
HAL Id: tel-01135312
https://theses.hal.science/tel-01135312

Submitted on 25 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Privacy-enabled scalable recommender systems
Andrés Dario Moreno Barbosa

To cite this version:
Andrés Dario Moreno Barbosa. Privacy-enabled scalable recommender systems. Other [cs.OH]. Uni-
versité Nice Sophia Antipolis, 2014. English. �NNT : 2014NICE4128�. �tel-01135312�

https://theses.hal.science/tel-01135312
https://hal.archives-ouvertes.fr

UNIVERSITY OF NICE - SOPHIA ANTIPOLIS
UNIVERSIDAD DE LOS ANDES

DOCTORAL SCHOOL STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION

ET DE LA COMMUNICATION

P H D T H E S I S
to obtain the title of

PhD of Science

of the University of Nice - Sophia Antipolis

and to obtain the title of

Ph.D. in Engineering

of the Universidad de los Andes - Bogotá Colombia

Specialty : COMPUTER SCIENCE

Defended by

Andrés Dario MORENO BARBOSA

Privacy-enabled scalable
recommender systems

Thesis Advisors:

Harold CASTRO and Michel RIVEILL

defended on December 10, 2014

Jury :

Advisors : Harold CASTRO - Universidad de los Andes
Michel RIVEILL - Université de Nice

President : Frederic PRECIOSO - Université de Nice
Examinators : Claudia Jiménez-Guarın - Universidad de los Andes

Florent MASSEGLIA - INRIA Sophia Antipolis

A mi familia

A Diana

ii

Acknowledgments

I would like to thank my advisors Harold Castro and Michel Riveill for their

invaluable guidance during this project and for their general support during these

years. Without their encouragement to pursue the phd this thesis would not have

been possible.

I would also like to thank Francisco Rueda and Claudia Jimeéz for providing

guidance during my masters and doctoral studies.

Thanks to Universidad de los Andes and Departamento de Ingenieria de Sistemas

y Computación for offering the graduate student assistant position during my stance

at Universidad de los Andes, teaching has been a highly rewarding experience.

Thanks to I3S laboratory and the members of the GLC team for their support

during my stance in France. Finally thanks to Colfuturo for providing financial

support during the thesis.

Many thanks to the close friends made during my stance at Université de Nice,

being abroad far from family and friends was at times overwelmening, but much

easier with your help.

Thanks to the close friends made at Universidad de los Andes. Thanks for your

friendship and the warm environment you have provided these years. Without your

help and advice it would have been impossible to finish this work.

Agradecimientos

Muchas gracias a mi familia. Particularmente a mi papá , a mi mamá y a mi

hermana, a ustedes dedico este trabajo. A Diana por su ayuda, paciencia, consejo y

compañia durante estos años.

Contents

I Introduction and related work 1

1 Introduction 3

1.1 Motivation . 3

1.2 Research objective . 5

1.3 Thesis contributions and document outline 5

2 Recommender systems: Related work and evaluation 9

2.1 Recommender systems . 9

2.1.1 Content based filtering (CB) 10

2.1.2 Collaborative filtering (CF) 14

2.1.3 Hybrid Systems (HS) . 19

2.2 Evaluating Recommender systems: Predictive accuracy and scalability 21

2.2.1 Predictive Accuracy Measures 22

2.2.2 Scalability . 25

2.3 Conclusions . 29

3 Privacy: a factor for evaluating recommender systems 35

3.1 Privacy and recommendation . 36

3.2 Designing privacy-enabled recommender systems 37

3.3 Identified attacks on privacy-enabled recommender systems 40

3.4 State of the art on privacy-enabled recommender systems 45

3.4.1 Centralized approaches . 46

3.4.2 Client-side approaches with no anonymity on p2p networks . 47

3.4.3 Client-side approaches with no anonymity with aggregation

on server . 49

3.4.4 Client-side approaches with anonymity on p2p networks . . . 51

3.4.5 Client-side approaches with anonymity with server aggregation 53

3.5 Privacy and scalability . 57

3.5.1 Scalability of random noise generation 57

3.5.2 Scalability of homomorphic cryptosystems 59

3.5.3 Scalability of heuristic-based perturbation 64

3.6 Conclusions . 65

II Model architecture and performance 67

4 A CF client-side recommender system 69

4.1 A client-side agent for privacy-enabled recommender systems 69

4.2 Collaborative Filtering model . 70

4.2.1 Training and prediction on the online learning framework . . 71

iv Contents

4.2.2 Model validation datasets . 74

4.3 Model Validation . 75

4.4 Adding regularization to the predictive model 77

4.5 Adding user bias to the predictive model 79

4.6 Predictive performance and scalability considerations 81

4.7 Conclusions . 82

5 An Hybrid client-side recommender system 83

5.1 Introduction . 83

5.2 Content Based model . 84

5.3 Hybrid Model . 87

5.4 Predicting under the cold-start scenario (new item problem) 89

5.5 Conclusions . 91

6 Privacy considerations and their impact on the predictive accuracy

of the system 93

6.1 Perturbation of the user profile . 93

6.2 Keyword-based filtering . 98

6.3 Conclusions . 99

7 Conclusions 101

Bibliography 105

Part I

Introduction and related work

Chapter 1

Introduction

Contents

1.1 Motivation . 3

1.2 Research objective . 5

1.3 Thesis contributions and document outline 5

In this chapter the problem motivation, research goals, main contributions and

structure of the thesis are presented.

1.1 Motivation

Electronic content is ubiquitous in our daily lives. Several factors such as the

development of Web 2.0 technologies, the increased access to mobile devices and

the deployment of mobile networks has undoubtedly augmented the amount of

information easily available to users. Given the limited attention span of the user

and the extensiveness of the available streams of information ready to be consumed,

automatic systems must be available for the user to prioritize, suggest or screen

content suitable for the user interests and situation.

One of the most popular initiatives created to solve the information overload

problem are Recommender Systems [Adomavicius 2005]. Recommender Systems

are information filtering systems that use the historical information about the

user (what the user has considered relevant or irrelevant on the past, among other

information) to build and accurate representation of the user’s interests that is

used to predict the relevance of a large collection of available items for a specific

user. Recommendation systems are used by several online retailers, online content

streaming services and social networking sites to improve the user’s experience of

their services by automatically filtering their content or offers of items to the ones

most likely to interest the user.

Generally speaking, recommender systems can be classified into two categories:

Content Based and Collaborative Filtering. The former category relies on the

definition of explicit features that describe the item domain and assigns them

weights to describe the affinity between the feature and the item. For example in the

movie domain, items can be described by features such as the genre to which they

belong, the director, writer and actors that take part in the movie. On the other

hand Collaborative Filtering is content-agnostic and relies on correlations between

4 Chapter 1. Introduction

users and items based on the historical consumption patterns between the users

and the items. It has been shown generally that Collaborative Filtering methods

present better results than Content-Based [Pilászy 2009], however due to inherent

shortcomings of single approaches, a better predictive performance is achieved by

developing a model that integrates different paradigms (Hybrid approaches).

To keep their users satisfied, personalization services that operate recommen-

dation methods should present relevant recommendations even when the number

of users, items and user-item interactions in the system increase. As it will be

shown in Chapter 2, the computational complexity of Collaborative Filter-

ing methods for keeping a user profile up to date depends directly on

the number of users and items available in the system and the amount of

registered user-item interactions. Current large scale personalization systems

such as Netflix [Netflix 2013] (a content streaming service of movies and series) has

an estimated number of users of 44 million1 while the number of available items to

watch fluctuates around 13000 titles2. The number explicit user-item interactions

(assigned ratings) is estimated at 5 billion ratings [Schelter 2013].

To account for these large numbers, Recommender System’s adopters employ

the support of cloud computing frameworks. Recommender Systems are now highly

scalable solutions that are able to: (1) gather and store as much information as

possible about users and items supported by the current availability of cheap storage,

(2) apply computational intensive algorithms to train recommendation models that

scale up to the size of the collected data and (3) use the trained models to adequately

answer to a large amount of recommendation requests. However, as it will be shown

in Chapter 3 the current architecture of data gathering and processing of

recommender systems places a conflict with users

Following the definition given by [Foner 1999], privacy can be defined as the ability

of an individual to protect the disclosure of personal information to third parties

who are not intended recipients of the information. While users trust recommender

engines to use their information for filtering or personalization purposes, it will be

argued that the centralized consolidation of information increases the likelihood of

misuse of the user information, misplacing user trust.

A question that arises after this claim is: why information gathered and processed

by a recommendation system is privacy-sensitive? After all, due to the availability

of personal micro blogging and social networks, users seem avid to share their

information with others. Opinions given by users on items reveal at a great extend

the personality of the user, opinions on items might reveal political inclination,

sexual orientation, physical or mental treatments the user is taking or religious

inclination of a particular user. An iconic case of how important are personal

opinions on items in recommender systems came with the Doe Vs Netflix class

12013 Annual report, http://files.shareholder.com/downloads/NFLX/

3461178757x0x748407/76a245dc-3314-401c-baba-ed229ca9145a/NFLX_AR.PDF [Accessed August

2014]
2http://www.fastcompany.com/1830524/amazon-massively-inflates-its-streaming-library-size

[Acceded August 2014]

http://files.shareholder.com/downloads/NFLX/3461178757x0x748407/76a245dc-3314-401c-baba-ed229ca9145a/NFLX_AR.PDF
http://files.shareholder.com/downloads/NFLX/3461178757x0x748407/76a245dc-3314-401c-baba-ed229ca9145a/NFLX_AR.PDF
http://www.fastcompany.com/1830524/amazon-massively-inflates-its-streaming-library-size

1.2. Research objective 5

action lawsuit [Singel 2009], when ratings from users were de-anonymized after being

made public by the Netflix Prize Competition [Netflix 2009]. The plaintiff claimed

that:

...information tending to identify or permit inference of her sexual orien-

tation constitutes sensitive and personal information. She believes that,

were her sexual orientation public knowledge, it would negatively affect

her ability to pursue her livelihood and support her family and would

hinder her and her childrens’ ability to live peaceful lives within ...(her)...

community.

The aim of privacy-enabled recommendation systems is to give users tools to

protect their privacy and keep the choice to themselves if they want to reveal their

information.

1.2 Research objective

Traditional Recommender Systems are usually evaluated in terms of their predictive

performance [Shani 2011], for this end recommendation systems use increasingly more

complex models and include more information about users which places a tradeoff

between the computational complexity of training the model and the predictive

performance the model can attain. In this work, a third axis is introduced into these

traditional concerns: Privacy.

Unfortunately, as it will be shown in Chapter 3, protecting user privacy imposes

architectural restrictions to the data storage and processing tasks, having either to

perform costly cryptographical operations on the user profile that have an impact

on the scalability of the system, or prevent the usage of traditional cloud computing

architectures, limiting the predictive performance of the system when compared to

privacy-agnostic recommendation systems.

Research objective

The main topic of the thesis is to explore the tradeoff between the predictive

performance, user privacy and the system scalability evaluated in terms of

the computational complexity of the recommendation system (Figure 1.1).

Particularly, the research objective is to create a new recommendation system

that keeps into account privacy without sacrificing the scalability of the

solution.

1.3 Thesis contributions and document outline

In order to attain the research goal expressed in the previous section, the following

contributions are presented in this document:

6 Chapter 1. Introduction

Figure 1.1: Three axis objective

• An introduction on Recommender Systems is presented in Chapter 2.The

chapter presents the existing paradigms for recommendation, how they are

evaluated and the tradeoff between predictive performance and scalability that

exists in these kind of systems.

• A privacy-enabled recommender system survey is presented in Chapter 3. The

presented survey analyzes the chosen strategies used by recommender systems

to keep the privacy of the users. These strategies are analyzed in terms of

the exposure risks and in terms of the scalability of the approach. From these

strategies some design choices are made in order to create a new highly.scalable

privacy-enabled recommender system.

• In Chapter 4 a highly scalable client-based approach for Collaborative Filtering

recommendation is presented. The system keeps the information about the

user at the client-side, and doesn’t reveal the ratings of the user to the

recommendation server. Placed under the online learning setting, the system

has a low computational complexity when updating either the user or item

representations at both training and prediction phases, scaling up to the

number of items present in the system and the number of predictions the agent

must make over time.

• In Chapter 5, the Collaborative Filtering algorithm presented is extended

into an Hybrid one by the use of a Content Based recommender system. The

hybridization runs both models in parallel and outputs a weighted prediction

of both models according to their historical regret. The hybrid model allows

the system to improve its predictive performance on the cold-start scenario,

while keeping a low computational complexity at both training and prediction

phases.

• In Chapter 6 the proposed hybrid system is analyzed in terms of the information

that is exposed to the recommendation server. The privacy of the recommender

system is increased by adding random noise perturbation to the output of

the recommender using differential privacy notions [Dwork 2006], so that an

1.3. Thesis contributions and document outline 7

attacker can’t simulate the internal state of the client-side agent. Finally a

keyword based strategy is used as a mean to keep the client-side agent from

reporting back information on items the user doesn’t want to be linked with.

The hybrid approach proves useful on the privacy-protective setting as well.

Chapter 2

Recommender systems: Related

work and evaluation

Contents

2.1 Recommender systems . 9

2.1.1 Content based filtering (CB) 10

2.1.2 Collaborative filtering (CF) . 14

2.1.3 Hybrid Systems (HS) . 19

2.2 Evaluating Recommender systems: Predictive accuracy

and scalability . 21

2.2.1 Predictive Accuracy Measures 22

2.2.2 Scalability . 25

2.3 Conclusions . 29

In this chapter a revision of recommendation systems will be presented. In order

to review them we will present a review of existing recommendation technologies

(Section 2.1), how a recommender system can be evaluated in terms of its predictive

accuracy and scalability (Section 2.2). This will establish the bases of the design

choices that privacy-enabled models must make and their tradeoffs.

2.1 Recommender systems

Recommender systems are information filtering systems that present relevant item

suggestions to users from a large collection of possible items, for this purpose

recommender systems traditionally rely on the historic interaction of the user

with the system to build and accurate representation of the user’s interests. We

understand relevance defined in [Borlund 2003] as the: ”utility or usefulness of the

information in regard to the user’s task and needs”. The recommendation process

can be defined formally as follows:

Let U ={u1, u2 ... ,um} be the set of m users available in the system and let

I ={i1, i2 ... ,in} be the set of n possible data items that are available for the users.

A recommender system can be viewed as a mapping that calculates the relevance of

an item for a user. RelevanceEstimation: r̂(U×I) → R ∪ {null}. Recommender

systems use the relevance function to select a subset of items from the set I not

seen before by the user that maximizes the perceived relevance, rank lists of items

10 Chapter 2. Recommender systems: Related work and evaluation

Data Analyzer
Component

updateUser Model
Component

Knowledge
Model

Filtering component
Relevance(Item,User)

Learning
component

data items

relevant data itemsrelevant data items

feedback
preferences

Generic information filtering system

Figure 2.1: Generic CB filtering system

based on their relevance, or screen out irrelevant items from a stream of incoming

information.

There are two types of information recommender systems use in order to predict

the relevance of an item for a user: Explicit feedback consists on the direct feedback

of the user on an item. Ratings are an usual representation of the user opinion of a

user for an item, for example a numerical rating (1 to 5), a rating on a likert scale

(Strongly disagree, Disagree, Neither agree nor disagree, Agree, Strongly

agree) or binary ratings (like, dislike). Implicit feedback on the other hand is

the collection of actions users exert on items, these actions indirectly reflect the

opinion of the user on the item, for example a user can view, click or buy an item.

According to [Adomavicius 2005], recommender systems can be divided into

three general categories according on how the systems employ the user information

to calculate the relevance of an item: Content based filtering (CB) which uses

the features or characteristics of the items to find out the relevance for the user,

collaborative filtering (CF) which uses only the opinions of the users on the items,

and hybrid systems(HS) that use an ensemble of different systems. Other authors

such as [Burke 2002] identify other categories such as knowledge based recommender

systems and demographic based recommender systems but since they rely heavily

on user and item features we classify them under the CB approach.

2.1.1 Content based filtering (CB)

Content based (CB) filtering systems operate under the assumption that the user

will like similar items to the ones she has liked in the past. CB systems extract

the characteristics or features of the data items and use these characteristics to

represent the item and the user under a common knowledge model.

To calculate the relevance function Relevance(U×I) a generic CB filtering system

shown in figure Fig.(2.1) is in charge of the following tasks [Hanani 2001]:

• Data item representation: The data analyzer component creates a data

2.1. Recommender systems 11

item representation under a knowledge model that reflects the relevant charac-

teristics of the data item that are useful for the filtering component.

• User representation: The user model component creates a user profile that

reflects the current user’s situation and desires and represents it under a

knowledge model. To properly represent the user’s situation and interests

explicit information from the user can be used.

• Matching: The filtering component is in charge of using the item and user

representation to predict the relevance of the item for the said user.

• Learning: The learning component keeps up to date the user model repre-

sentation based on the feedback received by the user.

Based on the work on document representation in Information Retrieval, one of

the first knowledge representations available for recommender systems was based

on the Vector Space Model [Salton 1975]. In this model both item and users

are represented by a vector ContentBasedProfile = (w0, w1..., w‖Con‖) ∈ R[0, 1]Con

where Con is the set of features that describe the knowledge domain of the items in

the set I. For each coordinate wc in the vector, its weight represents a numerical

indication of the degree of affinity between the item and the concept represented by

the coordinate for a item profile, or the degree of interest of the user towards the

concept in an user profile.

To find out the weights for each coordinate in the item’s vector, the term

frequency - inverse document frequency (TF-IDF) [Salton 1988] strategy is used.

This strategy consist on assigning a weight for a concept proportional to the number

of times the concept appears in the document (TF) and inversely proportional to

the number of documents it appears (IDF). This strategy has been used on content

bases systems with with text-based items such as web pages [Balabanović 1997] and

news [Lang 1995].

On the user profile side, as the user expresses her opinion on items, relevance

feedback methods are used to continuously update and refine the user’s profile

weights, for example Rocchio’s algorithm [Buckley 1995] is commonly used in CB

filtering learning. Let xtu be the ContentBasedProfile for user u at time t, D+ ⊂ I
be a set of items the user has manifested positive feedback, and D− ⊂ I a set of

items the user has expressed negative feedback, xtu is updated according to the next

formula:

xtu = αxt−1
u + β

 1

|D+|
∑
yi∈D+

yi

− γ
 1

|D−|
∑
yi∈D−

yi

 (2.1)

After having learned the user and item profile, vector similarity functions are

used to assess the relevance of an item. To find out the relevance of an item one of

the most used heuristics the cosine similarity. If xu is the ContentBasedProfile for

user u and yi is the ContentBasedProfile of item i, then the relevance of item i for

user u is:

cos (xu × yi) =
xu · yi
‖xu‖‖yi‖

(2.2)

12 Chapter 2. Recommender systems: Related work and evaluation

Another strategy for learning a user profile is to make use of the vector repre-

sentation of the items and the feedback to apply machine learning classifiers that

categorize items into two classes (relevant, not relevant) by training a classifier with

the items the user has seen, for example: Naive Bayesian classifiers [Pazzani 1997],

artificial neural networks [Hsu 2007] and support vector machines [Oku 2006].

Other existing knowledge models that extend the Vector Space Model were

developed to address the problems present with the textual extraction of features

used in the TF-IDF strategy, particularly (1) The string matching process can be

susceptible to polysemy (single words with multiple meanings) or synonymy (multiple

words with the same meaning), and (2) the TF-IDF strategy is not applicable to

items with little or no text content. Keyword-based profiles restrict the possible set

of concepts to a controlled vocabulary [Lieberman 1995], this strategy can be used

for non-text based items where weights for each concept can be manually assigned

by a domain expert(i.e. in the music domain Pandora) or automatically by domain

specific automatic tools (i.e. images and video [Dasiopoulou 2011]).

Since using automatic tools for item categorization is not always available,

efficient or maintainable due to the size or characteristics of the available item set,

some systems use their users to help catalog and annotate their items. In the Web 2.0

paradigm, the user is not only a consumer of content but now the user is allowed to

publish and edit content. In particular Social Tagging Systems(STS) [Marinho 2011]

allow their users to describe data items using arbitrary keywords called tags. The

collection of the collaborative created tags is called a folksonomy. Folksonomies

have been used with success by hybrid filtering approaches [Zhen 2009].

On the other hand, approaches to remove ambiguity in keyword and tag based

systems introduced the use of ontologies for user profiling. Ontologies are a formal

representation of the concepts present in a knowledge domain and the relations

between them. Middleton et. al. [Middleton 2004] stated that ontology based profiles

encompass the adequate formality and granularity to describe a data item, reducing

the conceptual gap between the data item semantics and the chosen representation

which results in an improvement of the accuracy of the system when compared to

keyword-based approaches.

As defined by [Ehrig 2004], an ontology is defined as a data structure O :=

(C, T,≤C , R,A, σR, σA,≤R,≤A, In, V,LC ,LR,LA) where C, T,R,A, In, V are the

sets that contain the classes, data types, binary relations, attribute relations, in-

stances and data values present in the knowledge domain described by the ontology.

≤C ,≤R,≤A are the partial orders that define the class, relation and attribute hi-

erarchy. σR : R → C × C is the function that provides a signature for a relation

between classes. σA : A→ C × T is the function that provides a signature for an

attribute for a class. LC : C → In is the instantiation function. LT : T → V is the

data type instantiation function. LR : R → In × In is the relation instantiation

function and LA : A→ In× V is the attribute instantiation function.

The current W3C recommendation for specifiying ontologies is OWL2 [W3C 2012].

1www.pandora.com

2.1. Recommender systems 13

The OWL2 language accounts for the sufficient expressiveness to account for the

structure defined by [Ehrig 2004].

Under this knowledge model, the set of concepts that describe the knowledge

model are the classes and instances present in the ontology Con = {C ∪ In}. As in

the Vector Space Model, the weights on the vector represent the relatedness between

the item and a concept. One of the most important advantages of using ontologies

as a knowledge model is that they allow the system to understand the relationships

between the concepts that describe the knowledge domain of the items when learning

a user profile. This allows the learning component to modify not only the weights of

the concepts directly involved in the item profile description but to activate related

concepts as well, one strategy to achieve this is to use the constrained spreading

activation technique [Crestani 1997].

After a user has manifested a preference for an item (relevant, not relevant) the

user profile is modified as in Rocchio’s feedback algorithm [Buckley 1995] (Equation

2.1) not only on the weights expressed directly on the item profile but other weights

are activated on the user profile by using the relations (R and the partial order ≤C)

that relate the activated preference to other preferences present in the knowledge

domain.

Let Conc be a concept describing an item a user u has marked as relevant at

time t, and Cond a concept that is connected through a relation to the concept

Conc. The value for wd on the user’s profile xu is given by the following equation

[Papadogiorgaki 2008]:

xu
t
d = xu

t−1
d +W (Conc, Cond)× xutc × ∂ (2.3)

Where ∂ is a decay factor proportional to the time passed since the last time

the preference was updated and Conj and Conk are the concepts related by a

relation in the ontology. Coordinate k is updated if: (∃r|Conj ∈ C ∧ Conk ∈
C ∧r ∈ R : σ−1

R (Conj , Conk) = r) if both Conj and Conk are classes, if (∃r|Coni ∈
In∧Conj ∈ In∧r ∈ R : σ−1

R (Conj , Conk) = r) if both Conj and Conk are instances

or L−1
C (Conj) = Conk if Conk is instance of the class Coni.

W : (Con× Con) → R[0, 1] is a function calculating the semantic relatedness

between the concepts connected by a binary relation or by an instantiation relation.

This function has been established as a fixed value over the the partial order ≤C
[Middleton 2004] [Sieg 2007] [Blanco-Fernández 2008], ontological similarity measures

[Vallet 2006] or by an statistical approach using machine learning algorithms to

learn the factor value based on frequency of occurrence of both concepts [Jiang 2009].

Other implicit information from the user-item interaction can be included into the

∂ parameter.

Although CB systems are simple, easy to implement and its easy to explain why

an item has been classified as relevant, several researchers such as [Adomavicius 2005]

have noted the limitations of these kind of systems in their filtering performance, in

particular researchers have remarked the following limitations :(1) Limited content

analysis: In order to have a good representation of data items, data items must

14 Chapter 2. Recommender systems: Related work and evaluation

Um

U1

I1 In Ii

Uu

Figure 2.2: Matrix V for modeling user-item information in CF, u row is the user profile

of user Uu and the i column is the data item profile of item Ii

be characterized by features. If this feature extraction of data items is difficult

or impractical the representation of the data items will not be accurate and a

conceptual gap between the representation and the real features will occur, this

inaccurate classification of items will affect the accuracy of the filtering system.

(2)Overspecialization: A CB system will only classify as relevant data items that are

similar to the ones that the user has classified as relevant in the past. This means

that the system cannot predict the relevance of a data item that is unlike the ones

the user has seen. (3)New user problem: A user has to express her opinion on a

sufficient number of data items in order to build an useful user profile.

2.1.2 Collaborative filtering (CF)

Collaborative filtering (CF) systems are IF systems that operate under the assump-

tion a user will like the same data items that other users have liked in the past.

Generally speaking, CF systems try to predict the relevance of a data item for a

user by taking into account the opinion that other similar users have manifested

about that item instead of taking into account the features of the data item. CF

solves some of the problems of CB approaches: It doesn’t need to know the features

of the data items, therefore is not prone to the limited content analysis. Also it can

detect the relevance of a item that is very different from what the user has seen,

reducing the impact of the overspecialization problem.

Collaborative filtering algorithms subsequent representation of the users and

items information is a matrix V of size m = |U | × n = |I| as seen in Fig.(2.2):

The rows on the V matrix represent the user profiles, each user (u ∈ U) has a

profile defined as a vector over a vector space of size |I|, each coordinate of the

vector wi ∈ Rn ∪ φ is registered as the opinion of the user for the item Ii. Most

collaborative filtering systems use ratings as a way of registering the opinion (for

example a scale of 1 to 5 is used O = {1, 2, 3, 4, 5}). Subsequently the columns of

the V matrix represent the item profiles, each item has a profile defined as a vector

over a vector space of size |I| and each coordinate of the vector wi is calculated as

the opinion of the item expressed by user Ui.

One way of classify collaborative filtering approaches by the way they use the

2.1. Recommender systems 15

ratings in order to generate relevance predictions: Neighborhood-based systems use

similarities of users or items directly from the information included on rating matrix

V in order to produce a relevance prediction, on the other hand model based systems

go through an offline process to aggregate the information registered on the rating

matrix V to build a model that will be used to produce a relevance prediction.

Neighborhood-based systems can be further classified as well under two

categories:user-based CF calculates the relevance for a data item by taking into

account the opinion on that item of the k most similar users that have expressed an

opinion about the item. item-based CF takes into account the opinion of the user to

the most similar data items to the active item.

User-based CF systems [Resnick 1994] calculate the relevance of an item by

two steps: The system selects the users that have rated the item in the past, then

from this subset the system finds the most similar users to the active one, once this

set is established (the neighborhood of the user) the relevance is calculated as the

weighted average opinion of the users of the neighborhood for that item.

The neighborhood N (Uu, Ii) is defined as the set of k user profiles that have

rated item i that maximize the similarity between the user profile of Uu with the rest

of the available user profiles. The relevance of the item Ii for a user Uu is calculated

as the weighted average opinion on that item for the user profiles present in the

neighborhood N (Uu, Ii):

r̂ (Uu × Ii) =

∑
x∈N(Uu,Ii)

xvi × sim (xu, xv)∑
x∈N(Uu,Ii)

sim (xu, xv)
(2.4)

Where the sim function is a distance measure between the profile representa-

tion(for example the cosine measure presented in equation 2.2) and xvi is the opinion

of user v on item i.

Another similarity function widely used in the CF scenario is the Pearson

correlation. If xu is the CF user profile for user u and xv is the CF user profile for

user v, then the Pearson correlation of both users is:

Pearson (xu × xv) =

∑l
j=1 (xuj − xu) (xvj − xv)√∑l

j=1 (xuj − xu)2∑l
j=1 (xvj − xv)2

(2.5)

where xv is the average rating given by the user and the index j is used only on

the l common items on both profiles.

Item-based CF [Sarwar 2001] is similar to user-based ones but instead of creating

a neighborhood of similar users, it creates a neighborhood of similar items based on

their item profile, the relevance of the item for the user is the average opinion of the

user about the items in the neighborhood of the active item. Even tough User and

Item-based CF have the same computational complexity, item based is preferred

in systems where the set of data items is relatively static when compared to the

rate of change of users, for example in e-commerce models such as Amazon.com

[Linden 2003].

16 Chapter 2. Recommender systems: Related work and evaluation

Um

U1

I1 In Ii

Uu
Uk

V*k

Σk

Figure 2.3: Matrix V is reduced using SVD intro matrices U, Σ and V ∗

The neighborhood of a data item Ii can be defined as the set of data item profiles

for which the user Uu has expressed an opinion M (Ii, Uu) that maximizes the

similarity between the data item profile of Ii and the set of item profiles M (Ii, Uu).

The relevance of item Ii for user Uu is calculated as the average of the opinion of

the user for the data items in set M (Ii, Uu):

r̂ (Uu × Ii) =

∑
y∈M(Ii,Uu)(yju × sim (yi, yj))∑

y∈M(Ii,Uu) sim (yi, yj))
(2.6)

Where the sim function is a distance measure between the item profile represen-

tations and yju is the opinion of user Uu about item Ij .

Rather than colsulting the opinion of similar users or items at the moment of

prediction, model based systems learn the parameters of a predictive model from

the user-item matrix V that is later used for predictions. First approaches based

on linear algebra matrix factorization using singular value decomposition (SVD)

[Sarwar 2002] which maps the original matrix into another space of dimensionality

significantly smaller than the original one. A SVD factorization (as seen in figure

2.3) consists in finding a low rank approximation of the original V matrix by

finding three matrices such that their multiplication reconstructs the original matrix:

SVD(V) = Um×k × Σk×k × V ∗n×k
T where k is significantly smaller than m and n.

