful experience was my main motivation to continue in the academic research domain
adopting the topic of Dynamic recon�guration and low power design : towards self-adaptive
massively parallel embedded systems. In the following, I will detail the compelling story of my
research career path.

The birth era. In November 2004 when I joined the INRIA DaRT team-project led by Pro-
fessor Jean-Luc Dekeyser in Lille, the team was only two years old. Its main research topic
was about the co-design of System-on-Chip (SoC) for intensive signal processing applica-
tions. The main challenges addressed by this project were the following i) The de�nition of
a UML pro�le for SoC co-modeling, ii) The compilation devoted to data-parallel structures
for ef�cient mapping on multiprocessor platforms, and iii) The functional simulation using
SystemC. Based on my fundamentals in electronic domain, I linked between the research
topics of DaRT and the low level design. With the help of my supervisors, I focused on Mul-
tiprocessor System-on-Chip (MPSoC) simulation and Design Space Exploration (DSE).

In the �rst design steps, MPSoC simulation has an important impact in reducing the time
to market of the �nal product. However, MPSoC have become more and more complex and
heterogeneous. Consequently, traditional approaches for system simulation at lower levels
cannot adequately support the complexity of future MPSoC. In my PhD thesis, I proposed
a framework composed of several simulation levels. This enables early performance eva-
luation in the design �ow. The proposed framework is useful for DSE and permits to �nd
rapidly the most adequate Architecture/Application con�guration. In the �rst part of the
thesis, I presented an ef�cient simulation tool composed of three levels that offer several
performance/energy trade-offs. The three levels are differentiated by the accuracy of archi-
tectural descriptions based on the SystemC-TLM standard. In the second part, I was interes-
ted in the MPSoC energy consumption. For this, I enhanced the simulation framework with
�exible and accurate energy consumption models. Finally in the third part, a compilation
chain based on a Model Driven Engineering (MDE) approach was developed and integrated
in the Gaspard environment. This chain allows automatic SystemC code generation from

1. DaRT team-project at INRIA Lille Nord Europe (2004-2012)
2. FDL : Forum on speci�cation & Design Languages, 2008, Stuttgart, Germany
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high level MPSoC modeling.
Since 2005, I started teaching micro-architecture and assembly language for undergra-

duate students at University of Valenciennes and Hainaut-Cambrésis (UVHC).

The emergence era. After my PhD defence, I got my �rst Post-doc position at IN-
RIA Lille-Nord Europe in the frame of the FUI ("Fonds Unique Interministériel" in french)
Ter@ops project under the supervision of Professor Pierre Boulet. This project brought to-
gether the main french industrial actors in embedded systems (Thales, Thomson, EADS,
MBDA, Dassault, RENAULT, VALEO, CEA, etc.) in addition to the academic laboratories
(INRIA, ENSTA, IEF, etc.). The objective of the project was to de�ne a multi-domain massi-
vely parallel architecture and its corresponding tools. The proposed architecture was able to
embed heterogeneous accelerators optimised for the target application domains. A design
environment was needed to optimise and to map the application on the parallel architec-
ture. Due to the experience I gained during my PhD in the �eld of embedded multiproces-
sor system design, I was invited to participate in this project. The subject of my Post-doc
dealt with automatic code generation of an execution model described with SystemC from
the standard MARTE pro�le (Model and Analysis Real-Time Embedded System). Indeed, in
the Ter@ops project a particular attention was given to the use of standards to facilitate the
interoperability between the different tools of the partners. During this work, the MARTE
pro�le was extended to be able to specify the deployment of software and hardware com-
ponents. Moreover, the toolchain developed during my thesis was modi�ed to generate a
SystemC simulation for multi-processor from the MARTE pro�le, which led to a new ver-
sion of our Gaspardtool. Despite the lack of scienti�c mobility, this Post-doc allowed me to
bene�t from several advantages. First, highlighting my PhD work in the context of an indus-
trial project. Second, making contacts with the industrial actors during the regular meetings
of the Ter@ops project. Hence, I succeeded to identify better the challenges and to expand
my knowledge in the embedded system domain.

Since October 2008, I got a second Post-doc fellowship for one year at LAMIH 3 labo-
ratory funded by the PrimaCare ANR 4 project. PrimaCare aims at designing Driver Assis-
tance System (DAS) for automotive based on Multiple Target Tracking (MTT) algorithms.
My research subject focused on the optimisation and the improvement of the MTT system
as an application speci�c System-on-Chip (SoC) implemented on FPGA. I developed a he-
terogeneous architecture (Microblaze with hardware accelerators) taking into account the
constraints of the automotive embedded system in terms of performance, low cost and relia-
bility.

During this period in addition to my research activities, I supervised several master
research students and taught embedded system design at UVHC and Lille1 at the master
level. Scienti�c dissemination was also a part of my activities by participating in the
thematic days organised by the national GdRs ("Groupe de Recherche" in french) SoC-SiP
(System-on-Chip System-in-Package) and ASR ("Architecture, Systèmes et Réseaux" in
french). As a member of the HiPEAC 5 European Network of Excellence, I participated
in the main organised events such as summer schools and conferences. In March 2009,
I contributed in the writing of the OpenPeople proposal for a request of ANR funding.

3. LAMIH : Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines UMR
CNRS/UVHC 8201

4. ANR : Agence Nationale de Recherche
5. http ://www.hipeac.net/
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OpenPeople stands for Open Power and Energy Optimization PLatform and Estimator. In
parallel, I started looking for a permanent position as an Associate Professor in France and I
succeeded to join the scienti�c staff of UVHC.

The maturity era. Since September 2009, I obtained a full-time position as an Associate
Professor at UVHC and a member of LAMIH within the DIM 6 team that gathers researchers
from different backgrounds (operational research, arti�cial intelligence, embedded systems,
etc.). For �ve years, I have been investigating, with my colleagues, this complementarity in
order to provide a satisfactory answer to the crucial design challenges of modern embed-
ded systems targeting intelligent transportation applications. I am particularly grateful to
Professor Abdelhakim Artiba (optimisation and scheduling) and Associate Professor David
Duvivier (decision making and simulation) for their fruitful collaborations on this topic (2
PhD students co-supervising, research projects, publications, etc.).

With an agreement between the UVHC and INRIA, I had the status of Associated Resear-
cher at INRIA Lille Nord Europe within the DaRT team until the end of 2012. I managed the
contributions of the team in the OpenPeople ANR project and I co-supervised the PhD thesis
of Santhosh Kumar Rethinagiri [100] entitled "System-level power estimation methodology
for MPSoC based platforms". In 2012, I also participated in the creation of the new INRIA
project-team DreamPal (Dynamic Recon�gurable Massively Parallel Architectures and Lan-
guages). The DreamPal team addresses the following topics : designing massively parallel
dynamically recon�gurable architectures, proposing execution models as well as dedicated
programming languages for them, and designing software engineering tools for those lan-
guages. I am particularly grateful to Professor Jean-Luc Dekeyser for our successful collabo-
ration on this topic (4 PhD students co-supervising, research projects, patents, publications,
etc.).

Today, some of my research works were completed (Santhosh Kumar Rethinagiri's PhD,
George Afonso's PhD, Omar Souissi's PhD) ; others are in progress (Venkatasubramanian
Viswanathan's PhD, Karim Mohamed Ali's PhD, and Wissem Chouchene's PhD) or still at
an exploratory stage. The obtained results are currently relevant enough to contribute to the
maturity of my research activity. I am deeply indebted to all my PhD and Master students,
and Post-doc colleagues, who contributed actively to the different results summarized in
this document.

The content of this document mainly relies on the results of three PhDs : Santhosh Kumar
Rethinagiri (December 2009 - March 2013), George Afonso [49] (August 2010 - July 2013),
and Venkatasubramanian Viswanathan (February 2012 - January 2015). While for the PhD
of Omar Souissi (October 2011 - September 2014) is targeting scheduling techniques for path
planning on a high performance heterogeneous CPU/FPGA architecture. But for the content
coherence, the results of this thesis are not included in this document.

During this period, signi�cant highlights can be cited : co-supervising of three gra-
duated PhD students, patents, publishing journal papers in IEEE transactions and ACM
transactions, acquiring research contracts with ANR (Agence Nationale de Recherche)
and industrial partners (Airbus Group, Airbus Helicopters, Nolam Embedded Systems,
etc.), winning best paper award, being a member of the steering committee of GdR ASR,
participating in the organization of scienti�c conferences, being responsible for technology
transfer action with Airbus Helicopters, etc.

6. DIM (Decision, Interaction, Mobility) : http ://www.univ-valenciennes.fr/LAMIH/en/dim-overview
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Rationale of this synthesis document. This document is a summary of my scienti�c
contributions since my Post-doc. It aims to show coherently how my research activities on
the design of dynamic recon�gurable system and low power design are leading towards
self-adaptive massively parallel embedded systems.

Modern embedded applications are becoming more and more sophisticated and resource
demanding. The concerned applications covers several domains such as avionic, multime-
dia, etc. The computation requirements for such systems are very important in order to
meet real-time constraints and high quality of services. Furthermore, power consumption
becomes a critical pre-design metric in complex embedded systems. Runtime adaptivity
according to the system requirements or the environment variations is also a challenging
characteristic which brings additional complexity to the design �ow.

For addressing the above challenges, my research works are directed towards designing
parallel and dynamic architecture to deal with the potential parallelism and the adaptivity
inherent from the application. Mainly, we rely on multiprocessor and recon�gurable systems
that could offer better power ef�ciency. According to the application context, the architecture
can be homogeneous or heterogeneous to satisfy a speci�c need or to optimise better some
parameters. In each step of our work, we de�ned the ef�cient dynamic execution model
that handles the heterogeneity and the parallelism concepts. To cope with the development
complexity, we proposed the ef�cient design methodology and we provided the appropriate
framework regarding the application domain. This complexity is reduced by the means of
Electronic System Level (ESL) tools such as simulator, power estimator, and prototyping
environment.

How to consider the contents of this document. All the results reported in Chapters 2,
3 and 4 have been already published or under revision in peer-reviewed journals and confe-
rences. In order to easily assess my achievements, a section nameddiscussionis provided
at the end of each chapter. Therefore, a major part of the presented material comes from
the related publications. Most of my papers cited as references in this document are online
available on the websites of editors or on my website.
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1.1 Context of the work

Sophisticated embedded systems are becoming wide spread today in aerospace, automo-
tive, avionic, and defence industries. They are responsible for control, collision avoidance,
driver assistance, target tracking, navigation and communications, amongst other functions.
According to the characteristics of these functionalities, high computation rates should be
well-delivered while carrying-out intensive signal processing. Furthermore, these embed-
ded systems often operate in uncertain environments. So, they should adapt their functio-
ning mode according to the environmental conditions to provide reliability, fault tolerance,
deterministic timing guarantees, and energy ef�ciency. Undoubtedly, the essential feature of
systems to recon�gure themselves (at the hardware or the software level) at run-time comes
with additional complexity in the different design �ow steps.

The design of these sophisticated embedded systems calls for several teams with dif-
ferent domain experts covering electronics, architecture, software engineering, etc. We are in
a new era promoting for the dynamicity of heterogeneous and parallel processing . Academic
and industrial researchers must address the challenges inherent from this new trend at all
the design steps. The scope of my research topics covers mainly the architecture, the exe-
cution model, and the design methodology. This document brings some answer elements
to address such challenges. It presents a summary of my contributions since March 2008
on dynamic recon�guration and low power design : towards self-adaptive massively pa-
rallel embedded systems. These works was achieved successively at the LAMIH laboratory
and INRIA Lille-Nord Europe in collaborations with colleagues from different universities
and countries. This introductory chapter is organized as follows : Section 1.2 presents the
major trends and challenges in embedded system design according to my research topics.
Section 1.3 summarizes my scienti�c contributions and Section 1.4 describes the outline of
the document.

1.2 Trends and challenges

1.2.1 Parallelism and heterogeneity for energy ef�ciency

In the �rst decade of the 21st century, computing systems have shifted from a PC-centric
approach to a highly integrated System-on-Chip (SoC) making pro�t from the gigantic num-
ber of transistors offered by deep submicron technologies. SoC may contain processors, hie-
rarchical memories, dedicated accelerators, peripherals, etc. As example of recent realization
(2013), we quote the Microsoft Xbox One SoC that integrates 5 Billion transistors in 363 mm2

die using a process of 28 nm which offers a performance of 1.31 TFlops. A typical usage of
SoC is in the area of embedded systems. In the last decade, a second observation had also
marked computing systems ; the end of the dominance of the single microproessor archi-
tecture. Indeed, the growth in the performance for a single-processor stopped because the
increase in the clock speed hit the major constraint of power consumption limits . This issue
is inherent from the Complementary Metal-Oxide Semiconductor (CMOS) technology lar-
gely used in Integrated Circuit (IC) manufacturing [52]. By 2004, the long-fruitful strategy
of scaling down the size of CMOS circuits, reducing the supply voltage, and increasing the
clock rate had become infeasible [87]. Recently, the ITRS [97] and HiPEAC [83] roadmaps
promote that power de�nes performance and power is the wall .
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To overcome this obstacle, a new era, in which parallelism dominates the cutting-edge
of embedded architecture, appeared [87]. As a result, the whole computing domain is being
forced to switch from a focus on performance-centric sequential computation to energy-
ef�cient parallel computation. This switch is driven by the energy ef�ciency of using many
slower parallel processors instead of a single high-speed one [83]. This has led to the design
of Multiprocessor System-on-Chip (MPSoC) that integrates multiple cores or processors on
a single die [143]. As an example of commercial platforms based on such architecture, we
quote the Texas Instrument OMAP4 platform 7 embedding a dual core ARM Cortex A9 MP-
core processor and the NVIDIA Tegra 8 processor integrating a quad-core ARM Cortex A15.
Kalray Incorporation 9 proposes the Multi-Purpose Processor Array (MPPA) that integrates
256 processors onto a single silicon chip through a high bandwidth Network on Chip. Un-
fortunately, these trends are adequate only for a given range of applications particularly in
systematic signal processing domain due to the general purpose processor used in theses
architectures. This was not enough for other applications where more performance and hi-
gher energy-ef�ciency are required. This has led to the combination of many specialized
computing nodes to increase ef�ciency. Hence, hardware designers switch to the heteroge-
neous era. For instance, the the Microsoft Xbox One SoC features two AMD quad-core Jaguar
x86 modules and 14 AMD GCN CUs (Graphics Core Next Compute Units) with 64 stream
processors per unit. P2012 [64] is another example of SoC based on multiple globally asyn-
chronous, locally synchronous (GALS) clusters featuring up to 16 processors. Each processor
can be customized at the design time with modular extensions (vector units, �oating point
units, special purpose instructions). Clusters can easily become heterogeneous computing
engines thanks to the integration of coarse grained hardware accelerators.

In parallel, FPGA recon�gurable circuits have emerged as a privileged target platform
to implement intensive signal processing applications. Indeed, FPGAs have the bene�ts of
high speed and adaptability to the application constraints with a reduced performance per
watt comparing to the General Purpose Processors (GPP). They offer an inexpensive and fast
programmable hardware on some of the most advanced fabrication processes. Furthermore,
FPGA technology enables today to implement massively parallel architectures due to the
huge number of programmable logic fabrics available on the chip. Hardware designers are
directed more and more towards heterogeneous architectures that gather a variable num-
ber of processors (hardcore or softcore) coupled with specialized hardware accelerators in
order to address speci�c application constraints (timing constraints, power consumption,
etc.). Such architectures can be customized at runtime using the Dynamic Partial Recon�gu-
ration (DPR) feature which favours the recon�gurable technology to be a potential solution
in order to implement adaptive embedded systems. The Xilinx Zynq 7000 Extensible Pro-
cessing Platform (EPP) is an example of such circuit embedding a dual core ARM Cortex A9
processor and tens of thousands of programmable gate arrays. The Zynq 7000 combines the
software programmability of a processor with the hardware programmability of an FPGA,
resulting in unrivaled levels of system performance, �exibility, scalability while providing
system bene�ts in terms of power reduction, lower cost with fast time to market.

With the management of the parallelism and dynamicity intrinsic in the application,
the system designer will have several implementation choices such as sequential software,

7. http ://www.ti.com/
8. http ://www.nvidia.fr/object/tegra-k1-processor-fr.html
9. http ://www.kalray.eu/
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parallel software, hardware/software, parallel hardware, and dynamic hardware. The ade-
quate choice will depend mainly on the application requirements in terms of performance
and energy consumption. We must invest in research and development of parallel and hete-
rogeneous power-ef�cient systems driven by applications. Dynamicity at the hardware or
the software level is a characteristic of these systems . This research must include the de�ni-
tion of an appropriate execution model, an ef�cient energy-aware design methodology, and
their related tools.

1.2.2 Design methodology and development tools

The trends towards parallel and heterogeneous power-ef�cient systems requires the de-
�nition of new execution and programming models, revisiting the design methodology and
the development of CAD tools. Dynamicity brings an additional complexity in all the design
layers.

For the programming model , the existing applications are not written in a way to
take the advantage of parallel and heterogeneous architectures. Software developers must
re-design large parts of their applications at astronomical cost. This was the case for the
P2012 [64] SoC while programming heterogeneous clusters which makes the software deve-
lopment of such systems very dif�cult. Designers must use standard OpenCL and OpenMP
parallel codes as well as proprietary Native Programming Model (NPM) for the software
part and Hardware Description Language (HDL) to code hardware accelerators. There is
a need to converge towards a uni�ed programming model to express the parallelism, the
heterogeneity, and the dynamicity at the same level .

For the execution model , challenges start with the de�nition of the appropriate com-
puting nodes (Hardcore processor, Softcore processor, hardware accelerator, etc.) for a gi-
ven application using a target technology (ASIC, FPGA, etc.). Answers about generalised
vs. dedicated, sequential vs. parallel, and static vs. dynamic should be given . The runtime
system recon�guration comes also with additional questions : software or hardware recon-
�guration ? who will recon�gure (the operating system or a hardware controller), when to
con�gure ? With the new sub-micron technologies, the huge number of transistors leads to
a consumption that can not be offered by the power supply of the circuit, which imposes
only a partial use of the total capacity. Such an idea refers to the dark silicon [86] where
the system should be con�gured to exploit the strict necessary chip resources and to stay
within the power limit according to the application requirements. With the DPR feature of-
fered by FPGA technology, architectures can be customized at runtime, a recon�guration
that can be done for a subset of the system to offer a better Quality of Service (QoS), to use
ef�ciently the available resources or to minimize the power. So, resources can be activated at
the demand of the application to satisfy functional and non-functional requirements . This
new paradigm opens many opportunities for research to investigate execution models for
parallel and dynamic recon�gurable architectures and the dedicated tools used for mapping
intensive signal processing applications on these architectures.

For the design methodology , embedded systems often requires hardware/software co-
design for products that will be commercialised only with a volume of thousands or tens of
thousands of units. This small volume makes design too expensive with existing tools. To
overcome this challenge, more ef�cient and rapid design tools are needed that can reduce
the time to adapt or create new designs, particularly through Electronic System Level (ESL)
approaches that favour the reuse of Intellectual Property (IP) blocks and lead to more adap-
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tive systems. Today, minimization of power consumption drives IC design ; for this reason,
we need the development of tools for power estimation and optimisation at the system level.
Unfortunately, we are in the face of extremely challenging requirements such as a seamless
power-aware design methodology that relies on accurate and fast system power modeling
and integrates ef�cient power optimisation techniques. An early and reliable Design Space
Exploration (DSE) strategy should be de�ned to reduce the design complexity.

1.2.3 Industrial manufacturing process

In large industries (automotive, avionic, etc.), real-time embedded computing systems
are increasingly used. In the face of power wall, performance requirements and demands
for higher �exibility, hardware designers are directed towards recon�gurable and hetero-
geneous computing that offers high computation rates per watt and adaptability to the ap-
plication constraints. We highlight that the design process of embedded systems in such
industries is totally different comparing to mobile or multimedia domains. Considering re-
con�gurable computing for example in the avionic design process leads to several challenges
for system developers. Indeed, such technology should be validated along the development
cycle starting with simulation tools, passing through the test benches and �nishing with
the integration phase. These design steps should rely on common frameworks in the future
supported by cutting-edge hardware architectures. For each step, recon�gurable technology
can play an essential role to achieve better performances, more adaptive systems and cost-
effective solutions. In this perspective, it is necessary to consolidate the usual design cycle
with a solid system approach allowing to early check/validate the adequacy and the consis-
tency of the recon�gurable technology to be embedded in large industries.

The technical areas of simulation, test and integration systems are currently in an unavoi-
dable convergence path. In fact, for high performance or embedded computing, the acade-
mic and industrial researchers share the same vision about the trends towards parallel and
heterogeneous systems. We need also dynamicity in the all design process in order to sa-
tisfy speci�c functionalities of the system or to converge towards uni�ed development tools.
Energy has become the primary limiting factor in the development of all systems, whether
due to the cost of energy and cooling in large systems or due to battery life and reliability
factor in embedded devices. We join again the same challenge of Section 1.2.1, however with
different design constraints due to the application context covering high performance rather
than embedded computing. This research must include also the de�nition of an appropriate
execution model and the appropriate development tools.

1.3 Contributions

From the trends presented in Section 1.2, the nature of future embedded systems are di-
rected more and more towards parallel and heterogeneous architecture where dynamicity
will be a key feature. Within this context, my scienti�c contributions are following two main
directions as shown in Figure 1.1 : the low power design and execution models for dynami-
cally recon�gurable systems. These two directions will lead to the de�nition of our future
project about self-adaptive massively parallel embedded systems.

For the �rst direction, early we advocated for the usage of the recon�gurable techno-
logy in the industrial manufacturing process in order to validate such technology along
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the development cycle. We proposed an appropriate execution model supported by hete-
rogeneous CPU/FPGA system where dynamicity is a key feature in order to achieve better
performances, more adaptive systems and cost-effective solutions. During time, our vision
evolves in�uenced by technological ascendancy and the requirements of nowadays sophis-
ticated applications. We de�ned a new massively parallel dynamically recon�gurable ar-
chitecture execution model. For the development assessment, we conceived a Multi-FPGA
based platform that supports parallel recon�guration. Finally, we introduced the original
HoMade processor with its programming model that handles the parallelism and the dyna-
micity at the same level.

For the second direction, we focused on the design of power-ef�cient MPSoC devices by
means of the development of an ef�cient design methodology and the corresponding tools.
The target execution hardware platforms can be either homogeneous or heterogeneous while
considering general embedded processors and hardware accelerators implemented with re-
con�gurable logic fabrics. Dynamic power management techniques are also considered in
the design �ow for runtime power optimisation.

To keep a smooth transitions between ideas while targeting next generation self-
embedded systems, �rst we will expose the contribution of dynamic execution model for
avionic simulation and test as it covers high performance domain. After that, we will detail
the contributions in the �elds of the low power design and the massively parallel dyna-
mically recon�gurable execution model successively. All the contributions will help for the
de�nition of our future project as it will be detailed in Chapter 5.

1.3.1 CPU/FPGA dynamic execution model for avionic simulation and test

The ever growing competitiveness in the aerospace industry, pushes avionic stake-
holders to revisit and strengthen their methodology and tools for the Veri�cation and
Validation (V&V) design process. In recent years, the feasibility of using recon�gu-
rable hardware is being explored in the �eld of avionic, aerospace and defence applica-
tions [147] [115] [71] [134]. However, using FPGAs in such applications has its own chal-
lenges since time, space, power consumption, reliability and data integrity are highly crucial
factors. However, there is no a coherent design process that explicitly details the V&V of the
recon�gurable hardware through the different phases : simulation, test and integration.

Addressing the above challenge, we started in the last quarter of 2009 studying the de-
velopment of new design process based on cutting-edge technology. The objective of this
process is to bring reliability and competitiveness to the avionic industry. In this context,
i) we advocated for a recon�gurable-centric design process dedicated to avionic systems
considering all the design steps. Along this process, we rede�ned the role of the FPGA cir-
cuit to cover the simulation, the test and the integration steps. First, recon�gurable logic
is used in the frame of heterogeneous CPU/FPGA computing in order to obtain fast real-
time simulation. Second, the FPGA is used as a key solution to offer versatile test benches
and to converge toward uni�ed test and simulation tools. Third, at the integration phase,
we meet the conventional tools to make pro�t from recon�gurable technology in embedded
avionic applications in order to deliver high computation rates and to adapt their functio-
ning mode to provide reliability, fault tolerance, deterministic timing guarantees, and power
ef�ciency [4] [6]. ii) We de�ned a generic and scalable heterogeneous CPU/FPGA environ-
ment as well as the corresponding dynamic execution model to bring self-recon�guration
to the system. Two international patents describing the innovative system for avionic simu-
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FIGURE 1.1 –Contributions presented in this work

lation and test are registered at the INPI ("Institut National de la Propriété Industrielle")
and at the Australian Patent Of�ce in collaboration with Airbus Helicopters. iii) We investi-
gated the problem of the optimisation of run-time task mapping on a real-time computing
system CPU/FPGA used to implement intimately coupled hardware and software models.
This work includes the development and the comparison of mathematical models that focus
on the static initial task mapping and ef�cient heuristics for the dynamic mapping of new
applications at run-time, and the dynamic recon�guration to avoid the real-time constraint
violation [36] [35]. iv) We developed a software real-time simulation environment running
on a heterogeneous CPU/FPGA system [13] [7] [2].

The target systems (aircraft, helicopters, etc.) are very complex and they are considered
as System-of-System (SoS). We already started studying the scalability of the environment
to construct a network of heterogeneous computing nodes where the recon�gurable tech-
nology will play an essential role. This led to a new patent registration at the INPI [8] in
collaboration with Airbus Group. In the future, we will pursue the research on dynamic
execution model considering distributed and heterogeneous systems.

A recon�gurable technology-centric design process

Targeting the objective of a uni�ed and versatile environment for simulation, test and in-
tegration, we started with the de�nition of the main requirements of such environment [17].
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In fact, the system should be generic to support any helicopter range or avionic equipment,
scalable regarding the number of the computing nodes or the communication interfaces,
adaptive to associate the appropriate models for a given scenario, and dynamic to be recon-
�gured during the system runtime.

In order to satisfy the above requirements, we will rely on recon�gurable technology as
an essential part of our environment for many reasons. For the �rst aspect, nowadays re-
con�gurable circuits such as FPGAs can host different computing nodes such as hard-cores,
soft-cores and hardware accelerators. Furthermore, it can be coupled with other computing
nodes such as General Purpose Processor (GPP) and interfaced with a widespread communi-
cation standards. FPGA can answer to the dynamicity requirement through the DPR feature.
The advantages of using FPGAs in the development of avionic systems are transverse to the
design phases [17].

– At an early phase, we involved the recon�gurable technology in the design process
for real-time simulation. We proposed the usage of FPGAs to design heterogeneous
CPU/FPGA architecture that could implement intimately-coupled hardware and soft-
ware avionic models. The main objective is to deliver high performance computing
with real-time support. FPGA brings also dynamic recon�guration capability to the
system in order to deal with runtime model re-allocation. Furthermore, this step al-
lows to verify the eligibility of a given model to be implemented as a cost-effective
hardware solution compared to a software implementation [31] [32].

– As a transition between the simulation and test phases, we propose �rst to use the
FPGA as a bridge between virtual models and avionic equipments in the loop. At this
level, recon�gurable technology is a key solution for the avionic I/O hardware obso-
lescence issue taking into consideration communication protocols as IPs [40] [41] [18].
The huge logic budget available in nowadays FPGAs allows to use these circuits for
computation as well as for communication at the same time. Furthermore, we will
support dynamic behaviour in order to switch between a simulated model to the real
equipment or to switch between different avionic protocols [17].

– For the integration phase, we will rely on a standalone FPGA-based technology in
order to carry out the avionic functionality. At this level, our concerns cover embedded
constraint veri�cation, fault tolerance, reliability, certi�cation, etc.

The dynamic CPU/FPGA hardware environment

we proposed a scalable heterogeneous CPU/FPGA hardware environment composed
mainly of two nodes. The �rst node is a general purpose multi-core processor (i.e. : AMD/In-
tel) while the second node represents an FPGA. The multi-core will offer performance with
a limited parallelism capability due to the �xed number of cores. FPGA is the support of the
recon�gurable logics needed to implement challenging models (or tasks) as hardware acce-
lerators. Designers could exploit the existing partitioning in the application (i.e. hardware-
software and parallel-sequential hardware) which leads to several feasible implementations
whose performances vary with the chosen partitioning [5] [3]. Our expectation of the above
described architecture is to prototype some models which can be eligible and relocated in
the FPGA. The objective is to increase the performance of these models and to reduce the
communication latencies by the means of embedding different parts in the same chip. Wi-
thin our environment, a great care has been devoted to the real-time aspect in order to satisfy
tight computing and communication deadlines related with the target application domain
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(soft real-time constraints) [4] [6].
For the dynamic execution model, each avionic model can be designed with different

versions (i.e. software, hardware, etc.). A common high level model is developed in order
to include different functions which correspond to different implementations. The necessary
data (input, output, current context) is contained in a global data structure stored in the sha-
red memory allowing easier context switch from a software node to a hardware node and
vice-versa at runtime and without a full simulation restart. As an essential functionality of
our environment, we can anticipate over�ows, take the decision to recon�gure, run a heu-
ristic for rapid mapping solution depending on the available nodes, and �nally recon�gure
the system [2] [49].

Mapping and scheduling of tasks on CPU/FPGA system :

The usage of CPU/FPGA architecture in the context of simulation and test environ-
ment needs tools to map ef�ciently tasks on the heterogeneous computing nodes. As all
the connections between the different nodes are allowed, the communication delays are also
heterogeneous. Targeting the initial mapping, we focused on the mathematical modeling of
a scheduling problem in a heterogeneous CPU/FPGA architecture with heterogeneous com-
munication delays in order to minimize the makespan, Cmax. This study was motivated by
the quality of the available solvers for Mixed Integer Program (MIP). The proposed model
includes the communication delays constraints in a heterogeneous case, depending on both
tasks and computing units. These constraints are linearised without adding any extra va-
riables and the obtained linear model is reduced to speed-up the solving with CPLEX up to
60 times. The computational results show that the proposed model is promising. For an ave-
rage sized problem up to 50 tasks and 5 computing units the solving time under CPLEX is
about few seconds which is a reasonable time for the initial mapping of the system [9] [11].
We highlighted that the particular case of homogeneous multiprocessor scheduling with
heterogeneous communication delays has been already resolved in [10]. Actually, we pro-
posed a new MIP formulation that drastically reduces both the number of variables and the
number of constraints, when compared to the best mathematical programming formulations
from the literature [10].

Our investigation concerned also the development and the comparison of ef�cient heu-
ristics that focus on the dynamic mapping of new applications at run-time, and the dynamic
recon�guration to avoid the real-time constraint violation. The Greedy heuristic LPT-Rule
(Longest processing Time Rule), HEFT (Heterogeneous Earliest-Finish Time) Heuristics are
explored in our work. Compared to an exact methods, these heuristics offer a good optima-
lity in a time magnitude of milliseconds [36] [35].

Real-time simulation environment :

During the manufacturing process, designers need development tools for the veri�cation
and the validation of modern complex systems. Today, the simulation phase is considered
as an unavoidable part of the V&V cycle. In order to meet the application requirements in
terms of increasing computation rate and real-time, dedicated simulators should be used.
Simulation tools should make pro�t from nowadays high performance architectures. Pre-
viously, we emphasized the usage of heterogeneous multi-core CPU/FPGA as an ef�cient
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execution support for real-time simulators. However, there is a lack of real-time simulation
environments able to deal with the execution of applications on such heterogeneous systems.

We investigated the development of soft real-time simulation environment supporting
CPU/FPGA hardware architecture [13] [7] [2]. In such environment, we exploit the available
hardware resources for the dynamic task switching between multi-core CPU and FPGA. The
main features of our environment are the following :

– Creation and launching of a graph of tasks composed of hardware and software mo-
dels on the available heterogeneous resources,

– Synchronization and communication between hardware and software models,
– Real-time monitoring of the available computing resources,
– Supervision of a simulation project in order to detect violation of timing constraints

and to anticipate over�ows and recon�gure the system at runtime.

1.3.2 Energy/power-aware design for homogeneous and heterogeneous MPSoC :

Due to the growing computation rates of nowadays embedded applications, using Multi-
processor System-on-Chip (MPSoC) becomes an incontrovertible solution to meet the func-
tional requirements. In such systems, power/energy consumption is a critical pre-design
metric that should be considered in the design �ow. In current industrial and academic prac-
tices, power estimation using low-level CAD tools is still widely adopted, which is clearly
not suited to manage the complexity of embedded systems supporting modern applications.
In fact, MPSoCs have a huge solution space at the application, the Operating System (OS),
and the architectural levels, which makes the Design Space Exploration (DSE) complex. This
challenge is addressed by several frameworks through the development of Electronic Sys-
tem Level (ESL) tools. The objective is to unify the hardware and software design and to
offer a rapid system level prototyping using virtual platforms. Based on the design step and
the requirements like the timing accuracy and the estimation speed, designers could select
an appropriate abstraction level to model the software simulating the system. Unfortunately,
most of existing tools do not consider the power metric or focus on power estimation for a
given abstraction level without overcoming the wall of speed/accuracy trade-off.

To answer the above described challenge, we propose the following contributions : i)
an energy/power-aware design methodology for embedded applications executed on MP-
SoC [16] is proposed. It is based on a multi-level design �ow in order to evaluate and to
optimise the energy/power on the base of complementary models of hardware and soft-
ware components. Our design methodology focuses on the functional and the transactional
levels to deal with the design complexity and the broadness of the architectural solution
space.ii) A DSE strategy is de�ned to re�ne the solution space while switching between the
abstraction levels. This exploration step includes runtime optimisation techniques that are
developed and integrated in the design methodology to reduce energy/power consumption
of the system [24]. iii) Functional-Level Power Analysis (FLPA) is used to elaborate different
power models (processors, hardware accelerators, OS services, etc.) that are plugged after-
wards in our tools at the different abstraction levels to evaluate the total consumption of the
system. iv) Model Driven Engineering (MDE) is used to automatise the design process and
the plug-in of power models [39].

In the future, we will pursue this research direction considering the fact that IC 2D scaling
is reaching the fundamental limits. Hence, the semiconductor actors are exploring the use
of the vertical dimension (3D) for logic and memory devices. The combination of 3D device
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and low power device will introduce a new era of scaling, identi�ed in short as 3D Power
Scaling[83]. Furthermore, thermal effects are exacerbated in 3D technology. So, we need to
rethink about the power management for the next generation of 3D-based multiprocessor
SoC.

Power-aware design methodology :

In the frame of the OpenPeople project [34] [33], we proposed a multi-level power-aware
design methodology for MPSoC that covers several design layers. The objective is to offer a
power estimation tool for each step in order to have a gradual re�nement of the design space
solution based on the power or energy criteria. In order to cope with the design complexity,
we focus specially on the functional and the transactional levels that offer different trade-
offs between accuracy and estimation time. For each level, several models are developed
for estimating and optimising the power consumption taking into account all the embed-
ded system relevant aspects ; the software, the hardware, and the operating system. In this
work, we based on the same power modeling approach (FLPA) for the the functional and
transactional levels in order to guarantee the coherence of the estimation strategy in our de-
sign methodology. Our methodology helps designers to plug these power models with the
design tools, to explore new architectures, and to apply optimisation techniques in order to
reduce energy and power consumption of the system [16] [26].

The multi-level design space exploration :

Multi-level DSE is an unavoidable solution to have a good speed/accuracy trade-off.
Actually, a top-down DSE allows fast to eliminate the undesirable solutions at each design
level before reaching physical implementation levels. In the frame of multi-level DSE, de-
signers of embedded applications need a seamless power-aware design methodology that
takes into account the power metric at different abstraction levels. In a top-down design
methodology, an appropriate power estimation and optimisation tool should be de�ned ac-
cording to each abstraction level. The objective is to offer a gradual re�nement of the solution
space while switching between the design steps. Leveraging high abstraction levels is cer-
tainly the key ingredient for reaching this objective. Indeed, higher level approaches are fast,
cost-effective and reliable enough to compare different architectural solutions. Using virtual
platforms according to the abstraction level is inevitable in order to collect the strict relevant
data (the values of the power model parameters) depending on the design step. During se-
veral years, we explored different abstraction levels such as Cycle Accurate (CA) [15], TLM
(Transaction Level Modeling) with Instruction Set Simulator (ISS) [29] or Just-In-Time (JIT)
techniques [30] [100], functional [26], and abstract clock-based approach [1]. The step of DSE
must identify the adequate parallelism level, the parameters con�guration, the hardware/-
software mapping, etc.

