A. Priori-error-estimates and .. , 57 2.6.1 Preliminaries and main result, p.60

C. Formulation-in-the-non-linear, 67 2.7.1 The non-linear coupled problem, p.68

.. Numerical, 69 2.8.1 Convergence study in a two-dimensional test-case 70 2.8.2 Pressure wave propagation in a straight tube, 72 2.8.3 Blood ow in an abdominal aortic, p.78

C. The-non-linear, 103 3.5.1 The non-linear coupled problem, p.104

.. Numerical, 105 3.6.1 Numerical study in a two-dimensional test-case 105 3.6.2 Pressure wave propagation in a straight tube, p.115

M. A. Fernández and J. Mullaert, Convergence analysis of the generalized Robin-Neuman explicit coupling schemes The results presented in this chapter lead to the manuscript Convergence analysis for a class of explicit coupling schemes in incompressible uid-structure interaction

M. Astorino, F. Chouly, and M. A. Fernández, Robin based semi-implicit coupling in uid-structure interaction: Stability analysis and numerics

M. Astorino, J. Gerbeau, O. Pantz, and K. Traoré, Fluid???structure interaction and multi-body contact: Application to aortic valves, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.45-46, pp.45-4636033612, 2009.
DOI : 10.1016/j.cma.2008.09.012

URL : https://hal.archives-ouvertes.fr/inria-00542238

S. Badia, F. Nobile, and C. Vergara, Fluid???structure partitioned procedures based on Robin transmission conditions, Journal of Computational Physics, vol.227, issue.14, p.70277051, 2008.
DOI : 10.1016/j.jcp.2008.04.006

S. Badia, A. Quaini, and A. Quarteroni, Modular vs. non-modular preconditioners for uid-structure systems with large added-mass eect, Comput. Methods Appl. Mech. Engrg, vol.197, pp.49-5042164232, 2008.

S. Badia, A. Quaini, and A. Quarteroni, Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction, SIAM Journal on Scientific Computing, vol.30, issue.4, pp.1778-1805, 2008.
DOI : 10.1137/070680497

H. Baek and G. E. Karniadakis, A convergence study of a new partitioned uidstructure interaction algorithm based on ctitious mass and damping, J. Comput. Phys, vol.231, issue.2, p.629652, 2012.

Y. Bazilevs, V. M. Calo, T. J. Hughes, and Y. Zhang, Isogeometric uidstructure interaction: theory, algorithms, and computations, Comput. Mech, vol.43, issue.1, p.337, 2008.

R. Becker and M. Braack, A nite element pressure gradient stabilization for the Stokes equations based on local projections, Calcolo, vol.38, issue.4, p.173199, 2001.

C. Bertoglio, P. Moireau, and J. Gerbeau, Sequential parameter estimation for uidstructure problems: application to hemodynamics, Int. J. Numer. Methods Biomed. Eng, vol.28, issue.4, p.434455, 2012.

M. Bischo, K. Bletzinger, W. A. Wall, and E. Ramm, Models and Finite Elements for Thin-Walled Structures, chapter 3, 2004.

D. Bo, L. Gastaldi, and L. Heltai, Numerical stability of the nite element immersed boundary method, Math. Models Methods Appl. Sci, vol.17, issue.10, pp.1479-1505, 2007.

S. C. Brenner and L. R. Scott, The mathematical theory of nite element methods, Texts in Applied Mathematics, vol.15, 2008.

F. Brezzi and J. Pitkäranta, On the stabilization of nite element approximations of the Stokes equations, Notes Numer. Fluid Mech, vol.10, p.1119, 1984.

M. Buka£, S. ƒani¢, R. Glowinski, B. Muha, and A. Quaini, A modular, operatorsplitting scheme for uid-structure interaction problems with thick structures

M. Buka£, S. ƒani¢, R. Glowinski, J. Tamba£a, and A. Quaini, Fluid-structure interaction in blood ow capturing non-zero longitudinal structure displacement

E. Burman and M. A. Fernández, Stabilized explicit coupling for uid-structure interaction using Nitsche's method, C. R. Math. Acad. Sci. Paris, issue.8, pp.345467-472, 2007.

E. Burman and M. A. Fernández, Galerkin nite element methods with symmetric pressure stabilization for the transient Stokes equations: stability and convergence analysis, SIAM J. Numer. Anal, vol.47, issue.1, p.409439, 2008.

E. Burman and M. A. Fernández, Stabilization of explicit coupling in uidstructure interaction involving uid incompressibility, Comput. Methods Appl. Mech. Engrg, vol.198, pp.5-8766784, 2009.