Taking into account that the row u of matrix U is the representation of the user

profile under a lower dimensionality and the row i of V ∗ is the representation of the

item profile under a lower dimensionality, once the matrix is factorized the relevance

is calculated by reconstructing the information of the user and item.

r̂ (Uu × Ii) = average(Ii) + (U ·
√

ΣT)u· (Σ
√
V ∗T)i (2.7)

Following this work, other approaches have been adapted to separate different

signals or effects that build up the rating prediction. Researchers have found that

the global average of ratings (µ) and the bias or deviation from the mean that

are observed for each user (bu) and each item (bi) are fundamental elements of

the relevance prediction that must be included into the prediction model. Matrix

factorization models build up two matrices representing the user (Xm×k) and the

2.1. Recommender systems 17

item (Yn×k) under a lower dimensionality such that V u µ+ b? +XY T [Koren 2008].

The relevance prediction of this model is given by the following equation:

r̂ (Uu × Ii) = µ+ bi + bu +
(
xTu yi

)
(2.8)

In order to learn the parameters of the bias and the vector for each user, a least

squares optimization is done to minimize the error over the entries of the matrix V

that are known:

min
b?,x?,y?

∑
Vui 6=null

(
Vui − µ− bi − bu − xTu yi

)2
+ λ

(
‖xu‖2 + ‖yi‖2

)
(2.9)

These parameters can be learned using an alternating least squares strategy

where one matrix (X or Y) is fixed and the parameters of the other one are

adjusted [Bell 2007], or by an stochastic gradient descent technique popularized

by [Funk 2006].

An extension to include more information for users is added in [Koren 2008].

The SVD++ algorithm introduces another set of factors to the items to account for

the implicit information of user-item interaction. Each item is represented by an

extra vector zi that is used by the prediction rule to represent the items the user has

rated into her profile. Let R(u) the set of items the user u has rated, the prediction

under the SVD++ model is given by the following equation:

r̂ (Uu × Ii) = µ+ bi + bu + yTi

xu + |R (u)|−
1
2

∑
j∈R(u)

zj

 (2.10)

This model can be extended easily to account for other types of implicit informa-

tion different than using the information about the rated implicit action, a general

model that includes other implicit information based on the SVD++ criterion. Let I
be the set of implicit information about users present in the system, the generalized

version is given as follows:

r̂ (Uu × Ii) = µ+ bi + bu + yTi

xu +
∑

w∈I,j∈R(u)w

αwzwj

 (2.11)

Other extension to matrix factorization is introduced in [Koren 2011] to account

for the ordinal nature of the ratings: In addition to the parameters learned in

equation 2.9, a set rating thresholds are learned. Given the possible set of ratings

as O (e.g: O = {1, 2, 3, 4, 5}), for each user a set of thresholds (tu1 ≤ tu2 . . . tuO−1) is

used to map the prediction of an inner model X̂ui(Θ)→ R to one of the possible

ratings. Considering the probability of a prediction r̂ (Uu × Ii) taking a specific

value in O as P (r̂ui = Or|Θ) = P
(
X̂ui(Θ) ≤ Or|Θ

)
− P

(
X̂ui(Θ) ≤ Or−1|Θ

)
and

taking the probability of an estimation being less or equal than a specific value in O
as P (r̂ui(Θ) ≤ Or|Θ) = 1/(1 + exp(X̂ui(Θ) − tr)). The optimization criterion for

calculating the parameters is the following:

18 Chapter 2. Recommender systems: Related work and evaluation

max
∑

u∈U,i∈I,r∈O
lnP (r̂ui(Θ) = Or|Θ)− λΘ‖Θ‖2 (2.12)

The threshold parameters are learned using a stochastic gradient ascent strategy

maximizing the log likelihood of the parameters over the known ratings of the matrix

V .

Instead of focusing on the rating prediction task, other works optimize a ranking of

items for each user. Rendle et al. [Rendle 2009] propose to reconstruct a personalized

total order >u ⊂ I2 over the total set of items based on the partial views of >u seen

on the user-item interaction log, either by observing the ratings of matrix V to infer

a implicit action on the item or by using only implicit information. Taking Θ as the

parameters of the model (e.g Xm×k and Yn×k) and the function X̂uij(Θ) → R as

a arbitrary real function that describes the order between items i and j for user u

(e.g X̂uij(Θ) := xTu yi − xTu yj), the optimization criterion to calculate the parameters

is the following:

max
∑

Vui 6=null,Vuj 6=null,Vui>Vuj

ln
(
σ
(
X̂uij(Θ)

))
− λΘ‖Θ‖2 (2.13)

Where σ is the logistic sigmoid function. The learning algorithm is expressed

also as a stochastic gradient learning method.

A close approach to this one is presented in [Shi 2012], where the optimization

criterion is also based on a ranking metric; the Mutual Reciprocal Rank (MMR).

The mutual reciprocal rank evaluates the quality of a process that produces an

ordered list of responses (in this case a recommendation list ordered from the most

relevant to the least relevant). The MMR is defined as the inverse of the position of

the first correct result on the recommendation list. For a user u, her reciprocal rank

is defined as RRu :=
∑

i∈I
Ŷui
R̂ui

∏
j∈I

(
1− ŶuiI

(
R̂uj − R̂ui

))
where Ŷui is a binary

function that tells if item i is relevant for user u, R̂ui is the rank of item i for a

user u and I and indicator function that is 1 if the parameter is true or 0 otherwise.

The previous formulation of the reciprocal rank cannot be applied as a optimization

criterion using gradient methods since is non-smooth and non tractable due to the

multiplicative function across all items, therefore a substitution function has to be

applied. By approximating I
(
R̂uj − R̂ui

)
≈ σ

(
xTu yj < xTu yi

)
and 1

R̂ui
≈ σ

(
xTu yi

)
and reformulating the optimization criterion to avoid the product of sums using

the Jensen Inequality [Pentland 2001], the optimization criterion to calculate the

parameters is the following:

max
∑
u∈U

∑
i∈I

Ŷui

lnσ
(
xTu yi

)
+
∑
j∈I

ln
(

1− Ŷujσ
(
xTu yj − xTu yi

))−λΘ‖Θ‖2 (2.14)

Researchers such as [Adomavicius 2005] [Burke 2002] have noted the limitations

of these kind of systems in their predictive accuracy, in particular we remark the

2.1. Recommender systems 19

following problems:(1) Sparsity : In some systems data items are rated rarely, making

it difficult to find similarities between users or between items. For model based

systems there is also a problem since (2)New item problem: When a new item is

added to the system is difficult to predict its relevance because the user and item

profile has little or no information, this problem is critical in systems where items

appear and disappear frequently. (3)Scalability : As the number of items and users

increase, the neighborhood formation process is more demanding computationally,

also as vector representations increase their dimensionality, distance metrics to detect

similarities become less significant. On model based systems, the computational

cost of learning the model parameters as the number of users and items increase is

not negligible (4)Complexity and explainability : Although model based CF gives

better predictive performance than memory based CF, most of the times developer

prefer using memory based CF for two reasons: Model based CF is more complex;

adjusting parameters can be and time consuming and difficult to maintain. On the

other hand it’s difficult to find out what the latent dimensions in the model are

representing and it’s difficult to explain to the user how the relevance of an item

has been calculated.

2.1.3 Hybrid Systems (HS)

Generally speaking, CF systems have better predictive accuracy when compared to

CB systems [Pilászy 2009]. However in some scenarios the new item problem can be

critical, for example in online advertisement the underlying data item set is very

dynamic and items appear or disappear frequently (In [Guha 2009] is estimated

that between 30% and 40% of available ads in an ad network change from hour

to hour). Since collaborative information is not always available, a hybridization

between systems is desirable these cases.

Burke [Burke 2002] identifies six ways in which different techniques could be

integrated:

• Weight: Two or more recommender systems operate in parallel, the relevance

score given by each one is weighted into a final relevance score.

• Switching: If the confidence of a recommender system when calculating a

relevance prediction is not high, the system can switch to another recommender

system with higher confidence in its output.

• Mixed: This paradigm operates when presenting the user a list of relevant

items, instead of showing her a list originated by one recommender system,

the output of two or more recommender systems is mixed into a single list.

• Feature combination: Create new features with information from collab-

orative filtering systems, for example: Create a new set of features for CB

filtering describing items with a set of user ids that have liked the item.

20 Chapter 2. Recommender systems: Related work and evaluation

• Cascade: A recommender system is used to obtain a coarse-grained list of

possible items to recommend, then another system takes this list as an input

and does a refinement of the list.

• Feature augmentation: Augment the data model of one recommender

system with information used by another.

• Meta-level: A model of one recommender system is used as an input for

another, for example: A CB filtering system where collaborative agents select

a pool of possible items to be recommended based on aggregated profiles of

similar users [Balabanović 1997].

Hybridization is still an open problem in the recommender system community.

For weighted strategies, if correlation between the relevance prediction given by each

single recommender used is high, there is no use in aggregating their results on a

static basis. On the other hand a dynamic weighting switching strategy is proposed

where weights change according to the clarity of the user profile [Belloǵın Kouki 2012].

This findings indicate that for enabling a good hybridization strategy is better to

use recommender with heterogeneous paradigms. For example in the Google news

personalization system [Das 2007] three different systems are used: The first one

builds a memory based item to item model based on the co-visitation of news

items, the other two models are model based: A minhash algorithm that builds

clusters of users based on the overlap of common viewed items and a probabilistic

latent semantic indexing algorithm that learns a latent variable linking the behavior

between users and items. The final calculation of relevance is a weighted response

of the scores of the three models.

Other hybridization paradigms, as observed by [Burke 2002], use mixed content

based and collaborative strategies in order to avoid the problems registered on

pure content based and collaborative based strategies. For example the meta-level

algorithm collaboration via content [Pazzani 1999] makes recommendations using the

similarity between CB profile of users in order to run a CF memory based approach.

Model based CF using CB features has shown good results as well by using

the metadata information to adjust parameters of the optimization criterion. For

example in [Pilászy 2009] proposes to use a metadata transformation of item vectors

instead of learning the item latent factors Yn×k. In this system a matrix Cc×n where

each row Ci has the CB item profile and a matrix Wc×k of factors that transform the

metadata information into the latent features of a traditional matrix factorization

system, in this way the matrix is approximated as V u X(CW)T . The advantage of

this work is that for a new item, it suffices to multiply its ContentBasedProfile(Ii)

with the matrix W in order to calculate a relevance estimation. A similar approach

is exposed in [Gunawardana 2009] where a Restricted Boltzmann Machine learns

item pairwise factors tied to factors that depend on the content based profiles of the

items.

In [Gantner 2010] a CF matrix factorization model is applied obtaining the

latent factor matrices (Xm×k) and (Yn×k) optimized on the Bayesian personalized

2.2. Evaluating Recommender systems: Predictive accuracy and
scalability 21

ranking [Rendle 2009] (Equation 2.13). Then another regression is used to learn a

mapping φ (ContentBasedProfile(Ii))→ R1×k between CB profiles and the latent

factor matrix in order to infer latent factors from their CB specification using the

same Bayesian personalized ranking criterion. The mapping can be used to calculate

the relevance of an item with only CB information.

Despite the hybridization strategy, choosing the right hybridization depends

heavily on the available information and the knowledge domain in which information

is used, for example, [Pilászy 2009] observes that for movie recommendation even 10

new ratings for a movie are more useful than using their proposed hybrid strategy for

rating prediction, still they recognize that this effect could change on other domains

where CB systems perform better, for example on text based items such as news

recommendation systems.

2.2 Evaluating Recommender systems: Predictive ac-

curacy and scalability

The suitability of a recommender system can be evaluated by many properties,

for example: how well they predict the relevance of an item for a user (predictive

accuracy), for how many users or items the system is able to make a prediction

(coverage), how much an user can trust a recommender system, and how much

the recommendation system trusts that the recommendations it makes are relevant

(confidence). Among many other factors (A survey of evaluation metrics is presented

in [Shani 2011]), the predictive accuracy of recommendation systems is the most

important measure taken for evaluating the suitability of recommendation systems

and is used to validate most of the works.

In order to evaluate the predictive accuracy of a recommendation system, two

kinds of experiments exist: online and offline. Online evaluation of recommender

systems is done by diverging a small random part the recommender system requests

to one or many different systems and then compare their performance to a specific

metric [Kohavi 2009]. On the other hand, offline experiments calculate the prediction

accuracy metrics using an historic account of user-item interaction, where one part

of the historic log is used for training the predictive model (the V matrix) and the

rest of the log is used to measure the predictive accuracy of the model (A matrix T

with the test ratings information).

Other desirable quality of recommender systems is for them to have a high

Scalability. Scalability can be understood as the ability of the system to process

an increasing amount of work with respect to a desirable performance metric,

for example the predictive accuracy of the system. The predictive accuracy of a

recommender system can be observed as a quality of the system that depends on

factors that can increase easily such as the number of users and items in the system,

the amount of information available about users and items, the rate of arrival of

new items, the rate of arrival of information about the interaction between users

and items and the rate of recommendation requests made to the recommender. It

22 Chapter 2. Recommender systems: Related work and evaluation

also depends on other fixed factors such as the setup of the type of recommender,

particularly the choice of learning and prediction algorithm. In order to claim that

a recommender system is scalable, the relationship between the desired qualities of

the recommender system and the factors that affect it must be understood, in this

section we will elaborate on both of these evaluation criteria.

2.2.1 Predictive Accuracy Measures

Following the presentation made in [Shani 2011], predictive accuracy measures can

be classified under three broad categories: regression based, classification based and

ranking based metrics.

Regression metrics measure the predictive accuracy of the system by comparing

the difference between the rating a user gave to an item (Tui) and the predicted

rating (r̂ui). Regression metrics measure how well the recommendation system can

guess the rating a user would have given to an item. One simple metric to evaluate

the difference between predictions and true values across the test set is the Mean

Absolute Error (MAE):

MAE :=

√
1

|Tui 6= null|
∑

Tui 6=null

|rui − Tui| (2.15)

The Root Mean Squared Error (RMSE) is historically the preferred metric for

evaluating the predictive accuracy of recommender systems [Shani 2011], this metric

is more severe than the MAE because it penalizes heavily large differences and is

defined as follows:

RMSE :=

√
1

|Tui 6= null|
∑

Tui 6=null

(r̂ui − Tui)2 (2.16)

Classification metrics are based on how the users react to items shown to them

by the recommendation system. A recommendation system can be seen as an

item classifier selecting relevant items for a user from the set of possible items I.

Classification metrics measure how well the classification adapts to the choices of a

user. For testing classification metrics using the matrix T , it is considered that the

items that the user has selected (Tui 6= null) are relevant for her.

To calculate classification metrics, a confusion matrix is used Table 2.1. Once

a test is done, its results are divided into 4 sets: True positives (TP) is the set of

items that has been correctly classified as relevant, false positive (FP) is the set

of items that where not classified as relevant but where relevant for the user, false

negative (FN) is the set of items that where selected but where not relevant and

true negative (TN) is the set of items that where correctly classified as irrelevant.

It is important to mention that when considering only the elements the user has

selected as relevant the number of false positives is overestimated.

2.2. Evaluating Recommender systems: Predictive accuracy and
scalability 23

Categories/Selection Selected Not Selected

Relevant True positive (TP) False Positive (FP)

Irrelevant False Negative (FN) True negative (TN)

Table 2.1: Confusion matrix for categorization

Based on the confusion matrix, precision is defined as the fraction of items that

were relevant from the set of selected items:

PRECISION :=
TP

TP + FP
(2.17)

Recall is defined as the fraction of successfully retrieved items from the total of

relevant items.

RECALL :=
TP

TP + FN
(2.18)

Precision and recall are related since they both depend on the number of

successfully classified items, a system that tries to improve its recall by increasing

the number of selected items will cause a decrease in its precision. The most common

metric used to relate both metrics is the F-measure, calculated as:

F-MEASURE :=
2× PRECISION× RECALL

PRECISION + RECALL
(2.19)

Most of the times, recommender systems present an item list of limited length

to the user, in these cases it is useful to calculate the precision limited to a certain

amount of results, this measure is called Precision at N. Another important measure

the predictive performance on a result list is to plot the true positive rate vs the

false positive rate (ROC curves), the area under the plotted curve is called the area

under the curve (AUC).

Finally, rank based metrics evaluate how well the recommender system orders a

list of recommendations based on the user preferences. These evaluation metrics

are better suited to evaluate systems that offer a limited list of recommendations

since they penalize a recommender system that places non-relevant items on the first

positions of the recommendation list. Let Ju be a list of ordered recommendations

offered for user u,Ŷui is a binary function that tells if item i is relevant for user u

and R̂ui is the rank of item i for a user u the Discounted Cumulative Gain (DCG)

of the list is:

DCG :=
∑
i∈Ju

Ŷui

max
(

1, logb R̂ui

) (2.20)

The Normalized Discounted Cumulative Gain (NDCG) is expressed as the DGC

divided by the maximum DGC possible.

24 Chapter 2. Recommender systems: Related work and evaluation

Other used metric for evaluating ranked lists is the Reciprocal Rank (RR), which

only cares about the position in the list of the first relevant result. It is defined as

the inverse of the rank of the first relevant result:

RR :=
∑
i∈Ju

Ŷui

R̂ui

∏
j∈Ju

(
1− ŶuiI

(
R̂uj < R̂ui

))
(2.21)

The work presented in this thesis will evaluate its predictive accuracy using the

RMSE metric. The choice of favoring this metric among others is twofold: (1) The

proposed model adjusts its parameters using a regression that penalizes the square

loss between the predicted and known value, therefore the most suitable way to

evaluate its predictive accuracy is to use a regression metric such as the RMSE, and

(2) it is a popular metric used by the recommender system’s research community,

therefore by providing the results of the proposed predictive model in terms of the

RMSE can provide easily to researchers an idea of the predictive performance of the

proposed system.

In order to provide an intuition on what a value of RMSE means, different

algorithms presented in this chapter were trained and tested using the Movielens-1M

dataset from the GroupLens research group1 and the obtained RSME results on a

test set are present in Table 2.2. Although the presented methods are not trained

using optimal values, the results gives us valuable insights on how the RMSE metric

works. Opinions from users are nosiy, incomplete and changing; an ideal value of

RMSE should be 0 but state of the art methods only attain an RMSE of around

0.886 on this dataset. On the other side of the spectrum an algorithm that guesses

randomly a rating from the available ones obtains an high RMSE of 2.059. A middle

ground is a non-personalized method such as predicting the item average that has

an RMSE of 0.9878, this is compatible with the intuition that predicting popular

items is a good enough strategy, but personalized methods bring better predictive

performance to the users.

Algorithm Parameters RMSE TEST

Random 2.0593

Item Average 0.9878

User Based KNN k = 50 with Pearson Correlation 1.103

Item Based KNN k = n with Pearson Correlation 0.9948

Unbiased Factorization k = 10, γ = 0.01, λ = 0.001, iter = 300 0.9163

Biased Factorization k = 10, γ = 0.01, λ = 0.001, iter = 300 0.8887

SVD++ k = 20, γ = 0.001, λ = 0.005, iter = 212 0.8868

Table 2.2: RMSE accross different models on test set using Movielens-1M dataset

1http://www.grouplens.org

2.2. Evaluating Recommender systems: Predictive accuracy and
scalability 25

Scaling factors Non-scaling factors

Domain factors

Number of users
Number of items

User-item interaction information
User-item metadata

Recommendation requests Algorithm

Architecture factors
Computational power

Storage

Table 2.3: Scalability factors for traditional recommender systems

2.2.2 Scalability

As defined in [Duboc 2007],

Scalability is a quality of software systems characterized by the causal

impact that scaling aspects of the system’s environment and design

have on certain measured system’s qualities as these aspects are varied

over expected operational ranges. If the system can accommodate this

variation in a way that is acceptable to the stakeholder, then it is a

scalable system.

Taking the premise that the main desirable quality of a recommender systems is

to attain a high predictive accuracy while being able to respond to user requests for

predictions, the scalability analysis should explain how these qualities are governed

by the domain and infrastructure characteristics. Scaling aspects are the domain or

infrastructure characteristics that increase easily in the system, on the other hand

non-scaling aspects are domain or infrastructure characteristics that are fixed or

change in a nominal scale. In Table 2.3 a classification of the scalability factors

present in recommender systems is presented.

Information from users and items is considered a scaling factor due to the

availability of information sources. On the other hand recommender systems gather

and process user information on a centralized computational entity, under this

configuration, computational power and storage are considered an utility that can

scale up as needed. A scalability analysis of recommender system must vary different

recommendation algorithms and consider how both of the dependent variables react

to the scaling factors.

Broadly speaking, two phases are present in a recommendation algorithm (1)

training and (2) prediction. While the training task can be related to the predictive

accuracy of the system, the prediction task can be related to the recommendation

response rate. Memory based systems make a tradeoff between having little train-

ing but having a higher prediction computational complexity, on the other hand

model based systems go through an expensive training phase but their prediction

computational complexity is lower. In terms of the prediction accuracy, memory

based systems have no formal objective behind them, thus leaving them with lower

26 Chapter 2. Recommender systems: Related work and evaluation

accuracy measures when compared to model based ones. As seen in section 2.1,

each algorithm’s predictive accuracy depends on their optimization criterion since

they try to optimize a different predictive accuracy measures depending on the

task the recommender engages. Despite some correlations between regression and

classification metrics, there is no evident relationship between the regression and

classification accuracy metrics [Bellogin 2011].

For model based recommender systems, the training task of model based systems

is governed by the scalability of the training algorithm. Statistical learning theory

[Vapnik 1999] can be used to explain how the convergence of the training process

behaves in terms of the scalability factors involved in the recommendation process.

The objective of a learning task is to find the parameters Θ for a prediction

function fΘ (u, i) whose predictions generalize well on future examples. In order to

adjust the parameters, learning algorithms use a loss function ` (fΘ (u, i) , r) that

scores the prediction against the true value of the user’s choices r. The learning task

consist in finding the adequate parameters that minimize the expected risk function:

e (Θ) =

∫
` (fΘ (u, i) , r) dP (r) (2.22)

Since the distribution of the true user’s choices is unknown (P (r)), an approxi-

mation of the expectation of the error is calculated as the average loss across the

known information about users, known as the empirical risk function:

ê (Θ) =
1

|Vui 6= null|
∑

Vui 6=null

` (fΘ (u, i) , Vui) (2.23)

Intuitively, a model having a small empirical risk over the known information

about users should have a good predictive accuracy measured by the criterion it

minimizes. However, it is likely that the empirical risk is higher than the true

expected risk. Statistical learning theory establishes that the difference between the

the unknown expected risk and the measured empirical risk is bounded by a function

of the number of examples used to train the model (user-item interaction information)

and the complexity of the loss function used to train the model. The complexity

is measured using the Vapnik-Chervonenkis (VC) dimension [Vapnik 1999]. For a

non-negative loss function bounded between 0 ≤ ` (fΘ (u, i) , r) ≤ B, and letting h

be the VC dimension of the loss function, the difference between the empirical risk

and the expected risk is bounded by the following inequality with probability at

least 1− δ:

e (Θ) ≤ ê (Θ) +
Bε

2

(
1 +

√
1 +

4ê (Θ)

Bε

)
(2.24)

Where ε is defined as:

ε = 4
h
(

ln 2|Vui 6=null|
h + 1

)
− lnh

|Vui 6= null|
(2.25)

2.2. Evaluating Recommender systems: Predictive accuracy and
scalability 27

Asymptotically [Schapire 2012, p. 37], with probability at least 1−δ the inequality

can be aymptotically expressed as:

e (Θ) ≤ ê (Θ) +O

(√
h ln (h/|Vui 6= null|) + ln (1/δ)

|Vui 6= null|

)
(2.26)

This bound gives a tradeoff in the scalability factors considered for model based

recommender systems: the user-item information factor that is considered as an

scaling factor in recommender system and the VC dimension of the model that

is a non-scaling factor since it depends on the chosen recommendation algorithm

criteria. The error decreases as the ammount of information increases, but a complex

minimization criterion makes it harder to learn a low-error model.

One of the most popular algorithms for training the predictive model is the

Stochastic Gradient Descent Method (SGD) [Bottou 2010]. Taking the rating matrix

V , model parameters Θ, a function that uses the learned parameters to predict

relevance fΘ (u, i), a convex differentiable loss function ` (fΘ (u, i) , Vui, λ) , a learning

rate γ, and regularization parameter λ, the algorithm is presented as follows:

Algorithm 1: Stochastic gradient descent algorithm

Data: V , Θ, γ,fΘ (u, i),` (fΘ (u, i) , Vui, λ)

Result: Θ

initialize Θ := N (0, 1);

repeat

draw random Vui from V ;

foreach θ ∈ Θ do

θ ← θ − γ ∂
∂θ ` (fΘ (u, i) , Vui, λ);

end

until convergence;

return Θ

The computational complexity of the SGD algorithm in the training phase is

dominated by how many iterations are needed until a low generalization error is

achieved. This error E can be seen as the sum of three errors: The expected error

of using a class of hypothesis that approximates the optimal solution (Eapp), the

estimation error of minimizing the empirical risk instead of the expected risk (Eest)
and the optimization error linked to the time the optimization algorithm has been

running (Eopt) [Bottou 2008] [Bottou 2010]. Any learning task that wants to reduce

the expected error presents a tradeoff between a tolerance error factor ρ and the

number of training examples that the algorithm must see to attain a low error in

terms of the excess error E of the predictive model. Taking the previous bound in

Equation 2.26 and assuming a finite hypothesis size h, the asymptotic behaviour of

the error behaves as:

28 Chapter 2. Recommender systems: Related work and evaluation

E = Eapp + Eest + Eopt = Eapp +O

(√
ln (/|Vui 6= null|)
|Vui 6= null|

+ ρ

)
(2.27)

Assuming that the loss function used has strong convexity properties, the author

shows that the square root term in Equation 2.27 can be replaced by an exponent

α ∈ [1/2, 1]. Keeping into account that the three components of the error should

decrease at the same rate, the computational complexity in time of attaining the

lower bound of the excess error obeys the following asymptotic equivalences:

E ∼ Eapp ∼ Eest ∼ Eopt ∼
(

ln (/|Vui 6= null|)
|Vui 6= null|

)α
∼ ρ (2.28)

This means that SGC algorithm is a good optimization strategy for the recom-

mendation scenario because it adapts to the scaling factors. The computational

complexity of training a user-item example is O(1) and the expected time needed for

it to reach a determined error E is not determined by how many training examples

the model has seen but is inversely proportional to the expected error O(1/E) in

opposition to other optimization algorithms such as the normal gradient descent and

second order gradient descent. These algorithms incur in a more complex update

rule O(training examples) and the time to reach a determined expected error is

O(1
E1/α ln 1

E).

Another factor to take into account in the training phase is how new information

is included into the model. So far the presented models in this chapter train the

prediction model in a bach process where the matrix of user-item information is

static. In order to include new user-item information, some systems can manage

to re-calculate the whole model every once in a while with the updated user-item

information. However, in systems where information arrives at a fast rate, they leave

a big part of the user-item interaction data outside the prediction model between the

batch processes. For example Amazon on its selling peak sold 426 items per second1,

clearly a different strategy is needed in order to keep up to date the knowledge

model.

For neighborhood models updating the user-user or item-item similarities each

time a new user-item interaction arrives to the system is not feasible since it has

a quadratic complexity along users or items. For user-based systems (Equation

2.4), [Papagelis 2005] proposes to re-balance user similarities based on the Pearson

similarity (Equation 2.5) as each new example arrives in the system. A shortcoming

of this approach is that for each user-item interaction the system has to check how

other users have interacted with the current item in the new information. Authors

show that there is no loss of predictive accuracy by using this method.

For model based systems, an approximation of new user and item profile from

an already trained model can be done for systems based on the SVD decomposition

1http://article.wn.com/view/2013/12/26/Amazon_says_it_sold_426_items_a_second_on_

Cyber_Monday/[Accesed May 2014]

http://article.wn.com/view/2013/12/26/Amazon_says_it_sold_426_items_a_second_on_Cyber_Monday/
http://article.wn.com/view/2013/12/26/Amazon_says_it_sold_426_items_a_second_on_Cyber_Monday/

2.3. Conclusions 29

of the user-item matrix (Equation 2.7). The folding-in technique is presented

by [Sarwar 2002] takes advantage of the basis represented by matrix Σk×k to

project a user profile Vu(1 × n) into a new row of matrix U(m × k) as follows:

U ′u = Vu1×nV
∗
k×nΣk×k. Since this approximation is not exact as the basis for users

and items are not kept up to date, eventually the whole recalculation process has to

be applied on the whole user-item representation.

Finally, in [Luo 2012] an extension of the biased model (Equation 2.8) is presented

to incrementally adjust the weights of the average, user an item biases and the latent

factors of users in an incremental fashion as new user-item information arrives to

the model. The training rule for updating the parameters is modified in order to

remove the sequence dependency that the update rule of the gradient descent method

imposes on the update rules. The update rule is expressed as an increment over the

initial value of the parameter at each iteration, and at the end of the iteration the

state of the parameters is updated and saved for future use. When a new user-item

information arrives, a reconstruction of the past iterations for the user and item

latent vector is made based on the saved values along the batch training process. A

shortcoming of this approach is that it needs an space complexity t times bigger

than the non-incremental approach where t is the number of iterations needed for

the batch-trained model to converge. For the biased model the space complexity is

of O(t ∗ n ∗ k + t ∗m ∗ k) where n is the number of users, m is the number of items

and k the size of the latent factors.

2.3 Conclusions

As seen in Table 2.4, computational complexity of neighborhood systems training

task is fixed to the number of users (m) and items (n) in the system when a

precomputation of similarities between users or items in the system is calculated.