The power modeling approach :

At the system level, we need power models emulating the behaviour of the different
parts of the system in terms of consumption. The power modeling process is centred around
two correlated aspects : the power model granularity and the main activity characterisa-
tion. The main challenge is to de�ne a generic power modeling approach that can cover
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the different abstraction levels and guarantee the coherence of the estimation strategy for a
seamless power-aware design methodology.

In our work, the Functional-Level Power Analysis (FLPA) is used to develop generic po-
wer models for different target platforms. FLPA comes with few consumption laws, which
are associated to the consumption activity values of the main functional blocks of the system.
Basically, the FLPA is used for processor power modeling. In our research, it was extended to
cover the other hardware components used in the MPSoC such as the memory, OS services
and the recon�gurable logic. In the energy analysis step, various hardware and software pa-
rameters which in�uence the energy consumption are identi�ed and then energy pro�les
are traced according to the variation of these parameters. From the energy traces, a curve �t-
ting will allow us to determine the power consumption models by regression. The obtained
power models are expressed in the form of analytical equations or table of values. The pro-
posed approach aimed to extract power/energy models of embedded OS services, software
application and hardware components. The generated power models have been adapted to
system level design, as the required activities can be obtained from a system level environ-
ment. In our case, power models are plugged into our design tools at the functional and
transactional levels. This approach was proven to be fast and precise [16]. The main advan-
tage of this methodology is to obtain models which rely on the functional parameters of the
system with a reduced number of experiments.

Model driven engineering :

As a main result of my �rst Post-doc, we developed a Model Driven Engineering (MDE)
based environment for MPSoC design [21]. We pursued the investigation for the usage of
MDE to model power consumption aspects and to automatise the plug-in of power models
in the design process [39]. Indeed, MDE is needed in order to make the SoC design easy and
not tedious, by making the low-level technical details transparent to the designers. In MDE,
models become a mean of productivity.

The main contribution in this �eld was a hybrid energy estimation approach for SoC,
in which the consumption of both white-box IPs and black-box IPs can be estimated. We
highlight that white-box refers to open-source IP while black-box concerns Proprietary IP.
Based on MDE, this approach allows to take the consumption criterion into account early in
the design �ow, during the co-simulation of SoC. In a previous work [14], we presented an
annotated power model estimation technique for white-box IPs where counters are introdu-
ced into the code of the IPs. A counter is incremented whenever its related activity occurs as
described in [20] [19]. This technique was used in this work, along with the standalone po-
wer estimator technique used for black-box IPs. The standalone power estimation modules
were generated using MDE and connected between the components in order to detect their
activities through the signals that they exchange. To test this approach, systems containing
white-box IPs and black-box IPs and their related estimation modules were modeled in the
Gaspard2 framework. Using the MDE model transformations, the code required for simula-
tion can be generated automatically. Finally, power consumption estimates can be obtained
during simulations.
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1.3.3 Massively parallel dynamically recon�gurable execution model

Standard Integrated Circuits (IC) are reaching their limits and need to be extended to
meet the next-generation computing requirements. One of the most promising evolutions
is 3D-Stacked Integrated Circuits (3D SICs). Recently, SICs technology, also known as 2.5D
ICs, has been released by the manufacturer Xilinx for the Virtex 7 FPGA family. Such techno-
logy is considered as a near-cousin to 3D. The next-generation 3D FPGAs (three-dimensional
Field Programmable Gate Arrays) will allow ef�cient dynamic recon�gurations in a massi-
vely parallel manner. According to their needs, software applications running on such hard-
ware can then ef�ciently recon�gure the hardware at runtime, thereby achieving signi�cant
savings in circuit space, energy consumption, and execution time [82].

We believe that 3D integration will lead to a signi�cant shift in the design of FPGA cir-
cuits. Indeed, by incorporating the con�guration memory on the top of the FPGA fabric,
with fast and numerous connections between memory and elementary logic blocks, it will be
possible to obtain dynamically recon�gurable computing platforms with a very high recon-
�guration rate. This opens the possibility of creating massively parallel IP-based machines.
Such architectures can be customized at runtime using the DPR feature, a recon�guration
that can be done in parallel for all or for a subset of the IPs. This new hardware paradigm
opens many opportunities for research since there are no parallel recon�guration models
for such technology, no execution models for massively parallel and dynamically recon�gu-
rable architectures on 3D FPGA, and no dedicated tools for mapping those architectures on
3D FPGA or estimating their performances.

To overcome the above-mentioned obstacles,i) We conceived a Multi-FPGA board as
an appropriate execution support for massively parallel and dynamically recon�gurable ar-
chitectures. ii) We implemented a proposed parallel recon�guration model that takes pro�t
from the innovative 3D technology to allow fast and simultaneous programming of several
logic fabric regions. This parallel recon�guration model was emulated on the Multi-FPGA
board. iii) We de�ned an ef�cient execution model dedicated for massively parallel and dy-
namically recon�gurable architectures. This execution model has been implemented through
the HoMade processor.

3D packaging is the next innovative technology for FPGAs. The inter- and intra-layer
positioning of communication and logic resources is of utmost importance. We anticipate
that multiple stacked layers can be used for a fast and massively parallel recon�guration
over the whole chip as con�rmed in [126]. As soon as 3D FPGAs become available, our future
works on Multi-HoMade execution model could be deployed on 2D Multi-FPGA platform
taking bene�ts of all previous results.

Multi-FPGA System-in-Package :

As we are waiting for 3D packaging in the next FPGA generation, the �rst validation
of massively parallel dynamically recon�gurable architecture is performed using currently
available Xilinx FPGAs which are not currently supporting parallel recon�guration. In pa-
rallel, we proposed to use an emulation platform in order to implement massively parallel
and dynamic architectures and to recon�gure several cores/regions in parallel. Recently, we
designed in collaboration with the Nolam Embedded Systems 10 a multi-FPGA board featu-
ring a parallel recon�guration mechanism. The main idea is to have a parallel recon�gurable

10. www.nolam.com
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architecture that also provides modular technology with customizable and recon�gurable
computing power. The application domain includes a wide range of sophisticated applica-
tions with a speci�c focus on intensive signal processing applications used in the avionic do-
main. In order to provide high performance and dynamicity capabilities, the board provides
two main features : parallel runtime recon�guration and peer-to-peer high-bandwidth low-
latency communication link which are implemented using a PCIe Gen3 switch on-board.

Our board has a parallel I/O management model using the FPGA Mezzanine Card
(FMC) and PCIe switch. Each FPGA can communicate with the outer world with an FMC
module. However, in case of distributed processing, the data received via a single FMC
might need to be shared with more than one FPGA. In this case, the owner of FMC I/O
can share its data with more than one node at the same time via the PCIe switch. We can also
recon�gure our board as a parallel recon�gurable machine with a shared memory model.
Each FPGA has a local DDR3 memory while the master FPGA has a memory size four times
compared to the local one. Each FPGA can store its complete local memory in the global
shared memory via the PCIe switch. The Master FPGA in turn can retransmit the data to
one or more nodes at the same time if requested thus forming the notion of a global shared
memory.

The prototype of the board is realized with a carrier board and 4 FPGA modules. FPGA
modules contain only the FPGA and the need electrical circuitry to support the operation of
the FPGA. The connector on the FPGA module is used to mate with the carrier board. The
size of the FPGA module has been chosen taking into consideration the size of the largest
FPGA device in the market. On the other hand, the carrier board consists of all the other
components and features (i.e., FMC, memory, PCIe switch, COM express and peripheral
I/O interfaces) of the multi-FPGA board.

Parallel recon�guration model :

The key architectural feature of the Multi-FPGA board is to be able to recon�gure more
than one node at the same time. Using this feature, we aim to emulate a parallel recon�gu-
ration model of 3D FPGAs respecting the Single Program Multiple Data execution model
(SPMD). In a SPMD architecture, where multiple instances of the same IP process different
data sets, we should recon�gure several IPs or a subset of IPs when the context of the ap-
plication changes. In practical terms, it will not be ef�cient when recon�guration is done
sequentially for a large number of IPs, using current generation 2D FPGA based recon�-
guration model. Since current 3D FPGAs are still emerging as an inevitable technology, we
still need to speculate the partial recon�guration possibilities that these devices will offer for
such high-density applications and emulate the behavior of such a recon�guration model
with current generation FPGAs. Based on this premise, we propose a partial recon�guration
model for next generation 3D FPGAs well-traced on the execution model (SPMD) in order to
recon�gure in parallel a subset of the computing nodes. To validate our approach, we rely on
a multi-FPGA based architecture that can support parallel communication capabilities with
two or more FPGAs at the same time.

HoMade processor :

As stated before, there is a need of a massively parallel dynamically recon�gurable exe-
cution model to deal with the high requirements of sophisticated embedded systems. Unfor-
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tunately, to the best of our knowledge, there is no processor supporting such execution mo-
del or proposing a programming language for this application domain. Since the last quarter
of 2011, we have devoted signi�cant efforts inside the DreamPal INRIA team to address this
challenge. This has led to the development of the HoMade processor.

While programming an FPGA, hardware designers generally tend to use two ap-
proaches. The most commonly used is to develop hardware accelerators on FPGAs, which
are dedicated circuits that are an order of magnitude faster than a software implementation.
The other approach consists of using softcore processors which are processors implemented
using hardware synthesis. They can be proprietary solutions such as MicroBlaze from Xi-
linx, Nios from Altera, etc. or open-source solutions like Leon, OpenRISC, FC16, etc. In our
previous work, we already used such solution for implementing a driver assistant system on
Xilinx FPGA [23] using a Microblaze. The hardware solution can be adapted at runtime ac-
cording to the environment parameters [22]. The choice of an appropriate softcore processor
for a given application is wide and many new solutions emerge, including multi-softcore im-
plementations on FPGAs. In [25], we conceived a Multi MIPS parallel architecture around
a multistage interconnection network on FPGA. Between these two approaches, there are
other various approaches that connect IPs to softcores, in which, the processor's machine
code language is extended, and IP invocations become new instructions.

Based on this concept, we propose the HoMade processor that goes further by generali-
zing the notion of IP where everything is implemented in IPs ; only the control �ow is assi-
gned to the softcore itself. The partial dynamic recon�guration of nowadays FPGAs makes
possible such dynamic IP management in practice. HoMade is a re�ective softcore processor
that means it is able to modify its own structure and behaviour while it is running. Thus, Ho-
Made can dynamically add, remove, and replace IPs in the application running on it. Also,
HoMade is able to dynamically modify its own program memory, thereby dynamically alte-
ring the running program. We believe that ef�cient re�ective softcores on the new 3D FPGAs
should be small ; low performance generic hardware components (ALU, registers, memory,
I/O...) should be replaced by dedicated high performance IPs.

Parallel execution is performed on a set of HoMade slave processors. It is handled inside
HoMade as an SPMD model executed on slave HoMade processors. First, all the selected
slaves run a program with a common start address. Second, a synchronisation barrier de-
tects the end of the processing of a subset of the slaves. Controlled by an HoMade master,
we carry out a program on a selected subset of slaves following the SPMD execution mo-
del. Between disjoint subsets of slaves, we propose a multi SPMD execution, each softcore
subset running in a local SPMD mode. A substantial effort has to be done to support a large
number of slaves without degrading the clock frequency. So, we need to manage activity of
each slave. Again, an IP will be proposed by default to manage the activity locally on each
slave and globally on the master. Users can rede�ne their own activity managers and can
change the IP during the execution if needed. Parallel computing requires inter-processor
communication. In line with the HoMade philosophy, communications between slaves will
be implemented via speci�c IPs. Hardware designers can use the default IPs provided with
HoMade which is a Network-on-Chip (NoC) 2D grids or develop their own IPs and even
change the communication system at runtime thanks to dynamic recon�guration.

Dynamic recon�guration management will be itself performed by dedicated IPs. An
ICAP like (Internal Con�guration Access Port) primitive will be encapsulated within an IP.
Using an IP to perform recon�guration gives us more �exibility for performing recon�gura-
tion, in particular, with respect to how and by whom recon�guration may be triggered. Of
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course, the targeted FPGA should support this functionality. A patent is under registration
to highlight the HoMade execution model.

1.4 Outline

The remainder of the document is organized as follows : Chapter 2 summarizes our
contributions on dynamic recon�gurable systems for avionic simulation and test ; Chapter 3
presents our works on power-aware design methodology of homogeneous and heteroge-
neous MPSoC ; Chapter 4 reports our recent works in the �eld of massively parallel dyna-
mically recon�gurable execution model ; �nally, Chapter 5 gives the conclusions and draws
our future research directions. A complete Curriculum Vitae, and a list of publications are
also provided in Appendix A.
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This chapter presents my contributions since 2010 in LAMIH laboratory and INRIA
DaRT team in the �eld of dynamic recon�gurable high performance systems. Mainly, these
works were achieved in the frame of industrial collaborations with Airbus Group (pre-
viously EADS), Airbus Helicopters, and Nolam Embedded Systems. This work covers the
PhD thesis of George Afonso started in August 2010 and defended in July 2013 (co-advised
by Jean-Luc Dekeyser) for the CPU/FPGA hardware part, the PhD of Omar Souissi (Octo-
ber 2011 - December 2014) and the Post-doc fellowship of Abdessamad Ait El Cadi (January
2013 – December 2014) for the mapping and scheduling part, and the research internship of
Zeineb Baklouti (April 2012 - February 2014) for the real-time simulation environment.

The remainder of the chapter is organized as follows : Section 2.1 introduces the main
challenges for for avionic simulation and test ; Section 2.2 gives a summary of the related
works. Section 2.3 introduces the essential of simulation and test avionic domains and ex-
poses the proposed recon�gurable-centric avionic design process. In Section 2.4, our solution
of recon�gurable computing for simulation is exposed. Section 2.5 presents an FPGA-centric
solution for test systems. Technological issues and solutions for embedding avionic appli-
cations based on recon�gurable technology are enumerated in Section 2.6. To evaluate our
approach, experimental results are presented in Section 2.7 through several case-studies.
Finally, in Section 2.8, we discuss the strengths, limitations and future directions to the pre-
sented works.
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2.1 Main challenges for avionic simulation and test

Continuously growing aerospace industry competitiveness pushes avionic actors to revi-
sit and strengthen their methodology and tools of the Veri�cation & Validation (V&V) design
cycle. In this perspective, the technical areas of simulation, test and integration systems are
currently in an unavoidable convergence path. Yesterday considered as different expertise
�elds, these design steps should rely on common frameworks in the future supported by
cutting-edge hardware architectures.

As examples of target avionic systems, we quote control, collision avoidance, pilot as-
sistance, target tracking, navigation and communications, amongst other functions. Accor-
ding to the characteristics of these functionalities, high computation rates should be well-
delivered while carrying-out intensive signal processing. Furthermore, these embedded sys-
tems often operate in uncertain environments. They should adapt their functioning mode
to provide reliability, fault tolerance, deterministic timing guarantees, and energy ef�ciency.
Undoubtedly, the essential feature of systems to recon�gure themselves (at the hardware or
the software level) at run-time comes with additional complexity in the different design cycle
steps. Along this work, we will take the Airbus Helicopters 11 avionic development cycle as
an example. In the present industrial practices, different simulation tools and test benches
are used for the veri�cation of embedded avionic equipments (automatic pilot, navigation,
etc.) dedicated to various helicopter ranges. This methodology calls for separate teams with
different domain experts in order to achieve the simulation, the test and the integration of
each part. Today, this process is very complex and expensive to perform. Actually, there is an
essential need of a seamless process that could help designers during the V&V cycle starting
from a full software simulation to the integration phase.

In parallel, FPGA recon�gurable circuits have emerged as a privileged target platform
to implement intensive signal processing applications. FPGAs offer inexpensive and fast
programmable hardware on some of the most advanced fabrication processes. FPGA tech-
nology can embed parallel hardware components or several IPs (Intellectual Property) due
to the large number of programmable logic fabrics available on the chip. Such architectures
can be customized at runtime using the Dynamic Partial Recon�guration (DPR) feature, a
recon�guration that can be done for all or for a subset of the IPs. Academic and industrial
expectation promote the idea that adaptive architectures will dominate next-generation em-
bedded systems, including those based on FPGAs. We are in line with this vision, indeed
this new hardware paradigm opens many opportunities for research in aerospace and avio-
nic industries since there are no standard process to take into consideration the FPGA as an
essential part of the design process starting from a full simulation to the integration phase.

In this perspective, it is necessary to consolidate the usual design cycle with a solid sys-
tem approach allowing to early check/validate the adequacy and the consistency of the
recon�gurable technology to be embedded in the aircraft. Such a system approach can be
conceived only if the means of V&V are present upstream. In another meaning there is a
seamless process to simulate as soon as possible the solution relying on recon�gurable tech-
nology and after that testing on benches before embedding in the real-world.

To overcome the above-mentioned challenges, we proposed a recon�gurable-centric de-
sign process dedicated to avionic systems considering the following steps :

11. Airbus Helicopters is the leader in civil and military helicopter manufacturing.
http ://www.airbushelicopters.com
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– First, for the simulation phase, we propose the usage of the recon�gurable technology
in the frame of generic and heterogeneous CPU/FPGA architecture that could imple-
ment intimately-coupled hardware and software tasks. In our proposal, a great care
has been devoted to deliver high performance computing, real-time support, and dy-
namic recon�guration capability.

– Second, for the test phase, we propose a modular, runtime recon�gurable, and IP-
based approach for the avionic communication support. This support allows to ma-
nage dynamically different avionic communication protocols in order to consider
Unit(s)-Under-Test (UUTs) (automatic pilot, navigation, etc.) in the test loop. Our hard-
ware support leads to the convergence of simulation and test tools.

– Third, for the integration phase, we discuss the main technological issues and indus-
trial solutions for embedding FPGA based-avionic systems in the aircraft after the V&V
from the previous phases taking into consideration different metrics such as reliability,
timing constraints, power consumption, etc.

2.2 Related works

In recent years, the feasibility of using recon�gurable hardware is being explored in the
�eld of avionic, aerospace and defence applications [147], [115], [71], [134]. However, using
FPGAs in such applications has its own challenges since time, space, power consumption,
reliability and data integrity are highly crucial factors. Some of these challenges are being ad-
dressed at the technology level, and some of them at the architectural level. One of the main
challenges of using recon�gurable hardware speci�cally in space missions is that, it has to
be radiation and fault tolerant. Single Event Upsets (SEUs) are induced by radiation. The
environment where the avionic systems operate has unfavourable effects in these devices.
Therefore, it is important to provide a fault-tolerant computing platform for such applica-
tions which are prone to radiation effects. The works done by [134] and [101] address and
mitigate the effects of SEUs on FPGAs and provide a reliable computing platform . Extensive
work has been done in developing hardware/software co-design for an avionic communi-
cation system based on ARINC429 communication protocol [76]. Another related work also
proposes the con�guration and deployment of infrastructure and related procedures of a
distributed avionic communication system in FPGA [101]. Such works serve as the founda-
tion for the usage of FPGAs in avionic applications. However, there is no a coherent design
process that explicitly details the V&V of the recon�gurable hardware through the different
phases : simulation, test and integration.

Historically, tools used for avionic simulation and test have often been decoupled. This
matter of fact could be explained by technical choices : Real-Time Operating System (RTOS)
competitiveness, hardware access, and models management capabilities. Due to the hard
time-to-market requirement, practices have started to change during the last years. With the
new technologies in the �elds of hardware architecture and the emergence of virtualization
solutions, aerospace actors are reconsidering their methodologies to verify and validate cri-
tical embedded systems. The result of this wide technological motion is the vital need to
converge toward uni�ed simulation and test tools.

For the past twenty years, the avionic test systems were based on real-time speci�c hard-
ware architectures such as the well-spread VME CPU boards [60]. The VMEBus is particu-
larly ef�cient to allow Input/Output (I/O) event management, multi-processing synchroni-
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zation, and a transparent access to the different hardware resources. As a most of aeronautic
�rms, Airbus Helicopters has integrated the VMEBus as a standard backbone for the test
benches of embedded helicopter systems. The proprietary test system named ARTIST is ba-
sed on VME technology and the VxWorks real time Operating System (OS). These technolo-
gies have been used for all helicopter benches in order to validate the avionic equipments.

Due to the present performance requirement, an increase in the computation rates is nee-
ded, but it cannot be delivered by the VME CPU boards anymore. Furthermore, this solution
is considered as an expensive maintainable technology. To overcome these drawbacks, Air-
bus Helicopters recently decided to move to a "half generation" test system based on high
performance PC or workstation solution. Upcoming architectures are based on multi-core
computer plugged with I/O boards to communicate with the equipments under test. Airbus
Helicopters has selected the PEV1100 VME Bridge solution [58] [59] from the Swiss company
IOxOS12. The PEV1100 allows a local host to interface with a VME64x bus using a PCI Ex-
press (PCIe) external cable which offers transparent access to I/O boards. To achieve higher
communication performances, IOxOS Technology had developed a dedicated interface bet-
ween the PCIe and the VME64x bus. This interface is built with the latest FPGA technology
in order to implement PCIe end-point hardware cores.

The usage of multicore hosts allows an immediate increase in the capacity of computa-
tion. An important outcome of this transition is the refusal of the obsolete CPU boards. Ho-
wever, this solution cannot guarantee the real-time criteria while the execution of concurrent
tasks due to the lack of an appropriate OS environment. Furthermore, this solution brings
new communication latencies between the CPUs and I/O boards plugged in the VME back-
plane.

Among existing avionic test systems provided by cutting-edge �rms, we quote Aidass
family [120] used in particular for Euro�ghter Airbus Military Air Systems, U-Test [59] de-
veloped by EADS Test&Services, and ADS2 from Techsat GmbH13. The proposed solutions
are fully based on CPUs resources (PC or VME boards) and are close to Airbus Helicopters's
solutions. These test systems can both deal with I/O management and simulation environ-
ments. Today, the management of increasing computing power relies on additional CPUs.
For simulation dedicated tools, Airbus Helicopters's internal solution RISE (Real Time Simu-
lation Environment) described in [50] does not support recon�gurable resources for virtual
models management. Our perspective in this project is to consider the FPGA as an essential
sub-part of simulation, test, and embedded system architectures.

In addition, it has been proven that runtime recon�gurable hardware utilizes hardware
resources much more ef�ciently. In [147], the authors propose a methodology for applica-
tions to be fault tolerant and sustain much longer using runtime recon�guration capabili-
ties. Using FPGAs for accelerating applications has shown signi�cant performance impro-
vements in aerospace applications [71], [134]. In this work, we used runtime recon�guration
in the frame of avionic design process to achieve real-time simulation with better perfor-
mances, to converge between simulation and test domains and to conceive more adaptive
and reliable avionic systems.

12. http ://www.ioxos.ch/
13. http ://www.techsat.com
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2.3 Recon�gurable-centric avionic design process

2.3.1 Essential of simulation and test avionic domains

Avionic simulation and test (S&T) domains target the validation of avionic embedded
systems before the �rst test �ight in order to increase the safety and to reduce the time-to-
market. These phases are critical and have to respect constraints in order to provide the du-
plication of real �ight conditions. In order to perform a complete simulation or test session,
we need to model each part of the helicopter and the environmental parameters (weather
conditions, geographical factors, etc.). The simulation phase relies totally on virtual models.
Figure 2.2 presents a simpli�ed system simulation loop that simulates the helicopter beha-
vior including three models : the �ight mechanic model, the navigation modeland the automatic
pilot model. In the initialization phase, the �ight mechanic model takes into consideration
several parameters such as the initial position relative to the ground and the aircraft con�-
guration �le to give back an equilibrium position. In addition, it sends the common data area
structure containing the position and the speed of the aircraft to the navigation model. This
later computes the helicopter destination and sends it to the automatic pilot model via the
ordered rollstructure. Finally, the �ight control is managed by the automatic pilot.
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FIGURE 2.2 – A simpli�ed simulation/test loop system

For the test scenario, each virtual model such as the automatic pilot can be replaced
by the corresponding real avionic unit which calls for additional I/O communication hard-
ware support. For example, the �ight mechanic model can receive the �ight control from a
simulated model or from an I/O avionic interface (ARINC429, MIL-STD-1553, etc.) in the
case of using a real automatic pilot system in the loop. These elements are essentials for the
con�guration of each test scenario depending on the Unit-Under-Test (UUT) and the timing
constraints.

In the current industrial practices, the design cycle of a new avionic equipment is follo-
wing the V diagram illustrated in �gure 2.3. As a �rst development step, the speci�cation of
the system allows a preliminary study about the hardware architecture of the new avionic
equipment at different levels. To do so, different simulation (virtual) models are developed
offering a �rst environment for the pilots to interact with the new functionality. After a vir-
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3. UN MODéLE DÕEXƒCUTION DYNAMIQUE POUR LES
ARCHITECTURES HƒTƒROGéNES DƒDIƒ AU TEST ET Ë LA
SIMULATION

e! ectuŽes devront donc tenir compte des propriŽtŽs et des capacitŽs du support matŽriel

proposŽ.

3.3 Vers une nouvelle gŽnŽration de syst•mes de test et

de simulation

Dans cette nouvelle section, nous allons prŽsenter notre rŽßexion concernant les capa-

citŽs des futurs syst•mes de test et de simulation.

3.3.1 Vers une mutualisation des moyens de test et de simulation

Figure 3.1 Ð Inßuence sur le cycle de dŽveloppement dÕun nouvel Žquipement

Dans le but dÕaccŽlŽrer le cycle de dŽveloppement des nouveaux Žquipements ainsi que

des hŽlicopt•res, nous avons proposŽ dans le cadre de cette th•se de mutualiser les moyens

de test et de simulation. Dans un premier temps, cette mutualisation a un fort impact

Þnancier. En e! et, le cožt dÕune heure de test en vol est le m•me que celui de quarante
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FIGURE 2.3 – New avionic equipment design cycle

tual validation, the system speci�cations are transmitted for design. At the integration phase,
the equipment is validated �rst through test benches (System Integration Rig) before �nal
�ight tests.

Today, different test benches are used for the veri�cation of various helicopter ranges and
UUTs (automatic pilot, navigation, etc.). Each test bench relies on a speci�c hardware archi-
tecture. This is due to the heterogeneity of the helicopter parts in terms of computing require-
ments and handled data structures. In general, several specialised CPU boards are needed to
satisfy real-time constraints which leads to sophisticated synchronization and communica-
tion schemes. In addition to this, dedicated avionic I/O boards (ARINC429, MIL-STD-1553,
etc.) are required depending on the UUTs.

In conclusion, the presented design cycle calls for separate teams with different domain
experts and several software tools in order to achieve each phase, hence this process is consi-
dered very complex and expensive to perform. Our objective is to converge toward a uni�ed
environment as shown in �gure 2.3 with the yellow color. Our vision is centred around the
recon�gurable technology that can play a key solution in such challenge.

2.3.2 The proposed design process

Face the above challenge, we started studying the development of new design process
basing on cutting-edge technology. The objective of this process is to bring reliability and
competitiveness to the avionic industry. In the last quarter of 2009, we started the deve-
lopment phase with de�ning the main features and characteristics of a namely uni�ed and
versatile environment for simulation, test and integration:

– Generic : the proposed environment should be generic in order to support any heli-
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copter range or avionic equipment. The hardware architecture should follow the gene-
ric aspect of the environment in order to support various computation nodes, avionic
communication protocols, etc.

– Scalable : The number of computing nodes or communication interfaces should be
extensible according to the number of avionic systems.

– Adaptive : When a simulation, test or integration project is performed, the avionic
models associated with a given helicopter range should be adapted according to the
constraints (e.g. type, weight, size, etc.).

– Dynamic : At runtime, we can replace an avionic model with another or a commu-
nication protocol with a second. In addition, in the same environment we can switch
between a simulation and test phases or vice-versa.

In order to satisfy the above requirements, we will rely on recon�gurable technology as
an essential part of our environment for many reasons. For the �rst aspect, nowadays re-
con�gurable circuits such as FPGAs can host different computing nodes such as hard-cores,
soft-cores or hardware accelerators. Furthermore, it can be coupled with other computing
nodes such as General Purpose Processor (GPP) and interfaced with a widespread commu-
nication standards. For the scalability of the environment, FPGAs can be used to construct
a network of computing nodes or parallel machines. In order to increase the productivity,
FPGAs will be used in the frame of an IP-based design methodology promoting All is IP in
order to favour the reuse and lead to more adaptive systems. In order to preform a given si-
mulation, test or integration project, the user needs only to select the appropriate IPs (hard-
ware or software avionic models, I/O avionic protocols, etc.) according to the constraints.
With the Dynamic Partial Recon�guration (DPR) feature, IPs can be managed at runtime to
switch between different implementations and communication protocols.

These advantages of using FPGAs in the development of avionic systems are transverse
to the design phases. As illustrated in �gure 2.4, we rede�ne the role of the FPGA circuit to
cover the simulation, the test and the integration steps. In what follows we detail the design
process :

– At an early phase, we involve the recon�gurable technology in the design process for
real-time simulation. The simulation phase is considered as an essential part of the
industrial product manufacturing. In fact, it is required to validate the performance
of complex equipments at an early phase through virtual models. For different avio-
nic systems, speci�c real-time constraints should be ful�lled. This behaviour has to
be validated �rst at the simulation level before integrating the functionality into the
real system. We propose the usage of FPGAs to design heterogeneous CPU/FPGA ar-
chitecture that could implement intimately-coupled hardware and software avionic
models. The main objective is to deliver high performance computing with real-time
support. FPGA brings also dynamic recon�guration capability to the system in order
to deal with runtime model re-allocation. Furthermore, this step allows to verify the
eligibility of a given model to be implemented as a cost-effective hardware solution
comparing to a software implementation.

– As a transition between the simulation and test phases, we propose �rst to use the
FPGA as a bridge between virtual models and avionic equipments in the loop. At
this level, recon�gurable technology is a key solution for the avionic I/O hardware
obsolescence issue taking into consideration communication protocols as IPs. The huge
logic budget available in nowadays FPGAs allows to use these circuits for computation
as well as for communication at the same time. At this phase, there are also real-time
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FIGURE 2.4 – The proposed design process

requirements with more complexity coming from the data synchronisation between
virtual models and UUTs. Furthermore, we will support dynamic behaviour in order to
switch between a simulated model to the real equipment or to switch between different
avionic protocols. The test phase enables the interaction of the new functionality with
existing avionic equipment before the integration phase.

– For the integration phase, we will rely on a standalone FPGA-based technology in
order to carry out the avionic functionality. At this level, our concerns cover embedded
constraint veri�cation, fault tolerance, reliability, certi�cation, etc.

2.4 Recon�gurable computing for simulation

As introduced in the previous section, the main goal of using recon�gurable computing
for the simulation phase is achieving high computation rates with real-time capabilities. In
order to meet these requirements, combination of general CPU and recon�gurable fabrics
like FPGAs is necessary. In such systems, multi-core processors provide high computation
rates while the recon�gurable logic offers high performance per watt and adaptability to the
application constraints. Designers could exploit the existing partitioning in the application
(i.e. hardware-software and parallel-sequential hardware) which leads to several feasible
implementations whose performances vary with the chosen partitioning. With the mana-
gement of the parallelism intrinsic in the application, FPGA technology could offer better
performances comparing to CPUs or GPUs up to 10x [54] at lower frequencies. Using hete-
rogeneous CPU/FPGA systems allows to adapt the architecture according to the application
constraints and thus to optimize hardware resources. All these bene�ts stimulate system
designers to redirect their efforts on recon�gurable computing for simulation domain.



2.4 Recon�gurable computing for simulation 29

Our expectation of the above described architecture is to prototype some models which
can be eligible and relocated in the FPGA. The objective is to increase the performances of
these models and to reduce the communication latencies by the means of embedding the
different parts in the same chip. To do so, we need �rst to pro�le our avionic test loop in
order to extract the complex models that will be implemented in the FPGA. Second, different
hardware model con�gurations will be explored to reach an optimal well-balanced global
system. Indeed, FPGA technology could implement heavy models in a hardware fashion
with the management of the parallelism degree to address the real-time constraints of the
application.

2.4.1 The heterogeneous CPU/FPGA hardware environment

As illustrated in �gure 2.5, we propose a scalable heterogeneous CPU/FPGA hardware
environment composed mainly of two nodes [4]. The �rst node is a general purpose multi-
core processor (i.e. : AMD/Intel) while the second node represents an FPGA. The multi-core
will offer performance with a limited parallelism capability due to the �xed number of cores.
FPGA is the support of the recon�gurable logics needed to implement challenging avionic
models as hardware accelerators.

Within our environment, a great care has been devoted to the real-time aspect in or-
der to satisfy tight computing and communication deadlines. In fact, nowadays Operating
Systems (OS) such as Linux allocate dynamically tasks onto the available cores which may
introduce latencies and lead to the timing constraint violation. This is due to the fact that
general purpose OS do not support real-time functionalities. Processor af�nity service is a
modi�cation of the native central queue scheduling algorithm in a symmetric multiproces-
sing (SMP) operating system. Each task (process or thread) in the queue has a tag containing
the target processor or core number on which it will be executed. In our architecture, we
propose to allocate each kind of tasks (OS, avionic model, etc.) in the available cores under
bounded soft real-time constraints. Figure 2.5 shows an example of task allocation ; cores 1
and 2 run the OS, core 3, 4 and 5 are dedicated to carry out the avionic models, the graphic
part is mapped on cores 6 and 7, and �nally the core 8 ensures the communication between
the host and the FPGA module. For the recon�gurable part, several hardware models can be
hosted in the FPGA while better performances are needed. such heterogeneous CPU/FPGA
architecture could implement intimately-coupled hardware and software avionic models.
The shared memory implemented in the software part allows data sharing between soft-
ware and hardware avionic models.

As well as we need to optimise our avionic models in order to obtain better performances,
we need also to focus on the communication which is crucial in heterogeneous architectures.
The link has to be fast, ef�cient, and widely used in industrial systems. Nowadays, almost
host machines or workstations are equipped with PCIe slots for expansion boards. In addi-
tion, a large range of commercial FPGAs integrate a hard endpoint PCIe core for industrial
usage. Our proposal is to make pro�t from these features in order to design an ef�cient solu-
tion that can deal with the interoperability between hardware and software models mapped
respectively on FPGA and CPU nodes with high throughput. In such architecture, commu-
nication latency with respect to the real-time constraints is considered the most important
metric. Nevertheless, it is �rst necessary to de�ne the application requirements in order to
propose a customised solution that offers the better trade-off between the communication
bandwidth and the design cost.
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FIGURE 2.5 – Heterogeneous CPU/FPGA architecture for real-time simulation

2.4.2 The execution model

For the execution model, each avionic model can be designed with different versions (i.e.
software, hardware, etc.). A common high level model is developed in order to encompass
different functions which correspond to different implementations. The necessary data (in-
put, output, current context) is contained in a global data structure (stored in the shared
memory in �gure 2.5) allowing easier context switch from a software node to a hardware
node and vice-versa at runtime and without a full simulation restart.

Figure 2.6 shows how a software/hardware (or vice-versa) context switch can happen
at runtime. In fact, the HwFunction() and SwFunction() share the same data context and the
I/O data structure in order to perform the calculation node switching more ef�ciently. Let us
highlight that the HwFunction() communicates with the hardware core using the Xillybus 14

solution (will be detailed in the next subsection), and thus bringing a total transparency for
the system. Our solution avoids additional timing cost for the software-hardware context
switch. As a recon�guration scenario, an anticipated overload alert can be generated for an
avionic model re-allocation in order to avoid the violation of timing constraints and thus the
failure of the simulation phase. In our environment, the decision of the initial mapping is
taken by an exact method [9] [10] [35] while runtime allocation is ensured by a heuristic [36]
depending on the simulation scenario requirements. Our runtime mapping heuristic is de-
veloped to deal with the model overloads and to make a decision about the dynamic context
switch according to the available software or hardware implementations [2].