E. Burman and M. A. Fernández, An untted Nitsche method for incompressible uid-structure interaction using overlapping meshes, Comput. Methods Appl. Mech. Engrg, 2014.

E. Burman and M. A. Fernández, Explicit strategies for incompressible uidstructure interaction problems: Nitsche type mortaring versus Robin-Robin coupling, Internat. J. Numer. Methods Engrg, vol.97, issue.10, p.739758, 2014.
DOI : 10.1002/nme.4607

URL : https://hal.inria.fr/hal-00819948/file/RR-8296.pdf

E. Burman and M. A. Fernández, Explicit strategies for incompressible uidstructure interaction problems: Nitsche type mortaring versus RobinRobin coupling, Int. J. Num. Meth. Engrg, vol.97, issue.10, p.739758, 2014.

E. Burman, M. A. Fernández, and P. Hansbo, Continuous interior penalty nite element method for Oseen's equations, SIAM J. Numer. Anal, vol.44, issue.3, p.12481274, 2006.

E. Burman and P. Hansbo, Edge stabilization for the generalized Stokes problem: A continuous interior penalty method, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.19-22, pp.19-2223932410, 2006.
DOI : 10.1016/j.cma.2005.05.009

S. ƒani¢, J. Tamba£a, G. Guidoboni, A. Mikeli¢, C. J. Hartley et al., Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood ow, SIAM J. Appl. Math, vol.67, issue.1, p.164193, 2006.

P. Causin, J. Gerbeau, and F. Nobile, Added-mass eect in the design of partitioned algorithms for uid-structure problems, Comput. Methods Appl. Mech. Engrg, vol.194, issue.4244, p.45064527, 2005.

D. Chapelle and K. J. Bathe, The Finite Element Analysis of Shells -Fundamentals, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00839738

D. Chapelle and A. Ferent, MODELING OF THE INCLUSION OF A REINFORCING SHEET WITHIN A 3D MEDIUM, Mathematical Models and Methods in Applied Sciences, vol.13, issue.04, p.573595, 2003.
DOI : 10.1142/S0218202503002635

URL : https://hal.archives-ouvertes.fr/hal-00839241

R. Codina and J. Blasco, A nite element formulation for the Stokes problem allowing equal velocity-pressure interpolation, Comput. Methods Appl. Mech. Engrg, vol.143, pp.3-4373391, 1997.

G. Cottet, E. Maitre, and T. Milcent, Eulerian formulation and level set models for incompressible uid-structure interaction, M2AN Math. Model. Numer. Anal, vol.42, issue.3, p.471492, 2008.

P. Crosetto, S. Deparis, G. Fourestey, and A. Quarteroni, Parallel algorithms for uid-structure interaction problems in haemodynamics, SIAM J. Sci. Comput, vol.33, issue.4, p.15981622, 2011.

J. Degroote, On the similarity between Dirichlet-Neumann with interface articial compressibility and Robin-Neumann schemes for the solution of uidstructure interaction problems, J. Comput. Phys, vol.230, issue.17, p.63996403, 2011.

J. Degroote, R. Haelterman, S. Annerel, P. Bruggeman, and J. Vierendeels, Performance of partitioned procedures in uid-structure interaction, Comp. & Struct, vol.88, issue.78, p.446457, 2010.

J. Degroote, A. Swillens, P. Bruggeman, R. Haelterman, P. Segers et al., Simulation of uid-structure interaction with the interface articial compressibility method

P. Degroote, J. Bruggeman, R. Haelterman, and J. Vierendeels, Stability of a coupling technique for partitioned solvers in FSI applications, Computers & Structures, vol.86, issue.23-24, pp.23-2422242234, 2008.
DOI : 10.1016/j.compstruc.2008.05.005

S. Deparis, M. Discacciati, G. Fourestey, and A. Quarteroni, Fluid???structure algorithms based on Steklov???Poincar?? operators, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.41-43, pp.41-4357975812, 2006.
DOI : 10.1016/j.cma.2005.09.029

W. Dettmer and D. Peri¢, A computational framework for uid-rigid body interaction: nite element formulation and applications, Comput. Methods Appl. Mech. Engrg, vol.195, pp.13-1616331666, 2006.

V. Domínguez and F. J. Sayas, Stability of discrete liftings, Comptes Rendus Mathematique, vol.337, issue.12, p.337805808, 2003.
DOI : 10.1016/j.crma.2003.10.025

Q. Du, M. D. Gunzburger, L. S. Hou, and J. Lee, Analysis of a linear uidstructure interaction problem, Discrete Contin. Dyn. Syst, vol.9, issue.3, p.633650, 2003.