This precalculation process has the cuadratic complexity of comparing every user or

item of the system with each other, times the complexity of the similarity metric

used. Similarity metrics such as the Pearson correlation (Equation 2.5) are linear

on the maximum number of shared ratings between users (p) or between items (q).

Assuming that the similarities between items or users are stored in an ordered fashion,

the complexity of the prediction phase in memory based systems is dominated by the

process of neighborhood formation (selecting from the complete profile information

which which users or items have that rating in common) that has a complexity of

O(n) or O(m) and the calculation of the weighted average on the N selected users

or items has a complexity of O(N).

The complexity of model based systems training phase using the SGD algorithm

is dominated mainly by the number of iterations needed to achieve a low expected

error of the model (t). As seen in the previous section, the number of iterations

doesn’t depend on scaling factors such as the ammount of user-item data, therefore

when taking into account the scaling factors of the recommender system, this

algorithm scales well. Other important factor in the complexity of the training

30 Chapter 2. Recommender systems: Related work and evaluation

training prediction

User based (Eq. 2.4) O(m2p) O(m)+O(N)

Item based (Eq. 2.6) O(n2q) O(n)+O(N)

Bias model (Eq. 2.8) O(k ∗ t) O(k)

SVD++ (Eq. 2.10) O((k +m) ∗ t) O(k +m)

ORDRec (Eq. 2.12) O(|O| ∗ t) + base O(|O|)+ base

BPR (Eq. 2.13) O(2k ∗ t) O(2k ∗m)

CLIMF (Eq. 2.14) O((ñ2m+m) ∗ k ∗ t) O((ñ2m+m) ∗ k)

Table 2.4: Time complexity of CF algorithms for prediction of relevance on all

available items

Figure 2.4: Predictive performance of svd models accross dimensions

is the calculation of the gradient of the loss function used for the optimization

procedure: For the biased model the calculation of the gradient of the optimization

criterion with respect to each of the parameters is O(1), therefore for an iteration

its complexity is O(k). The SVD++ criterion has an added complexity of adding

the extra vectors zj of the items the user has interacted to the user profile, thus the

complexity of going through this information is O(m).

In order to illustrate the tradeoff between these factors, the biased SVD (Equation

2.8) and the SVD++ (Equation 2.10) models are compared using the Movielens-10M

dataset from GroupLens research group1 by measuring the generalization error

of the model with the RMSE predictive accuracy metric (Equation 2.16). The

SVD++ model has a bigger hyphotesis class than the SVD model since it has to

adjust the extra parameters to account for the implicit information, therefore it has

better predictive performance than a biased model when completely trained (Figure

2.4). However, as seen in the bounds of the iteration steps needed to achieve a low

generalization error (Equation 2.27) it takes more iterations to adjust its parameters

to a low generalization error (Figure 2.5).

1http://www.grouplens.org

2.3. Conclusions 31

Figure 2.5: Predictive performance of svd models accross iterations

Dataset Users Items Sparsity Train Iters RMSE Test

Movielens-100k 943 1680 6,31% 15 (2.20) 300 0,92952

Movielens-1M 6040 3698 4,47% 152,71 (18.20) 142 0,88598

Movielens-10M 69878 10676 1,34% 467,8 (64.84) 28 0,87028

Table 2.5: Running time of the SVD++ algorithm accross different datasets

32 Chapter 2. Recommender systems: Related work and evaluation

Model Complexity of update rule

User based (Eq. 2.4) O(mp)

SVD model (Eq. 2.7) O(k3)

Bias model (Eq. 2.8) O((|Ru|+ |Ri|) ∗ t ∗ k)

Table 2.6: Time complexity of single update rule in incremental CF

Also for illustrative purposes, the running time of training for different sized

datasets is shown in Table 2.5. The SVD++ algorithm was trained with k = 10,

γ = 0.001 and λ = 0.005 for differently sized versions of the Movielens dataset (100k,

1M and 10M ratings) for maximum 300 iterations or until convergence. The SVD++

implementation was taken from the open source Mahout implementation 2 that ran

on a machine with 16GB of RAM and an Intel Core i7 with 8 processors. The times

reported in the table are in minutes, and the time in parenthesis is the time that

the system spend calculating the error on the dataset while training. As expected

as the number of users an items present in the system, the running time increases

proportionally to the number of users(m) in the system.

As the ranking task is more difficult than rating prediction, the BPR and CLIMF

models have more complex models than the rating prediction ones. The BPR model

uses a function of the parameters that predicts the preference of item i over item

j for a user u. Letting this function to be described as a matrix factorization

problem (e.g X̂uij(Θ) := xTu yi − xTu yj) the gradient calculation complexity of this

function is twice the one of the base model. On the other hand the complexity of

the CLIMF gradient calculation is dominated by the ammount of observed positive

interactions Ŷui = 1 between users and items, letting ñ be the average number of

positive interactions for each user, the complexity of calculating the gradient with

respect to each parameter of the model is O(ñ2m+m).

Finally, the complexity of updating the data model for a single new example rui
without reconstructing the whole model is presented in Table 2.6. The user based

model of [Papagelis 2005] has to re-balance for all users the pre-computed similarity if

they share a common rating, this has a complexity of O(mp) where p is the size of the

rated elements of the active user, usually p� n. For the SVD model [Sarwar 2002]

the multiplication of the folding-in strategy has a complexity of O(k3). Finally for

the update strategy of the biased model [Luo 2012] the system has to iterate over

the known ratings of the user and recreate for each iteration of the batch process

how the user latent feature would have changed, including how the item latent

factor would have changed. The complexity of iterating t times over the known

ratings R(u) and updating each coordinate of the latent factors is O(|R(u)| ∗ t ∗ k).

Since the same process is done for the active item iterating over the known ratings

of the item (R(i)), the final complexity of a single update is O((|R(u)|+ |R(i)|)∗t∗k).

2https://mahout.apache.org/

2.3. Conclusions 33

Synopsis and first design choices

In this chapter the recommendation problem was explained. A classification

of approaches was presented and two factors for evaluating recommendation

systems were explained: Predictive accuracy and scalability. Finally, an

explanation on how the tradeoff between the scalability of the system and its

predictive performace was presented. In the light of this explanations, some

design considerations can already be made about the proposed model of this

thesis.

In this thesis, an hybrid predictive system will be developed by weighting

the predictions made by a content based and a collaborative filtering system.

Rather than using a memory based model, both systems will use a model based

learning strategy. Despite their higher training complexity, the advantage of

model based systems is twofold: By having a formal objective of minimizing an

expected predictive accuracy measure, they perform better than memory based

ones when compared on these measuresa, moreover, as user-item information

scales the predictive performance of the model increases as well. Finally,

comparing the complexity of the model on the prediction phase, collaborative

filtering model based systems have a better scalability since the dimensionality

of the models k is usually much less than the ammount of neighbors N for the

rating prediction task. This is convenient in systems where the requests for

predictions scale. A clear disadvantage of model based CF is the complexity

of their update process when new user-item information arrives, this concern

will also be adressed in Chapter 4.

aValidation of offline training and adjustment should be validated also on real life settings,

understanding the relationship between offline and online measurement of the predictive

accuracy of recommender systems is still an open issue (see [Amatriain 2013]).

In the next chapter, privacy will be explained as a factor for evaluating recom-

mender systems. While the predictive performance and scalability of a system are

usually in mind when designing recommender systems, the privacy of users is not.

Considering privacy among predictive performance and scalability will introduce

new requirements to the model based learning system that will be proposed and

will be discused further in Chapter 4.

Chapter 3

Privacy: a factor for evaluating

recommender systems

Contents

3.1 Privacy and recommendation 36

3.2 Designing privacy-enabled recommender systems 37

3.3 Identified attacks on privacy-enabled recommender systems 40

3.4 State of the art on privacy-enabled recommender systems . 45

3.4.1 Centralized approaches . 46

3.4.2 Client-side approaches with no anonymity on p2p networks . . 47

3.4.3 Client-side approaches with no anonymity with aggregation on

server . 49

3.4.4 Client-side approaches with anonymity on p2p networks 51

3.4.5 Client-side approaches with anonymity with server aggregation 53

3.5 Privacy and scalability . 57

3.5.1 Scalability of random noise generation 57

3.5.2 Scalability of homomorphic cryptosystems 59

3.5.3 Scalability of heuristic-based perturbation 64

3.6 Conclusions . 65

Privacy is a factor that is rarely considered in the design of recommendation sys-

tems. In this chapter, it will be shown that privacy-enabled personalization systems

impose restrictions on the architecture of the system, the amount of information

gathered about the user and the algorithms available for training the prediction

model and calculating relevance predictions in order to bring some level of privacy to

their users. Privacy impacts two desirable qualities of recommender systems: their

predictive accuracy (Section 2.2.1) and their scalability (Section 2.2.2). To present

how these three factors are related, this section will be focused on the restrictions

that privacy-enabled system impose on the predictive performance of recommender

systems. First, the risks to user privacy present in recommender systems will be

introduced (Section 3.1), second, a classification of techniques used to address this

concerns (Section 3.2), and third, a review of the works made so far based on the

classification (Section 3.4).

36 Chapter 3. Privacy: a factor for evaluating recommender systems

U1

f1 fk

Uu

log files

item profiles

I1

f1 fk

Ii

Recommendation component

Interaction log
component

feedback

item suggestions
Training
component

Prediction
component

user profiles

Recommendation server

Figure 3.1: Traditional recommender systems

3.1 Privacy and recommendation

As seen in section 2.1, recommender systems have been used successfully in numerous

scenarios ranging from movies [Netflix 2013], electronic commerce [Linden 2003], and

more dynamic environments such as news [Das 2007] and videos [Davidson 2010],

where hybrid approaches have shown to be least vulnerable to the perennial problems

identified in literature.

Despite their success, all these approaches have one thing in common: Recom-

mender systems gather information about users and store it in a centralized entity,

then they apply heuristics or data mining techniques to learn the users’ interests with

the purpose of detecting which elements are relevant for the user. Figure 3.1 gives an

overview of the components of a traditional recommendation system: The interaction

log component is in charge of gathering feedback information about the interaction

between the users and items in the system; The recommendation component is in

charge of two tasks delegated onto two components: (1) The training component

learns the parameters of a predictive model by going through the user-item historic

interaction kept in the system logs, and (2) the prediction component that actively

searches among the database of available items the most relevant ones for the user

based on the learned parameters (user and item profiles). Both user-item feedback

information and the profiles of users and items in the system are kept under the

direct administration of the organization.

Users trust that the information submitted or registered about them will be used

for filtering purposes, however their information can be used for purposes different

than filtering, which is considered by [Lam 2006] as an exposure risk. According

to [Foner 1999], keeping user profile information on a centralized entity can lead to

exposure risks configured in five ways:

• Deception by the recipient (misleading service): The system can lie

about its privacy policies and trick users to reveal personal information, using

it later for a different purpose from profiling for advertisement display. For

example selling the information or sharing it with other organizations.

3.2. Designing privacy-enabled recommender systems 37

• Mission creep: Initially the policy of usage of personal information is defined

clearly by the system, but later the systems expands its goals in a previously

unforeseen manner, changing the use of personal information for other purposes

related to the new goals of the organization.

• Accidental disclosure: Information about users can be made available

accidentally, for example leaving private information on a server that can be

accessed by a search engine over the Internet.

• Disclosure by malicious intent: Storage servers’ security can be breached

and users’ personal information can be stolen.

• Forced disclosure: Systems must disclose the information for legal reasons.

For traditional recommender systems, the logs the recommendation system keeps

reveal the tastes of the user by the choices the user has made (which items the

user has seen and how she has rated them). At first sight, it can be argued that

if this information is usually revealed by users, trend supported by social network

sites, however in these cases the user is in control of what information is being

revealed. The aim of privacy-enabled recommendation systems is to give users tools

to protect their privacy and keep the choice to themselves if they want to reveal

their information.

Privacy allows users to decouple themselves from their actions. On an electronic

commerce website, users trust that their opinions are used by the organization for

helping them, however the exposure of their opinions on items can bring various

potential harms [King 2010]. For example (1) Users can be targets of unwanted

commercial solicitations (spam); (2) Users can be victims of identity theft and fraud;

and (3) Exposure of personal information increases the user’s risk to be subject of

unfair commercial practices.

In some cases users want to keep their actions or opinions private since they can

be contrary to their reputation. Opinions on items might reveal political inclination,

sexual orientation, physical or mental treatments the user is taking or religious

inclination of a particular user. Rather than being a nuisance, the breach of this

information can be prejudicial to users and even bring them physical trouble.

3.2 Designing privacy-enabled recommender systems

A privacy-enabled recommender system is a recommender system that offers changes

in its architecture and algorithmic methods in order to protect the privacy of users.

Privacy engineering [Spiekermann 2009] provides a guideline on the factors that

must be considered when building a privacy-enabled systems. Two approaches are

considered (1) privacy by policy and (2) privacy by architecture. The former approach

manages user privacy by adhering to fair information practices defined by regulatory

entities. The latter enforces a change in the architecture of traditional system in

order to address the privacy concerns of the stakeholders of the system, particularly

38 Chapter 3. Privacy: a factor for evaluating recommender systems

introduces changes in the mechanisms in charge of (a) user data collection, (b) user

data storage, and (c) user data processing.

In [Toch 2012] and [Jeckmans 2013] a series of strategies for enabling privacy for

personalization and recommender systems are described according to their approach.

For policy-based strategies, the following tools are considered:

• Privacy through law and regulation: Government and governing bodies

regulate the operation of electronic systems that process personal data. This

includes personalization systems such as recommender systems. On their

regulation they have enacted acts for protecting user privacy, for example the

European Commission has proposed a modification on their guidelines to rein-

force user data protection for unauthorized usages [European Commission 2012]

.

• Privacy through awareness and user control: Users are given tools for

managing their privacy, enabling them to easily realize the conditions and

policies of their information usage. For example the W3C Platform for Privacy

Preferences [Cranor 2002] recommendation facilitates information systems to

inform their users about the privacy policies implemented on their data use.

These practices allow users to define their privacy preferences, enabling them

to restrict the use of their information and hide or obfuscate the information

registered about them.

Policy-based approaches have the advantage of being easily integrated to existing

business models, in terms on their efficiency protecting the users against the exposure

risks, some of them can be avoided since the adherence to the policies of the system

be verified thanks to technical audit mechanisms. However, this is not sufficient to

avoid the considered exposure scenarios: mission creep and disclosure of information

by malicious intent or by forced disclosure.

Architectural-based strategies are placed on top of policy-based ones, changing

the architecture of the system in order to increase the privacy guarantees of the

users. [Kobsa 2007] [Toch 2012] and [Jeckmans 2013] have identified the following

architectural-based strategies for enhancing user privacy in personalization and

recommendation systems.

• Pseudonymous personalization: The simplest strategy that has been

adopted for privacy reasons is to allow users to use a pseudonym instead of

their real information for accessing personalization services. By using this

strategy systems attempt to reduce the exposure risk since the attacker can’t

be sure about the real identity of the user.

• Anonymization: These techniques appeared motivated by the problem of

protecting individual privacy when operating data mining techniques on a

database of user information. In order to obscure the relationship between

user information and their real identity, perturbation techniques are used to

remove or obfuscate personal information gathered by the personalization

3.2. Designing privacy-enabled recommender systems 39

system without damaging the structure of the underlying data. These

techniques give the users a ”plausible deniability” that the information found

in their profiles is really from them. There are many options for perturbation

or obfuscation in literature (see [Bakken 2004]) We divide these techniques on

four groups : (1) Heuristic transformations (2) k-anonymity [Sweeney 2002]

(3) Random perturbation techniques [Agrawal 2000], and (4) differential

privacy [Dwork 2008]:

Heuristic transformations modify the information about users based on

heuristics designed to keep the structure of the data for the learning algorithm

and making it difficult to attackers to discover the original data. For example

by substituting some information of users’ profile to fixed values or swapping

data from similar profiles.

k-anonymity modifies the information of users avoiding to disclose in the data

with quasi-identifiers. Quasi-identifiers are a combination of attributes that if

known can easily be correlated with other sources to obtain the real identity

of the user. In order to hide the relationship between the real user and the

information from the quasi-identifiers, a guarantee is introduced into the data

so at least k-users must share the same information of quasi-identifiers present

in the data.

Random perturbation techniques distort the values registered in the profile

by adding some noise to them with values from some distribution, making it

difficult for an attacker to correlate the values present in a user profile with

information from other sources. In [Agrawal 2000] noise from a Uniform and a

Gaussian distribution are added to user information. Assuming each feature

or dimension of the user profile information as a random variable the authors

show that the original distribution can be reconstructed using the perturbed

values, thus being able to apply the data mining learning algorithms on the

learned information

Differential privacy builds on the work from random perturbation strategies

providing formal guarantees to the privacy offered to users. Differential

privacy [Dwork 2008] introduces the required amount of noise taken

from a laplacian distribution to a function of the private information to

guarantee that the presence or absence of a single user in the complete

database of users doesn’t change significatively the answer of the function,

so no attacker that accesses the database can be certain that a particu-

lar user participates in the database. Differential privacy parametrizes

the amount of noise that should be added to the user profile based on

a privacy budget ε and the sensitivity of the function used over the user data ∆f

40 Chapter 3. Privacy: a factor for evaluating recommender systems

• Client-side personalization: Motivated by the fact that the exposure risks

are a consequence of a centralized entity managing the information about

users, client-based personalization systems move the information gathering,

processing and storage from a centralized entity to each user device. Generally

speaking existing CB filtering techniques have no problem operating with

this paradigm [Kobsa 2007] even with elaborate models. However given the

limitations of CB filtering, CF or HS are preferred over CB.

• p2p architectures: One of the ways in which CF or HS can operate under

client-side personalization is to allow the exchange of user profile informa-

tion between client-side agents. One of the ways this can be achieved is by

connecting users to each other by a network across the client devices. The

information from the community of users allows the client-side agents to use

modified versions of CF or HS algorithms. One of the disadvantages of this

approach in terms of exposure risks is that the gathering of user information is

replicated over many users again privacy risks into the system. Initially these

architectures were introduced motivated by scalability concerns [Tveit 2001],

and later mechanisms for keeping privacy were added. For the sake of respect-

ing the privacy of the users when collaborating between agents, user profile

information is often protected before being exchanged by : (1) The use of

pseudonymous and anonymization techniques and (2) cryptographic tools such

as homomorphic encryption.

• Aggregation on server: Other way in which CF or HS systems can operate

under client side personalization is by introducing an aggregation server that

makes available community information that is used by client-side agents to get

information about the preferences of other users. The aggregated information

is either already public information an aggregation calculated collaboratively

between the client-side agents or information that is sanitized and trusted to

the aggregation server. As well as in distributed architectures, user profile

information can be altered before leaving the user agent by anonymization

and cryptographic strategies.

In the next section, the attacks on user privacy on architectural enabled recom-

mender systems are presented.

3.3 Identified attacks on privacy-enabled recommender

systems

A privacy breach in a recommendation system is configured when an attacker learns

something about the user that was previously unknown to her. In the traditional

centralized case (Section 3.1) the risks of a privacy breach are high since the whole

log of user-item information can be exposed by means of a configuration of an

exposure risk.

3.3. Identified attacks on privacy-enabled recommender systems 41

Architectural-based strategies to preserve the user’s anonymity have their short-

comings as well. The use of pseudonyms and anonymization techniques have been

studied as a way of publicly disclosing information about users without exposing

”personal identifiable information”. In this way if a exposure risk is presented, users

can claim ”plausible deniability” about the information present in their exposed

profiles.

Unfortunately, these strategies fail on micro-data, that is the log that registers

the user-item interaction. Because data information of users is sparse, users are

statistically far from each other as evidenced by [Narayanan 2008]:

Let supp (u) be the set of elements user u has rated and sim (u, v) a similarity

measure between users u and v defined as:

sim (Uu × Uv) =

∑
i∈I sim (Vui, Vvi)

|supp (u)
⋃
supp (v)|

(3.1)

Where sim (Vui, Vvi) is the similarity of opinions of users u and v about item i

which is usually an identity function that is one if the opinions are close within a

certain threshold.

As seen in Figure 3.2, when calculating the similarity across all users in different

datasets using the sim function, the distribution of nearest-neighbor similarities

shows that the majority of users are far from each other. For a threshold of 2 in

the Movielens-100k and Movielens-1M less than 1% of the users have a similarity

of 0.5 (Modify with threshold 1 on all datasets). This means that if an attacker

knows some auxiliary information about the user (a subset of preferences previously

known, for example finding out some of their preferences on items from a social

network) there is a high probability that by correlating the auxiliary information

with the anonymized information with the similarity function, that is calculating

sim (Uu, aux (Uu)), the attacker can de-anonymize the masked or perturbed record.

Narayanan et Al. [Narayanan 2008] show that by using a modified version of the

sim function, a user can be de-anonymized with little auxiliary information and

even incorrect data.

Since there is no algorithm that can guarantee that user will be undetectable

with the help of an arbitrary amount of auxiliary information [Dwork 2006] and

introducing increasingly higher amounts noise or perturbation into the user profile

can damage the utility of the information being calculated from the data, the

objective of privacy-enabled recommender systems is to bound the necessary auxiliary

information about the user in order to make it hard for an attacker to link their

auxiliary information with the observed information about the user. One direct

work of trying to reduce the risk of user exposure is not to protect individual privacy

but to release a statistical function of the private data that doesn’t change much

if a user takes part or not in the database. [McSherry 2009] publishes a public

item covariance matrix using aggregation functions calculated from the original

item profiles. This noise is proportional to the sensitivity (maximum variation of

the range of the function) of the aggregation functions, the noise is used to bring

differential privacy guarantees to the published information.

42 Chapter 3. Privacy: a factor for evaluating recommender systems

Figure 3.2: Distribution of similarities with nearest neighbor using sim function

3.3. Identified attacks on privacy-enabled recommender systems 43

Figure 3.3: Accuracy of the similarity-list attack using background knowledge

information

Even though the differential privacy guarantee protects the privacy of a user,

one shortcoming of anonymization strategies is that the masking of the user profile

is usually designed for a one-shot perturbation. This means that a trusted curator

is in charge of gathering user information and then submitting it for anonymiza-

tion. In recommender systems the user profile is constantly changing and one-shot

anonymization has to be adapted since adding multiple times perturbation to the

same data leads to a great degradation of the stored information about the users,

affecting the accuracy of the personalization system. If the information is not per-

turbed continuously, the continuous observation of publicly aggregated information

can be used as an attack vector for user privacy as shown by [Calandrino 2011].

Recommender systems usually disclose aggregated information to users in order

to help them find new items. For example the IMDB website 1 discloses for each

movie a list with similar items, Amazon 2 reveals related products when displaying

the page of an item. Generally speaking, it is common for these systems to reveal

item-similarity lists for each item in the system. By continuously observing the

item-similarity list of the items that belong to the auxiliary information of an user,

an attacker is able to correctly infer that a target item is in the user profile if the

target item appears or moves up in the item-similarity lists for the items in the

auxiliary information of the user.

In order to illustrate how this attack works, the MovieTweetings dataset

[Dooms 2013] was used to simulate the attack. This dataset collects informa-

1www.imdb.com
2www.amazon.com

44 Chapter 3. Privacy: a factor for evaluating recommender systems

tion from ratings given to movies and series given their IMDB3 link on twitter. By

the time of retrieving the dataset4 it had 248749 ratings of 28032 users on 16458

items. The dataset was ordered chronologically and split into two parts: The first

part took the first 360 days of the dataset and from this part 12 users that had

at least 100 positive preferences were selected at random. Once the users were

selected, 50 positive preferences for each user were selected from the whole dataset

as auxiliary information. A similarity-item list was created for each item in the

auxiliary information of the users for different periods of time: one for the first part

of the dataset and then one for each period of 7 days. The similarity item list was

created using the 20 most similar items to the active one using the cosine similarity

of their profiles. If between two adjacent periods an item increases its position in

at least one list of the auxiliary information of an user, the item is considered to

be marked as inferred by the attack considering the popularity of the background

information item. In Figure 3.3 the results of the average accuracy of the attack on

the selected uses is shown for different thresholds of the auxiliary item popularity.

As expected, the attack has high accuracy when observing the similarity-lists of

unpopular items in the auxiliary information.

3www.imdb.com
4As accessed on 15 May 2014

3.4. State of the art on privacy-enabled recommender systems 45

Synopsis and privacy design choices

In summary, the use of pseudonymous and anonymization in centralized

approaches help to reduce some of the exposure risks but are no sufficient.

Even if users use pseudonymous instead of their real identity, an attacker

that obtains user background information can correlate it with auxiliary

information and expose the true user information. Anonymization techniques

have shown results for one-shot schemes, but has to be carefully integrated

in continual approaches since too much perturbation of the data can turn it

unusable, other disadvantage is that it doesn’t work well on high dimensionality

information and anonymization techniques via heuristic approaches offer

no formal guarantees in their capability to stop attackers from correlating

information with other sources.

Client-side profiling is a good strategy for avoiding exposure risks but on its

own can only be used for CB filtering, to solve this problem two strategies

are used: p2p architectures and server aggregation. Sharing unmodified

profile information with peers or with an aggregation server reintroduces

(although at a lesser scale) exposure risks since each peer or aggregation

server is vulnerable of the same risks of centralized entities. For this reason

client-side methods protect the user privacy by (1) applying anonymization

(perturbation, randomization or substitution of profile information) techniques

used in centralized approaches before exchanging it with other entities, and (2)

cryptographical measures to calculate information-secure operations without

revealing the information of the input.

For the first strategy, it was shown in this chapter that a perturbed version

of the profile can be easily correlated with auxiliary information, creating a

privacy breach. It is also necessary to take into account that perturbation

should be consistent in time in order to protect the user from a continuous

supervision of its interactions with their peers. Solutions for protecting

statistical functions of data under continual observation have been developed

[Dwork 2010] but there are no works yet for protecting individual privacy.

For the second strategy no attacks have been identified, however as it will be

discussed in Section 3.5 the scalability requirements of these types of solutions

are not trivial.

3.4 State of the art on privacy-enabled recommender

systems

In this section a survey of privacy-enabled recommender systems is presented. The

works are classified based on architectural decisions that were made to keep the

privacy of the users. First the centralized approaches that exist to keep user privacy

will be presented, next the works that use a client-side agent will be shown. Since

client-side agents can interact with each other on a p2p with or without a central

46 Chapter 3. Privacy: a factor for evaluating recommender systems

Privacy-enabled RecSys

Centralized Client-side

p2p Aggregated on server

Figure 3.4: Privacy-enabled recommender systems classification

Work Anonymization

technique

Possible RS algorithms

[Parameswaran 2007] Heuristic transfor-

mations

User based similarity recom-

mender

[Chen 2012] k-anonymity SVD based recommender

[Zhao 2011] Heuristic transfor-

mation

Item to item similarity

[McSherry 2009] Differential privacy Item to item similarity

Table 3.1: Centralized sanitation works for RS

server, they will be shown in separated section. Furthermore, if the client-side agent

applies any masking, modification or perturbation of the user profile we will define

it as anonymized, thus the 5 categories presented in this section. In Figure 3.4 the

categories in which the related works are classified is shown :

3.4.1 Centralized approaches

Centralized approaches (Table 3.1) have studied how transform a database of user

profiles already collected in a centralized entity for the purpose of publishing it

without breaching user privacy. Particularly in the domain of recommender systems

this problem has been studied for extracting useful information from the database

of user profiles for recommendation purposes.

In [Parameswaran 2007] a series of Heuristic transformations are applied for

each individual user profile in order to obfuscate it. The user profile information

is substituted with information from the nearest neighbors based on a similarity

metric, then a geometric transformation is applied to the user profile information

before releasing it.

Other similar approach using a transformation based on k-anonymity is presented

in [Chen 2012]. Here user profiles are first transformed under a smaller dimensionality

using SVD, clustered using a modified version of the k-means algorithm and then

for each cluster a user profile is published, where each weight in the user profile is

the average value given by the members of the cluster.

In [Zhao 2011] a list of each item’s neighborhood and the sparsity of the dataset

are published, this information is used to boost the predictions of another recom-

3.4. State of the art on privacy-enabled recommender systems 47

mendation system that uses the same items.

Finally, in [McSherry 2009] a transformation based on differential privacy is

proposed to build a item to item covariance matrix that can be used for privacy-

preserving recommendation. The covariance matrix is built based on aggregations

from the original item profiles, where noise from an exponential random variable is

added proportional to the sensitivity of the aggregation functions.

3.4.2 Client-side approaches with no anonymity on p2p networks

Client-side profiling for recommender systems was first introduced for scalability

purposes, in [Tveit 2001] user profile vectors are broadcast over a p2p network

and client-based agents cache the most similar vectors to operate a user-based

collaborative filtering algorithm using the cached vectors. With the scalability

concern in mind, in [Han 2004] the database of user profiles is distributed over a

distributed hash table (DTH) which keeps the votes for an item in the same bucket

(or peer) so its easier for each peer to publish and find the appropriate ratings for

applying a CF locally.

For systems like the one described in [Tveit 2001], one of the concerns of these

systems is to make it easier for peers to find similar users on the network and reduce

the number of messages in the network while keeping an up to date view of relevant

information. Gossip based protocols are used to build an overlay network to connect

each peer to other peers that provide her a view of the needed information for

recommendation. One popular gossip algorithm to build a p2p overlay network is

the T-MAN protocol [Jelasity 2009], this protocol uses a similarity measure to keep

similar users connected in the network and occasionally contacts a peer in order to

exchange peer information and re-configure the peer connected list with the most

similar users based on the used similarity metric.