14. http ://xillybus.com/
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FIGURE 2.6 – Adaptive avionic model

2.4.3 Xillybus : making FPGAs talk PCIe easier

Due to the PCIe bus complexity, the communication in a heterogeneous architecture re-
mains complex. Most of the time, all PCIe capabilities are not even required (i.e. prototy-
ping), an abstracted communication level would improve the design cycle. Xillybus pro-
poses a simple interface for the FPGA and the application designer : The FPGA application
logic connects to the IP core through standard FIFOs (for read and write), and the user ap-
plication on the host machine (Microsoft Windows or Linux) performs plain �le I/O opera-
tions. Streaming data move naturally between the FIFO and the �le handler opened by the
host application. There is no speci�c and intrusive API involved, allowing the hardware and
software designers to focus on the requirements of their application. This setting relieves the
FPGA designer completely from managing the data traf�c with the host. Rather, the Xillybus
core checks the FIFOs ”empty” or ”full” signals (depending on data direction), and initiates
data transfers when the FIFO is ready for it. As the number of streams and their attributes
are con�gurable, this solution scales easily as the design requirements expand. Figure 2.5
depicts a simpli�ed block diagram showing the connection of one data stream in each di-
rection. The application on the computer interacts with device �les that behave like named
pipes. The Xillybus IP core and driver on the host offer ef�cient data streaming (using DMA)
between the FIFOs in the FPGAs and their respective device �les on the host. The Xillybus IP
core implements the data �ow utilizing PCIe transport layer level, generating and receiving
Transaction Layer Packets (TLPs). For the lower layers, it relies on Xilinx of�cial PCIe core,
which is part of the development tools. Making the communication simple is sometimes not
enough, the goal is to �nd the best trade-off between simplicity, reliability, design time and
performance in order to address all requirements of our application [6].

Mapping and scheduling of tasks on CPU/FPGA system :

The usage of CPU/FPGA architecture in the context of simulation and test environ-
ment needs tools to map ef�ciently tasks on the heterogeneous computing nodes. As all
the connections between the different nodes are allowed, the communication delays are also
heterogeneous. Targeting the initial mapping, we focused on the mathematical modelling of
a scheduling problem in a heterogeneous CPU/FPGA architecture with heterogeneous com-
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munication delays in order to minimize the makespan, Cmax. This study was motivated by
the quality of the available solvers for Mixed Integer Program (MIP). The proposed model
includes the Communication delays constraints in a heterogeneous case, depending on both
tasks and computing units. These constraints are linearised without adding any extra va-
riables and the obtained linear model is reduced to speed-up the solving with CPLEX up to
60 times. The computational results show that the proposed model is promising. For an ave-
rage sized problem up to 50 tasks and 5 computing units the solving time under CPLEX is
about few seconds which is a reasonable time for the initial mapping of the system [9] [11].
We highlighted that the particular case of homogeneous multiprocessor scheduling with
heterogeneous communication delays has been already resolved in [10]. Actually, we pro-
posed a new MIP formulation that drastically reduces both the number of variables and the
number of constraints, when compared to the best mathematical programming formulations
from the literature [10].

Our investigation concerned also the development and the comparison of ef�cient heu-
ristics that focus on the dynamic mapping of new applications at run-time, and the dynamic
recon�guration to avoid the real-time constraint violation. The Greedy heuristic LPT-Rule
(Longest processing Time Rule), HEFT (Heterogeneous Earliest-Finish Time) Heuristics are
explored in our work. Compared to an exact methods, these heuristics offer a good optima-
lity in a time magnitude of milliseconds [36] [35].

2.4.4 Real-time simulator supporting heterogeneous CPU/FPGA architecture

FIGURE 2.7 – The CPU/FPGA simulation environment

In this work, we consider application domain related with soft real-time requirements
where response time is in the order of milliseconds. Figure 2.7 presents our modular simula-
tion environment composed mainly of the simulation project, the launcher, the monitor, and
the supervisor. This software solution ensures many functionalities : monitoring of compu-
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tation nodes, task launch and mapping on different types of architecture including hete-
rogeneous architectures CPU/FPGA in order to respect application real-time requirements,
supervision and runtime recon�guration. Speed and genericity are required in our simulator
in order to ful�ll real-time constraints.

A simulation project is a set of synchronized models respecting the precedence graph.
In order to take pro�t from the speed of the hardware available resources, each simulation
model can have different implementations as shown in �gure 2.6 :

– SW, exclusively software (soft) ;
– SWXHW, exclusively software and exclusively hardware (soft � hard) ;
– HW, exclusively hardware ;
– SWSHW, partially software and hardware (soft & hard split), a part of the code runs

on FPGA and the other runs on CPU.
A model is a piece of code to be executed on a core and/or on a FPGA. Every model

has many speci�cations : input and output data, version, required execution time, etc. Each
task contains a speci�c model, called “source model” which embeds a timer that periodically
wakes the task. This timer is also used as a watchdog to stop any model of the task at the
end of the period in case of time-over�ow. Each model periodically computes its load and
asks for migration or signals an over�ow to the supervisor if needed. Each model is able to
migrate “by itself” from one core to another one or from one core to the FPGA if possible.
The simpli�ed basic principle of functioning of a model is the following :

1. If not the “source model”, wait for all input data, otherwise wait for timer-tick ;

2. Run the simulation code ;

3. Send all output data to other connected models (successors) ;

4. Go to (1).

To start a simulation project, the launcher proceeds in several steps :

1. Collect required data from a con�guration �le. This �le provides information about
the simulation project such as the number of tasks, the number of models of each task,
the nature of each model (SW, SWXHW, HW or SWSHW) the initial optimal mapping
of the models on the CPUs/FPGA (i.e. the affectations) resulting from a mathematical
model. All information are stored in an internal data structure in memory.

2. Create communication and synchronization channels between the different models.

3. Create communication and synchronization channels between the models and the su-
pervisor.

4. Connect communication and synchronization channels between the launcher and the
supervisor.

5. Send the con�guration �le-name as a requestto the supervisor (which acts as a simula-
tion server) which equally read the con�guration �le in a data structure.

6. Wait for the answer of the supervisor before continuing.

7. Create and allocate every model to its corresponding core (or FPGA) mentioned in
the con�guration data structure. All models are in a wait-state, excepted the “source
model".

8. Wait for the end of (at least) one model. Ensure that all models are stopped at the end
of the simulation and destroy all channels.
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The monitor is a standalone module in the Operating System Kernel. Consequently it can
easily and quickly access the OS Kernel data with an insigni�cant overhead on the operating
system. It calculates the load of the different CPU cores every millisecond. In fact, it mimics
Linux standard commands like “ top ” and “ htop” with a much higher sampling rate. The
results are available in the entry escload of the pseudo �le system /proc . The supervisor can
access to this entry anytime. In fact, the supervisor, the main component of our architecture,
needs the different cores load and each model execution rate in order to ensure new mapping
if necessary. It can be considered as a simulation server. When no simulation is running, it
waits for a request from the launcher. As soon as the launcher sends to it a new con�guration
�le-name, the supervisor proceeds in several steps :

1. Read data from the con�guration �le and store information in an internal data struc-
ture in memory. The data structure provides many information, including models (ini-
tial) affectation.

2. Check if communication channels between the launcher and the supervisor are cor-
rectly established and give its approval for a new simulation to the launcher if this is
the case (reject the current simulation project otherwise).

3. Connect communication and synchronization channels between the models and the
supervisor.

4. Wait for a simulation-alert.

In step 4, the supervisor spends its time waiting for simulation-alerts (i.e. events or re-
quests). Four kinds of alerts might occur : request for migration, too many consecutive mi-
grations alert, over�ow alert, and end of simulation. The request for migration is sent by
a model as soon as its execution load is greater than a prede�ned threshold, set to 85% of
the model execution period in the presented example. The over�ow alert is sent by a mo-
del as soon as its execution load is greater than a second threshold, set to 92% of the model
execution period in the presented example.

When a request for migration occurs from a model, the supervisor retrieves the current
model load and asks for CPU-loads to the monitor through the entry escload of the pseudo
�le system /proc . Then it starts the mapping heuristic in order to reallocate the model to
a core or to the FPGA if this is possible. The new allocation is sent to the model which is
able to migrate “by itself” from one core to another one or from one core to the FPGA if
possible. The supervisor might also decide to stop the current simulation if no solution can
be found by the heuristic, i.e. no core with suf�ciently low load and this model cannot be
run on the FPGA. When an over�ow or too many consecutive migrations alerts occur then
the supervisor decides to stop the simulation. At the end of a simulation, the supervisor
computes several statistics, generates a new con�guration �le containing the last mapping
of simulation models and additional data, sends a request to the launcher (in order to stop all
models) and starts waiting for a new simulation. More details about our real-time simulation
environment can be found in [13].

2.4.5 Design methodology

The above described architecture is attractive for heterogeneous system prototyping and
performance evaluation, however we need tools to help software designers to map appli-
cation on such system. In current industrial practice, manual coding is still widely adopted
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in the development of heterogeneous architectures, which is clearly not suited to manage
the complexity intrinsic in these systems. For designers, this approach is very tedious, error-
prone and expensive. To overcome this challenge, we present a design methodology that
covers the different development steps from software speci�cation to the system implemen-
tation as shown in �gure 2.8. First, we are considering a software application presented as
a task graph containing different communicating models (M0, M1, etc.). All applications
are not adequate to be implemented onto heterogeneous CPU/FPGA architectures ; a com-
plete analysis of the source code is needed to verify if a hardware implementation could
bring better performances. In order to leverage the parallelism of the multi-core CPU/FPGA
architecture, tools such as Vector Fabrics Pareon [139] and GAUT [77] can �nd all data de-
pendencies by analyzing the C or C++ source code and extract the parallelism intrinsic in
the application. Pareon analyses partitions and maps applications on speci�c platforms as
heterogeneous ones. It can also estimate the performance of the parallelized software before
implementing it. Moreover, it can trim any overhead in your hardware to reduce cost and
ensure that all critical behaviours in your program are exercised. After this analysis, the de-
veloper will have key information for source code optimization. To perform the application
mapping, system resources and application constraints are needed. This step requires a spe-
ci�c heuristic method to resolve a multi-objective exploration problem. After the mapping
step, we need to develop some user hardware applications from the existing models (M1,
M2, etc.). To make this step more ef�cient, tools such as Riverside Optimizing Compiler for
Con�gurable Computing (ROCCC) [140] can focus on FPGA-based code acceleration from
a subset of the C language. ROCCC does not focus on the generation of arbitrary hardware
circuits. Its objectives are to maximize parallelism within the constraints of the target de-
vice, optimize clock cycle time by ef�cient pipelining, and minimize the area utilized. It uses
extensive and unique loop analysis techniques to increase the reuse of data fetched from off-
chip memory. The communication synthesis step consists of generating the required CPU-
to-CPU or CPU-to-FPGA communication interfaces depending on the selected mapping.
Having all source code for a CPU/FPGA implementation, the compilation step, using GCC
and ISE from Xilinx can be easily performed in order to map all the application onto the
system [5].

2.5 Recon�gurable computing for test

As stated in Section 2.3.1, the test avionic domain calls for an additional hardware in
order to communicate with avionic equipments. In current industrial practices, one of the
biggest challenges of relying on different PCBs (Printed Circuit Boards) for different require-
ments, is the hardware obsolescence issue. Ever-changing application requirements demand
the customization of the I/O bus interfaces. Changing the hardware means redesigning the
entire board, with a lot of Non-Recurring Engineering (NRE) cost and signi�cant time-to-
market. The VITA (VMEbus International Trade Association group) FMC (FPGA Mezza-
nine Card) standard [142] solves the I/O obsolescence issue partially, with a single 400-pin
connector with a potential overall bandwidth of 40 Gb/s. This essentially means that the
I/O bus interface of a PCB is designed separately as a module and interfaced with the board
using the FMC connector. Thus, every time an I/O bus interface needs a change, just the
module changes, thereby avoiding a complete redesign. For the test phase, the FPGAs can
be used for more than just computational purpose in order to improve the system perfor-
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le proÞlage dÕun mod•le jusquÕˆ lÕimplŽmentation sur sa cible dÕexŽcution matŽrielle. En

e! et, pour surmonter les di" cultŽs liŽes ˆ ce type de conception, nous avons proposŽ une

mŽthodologie [6] dŽcrite dans la Þgure4.8.

Figure 4.8 Ð MŽthodologie de dŽveloppement

Tout dÕabord, il est nŽcessaire de spŽciÞer un projet de simulation prŽsentŽ comme

un graphe de t‰ches contenant di! Žrents mod•les communicants (M0, M1, etc.). Tous les

projets nÕŽtant pas adaptŽs ˆ une exŽcution performante sur architecture CPU-FPGA,

il est nŽcessaire dÕe! ectuer une analyse compl•te du code source aÞn de dŽterminer son

potentiel de parallŽlisation.

Pour ce faire, des outils dÕanalyse tels que Pareon [67] proposŽ par la sociŽtŽ Vector Fabrics,

Intel Parallel Studio [33] ainsi que GAUT [19] sont aujourdÕhui disponibles. Ces outils

e! ectuent gŽnŽralement une compilation de ce code source pour une analyse bas niveau

de ce dernier. Ainsi, il devient possible de situer les dŽpendances de donnŽes et ainsi

dÕextraire le degrŽ de parallŽlisation comme nous pouvons le constater sur la Þgure4.9. Sur

cette Þgure, nous pouvons observer le rŽsultat dÕune analyse dÕun code par lÕoutil Pareon

prŽsentant plusieurs boucles. Deux de ces boucles prŽsentent une faible dŽpendance de

donnŽes entre les di! Žrentes itŽrations, d•s lors en rŽpartissant leur exŽcution sur plusieurs

threads, il est possible de rŽduire leur temps dÕexŽcution. Dans lÕexemple prŽsent sur cette
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FIGURE 2.8 – Application design methodology for heterogeneous CPU/FPGA system

mance. The introduction of FMC I/O standard has given a new purpose for FPGAs to be
used as a communication platform. Taking into account the features offered by FPGAs and
FMCs, such as �exibility and modularity, we have rede�ned the role of these devices to be
used as a generic communication and computation-centric platform. Thus, in addition to the
avionic models, FPGAs will implement I/O IPs such as ARINC429 in order to perform the
communication with the UUT.

A new modular, runtime recon�gurable, Intellectual Property (IP)-IP communication-
centric hardware is proposed for avionic test application domain as illustrated in �gure 2.9.
The hardware architecture is composed of standard machines running virtual avionic mo-
dels coupled with FPGA boards equipped with FMC connectors. These connectors ensure
through the I/O interface just the physical connection with the avionic equipment. The com-
munication protocol is implemented as an IP hosted on the FPGA and data are transmitted
via the FMC. Thus, the test phase for a given equipment requires the instantiation of the ap-
propriate I/O IP protocol while the other avionic models remain virtual. Some models can
be also hosted on the FPGA as the same level of the I/O IPs which can reduce signi�cantly
the communication delays. We can rely on several FPGA boards in order to consider several
avionic UUT on the loop.

With such architecture, avionic IP cores can be explored by system designers in different
scenarios depending on the application requirement. Therefore, depending on the test scena-
rio, the user can choose a communication IP core to be con�gured dynamically. This removes
the need to have multiple/redundant systems, each for a different protocol. Moreover, when
the IP core is recon�gured, the communication channels with the FMC is also recon�gured
dynamically along with the protocol. In case the FMC module does not provide a corres-
ponding interface for the communication core being recon�gured (which can be detected
using the I 2C EEPROM in the FMC module), it can be swapped with another appropriate
FMC module. Thus eliminating the need to redesign the entire board based on a new I/O
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FIGURE 2.9 – Hardware architecture for test system

interface requirement.
In the next sub-sections, we will detail the implementation of three widely used avionic

I/O communication protocols : ARINC429, CAN Bus, and the MIL-STD-1553. These proto-
cols are designed in the frame of an IP-based approach for the test phase.

2.5.1 Examples of avionic communication protocols

CAN BUS : The CAN controller designed, implements the Data Link Layer as de�ned
in the document "BOSCH CAN Speci�cation 2.0" 15. It implements a serial communication
which ef�ciently supports distributed real-time control with a very high level of security. The
design has two communication channels. The CAN bus protocol supports up to 16 channels,
and has a maximum bandwidth of up to 1 Mbps. The transmission can be programmed to
a random frequency using the con�guration registers. The architecture of CAN controller is
shown in �gure 2.10. CAN bus �nds its application in several automotive applications.

CAN works in the principle of automatic arbitration-free transmission. A CAN message
that is transmitted with highest priority will succeed, and the node transmitting with the
lower priority message will sense this wait for transmission. This is achieved by using the
notion of dominant bits and recessive bits where dominant is a logical 0 and recessive is a
logical 1. Therefore, in a physical implementation of the bus, if one node transmits a domi-

15. http ://esd.cs.ucr.edu/webres/can20.pdf
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FIGURE 2.10 – CAN bus controller architecture

nant bit and another node transmits a recessive bit then the dominant bit takes priority over
the recessive bit. This is implemented as a logical AND between the bits.

Furthermore, when recessive bit is transmitted while a dominant bit is being sent, the
dominant bit will be displayed, to indicate a collision. A dominant bit is asserted by creating
a voltage across the wires while a recessive bit is not asserted on the bus. Any voltage dif-
ference asserted is seen by all the other nodes. Thus there is no delay to the higher priority
messages, and the node transmitting the lower priority message automatically attempts to
re-transmit six bit clocks after the end of the dominant message.

When a differential bus is implemented, a Carrier Sense Multiple Access (CSMA) scheme
is often implemented. If more than two nodes transmit at the same time there is a priority
based arbitration scheme. The CAN implements a priority based arbitration when a diffe-
rential bus is employed. This makes the dominant message delay free, therefore making the
CAN bus protocol suitable for real-time communications.

During such arbitration, each transmitting node monitors the sate of the bus, and com-
pares the received bit with the bit that is transmitted. When a dominant bit is received, while
a recessive bit is being transmitted, the node stops the transmission. This arbitration is per-
formed during the transmission of the identi�er �eld (ID). Each node that wants to transmit
on the bus sends an ID with dominant bit starting from the highest bit. As soon as their ID is
a larger number (lower priority) they will be sending 1 (recessive) and see 0 (dominant), so
they back off. At the end of the transmission of the identi�er �eld, all the nodes would have
backed off, except the one with the highest priority.

The ARINC429 : is an application-speci�c technical standard for the avionic data bus
used on most higher-end commercial and transport aircrafts. It de�nes electrical characte-
ristics, word structures and protocol necessary to establish an avionic bus communication.
For ARINC429, messages are transmitted at a bit rate of either 12.5 or 100 Kbps to other sub-
systems. The design supports up to 16 Transmit and 16 Receive channels. The architecture of
ARINC429 was designed according to the ARINC protocol speci�cations 16. The architecture

16. http ://www.aim-online.com/pdf/OVIEW429.PDF
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FIGURE 2.11 – The ARINC429 bus architecture (left) and the MIL-STD-1553 bus architecture
(right).

of our ARINC429 core is shown in �gure 2.11 (left).
ARINC429 standard uses a self-clocking, self-synchronizing data bus protocol where

transmit (Tx) and receive (Rx) are on separate ports. Data words are 32 bits in length and
most messages consist of a single data word. The physical connection wires are twisted pairs
that carry balanced differential signaling. The transmitter transmits either 32-bit data or the
NULL words. A single wire pair is limited to one transmitter and up to a maximum of 20
receivers. The protocol allows for self-clocking at the receiver end, thus eliminating the need
to transmit clock information. ARINC429 is an alternative to MIL-STD-1553 standard.

MIL-STD-1553 : The MIL-STD-1553 is originally serial military standard protocol that
de�nes the mechanical, electrical, and functional characteristics of a serial data bus. It is now
also being used in spacecraft On-Board Data Handling (OBDH) subsystems, both military
and civil. The architecture of the bus system consists of a Bus Controller (BC) controlling
multiple Remote Terminals (RT) all connected together by a data bus providing a single
data path between the bus controller and all the associated remote terminals. The RT is used
to interface with other user de�ned subsystems. There can also be one or more Bus Moni-
tors (BM) ; however, they are not allowed to do any data transfers, and are only used for
recording the data for analysis. The protocol also supports several data buses to provide
multiple redundant data paths upto a maximum of 4. The protocol follows very strict ti-
ming constraints and requirements and provides a maximum bandwidth of 1 Mbps. We
have developed our own IP core according to the MIL-STD-1553 speci�cation 17 and used it
to evaluate our system. The architecture of the MIL-STD-1553 is given in �gure. 2.11 (right).

2.5.2 Towards the convergence between the simulation and the test domains

Using the FPGA as a centric computation component for simulation as well as a commu-
nication centric component for test leads to the convergence towards a uni�ed environment
for simulation and test. We promote that all is IP (avionic models and I/O communication
protocols) in our environment. For a given simulation or test project, we have to instantiate
the appropriate IPs at the initial phase. In different scenarios, theses IPs can be managed at

17. http ://http ://mil-std-1553.org/
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runtime. For instance, a software avionic model can be replaced with a hardware implemen-
tation when more performance should be delivered. We can also switch dynamically bet-
ween a simulation and test phases with just replacing the virtual model with the appropriate
I/O protocol to communicate with the UUT using the DPR feature of the FPGA. Conside-
ring the number of avionic systems (from 10 to 100) that can be embedded depending on
the helicopter range, several computing nodes are necessary. Hence, a uni�ed environment
for simulation and test can be a network of heterogeneous CPU/FPGA nodes with different
I/O interfaces. A supervisor is needed to manage all the available resources at runtime. As
all is considered as IP, a new simulation or test project is assimilated to resource allocation
problem. We need also to deal with the communication and the recon�guration models in
order to meet real-time constraint and dynamic re-allocation. These objectives are conside-
red as future works, and we will focus only on one computing node as it will be illustrated
in Section 2.7.

2.6 Towards recon�gurable computing for embedded avionic ap-
plications

After the validation of the avionic system through the simulation and the test phases, we
need to integrate the FPGA-based solution on the aircraft as a standalone hardware gathe-
ring the computation and the communication parts. At this level, we meet the conventional
methods and industrial tools used for fault tolerance, veri�cation, and certi�cation in order
to address special requirements that demand powerful and highly reliable designs. Signi-
�cant research and industrial efforts have been devoted at the circuit and EDA (Electronic
Design Automation) levels to reach this objective. As an example, FPGA device manufac-
turers are collaborating with EDA tool vendors to resolve dif�cult problems like providing
triple redundancy for dealing with single-event upsets (SEUs) issues in avionic applications.

Today, Xilinx offers on the 7 series FPGAs automatic detect and correct circuitry
(CRC/ECC) with Partial Recon�guration. This technique scans and corrects 2-bit upsets in
20-30msfor most devices and enables SEU logging and tracking. CRC/ECC operates inde-
pendently of user design. Through the Mentor Graphics 18 (an EDA technology leader) and
Xilinx collaboration, the tool Precision Hi-Rel synthesis software is provided. In addition,
Xilinx offers TMRTool software for Space and other extreme reliability applications. Other
FPGA vendors such as Actel and Altera are also providing their commercial solutions.

Today, Triple-Modular Redundancy (TMR) techniques are widely used to mitigate ra-
diation effects, but TMR requires substantial overheads such as increased area and power
requirements. In order to reduce these overheads while still providing suf�cient radiation
mitigation, authors in [96] propose a Recon�gurable Fault Tolerance (RFT) framework that
enables system designers to dynamically adjust a system's level of redundancy and fault
mitigation based on the varying radiation.

As the number and the complexity of embedded avionic systems have grown in nowa-
days aircraft, it became necessary for the FAA (Federal Aviation Administration) to establish
a baseline of minimum design �ow steps for avionic equipment. DO-254 19 was formally
recognized in 2005 as a standard for ensuring the highest level of safety in electronic avio-
nic systems. It provides guidance for the design assurance of Complex Electronic Hardware

18. http ://www.mentor.com/
19. http ://www.do254.com
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FIGURE 2.12 – DO-254 process �ow from Synopsys

(CEH) in airborne systems and equipment for use in aircraft or engines 20. However com-
pliance with DO-254 requires assistance from the FPGA tools vendors because there are
requirements to provide documentation and traceability. The tools vendors such as Synop-
sys21 have been doing a lot to provide easier and more comprehensive ways to ensure that
compliance. In fact, tool assessment is a part of the DO-254 process that is meant to ensure
that the tools used for hardware design and veri�cation perform correctly.

A DO-254 compliant design is speci�ed using a set of formal requirements. As part of the
certi�cation process, the applicant must prove that their implementation meets all of these
requirements. A graphical illustration of the typical process �ow is shown in �gure 2.12.

The �rst step in the DO-254 process �ow is the design speci�cation using formal requi-
rements leading to a veri�cation plan that should be tracked along the process. The next
step is the design implementation. FPGA implementation is typically veri�ed through RTL
simulation, to validate design intent, and code coverage analysis to ensure 100% coverage
of all possible input signal combinations across a series of applied tests. However, while si-
mulation results can be easily visualised, analysed, compared and requirements traceability
easily maintained, the design behaviour in real hardware cannot be easily traced back to si-
mulation because it is simply not possible to achieve 100% speci�cation coverage once the
FPGA is physically mounted onto a circuit board.

To have full traceability you need to be able to compare the behaviour of the physical
outputs of the device with their corresponding RTL simulation results. However, rarely we

20. http ://www.atego.com
21. http ://www.synopsys.com/
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can drive physically the hardware with all combinations of stimuli. Even for the inputs, the
creation of test vectors is an intensive and time-consuming manual task.

Accordingly, performing veri�cation to satisfy DO-254 at the board-level is not only chal-
lenging and risky, it is sometimes just not feasible within project time-scales ; which is why
engineers are increasingly adopting a so-called in-hardware veri�cation methodology. Al-
dec22 provides a Compliance Tool Set that enables DO-254 compliant design and imple-
mentation �ow.

In the following subsection, we give an example of embedded runtime recon�gurable
system. It is necessary to follow the above described steps to reach a certi�ed design, howe-
ver this objective is not in the scope of this research work.

2.6.1 Example of runtime recon�gurable system

Figure 2.13 illustrates an example of architecture implementing modular runtime recon-
�gurable system. The setup consists of an embedded processor attached to a few peripheral
devices and the avionic communication protocols via the Processor Local Bus (PLB). These
I/O protocols communicate with the external sub-systems via the interface provided using
a FMC module.

In order to compare and contrast the ef�ciency of our runtime recon�gurable communi-
cation system, with the traditional redundant systems, we have two different types of archi-
tectures. First, only one communication IP core is present at a time and can be swapped on-
demand. Second, all the IP cores are present at the same time. An example of image encoding
(JPEG) application was chosen to evaluate the architecture and our IP cores. The software in-
terface is provided by a Xilinx Microblaze processor with some peripherals attached using
a Processor Local Bus (PLB), as shown in �gure 2.13. A Xilinx ICAP controller is used to
perform partial recon�guration. We have chosen PLB interface instead of Fast Simplex Link
(FSL) because, the IP cores are serial communication protocols and require the con�guration
of only few registers for their operation. However, on the other hand, JPEG Encoder [114]
requires a high-bandwidth communication link with the processor, for processing and data
transfers. Therefore, it is connected to the processor using Fast Simplex Link (FSL). However,
if need arises the JPEG application can also be implemented as a dynamic part. Compared to
a real implementation, the proposed architecture should rely on a certi�ed technology. Ho-
wever, the functionality of the system remains the same. In addition, other design metrics
should be involved such as power consumption and area utilization.

Due to the attraction of heterogeneous architecture, today a cutting-edge embedded tech-
nology appears gathering multi-core processor and recon�gurable logics on the same chip.
The Xilinx Zynq 7000 Extensible Processing Platform (EPP) is an example of such circuit em-
bedding a dual Cortex A9 processor and tens of thousands of programmable gate arrays.
The Zynq 700023 combines the software programmability of a processor with the hardware
programmability of an FPGA, resulting in unrivaled levels of system performance, �exi-
bility, scalability while providing system bene�ts in terms of power reduction, lower cost
with fast time to market. Undoubtedly, the essential features of systems to combine soft-
ware and hardware programmability (sequential or parallel) and to recon�gure themselves
(at the hardware or the software level) at run-time comes with additional complexity in the
different design �ow steps.

22. http ://www.aldec.com
23. http ://www.xilinx.com/
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FIGURE 2.13 – Embedded hardware architecture with dynamic recon�gurable system

2.7 Experimental results

In this section, experimental results will cover all the design steps in order to underpin
the industrial relevance of the proposed recon�gurable-centric design process for avionic
systems.

2.7.1 Simulation environment results

To test our solution of heterogeneous CPU/FPGA hardware for real-time avionic simula-
tion, a hardware experimental environment is essential. The hardware environment is based
on a bi-processor Intel Xeon E5520 (quad-core) 2.27GHz, 16-GByte DDR3 memory, and a
ML605 Virtex-6 Xilinx board. The FPGA is plugged in the mother board through a PCIe slot
that can support 2.5 GBytes/s throughput as illustrated in �gure 2.14. Our software environ-
ment relies on Linux Debian and has been successfully tested with kernel versions ranging
from 3.2.0-amd64 to 3.10.5-amd64. It is released under a proprietary software license. To
satisfy soft real-time requirement, frequently imposed in industrial domain, we opted for
processor af�nity. In order to avoid the timing constraint violation, we have modi�ed the
standard kernel con�guration in order to reduce the latencies. The CPU Frequency Scaling
are disabled to keep the cores at their maximum frequency. We have also disabled the swap
capability to be sure that no model will be “swapped”. Another element that guarantees
real-time requirements is the FPGA. However, its utilization can be useless because of the
communication latencies with the CPU. In order to ful�ll real-time requirements, it is impor-
tant to �nd the best trade-off.

As stated before, the main objectives of using the FPGA at this level is improving perfor-
mance versus software implementation, achieving high simulation speed-up, and ful�lling
real-time requirements. To do so, we will analyse different avionic models in order to obtain
different possible implementations on our heterogeneous multi-core CPU/FPGA architec-
ture. These models are used for an avionic simulation project such as the �ight mechanic and
the navigation models. According to the needed performance and the real-time constraints,
the design will be tuned and improved as much as possible in order to be executed more
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6. ƒTUDE DE CAS ET VALIDATION EXPƒRIMENTALE

Figure 6.1 Ð ConÞguration matŽrielle
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FIGURE 2.14 – Heterogeneous CPU/FPGA for real-time simulation

TABLE 2.1 – Avionic models analysis

Results Speed-up Maximum
number
of useful
threads

Synchronization
overhead

Model A 1.2 2 1%
Model B 0 1 0%
Model C 2.4 3 0%
Model D 3.5 6 39%
Model E 3 4 29%

ef�ciently on our architecture considering also switching at runtime between software and
hardware con�gurations or vice-versa.

Table 2.1 summarizes the experimental results obtained by analysing the software mo-
dels with Pareon tool. First, we measure the speed-up obtained after optimization. Second,
threads must be created for parallel implementation strategy. This might be implemented
through the use of POSIX calls creating the threads. The maximum useful number of threads
is directly linked with the parallelism degree of the application. Indeed, as shown by many
parallelism laws, there is always a limit number of useful calculation nodes, it is the same
for the maximum of useful threads. But multiple threads means more data synchronisation.
That means a less time delay while waiting for data and therefore less latency. Synchroni-
zation brings overhead, there is a trade-off between the latency introduced by doing fewer
synchronizations with more data and the overhead introduced by doing more synchroniza-
tions with less data. Pareon helps the user to get the best trade-off.

Pareon shows a 1.2 speed-up for the model A with low synchronization overhead with
only two threads. Model B cannot make pro�t from a parallelization strategy. For these two
models better performances can be achieved just with hardware implementation. Model C,
D and E offer higher parallelism degree with low synchronisation overhead for model C.
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These models are suitable for multi-core architecture or hybrid multi-core CPU/FPGA im-
plementation by splitting the models into different functions due to the low synchronization
overhead.

Using our previous results, we decide to implement model A which is the Flight Mechanic
modelin order to observe the behaviour of such model in a VHDL hardware implementation.
With the software version, we obtained a 20 ms of execution time with our host.

For the hardware implementation, we target the Virtex-6 Xilinx board (ML605) as execu-
tion support. A VHDL implementation of the Flight Mechanic modeloffers a 2ms of execution
time with 8% space occupation, this is mainly due to the usage of �oating point calculation
in this model. This result offers the opportunity to move model A from a processor to the
FPGA in the case of timing constraint violation or an anticipated overload.

FIGURE 2.15 – Time repartition of a multi-model soft/hard simulation project

In the next experiment, we will consider the simulation loop presented in �gure 2.2, the
real-time period is set to 10 milliseconds. The Flight Mechanic modelmodel is implemented in
hardware and hosted on the FPGA while the other models are executed on processor. Our
objective is to verify the stability of the simulator according to the global system load. While
the load increases and up to a certain limit, many runtime recon�gurations occur without
any interruption of the simulation caused by a real-time period over�ow. We highlight that
the execution time of a software model increases according to the processor load which is
not the case of a hardware model hosted on the FPGA.

Figure 2.15 describes simulation model time repartition. The execution time of the model
is proportional to the processor's load and inversely proportional to the “wait” duration.
“Complete” corresponds to the percentage of successful simulation. Figure 2.15 shows that
the I/O time and the recon�guration time are negligible. As soon as the load exceeds the
migration threshold (87%), migrations occur. Then, as the load continues to increase the “too
many consecutive migrations alert” occurs and stops the simulation which is mainly due to
the software part. This result demonstrates that a heterogeneous CPU/FPGA architecture
can be an ef�cient execution support for real-time simulation in avionic domain without re-
ferring to a dedicated and expensive solutions. As a conclusion, we highlight that the FPGA
can bring performance in such domain playing mainly the role of a computing hardware
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FIGURE 2.16 – ML605 kit showing FMC connector loopback using MIL-STD-1553

accelerator.

2.7.2 Test environment results

For the test environment, we will rely on the same technology in order to establish the
communication with the UUT (avionic equipment) according to the generic architecture pre-
sented in �gure 2.9. In fact, the ML605 board that we are using provides two FMC slots ; one
with a High Pin Count (HPC) and the other with a Low Pin Count (LPC). Hence, these slots
can be used to host simultaneously two different FMC cards presenting I/O avionic inter-
faces as shown in �gure 2.16. Different communication avionic protocols (ARINC429/CAN
Bus/MIL-STD-1553) are implemented and tested in real scenarios. To do so, a Microblaze
processor is used in order to con�gure the registers and initiate data transfers. A number of
frames is transmitted to an avionic sub-system using an appropriate communication proto-
col (ARINC429/CAN Bus/MIL-STD-1553) via a FMC interface. The communication proto-
col is selected and con�gured during runtime according to the request. Ideally, the data have
to be transmitted to external sub-systems. However, for testing purposes, we have done an
external FMC loop-back to verify if the transmission is correct as shown in �gure 2.16. We
then analyse the FPGA resource utilization, transmission characteristics, I/O pin require-
ment and scalability for each core. The results are elaborated in the following subsections.

2.7.2.1 FPGA resource utilization

Table 2.2 summarizes the area utilization of each avionic protocol with different con�-
gurations. While considering only one IP core active at a time (i.e. a design with only an
ARINC429 16 channels or a CAN Bus 16 channels), the consumed area is about 37% of the
logic blocks in the FPGA (with respect to Flip Flop utilization). However, When 3 IP cores
are implemented at the same time (in this scenario ARINC429 16 channels, CAN Bus 16
channels, and MIL-STD-1553), it consumes over 70% of the resources on the Virtex6 FPGA
which is about 50% excess comparing to one IP core active at a time. This is a waste of hard-
ware resources considering the fact that the FPGA can also host avionic models as discussed
in Section 2.5. Using Partial Recon�guration (PR) is very relevant because it clearly elimi-
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TABLE 2.2 – Area utilization of the avionic IP cores

Slices FFs LUTs BRAMs
ARINC429-2 channel 1,912 3,198 7,644 2
ARINC429-16 channel 47,920 44,267 59,400 2
CAN Bus-2 channel 689 1,016 2,754 0
CAN Bus-16 channel 10,176 15,437 41,096 0
MIL-STD-1553- Dual Redundant 1,232 3,432 8,453 16
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FIGURE 2.17 – Transmission time vs Number of frames

nates the need for having multiple systems (corresponding to different UUTs) for the lack of
hardware resources in traditional avionic systems.