A. Ern and J. Guermond, Theory and practice of nite elements, 2004.

M. Eswaran, U. K. Saha, and D. Maity, Eect of baes on a partially lled cubic tank: Numerical simulation and experimental validation, Computers & Structures, vol.87, issue.34, 2009.

C. Farhat, K. Van-der-zee, and P. Geuzaine, Provably second-order timeaccurate loosely-coupled solution algorithms for transient nonlinear aeroelasticity, Comput. Methods Appl. Mech. Engrg, p.195, 1718.

M. A. Fernández, Coupling schemes for incompressible uid-structure interaction: implicit, semi-implicit and explicit, S eMA J, issue.55, p.59108, 2011.

M. A. Fernández, Incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible uid, C. R. Math. Acad. Sci. Paris, vol.349, issue.78, p.473477, 2011.

M. A. Fernández, Incremental displacement-correction schemes for incompressible uid-structure interaction: stability and convergence analysis, Numer. Math, vol.123, issue.1, p.2165, 2013.

M. A. Fernández and J. Gerbeau, Algorithms for uid-structure interaction problems, Cardiovascular mathematics, p.307346, 2009.

M. A. Fernández, J. Gerbeau, and C. Grandmont, A projection algorithm for uid-structure interaction problems with strong added-mass eect, C. R. Math. Acad. Sci. Paris, vol.342, issue.4, p.279284, 2006.

M. A. Fernández, J. F. Gerbeau, and C. Grandmont, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible uid, Int. J. Num. Meth. Engrg, vol.69, issue.4, p.794821, 2007.

M. A. Fernández and M. Landa-juela, A fully decoupled scheme for the interaction of a thin-walled structure with an incompressible uid, C. R. Math. Acad. Sci. Paris, vol.351, pp.3-4161164, 2013.

M. A. Fernández and M. Landa-juela, Fully decoupled time-marching schemes for incompressible uid/thin-walled structure interaction

M. A. Fernández and M. Landa-juela, Second-order time-accurate explicit schemes for the interaction of a thin-walled structure with an incompressible uid, WCCM XI, 2014.

M. A. Fernández and M. Landajuela, Splitting schemes for uid/thin-walled structure interaction with untted meshes, C. R. Math. Acad. Sci. Paris, 2014.

M. A. Fernández and M. Moubachir, A Newton method using exact Jacobians for solving uid-structure coupling, Comp. & Struct, vol.83, p.127142, 2005.

M. A. Fernández and J. Mullaert, Displacement-velocity correction schemes for incompressible uid-structure interaction, C. R. Math. Acad. Sci. Paris, vol.349, pp.17-1810111015, 2011.

M. A. Fernández and J. Mullaert, Convergence analysis for a class of splitting schemes in incompressible uid-structure interaction, 2015.

M. A. Fernández, J. Mullaert, and Y. Maday, Préconditionnement d'algorithmes d'interaction uide-structure, 10e colloque national en calcul des structures, 2011.

M. A. Fernández, J. Mullaert, and M. Vidrascu, Explicit Robin-Neumann schemes for the coupling of incompressible uids with thin-walled structures

M. A. Fernández, J. Mullaert, and M. Vidrascu, Generalized Robin-Neumann explicit coupling schemes for incompressible uid-structure interaction: stability analysis and numerics, Internat. J. Numer. Methods Engrg, vol.101, issue.3, 2015.

C. A. Figueroa, I. E. Vignon-clementel, K. E. Jansen, T. J. Hughes, and C. A. Taylor, A coupled momentum method for modeling blood ow in threedimensional deformable arteries, Comput. Methods Appl. Mech. Engrg, vol.195, pp.41-4356855706, 2006.

L. Formaggia, J. Gerbeau, F. Nobile, and A. Quarteroni, On the coupling of 3D and 1D Navier-Stokes equations for ow problems in compliant vessels

L. Formaggia, A. Quarteroni, and A. Veneziani, of Modeling, Simulation and Applications, Cardiovascular Mathematics . Modeling and simulation of the circulatory system, 2009.

C. Förster, W. A. Wall, and E. Ramm, Articial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous ows, Comput. Methods Appl. Mech. Engrg, vol.196, issue.7, p.12781293, 2007.

M. Gee, E. Ramm, and W. Wal, Parallel multilevel solution of nonlinear shell structures, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.21-24, pp.21-2425132533, 2005.
DOI : 10.1016/j.cma.2004.07.043

M. W. Gee, U. Küttler, and W. Wall, Truly monolithic algebraic multigrid for uid-structure interaction, Int. J. Numer. Meth. Engng, vol.85, issue.8, p.9871016, 2011.