In [Kim 2008] a protocol similar to the T-MAN one is used to actively keep a

list of most similar users for each peer using the euclidean similarity metric between

their user profiles as the similarity to build the neighborhood. In [Castagnos 2007]

users select which local information will be used to build a public profile. This

public profile is used to calculate similarities between peers in a similar way to

the T-MAN protocol, local predictions are made using a user-based CF system

based on the peer’s public profile. In [Kermarrec 2010] each user is connected

initially to a set of peers found by the T-MAN algorithm using their user profiles

similarity. To include information from other users different from the peers directly

connected to the agent a random walk strategy over the peers of the active user

is used and prediction is weighted accordingly to the probability of visiting the

user and the similarity. In [Ormándi 2010] the T-MAN algorithm is applied with

some variations. The authors experiment with 4 different configurations of the

T-MAN protocol: (1) Contacting a random user instead of a known peer for the

exchange of peer information, (2) Contacting only already connected peers for profile

exchange information at random, (3) contact a peer with a probability inverse to

the load that that peer has at that moment and (4) contact only the best peer

48 Chapter 3. Privacy: a factor for evaluating recommender systems

for exchanging information. The conclusion of this work is that a random

selected peer for profile information is a reasonable strategy (as well

confirmed in [Bakker 2009]) and that an aggressive selection of peers

should be avoided for balancing reasons.

Not only CF user profiles are shared for building the overlay network, in

[Draidi 2011] a CB user profile is propagated over the network for the purpose

of informing other uses which topics or interests are preferred by the user, this

information is used by an user to know which peers should be contacted for recom-

mendations in a specific topic using their CF profile.

Client-side recommenders have been proposed for pervasive environments where

the communication between agents or a peer service are limited or very occasional,

this means that is not possible to build an overlay network among peers and they will

have to rely on cached views or on historic information to provide recommendations.

In [Schifanella 2008] an algorithm for exchanging peer information is proposed based

on a modified similarity metric called affinity, each time two users are in proximity

they exchange their identities and their user profile. The affinity metric is used

to keep in their local view only the users with the most similar opinion as the

active user. In order to accelerate the convergence process when users meet they

exchange also their neighborhood information and could exchange as well a list of

previously discarded profiles to help refine each others local view. In [Del Prete 2010]

profiles are exchanged in a similar fashion, however the algorithm for predicting

relevance is slightly changed: The local user is compared with the community of

gathered profiles, if her preferences are considered to be similar to the average of the

gathered information then the average opinion of the users is used as the relevance

prediction function, on the contrary if its considered different a memory user-based

CF algorithm is used with a similarity metric based on how much similar are the

deviations of the profile when compared to the gathered profile information. Item

based systems can operate under the same principle, in [Miller 2004] when profiles

are exchanged they are not cached, instead an item to item similarity matrix is

incrementally updated based on the information present in the new profile.

An orthogonal concern on bringing information from other users to client-

side personalization systems is to how trustworthy the information coming from

other peers is [Massa 2009]. Trust-aware recommender systems use the trust

degree expressed by a user (or inferred by the system) to build recommendations.

In [Ziegler 2005] a decentralized trust-based recommender system is proposed where

each user shares her ratings and expresses her trust belief in other peers exposing a

FOAF RDF document5. Propagation measures are used to infer trust in new peers

and recommendation predictions are made by using a similarity measure based on

the trust on the peer. In [Magureanu 2012] the T-MAN algorithm is used to build

an overlay network with peers using a common similarity metric, once an stable

neighborhood is found for a peer, the trust for each peer is calculated based on the

5FOAF Is an RDF ontology for expressing personal information, as well as connections between

people, the project website is http://www.foaf-project.org/

3.4. State of the art on privacy-enabled recommender systems 49

correlation between the user active ratings minus her average and the peers rating

minus the average rating.

The works from this section have been established for memory based approaches

which are known to have a smaller predictive power than model based ones, some

model based approaches have been created: In [Tomozei 2011] a lower dimensional

representation of each user profile is calculated using a gossip protocol on a p2p

network. Users that are connected calculate a similarity value on binary ratings,

once they have built a similarity with every other agent connected in the network,

they start a stochastic gradient descent process using the similarity matrix computed

by each peer. At each iteration the users share with each other auxiliary information

about their local state. Once they have the local low-dimensional representation

of their profile the opinion of the k most similar users for an item is asked, and

then an average is calculated as the relevance prediction. In [Isaacman 2011] peers

are producers and consumers of content, each producer and each consumer has a

profile that is adjusted using an stochastic gradient descent approach at each time

the user consumes an item from a producer by adjusting the producers profile with

the opinion given by the user as well as the user’s profile.

In terms of the risk of user exposure, all the works presented in this section

(Table 3.2) leak private profile information to peers. A malicious user connected to

the network can gather user-profile information an replicate the problems presented

in section 3.1. In the distributed architecture of producers and consumers provided

in [Isaacman 2011] the user profile information is only shared with the producer of

content, however if the algorithm was applied directly as traditional recommender

systems work (where there is only one producer) has the same exposure problems as

centralized approaches.

3.4.3 Client-side approaches with no anonymity with aggregation
on server

Client-side agents can use third party servers where they upload sanitized information

about them in order to receive recommendations from a recommender system

that only views the aggregated information (Table 3.3). In [Ali 2004] each local

client uploads to a server their local interaction history with scrapped timestamps,

the server using the view of all profiles calculates item to item similarity that

is later downloaded to the client side agents to generate local recommendations.

In [Bilenko 2011] tools for enabling users to sanitize and edit their profile are created

before sending the local profile to the aggregation server, similarly in [Aimeur 2008]

a third party framework for recommendation based on partial aggregated profile

information is proposed. These proposals place all their trust in central server for

profile management and present similar privacy problems that traditional centralized

CF recommender systems.

Client profiling with privacy can be attained with the help of public information.

In [Lathia 2007] a set of random CF user-based profiles is created and made available

in the server. Each user keeps a local version of her profile and calculates the

50 Chapter 3. Privacy: a factor for evaluating recommender systems

Work RS algorithm Contribution

[Tveit 2001] User based CF p2p with random peers

[Han 2004] User-Item mem-

ory based CF

p2p DTH rating distribution

[Miller 2004] Item memory

based CF

p2p calculation of partial item to item similar-

ity based on seen exchanged profiles so far

[Castagnos 2007] User memory

based CF

p2p exchange of public partial profiles with

information directly chosen by the user

[Kim 2008] User memory

based CF

p2p with overlay using TMAN protocol

[Kermarrec 2010] User memory

based CF

p2p with overlay using TMAN protocol + ran-

dom walk
[Ormándi 2010]

[Bakker 2009]
User memory

based CF

Partial calculation of item correlation table

with profiles seen so far

[Draidi 2011] User memory

based CF

p2p with overlay using CB user profile

[Schifanella 2008] User memory

based CF

Pervasive exchange with peers in local proxim-

ity

[Del Prete 2010] (Hybrid) Switch

User memory

based CF or

average

Hybrid recommender with pervasive exchange

with peers with local proximity

[Ziegler 2005] User-Item based

CF

Trust used to reduce peers for neighborhood

formation

[Magureanu 2012] User-Item based

CF

Trust + T-MAN protocol for peers for neigh-

borhood formation

[Tomozei 2011] Model based

lower factor

User factor modeling with only local informa-

tion exchange between peers

[Isaacman 2011] Model based

lower factor

Online one pass consumer-producer factor mod-

eling

Table 3.2: Client-side approaches with no anonymity on p2p networks

3.4. State of the art on privacy-enabled recommender systems 51

Work RS algorithm Contribution

[Ali 2004] Item memory

based CF

Item memory based CF on whole information

with pseudonymous

[Bilenko 2011] Any Framework for sanitize and edit profile before

submitting it to aggregation server

[Aimeur 2008] Any Third party framework for recommendation

based on partial aggregated profile information

[Lathia 2007] User memory

based CF

User memory based CF with concordance mea-

sures over random profiles
[Amatriain 2009]

[Ahn 2010]
User memory

based CF

Expert-CF with profiles from compilation of

public information

Table 3.3: Client-side approaches with no anonymity with aggregation server

concordance of the user with each profile in the public dataset, this information

can be used to calculate a similarity measure between users based on how many

concordant, discordant or tied opinions they share with the random profile set.

Despite not sharing private profile information for calculating similarities, a leakage

of private information is present since each user has to share to each others the

difference between a rating for an item and the user’s mean rating in order to

calculate the predicted relevance.

Following the strategy of publishing public profiles on a server for calculating

similarity measures, Expert-CF was proposed as a client-side profiling strategy

to protect user’s privacy [Amatriain 2009] [Ahn 2010]: Some CF user-profiles are

published on a server reach client applies a memory based algorithm using only

the public profiles as neighbors. The public profiles are mined from already public

trustable information such as public critics. In terms of exposure risks, this work has

the advantage of not leaking user profile information from the client-side since no

information leaves the user’s device. It is worth noting that these proposals depend

heavily on the availability of public information and can be more susceptible to the

new item problem.

3.4.4 Client-side approaches with anonymity on p2p networks

In order to solve the problems of private information leakage present in p2p ap-

proaches, anonymization strategies are used for masking the user profile when

communicating between peers (Table 3.4). In [Berkovsky 2007] a user-based CF

algorithm like the one in [Tveit 2001] is applied, users make a request for recom-

mendation to other peers and the ones that want to help the user send back a

modified profile with random perturbation and some ratings changed, the active user

gathers the profiles and applies a local version of CF. In [Kaleli 2010] a naive Bayes

recommender is used for recommendation with profiles with binary preferences. First,

a user requesting recommendations creates for each peer a masked profile changing

randomly the values of groups of preferences on her profile vector; next, each peer

receives the altered profile and a number indicating the groups of preferences. For

52 Chapter 3. Privacy: a factor for evaluating recommender systems

Work RS algorithm Anonymization

strategy

Contribution

[Berkovsky 2007] User based CF Random perturba-

tion and heuristic

rating replacement

p2p network, users that want to

help the user send back a modi-

fied profile to the active user

[Kaleli 2010] Model based CF Random perturba-

tion of groups of rat-

ings

Naive Bayes recommender with

groups of preferences perturbed

[Zhan 2010]

[Hsieh 2011]
- Homomorphic en-

cryption and secure

dot product

Privacy preserving similarity cal-

culation

[Hoens 2010] User memory

based CF

Homomorphic

encryption

Relevance prediction as weighted

average of opinion, modified to

be able to do division with homo-

morphic encryption

[Alaggan 2011] User memory

based CF

Homomorphic

encryption and ran-

dom perturbation

Homomorphic secure dot product,

reports modified similarity mea-

sure based on random perturba-

tion from differential privacy

Table 3.4: Client-side approaches with anonymity on p2p networks

each possible permutation the peer calculates the probability of agreeing with the

active user for both classes (liked or disliked). Finally a probability for each possible

permutation of the user profile is reported back to the active user who makes a

prediction using the real profile values.

Trying to solve the leakage of private information in p2p approaches, some

works have been created to establish similarity between pairs of users without

revealing private information, two approaches are found in [Zhan 2010] [Hsieh 2011]:

Homomorphic encryption and secure dot product between profiles. Homomorphic

encryption allows a system to operate on encrypted data and the result of the

operation can be decrypted matching the operation carried on the cyphered message,

for example if Enc is the encryption function and m1 and m2 are the arguments of an

operation then Enc(m1)× Enc(m2) = Enc(m1 +m2). This property allows a pair

of peers to calculate their Pearson similarity without disclosing private information

(Equation 2.5). On the other hand a secure dot product relies on a third party

random generator that creates 2 random vectors Randu and Randv and two random

values randu and randv such that the dot product between the random vectors is

the sum of the random numbers (〈Randu, Randv〉 = randu + randv). Thanks to

these values users can mask their information and find out the dot product without

knowing directly the weights of the peer’s user profile.

Homomorphic encryption is used in [Hoens 2010] to keep privacy between peers

where prediction the is the weighted average opinion of the peers. Keys are generated

in a multi-threshold encryption scheme [Pedersen 1991] where the active user and

her peers create a public key and share the private key, so that in order to decrypt

3.4. State of the art on privacy-enabled recommender systems 53

the message all peers must participate in the process. Each peer submits its

encrypted rating and a weight using the public key, or can forward the request to

its peers to get more information about the item, then answers with a weighted

average of her local information and the reported ratings from her peers. The

active user multiplies encrypted responses to adds up the weighted averages reported

by each user. Decryption is made by collaborating among the peers and the user

learns the final value for preference. In this work a modification of the protocol is

done to handle division with homomorphic encryption inputs in a multi-threshold

scheme. [Alaggan 2011] presents a work of similarity calculation between users

preserving privacy also using the multi-threshold scheme. The work calculates the

dot product between the encrypted profiles of the user and a peer and adding a

random perturbation into the similarity result in order to protect user individual

privacy since two users with identical ratings or with no shared ratings will give a

similarity of 1 or 0. The noise is introduced to avoid these scenarios.

3.4.5 Client-side approaches with anonymity with server aggrega-
tion

Two strategies exist for aggregation servers: (1) They can use the masked profile

information to provide recommendations as centralized systems (Table 3.5) or (2)

the aggregation server can participate in a multiparty calculation of aggregated

information that is useful for each client-side agent to calculate recommendations

(Table 3.6).

One of the first approaches to keep privacy in client-side approaches was to

submit a modified version of the profile to the centralized entity, in [Polat 2005] each

client-side profile weight is normalized and random perturbation is added before

being sent to the aggregation server that executes a SVD algorithm with the masked

profiles. Extensions of this work have been proposed: [Dokoohaki 2010] follows this

strategy but uses trust weights for relevance prediction, and [Renckes 2012] uses a

clustering algorithm in the server based on user similarities.

The amount of perturbation applied to the user profile is studied as well by

[Halkidi 2011]. In this work the problem of how much perturbation should be

applied for each profile is considered as a game theory game where each user distorts

her declared profile to the centralized entity trying to achieve a Nash equilibrium

between the accuracy of the system and the amount of distorted information. Other

strategy for modifying the user profile is considered by [Parra-Arnau 2012] where

a local based CB profile is used to alert user that a privacy breach might occur if

an opinion for an item is expressed, and it is suggested to the user that she should

change the reported opinion of an item or give a fake rating to an item to help he

preserve her privacy.

Other approach to perturb the local user profile reported to the centralized

entity is proposed by [Shokri 2009]. Users are in a p2p setting and exchange their

profile information in the clear, but instead of producing recommendations with the

gathered information, they use this information to merge their information with the

54 Chapter 3. Privacy: a factor for evaluating recommender systems

Work RS algorithm Anonymization

strategy

Contribution

[Polat 2005] SVD CF Random perturba-

tion and heuristic

rating replacement

Perturbed ratings submitted to

centralized entity for prediction

[Dokoohaki 2010] Trust user-based

memory CF

Random perturba-

tion and heuristic

rating replacement

Trust calculation with perturbed

user profiles

[Renckes 2012] Model based

clustering

Random perturba-

tion and heuristic

rating replacement

Cluster calculation with per-

turbed user profiles

[Halkidi 2011] Any - Item to

item correlations

are pre-defined

and known

Perturbation based

on maximum error

allowed by recom-

mendation

Perturbation of local profiles ex-

pressed as a Nash equilibrium

problem

[Parra-Arnau 2012] Any Change or faking of

reported opinions to

the centralized en-

tity

Privacy quantified as Shannon en-

tropy, CB profile changes alert

the user to report a changed or a

faked interaction

[Shokri 2009] Any Merging of local in-

formation with vec-

tors seen so far in

p2p network

Privacy and low error on predic-

tion power merging with most

similar users seen so far

[Elmisery 2011] Any Heuristic transfor-

mation

Two level masking and obfusca-

tion using algorithms that pre-

serve locality

Table 3.5: Client-side approaches with anonymity with aggregation server operating

on masked profiles

3.4. State of the art on privacy-enabled recommender systems 55

Work RS algorithm Anonymization

strategy

Contribution

[Canny 2002] SVD CF Homomorphic

encryption

Gradient descent to calculate

SVD of rating matrix expressed

as addition of contribution of

each user, addition of the contri-

butions is done using homomor-

phic encryption

[Duan 2010] SVD CF Private information

affected by opera-

tion with random

vector (differential

privacy)

Framework for privacy with for-

mal guarantees

[Erkin 2012] User based CF Homomorphic

encryption

Two step encryption of user pro-

file, one for neighborhood forma-

tion and other one for specific

values of the profile used for rele-

vance prediction.

Table 3.6: Client-side approaches with anonymity with aggregation server for

infrastructure collaboration

most similar vectors seen so far before submitting their profile to the aggregation

server. This work protects the user privacy from the aggregation server but not

from a malicious peer.

Finally [Elmisery 2011] applies a heuristic local transformation of the profiles

before sharing them to the centralized entity. The client-side agent generates smaller

clusters of preferences in the user profile vector and applies a transformation that

masks it while keeping the distances in the preference cluster. Then the user profile

is sent to an aggregation server that transforms the clustered representation of the

profiles to a one dimension vector using Hilbert curves and swaps profile information

between users.

Under the scope of user exposure risks, all these works trust a centralized entity

vulnerable to the exposure risks presented in section 3.1. The masked approaches

presented so far in this section don’t offer formal guarantees against a background

knowledge attack if an attacker uses the information gathered in the centralized

entity.

Other approach that leaks no profile information gathering private profile infor-

mation on a server are possible: In [Canny 2002] users collaborate to build a matrix

that represents the items in a lower dimensional state as in the SVD decomposition.

The approximation to this matrix representation can be calculated as a gradient

descent problem where the gradient function can be expressed as a sum of the con-

tributions of each peer local information. The peers collaborate using a multi-party

server calculation based on a multi-threshold encryption scheme [Pedersen 1991] to

generate private shared key and public key between peers. At each iteration, users

56 Chapter 3. Privacy: a factor for evaluating recommender systems

transmit to an aggregation server their part of the calculation of the gradient and

in order to avoid profile exposure this is transmitted using homomorphic encryption

on the generated public key. The server adds up the encrypted contributions of the

users and they collaborate to decrypt the new value of the matrix. The incremental

model of [Miller 2004] rate between(in the p2p with no anonymization section) also

considers a homomorphic encryption scheme to obtain the correlations between

items operating on the encrypted representations of their profiles.

In [Duan 2010] Presents a multi-party framework for learning using the statistical

query model and illustrates its use calculating SVD of a matrix motivated by the

recommendation problem. The authors use a similar approach as Canny where an

aggregation server adds up each user contribution to the problem, but don’t use

homomorphic encryption. Instead they rely on at least two servers: Each user before

sharing information creates a random vector of equal size of the shared information,

then she calculates the difference between her information and the random vector

and submits the difference mod φ to the first server, next she sends the random

vector to the second server. The server that receives all the random vectors adds

them up and submits the aggregation to the first server, where it adds up the

received information from all users with the random vectors to obtain the sum

mod φ of the original data vectors. The sums of profiles are the only information

exposed and its result is shown to be protected of a background knowledge attack

by differential privacy guarantees.

Finally, [Erkin 2012] introduces a third party entity to provide privacy to users

and interact with the recommendation system. Users use two profiles, one with

the ratings assigned to the most popular items in the system and one with the

rest of the ratings. Users encrypt their profiles with the public key of the third

party privacy provider and send their encrypted profiles to the recommender system.

Next the privacy provider and the recommender system interact to build a user

neighborhood for each user using the encrypted versions of the users profiles operating

a similarity measure with homomorphic encryption using the smaller profile. After

the neighborhood for each user is found, the average opinion is calculated by the

recommender system using homomorphic encryption. The relevance prediction for

each item present in the neighborhood is transmitted to each user encrypted and

a secure decryption algorithm is used between the third party and the client to

decrypt the relevance values without revealing the recommendation values.

These proposals are secure in terms of leak of private information since the

encryptions are semantically secure, which means that no information can be

inferred about the original message by viewing the encrypted version. However,

as it will be described in Section 3.5 these approaches need a solid infrastructure

behind them in order to manage the high synchronization protocol designed for the

interaction between peers and server in order to collaborate. Therefore are suitable

for architectures where transmission of data is reliable and each peer has a high

processing capability, for example in a cloud computing architecture.

3.5. Privacy and scalability 57

Synopsis and privacy design choices

A classification of privacy-enabled strategies for recommender systems was

presented in this section and evaluated in terms of the exposure of the user’s

profile information. Centralized approaches rely on a trusted server that

receives the whole user profile database and publishes a sanitized version of

them, usually in an aggregated format. However in terms of the exposure

risks a centralized entity is still vulnerable to the privacy risks presented in

Section 3.1, therefore the proposed architecture that will be used in this thesis

consists on a client-side agent that keeps a local user profile.

On the client-side classification, agents organize themselfs in p2p networks to

exchange profile information, or rely on an aggregation server to exchange

information useful for recommendation. Both strategies can be further clas-

sified by telling if the agent applies an strategy to mask the profile before

leaving the client-side or not. Since a deceptive peer or a deceptive server

can receive unmasked information and replicate the attacks on privacy of a

centralized entity presented in Section 3.1, the chosen architecture for the

recommender system presented in this thesis will apply a masking strategy in

order to keep the attackers from learning the user preferences.

Masking techniques can be classified into three general approaches: Random

noise generation, cryptographical approaches and heuristic masking. In order

to choose which one of the approaches will be used, their scalability against

the scaling factors on the recommendation scenario will be analysed in the

next section.

3.5 Privacy and scalability

After reviewing the existing technologies for privacy-preserving recommendation, its

time to look into the scalability of the chosen anonymization approaches used by the

works presented on the previous section. Centralized approaches are vulnerable to

the mission creep scenario and client-side architectures that share un-modified profile

information are vulnerable to the attacks presented on Section 3.3, this section will

focus on client-side systems that modify or mask the user profile before sharing it

with peers or with an aggregation server.

3.5.1 Scalability of random noise generation

Extending the work of [Agrawal 2000], random noise generation is a common

strategy for masking profile information before leaving the client-side agent. The

computational complexity of this type of profile masking depends on the complexity

of the random number generation process involved and the number of times during

the recommendation process that this masking is applied.

Pseudo-random number generators are algorithms that based on an initial

58 Chapter 3. Privacy: a factor for evaluating recommender systems

state (or seed) generate a sequence of numbers that simulate to come from a

distribution, usually imitating a uniform-distribution random variable between 0

and 1 [L’Ecuyer 2007]. If the numbers need to come from another distribution a

transformation based on the inversion method is applied. Since the number of states

of the pseudo-random number generator is finite, the sequence of numbers generated

is eventually periodic. The computational complexity of a pseudo-random number

generator depends on the size of the state space it has to generate the sequence;

smaller spaces may cause a low period for the generator, thus making it invalid for

the application in practice.

The Mersene twister algorithm [Matsumoto 1998] is an uniform pseudo-random

number generator known for its low state to period relation: It has a period of

2219937 − 1 with a state of N = 623. The algorithm to generate the sequence first

iterates through each one of the states, initializing them with an O(1) operation.

Once initialized, it can generate a number with each one of the states as an input

until all states are used and a new initialization is needed, therefore the process

of a single random number generation with the Mersene twister algorithm has an

amortized complexity of O(1).

The simplest strategy used for adding noise to protect user privacy in client-

side recommender systems was used by [Polat 2005] where noise from a Gaussian

distribution was added to the known ratings of the user profile before sending it

to the centralized server. [Berkovsky 2007] also induces a change of known ratings

with either a default value, a random value taken from an uniform distribution or

by a Gaussian distribution reflecting the rating distribution in the dataset, both of

this works mask their profile before sharing it with an aggregation server. Since

a lot of information is revealed just by letting know the attacker which items the

user has interacted with, this strategy was later extended to mask if the user has

interacted with an item in the past. In [Dokoohaki 2010] and [Renckes 2012] ratings

of the user are normalized using a z-score (number of standard deviation that each

rating deviates from the mean) and then a random number of unrated items is rated

with noise from an uniform distribution. While [Dokoohaki 2010] shares the masked

vector with trusted peers, [Renckes 2012] shares it with an aggregation server. All

these works propose a one-time perturbation of the profile before sharing it with

their peers or the aggregation server.

Finally, [Duan 2010] proposes a framework using at least two servers (S1 and

S2) for aggregating a summation of many private values and uses this framework

for the calculation of the SVD decomposition of the rating matrix. Taking the

whole rating matrix V , the symmetrical matrix V TV is constructed. By taking the

SVD decomposition model (Equation 2.7) and the fact that matrices U and V ∗ are

orthogonal, the symmetrical matrix can be factorized as V TV = V ∗ΣV ∗T . The

author proposes to use the framework to calculate de SVD decomposition of matrix

V TV V ∗ = ΣV ∗T , where each row in matrix V ∗ is the low-dimension representation

of each one of the items present in the system. Since each user knows its own ratings

(Vu) matrix, the matrix V TV V ∗ can be seen as the addition of an operation of the

3.5. Privacy and scalability 59

local information of the user (
∑
u∈U

V T
u Vuv).

First, the vector v is submitted to each one of the peers on the system, then

each user calculates its own part of the addition du = V T
u Vuv and generates a

uniform random vector to hide the result of this private calculation rdu. Each user

calculates du− rdu mod φ and submits the result to server S2 and rdu to server S1.

S1 computes the aggregation of the noise mod φ and S2 computes the aggregation

of the du’s of each user, the sum of the results of the aggregations is indeed the sum

of the private information of all users. The result is passed to a high-performance

eigensolver that returns the k largest eigenvalues of the submitted matrix, that

are used to build the vector v and repeat the process until it converges. Once it

converges the SVD of the resulting matrix is calculated and the matrices Σ and V ∗

are published. By using the ratings of the user and the item representation matrix

V ∗, a local algorithm can be applied in order to discover the relevance of an unseen

item, for example by using a item memory based system.

Recapitulating, in Table 3.7 the complexities of the process of masking the user

profile are shown. Random number generation is a cheap operation and for most of

the works is only applied once. In [Duan 2010] it is applied multiple times but by

itself doesn’t affect the scalability of the proposed algorithm.

Work Complexity of masking profile process

[Polat 2005] O(|R(u)|)
[Berkovsky 2007] O(|R(u)|)
[Dokoohaki 2010] O(m− |R(u)|)
[Renckes 2012] O(m− |R(u)|)
[Duan 2010] O(m ∗ t)

Table 3.7: Random noise masking process complexity

3.5.2 Scalability of homomorphic cryptosystems

As explained briefly in Section 3.4.4, Homomorphic encryption is used by privacy

enabled recommender systems as a cryptography based form of masking the user

profile information when sharing it with other peers. Homomorphic encryption allows

an agent to make computations on cyphertexts of messages, where the decryption

of the result of the computation on the cyphertexts matches an operation on the

messages without encryption. In order to adequately protect user information it

is crucial that the chosen schemes are semantically secure. Semantically secure

schemes don’t provide any useful information about the plaintext that it encrypts.

This means that a peer or an agent can make operations on encrypted data without

learning anything from the plaintexts (in this case the user profile information).

An additively homomorphic encryption scheme allows a system to make an

operation on two cyphered messages such that the decryption of the cyphertext

result is the sum of the original messages , let pk be the public key of the cryptosystem

and sk the secret key of a user, an additively homomorphic encryption scheme is

60 Chapter 3. Privacy: a factor for evaluating recommender systems

defined as follows:

Dsk (Epk(m1)� Epk(m2)) = m1 +m2 (3.2)

Additively homomorphic encryption schemes with the multiplication operation

allow that by exponentiating a cyphertext by a constant a the decryption of the

cyphertext result is the multiplication of the plaintext by the constant.

Dsk (Epk(m1)a) = m1 × a (3.3)

The Paillier homomorphic cryptosystem [Paillier 1999] is an widely used additive

homomorphic cryptosystem with the multiplication as operation. The encryption

of a message m ∈ Zn under the Paillier cryptosystem with public key pk = (n, g)

and private key sk = (p, q) where p and q are two large primes such that n = p · q
results in a cyphertext message defined as:

Epk(n,g)(m, r) = gm · rn mod n2 (3.4)

Where r is a random number (that allows the semantical secure property) and

g ∈ Z∗n2
6 is a semi-random number which generates a subgroup of order n. To

confirm if g is compatible with the encryption scheme, the least common multiplier

of the numbers p− 1 and q − 1 is calculated, λ = lcm(p− 1, q − 1) and g is used if

the greatest common divisor of (gλ mod n2 − 1)/n is 1.

The decryption protocol takes as input the private key sk(p, q) and g has three

steps: First k is calculated as k = (gλ mod n2 − 1)/n, then the inverse of k under

the modulo of n is calculated as µ = (k−1 mod n), finally the decryption of the

cyphered message c is calculated as m = (((cλ mod n2 − 1)/n)µ mod n).

The Paillier cryptosystem scheme was adapted to work in a threshold cryptosystem

in [Damg̊ard 2001]. A (t, n) cryptosystem uses as well a public key pk(n, g) but

shares the private key into n shares, and it needs at least t of the shares to decrypt a

message cyphered with the public key. By using this cryptosystem peers are able to

collaborate with a centralized agent that carries out the operations on the cyphered

domain and then users collaborate to decrypt the result, or on p2p networks where

a public and threshold private key is generated between peers to allow both users to

calculate a similarity value between them.

op encryption plaintext sum encrypted sum plaintext mult encrypted mult

100 1055367947 1785 4899948 2231 4537618

1000 10734646890 14726 49551013 31681 42297697

10000 1,06354E+11 144576 238901601 254345 213789645

Table 3.8: Time in nanoseconds of different number of operations using plaintext

and encrypted data on the Paillier scheme

While the complexity of key generation, encryption and decryption processes of

this scheme has to be taken into account, the most limiting aspect on the use of

6Z∗
n2 are the invertible elements of set Zn2

3.5. Privacy and scalability 61

homomorphic encryption is that the encrypted operations are carried out in a much

larger space than the original one. Typically the message space is 1024-bits since this

is the size of the key that offers an acceptable space to protect the cypher from an

attack. While a sum or a multiplication of 32-bit or 64-bit doubles is highly optimized

in current hardware, carrying over a sum or a multiplication on two cyphertexts

involves operations of numbers represented over 1024 bits. This has an important

impact on the scalability of algorithms since similarity measures between users rely

heavily on multiplications over the user or item profile (Equation 2.5), as well as

the training algorithm for adjusting the weights in latent factor systems (Equation

2.8 and Algorithm 1). Operations on cyphertexts take an order of 103 more time

than on plaintext, in order to illustrate this effect a benchmarking algorithm was

executed comparing the same operations on the plaintext and encrypted versions of

the numbers using the thep7 libray’s implementation of the Paillier scheme (Table

3.8).