2.7.2.2 Transmission times

Figure2.17 shows the performance of our IP cores in terms of time taken for transmitting
different number of frames. The system performance has been evaluated up to 1000 frames.
The time measurements were done in the software using a Microblaze timer. The transmis-
sion and reception is done synchronized according to the protocols' internal clocks with
pre-programmed frequencies. However, the time measured, also takes into consideration
the overhead of con�guring the registers, the overhead caused due to the transfer of status
words and the idle time between each transaction. From the graph shown in �gure 2.17, it
is seen that MIL-STD-1553 is the fastest in transmitting the frames. Although MIL-STD-1553
and CAN buses have the same maximum bandwidth, the fact that MIL-STD-1553 is able to
pack more data into a single message and to operate with minimal status feedback, gives it
an extra edge in transmitting ef�ciently.

2.7.2.3 Number of I/O pins and channels

Each protocol requires a speci�c number of FPGA I/O pins to communicate to the ex-
ternal sub-systems via FMC. The number of pins required is determined by the number of
communication channels in the design. Table 2.3 shows the number of FPGA I/O pins re-
quired for each protocol according to the number of I/O channels. However, some data in
the table are not shown because, CAN bus standard does not support more than 16 chan-
nels and MIL-STD-1553 is never used beyond 4 redundant buses. As seen in �gure 2.18, the
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TABLE 2.3 – FPGA I/O pins requirement for each protocol

Channel count ARINC429 CAN Bus MIL-STD-1553
Pins for 1 channel 8 3 6
Pins for 2 channels 16 6 12
Pins for 4 channels 32 12 24
Pins for 8 channels 64 24 -
Pins for 16 channels 128 48 -
Pins for 20 channels 160 - -
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FIGURE 2.18 – Number of pins versus number of I/O channels

number of pins linearly increases with respect to the increase in the number of channels. This
parameter is important for the following reasons. It is quite clear that packing all protocols
at the same time requires about 230 user I/O pins on the FPGA. However, the number of
FPGA user I/O pins that can be allocated for these communication protocols is restricted by
the number of FPGA ports and FMC slots. While a mid-size FPGA (as used by many avionic
systems) may have anywhere around 300 to 500 pins, using all these pins for FMC I/O will
not leave suf�cient pins for the other FPGA peripheral devices (i.e. Ethernet, SFP, LCD, me-
mory, back planes, front panels, etc.). On the other hand, a high-end FPGA which may have
up to 1200 user I/O pins are usually chosen to pack dense computational logic, hence using
them for multiple communication protocols wouldn't be very cost effective.

2.7.2.4 Scalability

The scalability of the system is given in term of number of transmission channels each
core can accommodate, which is derived from the protocol speci�cation. ARINC429 is ca-
pable of scaling up to a maximum of 20 channels and CAN up to a maximum of 16 channels.
However, MIL-STD-1553 is only dual redundant. It is quite important to note that, scalabi-
lity of a protocol does not increase the bandwidth of the system since the bandwidth of the
bus is dictated by the standard itself. However, the number of channels only enables to the
system to simply communicate with more number of sub-systems at the same time which is
the case when different UUTs are using the same avionic protocol.
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TABLE 2.4 – Area utilization of the FPGA design blocks

Slices FFs LUTs BRAMs DSP
Microblaze 573 1,737 1,474 101 3
JPEG Encoder 2,482 4,112 6,375 79 10
Peripherals 4,937 4,543 4,051 3 0

Design with 3 IPs
+ JPEG

79,047 (27%) 68,569 (68%) 127,558 (77%) 150 (36%) 13 (2%)

2.7.3 Embedded avionic application results

The use-case scenario for our architecture is a part of an Unmanned Ariel Vehicle (UAV)
avionic system. The task of the system is to travel between different terrains ; to take pictures,
to encode sand either store them internally, or to transmit them to a remote system. Depen-
ding on the scenario, an appropriate communication protocol (ARINC429/CAN Bus/MIL-
STD-1553) has to be selected and con�gured during runtime. For instance, when a secure
transmission is needed, the MIL-STD-1553 is chosen. Our avionic system is implemented
respecting the architecture of �gure 2.13. The Xilinx EDK and ISE tools were used to gene-
rate the bitstream. Initially the partial bitstreams are stored in the Compact Flash memory
and are read when requested by the application. The operational frequency of the processor,
buses and the peripherals is 100 MHz. A C program is used to initialize and to interact with
Microblaze and thus the underlying hardware in order to con�gure the registers and ini-
tiate data transfers. A communication protocol (ARINC249/CAN/MIL-STD-1553) runs in
parallel with a JPEG encoder [114]. The captured image is encoded, and is transmitted to an
avionic sub-system using an appropriate communication protocol selected during runtime
via a FMC interface.

The area utilization of each hardware component is shown in Table 2.4. The Microblaze
core occupies 573 slices and 101 block RAMs. This is mostly due to the large embedded me-
mory used to store the software executable (application and operating system kernel). The
JEPG encoder needs over 2400 slices, 79 BRAM blocks and 10 DSP blocks, since it buffers the
input image frames and performs DSP algorithms to encode the image. About 4900 FPGA
slices and 3 BRAMs are occupied by the peripheral devices and the PLB bus interface. These
results show the hardware extra-cost of using a softcore processor (the Microblaze) for data
transfer and dynamic recon�guration management.

2.7.3.1 Recon�guration latency and application pro�le

We measure the time taken to dynamically recon�gure the system with our communica-
tion protocols. All the timing measurements shown are measured from the software. Partial
bitstreams are stored in the Compact Flash and read when requested. Figure 2.19 shows the
recon�guration latency versus the bitstream size. From the graph, it is quite obvious that the
bigger the size of the bitstream the longer the recon�guration latency. Bitstreams of size less
than 500 KBps require less than a second to be recon�gured. Con�guration stream of size
645 KBps which is the size of our bitstream (the IP cores with 2 channels), requires roughly
about 1.3 seconds while bitstreams larger than a 2 MBps (corresponds to the IP core with 16
channels) have recon�guration latency of few seconds. The read queue in the XPS_HWICAP
controller buffers the con�guration data before it is fed to the ICAP. However, we see that



50 CPU/FPGA Dynamic Execution Model for Avionic Simulation and Test

!"!#

$"!#

%"!#

&"!#

'"!#

("!#

)"!#

$*'# %*+# &$%# )'(# ,(!# $%%!# $*('# %&)!#
!"

#$
%

&
'()

*+
$%

,-
*.

"%
#/

,0
1"

#1
2,

3$%&'()*+$%,45.1.)"*6,758",095:$4/."12,

FIGURE 2.19 – Recon�guration latency versus con�guration bitstream size
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FIGURE 2.20 – Application pro�le

the throughput of the ICAP controller is less than the theoretical maximum because of the
disk access overhead caused by the Compact Flash. It is interesting to note that, the entire
avionic protocol is swapped within seconds with uninterrupted system operation.

The recon�guration latency can be completely hidden in many scenarios as shown in
the pro�le of the application in �gure 2.20. From this illustration, it is quite obvious that
transmission time is quite negligible compared to execution time of the application (JPEG).
It is also seen that the recon�guration time become also negligible with signi�cant processed
data. As Partial Recon�guration means the ability to dynamically modify the blocks of logic
by downloading partial bitstreams while the remaining logic continues to operate without
interruption 24, the recon�guration phase can be anticipated during the application proces-
sing.

2.7.3.2 Power estimation

The total power consumption of the design depends on several attributes of the overall
design. But it is safe to assume that the bigger the design is the more the power consumption
will be, unless special power saving mechanisms such as clock gating is applied, among

24. Xilinx : http ://www.xilinx.com/tools/partial-recon�guration.htm
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FIGURE 2.21 – Total power consumption of each design

other factors. In the �gure 2.21, we are comparing the overall power consumption of each
design with respect to the design with ARINC429 16 channels, CAN Bus 16 channels, MIL-
STD-1553 and JPEG application at the same time. The maximum power savings are about
400 mW when only one IP is present at a time. Although this difference may not be huge, as
mentioned earlier, avionic protocols such as AFDX are far more complex and power-hungry
with several Gigabit transceivers operating at the same time.

2.8 Discussion

The Summary. In this chapter, we have presented an FPGA-centric design process for
avionic systems. We have rede�ned the role of the FPGA in the different design steps na-
mely the simulation, the test, and the integration phases. In the proposed process, a particu-
lar attention has been given to the smooth transition between the different steps relying on
the same technology which yields to a reduced design cost and time-to-market. The main
criteria of recon�gurable circuits in terms of performance, �exibility and dynamicity have
been exploited to de�ne versatile avionic systems respecting several design constraints (real-
time, area utilization, etc.). For the simulation part, �rst we emphasized the bene�ts of using
emerging CPU/FPGA heterogeneous architecture for high performance and real-time requi-
rements. Second, we brought dynamicity to the heterogeneous system with the de�nition of
an appropriate execution model to support run-time adaptive mapping and we offered the
software environment to support such feature. This research work also addressed the chal-
lenge of convergence between the simulation and test domains by proposing an FMC (FPGA
Mezzanine Card) standard-based communication system. The pertinence of experimental
results presents a concept proof of the proposed design process.

Limitations. More investigation on software/hardware dynamic context switching
should be performed in order to support preemptible task execution which can lead to a bet-
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ter performance execution model. The usage of virtualization techniques, such as exposed
in [117] for the management of software and hardware tasks at the operating system running
on a commercial heterogeneous platform, allows the reduction of development complexity.
High level programming tools are also needed to increase the productivity of designers on
dynamic and heterogeneous architecture. As we are targeting a safety-critical domain, the
proposed concepts should be certi�ed to be used in the next generation of avionic systems.
We should rely on formal veri�cation tools for proving the correctness of the system beha-
viour.

The future. The target systems (aircraft, helicopters, etc.) are very complex and they are
considered as System-of-System (SoS). We already started studying the scalability of the
environment to construct a network of heterogeneous computing nodes where the recon�-
gurable technology will play an essential role. This led to a new patent registration at the
INPI [8] in collaboration with Airbus Group. In the future, we will pursue the research on
dynamic execution model considering distributed and heterogeneous systems.
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This chapter presents my contributions since 2009 in LAMIH laboratory and INRIA
DaRT team in the �eld of low power design for homogeneous and heterogeneous Multi-
processor System-on-Chip (MPSoC). Mainly, these works was achieved in the frame of the
ANR OpenPeople project 25 in collaboration with colleagues from LAB-STICC 26 (University
of Bretagne Occidentale), IRISA27 (University of Rennes 1), and LEAT 28 (University of Nice
et Sophia Antipolis). This work also covers the PhD thesis of Santhosh Kumar Rethinagiri
started in December 2009 and defended in March 2013 (co-advised by Jean-Luc Dekeyser).

The remainder of the chapter is organized as follows : in Section 3.1, I introduce the main
challenges for low power design in complex embedded systems ; Section 3.2 gives a sum-
mary of the related works. In Section 3.3, I introduce the O PEN-PEOPLE platform while the
necessary background for power consumption is exposed in Section 3.4. Section 3.5 details
the �rst part of my contributions about the power-aware design methodology. In Section 3.6,
I present our work devoted to the power modeling. Sections 3.7 and 3.8 illustrate our results
about design space exploration and model driven engineering. Finally, in Section 3.9, I dis-
cuss the strengths, limitations and future directions to the presented works.
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25. www.open-people.fr
26. www.lab-sticc.fr
27. http ://www.irisa.fr/
28. http ://leat.unice.fr/



56 Energy/Power-Aware Design Methodology for MPSoC

3.1 Main challenges for low power design

The increasing complexity of applications and System-on-Chip (SoC) architectures places
embedded system designers in front of a very large design space. Exploring this space to
reach an ef�cient solution becomes very dif�cult, especially when the design must satisfy
a large number of constraints, such as power and energy consumption. These constraints
have led to introduce the usage of Multi-Processor System-on-Chip (MPSoC) which allow to
integrate very complex systems. These MPSoC are generally heterogeneous and can contain
different memory structure (Cache, SRAM, FIFO, etc.), processors (GPP, DSP, etc.), inter-
connecting elements (Bus, Crossbar, NoC, etc.), I/O peripherals, or recon�gurable logic. To
use the tremendous hardware resources available in next generation MPSoC ef�ciently, ra-
pid and accurate Design Space Exploration (DSE) methods are needed to evaluate the dif-
ferent design alternatives. MPSoCs must be designed with custom architectures to balance
the implementation constraints between the application needs (i.e. : high computation rates
and low power consumption) and the production cost. With the recent sub-micron techno-
logies, power consumption is becoming a critical pre-design metric in complex embedded
systems such as MPSoC. Currently, designing low power complex embedded systems is a
main challenge for corporations in a large number of electronic domains. There are multiple
motivations which lead designers to consider low power design such as increasing circuit
lifetime, improving battery longevity, limited battery capacity, and temperature constraints.
Nevertheless, the signi�cant increase of complexity in such systems prevents designers from
controlling the complete design �ow. To guide the designer during the different design
choices, the development of an ef�cient methodology and associated tools for power esti-
mation and optimisation is mandatory. Today, Electronic System Level (ESL) design is consi-
dered a vital premise to overcome the increasing design complexity. System designers need
an ef�cient power-aware design methodology and tools to cope with the complexity of MP-
SoC design. The development of tools for power estimation and optimisation at the system
level confronts extremely challenging requirements such as a seamless power-aware design
methodology that relies on accurate and fast system power modeling and integrates ef�cient
power optimisation techniques. To be acceptable, the proposed methodology must include
all the system-on-chip aspects, i.e. architecture/hardware, application/software, and ma-
nagement/operating system. In the following subsections, we will give an overview of the
main challenges related to the low power design of complex embedded systems.

Seamless power-aware design methodology : In current industrial and academic prac-
tices, power estimation using low-level CAD tools is still widely adopted, which is clearly
not suited to manage the complexity of embedded systems supporting modern applications.
In fact, MPSoCs have a huge solution space at the application, the Operating System (OS),
and the architectural levels, which makes the DSE complex. This challenge is addressed
by several frameworks through the development of ESL tools. The objective is to unify the
hardware and software design and to offer a rapid system-level prototyping using virtual
platforms. Based on the design step and the requirements like the timing accuracy and the
estimation speed, designers could select an appropriate abstraction level to model the soft-
ware simulating the system. Unfortunately, most of existing tools do not consider the power
metric or focus on power estimation for a given abstraction level without overcoming the
wall of speed/accuracy trade-off. Multi-level DSE is an unavoidable solution to have a good
speed/accuracy trade-off. Indeed, a top-down DSE allows to eliminate fast the undesirable
solutions at each design level before reaching physical implementation levels. In the frame of
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multi-level DSE, designers of embedded applications need a seamless power-aware design methodo-
logy that takes into account the power metric at different abstraction levels. In a top-down design
methodology, an appropriate power estimation and optimisation tool should be de�ned ac-
cording to each abstraction level. The objective is to offer a gradual re�nement of the solution
space while switching between the design steps.

System power modeling : At the system level, we need power models emulating the
behaviour of different parts of the system in terms of consumption. The power modeling
process is centred around two correlated aspects : the power model granularityand the main
activity characterisation. The �rst aspect concerns the granularity of the relevant activities on
which the power model relies. It covers a large spectrum that starts from the �ne-grain level
such as the logic gate switching and stretches out to the coarse-grain level like the hardware
component events or the OS services. In general, �ne-grain power estimation yields a more
correlated model with data and technological parameters, which is tedious for system-level
designers. On the other hand, coarse-grain power models are based on micro-architectural
activities that cannot be determined easily depending on the complexity of the system. The
second aspect of power modeling involves the characterisation of the activities, which re-
quires a huge number of experimental measurements and thus a signi�cant time to extract
the power model. The above-described aspects lead to the de�nition of a power model,
which can be represented by a set of analytical functions or a table of consumption values.
The selected power model granularity depends on the target abstraction level and the user
requirements in terms of estimation accuracy and speed. In the power estimation process,
the developed power models interact with virtual platforms in order to grab the strict re-
levant data (the values of the power model parameters) depending on the design step. The
main challenge is to de�ne a generic power modeling approach that can cover the different abstrac-
tion levels and guarantee the coherence of the estimation strategy for a seamless power-aware design
methodology.

The power optimisation techniques : To reduce the power/energy consumption in MP-
SoC, we can distinguish two main approaches. The �rst approach is static by the means of
design space exploration in order to tune the architecture according to the application requi-
rements. While in the second approach, the power/energy consumption in MPSoC can be
reduced dynamically at runtime. At the OS level, two main techniques can be applied : the
Dynamic Power Management (DPM) that switches-off the power supply of a part of the cir-
cuit and the Dynamic Voltage and Frequency Scaling (DVFS) that tunes the processor clock
speed and its corresponding voltage according to the workload (actual or expected) or the
battery charge. A lot of techniques have been developed [51] [88] but their ef�ciency is not
evaluated with a suf�cient accuracy because, in a majority of cases, they do not rely on rea-
listic time and power models and few of them validate their policy on real-platform due to
the corresponding complex and time consuming implementation. The challenge is to include
these optimisation techniques in the design �ow as an essential part of the DSE process.

Software design environment : Solving the challenge of low power design while main-
taining acceptable design productivity requires development tools that support abstraction
and automation. Therefore, an ef�cient software approach, such as Model Driven Enginee-
ring (MDE) [119], is needed in order to make the SoC design easy and not tedious, by making
the low-level technical details transparent to designers. In MDE, models become a mean
of productivity. The graphical nature of MDE offered by the Uni�ed Modeling Language
(UML) makes the comprehensibility of a system easier and allows users to model their sys-
tems at a high abstraction level, reuse, modify and extend their models. Using the automa-
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tion offered by MDE, the whole code necessary for the simulation of a SoC can be generated
automatically from models describing the system. In order to use the MDE for a high level
description of a system in a speci�c domain such as embedded systems, UML pro�les are
used. A UML pro�le is a set of stereotypes that add speci�c information to a UML model in
order to describe a system related to a speci�c domain. Several UML pro�les target embed-
ded systems design such as the Modeling and Analysis of Real-Time and Embedded systems
(MARTE) [112] pro�le. MARTE is a standard pro�le promoted by the Object Management
Group (OMG). Based on a model driven engineering approach, we need to take the consumption
criterion into consideration as early as possible in the software design environment.

3.2 Related works

Signi�cant research efforts have been devoted to develop tools for power consumption
at different abstraction levels in embedded system design. Among the existing tools for low
abstraction levels, we can mention SPICE [44], Diesel [118], and PETROL [118] which operate
at the RTL level. These tools are fairly accurate, but require signi�cant amount of simulation
time. At such low level, tools are used to optimize power consumption of hardware blocks
but not to evaluate entirely complex SoC architectures.

To cope with the evaluation time, several tools have been developed for power consump-
tion estimation at the system level. Among the wide-used approaches, we quote tools based
on micro-architectural cycle-level simulation such as Wattch [70] and Simplepower [144].
They de�ne �ne-grain power models by characterizing component features such as a set of
instructions or functional blocks using analytic power laws. The contributions of the inter-
nal unit activities are calculated and added together during the execution of the program on
the micro-architectural simulator. This approach needs low-level description of the architec-
ture which is often dif�cult to obtain for off-the-shelf processors. Though using cycle-level
simulators has allowed accurate power estimation, the simulation time of complex MPSoC
needed to achieve the results is still signi�cant.

In an attempt to reduce simulation time, recent efforts have been done to build up fast
simulators using Transaction Level Modeling(TLM) [61] [133]. SystemC [113] and its TLM 2.0
kit have become a de facto standard for the system-level description of SoC. The TLM kit
proposes different coding styles to offer concepts for loosely and approximately timed mo-
dels. However, there is no a standard de�nition for concepts or methodologies that involves
power estimation at the TLM level and this aspect is still under research and is not well es-
tablished. In [109] and [104], a methodology is presented to generate consumption models
for peripheral devices at the TLM level. Relevant activities are identi�ed at different levels
and granularities. The characterisation phase is however done at the gate level from where
the activity and power consumption for the higher level are deduced. Using this approach
for recent processors and systems is not realistic. In fact, recent processors have complex ar-
chitectures ; they may contain several pipeline stages, hierarchical memory system (L1 and
L2 cache levels), and speci�c execution units such as the NEON architecture for the ARM
Cortex A8. The power characterisation phase at the gate level of each activity of these blocks
needs a huge number of experiments and signi�cant simulation time. Dhawada et al. [80]
proposed a power estimation methodology for PowerPC and CoreConnect-based system at
the TLM level. Their power modeling methodology is based on a �ne-grain activity (pro-
cessor instruction, data word transmission via the bus, etc.) characterisation at the gate level
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which needs a huge amount of development time. Such �ne characterisation leads to a high
correlation with data, hence authors announced a quite signi�cant power estimation error.
Compared to the previous works, our proposed methodology for power estimation also par-
tially uses SystemC/TLM simulation with coarse grain power models.

For the functional level, Tiwari et al. [135] have introduced the concept of Instruction
Level Power Analysis (ILPA). They associate a power consumption model with instructions
or instruction pairs, which are characterized using measurements on a real chip. The power
consumed by a program running on the processor can be estimated using an instruction-set
simulator to extract instruction traces, and then adding up the total cost of the instructions.
This approach suffers from the high number of experiments required to obtain the model. In
addition, it can be applicable only for processors. To overcome this drawback, Laurent [103]
et al. proposed the Functional Level Power Analysis(FLPA) methodology that was successfully
applied on building high-level power models for different hardware components (processor,
memory, I/O peripherals, FPGA, etc.). FLPA relies on the identi�cation of a set of functio-
nal blocks which in�uence the power consumption of the target component. The model is
represented by a set of analytical functions or a table of consumption values which depend
on functional and architectural parameters. Once the model is build, the estimation process
consists of extracting the appropriate parameter values from the design, which will be injec-
ted into the model to compute the power consumption. Based on this methodology, the tool
SoftExplorer [102] was developed. It includes a library of power models for simple to com-
plex processors. Recently, SoftExplorer has been included as a part of Consumption Analysis
Toolbox (CAT) [81]. CAT gives relatively precise power estimation results in a surprisingly
small time. Indeed, only a static analysis of the code, or a rapid pro�ling are necessary to
determine the input parameters for the power models. However, when a complex hardware
or software is involved, some parameters may be dif�cult to determine with precision. For
instance, this is the case of cache miss rates in complex processors. This lack of precision may
have a non-negligible impact on the �nal estimation accuracy, depending on the sensitivity
of the parameter. In order to re�ne the value of sensible parameters in a reasonable delay, we
propose in our work to couple SystemC/TLM simulation with functional power modeling.
Thus, a reasonable trade-off between estimation speed and accuracy will be reached.

For the recon�gurable circuits (FPGA), several studies have been done during the last
years. One of the �rst modeling proposal has been done in by Garcia et al. in [90, 91]. In
this work, the power modeling is measured for the different elements of the circuit (LUT,
register, I/O, clock tree, etc.). The power consumption measured in this work concerns the
active component, but the con�gurable memory is not considered, and the recon�guration
aspect is not evaluated. In [89], authors explain how the pipeline of some hardware func-
tions can reduce the power consumption by the reduction of the clock frequency. In general,
applying pipeline technique leads to increase the area of the hardware block and hence the
static power. One important aspect is then to evaluate the trade-off between dynamic and
static power. High-level estimations have also been developed for this type of circuit. In [47],
the high level characteristics of the functionality is used to model the power consumption.
For example, the frequency of the hardware implementation of a functionality is used to es-
timate the power/energy consumption. When considering operating system level, the ser-
vice which ensures the task scheduling and the task placement have an impact on the po-
wer consumption, and in particular on the static power consumption. The work presented
in [145] shows that the recon�guration must be done as late as possible to prevent leakage
current in the recon�guration memory, but this can be very interesting if and only if it is
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possible to con�gure a usable area of the circuit in a very low static power. Even if this tech-
nique exists, the trade-off between the con�guration of this state and the static power saved
by this speci�c con�guration must be evaluated. The mentioned above FLPA approach was
also applied to develop consumption models for FPGA at the system, algorithmic [84], and
architectural levels [85], and to assess the consumption overhead due to hardware recon�-
guration phases [127].

The role of an operating system is essential in the context of heterogeneous and homo-
geneous MPSoC mainly to bene�t from a large variety of services to ease the exploitation of
the available resources (cooperative and pre-emptive multi-tasking, process management,
multi-threading, etc.). However, its impact on the energy consumption is however non-
negligible. Several researches have studied the impact of OS without actually proposing
consumption models. [48] and [56] shown that the energy consumption can rise from 6%
to 50% with an OS, depending on the application as well as the operating frequency and
supply voltage.

Acquaviva et al. proposed in [48] a new methodology to characterise the OS energy ove-
rhead. They measured the energy consumption of the eCosReal Time Operating System
(RTOS) running on a prototype wearable computer, HP's SmartBadgeIII. Then, they studied
the energy impact of the RTOS both at the kernel and at the I/O driver level and they deter-
mined the key parameters affecting the energy consumption. This work studied the relation
between the power and performance of the OS services and the CPU clock frequency. Ac-
quaviva et al. performed this analysis but they did not model the energy consumption of the
OS services and drivers. Development tools were proposed to analyze the OS energy ove-
rhead from simulations at the micro-architectural level like with Simbedin [57, 146], or at the
instruction level like with Skyeye[74, 110]. Such approaches inherit the drawbacks of the si-
mulation level involved (time consuming cycle level simulations, simple processor models,
larger errors, etc.).

In the frame of the O PEN-PEOPLE project, the particularity of our approach is that it
is based on actual measurements on the electronic boards, and that it aims at proposing
consumption models for every component in the embedded systems considered. Following
this direction, we propose models to take into account complete real-time embedded sys-
tems, including complex processors, recon�gurable components (FPGA), and dedicated OS
services such as scheduling, context switching, or inter-process communications [81, 124].

To ensure a high level of energy and power optimization, several studies have been pro-
posed for the exploration of scheduling policy and dynamic Voltage/Frequency manage-
ment. As a �rst approach, authors present in [68][130] the Dynamic Power Management
(DPM) techniques for multiprocessor real-time systems. These techniques improve power
conservation capabilities by changing selectively the multiple idle states taking into account
the cost of power transitions [125] [63]. They are divided into predictive schemes trying to
predict future scheduling input to the system and stochastic schemes designing power ma-
nagement through the controlled Marcov process [62]. Bhatti [68] proposes a DPM technique
called AsDPM (Assertive DPM) that allows the extraction of all idle time from some proces-
sors and clusters them on some others to elongate the duration of idle time on the target
processors. This allows to reduce the transition power cost between the different states. As
a second approach, the Dynamic Voltage and Frequency Scaling (DVFS) is another widely
used energy reduction strategy. It allows dynamic control of voltage and frequency to reduce
both dynamic and static power consumption [129]. Real-time DVFS techniques are classi�ed
into inter-task by redistributing the slack time between tasks [98] [128] or intra-task by re-
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distributing the slack time inside the same task [67].
As a promising software engineering approach, MDE was used for power estimation in

several design environments. In [79] and [78], an analytical method for power estimation
is proposed. The power estimates are obtained by an estimation tool called SPEU (System
Properties Estimation with UML). This method is based on describing an application using
UML diagrams and the UML-SPT pro�le [111]. Using model transformations and the SPEU
tool, analytical estimates can be obtained using the cost speci�ed in the models such as the
costs associated to the services of a processor. A similar approach is adopted by the CAT tool
that uses the Architecture Analysis and Design Language (AADL) [43] to describe embed-
ded applications and operating systems. In [53], an extension to the MARTE pro�le, with a
Dynamic Power Management (DPM) pro�le, is proposed. This approach considers an em-
bedded application as a set of use cases and links a power mode to each use case. In a power
mode, the components of a systems may have different power states. The above presented
environments, allow fast system energy/power estimation at the function level which alters
the accuracy criterion. In our work, we go further in the usage of MDE by leveraging the
model transformations to target multiple platforms (e.g. simulation or RTL imlementation)
needed during the embedded system design. The hardware/software interaction has been
kept by the means of a high level co-simulation or RTL implementation in order to extract
accurately the power data. Finally, we have de�ned a transformation chain that turns auto-
matically the MPSoC high level speci�cation into an executable implementation.

3.3 The OPEN-PEOPLEplatform

FIGURE 3.2 – Global view of the O PEN-PEOPLEplatform.

OPEN-PEOPLE stands for Open Power and Energy Optimisation PLatform and Esti-
mator. The platform is de�ned for estimation and optimisation of the power and energy
consumption of complex electronic systems. Among the targeted systems, we mention ho-
mogeneous and heterogeneous MPSoC based on ASIC or FPGA technology. Our platform
allows power estimation using :

– direct access to the hardware execution boards and the measurement equipments. This
�rst alternative enables designer to measure the real power dissipation of the target
system. To do so, the low level description of the system (C, VHDL, etc.) is carried out
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natively on the target board. Furthermore, this alternative is used to build new power
models for hardware or software component as it will be described in Section 3.6. Se-
veral boards have been integrated in our automated bench and equipped with special
gear to allow for power consumption measurement. Among those boards, one may
�nd some processor based boards (OMAP 3530, OMAP L138) or some FPGA based
boards (Spartan 6, Cyclone 3, Virtex 5, Virtex 2, etc.).

– a set of ESL tools coupled with accurate power models elaborated within the �rst alter-
native. Mainly, we offer tools at the functional and transactional levels in the context
of multilevel exploration of new complex architectures.

The �gure 3.2 presents a global view of the platform which is based on two main parts ; the
software part and the hardware part. The software user interface ensures the access to the
power measurements and helps the designer to de�ne energy models for the hardware and
software system components. From the measurements, the designer can build models and
compute an estimation of the energy and/or power consumption of his system. In addition,
from this software user interface, the hardware platform can be controlled. The hardware
part consists of the embedded system boards, the measurement equipments, and the com-
puter that controls these different elements and schedules the list of measurements required
by different users.

In the frame of the O PEN-PEOPLE project [34] [33], new methods and tools to model
different components of a SoC architecture were proposed including processors, hardware
accelerators, memories, recon�gurable circuits, operating system services, etc. Furthermore,
this project studies how the complete estimation and validation can be performed for com-
plex systems within an acceptable simulation time. The O PEN-PEOPLE platform proposes
also a set of optimisation tools at different levels of description and/or for the different target
boards (architectural optimisations, operating system optimisations, etc.).

3.4 Background notions

In the following, we may refer indifferently to energy or power models, knowing that
passing from one to the other only involves the actual execution time of the object consi-
dered. Power and energy consumption are equally important concerns to us : the �rst is
directly linked to the power dissipation and operating temperature of the hardware and the
second impacts on the size and lifetime of batteries.

The aim of this section is to identify the sources of power consumption in an embedded
system. As shown in �gure 3.3, we consider an embedded system in its entirety : the software
(i.e. the application code) at the top level, the hardware (the electronic board onto which the
code is running) at the lowest level, and between them the operating system (OS) and the
associated services. For instance, one task obviously requests the processor, the cache, and
the main memory, but also involves the process manager and the scheduler, which begets
context switches and eventually more processing and memory accesses. The same task may
also explicitly use Inter Process Communication (IPC) services, or need access to external
peripherals. As we have seen in Section 3.2, the OS energy overhead may take a considerable
part of the overall system consumption. It actually depends on the application complexity
and the number of services called.

For the hardware tasks, the sources of consumption are generally different. Indeed, hard-
ware tasks are generally data intensive and the designer normally does not use the operating



3.4 Background notions 63

FIGURE 3.3 – View of the embedded system layers

system service calls for this type of computation. The source of consumption for a hardware
task is then not linked to the operating system execution but it is related mainly to the recon-
�gurable logic on which it is executed. Nevertheless, each hardware task consumes and/or
produces data from/to others blocks (processors, memories, I/O, etc.), so an important ove-
rhead due to data transfers can appear for these tasks. For example, when a software task
running on a processor sends data to a hardware task, it can be considered as driver function
call and it produces an energy overhead due to the IPC OS service call of the software task.
The different contributions of the system parts in the global energy consumption are esti-
mated with the help of the power models for different hardware and software components.
These models are deduced from experimental measurements on real boards which increases
the accuracy as will be detailed in Section 3.6. The class of systems considered, as shown in
�gure 3.3, are processor or multiprocessor based, with or without operating systems. These
systems can be homogeneous or heterogeneous.

The variations of the power consumption during the execution time can be modeled as
presented in �gure 3.4 for software tasks running on processors, and in �gure 3.5 for hard-
ware tasks running on FPGA. Note that the energy is simply the area of every boxes on
these �gures. In �gure 3.4, the bigger contribution is Pground, which represents the power
consumption of all the components when the system, without OS, is not running any ap-
plication. This power consumption can be quite important especially for embedded systems
on FPGA. Energy overhead of the different tasks and OS services comes in addition to this
�rst one. More or less additional boxes may be considered depending on the actual system
and the application. For the software part, we focused on the correlation between the energy
consumed by the application and the services of the OS. The relationship of energy is given
by equation 3.1 :

8Ti , ETi = Eintra � task+ å
1� j � p

ai ,j � ESj (3.1)
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Where ETi represents the energy consumed by the taskTi , Eintra � task is the energy consumed
by the task routines and operations, p is the number of services used by the task Ti , ai ,j is the
occurrence of using the service Sj on the task Ti , and ESj represents the elementary energy
cost of the serviceSj .

FIGURE 3.4 – Energy contribution of the software part running on GPP or DSP

For the hardware part, we refer to �gure 3.5 to represent the energy contribution of the
tasks placed on FPGA. Here, two Pground powers are represented. The �rst corresponds to the
power consumed by the con�gurable memory plan which maintains the task con�gurations
in place during the execution, while the second represents the static power consumed by
the active elements of the circuit (i.e. the static power for the con�gurable logic elements,
the digital signal processing blocks, BRAM memories, interconnects, etc.). As shown in the
�gure, for each task con�gured (or recon�gured) in the con�gurable space, an additional
energy is necessary to load the bitstream within the con�gurable memory plan. Note that
�gure 3.5 illustrates the partial recon�guration paradigm with the possibility to con�gure
a speci�c part of the circuit while the static part continues to operate without interruption.
In this �gure, we illustrated the initial con�gurations for tasks HTaski , HTaskj and HTaskk
which induce additional energies that depend mainly on the related logic con�gurations.
We also illustrated a speci�c scenario where the task HTaski is recon�gured dynamically.
Figure 3.5 also shows the placer/loader activities to manage the recon�guration process. For
each recon�guration, the placer/loader service is called, and the �rst step consists in �nding
a suf�cient area on the recon�gurable area, the placer supports this job. The second step
consists in loading the bitstream within the recon�gurable memory, this step is supported by
the loader. As illustrated in �gure 3.5, for each recon�guration, the placer is always executed,
but the loader is optional when the task is already con�gured in the recon�gurable area.

For the recon�gurable space, if we consider data intensive computation tasks which are
not preemptable (to ensure a high performance execution) and without operating system
service calls, the model of energy consumption can be de�ned as follows :

– Esground is the static energy consumed by the con�gurable memory plan ;
– Eaground is the static energy consumed by the active elements of the global FPGA cir-

cuit. Even if these elements are not con�gured, a static energy is consumed by this part.
We can note that some FPGA circuits provide some mechanisms to reduce this static
power signi�cantly ;

– Eti is the energy consumed by the hardware task HTaski during its execution. This
energy must represent the consumption of the task with the corresponding data trans-
fers. For more �exibility, it is possible to provide several implementations for each task
with different performance/power trade-offs ;

– Econ fi is the energy necessary to con�gure the task HTaski for its �rst execution. For
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FIGURE 3.5 – Energy contribution of the hardware part running on a FPGA circuit

this step, the operating system must manage the con�guration, and this is ensured by
the operating system service Placer/Loader in �gure 3.3. The execution of this ser-
vice leads to active the file manager service of the OS and thus leads to consume an
important energy to access to the bitstream �le ; �gure 3.5 does not show this energy
contribution generated by the OS calls, but this energy is included in the OS contribu-
tion.