J. Gerbeau and M. Vidrascu, A quasi-Newton algorithm based on a reduced model for uid-structure interactions problems in blood ows, Math. Model

V. Girault and P. Raviart, Finite element methods for Navier-Stokes equations, 1986.
DOI : 10.1007/978-3-642-61623-5

J. L. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible ows, Comput. Methods Appl. Mech. Engrg, vol.195, pp.44-476011, 2006.

G. Guidoboni, R. Glowinski, N. Cavallini, and S. Canic, Stable loosely-coupledtype algorithm for uid-structure interaction in blood ow, J. Comp. Phys, vol.228, issue.18, p.69166937, 2009.

M. D. Gunzburger and S. L. Hou, Treating inhomogeneous essential boundary conditions in nite element methods and the calculation of boundary stresses

P. Hansbo, Nitsche's method for interface problems in computational mechanics, GAMM-Mitt, vol.28, issue.2, p.183206, 2005.

F. Hecht, New development in freefem++, Journal of Numerical Mathematics, vol.20, issue.3-4, p.251265, 2012.
DOI : 10.1515/jnum-2012-0013

A. L. Hazel, Fluid-structure interaction in internal physiological ows, Annu. Rev. Fluid Mech, vol.43, p.141162, 2011.

J. G. Heywood and R. Rannacher, Finite-Element Approximation of the Nonstationary Navier???Stokes Problem. Part IV: Error Analysis for Second-Order Time Discretization, SIAM Journal on Numerical Analysis, vol.27, issue.2, p.353384, 1990.
DOI : 10.1137/0727022

G. Hou, J. Wang, and A. Layton, Numerical methods for uid-structure interactiona review, Commun. Comput. Phys, vol.12, issue.2, p.337377, 2012.

T. J. Hughes77-]-e, P. Järvinen, M. Lyly, and J. Salenius, The nite element method A method for partitioned uid-structure interaction computation of ow in arteries, Medical Engineering & Physics, issue.7, p.30917923, 1987.

P. Joly, Variational Methods for Time-Dependent Wave Propagation Problems, Topics in Computational Wave Propagation, p.201264, 2003.
DOI : 10.1007/978-3-642-55483-4_6

P. Kalita and R. Schaefer, Mechanical Models of Artery Walls, Archives of Computational Methods in Engineering, vol.287, issue.3, p.136, 2008.
DOI : 10.1007/s11831-007-9015-5

U. Küttler, C. Förster, and W. A. Wall, A solution for the incompressibility dilemma in partitioned uid-structure interaction with pure Dirichlet uid domains, Comput. Mech, vol.38, p.417429, 2006.

U. Küttler and W. A. Wall, Fixed-point uid-structure interaction solvers with dynamic relaxation, Comp. Mech, vol.43, issue.1, p.6172, 2008.

J. F. Ladisa, I. Guler, L. E. Olson, D. A. Hettrick, J. R. Kersten et al., Three-dimensional computational uid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation, Ann. Biomed. Eng, vol.31, p.972980, 2003.

M. Landa-juela, Coupling schemes and untted mesh methods for uid-structure interaction

P. and L. Tallec, Numerical methods for nonlinear three-dimensional elasticity, Handbook of numerical analysis, p.465622, 1994.
DOI : 10.1016/S1570-8659(05)80018-3

P. , L. Tallec, and J. Mouro, Fluid structure interaction with large structural displacements, Comput. Meth. Appl. Mech. Engrg, vol.190, p.30393067, 2001.

P. , L. Tallec, C. Rahier, and A. Kaiss, Three-dimensional incompressible viscoelasticity in large strains: formulation and numerical approximation, Comput. Methods Appl. Mech. Engrg, vol.109, pp.3-4233258, 1993.

M. Lombardi, N. Parolini, A. Quarteroni, and G. Rozza, Numerical Simulation of Sailing Boats: Dynamics, FSI, and Shape Optimization, Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, p.339377, 2012.
DOI : 10.1007/978-1-4614-2435-2_15

M. Luká£ová, G. Rusnáková, and A. Hundertmark, Kinematic splitting algorithm for uidstructure interaction in hemodynamics, Comput. Methods Appl. Mech. Engrg, vol.265, issue.1, p.83106, 2013.

Y. Maday, Analysis of coupled models for uid-structure interaction of internal ows, Cardiovascular mathematics, p.279306, 2009.

P. Moireau, N. Xiao, M. Astorino, C. A. Figueroa, D. Chapelle et al., External tissue support and uid-structure simulation in blood ows, Biomech. Model. Mechanobiol, vol.11, p.118, 2012.

]. J. Mouro, Interactions uide structure en grands déplacements. Résolution numérique et application aux composants hydrauliques automobiles, 1996.