The first work to propose the use of homomorphic cryptography to hide the user

profile in recommender systems was [Canny 2002]. In this work a low-dimension

approximation matrix is calculated as a row-orthonormal matrix that approximates

in a least-squares sense the original matrix V . In order to find this matrix and given

the error e = tr(V V T)− tr(V ATAV T) , where tr is the trace of a matrix, the author

proposes to maximize tr(V ATAV T) by using a iterative conjugate gradient method.

The author shows that the gradient of the solution at each step can be calculated

as the sum of the gradients that depend on private information of each one of the

users (Row Vi) and the past state of the aggregate A as Gi = APi
TPi(IA

TA). The

aggregation server receives the encrypted gradients of all users, multiplies their

encrypted versions in order to sum them and then peers collaborate to decrypt

the aggregated gradient and make a new estimation of the matrix A based on the

gradients. Each Gi has a size of k × n where k is the reduce dimension and n is the

number of items.

Another aggregation on the server is made by [Alaggan 2011]. In this user-based

CF work there are two different servers, one that provides the recommendations called

the recommendation service provider and the other in charge of carrying out some

computations to keep the privacy of the protocol called the privacy service provider.

Users send to the recommendation server two parts of their profile encrypted with

the public key of the privacy service provider: One with a set of R of the most

common global items in the system (vdu) which is expected to be dense and the

other with the rest of their preferences (vpu) which is sparse. The recommendation

service provider calculates the similarity between all users on the encrypted versions

of the dense profiles (vdu) and by comparing the encrypted similarity with a public

threshold δ with the help of the privacy service provider creates an binary encrypted

variable γuv that is congruent to 1 if user v is similar to user u, or 0 otherwise. Once

the list of neighbors for a user has been established a multiplication of the binary

encrypted values to each one of the other users profiles is done to remove the vectors

7https://code.google.com/p/thep/

62 Chapter 3. Privacy: a factor for evaluating recommender systems

that are not going to be used for the computation, finally a multiplication of the

element-wise vectors is applied over the encrypted space to sum up the ratings of

the users in the neighborhood. The aggregated vector and the number of users on

the similarity list is then returned to the user that requests a recommendation. The

user interacts with the privacy service provider in order to decrypt each one of the

coordinates of the aggregated vector, then it divides each decrypted coordinate by

the number of profiles aggregated to obtain the relevance predictions.

On the p2p setting [Hoens 2010] proposes a system where a user asks for her

peers to collaborate with her in order to obtain a weighted average on their opinion

on items. The user and their peers collaborate under a threshold cryptosystem,

when the user requests for an opinion on a rating for its peers, each peer responds

two encrypted values under the public key generated for the scheme: A rating

(sui) and a weight (wu). A user has three options to collaborate with a peer:

Respond with an empty tuple (0, 0), respond with its real information (Vui, 1) or to

respond with its own information aggregated with the information from its peers

(sui, wu). In order to include the information from its peers and its own into the

response, a weighted average is calculated where active user gives weights ŵv to

each one of her peers and a weight ŵu to her own contribution: The reported

weight is calculated as wu = ŵu +
∑

v wvi and the reported rating is calculated

as sui = Vui · ŵu +
∑

v svi · ŵv/wvi. When the active user receives all the tuples

from her peers, she aggregates the values from each peer applying the same process

and predicts with sui/wui. All the aggregations are carried out on the cyphered

information, however the secure division protocol is a process done in coordination

with the peers, this process is done as a bit-wise long division calculation: First a

transformation of the encrypted denominator to a bitwise encrypted representation

must be applied, this transformation is linear in the number of bits (`) selected

to be compared and must be calculated by the group that shares the private key.

Then the current remainder (initially the numerator) is transformed to a bit-wise

representation, then peers collaborate calculating the comparison of the bit-wise

encryptions of the remainder and the numerator and transmit their result to the

active user, finally the active user aggregates the information from the peers to

construct the final bitwise representation of the quotient and the remainder. The

process of homomorphic division drives the complexity of the algorithm since the

comparison process is called ` times at &ell rounds.

Since the addition and multiplication on encrypted profiles drive the complexity

of operations drive the process, the complexities of the works are presented for the

number of multiplications and exponentiations made on encrypted data (Table 3.9).

In [Canny 2002] the server aggregates the k × n sized gradient contributions of

each one of the m users for each one of the iterations t needed until convergence,

the gradient step and the factorization of the matrix is done in plaintext data.

For [Erkin 2012], the most-similar user search is what drives the complexity of

the algorithm, the multiplication of user profiles to obtain a similarity value needs

O((n− 1)R) exponentiations and the multiplication of binary variables γuv to the

corresponding sparse vectors of the user profiles to cancel out the addition of users

3.5. Privacy and scalability 63

that are not similar to the active one for the computation needs O((n− 1)(m−R))

exponentiations per user. These complexities are reduced by designing a profile

packing strategy that packs into a single encryption representation numerous values

instead of one. For the similarity calculation by packing into a vector for each

item in R all the opinions of all the users for the item j called vcj . The similarity

calculation between users can be expressed as the dot product of vcj and vdi , which

requires only R exponentiations. For the screening out the users that are not similar

and for facilitating the aggregation process each opinion of neighboring users, the

sparse vector vpu is not encrypted element-wise but condensed on a vector that

condenses the opinion of the user under a single vector, so that when multiplying

the dense representation by the binary variables only O(n) exponentiations per user

are needed. Since not all the opinions of an item might fit into only one vector

given the key space, this number is determined to be S2, analogously the number of

packed vectors that represent the sparse opinions of each of the user is determined

by number S1. Complexities are multiplied by m since it a process that has to be

done to each one of the m users of the system.

Finally for the p2p system in [Hoens 2010], let m̂� m be the number of peers

that report a rating and a weight to an active user. The first step to obtain the

relevance value is to divide each (sui, wu) tuple, job delegated to the m̂ peers that

handle the divisions of the encrypted rating by the encrypted weight, each peer needs

to execute at least O(`) exponentiations in order to calculate the secure quotient,

each peer also communicates if the division was invalid or not by returning a bit bv
(division by a weight of value 0). Then the active user chooses weights ŵv to re-weight

each one of the reported ratings, they are brought to 0 by doing an exponentiation

of each weight wu by bv using O(m̂) exponentiations and a final encrypted weight

aggregated using O(m̂) multiplications. A similar strategy is applied to calculate an

encrypted aggregation of the quotients by doing an exponentiation of each quotient

by bv and aggregating the values by O(m̂) multiplications. A final secure division

between the aggregated quotients and weights is the final recommendation for the

user.

Work Location of calculation Multiplications Exponentiations

[Canny 2002] Server O(t ∗ k ∗ n) -

[Erkin 2012] Server O(m(n ∗ ŝ1 +R ∗ ŝ2)) O(m ∗ n ∗R)

[Hoens 2010] Each peer O(m ∗ n(2n̂)) O(m ∗ n(`+ 2n̂))

Table 3.9: Computational complexity of training process with homomorphic profile

masking for a single user

As shown in Table 3.9, the number of multiplications and exponentiations in

current systems based on homomorphic encryption depend linearly with factors that

scale such as the number of users and items in the system. However due to the high

cost of each operation (Table 3.8) these systems are only available for medium-sized

systems. Extrapolating from the results obtained in (Table 3.8) a system that does

only (n ∗m) operations on a medium to large dataset Movielens10M(69878, 10676)

64 Chapter 3. Privacy: a factor for evaluating recommender systems

would take around 265 minutes to finish the calculations.

3.5.3 Scalability of heuristic-based perturbation

Other ideas for perturbing the user profile before leaving the client-side agent are

based on heuristics that come from different disciplines.

A way of defining privacy is to ”melt-in the crowd”. In [Shokri 2009] peers share

their ratings and aggregate their reported profile with information from their peers

using different policies, this strategy is linear on the number of items in the system.

Unfortunately, while hiding from the server in the crowd, this scheme doesn’t protect

the user from curious peers.

A similar idea was proposed by [Halkidi 2011]. Here users trust a centralized

server to distribute a public profile that is built as a perturbation of the ratings on

the original sparse profile. Each user receives a set of public profiles from other users

and then calculates how much different the predictions on the items would have

been by contrasting the difference between the predictions on the true ratings of

the user and the predictions on the perturbed ratings of the user. By bounding the

difference of the predictions the user maximizes the ammount of perturbation on

each rating to maximize the privacy of each user until the difference is acceptable.

The authors show that if each user follows this protocol for a number of rounds a

Nash equilibrium between the privacy and the quality of the predictions is achieved.

In terms of scalability can be seen as an iterative random noise generation to protect

the user profile, however it is unclear how many iterations are needed to reach an

agreement on real life sized examples.

Finally, in [Kaleli 2010] a well known strategy to preserve privacy for users in

surveys is adapted to recommender systems. The work proposes a p2p system

where users have an implicit profile (A 1 is assigned in the user-item interaction

if the user has liked the item, 0 if not). The masking algorithm assigns a 1 for a

random percentage of the unrated items of the user profile. Once the whole profile

is masked, the system reports to each peer a modified version of the profile by using

the Randomized Response Technique [Warner 1965]. This technique was initially

designed for asking individuals in surveys yes or no answers for sensitive issues

without compromising the privacy of the subject. Users must respond positively to

a question with probability p regardless if the answer is true or not, providing to

each subject plausible deniability of their answers. The user divides her profile in

groups of minimum 3 or maximum 5 adjacent ratings and for each one of the profile

subdivisions the user reverses the preferences of the subdivision with probability p.

Each peer receives from the active user a modified profile, the number of groups

the profile was divided into and a target item for which the user wants a relevance

prediction, the peer returns the probability that the active item is relevant based

on each one of the possible states of the original profile. If adj is the number of

adjacent ratings masked, the active peer must make a probability estimation for

each one of the 2n/adj possibilities of true profiles, therefore the scalability of the

system as the number of items increases is affected since its execution time depends

3.6. Conclusions 65

exponentially on the number of items present in the system.

Synopsis and privacy design choices

After explaining the prohibitive impact on the scalability of the system that

cryptographical tools have when protecting the user profile, the options left

open to mask the user profile are random noise generation and heuristic-based

perturbation. The approach that will be presented in this thesis will be based

on both a heuristic-based perturbation of the profile that will reveal only a

part of the user profile (Chapter 4), and in order to refrain an attacker to

make attacks using the revealed information, the revealed information will be

masked by a random noise perturbation strategy (Chapter 6).

3.6 Conclusions

This chapter presents the strategies used to bring privacy to users in recommender

systems under the perspective of avoiding exposure risks. Centralized approaches

extract a sanitized version of the complete database of user profile information that

serves for recommendation purposes without disclosing personal information. In

the light of risks of user exposure, the centralized gathering and processing of user

profile information can be susceptible to all the risks exposed in Section 3.1.

Client-side profiling is a common solution to avoid the disclosure of personal

information by transferring the collection, gathering and storage of profile information

to the user device. CB filtering doesn’t present a problem when adapted to client-side

personalization since it relies only on local history, but for CF and hybrid approaches

mechanisms for guarding the user profile information must be taken into account

since other clients need information about what other users have done. It is argued

that client-side profiling is not enough to avoid exposure risks since most of the

works presented here leak private profile information to their peers, therefore a

malicious user can deviate from the expected protocol and gather information from

their peers, replicating the exposure risks present in central entities. From these

works, only the ones based on Expert CF present no risks in term of exposure since

they don’t leak private information, however these systems are subjected to the

availability of public data, which aggravates the new item problem if the system is

deployed on a domain where items appear frequently.

In order to control the leak of private information on client-based CF systems,

clients apply masking to protect their privacy before sharing it with other peers (Table

3.4) or with the aggregation server (Tables 3.5 and 3.6). Three strategies are applied

to mask the user profile on client-based systems: Random vector perturbation,

homomorphic encryption and heuristic-based perturbation. In terms of privacy

guarantees only homomorphic encryption offers formal guarantees on the inferences

an attacker can make with background knowledge, however, as seen in Section 3.5 its

computational cost makes its application impractical on systems where the number

66 Chapter 3. Privacy: a factor for evaluating recommender systems

of users, items and user-item interactions are expect to scale.

Random noise generation on the other hand doesn’t affect the scalability of the

system, contrary to the checked heuristic approaches that strain the scalability of

recommendation algorithms although a carefully chosen heuristic-based perturbation

of profiles could be used if chosen carefully. The biggest problem of random noise

generation for client-side anonymization is that users share sparse vector of user

profile information. As seen in Section 3.3, users in recommender systems are

far from each other statistically by looking at them by their choices because the

user profile information is sparse (no user has a significant number of opinions

compared to the available items in the system). Too much noise can transform the

observed distribution of user profiles to a fictitious one and if noise is added in a

way that makes user more alike the utility of the information will be affected as

well, affecting the predictive performance of the system. The learned lesson is that

random noise generation can easily be adapted as a mechanism for providing privacy

and scalability as a masking strategy to information leaving the client, however it

shouldn’t be applied on sparse user preferences; instead CF algorithms should be

modified so that information leaving from the client are not sparse representations

of the user profile that can be easily correlated with background information.

Synopsis and final remarks

As seen in this chapter, privacy enabled recommender systems impose archi-

tectural restrictions to the traditional architecture of recommender systems.

After reviewing the different configurations used for privacy enabled recom-

mendation under the light of user exposure risks, client-side agent architectures

must be used in order to avoid user exposure risks, and anonymization tech-

niques should be applied in order to mask the user information that leaves

the user profile.

Since the researh objective of this thesis is to achieve an scalable privacy

enabled system, one must be careful when appliying a masking strategy. In

this chapter it was explained that the cryptographical tools do not scale

well with the scaling factors of recommender systems and thus should be

avoided. In the next chapter a predictive model that uses a heuristic-based

strategy for protecting the client-side agent privacy will be explained and its

performance in terms of compuational complexity an predictive performance

will be explored. Further analysis on how to improve the privacy provided by

this model will be analysed on Chapter 6.

Part II

Model architecture and

performance

Chapter 4

A CF client-side recommender

system

Contents

4.1 A client-side agent for privacy-enabled recommender systems 69

4.2 Collaborative Filtering model 70

4.2.1 Training and prediction on the online learning framework . . . 71

4.2.2 Model validation datasets . 74

4.3 Model Validation . 75

4.4 Adding regularization to the predictive model 77

4.5 Adding user bias to the predictive model 79

4.6 Predictive performance and scalability considerations . . . 81

4.7 Conclusions . 82

As seen in the previous chapter, the centralized gathering and processing of user

information made by traditional recommender systems can lead to user information

exposure, violating her privacy. Client-side personalization systems are a privacy

by architecture solution to the problem since this architecture removes the risks

associated with a centralized entity managing user profile information. On Chapter

3 there were identified problems related to the privacy and scalability of current

client-based solutions. Motivated by these findings, and keeping into account the

predictive accuracy-scalability tradeoff explained on Chapter 2, in this chapter a

privacy-enabled scalable CF system is presented.

4.1 A client-side agent for privacy-enabled recom-

mender systems

In order to remove the centralization of user-item interaction present in most

recommender systems, a client-side agent is needed in order to limit the exposure

risks of user profile information. The client-side agent is in charge of keeping

up to date the user profile, as well as giving the necessary information to the

recommendation server to keep the item profiles up to date without revealing the

opinions the user has expressed on the items. One of the most limiting factor of using

client-side agents for personalization systems is that in order to apply prediction

70 Chapter 4. A CF client-side recommender system

Figure 4.1: Proposed architecture for recommender system

models that operate using the whole user-item interaction database a redesign must

be applied since each client only has its own user-item interaction log [Kobsa 2007].

The proposed model in order to bring a CF predictive model is a client-side agent

approach with aggregation on the server.

In Figure 4.1 an overview of the proposed architecture is presented: The user

interaction component is in charge of receiving feedback information about the

interaction between the user and the items. When a user u interacts with an item

i, she will assign a rating rui ∈ O. The set O is the set of possible ratings the

user can assign to an item. (e.g O = {1, 2, 3, 4, 5} or O = {+,−}). When a user

interacts with an item, this information is given to the user training component.

This component updates the user profile based on the item’s profile and the rating

given to the item by the user. After updating the user profile, this component sends

back to the item training component on the recommendation server information

from the user profile that is used to keep an up to date version of the item profile,

without disclosing the action the user made on the item.

In order to bring relevant items to the user, the user-item integration component

is in charge of actively going through the item database to offer the user items she

might be interested in. This component can be installed either on the server or

the client side. Finally, the prediction component on the client side filters out or

ranks the items sent to it by the user-item integration by calculating the relevance

prediction function with the local user profile and the item profile. In the next

section the prediction models and algorithms will be reviewed.

4.2 Collaborative Filtering model

Following the work of Isaacman et al. [Isaacman 2011], the predictive model predicts

a user rating for an item as an estimation of a probability distribution of the item

ratings over the user’s information using a matrix factorization technique.

Let π̃oui be the probability that user u will give a rating o ∈ O to item i, the

goal of the system is to estimate each of the coordinates of each of the matrices

4.2. Collaborative Filtering model 71

Star wars

q1u

f1 fk

q2u

q3u

q4u

q5u

f1 fk

pi

Figure 4.2: Probability user and item profile in CF system

∏̃o
= [π̃oui]. Assuming these matrices are low-rank, they can be reconstructed from

the multiplication of two lower rank matrices of rank k: Q̃o of size m× k and P̃ of

size n× k where m is the number of users of the system and n the number of items

in the system.

In order to make an approximation of the ideal matrices Q̃o and P̃ , a latent

profile structure is defined to describe both items and users as seen in Figure 4.2. For

items, a vector pi that approximates the i-th row of matrix P̃ is defined. Analogously,

a vector qo that approximates the u-th row of each matrix Q̃o for o ∈ O is defined

as a representation of each user.

Each pi vector represents a probability distribution of items across the latent

factors, therefore is restricted to pi,k ≥ 0 and
∑

k∈K pi,k = 1, and each of the |O|
vectors of the user represent a probability distribution of the preferences of the user

across the latent factors, and is as well restricted to qou,k ≥ 0 and
∑

o∈O q
o
u,k = 1.

Given these definitions , the estimation of the probability that user u has given

rating o to item i is:

πoui =
∑
k∈K

qou,k × pi,k = 〈pi, qou〉 (4.1)

In order to maintain user privacy, the matrix of item profiles P is kept by the

recommendation server and the matrix Q is distributed among the users since each

user has her own user profile. For the rating prediction task, the predicted rating is

calculated using the local profile information and the public item profile as:

r̂ui =
∑
o∈O

πoui × o =
∑
o∈O
〈pi, qou〉 × o (4.2)

4.2.1 Training and prediction on the online learning framework

Recalling from Chapter 2, the objective of a learning task is to find the adequate

parameters that reduce the expected risk function (Equation 2.22). Since the distri-

bution of the true user’s choices is unknown, an approximation of the expectation

of the error is calculated as the average loss across the known information about

users. Let the result of a relevance prediction parametrized by Θ be r̂ui, ` a function

that scores the prediction against the real value of the user-item interaction rui and

72 Chapter 4. A CF client-side recommender system

L = |rui 6= null| be the number of known user-item interactions, the empirical risk

function is defined as follows:

ê (Θ) =
1

L

∑
rui 6=null

` (r̂ui, rui) (4.3)

The batch gradient descent algorithm minimizes the empirical risk by updating

the parameters in the opposite direction of the gradient of the average loss func-

tion over all the known user-item interactions. After going through all the data

(completing an iteration), parameters Θ are updated as follows:

θt ← θt−1 − γ
1

L

∑
rui 6=null

∇θ` (r̂ui, rui, λ) (4.4)

The batch gradient descent is an offline learning algorithm since an intensive

computation process is needed to calculate the loss for each one of the elements on

the user-item interaction log for the iterations needed until the convergence of the

algorithm. Other offline learning algorithms, (as seen in Chapter 2 Section 2.2.2),

don’t update the parameters based on the whole user-item interaction average losses

but rather approximate it by the instant gradient of a sample user-item interaction

picked at random, repeating the process as many times as needed until convergence

(Algorithm 1).

Following the stochastic gradient descent approach, in the online learning model

a direct update of the parameters of the prediction model is done continuously as

new user-item interaction instances arrive to the system instead of drawing them

from the user-item interaction log [Bottou 1998]. A recommender system with an

online learning model is updated one instance at a time as follows:

1. The user interacts with an item, creating an user-item interaction (u, i).

2. Based on the profile of the item pi and the profiles of the user, the user-agent

predicts a rating for this interaction r̂ui =
∑

o∈O 〈pi, qou〉 × o.

3. The recommender system learns the true rating for this interaction rui.

4. User and item update their local profile representations, based on the squared

loss function over the predicted value vs the real one `(rui, r̂ui)

Placing the recommendation problem in an online setting brings advantages in

terms of the desirable objectives of scalability and privacy of the system. First of

all, the prediction rule adapts intermediately the model parameters after seeing

an example from reality without going through a computational intensive training

process; and since user-item interaction doesn’t have to saved to a log, the risks of a

privacy breach are reduced.

The formal objective of the system is to minimize the error between the predic-

tions
∏o and the ideal matrix

∏̃o
:

4.2. Collaborative Filtering model 73

min
p?,q?

∑
u∈U,i∈I,o∈O

(〈p̃i, q̃ou〉 − 〈pi, qou〉)2 (4.5)

Subjected to the following restrictions:

Ditem(pi) : pi,k ≥ 0 ∧
∑

k∈K pi,k = 1 (4.6)

Duser(qu) : qou,k ≥ 0 ∧
∑

o∈O q
o
u,k = 1 (4.7)

Applying the instant gradient descent rule, update rules for each parameter are

defined as follows:

When a user assigns a rating for an item rui, the item profile of the item is

available to her and adjusts the weights of the qo profile vectors as follows:

qou ← qou + γtu(1rui=o − (〈pi, qou〉))pi
qu ←

∏
Duser

(qu)
(4.8)

Where γt is a function that calculates the learning rate. In order to achieve

convergence on the online setting, the learning rate has to satisfy the following

properties: γt ≥ 0,
∞∑
t=1

γ2
t < ∞ and

∞∑
t=1

γt = ∞ [Bottou 1998]. The function

γt = γ0(1 + αγ0t)
−c [Xu 2011] was used.

After applying the gradient step,
∏
Duser

projects the rows of qu into a probability

distribution defined by the restriction Duser.

Differing from [Isaacman 2011], in order to update the item profile pi, the qu
profile and the rating rui the user assigned are not reported back to the centralized

entity that updates the item profile since this would violate the purpose of decen-

tralization. Instead the only information sent back to the recommendation server is

the vector qou where rui = o , the update is as follows:

pi ← pi + γti(1− (〈pi, qou〉))qou
pi ←

∏
Ditem

(pi)
(4.9)

Where ti is the number of times the item has been rated, and
∏
Ditem

projects

pi into a probability distribution defined by the restriction Ditem.

The computational complexity of projecting the vectors into the probability is

linear on the dimensions of the vectors and the number of ratings [Chen 2011]. The

complexity of calculating the user profile projection
∏
Duser

is O (f ∗ |O|) and for

calculating the item profile projection is O(f).

Finally, the rating prediction under this model is the expected value of the

probability distribution of the model, calculated as follows:

r̂ui =
∑
o∈O
〈pi, qou〉 × o (4.10)

In terms of the predictive performance of the model, the proposed model adjusts

the parameters based on each one of the predicted probability values 〈pi, qou〉 rather

74 Chapter 4. A CF client-side recommender system

than the final prediction given by the expected value of the probability distribution

r̂ui (Equation 4.10, the expected error of the model is reduced as well since the final

prediction is the summation of the predictions for each probability. However, one key

feature that is included in CF models that accounts for the item bias (bi in Equation

2.8) cannot be included into the predictive model due to the architectural restrictions

placed in order to keep the recommender system from learning the ratings of the

user. Since this key element for rating prediction is missing and due to the smaller

training phase, the predictive performance of the model should be worse than the

explored traditional model based CF predictive models seen in Section 2.1.2.

Now that the model has been presented after taking care of the design choices

contemplated in the first part of the document, its predictive performance will be

evaluated by using real life published datasets used for evaluating recommender

system’s algorithms.

4.2.2 Model validation datasets

The model validation is done on different datasets, each partitioned into three parts:

The training set that is used to train the model, the cross validation set that is used

to adjust the hyper parameters of the model (e.g γ0 and K) and thetest set that is

used to report the results.

The Movielens 10M dataset contains 10000054 ratings of 10681 movies by

71567 users. Ratings that a user can assign to an item were restricted to the set

O = {1, 2, 3, 4, 5}. The ratings file has 4 fields per line: an user id, an item id,

the rating she gave to the item and a timestamp. It was divided into two different

datasets first: The training set has 9301274 ratings and partial test set with 698780

ratings. The partial test file contains exactly 10 ratings per user, while the rest

of the ratings of each user went to the train file. The partial test set was further

divided in two equal parts randomly to generate the cross validation and test sets.

The training dataset is sorted by the timestamp field in order to simulate what

would happen in an online setting.

The DBbook dataset contains 75558 ratings of 6166 items by 6181 users. Ratings

are restricted to the set O = {0, 1, 2, 3, 4, 5}. Each user has between 5 and 25

ratings. The same partition was introduced but since the dataset doesn’t have the

timestamps, a randomization of the user-item interactions in the train set. Models

are trained with 63479 ratings, cross validation has 6039 ratings and the test set

has 6038 ratings.

Finally , in order to test the model on a large dataset, the R2-Yahoo music

dataset1 was used. This dataset contains 717872016 ratings that 1823179 users

gave to 136736 items. The dataset is divided into training and testing datasets.

699640226 ratings are used for the training set where each user has at least 10 ratings,

10000000 were used as the test set and 8231790 were used for cross validation. The

1R2 - Yahoo! Music User Ratings of Songs with Artist, Album, and Genre Meta Information, v.

1.0, http://webscope.sandbox.yahoo.com/

4.3. Model Validation 75

Dataset Users Items Sparsity

DBBook 6181 6166 0,19%

Movielens-10M 69878 10676 1,34%

R2-Yahoo music dataset 1823179 136736 0,28%

Table 4.1: Validation datasets

train set was also randomized since the dataset doesn’t have the timestamps of the

interactions. Table 4.1 resumes the information about the validation datasets.

4.3 Model Validation

The most similar approach to the one presented in this thesis is the one from

[Isaacman 2011], the main difference of this approach and their work is the item

update rule, that is performed keeping into account the loss on all the user profile

vectors, this needs the original rui value assigned by the item to the user,

as follows:
pi ← pi + γ(ti)

∑
o∈O

(1rui=o − (〈pi, qou〉))qou

pi ←
∏
Ditem

(pi)
(4.11)

In order to compare the proposed model and the one from [Isaacman 2011], the

predictive performance of the system is compared under different initial learning

rates γ0 and different dimension size K on the DBbook dataset (Figure 4.3a) and

the Movielens-10M (Figure 4.3b) measuring the RMSE (Equation 2.16) on the cross

validation set using the prediction value r̂ui from Equation 4.10.

RMSE :=

√
1

|Tui 6= null|
∑

Tui 6=null

(r̂ui − Tui)2

The first observed property of the proposed update rule is that the predictive

performance of the model (in unfilled markers) increases when compared to the

one implemented in [Isaacman 2011] (filled markers) that shares the rating with

the recommendation system. This can be explained by the increased step size that

is taken when updating the item. While the weights of the losses of the original

model can be averaged out causing a smaller error and thus a smaller step fixing

the weights of the item profile (Equation 4.11), the proposed model (Equation 4.9)

uses only the observed loss and fixes directly the weights of the item profile, causing

a faster convergence.

Another observed property of the training model is that as the number of

dimensions increase, the predictive performance of the model decreases, particularly

for the [Isaacman 2011] model. This can be understood by looking into the tradeoff

explained in Section 2.2.2: As the hypothesis size of the model increases, the number

of iterations of the gradient descent algorithm over the all known data of the system

76 Chapter 4. A CF client-side recommender system

(a) DBbook

(b) Movielens

Figure 4.3: RMSE on cross validations sets across different dimensions K and γ0

comparing performance of proposed model and [Isaacman 2011] for DBBook and

Movielens

4.4. Adding regularization to the predictive model 77

must increase as well; since only one-pass through the dataset is done, it is not

enough to adequately train the extra dimensions of the model.

Finally, as the number of user-item information starts to increase in the training

set, the best performing learning rate decreases. Again by checking the tradeoffs

of statistical learning theory it is expected that without sufficient information the

best performing algorithm tries to learn as fast as possible, setting a high learning

rate. As more information becomes available, this high learning rate makes enough

mistakes over the profiles making them invalid and preferable an smaller step size.

This effect is observable with a small training set such as the one of the DBBook

dataset, however with a medium to large dataset such as the Movielens-10M dataset

the effect is not present, moreover, increasing the dimensions of the model doesn’t

affect as much the predictive performance of the model. In order to keep the

model improving its predictive performance as new user-item information appears,

a regularization technique for updating the item profile will be introduced in the

next section.

4.4 Adding regularization to the predictive model

A predictive model overfits when its parameters are adjusted too closely to the

trained data and stop generalizing well on new examples, a technique used to keep

the model from overfiting is to minimize the regularized error defined as:

min
p?,q?