– Erecon fi is the energy necessary to recon�gure the task HTaski for the other executions.
If we consider that the tasks are not preemptable, the context of the tasks does not need
to be stored and in this case Erecon fi = Econ fi .

Finally, the global energy is de�ned as :

Ef pga = Esground + Eaground

+
Nht

å
i= 1

(Econ fi + Eti )

+
Nht

å
i= 1

Nei � 1

å
j= 2

�
Erecon fi � bi ,j + Eti

�
(3.2)

With Nht is the number of tasks to be executed in the recon�gurable space, Nei is the number
of executions for the task HTaski and bi ,j is a binary variable equal to 1 if the task HTaski must
be recon�gured for a new execution or equal to 0 if the task HTaski is already con�gured and
just need to be launched. The value bi ,j depends on the execution order of the tasks, which
is dynamically decided (on-line) by the operating system.

3.5 Power-aware design methodology :

This section details our power-aware design methodology for MPSoC to cover several
design layers. The objective is to offer for each step a power estimation tool in order to have
a gradual re�nement of the design space solution based on the power or energy criteria.
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FIGURE 3.6 – A seamless multi-level power-aware design methodology

In order to cope with the design complexity, we focus specially on the functional and the
transactional levels that offer different trade-offs between accuracy and estimation time as
depicted in �gure 3.6. For each level, several power models are developed for consumption
estimation and optimisation taking into account all the embedded system relevant aspects ;
the software, the hardware, and the operating system. The integration of runtime power
management techniques is another bene�t of our methodology.

3.5.1 Functional-level power estimation

To estimate the energy consumption of an application running on a hardware platform,
it is necessary to characterise the power/energy consumption of the target by identifying
the typical application tasks that will be executed on the system. At the functional level,
to achieve simulations of the application, we use a multiprocessor simulation tool named
STORM [45] (Simulation TOol for Real-time Multiprocessor scheduling). The input of this
tool is the speci�cations of the hardware and software architectures together with the sche-
duling policy ; it simulates the system behavior using various task's characteristics (task exe-
cution time, processor functioning conditions, etc.) in order to obtain the chronological track
of all the scheduling events that occurred at runtime, and computes various real-time me-
trics in order to analyse the system behavior and performances from various point of views.
However, STORM executes the application tasks on the host machine without referring to
the micro-architecture of the target embedded processor. For this reason, the power/energy
characterisation is performed at the task level where the power consumption is coarsely
considered. Such approach has the advantage of high speed simulation. We highlight that
STORM is an example of simulation tool that can be used at the functional level. In our pre-
vious work [16], we succeeded to plug the SoftExplorer tool [81] as a part of our multilevel
power aware design methodology as it will be illustrated in Section 3.7.
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At the functional level, we focus on the correlation between the energy consumed by the
application and the services of the OS. The relationship of energy is given by equation 3.1. At
the functional level, the Eintra � task is characterized approximately according to the selected
processor and the operating frequency which can decrease the estimation accuracy. This en-
tity will be detailed with �ne-grain parameters at the transactional level in order to increase
accuracy as it will be presented in the next subsection.

For the second part of the equation, we perform bench tests that stimulate each OS service
in order to characterise the related energy cost. Then, real-board experiments are conducted
to measure the variation of the energy consumption depending on the parameters that we
change. The obtained power model will be integrated in the STORM tool in order to estimate
the energy consumption of the application.

3.5.2 Transactional-level power estimation

As stated before, the power/energy estimation at the functional level is performed wi-
thout referring to a real micro-architecture description. In the second step of the power-
aware design methodology, we will rely on a transactional simulation in order to carry out
the application tasks using an Instruction Set Simulator (ISS) considering the OS services.
Our objective is to refer to the occurrences of the micro-architectural activities in order to
estimate the intra-task power consumption accurately. In addition, the power consumption
of the OS services (ESj ) will be also considered which leads to better precision.

To do so, we de�ne the architecture of a hybrid power estimator [28] [29] that includes a
fast transactional SystemC simulator plugged with a transactional power estimatoras shown in
�gure 3.7. The transactional power estimator evaluates the consumption of the target system
with the help of the elaborated power models. It takes into account the architectural para-
meters (e.g. the frequency, the number of processors, the processor cache con�guration, etc.)
and the application mapping. It also requires the different activity values on which the po-
wer models rely. In order to collect accurately the needed occurrences, the power estimator
communicates with a fast SystemC simulator at a TLM level. The combination of the tran-
sactional power estimator with the FLPA power modeling methodology leads to a hybrid
approach that gives a better trade-off between accuracy and speed in comparison with the
functional level.

The vital function of system-level power estimation is to offer a detailed power analy-
sis by the means of a complete simulation of the application. This process is initiated by
the functional power estimator through the data and task interface(�gure 3.7). In this way,
the mapping information is transmitted to the fast TLM SystemC simulator. Our simulator
consists of several hardware components which are instantiated from the SoCLib [121] li-
brary in order to build a virtual prototype of the target system. We highlight that processors
are described using ISS that sequentially executes the instructions. In our previous frame-
work [55], we presented an accurate TLM simulation technique that allows to evaluate the
MPSoC performances. In the power estimation step, the simulator collects the activities that
are in�uenced by the application and the input data. At the end of the simulation, the va-
lues of the activities are transmitted to the power consumption models or power estimator
kernel using the activity counter interfacein order to calculate the global power consumption
as illustrated in �gure 3.7.
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FIGURE 3.7 – Transactional power estimator tool functioning

3.5.3 Optimisation process

The optimisation strategy in our power-aware design methodology is introduced at dif-
ferent levels in order to have a gradual re�nement of the design space. It is performed �rst
off-line by the mean of design space exploration and at runtime using dynamic power ma-
nagement techniques.

For the functional level, the off-line optimization process starts by dividing the architec-
ture into different functional blocks. Each block represents a unit ensuring a speci�c func-
tionality such as the memory unit, the processing unit, etc. Then, power consumption of
each block is modelled using simulations or measurements. Afterwards, functional blocks
in�uencing the processor power consumption are identi�ed. Finally, several algorithmic and
architectural parameters are varied to reduce the power consumption.

At the transactional level, the off-line optimization process consists in exploring seve-
ral architectural solutions (type of processor, number of processors, ...) in order to tune
the hardware according to the application needs [30] [27]. Using different available Intel-
lectual Properties (IPs), several simulations are carried out yielding execution time, power
and energy estimations. Energy optimization in embedded systems can be performed at
runtime. It could be solved at the system level while scheduling the application tasks. In this
context, different power and energy management techniques are proposed to optimise and
reduce the energy consumption while taking into account the features offered by the target
platform [24].

3.6 Consumption modeling / power models

This section concerns the power model elaboration in order to consider the contribution
of each part of the system on the total power consumption. Our objective is �rst to develop
a set of power models for each part and second to plug them into our design tools at the
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FIGURE 3.8 – System power modeling process

functional and transactional levels. In our framework, the FLPA methodology is used to
develop generic power models for different target platforms. As depicted in �gure 3.8, the
proposed method aims to extract power/energy models of embedded OS services, software
application and hardware components.

In the energy analysis step, various hardware and software parameters which in�uence
the energy consumption are identi�ed and then energy pro�les are traced according to the
variation of these parameters. From the energy traces, a curve �tting of the graphical re-
presentation will allow us to determine the power consumption models by regression. The
obtained power models are expressed in the form of analytical equations or table of values.
This approach was proven to be fast and precise [123]. The main advantage of this metho-
dology is to obtain models which rely on the functional parameters of the system with a
reduced number of experiments. As explained in the previous section, FLPA comes with
few consumption laws, which are associated to the consumption activity values of the main
functional blocks of the system. The generated power models have been adapted to system-
level design, as the required activities can be obtained from a system level (functional or
transactional) environment.

3.6.1 Power modeling of OS services

In this section, we will illustrate two examples for OS service power modeling : the
context switch and the scheduling. Additional power models for other OS services can be
found in [16].

3.6.1.1 The context switch

Context switch is a mechanism which occurs when the kernel changes the control of the
processor from an executing process to another that is ready to run. The kernel saves the
state of current process including the processor register values and other data that describes
this state. Then, it loads the saved state of the new process for execution.

Context switching introduces direct and indirect power overheads [107]. Direct context
switch overheads are related to saving and restoring processor registers and �ushing the
processor pipeline. Indirect overheads involve the switch of the address translation maps
used by the processor when the threads have different virtual address spaces. In addition,
when a thread T1 is switched out and a new thread T2 starts the execution, the cache state
of T1 is perturbed and some cache blocks are replaced. So, whenT1 resumes the execution
and restores the cache state, it gets cache misses. The OS memory paging represents also a
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FIGURE 3.9 – Extraction of the context-switch time : Scenario1

FIGURE 3.10 – Extraction of the context-switch time : Scenario2

source of the indirect overhead since the context switch can occur in a memory page moved
to the disk when there is no free memory. Prior research has shown that indirect context
switch overheads [137], mainly the cache perturbation effect, are signi�cantly larger than
direct overheads. Therefore, this work focuses only on indirect overhead of context switch.

To characterise the energy consumption of the indirect context switch, we create a set of
threads in a multitasking environment using the POSIX standard. The used platform is the
Cortex A8 processor-based OMAP3530 running a 2.6.3 Linux OS version. The benchmark
application is composed of two threads P1 and P2. In order to extract the consumption of
context switch, the application was executed using two scenarios. In the �rst scenario, only
one context-switch is generated between P1 and P2 as depicted in �gure 3.9. In the second
scenario, which is depicted in �gure 3.10, n context-switches are generated.Tcs represents
the time of the context switch, and Ti ,j the execution time of the j-th job of the process Pi .

The total execution times of scenario1 and scenario2 are respectively Tscenario1 and
Tscenario2. They are presented by equations 3.3 and 3.4 :

Tscenario1 = Texec1 + Tcs+ Texec2 (3.3)

Tscenario2 = å
1� i � p

T1,i + å
1� j � q

T2,j + ( n � Tcs) (3.4)

Where p and q represent respectively the number of jobs of P1 and P2.
The context switch time Tcsand the context switch power overhead Pcsare calculated follo-
wing the equations 3.5 and 3.6 :

Tcs= ( Tscenario2 � Tscenario1)/ (n � 1) (3.5)

Pcs= ( Pscenario2 � Pscenario1)/ (n � 1) (3.6)

The context switch energy overhead is computed as :

Ecs= ( Pscenario2 � Tscenario2 � Pscenario1 � Tscenario1)/ (n � 1) (3.7)
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FIGURE 3.11 – Context switch energy variation as a function of CPU frequency

Where Pscenario1 and Pscenario2 are respectively the average power consumption of the
benchmarks in scenario1 and scenario2.
In order to study the impact of the CPU frequency on the energy overhead of the context-
switch, the two scenarios presented above are re-executed using different frequencies. Two
cases are considered : static and dynamic CPU frequencies.

I Static frequency case The two scenarios of the benchmark are executed for different
CPU frequencies. The frequency remains static during a scenario execution. As a result, the
context switch energy follows the law presented in the equation 3.8 :

Ecs( f ) = 1.28� 10� 3 � f + 0.641 (3.8)

where f is the CPU frequency. The units of Ecsand f are respectively mJ and MHz. Fi-
gure 3.11 plots the context switch energy overhead as a function of the frequency. The ave-
rage error of the proposed methodology results against the physical measurements is about
3.4%.

I Dynamic frequency case The core frequency is dynamically changed during the two
scenarios of the benchmarks. Processes P1 and P2 are executed at a frequencyF1 and F2 res-
pectively. When the processor preempts the process P1 and executes the process P2, the core
frequency changes from F1 to F2 and vice-versa. Figure 3.12 illustrates the context switch
energy variation according to changing the CPU frequency. Actually, for the processor core,
a set of voltage and frequency couples is speci�ed, named operating points. Running on high
frequency requires also high voltage and vice versa. For raising the frequency and supply
voltage, the microprocessor sets a new VID (voltage identi�er) code to have a higher output
voltage than the current one, and conversely. This operation leads to time and energy ove-
rhead [116]. Also, the more the difference between F1 and F2 is, the higher context switch
energy is. This is due to the perturbation of the processor's cache memory resulting from the
variation of processor bus frequency which varies with the processor frequency.
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FIGURE 3.12 – Context switch energy variation as a function of dynamic CPU frequency
scaling

3.6.1.2 The scheduling routines

Scheduling routines and operations could generate power overhead on the processor
and/or memory components. They are considered as system calls and only consist in swit-
ching the processor from unprivileged user mode to a privileged kernel mode. To quantify
power and energy overhead of embedded OS scheduler routines and operations, we have
to build test programs containing threads with different priorities, we measure in the �rst
step the average energy consumed by the standalone tasks without scheduling routines, and
then with scheduling routines.
ESchedulingrepresents the energy consumed by the scheduling operations. It is calculated as
showed in equation 3.9 :

EScheduling= Ewithsch � Ewithoutsch (3.9)

Where Ewithschand Ewithoutschrepresent respectively the energy consumed by the benchmarks
with and without scheduling routines. In order to study the impact of the CPU frequency
on the scheduling overhead, we varied the frequency considering the operating points of
the processor (125 MHz, 250 MHz, 500 MHz and 720 MHz). The used application scenario
is composed of 10 processes scheduled using the SCHED_OTHER policy. This policy is ba-
sed on dynamic priorities of processes in order to ensure a fair progress of the scheduling.
Figure 3.13 depicts the variation of the energy consumption of scheduling routines with the
processor frequency. The energy consumption law for the scheduling routines is formula-
ted in equation 3.10. The average estimation error is around 0.35%. The obtained decreasing
curve can be explained as follows. When running this experiments, the steady state current
(and hence the power) pro�le obtained is almost �at since the processor does not access the
external bus. Consequently, the energy cost of the scheduler is proportional to the execution
time of the scheduling routines. Therefore, it decreases with the frequency increase.

Escheduling( f ) = � 59.649� 10� 3 � f + 3.106� 102 (3.10)

3.6.2 Transactional power modeling

As explained previously, the transactional level power estimation refers to the occur-
rences of the micro-architectural activities. Therefore, it gives a more accurate estimation of
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FIGURE 3.13 – Scheduling routines energy variation as a function of CPU frequency

OS service and intra-task consumptions. From a power consumption point of view, OS ser-
vice at the transactional level can be divided into services which involve micro-architectural
activities (task switching, scheduling, etc.) and the other services (frequency switching). At
transactional level, we use the same power model as the functional level for frequency swit-
ching overhead. As for the other consumptions (IPC, scheduling and intra-task), we do not
consider them separately. We rather consider the micro-architectural activities that they all
involve such as instruction execution and memory access. In order to characterise these ac-
tivities, the �rst step is to divide the architecture into different functional blocks and then to
cluster the components that are concurrently activated when the code is running. There are
two types of parameters : 1) algorithmic parameters, which depend on the executed algorithm
typically the cache miss or instruction per cycle rates, and 2) architectural parameters, which
depend on the component con�guration set by the designer, typically the clock frequency.
For instance, Table 3.1 presents the common set of parameters of our generic power mo-
del. These sets of parameters are de�ned for a general class of RISC processors. Additional
parameters can be identi�ed for speci�c processors based-architecture such as Superscaler.
The second step is the characterisation of the embedded system power consumption when
the parameters vary. These variations are obtained by using some elementary assembly pro-
grams (called scenario) or built in test vectors elaborated to stimulate each block separately.

In order to prove the usefulness and the effectiveness of the proposed power estima-
tion methodology, we used an ARM Cortex A8-based architecture implemented into the
OMAP3530 platform. The OMAP3530 contains an ARM Cortex A8 processor (16KB, 2-way
set associative instruction and data caches and 256KB L2 cache). The processor has access to
the off-chip memory (SDRAM) via the processor bus interconnect. As explained above, we
used the FLPA methodology to generate a power model for the target system. As a �rst step,
we divided the architecture into different functional blocks such as the core clock system,
the memory system, and the functional unit for ARM Cortex A8 processor as shown in the
�gure 3.14. A parameter is denoted for each functional block such as g1 and g2 respecti-
vely for L1 cache miss rate and L2 cache miss rate. The second step is the characterisation of
the power model by varying the parameters. In our work, characterisation is performed by
measurements on the real board.

Equation 3.11 shows the power consumption model for the ARM Cortex A8 pro-
cessor using the FLPA methodology. The input parameters are the processor frequency
(Fprocessor(MHz)), the Instruction Per Cycle (IPC), and the cache miss rate (0 < g < 100%).
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FIGURE 3.14 – Main functional blocks of ARM Cortex A8 processor

TABLE 3.1 – Generic power model parameters

Name Description
Algorithmic t External memory access rate

g Cache miss rate
IPC Instruction per cycle rate

Architectural Fprocessor Frequency of the processor
Fbus Frequency of the bus

The system designer chooses the frequency of the processor while the cache miss rate and
the IPC are considered as an activity of the processor, which could be extracted from the si-
mulation environment. Additional power models for other processors such as the dual core
ARM Cortex A9 are given in [30].

P(mW) = 0.79FProcessor+ 18.65IPC + 0.26(g1 + g2) + 10.13 (3.11)

3.6.3 FPGA power model

A power model has been built for the recon�gurable part of the Virtex II FPGA. This
model has been built with coarser granularity to be adequate at the system level as stated
before. This model does not come as a multi-linear equation of the frequency F, switching
activity b and area utilization a. For this reason, a 3 entries table of consumption values is
used. The power is estimated by interpolation of these 3 input parameters. Figure 3.15 illus-
trates the variation of the FPGA power consumption according to area utilization and the
switching activity with an operating frequency set to 100 MHz. The same power modeling
methodology can be applied for different FPGA circuits.
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FIGURE 3.15 – FPGA power consumption with 100 MHz frequency

3.7 The multi-level design space exploration :

3.7.1 The JPEG case-study

This section describes the usefulness and the effectiveness of our power estimation me-
thodology for a PowerPC 405-based SoC implemented on the Xilinx Virtex II Pro FPGA
(XupV2Pro) platform. The Virtex II Pro FPGA contains two hardware PowerPC 405 pro-
cessors that have a 16KB, 2-way set associative instruction and data caches. In addition, a
large number of con�gurable logic blocks (CLB) are available for implementing hardware
accelerators. Each processor has the access to the on-chip memory (BRAM) and the off-chip
memory (SDRAM) via Processor Local Bus (PLB). Different power models are developed
and integrated into system level design tools at the functional and the transactional level
as explained in Section 3.5 [29]. At the functional level, we used the SoftExplorer tool for
power estimation. Certainly, XupV2Pro platform is considered as an old technology. Howe-
ver, the same methodology can be applied for recent technology such as the Zynq platform
that embeds a dual core ARM Cortex A9 processor and tens of thousands of programmable
gate arrays on the same chip. We used the JPEG (Joint Photographic Experts Group) applica-
tion as a benchmark. The JPEG application consists of 6 main tasks : acquisition of the input
image, conversion RGB (Red, Green and Blue) to YUV (luminance, blue chrominance, and
red chrominance components), Discrete Cosine Transform (DCT), Quantization, Huffman
coding, and rebuild of the output image.

3.7.1.1 Monoprocessor architecture

As a �rst scenario, we used the JPEG application with a PowerPC monoprocessor based
architecture. To do so, we developed a system level prototype of the PowerPC based SoC,
with the help of SystemC models including ISS for the target processor, with the cache pa-
rameters and bus latencies set to emulate the real platform behaviour. A set of counters are
injected into the simulator to determine the values of different miss rates : read data miss,
write data miss and read instruction miss of the corresponding caches. The fast SystemC si-
mulator takes the full JPEG application with the real standard frame size of 256 � 256 pixels
and simulates it entirely in order to collect the required activities.
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TABLE 3.2 – Application miss rates

Program Instruction miss rate (%) Read Miss rate (%) Write Miss Rate (%) Total Miss
Rate (%)

acquisition 0.003386 3.56 31.73 0.02
rgb2yuv 0.001128 3.03 99.91 5.64
dct y 0.002283 4.49 40.72 3.88
dct u 0.000315 4.49 40.72 3.88
dct v 0.000314 4.49 40.72 3.88
qt y 0.000812 2.06 99.88 5.58
qt u 0.000406 2.06 99.93 5.58
qt v 0.000406 2.06 99.94 5.58
huff y 0.004375 4.58 20.11 0.85
huff u 0.000515 4.57 19.8 0.84
huff v 0.000643 4.56 19.61 0.84
rebuild
image

0.298380 3.05 25.19 2.87

complete ap-
plication

0.000012 0.029 0.09 0.012

Table 3.2 shows the detailed activities of each task in the application, as a result of the
SystemC simulation. From these results several remarks can be drawn. First, we can notice
that instruction cache miss rates and read data miss rates are very low when compared with
write data miss rates. This is due to the fact that the task kernel is small (a small number of
instructions) and that the volume of data accessed is also small compared to the cache size
(16 KB). With the new sub-micron technologies however, static power consumption cannot
be neglected. For this reason, some software processors, such as the Microblaze, come with
recon�gurable cache sizes to �t the application requirements. Secondly, we observe that the
data write miss rates have a high impact on the total power consumption. This is due to the
algorithm structure which does not favour the reuse of data output arrays, and to the usage
of write-through cache policy. As we can see, the statistics collected in Table 3.2 can help in
tuning the application structure for a better optimization of the system power consumption.

In the next step, using the obtained results and the developed power models for the plat-
form [29], we estimated the total power consumption of each task. Figure 3.16 illustrates the
results and shows the comparison between the proposed hybrid estimator, the SoftExplo-
rer tool introduced in Section 3.2, and the real board measurements. Negative and positive
errors correspond respectively to under and over estimation of the consumption. The ave-
rage error is the mean value of the absolute values of those errors. First, the hybrid power
estimator has a negligible average error equal to 0.02% which offers better accuracy than
SoftExplorer with its average error of (3.32%). Indeed, the activities captured in the SystemC
simulator are more accurate than the static analysis or rapid pro�ling of the code performed
by SoftExplorer. The most of error is reported from the acquisition and rebuild tasks, res-
pectively 22.5% and 6.36%. In fact, these two tasks use operating system calls to read and
write from/to �les. Those system calls are however only executed by the system level simu-
lator by means of a virtual �le system, which does not re�ect precisely the real operating
system behaviour. Finally, without considering the acquisition and rebuild tasks, the hybrid
estimator gives an average error of 1.32% while SoftExplorer is 3.17%.



3.7 The multi-level design space exploration : 77

FIGURE 3.16 – Power Estimation and Comparison with SoftExplorer

3.7.1.2 Homogeneous multiprocessor architecture

The second scenario involves an homogeneous architecture with identical processors to
run the JPEG application. To evaluate the impact of the number of processors on the execu-
tion time and total energy consumption, we executed the JPEG on systems with 1 to 8 pro-
cessors. The PowerPC frequency was set to 300 MHz and the PLB frequency to 100 MHz. All
the processors execute the same workload but on different image macroblocks. Figure 3.17
reports the execution time in msand the total energy consumption in mJ.

Given these results, we see that adding processors to the system decreases the execution
time, which improves the system performance. This variation is not linear because the pro-
cessors share resources, which generates con�icts at some times, and reduces the speedup
as waiting cycles are added to the processors execution. In terms of energy consumption,
we observe that until a certain number of processors, the total system energy consumption
decreases as the execution time is reduced. Adding more processors increases the power
consumption, however with not the same slope as the time decreases. As we are using only
the ASIC PowerPC processors integrated in the Xilinx Virtex II FPGA and the processors are
executing the same workload in parallel, the static power is not in�uencing signi�cantly the
total consumption. But increasing the number of processors over a certain limit tends to be
ineffective, as it just adds new con�icts at the PLB level, leading to more waiting cycles.

3.7.1.3 Hardware accelerator design

In this part, we emphasize the bene�t of our estimation methodology in the context of
heterogeneous architecture. In general, the choice of a hardware accelerator is driven prin-
cipally by the performance requirements of the application and the processor usage of each
task. For the JPEG application, the DCT task is the most time consuming task. Thus, it is se-
lected to be implemented as a hardware accelerator. Various trade-offs can be done between
the amount of consumed hardware resources (i.e. : the area utilization), the execution time,
and the power consumption. The DCT task is highly regular and has large repetition spaces
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FIGURE 3.17 – Execution time and energy variation in terms of the number of processors

in its multiple hierarchical levels. Such large repetition spaces allow us to fully exploit the
existing partitioning in VHDL (i.e. hardware-software and parallel-sequential hardware).
System-level architecture synthesis tool such as GAUT [92] or ROCCC [141] can be used
to obtain several implementations of the hardware accelerator with different trade-offs bet-
ween the execution time or the number of resources [21]. Certainly, more accurate estimation
of these parameters can be obtained at lower levels using the commercial RTL tools but at
the price of signi�cant evaluation time. We selected a con�guration which is about 200 times
faster than a software execution with a PowerPC processor running at 100 MHz. A hard-
ware synthesis of this con�guration occupies 18% of the XupV2Pro. According to the FPGA
power model, the power consumption of the chosen DCT hardware accelerator is around
300mW offering 40% of power saving compared to the software execution.

3.7.1.4 Extrapolation for complete MPSoC architecture

The above developed power models will be used in the frame of system level estimation
of heterogeneous MPSoC that may contain several processors and hardware accelerators.
This approach is mandatory in the design �ow for two reasons, even if the corresponding
estimates are less accurate than those provided by real board measurements. First, system
level estimation can be achieved with acceptable accuracy 10-1000x faster than the physical
level taking into account the required design time. Second, it allows exploring architectures
that cannot be implemented due to the hardware resource limitation or the unavailability
of the target component. For instance, we cannot exceed two PowerPC based architecture
using our XupV2Pro platform. Thus, it is important to have a scalable approach to address
the complex system power/energy estimation issue. The equation 3.12 will be considered
for the total system energy estimation. We �nd there the sum of the energy consumptions of
every software tasks with the related operating system energy overhead (see equation 3.1)
and the sum of the energy consumptions of every hardware tasks (see equation 3.2). The
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consumption of the synchronization part required to access the shared resources is included
in EOSt .

Etotal = å (Et + EOSt ) + å Ef pga (3.12)

In our XupV2Pro platform, a software synchronization between several tasks running on
different processors or hardware accelerators will call for a hardware mutex through an OS
service. Several experiments have been conducted to evaluate the additional power cost of
this hardware component. This study includes three parameters which are the number of
masters, the processor frequency, and bus frequency as detailed in [16].

3.7.2 The H.264 decoder case-study

This section presents the experimental results that evaluate the effectiveness of our
energy/power-aware design methodology and of the overall framework for power estima-
tion and optimization. The case study application is a H.264 video decoder. The proposed
multi-level power-aware design methodology was used for design exploration under a QoS
constraint of 15 frames per second. In this case-study, we will use a DVFS algorithm called
Dynamic Slack Reclamation (DSR) in order to optimise the power consumption at runtime.
This algorithm was introduced in [24].

3.7.2.1 Application description

The case-study H.264 video decoder application is based on a high quality video com-
pression algorithm. It relies on ef�cient strategies extracting spatial (within a frame) and
temporal dependencies (between frames). This application is characterized by a �exible co-
ding, high compression and high quality resolution. Moreover, it is a promising standard for
embedded devices.

As shown in Figure. 3.18, the main steps of the H.264 decoding process consist in the
following : A compressed bit stream coming from the Network application layer (NAL) is
received at the input of the decoder. This bitstream is an encapsulation of the video frames
data and parameters in form of NAL units suitable for packet transmission over the network.
A video frame can be decomposed into a number of slices (2, 4, 8, etc.). The encoded data
in the bitstream are obtained by encoding the slices of each frame of a video sequence. Each
encoded slice is composed of one or more 16x16 macroblocks. The �rst step of the decoder
is the entropy decoding. For each macroblock, the output of the entropy decoder is a set of
quantized coef�cients.

These coef�cients are then inverse quantized and inverse transformed. Thereafter, the
data obtained are added to the predicted data from the previous frames depending upon the
header information. Finally the original macroblock is obtained after the deblocking �lter,
which compensates the block artifacts effect.

The H.264 video decoder application can be split into four main tasks. The
NEW_FRAME task extracts frames from the input bitstream �le. The NAL_DISPATCH
task decomposed the frame into slices. The SLICE_PROCESSING task decodes
the slices (entropy decoding, inverse quantization, inverse transformation, etc.). The
REBUILD_FRAME task rebuilds the frame from the decoded slices. In this case
study, we consider a video sequence where each frame is composed of 4 slices.



80 Energy/Power-Aware Design Methodology for MPSoC

FIGURE 3.18 – Block diagram of H.264 video decoder

FIGURE 3.19 – Parallelization of the H.264 video decoder

Therefore, the SLICE_PROCESSING task can be split into 4 independent sub-tasks
SLICE_PROCESSINGi , i 2 [1..4], where each sub-task processes a slice of the frame. These
sub-tasks can thus be executed in parallel by processors.

At the beginning of each new frame, the SLICE_PROCESSINGi sub-tasks can access the
input data buffer only sequentially. Therefore, the NAL_DISPATCH task, which provides
access to the shared resource, is protected by a semaphore. Then,SLICE_PROCESSINGi

tasks are launched simultaneously. Due to temporal dependencies between frames, it is not
possible to compute the next frame if the previous one has not been completely decoded.
Thus, at the end of each slice computation, tasks need to be resynchronised using task named
SYNC before running the REBUILD_FRAME task as shown in Figure 3.19.

The target architectures are Shared-Memory Multiprocessor systems. In these architec-
tures, two or more identical processors are connected to a single shared main memory, have
full access to all I/O devices, and are controlled by a single OS instance. The processors
are treated equally, with none being reserved for special purposes. Each processor executes
different tasks and is able to share common resources (memory, I/O device, interrupt sys-
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TABLE 3.3 – Voltage-frequency levels of the ARM Cortex A8 processor

Parameter OP 1 OP 2 OP 3 OP 5

Frequency (Mhz) 125 250 500 720

Voltage (V) 0.975 1.05 1.2 1.35

Running power (mW) 57 130 303 550

Idle power (mW) 4 7 16 28

TABLE 3.4 – H.264 video decoder application tasks characterisation

Task name WCET
(ms)

BCET
(ms)

Period
(ms)

Deadline
(ms)

Activation
date (ms)

New_f rame 1 1 19 19 0

Nal_dispatch 2 1 5 5 0

Slice1_processing 42 21 66 66 0

Slice2_processing 42 21 66 66 1

Slice3_processing 42 21 66 66 2

Slice4_processing 42 21 66 66 3

Rebuild_f rame 2 1 66 66 66

tem and so on) with other processors. These processors are connected to each other using a
system bus.

3.7.2.2 Functional-level energy/power analysis

As explained previously, the energy consumption at the functional level takes into ac-
count the consumption of the OS calls as well as the intra-task consumption. For the OS
services consumption, the energy models developed using the OMAP3530 platform (Sec-
tion 3.6.1) were integrated in the STORM simulator together with the DSR algorithm, in or-
der to optimise power consumption at runtime. At the functional level, intra-task consump-
tion is estimated coarsely using only two power consumption values corresponding to the
running and idle states of the processor for different frequency-voltage couples. Table 3.3
gives the power consumption of the ARM Cortex A8 processor for all possible operating
points.
Intra-task consumption is determined using the following formula :

Eintra � task = å Prunning � Trunning_i + Pidle � Tidle_i (3.13)

where Prunning and Pidle are the power consumption of the idle and running states of a pro-
cessor.Trunning_i and Tidle_i are the times during which processor i is idle or running, res-
pectively. Note that Trunning_i is related to task execution times, which is considered in the
STORM using the worst case (WCET). Table 3.4 gives the task temporal parameters used
in the STORM environment for the H.264 video decoder application for the maximum fre-
quency (720 MHz). The activation date of the last task is the same as the deadlines of the 4
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previous tasks. This allows to liberate a processor for the last task. Thus, the design explora-
tion targets architectures containing up to 6 processors.
In this case-study, we consider only one scheduling policy (the SCHED_OTHER) and one
message size for Inter-Process Communication (8 KB). Therefore, the OS consumption cal-
culated by the simulator depends only on the processor frequency. The simulator has to take
into account the frequencies given by the DSR algorithm in order to estimate the consump-
tion of both OS services and intra-task functions during simulation.

FIGURE 3.20 – Schedule of tasks using DSR technique for 1-processor con�guration

Figure 3.20 gives an extract of the simulation trace for the one-processor con�gura-
tion within the interval 20-70 ms. As shown in this �gure, using only one processor
leads to deadline violation. For example, the SLICE2_PROCESSINGtask is still not ter-
minated at time instant 67 ms (its absolute deadline) and is interrupted by another task
(SLICE3_PROCESSINGnot shown in the �gure). The one-processor con�guration will be
thus excluded. Simulations showed that systems with more than one processor satis�ed
the required QoS of 15 frames per second. Since these systems satis�ed the performance
constraint, design space exploration will be based on the energy consumption results. Fi-
gure 3.21 gives the energy consumption results for the processing of one frame, when using
the DSR technique for different initial frequencies. Processors are reinitialised using these
frequencies before each frame processing. Figure 3.21 shows that over 4 processors, increa-
sing the number of processors tends to be ineffective since it increases signi�cantly energy
consumption. Based on these results, we can consider systems with 2, 3 or 4 processors to
be acceptable con�gurations. In order to decide, which con�guration is the more suitable,
more accurate energy estimation is needed. Therefore, these con�gurations will be further
explored at the transactional level.
Table 3.5 gives the contribution of the OS services in the overall energy consumption when
using the DSR technique with an initial frequency of 500 MHz. We note that the context
switch is the most consuming service due to the high consumption of the frequency scaling
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TABLE 3.5 – OS services energy consumption rates when using the DSR technique

Number
of pro-
cessors

Context
switch

Inter-
process
commu-
nication

Scheduling
routines

1 44% 35.4% 1.07%

2 35.38% 32.5% 1.12%

3 33.13% 29.6% 1.17%

4 30.88% 27.1% 1.38%

5 28.63% 23.8% 1.27%

6 26.8% 21.7% 1.8%

by the DSR technique. As shown in Table 3.5, when the number of processors increases the
OS services consumption decreases. This is mainly due to the fact that the number of context
switches from a task to another is reduced when the number of processors increases.

FIGURE 3.21 – Energy consumption (mJ) results given by the STORM simulator when using
the DSR technique

3.7.2.3 Transactional-level energy/power exploration

As mentioned previously, the energy consumption estimation at the transactional level
takes into account OS service and intra-task consumption in a more precise way by conside-
ring the micro-architectural activities. Transactional power modeling exploits the functional
power model of frequency switching and gives a re�ned characterisation of the IPC, schedu-
ling and intra-task consumption through the transactional power model presented in equa-
tion 3.11. In order to estimate the energy consumption of the application at the transactional
level, energy models are integrated in the SoCLIB simulator. The DSR algorithm is also in-
tegrated in the simulator for a dynamic power optimization. The output frequencies of the
DSR algorithm are considered by the simulator in order to estimate the frequency-switching
consumption. These frequencies are used together with the Instruction Per Cycle and the
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cache misses counters given by the simulator in order to estimate the consumptions related
to micro-architectural activities.
The SoCLib simulator was extended to trace power consumption evolution during simula-
tion in order to have more precise consumption results compared to the functional STORM
simulator. Figure 3.22 gives an extract of the power variation of one processor in a 4-
processor architecture, with an initial frequency of 720 MHz.
We note that, at the beginning of the execution, the power consumption (the processor fre-
quency) does not change by the DSR. This is due to the fact that the processor is executing
one of the �rst two tasks, where the difference between the actual and the worst execution
time is insigni�cant. Starting the slice processing, we observe a tiling in terms of power
consumption, which is due to a dynamic change of the operating frequency of the processor
throughout the simulation.