R. L. Muddle, M. Mihajlovi¢, and M. Heil, An ecient preconditioner for monolithically-coupled large-displacement uid-structure interaction problems with pseudo-solid mesh updates, J. Comput. Phys, issue.21, p.23173157334, 2012.

B. Muha and S. ƒani¢, Existence of a weak solution to a nonlinear uidstructure interaction problem modeling the ow of an incompressible, viscous uid in a cylinder with deformable walls, Arch. Rational Mech. Anal, vol.207, p.919968, 2013.

C. M. Murea and S. Sy, A fast method for solving uid-structure interaction problems numerically, Internat. J. Numer. Methods Fluids, issue.10, p.6011491172, 2009.

J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen
DOI : 10.1007/bf02995904

F. Nobile, Numerical approximation of uid-structure interaction problems with application to haemodynamics, 2001.

F. Nobile and C. Vergara, An eective uid-structure interaction formulation for vascular dynamics by generalized Robin conditions, SIAM J. Sci. Comput, vol.30, issue.2, p.731763, 2008.

F. Nobile and C. Vergara, Partitioned Algorithms for Fluid-Structure Interaction Problems in Haemodynamics, Milan Journal of Mathematics, vol.4, issue.4, p.443467, 2012.
DOI : 10.1007/s00032-012-0194-7

M. P. Païdoussis, S. J. Price, and E. De-langre, Fluid-structure interactions: crossow-induced instabilities, 2011.
DOI : 10.1017/CBO9780511760792

K. C. Park, C. A. Felippa, and J. A. Deruntz, Stabilization of staggered solution procedures for uid-structure interaction analysis

. Geers, Computational Methods for Fluid-Structure Interaction Problems, American Society of Mechanical Engineers, vol.26, p.95124, 1977.

M. Perego, A. Veneziani, and C. Vergara, A variational approach for estimating the compliance of the cardiovascular tissue. An inverse uid-structure interaction problem, SIAM J. Sci. Comput, vol.33, issue.3, p.11811211, 2011.

C. S. Peskin, The immersed boundary method, Acta Numer, vol.11, p.479517, 2002.

S. Piperno, Explicit/implicit uid/structure staggered procedures with a structural predictor and uid subcycling for 2D inviscid aeroelastic simulations, Internat . J. Numer. Methods Fluids, issue.10, p.2512071226, 1997.

A. Quaini and A. Quarteroni, A semi-implicit approach for uid-structure interaction based on an algebraic fractional step method, Math. Models Methods Appl. Sci, vol.17, issue.6, p.957983, 2007.

A. Salsac, S. R. Sparks, J. M. Chomaz, and J. C. Lasheras, Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms, Journal of Fluid Mechanics, vol.560, 1951.
DOI : 10.1017/S002211200600036X

URL : https://hal.archives-ouvertes.fr/hal-01023355

H. J. Stetter, The defect correction principle and discretization methods, Numerische Mathematik, vol.11, issue.4, p.425443, 1978.
DOI : 10.1007/BF01432879

G. R. Stuhne and D. A. Steinman, Finite-Element Modeling of the Hemodynamics of Stented Aneurysms, Journal of Biomechanical Engineering, vol.126, issue.3, p.382387, 2004.
DOI : 10.1115/1.1762900

E. W. Swim and P. Seshaiyer, A nonconforming nite element method for uidstructure interaction problems, Comput. Methods Appl. Mech. Engrg, vol.195109, pp.17-1820882099, 2006.

D. Bonnet and P. Ou, Computational modeling of blood ow in the aortainsights into eccentric dilatation of the ascending aorta after surgery for coarctation

K. Takizawa and T. E. Tezduyar, Computational methods for parachute uidstructure interactions, Arch. Comput. Methods Eng, vol.19, p.125169, 2012.

T. E. Tezduyar, Finite element methods for uid dynamics with moving boundaries and interfaces, Arch. Comput. Methods Engrg, vol.8, p.83130, 2001.

V. Thomée, Galerkin nite element methods for parabolic problems, 2006.

C. Tu and C. S. Peskin, Stability and instability in the computation of ows with moving immersed boundaries: a comparison of three methods

S. Turek and J. Hron, Proposal for numerical benchmarking of uid-structure interaction between an elastic ob ject and laminar incompressible ow, Fluidstructure interaction, p.371385, 2006.

D. Valdez-jasso, H. T. Banks, M. A. Haider, D. Bia, Y. Zocalo et al., Viscoelastic models for passive arterial wall dynamics, Adv. Appl. Math. Mech, vol.1, issue.2, p.151165, 2009.