∑
u∈U,i∈I,o∈O

(〈p̃i, q̃ou〉 − 〈pi, qou〉)2 + λ
(
‖pi‖2 + ‖qou‖2

)
(4.12)

When using this minimization, the item update rule is transformed into:

pi ← pi + γti(1− (〈pi, qou〉))qou − λpi
pi ←

∏
Ditem

(pi)
(4.13)

The same experiment is tested with the modified update rule for the DBBook

and Movielens-10M datasets for different regularization constants (λ) using the best

initial learning rate found in the previous section (γ0 = 0.5 for the DBBook dataset,

and γ0 = 0.15 for the movielens dataset) with k = 5 for all models and its results

are presented in Figure 4.4.

As seen by the results on both experiments of the datasets in Figure 4.4, reg-

ularization of the update rules helps the system to achieve a better predictive

performance: For the DBBook dataset the RMSE on the cross validation dataset

for the unregularized model was 0.97998 while the best result was 0.96959 for the

regularized model with λ = 0.1 (Figure 4.4a). For the Movielens-10M dataset the

RMSE of the cross validation error improves from 1.00098 for the unregularized

model to 0.96463 for the regularized model with λ = 0.01 (Figure 4.4b).

Finally, results are presented on a dataset with millions of users such as the Yahoo

Music dataset to illustrate the effects of regularization with a bigger dataset. In

Figure 4.5 a comparison between different regularized models and the unregularized

78 Chapter 4. A CF client-side recommender system

(a) DBbook

(b) Movielens

Figure 4.4: RMSE on test sets across different dimensions K and γ0 comparing

performance of the proposed model and the improved biased model for DBBook

and Movielens datasets

4.5. Adding user bias to the predictive model 79

Figure 4.5: Comparisson of unregularized and regularized models for Yahoo Music

dataset

one along different initial learning rates are presented with dimensionality k = 5.

The best RMSE for the unregularized model is 1.2328 and was improved by a

smaller amount using regularization to 1.2307 when setting the initial learning rate

at γ0 = 0.15 and the regularization constant to λ = 0.001.

4.5 Adding user bias to the predictive model

One known way to improve the predictive performance of rating prediction is to

include into the hypothesis of the predictive model the global average, user and item

bias such as the biased model seen in Equation 2.8. Due to the proposed architecture

and interactions, the global average and item bias can’t be calculated from the user

information that is sent to the server. Therefore the only information that could be

used to adapt the model is the local user bias.

In order to model the bias in terms of a probability distribution compatible with

the proposed CF model, πobu is defined as the bias probability that user u assigns a

rating o ∈ O by modeling it as probability sampled from a Beta distribution. The

Beta(α, β) distribution is commonly used to model the probability of a success after

x successes on n trials. This distribution has two parameters: α that is related

to the number of seen successes of the event and β that is related to the number

of failures. The beta probability is used with bayesian inference models since its

convenient for outputting a posterior distribution and compatible with the online

model proposed:

Let πobu ∼ Beta (α = 1, β = 1) be the prior probability of the rating, after see-

ing x successes on n trials the inferred probability distribution of the rating is

80 Chapter 4. A CF client-side recommender system

Figure 4.6: Comparisson of biased and regularized model for λ = 0.1 with Movielens-

10M dataset

Beta (α = 1 + x, β = n− x+ 1). When a user interacts with an item, she locally

updates each one of the probabilities of the ratings πobu by increasing the parameter

αo by one where rui = o and increases the βo parameters for the distributions where

rui 6= o. For scalability purposes, each one of the probabilities can be calculated

using the numerical mean of the distribution: α/(α+ β). A normalization is done

to constitute a probability distribution over the user probability biases
∑
o∈O

πobu = 1.

To combine the output of the CF model (πofui) and the user bias estimation (πobu)

, a logarithmic pool [Clemen 1999] is used to generate the combined probability

distribution (πoui):

πoui = c× πofui × π
o
bu (4.14)

Where c is a normalizing constant to combine both probabilities into a distribu-

tion.

In Figure 4.6 the biased model is compared to different regularized versions of

the predictive models across many initial learning rates and different dimensions

K. As seen by the results, adding this signal doesn’t improve the best predictive

performance that can be achieved with a regularized model. The biased model seems

to adjust too closely to each estimated user average as each model tends to stay

in the area delimited by the minimum and maximum lines. The stagnation of the

biased model around the user average doesn’t allow to generalize its predictions well

enough to future examples.

4.6. Predictive performance and scalability considerations 81

Dataset Train/Predict (mins) RMSE Iterations

DBBook 1.13 (0,34) 0.88536 202

Movielens-10M 467.8 (64,84) 0.87028 28

R2-Yahoo music dataset - 1.497462

Table 4.2: Running time of the training of the SVD++ model across different

datasets

Dataset Train/Predict (mins) RMSE(Test)

DBBook 0,044 (0,012) 0.96959

Movielens-10M 1.66 (0,255) 0.96463

R2-Yahoo music dataset 245,15 (43,12) 1.23078

Table 4.3: Running time and Test error of the regularized model across different

datasets

4.6 Predictive performance and scalability considera-

tions

For each one of the seen user-item interactions, the complexity of updating the item

and user profile is linear with the number of possible ratings and dimensions k in

the system. For the prediction task the complexity is O(O ∗ f) and for the

update task is O(f) in the server and O(O ∗ f) in the client. In order to

illustrate the tradeoff between scalability and predictive performance of the proposed

system, it will be compared to a state of the art collaborative filtering algorithm

(SVD ++, on Equation 2.10).

The testing implementation of the biased model is a multi-threaded application

that goes through the dataset and simulates events as they are ordered in the

dataset. The implementation is locked on a user-basis and item-basis, expected

changes of order in the queue of item updates do not affect significatively the final

predictive performance of the model as shown in [Isaacman 2011]. The SVD++

implementation was taken from the open source Mahout implementation3(Equation

2.10). Both systems ran on a machine with 16GB of RAM and an Intel Core i7 with

8 processors.

Table 4.2 presents the running time of an experiment using the SVD++ model

with parameters k = 10,γ = 0.001 and λ = 0.005. An experiment consists on

training the predictive model with the training set, and predicting on the test, cross

validation and test set at the end of each iteration. On the other hand Table 4.3

shows the running time and predictive performance of the biased model presented in

this chapter. Since the Yahoo movie dataset is too big to fit in memory (tested on

16 GB RAM) to be processed by the single-machine implementation of Mahout, no

2Estimation of item average, not the SVD++ model
3https://mahout.apache.org/

82 Chapter 4. A CF client-side recommender system

results are given for the SVD++ model, in order to compare to an RMSE value, a non

personalized item average prediction is considered for reference. On the other hand

by handling the recommendation problem as an online learning algorithm the model

is able to build a predictive model for datasets that currently are only processed by

specialized cluster parallel tasks such as MapReduce [Schelter 2012] [Schelter 2013].

As expected, the centralized algorithm gives a better predictive performance, but

the proposed biased system protects the privacy of users and scales up to millions

of users while protecting their privacy by not revealing the true ratings of the user.

Moreover, as the number of user-item interactions scale, the predictive model attains

better performance when compared to centralized methods, as explained by the

tradeoffs of large scale learning presented in Chapter 2.

4.7 Conclusions

In this chapter a client-based approach for CF recommendation under the online

learning setting, this setting allows a system with low computational complexity

operations when updating either the user or item representations at both training

and prediction phases, scaling up to the number of items present in the system and

the number of predictions the agent must make over time.

This comes with the cost of a significant lower predictive performance when

compared to other client-based systems that either share the complete user profile

releasing the local ratings to peers or a trusted entity, or by systems that protect

the user’s privacy with non-scalable encryption methods for the chosen architecture.

However, as the number of user-item information scales, this difference decreases;

this effect can be explained by the tradeoffs of large scale learning explained in

Chapter 2 where as the number of user-item information scales, the hypothesis of

the model can be better adjusted to generalize on future examples. In the next

chapter the predictive performance of the model will be further improved under

certain conditions by the use of a client-side content based system that operates in

parallel with the model presented in this chapter.

In terms of the exposure concerns of recommender systems presented in Chapter

3, the client-side agent doesn’t share explicitly its ratings with the aggre-

gation server or with other peers, protecting the user’s privacy. However

under a curious but honest behavior the heuristic-based strategy used by the client-

side agent still discloses to the recommendation server information that can be

used by an attacker to infer the ratings of the user. A system with these privacy

considerations in hand will be further disused on Chapter 6.

Chapter 5

An Hybrid client-side

recommender system

Contents

5.1 Introduction . 83

5.2 Content Based model . 84

5.3 Hybrid Model . 87

5.4 Predicting under the cold-start scenario (new item problem) 89

5.5 Conclusions . 91

Motivated by improving the predictive performance of the client-based rec-

ommender system proposed in the previous chapter, this chapter explores the

hybridization of the online recommender system. The system’s hybrid prediction

model is based on an ensemble that blends the online matrix factorization CF model

and a logistic regression model trained on item metadata with a probabilistic feature

inclusion strategy.

5.1 Introduction

Since content based recommender systems can run locally without compromising

user privacy, an hybridization technique can be applied using the privacy-enabled

recommender system explained in the last chapter and a content based system at

the client-side. In order to be compatible with the scalability requirements and the

chosen architecture of the system, the hybrid system must operate as well on the

online learning setting.

Among the different hybridization techniques explained in Section 2.1.3, the

weighted [Burke 2002] strategy mixes the output of different recommender systems

running in parallel in order to bring one final prediction as an aggregation of single

recommenders. In order to calculate the weight assigned to each predictive model,

a weight based on the historical regret of the models will be applied as will be

explained in Section 5.3.

84 Chapter 5. An Hybrid client-side recommender system

Star wars

actor:harrison_ford
actor:james_earl_jones
actor:mark_hamill
actor:alec_guinness
actor:denis_lawson
actor:carrie_fisher
director:george_lucas
genre:Adventure
genre:Action
genre:Sci-Fi

actor:kathy_griffin
actor:uma_thurman
actor:bruce_willis
actor:christopher_walken
actor:samuel_l_jackson
actor:john_travolta
genre:Crime
genre:Comedy

Figure 5.1: Keyword user and item profile in CF system

Figure 5.2: The count-min sketch structure

5.2 Content Based model

Initially, a keyword based profile is used to describe items and users in the system.

Each item i is described by a set of concepts Ci and a user u has a profile with a

list of non duplicate concepts Cu.

For example in Figure 5.1 an user and item are represented by a list of concepts.

In the case of the movie domain, each item can be described by the actors, writers,

directors and genres of the movie. The user is also described by a list of concepts

that have frequently appeared in the history of user-item interaction. In order to

represent the affinity the user has for each concept in her list, a set of |O| vectors

wo ∈ R|Cu|, o ∈ O is kept as the user profile as well.

As each user interacts with the items present in the system, each one of the

concepts that are in the item profile (Ci) are considered for addition or deletion from

the user’s list Cu. Based on the work developed in [McMahan 2013], all concepts

seen by the user at least N times are present in the user’s list, and the size of

the vectors wo is updated. Since keeping a list of all concepts the user has

interacted in the past and how many times they have appeared in the

past is not scalable as the number of user-item interactions scale, a data structure

to keep an approximate count on how many times the user has seen a concept is

adopted.

5.2. Content Based model 85

The sliding window min-count sketch structure [Dimitropoulos 2008] is a structure

that keeps a queue of min-count sketches [Cormode 2005]. The min-count sketch

(Figure 5.2) is a bi-dimensional array T of a fixed-size (D,W). Each position or

bucket of the array represents a counter and is initially set to 0. Additionally for

each row d ∈ D there is an independent hash function hd that maps a concept into

a column w ∈W . When a user interacts with an item, each one of the concepts on

the item’s profile is hashed through each one of the hd hash functions. The result of

the hash function gives a column value for the bucket that must be incremented as

explained in Algorithm 2.

Algorithm 2: Algorithm to update the count-min sketch structure

Data: CountMinSketch (T (D,W), h∗), Ci
Result: T (D,W)

foreach c ∈ Ci do

foreach d ∈ D do
hashResult ← hd(c);

T [d][hashResult]← T [d][hashResult] + 1;

end

end

return T (d,w)

The estimation of the number of times a concept has appeared in a user history

can be estimated as the minimum across the buckets indexed by the hash of each

row in the structure:

countSketch(c) = min
d∈D

T [d][hd(c)] (5.1)

The min-count sketch structure gives formal guarantees about the probability

and the accuracy of the count estimation of the sketch. Increasing the width of the

structure reduces the number of expected collisions of the hash functions, therefore

the width is related with the error rate of the sketch: For an error rate of E , the

width that must be chosen is W = e
E . Likewise, increasing the number of hash

functions reduces the probability that two hashes index the same bucket for the same

concept, therefore to achieve a probability of failure of δ a depth of D =
⌈
ln
(

1
δ

)⌉
must be chosen. For example for an error rate of E = 0.1 and a probability failure

of δ = 0.1, W = 28 and D = 3 can be set.

The sliding window sketch structure keeps an estimation of the latest L elements

presented to the sketch, known as the window length. This window is divided into

M segments, and for each segment the sliding window sketch structure keeps a

queue of M identical min-count sketch structures (same dimensions and same hash

functions). When an element is presented to the sliding window sketch, the sliding

window sketch updates only the sketch at the head of the queue, but after bL/Mc
updates the sketch pops the oldest sketch and pushes a new empty min-count sketch

into the queue. The estimation of the number of times a concept has appeared in

a user history in the sliding window min-count sketch is the sum of the estimated

counts of the sketches that compose the structure, that gives the estimation of the

86 Chapter 5. An Hybrid client-side recommender system

count during the observed window.

totalCount(c) =
∑
m∈M

countSketchm(c) (5.2)

Eliminating old bucket values is beneficial for two purposes: (1) gradually forget

older views in order to avoid the saturation of the sketch, which causes bigger

estimation errors as the number of elements processed by the sketch increases, and

(2) to be able to account for the interest drift in users. Users change their tastes

over periods of time, therefore by giving more importance to recent concepts in

the user profile the predictive performance of the system is expected to increase

[Koychev 2000].

Once the list of concepts Cu and the wo vectors length are updated when a

user-item interaction is registered, the weights of the vector are adjusted using an

online logistic regression strategy. Let rui ∈ O be the rating user u gives to item i,

tu be the number of items the user has rated and mui(Ci × Cu) → R|Cu| a function

that takes the concept set of an item and converts it into a binary vector where each

coordinate is 1 if the user’s concept belong to the items list (mui[f] = 1Cu[f]∈Ci).

For each vector the prediction wo, σ(〈wo,mui〉) is calculated and each vectors is

updated as follows:

wou ← wou − γ(tu)(σ(〈wo,mui〉)− 1rui=o)mui (5.3)

Where 〈wo,mui〉 is the dot product between vectors wo and mui, σ(c) = 1/(1 +

exp(−c)) is the sigmoid function and γ(t) is a function of the learning rate that

decreases as the number of trainings of the user increases, e.g γt = γ0(1 + αγ0t)
−c

[Xu 2011].

The rating prediction under this model is calculated as follows:

r̂ui =

∑
o∈O σ(〈wo,mui〉)× o∑
o∈O σ(〈wo,mui〉)

(5.4)

The CB algorithm can be divided into three steps in order to analyze its

computational complexity. The first step is to present to the sketch the concepts

related to the item, this has a complexity linear on the number of concepts the item

has O (D × |Ci|). Once all the concepts are presented, the second step is to add or

remove the concepts from the user list based on the sketch estimated count, this

has a complexity of O (D × |Ci
⋃
Cu|). Finally, the third step is to update each

one of the vectors of the user: the creation of the binary vector m is linear with

the number of items left in the user’s concept list and both the final update and

prediction are O(O ∗ |Cu|). By this analysis is beneficial to use the sketch and the

threshold criterion to keep a manageable size of the concept list of each user since

the scalability of the CB system is related to its size.

In order to validate the model, the Movielens dataset is used for training and

testing the model as described in Section 4.2.2. In order to define the set of concepts

Ci that describe each item the mapping information released in the 2001 HetRec

5.3. Hybrid Model 87

Figure 5.3: CB filtering tested on the Movielens 10M dataset

workshop [Cantador 2011] is used. This mapping uses the dataset information from

the IMDb website1 and the Rotten Tomatoes website2 to describe each movie present

in the Movielens dataset. The following concepts were used to describe a movie:

actors, directors, writers and genres. The feature space size is 131407 concepts.

Parameters for each user sketch are configured as follows: W = 450 and D = 3

for an accuracy of ε = 0.006 with probability of 0.9(δ = 0.1). The list Cu of concepts

is estimated by the sliding window sketch, where the estimated count has to be at

least N = 5. CB models with different initial learning rates and window lengths

L are plotted against the error and presented in Figure 5.3. The figure shows that

keeping an sliding window sketch to calculate the concepts each user has is beneficial

for the predictive performance of the model: A small window size is not enough

for the model to have enough features to learn, on the other hand when keeping

a window too large the model includes more features and the size of the user-item

information is not enough to adjust the weights of these extra features properly.

Therefore, having an sliding window sketch for each user is both beneficial for the

scalability and the predictive performance of the CB model.

5.3 Hybrid Model

As seen in Chapter 2, single paradigms for recommendation have their own problems:

CB approaches are known to be vulnerable to the overspecialization problem since

they only can detect the relevance of items that are similar to the ones the user

has seen before, on the other hand CF approaches are known to be vulnerable to

1http://www.imdb.com
2http://www.rottentomatoes.com

88 Chapter 5. An Hybrid client-side recommender system

Predictionqcomponent

Recommendationqcomponent

Client-sideqagent

Starqwars

actor:harrison_fordq
actor:james_earl_jonesq
actor:mark_hamillq
actor:alec_guinness
actor:denis_lawson
actor:carrie_fisher
director:george_lucasq
genre:Adventure
genre:Action
genre:Sci-Fi

actor:harrison_fordq
actor:james_earl_jonesq
actor:mark_hamillq
actor:alec_guinness
actor:denis_lawson
actor:carrie_fisher
director:george_lucasq
genre:Adventure
genre:Action
genre:Sci-Fi

Starqwars

q1uq

f1 fkq

q2uq

q3uq

q4uq

q5uq

piq

CB CF

pit̂

rui
^ rui

^1 2

Figure 5.4: The hybrid client-side model

sparsity and cold-start problems. By placing the system under the framework of

prediction with expert advice [Bianchi 2006], the final relevance prediction of the

client-side recommendation agent is calculated as a exponentially weighted average

forecaster of two experts at the client-side: The CB model and the CF model (

Figure 5.4), the weighted approach generates a final relevance prediction based on

the outputs of both models.

In this section the u from the notation is dropped for clarity. Let p̂i,t be the

final prediction of the forecaster for item i at turn t after taking into account the

predictions of the experts, E = {1, 2} is set of expert indexes, r̂Ei,t is the prediction

of expert E at time t for item i and `(R×O)→ R is a non-negative loss function

that scores a prediction (either from the final forecaster or from an expert) against

the true rating that the user gave to the item.

In the prediction with expert advice model, when a user rates an item i at time

t, the item profile of i is presented to the experts and they make a prediction r̂Ei,t.

The final forecaster accesses these predictions and makes a final prediction p̂i,t, the

real rating of the item ri,t is revealed to the experts and each one incurs on a loss

`(r̂Ei,t, ri,t). The forecaster incurs on a loss `(p̂i,t, ri,t).

The cumulative regret is defined as the difference between the cumulative losses

of the final predictor and an expert. The regret of the forecaster with respect with

expert E after n trains is defined as:

RE,n =

n∑
t=1

(
`(p̂i,t, ri,t)− `(r̂Ei,t, ri,t)

)
(5.5)

Each expert prediction has a weight that is used by the forecaster to compute

its prediction, the expert’s weight is computed as follows:

WE,t−1 =
exp (ηtRE,t−1)∑
e∈E exp (ηtRe,t−1)

(5.6)

5.4. Predicting under the cold-start scenario (new item problem) 89

Figure 5.5: Hybrid filtering tested on the Movielens 10M dataset

The forecaster prediction after turn t is:

p̂i,t =

∑
E∈EWE,t−1r̂

E
i,t∑

E∈EWE,t−1
(5.7)

The extra complexity of using this framework is linear on the number of experts

used for the recommendation.

In order to validate the model, the Movielens-10M dataset is used for training

and testing the model as described in Section 4.2.2. In order to compare the models

explained so far a CB, CF and the hybrid system were trained with various γ0.

The CF model had a dimensionality of k = 5 and the CB model was limited to a

window size of l = 60. For the hybrid model the CB model was fixed to a model

of initial learning rate γ0 = 0.75 and the initial learning rate of the CF model was

changed under the same parameters of the single CB and CF models. Results in

Figure 5.5 show that the hybrid model only beats the regularized CF model when

the parameters of the CF model are not tuned. Although not beating the model,

the regret of the final model is linear to the one of the best predictive expert that

composes the model. In Table 5.1 results from single models are compared with the

hybrid strategy, for this validation experiment both models were trained using the

same initial learning rate in order to show what would happen if a under performing

model is combined with a better tuned one. The table allows to appreciate more

clearly the impact that the prediction of the single model has on the final output

prediction of the model.

5.4 Predicting under the cold-start scenario (new item

problem)

One reason because the CF model outperforms the proposed hybrid is because in

its validation no cold-start situation is present. Recapitulating from Chapter 2, a

shortcoming from CF models is that they are unable to make relevant predictions

for new items since no opinions are known for the item, this scenario is known as a

cold-start problem. In order to show what would happen in a more realistic scenario

90 Chapter 5. An Hybrid client-side recommender system

γ0(CFandCB) k l RMSE TEST CF RMSE TEST CB RMSE Hybrid

0.01 5 60 1.14824429 1.26665657 1.1720365

0.15 5 60 1.0031442 1.1484055 1.00874913

0.25 5 60 0.99940185 1.12122614 0.9946159

0.35 5 60 0.99576192 1.10876316 0.99095252

0.5 5 60 1.01698005 1.09913029 1.01353192

0.75 5 60 1.06807696 1.09600724 1.04312786

0.85 5 60 1.09030993 1.09785004 1.05429579

Table 5.1: Results hybrid recommender with Movielens dataset

Figure 5.6: Hybrid filtering on Cold-Start scenario tested on the Movielens 10M

dataset

when items arrive to the client-side agent and no information on this item are known,

a partition of the whole dataset is made in order to force the test and cross validation

datasets to contain ratings from items not present in the training set. An experiment

was designed in which the test set was forced to include items not seen before in the

train set, at increasing percentages. In Figure 5.6 the results for the Hybrid, CF

and CB models are shown as the percentage of ratings with a cold-start situation is

forced into the test set. As observed as the number of predictions on a cold-start

situation increases, the pure CF model predictive performance deteriorates while

the pure CB model is not affected, finally after 20% of the predictions being from

a cold-start situation the hybrid model outperforms the CF and CB models that

compose the system.

5.5. Conclusions 91

5.5 Conclusions

As a motivation to improve the predictive accuracy of the privacy-enabled recom-

mender system, this chapter introduced a content-based filtering model that uses a

keyword based approach to represent both users and items. Following the CF model

presented in the previous chapter, a vector per possible rating of size |Cu| is defined

and trained in a online logistic regression as the user interacts with items. Since the

number of concepts an item has can be considerable and the number of items an user

has seen can scale, a sliding window sketch structure is used to keep an estimation

of the number of times a user has interacted with an item and a threshold based

criterion is used to keep into the user’s concepts list the concepts seen by the user

at least N times during the duration of the window. This strategy was shown to be

beneficial in terms of the scalability and the predictive performance of the system.

Next, a client-based approach for recommendation using a model based hybrid

approach that mixes the predictions of the collaborative model presented in Chapter

4 and the keyword-based CB model presented in Section 5.2. The online model

mixes two low computational complexity models at both training and prediction

phases, scaling up to the number of items present in the system and the number of

predictions the agent must make over time. The expert weighting framework allows

an online personalized balancing of each one of the predictions, therefore if a model

is under performing the final predictive performance of the model is not affected

significatively. Moreover, on cold-start situations the hybrid model helps the system

to attain a better predictive performance.

On the privacy concern, although the decentralized model presented here doesn’t

share the whole profile of the user with the recommendation server, under a curious

but honest behavior the proposed system still leaks enough information so the

recommendation server can estimate the distribution of ratings for each user. In the

next chapter tools for offering further privacy guarantees to the users of the system

will be explained and the hybrid model presented in this section will be useful to

keep the predictive performance of the system.

Chapter 6

Privacy considerations and their

impact on the predictive

accuracy of the system

Contents

6.1 Perturbation of the user profile 93

6.2 Keyword-based filtering . 98

6.3 Conclusions . 99

As [Kobsa 2007] identified, in order to use collaborative filtering on client-side

agents a transmission of user profile information from and to the user is needed,

however if done without precautions a curious server or peer might learn information

from the user profile and cancel out the benefits that client-side architectures bring

to user privacy.

The decentralized model presented in Chapter 4 doesn’t share the ratings the

user has assigned to items, neither shares the whole profile with the recommendation

server. However, under a curious but honest behavior the proposed system still lets

know the recommendation server which items the user has interacted. Moreover, by

continously observing the profiles sent by the users, the system could potentially

identify the evolution of the user profiles sent and infer if a user is assigning the

same rating to different elements. In this chapter two solutions to these problems

are presented: The use of a random perturbation approach to limit the inferences

an attacker can make when observing the dense probability vectors the client-based

approach sends to the server in the probability CF model (Section 6.1), and a

filtering criteria based on keywords in order to automatically limit the reporting of

interactions to the server in case the user doesn’t want to report the interaction.

6.1 Perturbation of the user profile

Continous observation of the vectors that the user sends to the recommender system

can configure an attack that allows the system to learn the ratings the user has

assigned to the items.

The user profile update rule formulated in Chapter 4 (Equation 4.8) is formulated

as follows:

94
Chapter 6. Privacy considerations and their impact on the predictive

accuracy of the system

qou ← qou + γtu(1rui=o − (〈pi, qou〉))pi
qu ←

∏
Duser

(qu)

The recommendation server can simulate the next state of the user profile vector

since all the parameters are public: The recommendation server knows the number

of times the server has interacted with the user allowing the recommender system

to calculate γu at interaction t and the item profile pi is public. When a vector

qou arrives to the recommender server, the system can reproduce the update that

the vector will be subjected to in the client-side agent, so if the updated vector is

seen again in the interaction stream the server is able to count the frequency of

appeareance of each vector, configuring a frequency analysis attack.

The attack is configured as shown in Algorithm 3, the attacker keeps a map

of lists of the vectors it has seen before by each user (knownVectorMap) and the

times it has seen each vector (frequencyMap). When a vector arrives the attacker

compares it to the known vectors and if found increases the frequency count, adds

it to the corresponding user list and then simulates the update that the client will

do to its vector.

Algorithm 3: Frequency-analysis vector attack

Data: Stream of tuples (u, qou, pi)

Result: frequencyMap(u, index, count), knownVectorMap(u,User vectors)

frequencyMap ← <>;

knownVectorMap ← <>;

foreach c ∈ Stream do

if knownVectorMap.get(c.u).contains(qou) then
index ← knownVectorMap.get(c.u).getIndex(qou);

end

else
index ← knownVectorMap.get(c.u).size()+1;

end

count ← frequencyMap.get(c.u, index);

frequencyMap.put(c.u,index,count + 1);

oldUserVectors ← knownVectorMap.get(c.u);

knownVectorMap.get(c.u).put(simulateUpdate(qou, pi, oldUserVectors));

end

return frequencyMap,knownVectorMap

The simulation of the update (Algorithm 4) takes advantage of the fact that the

vectors represent a probability distribution, thus if a vector is missing the residual

probability vector can be easily calculated and projected along the known vectors of

6.1. Perturbation of the user profile 95

the user.

Algorithm 4: Simulate update algorithm

Function simulateUpdate(qou, pi,γtu,knownUserVectorList)

Result: updatedVectorList

updatedVectorList ← [];

residualVector ← [];

if ¬ knownUserVectorList.contains(qou) then
knownUserVectorList.add(qou);

end

foreach known ∈ knownUserVectorList do
residualVector ← residualVector + (1− known);

end

foreach known ∈ knownUserVectorList do

if known = qou then
trueValue ← 1;

end

else
trueValue ← 0;

end

updatedVectorList.add(known + γtu(trueValue− (〈pi, known〉))pi);

end∏
Duser

(updatedVectorList ∪ residualVector);

return updatedVectorList

Once the frequency of each vector is calculated and by using as background

information the rating distribution of the users, the mapping between the frequency

of the vector and its real value in the user profile can be estimated. The performance

of a simple attack that assigns a rating value for each vector in the order of the

known distribution of ratings on the Movielens-10M dataset is shown in Table 6.1

with users with at least min interactions ratings in the dataset. As seen in the table,

as the user reveals more ratings, the attack on user privacy becomes more effective.

Min interactions MAE

10 0,81932808

20 0,81821449

30 0,81636623

40 0,81422623

50 0,8120607

60 0,80986958

Table 6.1: Frequency-analysis attack results

A solution to avoid the attack described beforehand is to introduce a random

perturbation into the reported vector in order to make it difficult for the recommen-

dation server to discern if it has seen the vector beforehand. In order to understand

how to efficiently mask the vector reported to the recommender server, notions of

96
Chapter 6. Privacy considerations and their impact on the predictive

accuracy of the system

differential privacy are used.