FIGURE 3.22 – Power variation of one processor during the simulation of a 4-processor ar-
chitecture

Figure 3.23 gives a comparison between the functional and transactional energy
consumption results. As shown in this �gure, the error between the transactional and the
functional levels can be signi�cant (up to 75% for the 2-processor architecture). This can al-
ter the exploration reliability of the functional level. Therefore, the rules to eliminate some
con�gurations at the functional level should not be very strict. In this case study, even if
the functional level indicates that the 2-processor architecture is the most suitable, we kept
also the 3 and 4 processor con�gurations in order to have more accurate results through
transactional-level exploration. The estimation at the transactional level is enough accurate
to take more reliable decisions. In addition, this estimation will allow to calibrate the system
battery and to perform an early thermal study of the �nal chip. The obtained transactional-
level results showed that the 2-processor con�guration is the most suitable for the considered
H.264 application. However, targeting an ASIC realisation, the �nal choice of a given con�-
guration (the number of processors to be implemented on the chip) will depend also on other
parameters. First, an architecture is never designed to carry out only one application. The
H.264 is chosen in our work as a reference presenting a large spectrum of video processing
applications. Second, we have to consider future application updates that evolve rapidly
in the embedded application domain. Therefore, the implemented architecture should offer
the possibility to activate/deactivate processors according to application requirements and
performance demand. In this context, modern chips such as the Tegra processor (quad-core)
from NVIDIA can be used. Third and not least, thermal dissipation, the cost of the chip and
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the size of the battery are also important parameters that can impact the �nal choice.

FIGURE 3.23 – Comparison between the functional and transactional energy consumption
results

3.8 Model driven engineering :

MDE revolves around three focal concepts. Models, Metamodels and Model Transfor-
mations. A model is an abstract representation of some reality and has two key elements :
concepts and relations. Concepts represent ”things” and relations are the ”links” between
these things in reality. A model can be observed from different abstract point of views (views
in MDE). The abstraction mechanism avoids dealing with details and eases re-usability. A
metamodel is a collection of concepts and relations for describing a model using a model
description language and de�nes syntax of a model. This relation is analogous to a text and
its language grammar. Each model is said to conform to its metamodel at a higher de�nition
level. Finally, MDE allows to separate the concerns in different models, allowing reuse of
these models and keep them readable. The MDE development process starts from a high
abstraction level and �nishes at a targeted model, by �owing through intermediate levels of
abstraction via Model Transformations (MTs) ; by which concrete results such as an execu-
table model (or code) can be produced.

Gaspard2 [21] is an MDE oriented MPSoC co-design framework based on the Modeling
and Analysis for Real Time and Embedded systems (MARTE) standard. The design �ow in
Gaspard2 follows several steps : system modeling and deployment, model transformations
and code generation. The left side of �gure 3.24 shows the design �ow targeting the Sys-
temC platform, which we used in our work. Gaspard2 targets also other platforms such as
Fortran and VHDL. In Gaspard2, there is a separation between the architecture and the ap-
plication models as shown in the left side of �gure 3.24. An application model describes the



86 Energy/Power-Aware Design Methodology for MPSoC

SW and/or HW components of an application. To link the application and the architecture
models, an allocation model is used. At the deployment level, every elementary component
(application or architecture component) of a system is linked to an existing code hence fa-
cilitating Intellectual Property (IP) reuse. Each elementary component can have several im-
plementations (e.g., SystemC, VHDL). The deployment model provides IP information for
model transformations targeting different domains (formal veri�cation, simulations, high-
performance computing or synthesis). After the deployment phase, model transformations
(transformation chains) permit to add some details to the input model in order to get closer
to the targeted technologies. At the end of a transformation chain, we have a model with
technical details allowing the code generation related to the targeted technology.

Our contribution in Gaspard2 was to integrate the power estimation concepts in this fra-
mework. The integration follows two steps as shown in the right side of �gure 3.24. The �rst
step is to generate power estimation modules for the SystemC IPs in the Gaspard2 IP library.
For this, we developed a new pro�le and a new metamodel dedicated to power estimation.
The pro�le allows to describe the behavior of the power estimators and to determine the
architectural parameters that will be used in the consumption estimation later, when the es-
timators will be integrated into a whole MPSoC architecture. Using model transformations,
the SystemC code of the estimators is generated automatically, in order to obtain new IPs de-
dicated to power estimation. These IPs are integrated in the IP library of Gaspard2. They are
ready to be used for the consumption estimation of the hardware components used in the
Gaspard2 system designs. The second step is to integrate the power estimation in MPSoC
models in Gaspard2 in order to automate the power estimation for these systems. For this,
we extended the deployment pro�le of Gaspard2. This extension allows to link the existing
estimators in the library to the hardware components of a modeled MPSoC. The MDE ap-
proach of Gaspard2 allows then to generate the SystemC code of the whole system with the
integrated estimators. This code can be then integrated into the SystemC simulator and the
energy estimates can be displayed during the simulation. All these contributions are detailed
in [39].

FIGURE 3.24 – Power estimation integration in the Gaspard2 framework
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3.9 Discussion

Summary. In this chapter, we summarized our contributions in the �eld of low power
design targeting homogeneous and heterogeneous MPSoC. The challenge lay in raising the
issues related to the design methodology, the power modeling, the complex design space
exploration, and the software development environment. We tackled these issues that are
gripping embedded system designers by means of proposing an ef�cient multilevel power-
aware design methodology. The �rst attractive aspect in our proposal is the global vision
while considering the power consumption of the system. Indeed, we addressed the global
system consumption that includes processors, memories, recon�gurable circuits, operating
system services, etc. The second attractive aspect in the proposed methodology is the power
modeling approach used. Actually, FLPA was used to develop power models for hardware
and software components well-adapted to the system level design. these power models are
integrated in the design �ow in the context of multi-level design space exploration : to re-
�ne power and energy estimations, they are used in conjunction with simulation tools at
different abstraction levels. The main advantage of such approach is to abstract the conven-
tional electronic details linked to power estimation essentially for software designers. The
integration of runtime power management techniques in the design �ow is another bene�t
of our methodology. As a cost-effective software development approach, we relied on MDE
to abstract the concepts and to automate the design process of MPSoC while considering the
power metric.

Limitations. The presented energy/power-aware design methodology can have a strong
impact on the adequate chip speci�cation for a given application domain. In addition, the
integration of runtime optimisation techniques such as DVFS can lead to a better energy
saving. However, we think that this will not be suf�cient for next sub-micron technologies,
especially with the dark silicon issue where the system should be con�gured at runtime to
exploit the strict necessary resources. We should include hardware and software components
for runtime power monitoring that should be managed by the execution model. At the pro-
gramming level, there are also requirements in terms of language expressiveness to take into
consideration the dynamicity of the hardware for better energy ef�ciency.

The future. In the future, we will pursue this research direction considering the fact that
IC 2D scaling is reaching the fundamental limits. Hence, the semiconductor actors are explo-
ring the use of the vertical dimension (3D) for logic and memory devices. The combination
of 3D device and low power device will introduce a new era of scaling, identi�ed in short as
3D Power Scaling[83]. Furthermore, thermal effects are exacerbated in 3D technology. So, we
need to rethink about the power management for the next generation of 3D-based multipro-
cessor SoC or 3D FPGA.
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This chapter presents my contributions since 2011 at INRIA DreamPal team in the �eld of
massively parallel dynamically recon�gurable execution model. Mainly, these works cover
the PhD thesis of Venkatasubramanian Viswanathan started in February 2012 and will be de-
fended in January 2015 (co-advised with Jean-Luc Dekeyser). We are pursuing investigation
for this �eld in the frame of the PhD thesis of Karim Mohamed Ali and Wissem Chouchene
who started in October 2013.

The rest of the chapter is organized as follows : in Section 4.1, we introduce the main chal-
lenges of the design of parallel and dynamic recon�gurable architectures ; Section 4.2 gives
a summary of the related works. Section 4.3 details the design of a multi-FPGA System-
in-Package that supports massively parallel dynamically recon�gurable execution model.
Section 4.4 presents the parallel recon�guration model for 3D FPGA next generation. To
evaluate our approach, experimental results are presented in Section 4.5. In Section 4.6, we
introduce the HoMade processor featuring massively parallel dynamically recon�gurable
execution model. Finally, Section 4.7 discusses the strengths, limitations and future direc-
tions to the presented works.

FIGURE 4.1 – Contributions the �eld of parallel and dynamic execution model

4.1 Overview of main challenges

Standard Integrated Circuits (IC) are reaching their limits and need to evolve in order
to meet the requirements of next generation computing. One of the most promising evolu-
tions is the 3D-Stacked Integrated Circuits (3D SICs) [138]. An excerpt from the HiPEAC
vision [83] promotes that “ The advent of 3D stacking enables higher levels of integration and re-
duced costs for off-chip communications. The overall complexity is managed due to the separation in
different dies, independently designed”.
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In parallel, FPGAs (Field Programmable Gate Arrays) have emerged as a privileged tar-
get platform for intensive signal processing applications [136]. Indeed, FPGAs have the be-
ne�ts of high speed and adaptability to the application constraints with a reduced perfor-
mance per watt comparing to the General Purpose Processors (GPP). They offer inexpensive
and fast programmable hardware on some of the most advanced fabrication processes.

We believe that 3D integration will lead to a signi�cant shift in the design of FPGA cir-
cuits. 3D integration will vastly increase the integration capabilities of FPGA circuits. Spe-
cially, the monolithic 3D FPGAs promote a very important bene�t over 2D FPGAs [105].
Due to their structure, monolithic FPGA presents a 3D architectural transformation from
a 2D FPGA to offer higher performance. Indeed, as shown in �gure 4.2 (a), the 2D FPGA
consists of a reproduction of a basic building blocks called "Tile" interconnected through re-
gular queues. Each tile is composed of three types of resources, connection box (CB), logic
block (LB) and switch box (SB). The objective of the architectural transformation is to reduce
the horizontal wired connections to avoid the synchronization errors and to optimise energy
consumption and area. Moving from 2D to 3D FPGAs consists in organising each type of re-
sources cited above in a silicon layer and superposing them one upon the other in the same
chip using interconnection TSV (Through-Silicon-Vias) [105].

The stacking order plays an important role in ensuring good performance of 3D FPGAs
according to [106] [46] [132]. Figure 4.2 (b) illustrates the general structure of a 3D layered
FPGA. Indeed, the memory layer is located above the other layers ; it is built with memory
SRAM blocks of two types : LB-SRAM (Logic Block SRAM) and RR-SRAM (Routing Re-
source SRAM). The middle layer is the routing layer which is a mesh of nodes, where each
node is composed of four CBs and four SBs. Finally, the lower layer composed of LBs inter-
connected uniformly.

FIGURE 4.2 – (a) 2D-FPGA (LB : logic block, CB : connection box, SB : switch box). (b) 3D
Monolithically stacked 3D-FPGA [105].

The convergence of massive parallelism and dynamic recon�guration is inevitable : we
believe it is one of the main challenges in computing for the current decade. By incorporating
the con�guration and/or data/program memory on the top of the FPGA fabric, with fast
and numerous connections between memory and elementary logic blocks, it will be possible
to obtain dynamically recon�gurable computing platforms with a very high recon�guration
rate [131]. Such a high dynamic recon�guration rate was not possible before, due to the serial
nature of the interface between the con�guration memory and the FPGA fabric itself. We
highlight that due to thermal issues, not all TSV interconnections can be used in a 3D FPGA.
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It was demonstrated that less than 10% of these interconnections can be used depending on
the number of layers and the sub-micron technology [93] [73].

The FPGA technology also enables massively parallel architectures due to the large num-
ber of programmable logic fabrics available on the chip. Single Program Multiple Data
(SPMD) is the favourite execution model for designers while implementing parallel architec-
tures on FPGA. For instance, Xilinx demonstrated 3600 8-bit picoBlaze softcore processors
running simultaneously on the Virtex7 2000T FPGA. For speci�c applications, picoBlaze can
be replaced by specialized hardware accelerators or other IPs (Intellectual Property) com-
ponents. This opens the possibility of creating massively parallel IP-based machines. Such
architectures can be customized at runtime using the Dynamic Partial Recon�guration (DPR)
feature, a recon�guration that can be done in parallel for all or for a subset of the IPs.

Recently, SIC technology, also known as 2.5D ICs, has been released by the manufacturer
Xilinx for the Virtex 7 FPGA family. Such technology is considered as a near-cousin to 3D.
The next generation 3D FPGAs will allow ef�cient dynamic recon�gurations in a massively
parallel manner. The 3D FPGA realised in [72] con�rms this analysis. As shown in �gure 4.3,
several FPGA tiles can be con�gured in parallel while accessing to different con�guration
memory banks simultaneously. Hence, we can obtain a recon�guration model well-traced
on the execution model (SPMD) in order to recon�gure a subset of the parallel computing
nodes. Software applications running on such hardware can then ef�ciently recon�gure the
hardware at runtime according to their needs, thereby achieving signi�cant savings in cir-
cuit space, energy consumption, and execution time [82]. We anticipate that FPGAs will play
a major role in 3D evolution : FPGAs are currently one or two generations behind the most
advanced technologies for standard processors, but their application as speci�c hardware
is an order of magnitude faster than software solutions on standard processors [54]. One of
the most promising evolutions are next generation 3D FPGAs, which will enable users to
build dynamically recon�gurable massively parallel hardware architectures around them.
This new paradigm opens many opportunities for research, since, to our best knowledge,
since there are no parallel recon�guration models for such technology, no execution models
for massively parallel and dynamically recon�gurable architectures on 3D FPGA, and no de-
dicated tools for mapping those architectures on 3D FPGA or estimating their performances.

We shall address the following topics : proposing an execution model and a design en-
vironment, in which users can build customized massively parallel dynamically recon�gu-
rable hardware architectures, bene�ting from the recon�guration speed an parallelism of 3D
FPGAs ; proposing dedicated language for programming applications on such architectures
and designing the appropriate prototyping environment.

De�ning execution model for the new architectures : The execution model for the new
architectures has to incorporate massive parallelism and dynamicity in order to bene�t from
the very large size of the next-generation FPGAs, which currently contain several million of
logic gates. Furthermore, we have to offer the �exibility for designers to choose the granu-
larity of their IPs. Hence the execution model can implement �ne-grained as well as coarse-
grained computation to address the heterogeneity issue. In other words, parallelism, dyna-
micity, and heterogeneity should be addressed at the same level while programming recon-
�gurable architectures .

The �rst aspect (dynamicity) consists in designing a processor with only few hard-coded
instructions for controlling the execution �ow. All the other instructions reside in dynamic
IP units that are instantiated, executed (possibly in parallel), and replaced at runtime. The
IPs can be arbitrary complex and heterogeneous, including ALU functions, load/store units,
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FIGURE 4.3 – Example of 3D FPGA realisation [72]

or even other processors. Users can pre-select a set of IPs to be implemented on FPGA accor-
ding to the needs of their application. By taking advantage of the dynamic recon�guration
functionality of new FPGAs, the set of IPs associated to a given processor can evolve du-
ring the execution of the program : some are instantiated, others are removed, etc. In the
second aspect of the de�ned execution model (parallelism), the processing element (PE) of
the FPGA circuits will have to be completed with speci�c hardware to manage the massively
parallel processing (network, synchronization barriers, communication...), and we envisage,
in the continuity of our team research on mppSoC [108] [99], that the execution model of the
whole system will be an extension of the old SPMD model (Single Program Multiple Data,
i.e., executing the same code in parallel on many PEs).

De�ning a parallel recon�guration model for 3D FPGA : The emerging technology of
programmable logic devices provides denser logic to accommodate massively parallel archi-
tectures. However, the recon�guration models of these architectures still remain sequential.
Basing on the existing 3D technology, we have to study the global structure of the FPGA and
the disposal of the logic layers in relation to the recon�guration memory layers. High-speed
recon�guration controller architecture should be de�ned according to the FPGA structure.
Within this structure, we will consider coarse-grain recon�guration granularity. We should
be able to map an IP on several recon�gurable regions (for SPMD execution model) without
a pre-allocation process. The academic merit of such an approach can be served as a new
idea for hardware virtualization.

Designing a Multi-FPGA SiP for massively parallel dynamically recon�gurable archi-
tecture : With the aid of FPGA-based prototyping tools, it is possible to have the proposed
execution model running on a multi FPGA platform. With this approach it is not mandatory
to develop the physical layout of the 3D FPGA, which is out of the scope of our research
�eld. It is also feasible to make some parts of the execution model running on hardware and
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others de�ned as a virtual prototype. This does not only make the development of the 3D
architecture faster and more �exible, but also facilitate the testing phase. In addition, the use
of a multi FPGA platform may become a necessity due to the complexity and the size of the
FPGA to be developed. Without such a tool, it is not ef�cient to develop the model using the
traditional computing platforms. This is because of the heavy computational tasks required
to represent it (e.g. simulating the FPGA resources, execution of the mapping and routing
algorithms), or to be executed on it (e.g. having a soft microprocessor in the developed 3D
FPGA on which a recon�guration algorithm runs). Although the emulation will be restricted
to a limited number of FPGAs, a proof of concept will be extended to N number of FPGAs.

4.2 Related works

One of the Dif�cult Challenges through 2019 identi�ed by ITRS in its 2012 report 29 is :
Providing a capability for more rapid adaptation, reuse and recon�guration. This challenge has at-
tracted several national, European and international projects related to IP reuse, recon�gu-
ration, parallel systems and veri�cation in systems design. However, to our best knowledge,
none of the existing projects proposes dynamic recon�gurable parallel architectures and lan-
guages designed with (and connected to) formal tools for safely programming applications
on these architectures.

In the literature, several execution models have been proposed to deal with the paralle-
lism, heterogeneity, and the dynamicity dimensions in embedded architectures. As a �rst al-
ternative, we quote the ASIP (Application Speci�c Instruction-set Processors) approach [95],
which allow some customization in the hardware : instruction set extensions, instruction pa-
rametrization and inclusion/exclusion of prede�ned components (IPs) for speci�c applica-
tions. For example the eMIPS (extensible MIPS) [122] is an extensible processor architecture
that achieves the performance of application-speci�c hardware optimizations in a safe and
general-purpose environment. It allows multiple secure extensions to load dynamically and
to plug into the stages of a pipelined data path, thereby extending the core instruction set
of the microprocessor. Extensions can also be used to realize on-chip peripherals and, if the
surface permits it, even multiple cores [75]. However, with the ASIC static customization
a large percent of the CPU core is static too, and consumes resources (surface and power)
even when it is not used. This consumption can become very expensive in a massively pa-
rallel integration scenario, where the resource waste would be multiplied by the number of
elementary nodes. Regarding parallelism, even if some ASIC solutions integrate multicores,
they remain far from massively parallel processing.

There is also a second alternative to converge towards dynamic parallel embedded sys-
tems. With the advance of the system-level integration, the high-tech industry is now moving
toward multiple-core parallel architectures build around networks on chip. ADRES (archi-
tecture for dynamically recon�gurable embedded systems) is a �exible, high-performance
architecture template for low-power embedded applications. It consists of a tightly coupled
Very Long Instruction Word (VLIW) processor and a coarse-grained recon�gurable memory
array. ADRES is a �exible template to generate concrete instances. Together with a simulator
and an xANSI C compiler, this tool chain allows for architecture exploration and develop-
ment of application-domain-speci�c processors [66]. However, the customization allowed

29. http ://www.itrs.net/Links/2012ITRS/Home2012.htm



96 Massively Parallel Dynamically Recon�gurable Execution Model

by this framework is static (done before execution time), thus, all components consume re-
sources independently of whether they are used or not at a given time.

P2012 [64] is an embedded computing platform based on multiple globally asynchro-
nous, locally synchronous (GALS) clusters featuring up to 16 processors. Each processor can
be customized at design time with modular extensions (vector units, �oating point units,
special purpose instructions). Clusters can easily become heterogeneous computing engines
thanks to the integration of coarse-grained hardware accelerators. The execution model of
P2012 is mainly MPMD using standard OpenCL and OpenMP parallel codes as well as pro-
prietary Native Programming Model (NPM). This project does not deal with dynamicity for
tuning the design according the application's behaviour. Heterogeneous clusters make the
software development of such systems very dif�cult.

RAMPSoC stands for Runtime Adaptive MultiProcessor SystemonChip [94]. It is a hete-
rogeneous and runtime adaptable platform. This project focuses on improving MPSoCs by
allowing the runtime recon�guration of heterogeneous processor cores, their communica-
tion infrastructure and special accelerator units. In addition to processor cores, special Finite
State Machines (FSMs) can be con�gured in RAMPSoC, allowing a �exible adaption of the
hardware. This project does not take into account the regularity of MPSoC. Their model im-
plies a large space occupation for a full core and limits the maximum number of available
cores/FSMs.

In the FP7 European project REFLECT30 (Rendering FPGAs to MultiCore Embedded
Computing), the partners addressed the challenges of developing, implementing and eva-
luating a compilation and synthesis system approach for FPGA-based platforms. They in-
tended to solve some of the problems that arise when mapping ef�ciently computations to
FPGA-based systems. In particular, the use of aspects and strategies will allow developers
to try different design patterns and to achieve design solutions guided by non-functional
requirements. This design �ow seems a good compilation chain taking into account non
functional properties, however it does not address parallel architectures.

The FP7 European project HEAP31 (A Highly Ef�cient Adaptive multi Processor-
framework), dealt with an interesting problem in the development process for multicore
and multi-threaded architectures : the identi�cation of a suf�cient amount of thread level
parallelism to exploit the available hardware. It facilitates parallelization of the code to �t on
existing multi core architectures. This project focuses only on C/C++ code parallelization at
a high level without the possibility of using customised HW architectures.

At the technological level, the FlexTiles 32 project aims at designing 3D stacked chips with
a manycore layer and a recon�gurable layer. A virtualisation layer on top of a kernel hides
the heterogeneity and provides self-adaptation capabilities by dynamically relocation of ap-
plication tasks to software on the manycore or to hardware on the recon�gurable area. The
recon�gurable technology is based on a virtual bitstream that allows dynamic relocation of
accelerators just as software based on virtual binary code allows task relocation. This project
targets complex and heterogeneous architectures, which makes it unsuitable for regular ap-
plications. It also uses a kind of prede�ned hardware architecture that cannot be changed.
In [72] proposes the use of 3D integration technology to enable low overhead recon�gurable
computing. To recon�gure an FPGA, a con�guration is read from the DRAM into a latch

30. http ://www.re�ect-project.eu/
31. http ://www.fp7-heap.eu/
32. http ://�extiles.eu/WordPress3/
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array at runtime ; then, the con�guration is loaded from the latch array into the FPGA in
5 cycles (60ns). They demonstrate that 3D con�guration caching works best when used in
conjunction with FPGA-based accelerators, rather than pure FPGA-based systems ; in these
systems, the recon�guration latency can easily be hidden behind software execution on the
processor controlling the accelerator. This recent work con�rms the fact that 3D integration
will enable an ef�cient recon�guration on the future 3D FPGAs.

Our proposal is to do most of the recon�guration dynamically, so that a component that
becomes inactive can be removed from the system and the resources it consumed can be
reassigned to active components ; and to take advantage from the massive parallelism of the
new 3D FPGA.

4.3 The Multi FPGA System-in-Package

Targeting adaptive and intensive signal processing applications that can make pro�t
from a massively parallel dynamically recon�gurable execution model, we speci�ed an ap-
propriate platform for such application domain. The problem in today's technology exists at
two levels, technological level and architectural level. At the architectural level, the indus-
trial and academic state-of-the-art shows a lack of embedded systems supporting massively
parallel dynamically recon�gurable execution model to satisfy the application requirements.
At the technological level, there is a lack of customizable recon�gurable computing power
that can be changed according to the evolving needs of the application. Since these needs
evolve over time, the underlying hardware itself has to change according to the require-
ments of the application. Hence, the hardware used for a speci�c application is subject to
obsolescence. Redesign of the entire systems results in huge Non Recurring Engineering
(NRE) costs and increased time to market. Therefore there is a strong need for a customi-
zable obsolescence proof recon�gurable computing technology.

The use of a customizable and runtime recon�gurable hardware can remove the obso-
lescence issues to the computing technology used in our target application domain. Using
multiple FPGAs at the same time can provide computing power comparable to that of ten
CPUs while guaranteeing real-time operation. Another essential attraction of recon�gurable
components is the easy management of the degree of parallelism allowing us to control the
execution time of tasks based on the needs of the application.

As shown in �gure 4.4, the prototype of the board is realized with a carrier board and 4
FPGA modules. FPGA modules contain only the FPGA and the need electrical circuitry to
support the operation of the FPGA. The connector on the FPGA module is used to mate with
the carrier board. The FPGA module size is always �xed to 125x95 mm. The size of the FPGA
module has been chosen taking into consideration the size of the largest FPGA device in the
market. The FPGA modules are connected via a PCIe switch. One of the key features of this
board is the customizable and scalable communication link for high-bandwidth low-latency
peer-to-peer communication. Communication between several nodes can happen in parallel
without any latency in between. On the other hand, the carrier board consists of all the other
components and features (i.e., FMC, memory, PCIe switch, COM express and peripheral I/O
interfaces) of the multi-FPGA board. The other components such as FMC, memory, COM
Express, peripheral I/Os used and the connections between them are illustrated in �gure 4.4.

The key architectural feature of this board is to be able to recon�gure more than one node
at the same time. Using the PCIe switch, the con�guration data can be multicast/broadcast
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to more than one node at the same time. The con�guration data will be stored in the local
memory of the respective nodes. Later recon�guration of multiple nodes can be initiated by
a broadcasting a recon�guration command.

FIGURE 4.4 – Architecture of the multi-FPGA board

Parallel I/O management model

Targeting parallel architecture, designers have to manage the I/O data ef�ciently, other-
wise the system loses its attraction in terms of performance. In our board, we will rely on
the FPGA Mezzanine Card (FMC) standard proposed by the VMEbus International Trade
Association (VITA) group [142] to solve the I/O obsolescence issue as discussed in Chapter
2. As shown in �gure 4.5, each FPGA can communicate with the outer world through FMC
module. In case of distributed processing, the data received via a single FMC might need to
be shared with more than one FPGA. In this case, the owner of FMC I/O can share its data
via the PCIe switch. We can also recon�gure our board as a parallel recon�gurable machine
with a shared memory model. Each FPGA has a local DDR3 memory while the master FPGA
has a memory size four times compared to the local one. Each FPGA can store its complete
local memory in the global shared memory via the PCIe switch. The Master FPGA in turn
can retransmit the data to one or more nodes at the same time if requested thus forming the
notion of a global shared memory.

All the communication between the FPGA modules takes place via the PCIe Switch on
the carrier board. There are two important aspects of communication. First, there are the
architectural requirements for communication i.e. the different communication models are
required. Second is the con�guration of the switch for each communication model. A device
is capable of communication with one or more devices at the same time. Therefore, all the
communication falls into two broad categories :

– One-to-one communication (Data sharing and I/O sharing between devices)
– One- to-many communication (Con�guration data transfer to several devices)
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FIGURE 4.5 – Parallel I/O model using FMCs and PCIe Switch

All types of communications are handled by the PCIe switch as Transaction Level Packets
(TLPs). There are different types of TLPs (A, B, and C) and any communication will have to
fall into these types of transaction. While all one-to-one transactions are handled by one of
the PCIe TLP type, one-to-many communication is handled by multicast protocol provided
by the switch.

4.3.1 The prototyping environment

The proposed system consists of a general purpose processor (intel, AMD, etc.) coupled
with a multi-FPGA board with a PCIe x16 slot. The multi-FPGA board consists of four de-
tachable FPGA modules and a PCIe switch on the back-plane, for communication between
the FPGA modules and the host. Since the technology used in our multi-FPGA board is pa-
tent pending, we have used a multi-FPGA board from Pico Computing [42] which will be
suf�cient to demonstrate the main idea of parallel recon�guration model, well-traced on the
SPMD execution model.

The multi-FPGA board has a module-based FPGA computing power, that allows to add
or remove any number of FPGA modules. Thus, system designers will be able to augment or
remove hardware computing power as needed. This feature, combined with a scalable PCIe
based peer-to-peer communication protocol, allows to practically add any number of com-
puting nodes in the system. This setup with a PCIe switch truly enables us to emulate a 3D
FPGA based architecture, where each FPGA can at some level be compared to a layer of the
SIC, and be programmed individually to host a separate layer of con�gurable logic. Moreo-
ver, the PCIe switch in the system also provides one-to-many and one-to-all communication
enabling a fully connected communication topology. This topology can be used to recon�-
gure several nodes or a subset of nodes in parallel, by broadcasting bitstreams to different
FPGAs. Thus, it emulates the switch layer of the 3D FPGAs that allows to communicate, to
broadcast, and to recon�gure several SIC layers in parallel, following the circuit structure of
�gure 4.2 and �gure 4.3.

The communication between FPGAs and the host is based on Gen2 PCIe switch, which is
a fully switched architecture. This means that multiple FPGAs along with the host processor
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FIGURE 4.6 – Communication between host and FPGAs

can send and receive data simultaneously over the switch. Each FPGA module connects with
each other via the PCIe switch with a x8 lane width, while the host processor connects to the
PCIe switch using a x16 lane width as shown in �gure 4.6. The PCIe tree is used to connect
multiple peripherals, where the FPGAs are the leaves and the host CPU along with the I/O
Hub, is the root. The host processor runs an Ubuntu Linux distribution with the drivers
and software APIs that interacts with all the FPGA modules on the board. Furthermore, the
driver supports the usage of POSIX threads. This allows the user to interact with multiple
devices or even access multiple DMA channels on the same device concurrently. Each FPGA
module also has a 4 GB of local DDR3 memory to store the bitstreams to recon�gure each
FPGA at runtime, and also to share these bitstreams with other FPGAs. Several features of
the architecture are explained in the following subsections.

4.3.1.1 Communication

The communication between the host to FPGAs, FPGA to FPGA and FPGA to the host
is categorized into two distinct types i.e., bus-based communication and stream-based com-
munication. Bus-based transactions provide register access on the PCIe address space, while
stream-based transactions provide continuous burst transfers between two end-points or
the host and end-point. As the names suggest, the former is used for command and control
purposes, while the latter is used for high-throughput data transfers.

Bus-based communication

The bus model connects the software and �rmware by presenting the �rmware as a slave
on a memory-mapped bus, which is driven by the software running on the host. In other
words, it is a memory-mapped paradigm used by host software for both writing data to the
�rmware, and reading data from the �rmware. Each transaction involves both data and an
address and it models a set of registers. We use this type of transaction to send and receive
command and status, to synchronize the start of a parallel recon�guration and to monitor
the process.
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FIGURE 4.7 – A �exible communication topology using PCIe Streams

Stream-based communication

The stream method of communication is used for DMA transfers between the host me-
mory and FPGA or between two FPGAs without processor intervention. It is simply a PCIe
based DMA that serves as inputs to FPGAs or outputs from FPGA. A typical system will
have at least one stream in each direction for bidirectional communication. A stream is a se-
quence of data, with �ow control without addresses, implemented using a PCIe AXI FIFO.
Streams are the fastest and most ef�cient way of moving data to and from FPGAs, since
data is simply sent and received in-order. The software API functions can be used to know
when the stream is available for reading or writing, by checking the number of available
bytes in each stream. Each node can handle up to a maximum of 32 full-duplex streams.
Figure 4.7 shows a �exible communication topology between the host and multiple FPGAs
using Streams. We make pro�t from this �exible communication topology, to broadcast par-
tial bitstreams from the host to multiple FPGAs, from FPGA to multiple FPGAs, at the same
time via the PCIe switch.

4.3.1.2 Parallel Execution Model using POSIX Threads

The architecture also provides support for a parallel execution model, in addition to nor-
mal sequential execution of an application. In a SPMD execution model on a 3D architecture,
same instance of an IP can be duplicated several times on different layers of the SIC. Thus
it will be necessary for the software application to read/write and synchronize the software
accesses to all these processes in parallel. In such cases using multiple threads, one writing to
a process, another for reading the results and passing it on to another process, while the �rst
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process is still writing more input, will be very useful. In order to facilitate this, the system
allows the creation of multiple threads using POSIX library (PThreads). However, the user
has to make sure that all the race conditions are handled. For example, calls to access the
FPGA from multiple threads on different streams are always thread-safe. Moreover, input
stream and an output stream that share the same number are also thread-safe. However, two
threads writing to the same stream, or two threads reading from the same stream need to be
thread-safe with mutual exclusions. Therefore, in our system, using PThreads in conjunction
with streams, we can broadcast data to all the devices in parallel, thus forming the basis of
a parallel recon�guration model to emulate 3D FPGAs using several 2D FPGAs and a PCIe
switch.

4.4 Parallel recon�guration model

Using the features described in the previous sections, we aim to emulate a parallel re-
con�guration model of 3D FPGAs. In a SPMD architecture, where multiple instances of the
same IP process different data sets, we should recon�gure several IPs or a subset of IPs
when the context of the application changes. In practical terms, it will not be ef�cient when
recon�guration is done sequentially for a large number of IPs, using current generation 2D
FPGA based recon�guration model. Thus we speculate that 3D FPGAs should and will be
able to provide advanced recon�guration mechanisms, where SPMD applications running
on such high density devices, will be able to recon�gure several layers of SIC in parallel. In
this context, we present a very common industrial application based on the SPMD execution
model, that will be an ideal candidate to emulate the parallel recon�guration feature of the
next generation 3D FPGAs.

4.4.1 Modes of Parallel Dynamic Recon�guration

This section discusses the ways in which a parallel recon�guration can be initiated in
our system. There are two ways for doing this. First, parallel recon�guration can be initiated
by sending the bitstream from the host processor to each FPGA in parallel via PCIe DMA
streams as shown in �gure 4.6. This is followed by a broadcast of a start command to all the
FPGAs using the PCIe registers. The second option is to store the bitstream in each FPGA lo-
cal DDR3 individually and then broadcast a recon�guration start command to all the FPGAs
at the same time, so that each FPGA can start reading from the respective local memory and
start the process of recon�guration. Broadcasting and communicating with more than one
FPGA device at the same time has already been explained in Section 4.3 under PThreads.
Also, the ICAP (Internal Con�guration Access Port) controller that we have designed is in-
terfaced to both PCIe DMA stream and the DDR3 memory, so that it can read the partial
bitstream from both the host as well as the local DDR3 memory.

4.4.2 ICAP controller

The ICAP controller is designed as a simple state machine as shown in �gure 4.8. Once
the start command is received by the ICAP controller, it waits for a valid data either from
the DMA stream from the host to FPGA or from the DDR3 memory stream depending on
the type of the start command received by the controller. Once valid data is detected from
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either of the streams, the ICAP controller starts and the data �ow is continuous without any
interruptions. The con�guration data of the bitstreams follow the Xilinx .bin format starting
with a bus width detection word, a sync word, followed by the con�guration words. Howe-
ver, since the size of the bitstream is not encoded in the Xilinx .bin format, it is necessary to
inform the ICAP controller about the size of the bistream along with start command using
the PCIe registers. Once the controller �nishes reading the bitstream of speci�ed length, it
noti�es the host through status registers.

FIGURE 4.8 – ICAP controller

4.4.3 Generalizing the concepts

In the SPMD architecture, the parallel recon�guration on 3D FPGA will be managed
by the execution model. Hence, in addition to the parallel delivery of partial bitstreams to
different recon�gurable regions, the execution model has a range of mechanisms that signi-
�cantly improve the performance of systems in terms of size, power and execution time.
As shown in �gure 4.9, the model takes some information as inputs, then performs four
main operations that lead to realization of the needed partial recon�gurations. The model
inputs include the target FPGAs characteristics such as the number of ICAPs, the number of
identical regions to recon�gure, the bitstream of the IP that we want to broadcast, and the
localisation of this bitstream.

FIGURE 4.9 – Main steps for generic parallel recon�guration model

As we target a general and �exible model that will be able to support a large range of
FPGA devices, several cases may appear at the �rst stage i.e., ICAPs assignment as shown
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in �gure 4.9. In fact, the target device may contain N number of ICAP con�guration ports
less than the number of regions to be con�gured, C. This is the simplest possible situation
because all the partial recon�gurations can be realized in a parallel way for sure. Thus, we
assign one ICAPs for each recon�guration. In this case the remaining non assigned ICAPs
will still be in the idle state. In the second case, the FPGA does not contain enough ICAPs
to recon�gure all the regions in a parallel manner. Thus, in our model, we assign X regions
to the N � 1 �rst ICAPs and C � (X(N � 1)) regions to the last ICAP (X or X + 1 depending
on the values of C and N) with X = CdivN (div is the integer division). Such an assign-
ment ensures a balanced repartition of recon�guration workload on the available ICAPs. In
this situation, the recon�gurations assigned to a given ICAP are realized sequentially. Our
proposed prototyping environment allows to emulate these different cases.