Differential privacy [Dwork 2006] is privacy preservation technique that was

initially created to protect user privacy when making available sensitive information

form a user database, for example user purchase records, web search records or

medical records. Differential privacy was created to create algorithms that publish

an outcome based on the private data that make difficult for an attacker to relate

the published information with other background information about a user. Let

D1 be the database that has all users and D2 the same database without one user,

differential privacy offers a guarantee that the output of an algorithm M that takes

as input a database will be bounded by a difference of ε with probability 1− δ.
More formally, a randomized algorithm M that has an output in the set S

(S ⊆ range(M)) satisfies (ε, δ) differential privacy if for two adyacent databases

D1 and D2 (that differ only in one record), the probability of the outcome of the

algorithm calculated on both datasets is bounded by:

Pr[M(D1) ∈ S] ≤ eε × Pr[M(D2) ∈ S]] + δ (6.1)

One way in which the output of an algorithm can be randomized to account

for differential privacy is to add noise to the output of the algorithm [Dwork 2008],

let M(X) be a function f(X) : Dn → Rd, the sensitivity of a function f is the

maximum diference on the output of the function f operating on adyacent databases:

∆f = max
D1,D2

‖f(D1)− f(D2)‖1 (6.2)

Noise from a laplace distribution (also known as exponential distribution) can

be used to create a randomization that implements differential privacy. The laplace

distribution’s probability distribution function is P (x|b) = 1
2b exp(−|x|/b) with

variance 2b2 (centered at 0). An algorithm that adds noise to the output of f

sampled from a laplace distribution with parameter b = ∆f/ε enjoys ε-differential

privacy [Dwork 2008].

Differential privacy relies on a curator that releases aggregate information using

differential privacy functions that take as input private information from different

users, it is not designed to protect individual privacy. Due to its inherent architecture

it was not used directly as presented in known literature since reintroducing a curator

as a trusted peer can re-introduce the exposure risks presented on centralized entities

and the scalability problems that sharing the encrpted profile present as seen in

Chapter 3 Section 3.5. Instead, a random perturbation technique is used in order to

restrain the attacker from identifiying similar vectors from the same user, therefore

the noise added should be proportional to the sensitivity of the dot product function

since it is a function that represents the similarity between two vectors.

The interaction between the client and the server proposed in Section 4.2 is

changed. Noise from a laplace distribution is added to each of the coordinates of

the vector qou where rui = o to build the reported the recommendation server qNoiseu

as follows:

6.1. Perturbation of the user profile 97

Figure 6.1: Noise on CF and Hybrid models tested on Movielens 10M dataset

qNoiseu = qou + Laplace

(
1

ε

)
(6.3)

Since there is noise on the information used by the recommender system to

adjust the item profiles, the predictive performance of the recommender system

is expected to drop. In order to verify how setting a privacy budget ε affects the

overall predictive performance of the hybrid model (Chapter 5) when reporting a

noisy user profile, an hybrid model with a CF model with parameters γ0 = 0.15

and k = 5 and a CB model with parameters γ0 = 0.75 and l = 60 was trained with

different ε privacy budgets as seen in Figure 6.1 using the Movielens-10M dataset

for training and testing the model as described in Section 4.2.2.

First, by observing the results of the CF model it is clear that the privacy

constraints affect the predicive performance of the model. As the privacy budget

increases, the ammount of noise required to mask the reported user profile qNoiseu

decreases and the predictive performance of the model improves.

On the other hand, the predictive performance of the hybrid model is not as

affected with the noise as the CF model since the CB model helps to mitigate the

effects of the noise in the recommender system. The use of the hybrid model

is benefitial in order to improve the predictive performance of the CF

model with noise, although the predictive performance of the hybrid system is

noticeable worse when compared to the performance of the hybrid model without

noise.

98
Chapter 6. Privacy considerations and their impact on the predictive

accuracy of the system

6.2 Keyword-based filtering

As recognized by different authors [Castagnos 2007] [Draidi 2011] [Bilenko 2011],

one of the advantages of client-side agents in terms of privacy is that the agents

can reveal only certain interactions they have with the items. An advantage of the

proposed model is that the user can completely skip the reporting of the vector

qNoiseu if she deems the interaction prejudicial for its privacy. A way to facilitate

this omission is to create keyword-based blacklists of items.

In Table 6.2 all the genres of the movies in the Movielens-10M are presented

with the number of movies marked with that genre. In order to simulate what would

happen if users refused to report ratings on one category, all users were blacklisted

with the genre Horror, which leaves out reporting the vector for around 10% of the

items in the dataset.

Genre count

Drama 5339

Comedy 3703

Thriller 1706

Romance 1685

Action 1473

Crime 1118

Adventure 1025

Horror 1013

Sci-Fi 754

Fantasy 543

Children 528

War 511

Mystery 509

Documentary 482

Musical 436

Animation 286

Western 275

Film-Noir 148

IMAX 29

Short 1

Table 6.2: Genres in Movielens-10M dataset and count

In order to verify how setting a privacy budget ε affects the overall predictive

performance of the hybrid model presented on the previous section with blacklisted

items, an hybrid model with a CF model with parameters γ0 = 0.15 and k = 5

and a CB model with parameters γ0 = 0.75 and l = 60 was trained with different ε

privacy budgets as seen in Figure 6.2 using the Movielens-10M dataset for training

and testing the model as described in Section 4.2.2.

6.3. Conclusions 99

Figure 6.2: Noise and blacklist strategy on CF and Hybrid models tested on Movielens

10M dataset

The figure shows that the blacklisting of items affects the predictive performance

of the CF model presented in Chapter 4. While the RMSE measured in the test set

of the CF model without perturbation is 1.004964, the RMSE on the test set with

only the blacklist criteria abstention is 1.07680. When operating the blacklist policy

with the random noise masking presented on the previous chapter, the predicive

performance of the model is furthermore affected. However, and as shown in the

previous section, the use of an hybrid model with a CB model helps to

mitigate the introduction of privacy protecting policies in the CF model.

6.3 Conclusions

In this chapter, two strategies for protecting user privacy are explained. The first

strategy is a random noise perturbation that makes it difficult for the attacker to

simulate the inner state of the vectors of the client. Rather than claiming complete

privacy against an attack using any background information the attacker might

have about the user, this work claims that correlation attacks to find out the rating

the user has assigned to items are protected until a certain measure by the privacy

budget parameter ε. The random noise perturbation is shown to have an impact

on the predictive performance of the CF model, however when combined with a

CB model that doesn’t have privacy concerns, the proposed hybrid architecture

mitigates the impact of using the random noise perturbation until a certain extend.

The other strategy used to protect user’s privacy is to abstain from reportig

the interaction with an item to the recommender system if such interaction is

deemed prejudicial to the privacy of the user. This strategy also affects negatively

100
Chapter 6. Privacy considerations and their impact on the predictive

accuracy of the system

the predictive performance of the CF model, and again the hybrid model shows a

mitigating effect on the predictive performance loss that the keyword based filtering

has, even when the filtering stops from training around 10% of the available items.

Chapter 7

Conclusions

This thesis proposes a new recommendation system where privacy and scalability

are major concerns. The system was designed under the premises of avoiding user

exposure risks while providing high-scalability explained in Chapter 3. The first

limitation that the strategy for preserving the privacy of the user imposes traditional

architectures is the introduction of a client-side agent that keeps the processing and

gathering of user information away from a centralized entity to avoid exposure risks.

While all user information will be kept on the user profile, the items’ profiles will be

kept by an aggregation server that will make them public.

The proposed decentralization brings challenges in terms of the scalability of the

system and in terms of the privacy of the users of the system. By avoiding centralized

entities, Collaborative Filtering algorithms that scale cannot be applied since they

need the whole database of users and items to adjust its parameters efficiently. On

the other hand Collaborative Filtering recommender systems need information from

other users to adjust the user profile, and sending information to other user’s or

an aggregation server without masking or protecting the information can overturn

the benefits that the decentralization brings to user privacy. Strategies to send

information to other peers or aggregation servers while keeping user privacy can be

classified as : Heuristic, cryptographic and random noise perturbation strategies.

Computational complexity analysis of the cryptographic approach was carried in

Section 3.5 and in order to scale with the number of users and items of typical

recommendation systems it was avoided and a heuristic-based strategy for profile

masking was presented along with the general architecture of the system in Chapter

4.

In the proposed CF algorithm, user and item profiles are updated in a strategy

based in the work of [Isaacman 2011], where an online gradient descent strategy is

used to update user and item latent vectors. A variation is introduced since the

original algorithm doesn’t mask its information before sharing it with other peers. In

order to adjust the users’ and items’ profiles, the proposed distributed system adjusts

keeps at the local agent all user information and at each user-item interaction shares

with the recommendation system a dense vector that is used for adjusting a public

item profile. One major modification to the algorithm made by [Isaacman 2011] is

that only one vector is revealed to the recommendation system without revealing

the true rating of the user. By using this modification the recommender system

doesn’t learn the ratings of the user and the predictive performance is improved,

particularly when using a regularization strategy.

102 Chapter 7. Conclusions

Next, an hybridization approach was presented in Chapter 5. A keyword-based

Content Based recommender system was presented where items are marked with

keywords and the user is marked with her most frequently used concepts. Keeping

the same strategy as the CF model, the user has as many vectors as ratings are

available in the system, however the dimension of these vectors depends on the

number of frequent concepts of each user. To keep a low dimensionality of the user

profile, a sliding window sketch structure is used to keep an estimation of the number

of times a user has interacted with an item. The presented strategy is shown to be

beneficial for the predictive performance of the model, as well as the scalability since

the complexity of the operations carried away by the system are linear with the

number of dimensions. Finally an hybridization strategy was presented based on the

historical regret of both models running in parallel. This low-complexity strategy is

known to keep the regret of the hybrid model linear with its best performing expert.

The model was tested and it was shown that in a cold-start situation, the hybrid

model outperforms the models that compose the hybrid system.

Finally, two strategies were presented to improve the privacy guarantees that

the heuristic-based strategy presented in Chapter 4 offers. Random noise was

generated to mask the vector that leaves the client-side agent to keep an attacker

from simulating the internal state of the client-side vector. By using notions from

differential privacy, each coordinate of the reported vector is affected by noise taken

from a laplacian distribution. While perfect privacy against all types of background

information is impossible to achieve, the noise added to the vector is parametrized by

a privacy budget ε. Results show that the predictive performance of the CF model is

affected as the privacy budget decreases, however this effect is mitigated by the use

of the hybridization strategy. Another heuristic-based strategy used for protecting

the user’s privacy is to refrain to report some items to the recommender system

when a user doesn’t want to be linked with an item, the strategy was simulated by

using a keyword based strategy where a keyword was chosen to be blacklisted by all

users, comprising 10% of the items in the system. After simulating both strategies

the hybrid approach is shown to mitigate the effect of the alterations to the CF model.

Closing remarks and future work

This thesis proposes two rarely considered design factors in the recommendation

system’s literature. First, the use of online learning models is not usually considered

since the computational capacity of current cloud based solutions allow current

recommendation systems to gather as much data as needed, and process it efficiently

to train the predictive models. As seen in Chapter 2 only one iteration along the

user-item information is not sufficient to train these models and new models should

be adapted for this kind of systems. However, as shown in this work, one advantage

of this kind of learning strategy is that the complexity of the training and prediction

tasks can be greatly reduced, and as the theory of statistical theory explains, by

103

keeping a fixed small hypothesis for the model and increasing the number of user-

item interactions, the predictive performance of the model can be improved. This

is beneficial for applications that expect a great amount of user-item interactions

since its predictive performance wont be as affected as the ones where user-item

information is scarce. An interesting approach for future analysis is to analyze how

does these kinds of models and training approaches scale for more complex models

with bigger hypothesis, for example those that instead of adjusting their parameters

for rating prediction adjust parameters for ranking prediction such as the models

from [Rendle 2009] [Shi 2012].

Other rarely considered choice is the use of hybrid models at client-side. One

reason for the lack of studies of hybrid models at client-side is again that bigger

hypothesis models are needed to include extra features about the user and the item

into the predictive model (i.e [Gantner 2010]). Since traditional architectures can

solve efficiently the scalability problem, contemplating the performance of these

models in a distributed environment where each agent has its own data is still an

open problem. Other reason for this choice is that traditionally CF algorithms

are the ones to present a challenge in privacy and scalability when operating in a

distributed environment with a client-side agent, much of the research in these kind

of systems has been devoted to solve these challenges as shown in Chapter 3. The

simple hybridization approach shown in Chapter 5 can offer valuable insights for

future online integration of more complex models.

Finally, a basic model for representing users and items was used in this work in

the CB model by the use of a knowledge model based on keywords. The choice of

using this knowledge model was guided by the scalability concern, however more

complex knowledge models could be used such as the hierarchy-based models or

ontology-based models presented in Section 2.1.1. The use of these knowledge models

could further reduce the sparsity between the representations of users and items,

improving the predictive performance of the system. For example, an extension to

the CB model presented in this thesis was designed by our group in [Moreno 2014]

where the features of the items were assigned as cluster ids created from a clustering

technique based on co-occurrence of features, as extracted from open web semantic

data (DBPedia) for the DBBook dataset. The model was trained in an offline setting

using a logistic regression strategy. As shown by the results for rating prediction

in [Di Noia 2014], our hybridization approach based on model switching performed

similarly to state of the art hybrid methods. Future work could be developed to

adapt this strategy to the online setting for clustering as well as the model training.

Bibliography

[Adomavicius 2005] G. Adomavicius and A. Tuzhilin. Toward the next generation of

recommender systems: a survey of the state-of-the-art and possible extensions.

IEEE Trans. on Knowl. and Data Eng., vol. 17, no. 6, pages 734–749, June

2005. (Cited on pages 3, 10, 13 and 18.)

[Agrawal 2000] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data

mining. In Proceedings of the 2000 ACM SIGMOD international conference

on Management of data, SIGMOD ’00, pages 439–450, New York, NY, USA,

2000. ACM. (Cited on pages 39 and 57.)

[Ahn 2010] Jae W. Ahn and Xavier Amatriain. Towards Fully Distributed and

Privacy-Preserving Recommendations via Expert Collaborative Filtering and

RESTful Linked Data. Web Intelligence and Intelligent Agent Technology,

IEEE/WIC/ACM International Conference on, vol. 1, pages 66–73, 2010.

(Cited on page 51.)

[Aimeur 2008] E. Aimeur, G. Brassard, J. M. Fernandez, F. S. M. Onana and

Z. Rakowski. Experimental Demonstration of a Hybrid Privacy-Preserving

Recommender System. In Availability, Reliability and Security, 2008. ARES

08. Third International Conference on, pages 161–170. IEEE, March 2008.

(Cited on pages 49 and 51.)

[Alaggan 2011] Mohammad Alaggan, Sébastien Gambs and Anne-Marie Kermarrec.

Private Similarity Computation in Distributed Systems: From Cryptography

to Differential Privacy. In Antonio Fernàndez Anta, Giuseppe Lipari and

Matthieu Roy, editeurs, Principles of Distributed Systems, volume 7109 of

Lecture Notes in Computer Science, pages 357–377. Springer Berlin Heidel-

berg, 2011. (Cited on pages 52, 53 and 61.)

[Ali 2004] Kamal Ali and Wijnand van Stam. TiVo: making show recommendations

using a distributed collaborative filtering architecture. In Proceedings of the

tenth ACM SIGKDD international conference on Knowledge discovery and

data mining, KDD ’04, pages 394–401, New York, NY, USA, 2004. ACM.

(Cited on pages 49 and 51.)

[Amatriain 2009] Xavier Amatriain, Neal Lathia, Josep M. Pujol, Haewoon Kwak

and Nuria Oliver. The wisdom of the few: a collaborative filtering approach

based on expert opinions from the web. In Proceedings of the 32nd interna-

tional ACM SIGIR conference on Research and development in information

retrieval, SIGIR ’09, pages 532–539, New York, NY, USA, 2009. ACM. (Cited

on page 51.)

106 Bibliography

[Amatriain 2013] Xavier Amatriain. Mining Large Streams of User Data for Per-

sonalized Recommendations. SIGKDD Explor. Newsl., vol. 14, no. 2, pages

37–48, April 2013. (Cited on page 33.)

[Bakken 2004] D. E. Bakken, R. Rarameswaran, D. M. Blough, A. A. Franz and

T. J. Palmer. Data obfuscation: anonymity and desensitization of usable

data sets. Security & Privacy, IEEE, vol. 2, no. 6, pages 34–41, November

2004. (Cited on page 39.)

[Bakker 2009] Arno Bakker, Elth Ogston and Maarten van Steen. Collaborative

filtering using random neighbours in peer-to-peer networks. In CNIKM ’09:

Proceeding of the 1st ACM international workshop on Complex networks

meet information & knowledge management, pages 67–75, New York,

NY, USA, 2009. ACM. (Cited on pages 48 and 50.)

[Balabanović 1997] Marko Balabanović and Yoav Shoham. Fab: content-based,

collaborative recommendation. Commun. ACM, vol. 40, pages 66–72, March

1997. (Cited on pages 11 and 20.)

[Bell 2007] Robert M. Bell and Yehuda Koren. Scalable Collaborative Filtering with

Jointly Derived Neighborhood Interpolation Weights. In Proceedings of the

2007 Seventh IEEE International Conference on Data Mining, ICDM ’07,

pages 43–52, Washington, DC, USA, October 2007. IEEE Computer Society.

(Cited on page 17.)

[Belloǵın Kouki 2012] Alejandro Belloǵın Kouki. Recommender System Performance

Evaluation and Prediction: An Information Retrieval Perspective. PhD thesis,

Universidad Autónoma de Madrid, October 2012. (Cited on page 20.)

[Bellogin 2011] Alejandro Bellogin, Pablo Castells and Ivan Cantador. Precision-

oriented evaluation of recommender systems: an algorithmic comparison. In

Proceedings of the fifth ACM conference on Recommender systems, RecSys

’11, pages 333–336, New York, NY, USA, 2011. ACM. (Cited on page 26.)

[Berkovsky 2007] Shlomo Berkovsky, Yaniv Eytani, Tsvi Kuflik and Francesco Ricci.

Enhancing privacy and preserving accuracy of a distributed collaborative

filtering. In Proceedings of the 2007 ACM conference on Recommender

systems, RecSys ’07, pages 9–16, New York, NY, USA, 2007. ACM. (Cited

on pages 51, 52, 58 and 59.)

[Bianchi 2006] Nicolo C. Bianchi and Gabor Lugosi. Prediction, learning, and games.

Cambridge University Press, New York, NY, USA, 2006. (Cited on page 88.)

[Bilenko 2011] Mikhail Bilenko and Matthew Richardson. Predictive client-side pro-

files for personalized advertising. In Proceedings of the 17th ACM SIGKDD

international conference on Knowledge discovery and data mining, KDD ’11,

pages 413–421, New York, NY, USA, 2011. ACM. (Cited on pages 49, 51

and 98.)

Bibliography 107

[Blanco-Fernández 2008] Yolanda Blanco-Fernández, José J. Pazos-Arias, Alberto

Gil-Solla, Manuel Ramos-Cabrer, Mart́ın López-Nores, Jorge Garćıa-Duque,

Ana Fernández-Vilas and Rebeca P. Dı́az-Redondo. Exploiting synergies

between semantic reasoning and personalization strategies in intelligent rec-

ommender systems: A case study. J. Syst. Softw., vol. 81, no. 12, pages

2371–2385, 2008. (Cited on page 13.)

[Borlund 2003] Pia Borlund. The concept of relevance in IR. J. Am. Soc. Inf. Sci.,

vol. 54, no. 10, pages 913–925, August 2003. (Cited on page 9.)

[Bottou 1998] Léon Bottou. Online Algorithms and Stochastic Approximations.

In David Saad, editeur, Online Learning and Neural Networks. Cambridge

University Press, Cambridge, UK, 1998. revised, oct 2012. (Cited on pages 72

and 73.)

[Bottou 2008] Léon Bottou and Olivier Bousquet. The Tradeoffs of Large Scale

Learning. In J. C. Platt, D. Koller, Y. Singer and S. Roweis, editeurs,

Advances in Neural Information Processing Systems 20, pages 161–168, 2008.

(Cited on page 27.)

[Bottou 2010] Léon Bottou. Large-Scale Machine Learning with Stochastic Gradient

Descent. In Yves Lechevallier and Gilbert Saporta, editeurs, Proceedings

of COMPSTAT’2010, pages 177–186. Physica-Verlag HD, 2010. (Cited on

page 27.)

[Buckley 1995] Chris Buckley and Gerard Salton. Optimization of relevance feed-

back weights. In Proceedings of the 18th annual international ACM SIGIR

conference on Research and development in information retrieval, SIGIR

’95, pages 351–357, New York, NY, USA, 1995. ACM. (Cited on pages 11

and 13.)

[Burke 2002] Robin Burke. Hybrid Recommender Systems: Survey and Experiments.

User Modeling and User-Adapted Interaction, vol. 12, no. 4, pages 331–370,

November 2002. (Cited on pages 10, 18, 19, 20 and 83.)

[Calandrino 2011] J. A. Calandrino, A. Kilzer, A. Narayanan, E. W. Felten and

V. Shmatikov. ”You Might Also Like:” Privacy Risks of Collaborative Filter-

ing. In Security and Privacy (SP), 2011 IEEE Symposium on, pages 231–246.

IEEE, May 2011. (Cited on page 43.)

[Canny 2002] J. Canny. Collaborative filtering with privacy. Security and Privacy,

2002. Proceedings. 2002 IEEE Symposium on, pages 45–57, 2002. (Cited on

pages 55, 61, 62 and 63.)

[Cantador 2011] Iván Cantador, Peter Brusilovsky and Tsvi Kuflik. 2nd Workshop

on Information Heterogeneity and Fusion in Recommender Systems (HetRec

2011). In Proceedings of the 5th ACM conference on Recommender systems,

RecSys 2011, New York, NY, USA, 2011. ACM. (Cited on page 87.)

108 Bibliography

[Castagnos 2007] Sylvain Castagnos and Anne Boyer. Modeling Preferences in

a Distributed Recommender System. In UM ’07: Proceedings of the 11th

international conference on User Modeling, pages 400–404, Berlin, Heidelberg,

2007. Springer-Verlag. (Cited on pages 47, 50 and 98.)

[Chen 2011] Yunmei Chen and Xiaojing Ye. Projection Onto A Simplex, February

2011. (Cited on page 73.)

[Chen 2012] Xiaoqiang Chen and V. Huang. Privacy Preserving Data Publishing for

Recommender System. In Computer Software and Applications Conference

Workshops (COMPSACW), 2012 IEEE 36th Annual, pages 128–133. IEEE,

July 2012. (Cited on page 46.)

[Clemen 1999] Robert T. Clemen and Robert L. Winkler. Combining Probability

Distributions From Experts in Risk Analysis. Risk Analysis, vol. 19, no. 2,

pages 187–203, April 1999. (Cited on page 80.)

[Cormode 2005] Graham Cormode and S. Muthukrishnan. An Improved Data Stream

Summary: The Count-min Sketch and Its Applications. J. Algorithms, vol. 55,

no. 1, pages 58–75, April 2005. (Cited on page 85.)

[Cranor 2002] Lorrie Cranor, Marc Langheinrich, Massimo Marchiori, Martin

Presler-Marshall and Joseph Reagle. The Platform for Privacy Prefer-

ences 1.0 (P3P1.0) Specification. http://www.w3.org/TR/P3P/, April 2002.

(Cited on page 38.)

[Crestani 1997] F. Crestani. Application of Spreading Activation Techniques in

Information Retrieval. Artif. Intell. Rev., vol. 11, no. 6, pages 453–482,

December 1997. (Cited on page 13.)

[Damg̊ard 2001] Ivan Damg̊ard and Mads Jurik. A Generalisation, a Simplification

and Some Applications of Paillier’s Probabilistic Public-Key System. In

Kwangjo Kim, editeur, Public Key Cryptography, volume 1992 of Lecture

Notes in Computer Science, chapitre 9, pages 119–136. Springer Berlin

Heidelberg, Berlin, Heidelberg, June 2001. (Cited on page 60.)

[Das 2007] Abhinandan S. Das, Mayur Datar, Ashutosh Garg and Shyam Rajaram.

Google news personalization: scalable online collaborative filtering. In Pro-

ceedings of the 16th international conference on World Wide Web, WWW

’07, pages 271–280, New York, NY, USA, 2007. ACM. (Cited on pages 20

and 36.)

[Dasiopoulou 2011] Stamatia Dasiopoulou, Eirini Giannakidou, Georgios Litos,

Polyxeni Malasioti and Yiannis Kompatsiaris. A Survey of Semantic Image

and Video Annotation Tools. In Georgios Paliouras, Constantine Spyropoulos

and George Tsatsaronis, editeurs, Knowledge-Driven Multimedia Informa-

tion Extraction and Ontology Evolution, volume 6050 of Lecture Notes in

http://www.w3.org/TR/P3P/

Bibliography 109

Computer Science, chapitre 8, pages 196–239. Springer Berlin / Heidelberg,

Berlin, Heidelberg, 2011. (Cited on page 12.)

[Davidson 2010] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy,

Taylor Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake

Livingston and Dasarathi Sampath. The YouTube video recommendation

system. In Proceedings of the fourth ACM conference on Recommender

systems, RecSys ’10, pages 293–296, New York, NY, USA, 2010. ACM. (Cited

on page 36.)

[Del Prete 2010] L. Del Prete and L. Capra. diffeRS: A Mobile Recommender

Service. In Mobile Data Management (MDM), 2010 Eleventh International

Conference on, pages 21–26. IEEE, May 2010. (Cited on pages 48 and 50.)

[Di Noia 2014] Tommaso Di Noia, Iván Cantador and Vito Claudio Ostuni. Linked

Open Data-enabled Recommender Systems: ESWC 2014 Challenge on Book

Recommendation. to appear, 2014. (Cited on page 103.)

[Dimitropoulos 2008] Xenofontas Dimitropoulos, Marc Stoecklin, Paul Hurley and

Andreas Kind. The Eternal Sunshine of the Sketch Data Structure. Comput.

Netw., vol. 52, no. 17, pages 3248–3257, December 2008. (Cited on page 85.)

[Dokoohaki 2010] Nima Dokoohaki, Cihan Kaleli, Huseyin Polat and Mihhail

Matskin. Achieving Optimal Privacy in Trust-Aware Social Recommender

Systems. In Leonard Bolc, Marek Makowski and Adam Wierzbicki, edi-

teurs, Social Informatics, volume 6430 of Lecture Notes in Computer Science,

chapitre 5, pages 62–79. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

(Cited on pages 53, 54, 58 and 59.)

[Dooms 2013] Simon Dooms, Toon De Pessemier and Luc Martens. MovieTweetings:

a Movie Rating Dataset Collected From Twitter. In Workshop on Crowd-

sourcing and Human Computation for Recommender Systems, CrowdRec at

RecSys 2013, 2013. (Cited on page 43.)

[Draidi 2011] Fady Draidi, Esther Pacitti and Bettina Kemme. P2Prec: A P2P

Recommendation System for Large-Scale Data Sharing Transactions on Large-

Scale Data- and Knowledge-Centered Systems III. In Abdelkader Hameurlain,

Josef Küng and Roland Wagner, editeurs, Transactions on Large-Scale Data-

and Knowledge-Centered Systems III, volume 6790 of Lecture Notes in

Computer Science, chapitre 4, pages 87–116. Springer Berlin / Heidelberg,

Berlin, Heidelberg, 2011. (Cited on pages 48, 50 and 98.)

[Duan 2010] Yitao Duan, John Canny and Justin Zhan. P4P: practical large-scale

privacy-preserving distributed computation robust against malicious users. In

Proceedings of the 19th USENIX conference on Security, USENIX Security’10,

page 14, Berkeley, CA, USA, 2010. USENIX Association. (Cited on pages 55,

56, 58 and 59.)

110 Bibliography

[Duboc 2007] Leticia Duboc, David Rosenblum and Tony Wicks. A framework for

characterization and analysis of software system scalability. In Proceedings of

the the 6th joint meeting of the European software engineering conference and

the ACM SIGSOFT symposium on The foundations of software engineering,

ESEC-FSE ’07, pages 375–384, New York, NY, USA, 2007. ACM. (Cited on

page 25.)

[Dwork 2006] Cynthia Dwork. Differential Privacy. In Michele Bugliesi, Bart

Preneel, Vladimiro Sassone and Ingo Wegener, editeurs, Automata, Lan-

guages and Programming, volume 4052 of Lecture Notes in Computer Science,

chapitre 1, pages 1–12. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

(Cited on pages 6, 41 and 96.)

[Dwork 2008] Cynthia Dwork. Differential privacy: a survey of results. In Pro-

ceedings of the 5th international conference on Theory and applications of

models of computation, TAMC’08, pages 1–19, Berlin, Heidelberg, 2008.

Springer-Verlag. (Cited on pages 39 and 96.)

[Dwork 2010] Cynthia Dwork, Moni Naor, Toniann Pitassi and Guy N. Rothblum.

Differential privacy under continual observation. In Proceedings of the 42nd

ACM symposium on Theory of computing, STOC ’10, pages 715–724, New

York, NY, USA, 2010. ACM. (Cited on page 45.)

[Ehrig 2004] Marc Ehrig, Peter Haase, Mark Hefke and Nenad Stojanovic. Similarity

for Ontologies - a Comprehensive Framework. In In Workshop Enterprise

Modelling and Ontology: Ingredients for Interoperability, at PAKM 2004,

2004. (Cited on pages 12 and 13.)

[Elmisery 2011] Ahmed M. Elmisery and Dmitri Botvich. Privacy Aware Recom-

mender Service for IPTV Networks. In Proceedings of the 2011 Fifth FTRA

International Conference on Multimedia and Ubiquitous Engineering, MUE

’11, pages 160–166, Washington, DC, USA, 2011. IEEE Computer Society.

(Cited on pages 54 and 55.)

[Erkin 2012] Z. Erkin, T. Veugen, T. Toft and R. L. Lagendijk. Generating Private

Recommendations Efficiently Using Homomorphic Encryption and Data

Packing. Information Forensics and Security, IEEE Transactions on, vol. 7,

no. 3, pages 1053–1066, June 2012. (Cited on pages 55, 56, 62 and 63.)