After the ICAPs assignment step, we start loading the bistreams from the local DDR3
or the shared memories and dispatching each bistream to its assigned ICAP by storing it
in a local memory accessible by the ICAP. As an example, we have used the PCIe FIFO in
our system to transfer the bitstreams as shown in �gure 4.11. We recall that the capability of
our system to communicate one-to-many and one-to-all enables to share bitstreams between
different layers. Two possibilities may occur in this step. First, bitstreams corresponding to
the implementation of each IP on any recon�gurable region are available in the external
memory : in this case appropriate bitstreams are simply selected and loaded in the local me-
mories. Second, only one bistream version is available for each IP : in this case a relocation
step is performed before dispatching bitstreams to the local memories. This relocation re-
quires the modi�cation of a given bistream that was planned for a given region in order to
adapt it to another region. Such a modi�cation is quite simple and easy to perform as the
changes are still minor and involve only few bytes (translation operation).

Once all bistreams are ready and inside the local memories, recon�guration requests are
sent to the ICAPs. We recall that using the bus-based communication mode, we synchronize
the start of a parallel recon�guration in our system. Each ICAP receives the commands to
perform all recon�gurations assigned to it, one by one from a local arbiter. A recon�guration
request can not reach an ICAP before it �nishes the previous recon�guration assigned to it.
After receiving a recon�guration request, each ICAP writes a partial bitstream into the target
recon�gurable region.

4.5 Experimental results

As stated before, the experimental setup consists of a general purpose processor with a
PCIe x16 slot where we insert our system from Pico Computing [42] as shown in �gure 4.10.
Our objective is to build a scalable secure video encoding encryption application respecting
a massively parallel dynamically recon�gurable execution model and to emulate the next
generation 3D FPGA by using several 2D FPGAs. Our application will be designed using
mainly 3 coarse-grained IPs : the H.264 encoder, the AES (Advanced Encryption Standard),
and the RTEA (Ruptor's Tiny Encryption Algorithm).

4.5.1 Application scenario

We illustrate an industrial high-speed FMC based data acquisition serial wide band re-
corder. The recorder itself is a serial Front Panel Data Port (sFPDP) IP core with 4 capture
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FIGURE 4.10 – Modular Multi-FPGA board mounted on the host processor system via PCIe

channels as shown in �gure 4.11 and each channel operates at a 2.5Gb/s line rate. This means
that at the application level the payload throughput is approximately 1 GB/s for 4 channels.
The application is a secure H.264 video encoding and encryption application. A H.264 video
encoder encodes the captured RAW video data, and we use for example, the Advanced En-
cryption Standard (AES) encryption algorithm to encrypt the encoded stream and store it in
the hard disk. Here the encryption algorithm is assigned to the dynamic recon�gurable re-
gion and can be swapped for any other encryption algorithm during runtime. For instance,
we can use RTEA which is a lighter and more faster encryption algorithm than AES, which
usually serves as an industrial standard encryption.

In this setup, there are several tasks that are executed in parallel. First, each instance
of H.264 encoder running on a different FPGA, captures RAW video data from a different
source and produces an encoded video stream in parallel. Second, the process of writing
back the encrypted stream to the host happens in parallel on all the FPGAs. Finally, all the
three encryption algorithms can be swapped at runtime on all the FPGAs if needed by the
application. And all these tasks are carried out using PCIe stream-based communication and
PThreads as described in the previous section. In this way, we have emulated a SPMD based
execution model on a 3D FPGA by using several 2D FPGAs.

4.5.2 FPGA resource utilization

Table 4.1 shows the resource requirements for different design scenarios in a single
FPGA. The percentage of resource utilization has been mentioned in all the scenarios. While
trying to implement 3 encoding channels and 3 encryption channels on a single FPGA, the
design failed to meet the resource requirements for BRAMs. Therefore we simply ignore this
scenario as it is not feasible in a single FPGA. For the others, depending on the design sce-
nario, the device utilization changes. The only thing that has to be noted is that, for designs
with more than 1 channel, the wrapper module should also be duplicated according to the
number of channels. The wrapper consists of the logic for the operation of rest of the sys-
tem, except the encoding/encryption core. For example, for a 3 channel H.264, we have to
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Slice Registers Slice LUTs IOBs BRAMs DSP ICAP
H.264 Encoder
core

2,779 (0%) 5,164 (2%) 90 (18%) 2 (0%) 2 0

Encryption Core 14,767 (3%) 10,603 (5%) 389 (77%) 0 (0%) 0 0
H.264 Enco-
der + Wrapper
1-channel

52,686 (12%) 38,627 (18%) 202(40%) 120 (26%) 2 0

H.264 Enco-
der + Wrapper
3-channels

125,497 (31%) 94,050 (47%) 202(40%) 287 (62%) 6 0

Encryption +
Wrapper 1-
channel

31,831 (7%) 21,061 (10%) 81(16%) 67 (15%) 0 0

Encryption +
Wrapper 3-
channels

84,358 (21%) 56,359 (28%) 81(16%) 157(36%) 0 0

H.264 Encoder
+ Encryption +
ICAP + Wrapper

89,696 (22%) 61,525 (31%) 225(45%) 135(30%) 2 1(50%)

H.264 Encoder
+ Encryption +
ICAP + sFPDP +
Wrapper

112,104 (28%) 82,703 (41%) 280(47%) 138(31%) 3 1(50%)

H.264 Encoder
+ Encryption
+ Wrapper 1-
channel each

67,301 (16%) 49,491 (24%) 202(40%) 120 (26%) 2 0

H.264 Encoder
+ Encryption
+ Wrapper 3-
channels each

N/A N/A N/A N/A N/A N/A

TABLE 4.1 – Area utilization for different FPGA designs scenarios in 1 FPGA
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FIGURE 4.11 – Video encryption based on SPMD execution model

duplicate the AXI interconnect slaves 3 times to access the DDR3 memory. The arbitration
between the controllers will be taken care of by the AXI interconnect switch. For the setup
shown in �gure 4.11, we have integrated a H.264 encoder, encryption core, an ICAP control-
ler and a high-speed data acquisition sFPDP x4 IP core in a single FPGA. It consumes about
50% of the resources on a single FPGA. This is an example for a SPMD execution model on
3D FPGA because, as mentioned earlier, each FPGA represents a layer of the 3D FPGA and
we have distributed each instance of the SPMD model on different layers. This setup serves
different bene�ts such as, distributing a redundant architecture over multiple FPGAs gives
the �exibility of modularity and serves to be more power ef�cient.

4.5.3 Application pro�le on the hardware

For the above application scenario, we have calculated the execution times for encoding
and encryption on the hardware along with the time taken for inter-FPGA communication.
First, we have measured the execution times for encoding and encrypting 90 frames of RAW
video on the hardware separately. Then we measured the overall execution time for up to 90
frames including encoding, transfer of encoded data to another FPGA for encryption. From
the times measured, we have extracted the time taken to transfer the encoded data from 1
FPGA to another, in order to perform encryption. Finally, we have also measured the time
taken to encode and encrypt 90 frames of video on the same FPGA, instead of performing
encryption on another FPGA. Figure 4.12 shows the time taken for each of the category as
separate bars in the graph. From the graph, although it is obvious that the execution time
increases for more number of frames, the increase is not steeply linear. This is due to the fact
that we �rst buffer the incoming RAW frames into the DDR3 memory and then access them
during encoding. The DDR3 memory controller has been designed in such way to queue
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FIGURE 4.12 – Execution times on the hardware

several read addresses as burst transactions. Hence after the initial DDR access delay, we
have access to 32 bytes of data every DDR cycle (250 MHz). Thus when data size increases,
the execution time overshadows the initial access latency, and minimizes the steep linear
increase in the overall execution time.

Furthermore, from the graph we see that it takes about less than 1 ms to transfer 90 enco-
ded frames (about 2 MB of encoded data) via PCIe. There are three things to be noted. First,
similar to the DDR3 access, after the initial PCIe transfer latency between two nodes, the
PCIe stream links are capable of delivering the data at the same rate at which we produce
data. Thus, as the data size increases, the transfer time is hidden by the execution time. The-
refore we see that the ratio of overall execution time between bar 1 (encryption performed
on another FPGA) and bar 4 (encryption performed on the same FPGA) decreases. Second,
it is also possible to buffer the encoded stream in the DDR memory, perform a partial re-
con�guration to swap the encoder with an encryption algorithm, and encrypt the buffered
data. Swapping avionic communication protocols during run-time have shown performance
gains [40]. Although this is feasible, it is not recommended due to the fact that the tools are
not certi�ed to be used for partial recon�guration in several critical industrial applications.
Hence, due to certi�cation and stability reasons, these applications can not fully exploit the
bene�ts of partial recon�guration. Furthermore, partial recon�guration will also not be sui-
table for streaming applications where the data �ow is continuous. Finally, having 3 enco-
ding and 3 encryption channels on the same FPGA is also not possible because, having 3
encoding channels on Kintex 7, already utilizes up to 60% of the device resources as shown
in Table 4.1. Furthermore, the availability of the FMC I/O modules also dictates how we
partition the application as stated earlier. Thus there is a strong need to wisely distribute the
architecture in a high-performance application thus avoiding extensive redesign times.

4.5.4 Host to FPGA bandwidth

The graph in �gure 4.13 shows the time taken to transfer different data sizes from host
to FPGA and vice versa via x16 PCIe streams. There is a constant linear increase in the time
taken with respect to data size. However, for very small data sets, the time taken to read from
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FIGURE 4.13 – Data size vs transfer time

the FPGA is greater than the time taken to write to the FPGA. This is due to the initial delay
in the loop-back to happen. However, this initial delay is hidden when the transfer time is
much greater. In theory the maximum bandwidth of x16 PCIe per direction is 8 GB/s i.e., 16
GB/s in total (Tx+Rx). The time was calculated using software timer including the overhead
of host software function calls, and the overhead of API loops to write several GB of data.
This is due to the limitation of the software API, that only allows writing 8 kB of data per
call. Using the times measured in �gure 4.13 the bi-directional bandwidth is calculated to be
approximately 1.1 GB/s in our system with x16 PCIe lane width.

4.5.5 Host to memory bandwidth

The host to memory transfer time for different data sizes was also measured from soft-
ware and shows similar trend as that of host to FPGA transfer time as shown in �gure 4.13.
The time increases linearly with respect to the data size. Except for smaller data sizes, where
the initialization time overshadows the transfer time. Hence, for smaller data sets, the writes
to DDR3 which always happens �rst, take more time than reads from DDR3. From �-
gure 4.13, we have calculated the uni-directional bandwidth between host to DDR or vice
versa to be 0.4 GB/s. Since we can write and read from different DDR3 locations at the same
time using PThreads (without coherency problems), the bi-directional bandwidth between
host and DDR memory is calculated to be about 0.8 GB/s.

4.5.6 FPGA to FPGA bandwidth

One of the main features of the system is the high-speed point-to-point full duplex links
between two nodes. We have measured the size of data that can be transferred between two
FPGAs at a given point of time. We have measured this bandwidth to know the time taken
in cases where there is a need to transfer bitstream from one FPGA to another FPGA without
host intervention. The data is plotted in �gure 4.14. The transfer time was measured from the
software. When the PCIe link is ready to accept data, it asserts the ready signal of the PCIe
stream, and then the �rmware can send 16 bytes of data in one clock cycle (250MHz). The
number of 16 bytes of data transferred was calculated from the software by keeping track
of the hardware counter at two discrete time points. The average net unidirectional band-
width between two FPGAs is calculated to be about 3.2 GB/s, which makes the overall net
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FIGURE 4.14 – FPGA to FPGA transfer time

bidirectional bandwidth to be 6.4 GB/s. Thus we are able to attain very high recon�guration
throughput in the next generation 3D FPGAs using our current emulation model.

4.5.7 Recon�guration time

We have measured the time taken to recon�gure a single FPGA. As seen in �gure 4.15,
as the size of the bitstream increases, the recon�guration time also increases. We also notice
that the recon�guration time is almost the same for both the cases of recon�guring from
the stream, and recon�guring from the DDR3. This is because, we measure time in the soft-
ware once we broadcast the start recon�guration command. By this time, the bitstreams are
already in the stream DMA FIFO ready to be read without interruption. Therefore, the ove-
rhead of reading the bitstream from the hard disk is not seen in the recon�guration time
in the graph. We observe that the recon�guration time taken on one FPGA is the same as
that taken on all the FPGAs. Therefore, the recon�guration time is constant irrespective of
the number of FPGA layers recon�gured. In this way, we verify that the recon�guration
happens in parallel for all the layers of the FPGA.

4.5.8 Bandwidth and throughput analysis

In this section we analyse the bandwidth and throughput of the sFPDP data acquisition
protocol and the processing throughput of the H.264 video encoder. We have used a sFPDP
protocol with 4 channels on each FPGA. Each channel transmits and receives using a Xilinx
GTX tranceiver running at 2.5Gbps line rate. Taking a 20% overhead on 2.5 Gbps we get a
maximum bandwidth of 250 MBps. However, the sFPD protocol itself gives a throughput of
247 MBps taking into consideration frame over heads of the protocol. And we have measu-
red a peak throughput of 245 MBps on the software timer. This gives us an overall through-
put of 980 MBps for 4 channels on each FPGA. On the other hand, our H.264 encodes 1080p
HD resolution images at 20 FPS. This approximately gives the encoder a peak throughput of
39 MBps. Thus leaving the acquisition bandwidth of a single channel of sFPDP to be more
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FIGURE 4.15 – Recon�guration time vs bitstream size

than suf�cient for the encoder to be working at its peak throughput. However, we have used
a x4 sFPDP only as an example to illustrate the acquisition rates possible using a FMC based
high-speed data acquisition protocol.

4.6 The HoMade processor

Our contributions to the �eld of dynamic recon�guration and massive parallelism are
centred around a softcore processor called HoMade. It is an ultraRISC stack-based proces-
sor, with only 12 instructions, used essentially for controlling the execution �ow (i.e. jumps,
procedure call/return, master/slaves invocation...). One other instruction is used to trigger
IPs via their identi�er (ID). The IPs can be arbitrary complex, including ALU functions, regis-
ter �les, load/store units, or even other processors. A user pre-selects a set of IPs that will at
some point be used by the application, to be invoked at runtime by the IP trigger instruction.
Thanks to the partial dynamic recon�guration offered by recent FPGAs, the same IP ID can
be used with software (HoMade executable code) and hardware (VHDL) IP instantiations.
HoMade also has an instruction that writes in its program memory, thereby dynamically
modifying the program being executed. HoMade is thus a re�ective processor that extends
intercession to hardware [69]. There are several bene�ts of the re�ection are :

– a reduced silicon surface, because only the IPs in use are instantiated on the FPGA ;
– a reduced power consumption for the same reason mentioned above ;
– a reduced execution/response time, by switching from software code to hardware IPs

at runtime.

These savings are important for embedded systems that often need to operate with limited
resources.
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FIGURE 4.16 – General view of the HoMade architecture : our processor is mainly composed
of the instruction memory, the control unit, the stack memory, and a number of IPs

4.6.1 The architecture of the HoMade processor

HoMade is an ultraRISC stack-based processor that can be considered as an IP integrator.
Mainly, it is composed of an HoMade core (instruction memory, stack, and a control unit)
and a set of variable IPs for running a given application. In HoMade, everything is an IP .
Thus, an HoMade implementation can instantiate and integrate the appropriate IPs adapted
to that application. Pushing to the extreme for the principle of customization, HoMade offers
neither calculation unit nor memory structures (for data) ; therefore the instruction set will be
more reduced and almost dedicated to the instructions for the control �ow. Before realisation
on FPGA, it will be necessary to add your IPs otherwise there is nothing to do with your
processor. In other words, by default, HoMade does nothing alone because there is neither
ALU nor register, nor memory data, etc.

How to program a processor without ALU, registers or load/store instructions ?In fact, one
and only one instruction can trigger a particular IP from 2047 possible instantiations. If a
particular application requires some registers, an IP will be offered for that. If an application
requires a memory, an IP will be offered for that based on the FPGA or the board certainly. If
an application requires an ALU, an IP will be implemented for that and so on. Hence, before
you write and run a program, you should add your own IPs or use those proposed in the
default HoMade library 33.

33. https ://sites.google.com/site/homadeguideen/ip-library
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As shown in �gure 4.16, all the IPs can read or write from/to the stack : no address
register for their in or output ports. The stack has three registers on top to allow reading
or writing in the same cycle. An IP can perform at most 3 pop or 3 push in the same cycle.
The number of pop or push operations is determined by the HoMade Control Unit (HCU in
�gure 4.16) regarding four bits in the code of the IP instruction.

The HoMade instruction set : The processor has 12 instructions in 16-bit format.
– 4 jump instructions : absolute branch, relative branch and 2 conditional relative branch.

The condition is evaluated using the value at the top of the stack compared to the zero
value. With these four instructions, the compilers are able to generate the code for all
the control structures, at least for those of the HiHope language developed in our team
as an extension for the Forth language.

– 2 function call instructions : CALL and RETURN use absolute branch in the memory
instruction. The HoMade HCU has a speci�c stack for nested function calls.

– End of execution instruction : the HLT instruction stops the HoMade processor in its
current status and reports the end of activity using one of the output pins of the pro-
cessor.

– 2 instructions for parallelism : the HoMade master executes two consecutive instruc-
tions to perform parallel computing on a set of slaves. The SPMD instruction triggers
the executable code stored in the instruction memories of the salves (the same starting
address of the program is the only constraint). While the WAIT instruction waits until
all slaves validate the termination of their execution.

– IP instruction : it can trigger an IP from 2047 possible IP. It also speci�es the actions to
be taken on the stack (Push / Pop) during the execution of this IP. The IPs are divided
into two groups : short and long according to the execution time is equal to or greater
than one clock cycle. As shown in �gure 4.16, long IPs use the IP_done signal to notify
the end of execution.

– Re�ection instruction : the WIM (Write In Memory) instruction is the only instruction
that can write in the instruction memory with strict constraints on the write addresses.
It allows the change of the executed program while it is running. It will be useful for
the dynamic recon�guration "hardware/software" by allowing for example to replace
a function call by a particular IP instruction.

– LIT instruction : the twelfth instruction is the LIT instruction which can manipulate
12-bit immediate values by storing them on the top of the stack.

4.6.2 Heterogeneity in HoMade

As stated before, using the heterogeneity in embedded systems was emphasised by the
higher requirements in terms of performance and energy ef�ciency. Almost of existing so-
lutions tackle this problem by integrating different computing nodes which leads to more
complexity in the development phase. In the HoMade processor, we offer the possibility to
integrate IPs with different granularities starting with elementary operations (adder, data
memory access, I/O, etc.) and stretches out to a coarse-grained hardware accelerator (Fast
Fourier transform) or even a softcore processor (handled as a slave IP regarding an HoMade
master). Between a full software implementation (several IPs are needed) and a custom hard-
ware (one IP), there are a multitude of solutions. Hence while developing an application, the
designer can choose the appropriate granularity level for each task depending on the re-
quired performance, the power budget, the Quality of Service (QoS), etc. In this way, the
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heterogeneity is introduced in HoMade in addition to the parallelism and dynamicity as it
will be detailed in the next subsections. We note that, whatever the granularity of the IPs,
they are integrated and scheduled in the same way in the HoMade processor. The Listing 4.1
gives an example of a software implementation of the Fibonacci algorithm relying on seve-
ral IPs essentially the IP_Stack necessary to manipulate the data at the top of the HoMade
stack (rotate, duplicate, etc.) and the IP_ALU for arithmetic and logic operations. These two
IPs are of type short and available in the default HoMade library. This example allows to
read a number N from the input switches, to run the Fibonacci sequence with N terms, and
to show the result and the number of execution cycles on the 7 segment display. We note
that the IP_Stack is a set of IPs to perform elementary operations on the HoMade stack. In
addition, our program explicitly calls the IP_Datastack that functions as a stack for nested
control structures like DO LOOP and FOR NEXT (Listing 4.1, lines 17 and 23).

1 program
2 : read // A funct ion to read the number of terms (N) in the Fibonacci
3 // sequence from the input switches
4 $ 1f // A mask value to check which push button is pressed
5 // here any push button is accepted
6 btnpush // IP to start the program
7 switch // Call for the switch IP to read the input value
8 LedDup // Call for the led IP to show the input value
9 ;

10 : f ibo_soft // A funct ion to calculate the Fibonacci sequence
11 $ 0 // Put the constant 0 on the top of the stack
12 $ 1 // Put the constant 1 on the top of the stack
13 rot // Call for the stack IP to rotate the top
14 // three elements of the HoMade stack .
15 $ 3 // Put the constant 3 on the top of the stack
16 - // Call for the ALU IP to decrement 3 from N
17 for // N is pushed to the data stack , and each iteration ,
18 // if N != zero then N is decremented by 1, else exit .
19 dup // Call for the stack IP to dupl icate the top
20 // element of the HoMade stack .
21 rot
22 + // Call for the ALU IP to get the next Fibonacci term
23 next // Check for the branch condit ion from the data stack
24 swap
25 drop
26 ;
27

28 : main // The main program
29 begin
30 read // Call for the read funct ion
31 t icraz // Set the timer IP to zero
32 f ibo_soft // Call for the f ibo_soft funct ion
33 t ic // Read the number of cycles from the timer IP
34 7seg // Show the execut ion time in cycles on the display
35 $ 1f
36 btn
37 7seg // Show the last Fibonacci term on the display
38 again
39 ;
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40 start
41 main
42 endprogram

Listing 4.1 – Software implementation of the Fibonacci algorithm

In the Listing 4.2, we give an example of a hardware implementation of the Fibonacci
algorithm using one dedicated hardware IP. Compared to the software implementation, we
are calling an IP named �bo (Listing 4.2, line 13) to carry out the Fibonacci sequence. This IP
consumes the value N from the top of the stack and store the result again on the stack after
the end of execution.

1 program
2 : read
3 $ 1f
4 btnpush
5 switch
6 LedDup
7 ;
8

9 : main
10 begin
11 read
12 t icraz
13 f ibo // Call for the fibo IP
14 t ic
15 7seg
16 $ 1f
17 btn
18 7seg
19 again
20 ;
21 start
22 main
23 endprogram

Listing 4.2 – Hardware implementation of the Fibonacci algorithm

Listing 4.3 illustrates the implementation and the plug-in of the IP �bo in the processor
HoMade. We note that the exposed lines of code belong to different VHDL �les. Lines 1,
2, and 3 are a part of IPcode.vhd which is a package �le where we de�ne the IPcode used
for different IPs in our system. For example, we de�ne IPcode = 0b10000000011 for the �bo
IP while to add it to the master/slave HoMade then the GenM_�bo/GenS_�bo is set to 1.
Listing 4.3 (from Line 6 to Line 18) shows the entity description for the �bo IP such that
it needs only to read one input value (i.e. Fibonacci order) and write back one value (i.e.
Fibonacci number) therefore ; only the top element of the HoMade stack is connected to the
IP as described in the top level module for the HoMade master shown in the listing (from
Line 21 to Line 32). The �bo IP is a long IP so we are noted for the end of execution when the
IPdone signal is set high.
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Inside the IP �bo, we can observe that the IP waits in the idle state till the input IPcode
matches with Mycode as shown in Listing 4.3 (Line 38) so that it can start calculating the
Fibonacci number as illustrated from Line 46 to Line 57.

1 constant GenM_fibo : std_logic := '1 ';
2 constant GenS_fibo : std_logic := '0 ';
3 constant IPfibo : code := " 10000000011 ";
4

5 // Enti ty descr ipt ion for the fibo IP
6 enti ty IP_fibo is
7 // mycode is the IPcode chosen for the fibo IP
8 generic ( mycode : std_logic_vector (10 downto 0) );
9 port ( clk : in std_logic ;

10 reset : in std_logic ;
11 // read the top level element of the stack
12 Tin : in std_logic_vector (31 downto 0);
13 IPcode : in std_logic_vector (10 downto 0);
14 // write on the top level element of the stack
15 Tout : out std_logic_vector (31 downto 0);
16 // IPdone is set to 1 when execution is completed
17 IPdone : out std_logic );
18 end IP_fibo ;
19

20 // The IP fibo connected to the HoMade stack
21 f ibo : if genM_fibo = '1 ' generate
22 Inst_IPf ibo : IP_fibo
23 generic map ( Mycode => IPfibo )
24 port map (
25 clk => clock ,
26 reset => reset ,
27 Tin => Tin_stack ,
28 IPcode => IPcode_stack ,
29 Tout => Tout_stack ,
30 IPdone => IPdone_stack
31 );
32 end generate Mfibo ;
33

34 // Ver i f icat ion of the IPcode
35 case current_state is
36 -- wait ing for correct IPcode matching
37 when idle =>
38 if IPcode = mycode then
39 next_state <= start ing ;
40 rst <= '1 ';
41 else
42 next_state <= idle ;
43 end if ;
44

45 // Calculat ing the Fibonacci number
46 process (clk , init )
47 begin
48 if clk 'event and clk= '1 ' then
49 if init = '1 ' then
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50 f ib <= x "00000000";
51 fib2 <= x "00000001";
52 else
53 f ib2 <= fib2 + fib ;
54 f ib <= fib2 ;
55 end if ;
56 end if ;
57 end process ;

Listing 4.3 – Hardware description of the �bo IP

We have implemented both the software (�bo_soft) and the hardware (�bo_hard) using
the HoMade processor on the Nexys 3 board (Spartan6-XC6SLX16) in order to compare the
performances. By analysing the execution for different Fibonacci numbers, we can note that
normally for one iteration �bo_soft needs 9 clock cycles while �bo_hard requires only one
clock cycle. This is mainly due to the fact that �bo_soft is composed of a set of elemen-
tary IPs where each IP needs one cycle in addition to the control instructions. However,
�bo_hard makes pro�t from the execution of concurrent operations to improve the speed.
Table 4.2 shows the gain by using �bo_hard according to the Fibonacci order. The achie-
ved gain can be more important with more complex functionalities. As a conclusion, the
software approach allows to develop rapidly the program based on IPs with the cost of less
performance ef�ciency. While the hardware approach leads to better performance with more
development effort.

Fabonacci order Number Fibo_soft (in cycles) Fibo_Hard (in cycles)
4 2 34 7
12 89 106 15
20 4181 178 23
23 17711 205 26
24 28657 214 27
25 46368 223 28

TABLE 4.2 – Execution time in cycles for different Fibonacci order

4.6.3 Re�ection in HoMade

HoMade is designed to support dynamic con�guration : Software/Software, Softwa-
re/Hardware, Hardware/Hardware. To implement these features in the processor HoMade
there is a WIM (Write in Instruction Memory) instruction that proposes to change the content
of the program at runtime. This change is non-preemptive operation controlled by the pro-
cessor HoMade. Re�ection as a hardware concept for HoMade processor : this new instruc-
tion is dedicated to changing the program memory at runtime. Of course, it is necessary to
remember that the HoMade processor is following the Harvard architecture with a separa-
ted instruction and data memory (this data memory exists only if a memory IP has been
instantiated during the processor con�guration). The WIM instruction allows writing in the
program memory (for master or slave) a sequence of three instructions aligned on a 64-bit
word. The WIM instruction must be aligned at the beginning of a 64 bits-word in the me-
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mory. Only the interval between addresses 1&00 to 111111111111&00 are accessible by this
re�ection instruction. The WIM instruction contains explicitly the address (the 12 most si-
gni�cant bits of the address). The �rst 48 bits of the targeted 64-bit word represent the 3
instructions to be written in the memory while the fourth instruction is not modi�ed by the
WIM and it should be initialized either by RETURN or HLT according to CALL or SPMD
instruction.

The instruction WIM will be used mainly to support the concept of Virtual Component
(VC). In fact, VC is a high level concept de�ned in order to encompass several functions
which correspond to the different implementations (hardware and software). At runtime, a
decision can be taken to modify the program in the instruction memory and to choose a gi-
ven implementation according to the environmental parameters, the power budget, etc. The
Listing 4.4 gives an example of implementing the re�ection mechanism for the Fibonacci
algorithm in order to swap dynamically between the software and the hardware implemen-
tations introduced previously. In this program, we select a given implementation according
to the switch value chosen by the user. In line 8 of Listing 4.4, we de�ne a VC named �bo_dyn
interpreted as a label of the memory address where the instructions of the selected imple-
mentation ( �bo_soft or �bo_hard ) will be written. In our program, the key word dynamicis
interpreted as a WIM instruction. Hence, the line 38 corresponds to the following instruc-
tions WIM CALL NNNN nnnn that will build a dynamic indirection to the �bo_soft call by
storing CALL NNNN nnnn RETURN in the instruction memory. We note that NNNN nnnn
is the address of the �bo_soft function. In the same way, the line 42 of Listing 4.4 corresponds
to the following instructions WIM �bo RETURN NULL that will build a dynamic indirec-
tion to the �bo_hard (the hardware implementation) call by storing �bo RETURN NULL RE-
TURN. In this way, re�ection is introduced in HoMade to support dynamic recon�guration
"software/hardware" by allowing for example to replace a function call by a realised IP or
vice-versa.

1

2 : f ibo_hard // A hardware implementat ion of the Fibonacci sequence
3 f ibo return null
4 ;
5

6

7 program
8 VC fibo_dyn // A Virtual Component def ini t ion
9 : read

10 $ 1f
11 btnpush
12 switch
13 LedDup
14 ;
15 : f ibo_soft // A software implementat ion of the Fibonacci sequence
16 $ 0
17 $ 1
18 rot
19 $ 3
20 -
21 for
22 dup rot +
23 next
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24 swap
25 drop
26 ;
27

28 : main
29

30 begin
31 read
32 swap
33 $ 1
34 =
35 if // test of the pressed switch
36 // WIM instruct ion for a dynamic indirect ion to the
37 // software implementat ion f ibo_soft
38 [ ' ] f ibo_soft f ibo_dyn dynamic
39 else
40 // WIM instruct ion for a dynamic indirect ion to the
41 // hardware implementat ion fibo3IP
42 [ ' ] f ibo_hard f ibo_dyn dynamic
43 endif
44 t icraz
45 f ibo_dyn // Call for the selected implementat ion
46 t ic
47 7seg
48 $ 1f
49 btn
50 7seg
51 again
52 ;
53 start
54 main
55 endprogram

Listing 4.4 – A dynamic Hardware/Software implementation of the Fibonacci algorithm

4.6.4 Dynamic recon�guration in HoMade

As stated before, the WIM instruction allows to switch dynamically between Software/-
Software, Software/Hardware or Hardware/Hardware con�gurations. When a hardware
implementation is involved we can perform a dynamic instantiation of IPs during the exe-
cution of the algorithm by using the DPR feature on a prede�ned recon�gurable regions as
shown in �gure 4.16, which can improve power and area utilisation ef�ciency. As the instan-
tiated components have a generic interface, they can be plugged in the HoMade processor
easily during the runtime. In HoMade, there is no a speci�c instruction for partial dynamic
recon�guration management ; however, the designer can create his own IP that controls the
dynamic recon�guration of IPs. In Section 4.4, we detailed a parallel recon�guration mo-
del for these IPs speculating the emergence of 3D FPGA technology. Dynamic IP instantia-
tion is handled by an HoMade master in order to recon�gure one or several regions. In fact
through an SPMD instruction, the master can initiate a parallel recon�guration on a set of
active slaves according to the technological features (mainly the number of available ICAPs)
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of the FPGA (3D IC) or the board. To perform this recon�guration, the IP needs the address
of the bitstream that can be popped from the top of the stack. In order to use ef�ciently the
memory, our current work focuses on a runtime relocation mechanism of bitstreams while
targeting regular recon�gurable regions.

4.6.5 Parallelism in HoMade

In the HoMade processor, two instructions SPMD and WAIT can trigger a set of parallel
HoMade slaves with a synchronized end of execution. The active slaves will start the exe-
cution when the signal StartCPU is activated. The master sends 13-bit address to the slaves
through the StartAddress port as shown in �gure 4.17 then it can waits for the end of execu-
tion of the slaves (WAIT instruction).

At the active slaves level, the received address represents the start of the SPMD program.
At the end, the HLT instruction will trigger the activation of the ORTREE signal. When all
the slaves assert their ORTREE signal, the SPMD_done signal is activated to allow the master
continuing its execution as shown in �gure 4.17.

The WIM instruction can modify this code without changing the �nal HLT. We can for
example place a CALL on 3 words followed by a HLT to obtain a SPMD instruction. We can
also place one instruction followed by a HLT to emulate a SIMD mode (at least 4 cycles are
required : SPMD + Instr_SIMD + WAIT + HLT). The combination of the WIM instruction
(for hardware/software) and the SPMD instruction on different subset of slaves leads to the
Multi SPMD execution model. The activity management mechanism selects a subset of the
slaves contributing in the SPMD function. A �ip-�op can be con�gured by an IP from the
master or from a slave. These IPs are available in the basic library of the HoMade. Managing
the communications between the master and slaves depends on the network topology and
are realised also through dedicated IPs. The HoMade library offers a generic solution for a
2D torus grid.

4.7 Discussion

The Summary. In this chapter, we presented our contributions in the �eld of parallel
and dynamic recon�gurable computing targeting high performance and adaptive embed-
ded systems. First, we proposed an ef�cient execution model ( massively parallel dynamically
recon�gurable) that deals with the high requirements of performance, power ef�ciency, and
adaptivity. We detailed the softcore HoMade processor that implements the above require-
ments respectively through the parallelism, the heterogeneity and the re�ection concepts.
Furthermore, we offered the appropriate Domain-Speci�c Language (DSL) to handle these
concepts at the same level. Our processor has the bene�t of ultra-reduced instruction set ad-
vocating an all IP paradigm, in order to favour the reuse and to reduce the silicon area, the
power consumption and the execution/response time while switching between software
and hardware implementations.

At the technological level, we anticipated the emergence of 3D FPGAs and we specu-
lated the partial recon�guration possibilities that these devices will offer for high-density
applications. Indeed, as a 2D technology fact, recon�guring such high density devices in a
linear and sequential way will render the DPR feature of the FPGAs inef�cient, specially for
architectures featuring massively parallel dynamically recon�gurable execution model. To
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FIGURE 4.17 – Example of an HoMade-based parallel architecture

address this challenge, we proposed a partial recon�guration model for next generation 3D
FPGAs well-traced on the execution model in order to recon�gure in parallel a subset of the
computing nodes. To validate our approach, we rely on a multi-FPGA based architecture
that can support parallel communication capabilities with two or more FPGAs at the same
time. We have then measured several performance metrics to show the ef�ciency of such a
parallel and partial recon�guration model.

Limitations. The proposed approach still needs more experiments with real application
scenarios featuring I/O sensors. We already studied a generic data distribution model for
parallel architectures to deal with high video I/O throughputs [12]. However, we need to
plug this distribution system with a massively parallel dynamically recon�gurable architec-
ture in order to evaluate the overall performances. Using a modular FPGA based computing
power along with the PCIe communication channels, with several other features such as
streams and PThreads, we are already able to emulate next generation 3D based recon�gu-
ration model. However, this is just a speculation based on the existing 2.5D based FPGAs.
There is still a long way to explore both in terms of technology and in terms of tools. The next
generation 3D FPGAs should be able to support multiple ICAP sites on different SIC layers
in order to con�gure several layers in parallel. The 3D FPGA ICAP should be able to operate
at much higher frequency than the present generation ICAP. Finally, the tools should be able
to generate partial bitstreams well suited for multiple 3D layers with proper bitstream hea-
ders. All of these improvements in the future will pave the way for convergence of massive
parallelism and dynamic recon�guration in next generation FPGA technology.

The future. A self-adaptive Multi-HoMade architecture will be the future story. Our
�rst step is runtime performance and power monitoring. As, we will implement a wrap-
per around each IP in order to monitor its performance and power consumption estimation
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at runtime. We will introduce dedicated sensors for capturing the local activities affecting
the overall performances of one HoMade. This wrapper will be developed as an IP and inte-
grated in the execution model of HoMade. As a part of the recon�guration model we have
to observe the multi-HoMade behaviour and to adapt the performance on chip to take care
of both massively parallelism (communications and computations) and dynamic recon�gu-
ration. To change the grain of parallelism we envisage to dynamically change the size of the
grid at runtime. Adding a line or column, deleting a line or a column need to organise the
regions of the FPGA in such a way the communication links are prede�ned and the surface
is used ef�ciently for any IPs of any HoMade slaves. As soon as 3D FPGAs become available,
Multi-HoMade could be deployed on 2D Multi-FPGA board taking bene�ts of all previous
results.
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The contributions presented in this document addressed the design of embedded sys-
tems, more generally implemented on homogeneous or heterogeneous multiprocessor or
FPGA-based platforms. First, we emphasised on the usage of the recon�gurable techno-
logy in the manufacturing process of avionic systems via a seamless process considering
the simulation, test, and integration phases. Second, they considered a power-aware design
methodology to lead to the development of parallel and heterogeneous power-ef�cient sys-
tems. Third, we de�ned an ef�cient execution model for next generation massively parallel
dynamically recon�gurable systems through the HoMade processor and we offered the cor-
responding domain-speci�c language. Dynamicity at the software or the hardware level was
the main characteristics of these systems. For this reason, our research focused on the archi-
tectural as well as the application aspects of the system. In the different contributions, we
developed the appropriate tools and prototype environments well-suited to the application
domain. It is worth mentioning that these results have been achieved in collaboration with
colleagues form LAMIH and INRIA Lille (DaRT and after that DreamPal). Now, we are de-
veloping a new design vision about embedded computing taking into account technological
ascendancy and the requirements of nowadays sophisticated applications. Our future pro-
ject will rely on the main obtained results during the last years, especially the low power
design methodology and the massively parallel dynamically recon�gurable execution mo-
del implemented through the HoMade processor.

FIGURE 5.1 – Future directions towards self-adaptive massively parallel embedded systems

5.1 Overview of contributions

Based on the paradigms presented in the introductory chapter, my contributions were
organized into three main steps, corresponding to the three chapters following the introduc-
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tory chapter :
Chapter 2 : presented an FPGA-centric design process for avionic systems. The role of the

FPGA has been rede�ned in the different design steps namely the simulation, the test, and
the integration phases. The main contributions in this �eld cover the usage of heterogeneous
CPU/FPGA architecture, the related dynamic execution model, and the real-time simulation
environment. In this environment, we succeeded to bring intelligence through ef�cient heu-
ristics that focus on the dynamic mapping of new applications at run-time, and the dynamic
recon�guration (software-software or software-hardware) to avoid the real-time constraint
violation. Based on these contributions several results can be exploited while targeting our
future project. First, the design methodology to obtain multitude software and hardware
implementations for a given task or application [5] can be used while developing HoMade
IPs. Second, the developed heuristics for runtime mapping can be adapted and used in a
self-adaptive control mechanism.

Chapter 3 : presented a multilevel power-aware design methodology for homogeneous
or heterogeneous Multiprocessor System-on-Chip (MPSoC). The �rst attractive aspect in our
proposal is the global vision while considering the power consumption of the system. In-
deed, we addressed the global system consumption that includes processors, memories,
recon�gurable circuits, operating system services, etc. The second attractive aspect in the
proposed methodology is the used power modeling approach. Actually, FLPA was used to
develop power models for hardware and software components well-adapted to the system
level design. these power models are integrated in the design �ow in the context of multi-
level design space exploration : to re�ne power and energy estimations, they are used in
conjunction with simulation tools at different abstraction levels. The main advantage of such
approach is to abstract the conventional electronic details linked to the power estimation es-
sentially for software designers. The integration of runtime power management techniques
in the design �ow is another bene�t of our methodology. As a cost-effective software deve-
lopment approach, we relied on Model Driven Engineering (MDE) to abstract the concepts
and to automate the design process of MPSoC while considering the power metric. In the
future, we will rely on this experience on low power design to model the consumption be-
haviour of an HoMade-based architecture which can be useful in the observation mechanism
of a self-adaptive embedded systems. Furthermore, runtime power optimisation techniques
can be coupled with the massively parallel dynamically recon�gurable execution model for
better power ef�ciency.

Chapter 4 : exposed massively parallel dynamically recon�gurable execution model an-
ticipating the arrival of 3D technologies. First, we de�ned an appropriate multi-FPGA plat-
form that supports architectures featuring such execution model. Second, we proposed a
partial recon�guration model for next generation 3D FPGAs well-traced on the execution
model in order to recon�gure in parallel a subset of the computing nodes. Third, we propo-
sed an ef�cient execution model ( massively parallel dynamically recon�gurable) that deals with
the high requirements of performance, power ef�ciency, and adaptivity. We detailed the soft-
core HoMade processor that implements the above requirements respectively through the
parallelism, the heterogeneity and the re�ection concepts. Furthermore, we offered the ap-
propriate Domain-Speci�c Language (DSL) to handle these concepts at the same level. Our
processor has the bene�t of ultra-reduced instruction set advocating an all IP paradigm, in
order to favour the reuse and to reduce the silicon area, the power consumption and the exe-
cution/response time while switching between software and hardware implementations.
The results of this Chapter constitute the fundamentals of self-adaptive massively parallel
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embedded systems in terms of execution and recon�guration models that should be com-
pleted with an ef�cient observation and decision making mechanisms.

5.2 Perspectives : Self-adaptive massively parallel embedded sys-
tems

Today, applications in the �eld of intelligent transportation systems demand more than
performance, power ef�ciency, and adaptivity. In fact, they need to be self-adaptive by the
means of integrating intelligence in such way they are capable of modifying their behaviour
autonomously. In September 2013, we started a new project with Airbus Helicopters that
deals with an autonomous assistance system for helicopters in emergency cases. Recently,
we started also a new collaboration with Induct Technology 35 in the frame of the PhD of
Karim Ali in order to conceive an embedded computing system for autonomous vehicle
navigation. Undoubtedly, the essential feature of systems to recon�gure themselves auto-
nomously at run-time comes with additional complexity in the different design steps. My
contributions during the last years strongly promote the convergence between low power
design and dynamic execution model to reach self-adaptive massively parallel embedded
systems. A self-adaptive Multi-HoMade architecture will be the future story.

Compared to the dynamic execution model presented in our work, the self-adaptive sys-
tem requires a control loop based on a three-step process : 1) observation, handled by a set
of monitors, 2) decision making, which analyses the observed data to adapt and optimise
the system, and 3) action, which tunes the system parameters accordingly. Integrating intel-
ligence into the circuit so that it is capable of modifying its behaviour autonomously is not a
new idea [65]. But today, we have to meet all the conditions related to the technological fact
(such as Dynamic Partial Recon�guration), the execution model, and the programming lan-
guage to build such circuits. In other words, we need to make the fact of self-adaptivity pro-
grammable while targeting massively parallel dynamically recon�gurable architectures. Our
basic idea of all is IP will constitute the guiding principle of research to reach self-adaptive
massively parallel embedded systems. In order to achieve this objective, our future works
will follow the three main steps of self-adaptivity : observation, decision making, and action.

5.2.1 Observation

Self-adaptivity relies on the observation of different parameters such as power, perfor-
mance or quality of services at runtime to analyse the behaviour of the system before de-
cision making. In current circuits, observation is feasible with different kind of sensors like
activity counters, temperature sensor, pre-build monitors [38], etc. Following the HoMade
philosophy, we should implement the monitoring of theses parameters as speci�c IPs that
can be interfaced with the monitored IPs on one side and with the decision making system
on the other side. Hence, they can be activated by the HoMade programming language or
instantiated at the demand of the system at runtime. We can distinguish two types of ob-
servation IPs. First, IPs build around sensors for monitoring the non-functional properties
of the circuit (temperature) or the environmental parameters. Second, IPs describing a gi-
ven law of power consumption or quality of service based on the capture of local activities
affecting the overall performances of one IP, one HoMade, or a set of HoMade slaves.

35. http ://induct-technology.com/
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Designers can add to the architecture just the needed monitors to observe a given para-
meter because these IPs also will consume area and power. As the monitors are considered
as HoMade IPs, they can be added and removed dynamically. The main scienti�c challenge
at this level is to determine the granularity of the monitoring IPs and how they are distri-
buted on the architecture. In fact, a monitoring IP can be used to observe the behaviour of
another IP, an HoMade processor (master or slave), or a cluster of HoMade slaves. Between
a full distributed and a centralised solutions there are other possible alternatives that can
offer a better balance between the complexity of the monitoring system and the granularity
of observation. Our previous work in the �eld of distributed control in recon�gurable FPGA
systems can be adapted to the context of an HoMade-based architecture [38]. In our future
work, a particular attention will be given to the development of power monitors to address
the runtime power ef�ciency issue.

Power modeling : Mapping ef�ciently sophisticated applications using the HoMade ap-
proach needs a knowledge about the power behaviour of the different architecture compo-
nents namely the HoMade core, the IPs, the recon�guration mechanism, the interconnection
network, etc. As stated in the previous chapter, a multitude of implementations are pos-
sible between software and hardware while targeting a given functionality which can lead
to different trade-offs between power and performance. Designing power ef�cient circuit
means delivering the required performance with the minimum power budget. Hence, it be-
comes necessary to rely on a system level power modeling approach in order to master
the consumption of an HoMade-based architecture. In Chapter 3, we already presented the
Functional Level Power Analysis (FLPA) that can be used to evaluate the main functional
blocks of our architecture. However, there are several scienti�c challenges that need to be
resolved. First, we have to deal with the heterogeneity issue such as IPs of different gra-
nularities, static and dynamic recon�gurable regions, clustered architecture with different
sizes (for the multi-SPMD), etc. Second, the power model should estimates the dynamic,
short-circuit, and leakage power consumed by FPGAs. Third, the method for annotating the
main activities that consume power should be de�ned. Fourth, we have to unify the power
models plug-in in the HoMade architecture and how they can be interfaced with other com-
ponents for decision making as it will be discussed later on. Finally, the model should be
generic in that it can estimate the power for a wide variety of FPGA architectures. The deve-
loped power models will be used as a main part of the self-adaptivity mechanism in order
to investigate at run time the impact of various architectural parameters.

5.2.2 Decision making

The objective of this part is to bring intelligence to the system so it can make ef�cient de-
cisions, which strikes the balance between the power consumption, performance and area.
The main challenge consists in selecting the appropriate implementation of each task (soft-
ware, hardware, parallel, dynamic, etc.) and mapping the different tasks on the available
resources (static and dynamic regions). We can distinguish the initial static mapping and the
dynamic mapping at runtime. At this level, we can use the mathematical modeling and the
heuristics developed in Chapter 2. However, we have to extend our previous work in order
to resolve a multi-objective optimisation problem taking into account power, performance,
and area. The decision making will be implemented in our architecture as IPs. As we are
targeting a clustered architecture (Multi-SPMD), the recon�guration decisions can be distri-
buted respecting the organisation of the observation IPs. In order to guarantee that the local
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decisions made by the distributed mechanism respect the global system constraints/objec-
tives, a coordinator may be used. This distributed structure has advantages at the design and
implementation levels. At the design level, handling local and global optimisation problems
by separate IPs decomposes design complexity and facilitates the reuse of the observation,
the decision making and the coordinator IPs. At the implementation level, the advantages of
the distributed over the centralized solution are : 1) a higher parallelism of the control me-
chanism (monitoring, decision-making and action) and thus a higher control performance,
2) shorter connections used to collect monitoring data and thus less power consumption
related to connections, 3) easier adaptation to large systems such as multi-FPGA systems,
where the communication cost of centralized control solution may have a signi�cant effect
on the control performance. The main challenge at the decision making level is to charac-
terise the available hardware resources in order to satisfy the application requirements. For
this reason we will call for an abstract recon�gurable hardware model as a leverage of low
level technical details.

Abstract recon�gurable hardware model : Recon�gurable computing has the bene�ts to
offer a computing performance and power ef�ciency compared to processor based systems.
However, based on our experience on FPGA development, we can con�rm the low design
productivity especially while handling dynamic recon�guration for parallel recon�gurable
architectures. Indeed, partitioning the FPGA into static and dynamic regions, storing the
bitstreams, conceiving the recon�guration controller, etc. are tedious tasks. It is necessary
to abstract implementation details in order to exploit the key advantages of recon�gurable
hardware and to facilitate the design of self-adaptive massively parallel embedded systems.
In order to solve this challenge, we propose to develop an abstract recon�gurable hardware
model that can hide low level details such as spatial placement, hardware structure and
device capacity. This abstract model should ensure the matching between the system requi-
rements in terms of logic, recon�guration, monitoring, etc. on one side and the available
resources in a given FPGA on the other side.

As a �rst step, we need to organise the FPGAs in the form of regular static and dynamic
regions with pre-de�ned communication links useful to connect a recon�gurable region to
an HoMade stack, to plug a new HoMade to the network of slaves, or to add a new line or
column to the grid network. Since the hardware synthesis step takes signi�cant time, it is
very important to know in advance before the static or the dynamic recon�guration process
that the solution is �rst of all feasible in terms of hardware resources. Hence, the organi-
sation of the FPGA chip is a very important task and can help to reduce the development
time. Furthermore, this can help to characterise accurately the main architectural blocks in
terms of power consumption and performance according to the area of the region, the fre-
quency, etc. The different regions can be identi�ed using the physical address on the FPGA.
It is necessary to use a matching mechanism between the recon�guration bitstreams and the
recon�gurable regions respecting the size of each region. To do so, we can rely on indirection
tables as well as bitstream relocation mechanism. In the same way, a matching mechanism
should be de�ned between the HoMade IPs identi�ed with ID and the bitstreams. Further-
more, the knowledge of the available ICAPs are very useful for the parallel recon�guration
model as described in Chapter 4.
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5.2.3 Action :

At the action level, we already showed that it is possible to tune the voltage/frequency
pairs, to migrate the code of a given task from software to hardware or vice-versa, to re-
con�gure at runtime a dynamic region or even several regions in parallel, etc. Given the
increasing complexity of embedded systems, our approach is to consider that these actions
are done through IPs that are activated by the execution model. Several action scenarios are
possible : it is possible to change the grain of parallelism, we plan to dynamically change the
size of the grid at runtime. Adding a line or column, deleting a line or a column needs to
organise the regions of the FPGA in such a way the communication links are prede�ned and
the surface is used ef�ciently for any IPs of any HoMade slaves.

Optimising embedded systems for low power consumption pushes developers to �nd a
balance between performance and power usage at runtime. However, achieving this balance
requires power models and advanced hardware power management techniques coupled
with the execution model. Conventional software and hardware power optimisation tech-
niques such as Dynamic Voltage and Frequency Scaling (DVFS) or clock gating can be used
in an HoMade-based architecture. For instance, the clock of non-used dynamic regions can
be disabled for reducing dynamic power dissipation. However, this needs a deep knowledge
of the structure of the FPGA and its different clock domains. In line with the HoMade phi-
losophy, the optimisation techniques can be implemented as IPs and considered as a part of
the execution model. Hence, they can be handled by the programming language of HoMade
at the same level with parallelism and dynamicity. We can imagine that the self-adaptivity
mechanism can take the decision of activating a power optimisation IP regarding the avai-
lable power budget on the battery or increasing the frequency with the help of a DVFS IP in
order to achieve a certain performance regardless the power metric. As soon as 3D FPGAs
become available, we will continue the deployment of HoMade-based self-adaptive embed-
ded systems on 2D Multi-FPGA board following the above future directions.
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Conference on Industrial Engineering and Systems Management (IEEE IESM 2013), I4e2,
Rabat, Morocco, October 2013.

C10. SOUISSI O., BEN ATITALLAH R., DUVIVIER D., ARTIBA A. Optimization Of
Matching and Scheduling On Heterogeneous CPU/FPGA Architectures. 7th IFAC Confe-
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rence on Manufacturing Modelling, Management, and Control, Saint Petersburg, Russia,
June 2013.

C11. AFONSO G., BAKLOUTI Z., DUVIVIER D., BEN ATITALLAH R., BILLAUER E.
HETEROGENEOUS CPU/FPGA RECONFIGURABLE COMPUTING SYSTEM FOR AVIO-
NIC TEST APPLICATION. Recon�gurable Architectures Workshop (RAW 2013), Boston,
USA, May 2013.

C12.AFONSO G., DAMIANI N., BELANGER N., BEN ATITALLAH R., RUBIO M. Hy-
brid and multicore optimized architectures for test and simulation systems. The 6th Inter-
national ICST Conference on Simulation Tools and Techniques (SIMUTools 2013), Cannes,
French Riviera, March 2013.

C13. VISWANATHAN V., BEN ATITALLAH R., NAKACHE B., NAKACHE M., DEKEY-
SER J-L. Dynamic recon�guration of modular I/O IP cores for avionic applications. Inter-
national Conference on ReConFigurable Computing and FPGAs (ReConFig 2012), Cancun,
Mexico, December 2012.

C14. SENN E., BELLEUDY C., CHILLET D., FRITSCH A., BEN ATITALLAH R., ZEN-
DRA O. "Open-People : Open Power and Energy Optimization PLatform and Estimator".
15th EUROMICRO Conference on Digital System Design (DSD'2012), Cesme, Izmir, Turkey,
September 2012.

C15.SOUISSI O., BEN ATITALLAH R., ARTIBA A., ELMAGHRABY S. Optimization Of
Run-time Mapping On Heterogeneous CPU/FPGA Architectures. 9th International Confe-
rence on Modeling, Optimization and SIMulation (MOSIM 2012), Bordeaux, France, June
2012.

C16. RETHINAGIRI S-K., BEN ATITALLAH R., SENN E., DEKEYSER J-L., NIAR S. An
Ef�cient Power Estimation Methodology for Complex RISC Processor based Embedded Plat-
forms. 22nd Great Lakes Symposium on VLSI (GLSVLSI 2012), Salt Lake City, Utah, USA,
May 2012.

C17. MHEDBI I., BEN ATITALLAH R., JEMAI A. Dynamic Slack Reclamation Strategy
for Multiprocessor Systems. The 16 IEEE Mediterranean Electrotechnical Conference, Ham-
mamet, Tunisia, March 2012.

C18. AFONSO G., BEN ATITALLAH R., DEKEYSER J-L. Software Implementation vs.
Hardware Implementation : The Avionic Test System Case-Study. Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2012), London, United King-
dom, March 2012.

C19.RETHINAGIRI S-K., BEN ATITALLAH R., SENN E., NIAR S., DEKEYSER J-L. Fast
and Accurate Hybrid Power Estimation Methodology for Embedded Systems. Conference
on Design & Architectures for Signal & Image Processing, Tampere FL, November 2011.

C20. RETHINAGIRI S-K., BEN ATITALLAH R., DEKEYSER J-L. A System Level Power
Consumption Estimation for MPSoC. International Symposium on System-on-Chip 2011
(SOC 2011), Tampere, Finland, October 2011.

C21.RETHINAGIRI S-K., BEN ATITALLAH R., NIAR S., SENN E., DEKEYSER J-L. Hy-
brid System Level Power Consumption Estimation for FPGA-Based MPSoC. International
Conference on Computer Design (ICCD'11), September 2011.

C22. AFONSO G., BEN ATITALLAH R., LOYER A., DEKEYSER J-L., BELANGER N.,
RUBIO M. A prototyping environment for high performance recon�gurable computing. 6th
International Workshop on Recon�gurable and Communication-centric Systems-on-Chip,
Montpellier, France, June 2011.
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C23. AFONSO G., BEN ATITALLAH R., BELANGER N., RUBIO M., STILKERICH S.,
DEKEYSER J-L. Toward Generic and Adaptive Avionic Test Systems. NASA/ESA Confe-
rence on Adaptive Hardware and Systems, San Diego, California, USA, June 2011.

C24.HARB N., NIAR S., SAGHIR M., ELHILLALI Y., BEN ATITALLAH R. Dynamically
Recon�gurable Architecture for a Driver Assistant System. IEEE Symposium on Application
Speci�c Processors (SASP 2011), San Diego, California, USA, June 2011.

C25. LANGE T., HARB N., NIAR S., LIU H., BEN ATITALLAH R. (2010). An Impro-
ved Automotive Multiple Target Tracking System Design. 13th EUROMICRO Conference
on Digital System Design DSD'2010, Lille France, September 2010.

C26. AFONSO G., BEN ATITALLAH R., BELANGER N., RUBIO M., DEKEYSER J-L.
An Ef�cient Design Methodology for Hybrid Avionic Test Systems. 15th IEEE Internatio-
nal Conference on Emerging Techonologies and Factory Automation, Bilbao, Spain, January
2010.

C27.CHTIOUI H., BEN ATITALLAH R., NIAR S., DEKEYSER J-L., ABID M. A Dynamic
Hybrid Cache Coherency Protocol for Shared-Memory MPSoC. 12th EUROMICRO Confe-
rence on Digital System Design, University Of Patras, Greece, August 2009.

C28.DEKEYSER J-L., GAMATIE A., ETIEN A., BEN ATITALLAH R. Using the UML Pro-
�le for MARTE to MPSOC Co-design. First International Conference on Embedded Systems
& Critical Applications, Tunisia, May 2008.

C29. BEN ATITALLAH R., NIAR S., DEKEYSER J-L. MPSoC Power Estimation Frame-
work at Transaction Level Modeling. In The 19th IEEE International Conference on Microe-
lectronics (ICM 2007), Cairo, Egypt, December 2007.

C30. BEN ATITALLAH R., PIEL E., NIAR S., MARQUET P., DEKEYSER J-L. Multilevel
MPSoC simulation using an MDE approach". In IEEE International SoC Conference (SoCC
2007), Hsinchu, Taiwan, September 2007.

C31. BEN ATITALLAH R., NIAR S., MEFTALI S., DEKEYSER J-L. An MPSoC perfor-
mance estimation framework using transaction level modeling. In The 13th IEEE Internatio-
nal Conference on Embedded and Real-Time Computing Systems and Applications (RTC-
SA'07), Daegu, Korea, August 2007.

C32. BEN ATITALLAH R., BONDE L., NIAR S., MEFTALI S., DEKEYSER J-L. Dekeyser.
Multilevel MPSoC performance evaluation using MDE approach. In International Sympo-
sium on System-on-Chip 2006 (SOC 2006), Tampere, Finland, November 2006.

C33.BEN ATITALLAH R., NIAR S., GREINER A., MEFTALI S., DEKEYSER J-L. Estima-
ting energy consumption for an MPSoC architectural exploration. In Architecture of Com-
puting Systems (ARCS'06), Frankfurt, Germany, March 2006.

Conférences et workshops nationaux avec actes et comité de lecture (...)

W1. Rethinagiri S.K., Palomar O., BEN ATITALLAH R. , Unsal O., Cristal A., Niar S.
System-level power estimation tool for embedded processor based platforms. 6th Workshop
on Rapid Simulation and Performance Evaluation : Methods and Tools (RAPIDO 2014) in
conjuction with Hipeac conference 2014, January, Vienna, Austria.

W2. BOUAIN M., BEN ATITALLAH R. , MASMOUDI N., Dekeyser J-L. Design Space
Exploration on Heterogeneous SoC : The H.264 encoder case-study. GdR SOC-SIP, Lyon,
France, June 2013.

W3. SENN E., Belleudy C., Chillet D., Fritsch A., BEN ATITALLAH R. , Zendra, O. Open-
PEOPLE : Open Power and Energy Optimization PLatform and Estimator. 14th Sophia-
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Antipolis Microelectronics Forum SAME 2011, Nice, France, December 2011.
W4. AFONSO G., BEN ATITALLAH R. , DEKEYSER J-L. A Design Environment for Re-

con�gurable Computing Systems. GdR SOC-SIP, Lyon, France, June 2011.
W5. RETHINAGIRI S-K., BEN ATITALLAH R. , NIAR S., SENN E., DEKEYSER J-L. An

Effective Approach for Power Consumption Modeling of Complex Processor. GdR SOC-SIP,
Lyon, France, June 2011.

W6. LIU H., NIAR S., BEN ATITALLAH R. An ef�cient scalable MPSoC architecture
for dynamic task distribution. PROGram for Research on Embedded Systems & Software,
STW.ICT, Veldhoven, Nederland, November 2010.

W7. TRABELSI C., MEFTALI S.,BEN ATITALLAH R. , JEMAI A., DEKEYSER J-L., NIAR
S. An MDE Approach for Energy Consumption Estimation in MPSoC Design. 2nd Workshop
on Rapid Simulation and Performance Evaluation : Methods and Tools (RAPIDO 2010) in
conjuction with Hipeac conference 2010, January, Pisa, Italy.

Rapport de contrat de recherche (1)

R1. ABDALLAH A., GAMATIE A., BEN ATITALLAH R. , DEKEYSER J-L. Correct and
Energy-Ef�cient Design of a Multimedia Application on SoCs. INRIA Research Report n.
7715, August 2011.

A.3.3 Encadrement doctoral et scienti�que :

Thèses de doctorat (2 thèses soutenues + 5 en cours)

Thèses soutenues
1. Santhosh Kumar Rethinagiri , thèse soutenue le 14 mars 2013, « Une approche système

pour l'estimation de la consommation de puissance des plateformes MPSoC », Université de
Valenciennes et du Hainaut Cambrésis.

– Date de début : 01/12/2009 Date de �n : 14/03/2013
– Encadrement (%) : 50%
– Nom et % des Co-directeurs : Jean-Luc Dekeyser 25%, Smail Niar 25%
2. George Afonso , thèse soutenue le 02 juillet 2013, « Vers une nouvelle génération de

systèmes de test et de simulation avionique dynamiquement recon�gurables », Université
de Lille1.

– Date de début : 01/07/2010 Date de �n : 02/07/2013
– Encadrement (%) : 50%
– Nom et % des Co-directeurs : Jean-Luc Dekeyser 50%
Thèses en cours
3. Omar Souissi , « Système embarqué à haute performance pour le calcul de la trajectoire

3D », Université de Valenciennes et du Hainaut Cambrésis.
– Date de début : 01/10/2011 Date de �n : 30/09/2014
– Encadrement (%) : 35%
– Nom et % des Co-directeurs : Abdelhakim Artiba 35%, David Duvivier 30%
4. Venkatasubramanian Viswanathan , « Modèle de recon�guration parallèle pour des

architectures Multi-FPGA», Université de Valenciennes et du Hainaut Cambrésis.
– Date de début : 01/02/2012 Date de �n : 31/01/2015
– Encadrement (%) : 50%
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– Nom et % des Co-directeurs : Jean-Luc Dekeyser 50%
5. Konstanca Nikolajevic , « Système décisionnel embarqué pour le pilotage d'un hé-

licoptère en situation d'autonomie d'urgence », Université de Valenciennes et du Hainaut
Cambrésis.

– Date de début : 01/11/2012 Date de �n : 31/10/2015
– Encadrement (%) : 20%
– Nom et % des Co-directeurs : Abdelhakim Artiba 30%, David Duvivier 50%
6. Karim Mohamed Ali , « Système recon�gurable à haute performance pour la sécurité

du transport ferroviaire », Université de Valenciennes et du Hainaut Cambrésis.
– Date de début : 01/10/2013 Date de �n : 30/09/2016
– Encadrement (%) : 50%
– Nom et % des Co-directeurs : Jean-Luc Dekeyser 25%, Said Hana� 25%
7. Wissem Chouchene, « Modèle de recon�guration pour les FPGA 3D », Université de

Lille1.
– Date de début : 01/10/2013 Date de �n : 30/09/2016
– Encadrement (%) : 50%
– Nom et % des Co-directeurs : Jean-Luc Dekeyser 50%

Master recherche (3)

1. Zeineb Baklouti , « Supervision temps réel des systèmes hétérogènes CPU/FPGA »,
Université de Valenciennes et du Hainaut Cambrésis.

– Date de début : 01/04/2012 Date de �n : 31/12/2012
– Encadrement (%) : 50%
– Nom et % des Co-directeurs : David Duvivier 50%
2. Yomna Ben Jmaa, « Gestion dynamique tension/fréquence pour les MPSoC en vue

de l'optimisation de la consommation d'énergie», Université de Valenciennes et du Hainaut
Cambrésis.

– Date de début : 01/04/2012 Date de �n : 30/09/2012
– Encadrement (%) : 100%
3. Imen Mhedbi , « Exploration de politiques de gestion dynamique tension/fréquence

pour les MPSoC », Université de Valenciennes et du Hainaut Cambrésis.
– Date de début : 01/03/2011 Date de �n : 30/09/2011
– Encadrement (%) : 100%

A.3.4 Diffusion scienti�que :

Séminaires et Tutoriaux :

– Rabie Ben Atitallah and Jean-Luc Dekeyser. "Un modèle de fonctionnement SPMD à
base d'IPS". Ecole d'hiver Francophone sur les Technologies de Conception des Sys-
tèmes embarqués Hétérogènes (FETCH 2012), Janvier Alpe D'Huez, France.

– Rabie Ben ATITALLAH, "Model homogenization for power estimation and design ex-
ploration". International Workshop on Power and Timing Modeling, Optimization and
Simulation (PATMOS 2011), Tutorial session, septembre 2011, Madrid, Spain.
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Distinction :

Best paper award : à la 29th IEEE International Conference on Computer Design (ICCD
2011) pour le papier RETHINAGIRI S-K., BEN ATITALLAH R. , NIAR S., SENN E., DEKEY-
SER J-L. Hybrid System Level Power Consumption Estimation for FPGA-Based MPSoC,
September 2011.

Brevet :

Diffusion de l'article « Eurocopter a déposé un brevet issu de recherches de l'uni-
versité de Valenciennes » dans le quotidien La voix du Nord autour du brevet [B1].
Cette innovation a été présentée dans le quotidien Voix du nord le 06/03/2011 :
http://www.lavoixdunord.fr/Locales/Valenciennes/actualite/Valenciennes/2011/
03/06/article_eurocopter-a-depose-un-brevet-issu-de-re.shtml

Démonstrations :

D1. Démonstration de la plateforme Open Power and Energy Optimization Platform and
Estimator (Open-PEOPLE) à Design, Automation & Test in Europe (DATE 2011), University
Booth, Grenoble, France, March 2011.

D2. Démonstration de la plateforme Open-PEOPLE à 14th Sophia-Antipolis Microelec-
tronics Forum SAME 2011, Nice, France, December, 2011.

Collaborations académiques et industrielles avec diffusions scienti�ques :

Académiques :
– LIFL, Université de Lille 1 : encadrements, publications et organisation d'événements

scienti�ques dans le cadre des projets ANR OpenPeople, CIFRE EADS IW, CIFRE NO-
LAM Embedded Systems

– INRIA équipes CAIRN et TRIO : tutoriaux et publications dans le cadre du projet ANR
OpenPeople

– LEAT, Université de Nice Sophia-Antipolis : encadrement de master recherche et pu-
blication dans le cadre du projet ANR OpenPeople

– LAB-STICC, Université de Bretagne-Sud : tutoriaux et publications dans le cadre du
projet ANR OpenPeople

– IEMN, UVHC : publication dans le cadre du projet ANR PRIMA-CARE
– L'Université Technologique de Delft (TU Delft) : publication dans le cadre de collabo-

ration avec le laboratoire Software Engineering Research Group.
– North Carolina State University : encadrement et publication, �nancement UVHC

(professeur invité)
– New York University : publication, �nancement UVHC (professeur invité)
– Ecole Nationale d'Ingénieurs de Sfax (ENIS) : encadrement et publications dans le

cadre du projet STIC INRIA
– Institut National des Sciences Appliquées et de Technologie (INSAT), Tunis : encadre-

ment et publications dans le cadre du projet INRIA Euromed 3+3.
Industrielles :

– EADS IW (Airbus Group) (France et Allemagne) : encadrement, brevet et publications
dans le cadre de la CIFRE EADS IW/UVHC/INRIA
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– Airbus Helicopters : encadrement, publications et brevet dans le cadre des contrats de
collaboration UVHC/Eurocopter

– Nolam Embedded Systems : encadrement et publications dans le cadre de la CIFRE
UVHC/Nolam

– Thales Communication : publications et tutoriaux dans le cadre du projet ANR Open-
People

Transfert technologique :

Projet de transfert technologique à travers la composante VALUTEC SA (Filiale de l'Uni-
versité de Valenciennes et du Hainaut Cambrésis) pour la réalisation d'un environnement
d'exploration de l'espace de solutions pour la génération d'un plan de vol optimal (DTA-
NAV). Ce projet est �nancé par Airbus Helicopters pour une durée de huit mois à partir de
mars 2014. Il vise la diffusion d'un outil logiciel développé au sein du laboratoire dans le
cadre de projets de recherche avec un niveau de maturité élevé.

A.3.5 Responsabilités scienti�ques :

Activités scienti�ques :

– Membre associé à l'équipe DaRT de l'INRIA Lille Nord Europe depuis octobre 2008
jusqu'à décembre 2012

– Participation au montage de la nouvelle équipe DreamPal de l'INRIA Lille Nord Eu-
rope

– Membre associé à la nouvelle équipe DreamPal de l'INRIA Lille Nord Europe depuis
janvier 2013

– Membre du comité de pilotage du Groupe de Recherche (GdR) ASR (Architecture,
Système et Réseau), responsable de l'action transverse autour de l'économie d'énergie
dans les systèmes informatique

– Contributeur aux activités de recherche de l'IRT (Institut de Recherche Technologique)
Railenium

– Membre du réseau d'excellence européen HiPEAC (High Performance and Embedded
Architecture and Compilation) depuis 2007

– Membre du GdR SoC-SIP

Organisation de congrès

– Membre du comité d'organisation des journées francophones Green Days@Rennes (1-
2 juillet 2014). Ces journées francophones sont organisées dans le cadre de l'action
d'envergure Inria Hemera et de l'action transversale Energie et le Pôle Système du
GDR ASR.

– Membre du comité d'organisation du workshop RAPIDO 2010/2011 en conjonction
avec la conférence HiPEAC.

– Membre du comité d'organisation de Euromicro DSD et SEAA 2010 organisées à Lille
en septembre 2010.
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Responsabilité de contrats industriels ou publics

– Montage et pilotage du projet ANR-ARPEGE OpenPeople (2008-2012) au niveau de
l'INRIA Lille Nord Europe (thèse Santhosh Kumar Rethinagiri) (Financement : 186
K  )

– Montage et pilotage de la CIFRE EADS IW/UVHC/INRIA (2010-2013) au niveau de
l'Université de Valenciennes et du Hainaut Cambrésis (thèse George Afonso) (Finan-
cement : 30 K  )

– Montage et pilotage de la CIFRE UVHC/Nolam Embedded Systems (2011-2015) au
niveau de l'Université de Valenciennes et du Hainaut Cambrésis (thèse Venkatasubra-
manian Viswanathan) (Financement : 10 K  )

– Montage et pilotage du contrat de collaboration UVHC/Airbus Helicopters (2011-
2015) au niveau de l'Université de Valenciennes et du Hainaut Cambrésis (thèse Omar
Souissi) (Financement : 70 K  )

– Montage de la CIFRE UVHC/Airbus Helicopters (2012-2015) (thèse Konstanca Niko-
lajevic) (Financement : 70 K  )

– Montage et pilotage du contrat post-doctorant (Abdessamad Ait El Kadi) dans le cadre
de l'IRT Railenium (2013-2014) (Financement : 110 K  )

– Montage et pilotage du projet de transfert technologique VALUTEC-UVHC/Airbus
Helicopters (2014) (Financement : 28 K  )

Comités de programme de conférences :

– The 6th IEEE International Workshop on Multicore and Multithreaded Architectures
and Algorithms (M2A2) 2013 et 2014.

– Conference on Design & Architectures for Signal & Image Processing DASIP 2011 et
2012

– Workshop on Rapid Simulation and Performance Evaluation : Methods and Tools RA-
PIDO 2011, Crete, Greece.

Relecture de papiers de revues et de conférences :

– ACM Transactions on Design Automation of Electronic Systems, Journal of Real-Time
Image Processing

– Conférences : DSD 2009/2010 ; ReCoSOC 2009/2010/2011 ; SoC 2009/2010/2011 ; DA-
SIP 2011/2012 ; M2A2 2013/2014.

Evaluation de projet international :

– Evaluation d'un projet international « Flight Trajectory Optimization » pour le Conseil
de recherches en sciences naturelles et en génie du Canada, Mai 2013.
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