[European Commission 2012] European Commission. COMMUNICATION FROM

THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUN-

CIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND

THE COMMITTEE OF THE REGIONS Safeguarding Privacy in a

Connected World A European Data Protection Framework for the 21st

Century. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=

CELEX:52012DC0009:en:NOT, January 2012. (Cited on page 38.)

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52012DC0009:en:NOT
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52012DC0009:en:NOT

Bibliography 111

[Foner 1999] Leonard N. Foner. Political Artifacts and Personal Privacy: The

Yenta Multi-Agent Distributed Matchmaking System. PhD thesis, Program in

Media Arts and Sciences, School of Architecture and Planning, Massachusetts

Institute of Technology, June 1999. (Cited on pages 4 and 36.)

[Funk 2006] Simon Funk. Netflix update: Try this at home. Accesed online March

2013 [http://sifter.org/˜simon/journal/20061211.html], 2006. (Cited on

page 17.)

[Gantner 2010] Z. Gantner, L. Drumond, C. Freudenthaler, S. Rendle and

L. Schmidt-Thieme. Learning Attribute-to-Feature Mappings for Cold-Start

Recommendations. In Data Mining (ICDM), 2010 IEEE 10th International

Conference on, pages 176–185. IEEE, December 2010. (Cited on pages 20

and 103.)

[Guha 2009] Saikat Guha, Alexey Reznichenko, Kevin Tang, Hamed Haddadi and

Paul Francis. Serving Ads from localhost for Performance, Privacy, and

Profit. In Proceedings of the 8th Workshop on Hot Topics in Networks

(HotNets), New York, NY, Oct 2009. (Cited on page 19.)

[Gunawardana 2009] Asela Gunawardana and Christopher Meek. A unified approach

to building hybrid recommender systems. In Proceedings of the third ACM

conference on Recommender systems, RecSys ’09, pages 117–124, New York,

NY, USA, 2009. ACM. (Cited on page 20.)

[Halkidi 2011] Maria Halkidi and Iordanis Koutsopoulos. A Game Theoretic Frame-

work for Data Privacy Preservation in Recommender Systems. In Dimitrios

Gunopulos, Thomas Hofmann, Donato Malerba and Michalis Vazirgiannis,

editeurs, Machine Learning and Knowledge Discovery in Databases, volume

6911 of Lecture Notes in Computer Science, pages 629–644. Springer Berlin

Heidelberg, 2011. (Cited on pages 53, 54 and 64.)

[Han 2004] P. Han. A scalable P2P recommender system based on distributed

collaborative filtering. Expert Systems with Applications, vol. 27, no. 2,

pages 203–210, August 2004. (Cited on pages 47 and 50.)

[Hanani 2001] Uri Hanani, Bracha Shapira and Peretz Shoval. Information Filtering:

Overview of Issues, Research and Systems. User Modeling and User-Adapted

Interaction, vol. 11, pages 203–259, August 2001. (Cited on page 10.)

[Hoens 2010] T. Ryan Hoens, Marina Blanton and Nitesh V. Chawla. A Private and

Reliable Recommendation System for Social Networks. In Proceedings of the

2010 IEEE Second International Conference on Social Computing, SOCIAL-

COM ’10, pages 816–825, Washington, DC, USA, 2010. IEEE Computer

Society. (Cited on pages 52, 62 and 63.)

[Hsieh 2011] Chia-Lung Hsieh. Toward Better Recommender System by Collaborative

Computation with Privacy Preserved. In 2011 IEEE/IPSJ International

112 Bibliography

Symposium on Applications and the Internet, pages 246–249. IEEE, July

2011. (Cited on page 52.)

[Hsu 2007] Shang Hsu, Ming-Hui Wen, Hsin-Chieh Lin, Chun-Chia Lee and Chia-

Hoang Lee. AIMED- A Personalized TV Recommendation System. In Pablo

Cesar, Konstantinos Chorianopoulos and Jens Jensen, editeurs, Interactive

TV: a Shared Experience, volume 4471 of Lecture Notes in Computer Science,

chapitre 18, pages 166–174. Springer Berlin / Heidelberg, Berlin, Heidelberg,

2007. (Cited on page 12.)

[Isaacman 2011] Sibren Isaacman, Stratis Ioannidis, Augustin Chaintreau and Mar-

garet Martonosi. Distributed rating prediction in user generated content

streams. In Proceedings of the fifth ACM conference on Recommender sys-

tems, RecSys ’11, pages 69–76, New York, NY, USA, 2011. ACM. (Cited on

pages 49, 50, 70, 73, 75, 76, 81 and 101.)

[Jeckmans 2013] ArjanJ Jeckmans, Michael Beye, Zekeriya Erkin, Pieter Hartel,

ReginaldL Lagendijk and Qiang Tang. Privacy in Recommender Systems.

In Naeem Ramzan, Roelof Zwol, Jong-Seok Lee, Kai Clüver and Xian-

Sheng Hua, editeurs, Social Media Retrieval, Computer Communications

and Networks, pages 263–281. Springer London, 2013. (Cited on page 38.)

[Jelasity 2009] Márk Jelasity, Alberto Montresor and Ozalp Babaoglu. T-Man:

Gossip-based fast overlay topology construction. Computer Networks, vol. 53,

no. 13, pages 2321–2339, August 2009. (Cited on page 47.)

[Jiang 2009] Xing Jiang and Ah-Hwee Tan. Learning and inferencing in user ontology

for personalized Semantic Web search. Information Sciences, vol. 179, no. 16,

pages 2794–2808, July 2009. (Cited on page 13.)

[Kaleli 2010] Cihan Kaleli and Hüseyin Polat. P2P collaborative filtering with

privacy. Turkish Journal of Electric Electrical Engineering and Computer

Sciences, vol. 8, no. 1, pages 101–116, 2010. (Cited on pages 51, 52 and 64.)

[Kermarrec 2010] Anne-Marie Kermarrec, Vincent Leroy, Afshin Moin and Christo-

pher Thraves. Application of Random Walks to Decentralized Recommender

Systems. In Chenyang Lu, Toshimitsu Masuzawa and Mohamed Mosbah,

editeurs, Principles of Distributed Systems, volume 6490 of Lecture Notes in

Computer Science, pages 48–63. Springer Berlin Heidelberg, 2010. (Cited on

pages 47 and 50.)

[Kim 2008] Jae K. Kim, Hyea K. Kim and Yoon H. Cho. A user-oriented contents

recommendation system in peer-to-peer architecture. Expert Systems with

Applications, vol. 34, no. 1, pages 300–312, January 2008. (Cited on pages 47

and 50.)

[King 2010] Nancy J. King and Pernille W. Jessen. Profiling the mobile customer -

Privacy concerns when behavioural advertisers target mobile phones - Part I.

Bibliography 113

Computer Law & Security Review, vol. 26, no. 5, pages 455–478, September

2010. (Cited on page 37.)

[Kobsa 2007] Alfred Kobsa. Privacy-enhanced personalization. Commun. ACM,

vol. 50, no. 8, pages 24–33, August 2007. (Cited on pages 38, 40, 70 and 93.)

[Kohavi 2009] Ron Kohavi, Roger Longbotham, Dan Sommerfield and RandalM

Henne. Controlled experiments on the web: survey and practical guide. Data

Mining and Knowledge Discovery, vol. 18, no. 1, pages 140–181, February

2009. (Cited on page 21.)

[Koren 2008] Yehuda Koren. Factorization meets the neighborhood: a multifaceted

collaborative filtering model. In Proceedings of the 14th ACM SIGKDD

international conference on Knowledge discovery and data mining, KDD ’08,

pages 426–434, New York, NY, USA, 2008. ACM. (Cited on page 17.)

[Koren 2011] Yehuda Koren and Joe Sill. OrdRec: an ordinal model for predicting

personalized item rating distributions. In Proceedings of the fifth ACM

conference on Recommender systems, RecSys ’11, pages 117–124, New York,

NY, USA, 2011. ACM. (Cited on page 17.)

[Koychev 2000] Ivan Koychev and Ingo Schwab. Adaptation to Drifting User’s

Interests. In In Proceedings of ECML2000 Workshop: Machine Learning in

New Information Age, pages 39–46, 2000. (Cited on page 86.)

[Lam 2006] Shyong Lam, Dan Frankowski and John Riedl. Do You Trust Your

Recommendations? An Exploration of Security and Privacy Issues in Recom-

mender Systems. In Günter Müller, editeur, Emerging Trends in Information

and Communication Security, volume 3995 of Lecture Notes in Computer

Science, chapitre 2, pages 14–29. Springer Berlin / Heidelberg, Berlin, Hei-

delberg, 2006. (Cited on page 36.)

[Lang 1995] Ken Lang. NewsWeeder: learning to filter netnews. In Proceedings

of the 12th International Conference on Machine Learning, pages 331–339.

Morgan Kaufmann publishers Inc.: San Mateo, CA, USA, 1995. (Cited on

page 11.)

[Lathia 2007] Neal Lathia, Stephen Hailes and Licia Capra. Private distributed

collaborative filtering using estimated concordance measures. In Proceedings

of the 2007 ACM conference on Recommender systems, RecSys ’07, pages

1–8, New York, NY, USA, 2007. ACM. (Cited on pages 49 and 51.)

[L’Ecuyer 2007] Pierre L’Ecuyer. Random Number Generation. Handbook of Simu-

lation: Principles, Methodology, Advances, Applications, and Practice, pages

93–137, 2007. (Cited on page 58.)

[Lieberman 1995] Henry Lieberman. Letizia: an agent that assists web browsing. In

Proceedings of the 14th international joint conference on Artificial intelligence

114 Bibliography

- Volume 1, IJCAI’95, pages 924–929, San Francisco, CA, USA, 1995. Morgan

Kaufmann Publishers Inc. (Cited on page 12.)

[Linden 2003] G. Linden, B. Smith and J. York. Amazon.com recommendations:

item-to-item collaborative filtering. IEEE Internet Computing, vol. 7, no. 1,

pages 76–80, January 2003. (Cited on pages 15 and 36.)

[Luo 2012] Xin Luo, Yunni Xia and Qingsheng Zhu. Incremental Collaborative

Filtering recommender based on Regularized Matrix Factorization. Knowledge-

Based Systems, vol. 27, pages 271–280, March 2012. (Cited on pages 29

and 32.)

[Magureanu 2012] S. Magureanu, N. Dokoohaki, S. Mokarizadeh and M. Matskin.

Epidemic Trust-Based Recommender Systems. In Privacy, Security, Risk and

Trust (PASSAT), 2012 International Conference on and 2012 International

Confernece on Social Computing (SocialCom), pages 461–470. IEEE, 2012.

(Cited on pages 48 and 50.)

[Marinho 2011] Leandro B. Marinho, Alexandros Nanopoulos, Lars Schmidt-Thieme,

Robert Jäschke, Andreas Hotho, Gerd Stumme and Panagiotis Symeonidis.

Social Tagging Recommender Systems. In Francesco Ricci, Lior Rokach,

Bracha Shapira and Paul B. Kantor, editeurs, Recommender Systems Hand-

book, chapitre 19, pages 615–644. Springer US, Boston, MA, 2011. (Cited

on page 12.)

[Massa 2009] Paolo Massa and Paolo Avesani. Trust Metrics in Recommender

Systems. In Jennifer Golbeck, editeur, Computing with Social Trust, Human-

Computer Interaction Series, chapitre 10, pages 259–285. Springer London,

London, 2009. (Cited on page 48.)

[Matsumoto 1998] Makoto Matsumoto and Takuji Nishimura. Mersenne Twister: A

623-dimensionally Equidistributed Uniform Pseudo-random Number Genera-

tor. ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pages 3–30, January

1998. (Cited on page 58.)

[McMahan 2013] H. Brendan McMahan, Gary Holt, D. Sculley, Michael Young,

Dietmar Ebner, Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov,

Daniel Golovin, Sharat Chikkerur, Dan Liu, Martin Wattenberg, Arnar M.

Hrafnkelsson, Tom Boulos and Jeremy Kubica. Ad Click Prediction: A View

from the Trenches. In Proceedings of the 19th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’13, pages

1222–1230, New York, NY, USA, 2013. ACM. (Cited on page 84.)

[McSherry 2009] Frank McSherry and Ilya Mironov. Differentially private recom-

mender systems: building privacy into the net. In Proceedings of the 15th

ACM SIGKDD international conference on Knowledge discovery and data

Bibliography 115

mining, KDD ’09, pages 627–636, New York, NY, USA, 2009. ACM. (Cited

on pages 41, 46 and 47.)

[Middleton 2004] Stuart E. Middleton, Nigel R. Shadbolt and David C. De Roure.

Ontological user profiling in recommender systems. ACM Trans. Inf. Syst.,

vol. 22, no. 1, pages 54–88, January 2004. (Cited on pages 12 and 13.)

[Miller 2004] Bradley N. Miller, Joseph A. Konstan and John Riedl. PocketLens:

Toward a personal recommender system. ACM Transactions on Information

Systems, vol. 22, no. 3, pages 437–476, July 2004. (Cited on pages 48, 50

and 56.)

[Moreno 2014] Andrés Moreno, Christian Ariza-Porras, Paula Lago, Claudia

Jiménez-Guarın, Harold Castro and Michel Riveill. Hybrid model rating

prediction with Linked Open Data for Recommender Systems. to appear,

2014. (Cited on page 103.)

[Narayanan 2008] A. Narayanan and V. Shmatikov. Robust De-anonymization

of Large Sparse Datasets. In Security and Privacy, 2008. SP 2008. IEEE

Symposium on, volume 0, pages 111–125, Los Alamitos, CA, USA, May 2008.

IEEE. (Cited on page 41.)

[Netflix 2009] Netflix. Netflix Prize. http://www.netflixprize.com/, September 2009.

(Cited on page 5.)

[Netflix 2013] Netflix. Netflix Cinematch. http://www.netflix.com, April 2013.

(Cited on pages 4 and 36.)

[Oku 2006] K. Oku, S. Nakajima, J. Miyazaki and S. Uemura. Context-Aware

SVM for Context-Dependent Information Recommendation. In MDM ’06:

Proceedings of the 7th International Conference on Mobile Data Management

(MDM’06), page 109, Washington, DC, USA, 2006. IEEE Computer Society.

(Cited on page 12.)

[Ormándi 2010] Róbert Ormándi, István Hegedűs and Márk Jelasity. Overlay

Management for Fully Distributed User-Based Collaborative Filtering. In

Pasqua D’Ambra, Mario Guarracino and Domenico Talia, editeurs, Euro-Par

2010 - Parallel Processing, volume 6271 of Lecture Notes in Computer Science,

chapitre 43, pages 446–457. Springer Berlin / Heidelberg, Berlin, Heidelberg,

2010. (Cited on pages 47 and 50.)

[Paillier 1999] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes. In Jacques Stern, editeur, Advances in Cryptology

EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science,

chapitre 16, pages 223–238. Springer Berlin Heidelberg, Berlin, Heidelberg,

1999. (Cited on page 60.)

116 Bibliography

[Papadogiorgaki 2008] Maria Papadogiorgaki, Vasileios Papastathis, Evangelia

Nidelkou, Simon Waddington, Ben Bratu, Myriam Ribiere and Ioannis

Kompatsiaris. Two-Level Automatic Adaptation of a Distributed User Profile

for Personalized News Content Delivery. International Journal of Digital

Multimedia Broadcasting, vol. 2008, 2008. (Cited on page 13.)

[Papagelis 2005] Manos Papagelis, Ioannis Rousidis, Dimitris Plexousakis and Elias

Theoharopoulos. Incremental Collaborative Filtering for Highly-Scalable Rec-

ommendation Algorithms. In Mohand-Said Hacid, NeilV Murray, ZbigniewW

Raś and Shusaku Tsumoto, editeurs, Foundations of Intelligent Systems,

volume 3488 of Lecture Notes in Computer Science, pages 553–561. Springer

Berlin Heidelberg, 2005. (Cited on pages 28 and 32.)

[Parameswaran 2007] R. Parameswaran and D. M. Blough. Privacy Preserving

Collaborative Filtering Using Data Obfuscation. In Granular Computing, 2007.

GRC 2007. IEEE International Conference on, page 380. IEEE, November

2007. (Cited on page 46.)

[Parra-Arnau 2012] Javier Parra-Arnau, David Rebollo-Monedero and Jordi Forné.

A Privacy-Protecting Architecture for Collaborative Filtering via Forgery and

Suppression of Ratings. In Joaquin Garcia-Alfaro, Guillermo Navarro-Arribas,

Nora Cuppens-Boulahia and Sabrina Capitani di Vimercati, editeurs, Data

Privacy Management and Autonomous Spontaneus Security, volume 7122 of

Lecture Notes in Computer Science, pages 42–57. Springer Berlin Heidelberg,

2012. (Cited on pages 53 and 54.)

[Pazzani 1997] Michael Pazzani and Daniel Billsus. Learning and Revising User

Profiles: The Identification of Interesting Web Sites. Machine Learning,

vol. 27, no. 3, pages 313–331, June 1997. (Cited on page 12.)

[Pazzani 1999] Michael J. Pazzani. A Framework for Collaborative, Content-Based

and Demographic Filtering. Artif. Intell. Rev., vol. 13, no. 5-6, pages 393–408,

December 1999. (Cited on page 20.)

[Pedersen 1991] TorbenPryds Pedersen. A Threshold Cryptosystem without a

Trusted Party. In DonaldW Davies, editeur, Advances in Cryptology EU-

ROCRYPT ’91, volume 547 of Lecture Notes in Computer Science, pages

522–526. Springer Berlin Heidelberg, 1991. (Cited on pages 52 and 55.)

[Pentland 2001] Tony Jebara Alex Pentland. On reversing Jensen’s inequality. In

Advances in neural information processing systems 13: proceedings of the

2000 conference, volume 13, page 231. The MIT Press, 2001. (Cited on

page 18.)

[Pilászy 2009] István Pilászy and Domonkos Tikk. Recommending new movies: even

a few ratings are more valuable than metadata. In Proceedings of the third

Bibliography 117

ACM conference on Recommender systems, RecSys ’09, pages 93–100, New

York, NY, USA, 2009. ACM. (Cited on pages 4, 19, 20 and 21.)

[Polat 2005] Huseyin Polat and Wenliang Du. SVD-based collaborative filtering with

privacy. In Proceedings of the 2005 ACM symposium on Applied computing,

SAC ’05, pages 791–795, New York, NY, USA, 2005. ACM. (Cited on

pages 53, 54, 58 and 59.)

[Renckes 2012] Sahin Renckes, Huseyin Polat and Yusuf Oysal. A new hybrid

recommendation algorithm with privacy. Expert Systems, vol. 29, no. 1,

pages 39–55, February 2012. (Cited on pages 53, 54, 58 and 59.)

[Rendle 2009] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner and Lars S.

Thieme. BPR: Bayesian personalized ranking from implicit feedback. In

Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial

Intelligence, UAI ’09, pages 452–461, Arlington, Virginia, United States,

2009. AUAI Press. (Cited on pages 18, 21 and 103.)

[Resnick 1994] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom

and John Riedl. GroupLens: an open architecture for collaborative filtering of

netnews. In Proceedings of the 1994 ACM conference on Computer supported

cooperative work, CSCW ’94, pages 175–186, New York, NY, USA, 1994.

ACM. (Cited on page 15.)

[Salton 1975] G. Salton, A. Wong and C. S. Yang. A vector space model for automatic

indexing. Commun. ACM, vol. 18, no. 11, pages 613–620, November 1975.

(Cited on page 11.)

[Salton 1988] Gerard Salton and Christopher Buckley. Term-weighting approaches

in automatic text retrieval. Inf. Process. Manage., vol. 24, no. 5, pages

513–523, August 1988. (Cited on page 11.)

[Sarwar 2001] Badrul Sarwar, George Karypis, Joseph Konstan and John Reidl.

Item-based collaborative filtering recommendation algorithms. In Proceedings

of the 10th international conference on World Wide Web, WWW ’01, pages

285–295, New York, NY, USA, 2001. ACM. (Cited on page 15.)

[Sarwar 2002] Badrul Sarwar, George Karypis, Joseph Konstan and John Riedl.

Incremental Singular Value Decomposition Algorithms for Highly Scalable

Recommender Systems. In Fifth International Conference on Computer and

Information Science, pages 27–28, 2002. (Cited on pages 16, 29 and 32.)

[Schapire 2012] Robert E. Schapire and Yoav Freund. Boosting: Foundations and

algorithms (adaptive computation and machine learning series). The MIT

Press, May 2012. (Cited on page 27.)

[Schelter 2012] Sebastian Schelter, Christoph Boden and Volker Markl. Scalable

Similarity-based Neighborhood Methods with MapReduce. In Proceedings of

118 Bibliography

the Sixth ACM Conference on Recommender Systems, RecSys ’12, pages

163–170, New York, NY, USA, 2012. ACM. (Cited on page 82.)

[Schelter 2013] Sebastian Schelter, Christoph Boden, Martin Schenck, Alexander

Alexandrov and Volker Markl. Distributed Matrix Factorization with Mapre-

duce Using a Series of Broadcast-joins. In Proceedings of the 7th ACM

Conference on Recommender Systems, RecSys ’13, pages 281–284, New York,

NY, USA, 2013. ACM. (Cited on pages 4 and 82.)

[Schifanella 2008] Rossano Schifanella, André Panisson, Cristina Gena and Giancarlo

Ruffo. MobHinter: epidemic collaborative filtering and self-organization in

mobile ad-hoc networks. In RecSys ’08: Proceedings of the 2008 ACM

conference on Recommender systems, pages 27–34, New York, NY, USA,

2008. ACM. (Cited on pages 48 and 50.)

[Shani 2011] Guy Shani and Asela Gunawardana. Evaluating Recommendation

Systems. In Francesco Ricci, Lior Rokach, Bracha Shapira and Paul B.

Kantor, editeurs, Recommender Systems Handbook, chapitre 8, pages 257–

297. Springer US, Boston, MA, 2011. (Cited on pages 5, 21 and 22.)

[Shi 2012] Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, Nuria

Oliver and Alan Hanjalic. CLiMF: learning to maximize reciprocal rank

with collaborative less-is-more filtering. In Proceedings of the sixth ACM

conference on Recommender systems, RecSys ’12, pages 139–146, New York,

NY, USA, 2012. ACM. (Cited on pages 18 and 103.)

[Shokri 2009] Reza Shokri, Pedram Pedarsani, George Theodorakopoulos and Jean P.

Hubaux. Preserving privacy in collaborative filtering through distributed

aggregation of offline profiles. In Proceedings of the third ACM conference

on Recommender systems, RecSys ’09, pages 157–164, New York, NY, USA,

2009. ACM. (Cited on pages 53, 54 and 64.)

[Sieg 2007] Ahu Sieg, Bamshad Mobasher and Robin Burke. Web search person-

alization with ontological user profiles. In CIKM ’07: Proceedings of the

sixteenth ACM conference on Conference on information and knowledge

management, pages 525–534, New York, NY, USA, 2007. ACM. (Cited on

page 13.)

[Singel 2009] Ryan Singel. Netflix Spilled Your Brokeback Mountain Se-

cret, Lawsuit Claims. http://www.wired.com/threatlevel/2009/12/

netflix-privacy-lawsuit/, December 2009. (Cited on page 5.)

[Spiekermann 2009] S. Spiekermann and L. F. Cranor. Engineering Privacy. Soft-

ware Engineering, IEEE Transactions on, vol. 35, no. 1, pages 67–82, January

2009. (Cited on page 37.)

http://www.wired.com/threatlevel/2009/12/netflix-privacy-lawsuit/
http://www.wired.com/threatlevel/2009/12/netflix-privacy-lawsuit/

Bibliography 119

[Sweeney 2002] Latanya Sweeney. k-anonymity: a model for protecting privacy. Int.

J. Uncertain. Fuzziness Knowl.-Based Syst., vol. 10, no. 5, pages 557–570,

October 2002. (Cited on page 39.)

[Toch 2012] Eran Toch, Yang Wang and LorrieFaith Cranor. Personalization and

privacy: a survey of privacy risks and remedies in personalization-based

systems. User Modeling and User-Adapted Interaction, vol. 22, no. 1-2, pages

203–220, April 2012. (Cited on page 38.)

[Tomozei 2011] Dan-Cristian Tomozei and Laurent Massoulié. Distributed User

Profiling via Spectral Methods, September 2011. (Cited on pages 49 and 50.)

[Tveit 2001] Amund Tveit. Peer-to-peer based recommendations for mobile com-

merce. In WMC ’01: Proceedings of the 1st international workshop on

Mobile commerce, pages 26–29, New York, NY, USA, 2001. ACM. (Cited on

pages 40, 47, 50 and 51.)

[Vallet 2006] David Vallet, Iván Cantador, Miriam Fernández and Pablo Castells. A

Multi-Purpose Ontology-Based Approach for Personalized Content Filtering

and Retrieval. Semantic Media Adaptation and Personalization, International

Workshop on, vol. 0, pages 19–24, 2006. (Cited on page 13.)

[Vapnik 1999] V. N. Vapnik. An overview of statistical learning theory. Neural

Networks, IEEE Transactions on, vol. 10, no. 5, pages 988–999, September

1999. (Cited on page 26.)

[W3C 2012] W3C. OWL 2 Web Ontology Language Document Overview (Second

Edition). http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=

CELEX:52012DC0009:en:NOT, January 2012. (Cited on page 12.)

[Warner 1965] Stanley L. Warner. Randomized Response: A Survey Technique

for Eliminating Evasive Answer Bias. Journal of the American Statistical

Association, vol. 60, no. 309, pages 63+, March 1965. (Cited on page 64.)

[Xu 2011] Wei Xu. Towards Optimal One Pass Large Scale Learning with Averaged

Stochastic Gradient Descent, December 2011. (Cited on pages 73 and 86.)

[Zhan 2010] J. Zhan, Chia-Lung Hsieh, I-Cheng Wang, Tsan-Sheng Hsu, Churn-

Jung Liau and Da-wei Wang. Privacy-Preserving Collaborative Recommender

Systems. Systems, Man, and Cybernetics, Part C: Applications and Reviews,

IEEE Transactions on, vol. 40, no. 4, pages 472–476, July 2010. (Cited on

page 52.)

[Zhao 2011] Yu Zhao, Xinping Feng, Jianqiang Li and Bo Liu. Shared collaborative

filtering. In Proceedings of the fifth ACM conference on Recommender

systems, RecSys ’11, pages 29–36, New York, NY, USA, 2011. ACM. (Cited

on page 46.)

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52012DC0009:en:NOT
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52012DC0009:en:NOT

120 Bibliography

[Zhen 2009] Yi Zhen, Wu J. Li and Dit Y. Yeung. TagiCoFi: tag informed collabora-

tive filtering. In Proceedings of the third ACM conference on Recommender

systems, RecSys ’09, pages 69–76, New York, NY, USA, 2009. ACM. (Cited

on page 12.)

[Ziegler 2005] Cai-Nicolas Ziegler. Towards decentralized recommender systems.

PhD thesis, University of Freiburg, 2005. http://d-nb.info/975319213. (Cited

on pages 48 and 50.)

Privacy-enabled scalable recommender systems

Abstract: The main objective of this thesis is to propose a recommendation

method that keeps in mind the privacy of users as well as the scalability of the

system.

To achieve this goal, an hybrid technique using content-based and collaborative

filtering paradigms is used in order to attain an accurate model for recommendation,

under the strain of mechanisms designed to keep user privacy, particularly designed

to reduce the user exposure risk.

At first, the related work on privacy-enabled recommender systems was explored by

keeping in mind the privacy risks that the centralized gathering and processing of

user profile information brings to the information of users. From this analysis, some

design criteria for a privacy-enabled recommender system are found. Succinctly,

a client-side architecture is favored for privacy reasons, and in order to keep an

scalable masking strategy of user profile information random noise generation should

be used.

Next a privacy-enabled collaborative filtering approach is defined. In this strategy a

stochastic approximation of the item and user profile is calculated using a client-

side architecture that interacts with public information about items kept on the

recommender system side. Later, this model is extended into an hybrid approach for

recommendation that includes a content-based strategy for content recommendation.

Using a knowledge model based on keywords that describe the item domain, the

hybrid approach increases the predictive performance of the models without much

computational effort on the cold-start setting.

Finally, some strategies to improve the recommender system’s provided privacy are

introduced: Random noise generation is used to limit the possible inferences an

attacker can make when continually observing the interaction between the client-side

agent and the server, and a blacklisted strategy is used to refrain the server from

learning interactions that the user considers violate her privacy. The use of the

hybrid model mitigates the negative impact these strategies cause on the predictive

performance of the recommendations.

Keywords: Privacy, Recommender systems, User profiling

	I Introduction and related work
	Introduction
	Motivation
	Research objective
	Thesis contributions and document outline

	Recommender systems: Related work and evaluation
	Recommender systems
	Content based filtering (CB)
	Collaborative filtering (CF)
	Hybrid Systems (HS)

	Evaluating Recommender systems: Predictive accuracy and scalability
	Predictive Accuracy Measures
	Scalability

	Conclusions

	Privacy: a factor for evaluating recommender systems
	Privacy and recommendation
	Designing privacy-enabled recommender systems
	Identified attacks on privacy-enabled recommender systems
	State of the art on privacy-enabled recommender systems
	Centralized approaches
	Client-side approaches with no anonymity on p2p networks
	Client-side approaches with no anonymity with aggregation on server
	Client-side approaches with anonymity on p2p networks
	Client-side approaches with anonymity with server aggregation

	Privacy and scalability
	Scalability of random noise generation
	Scalability of homomorphic cryptosystems
	Scalability of heuristic-based perturbation

	Conclusions

	II Model architecture and performance
	A CF client-side recommender system
	A client-side agent for privacy-enabled recommender systems
	Collaborative Filtering model
	Training and prediction on the online learning framework
	Model validation datasets

	Model Validation
	Adding regularization to the predictive model
	Adding user bias to the predictive model
	Predictive performance and scalability considerations
	Conclusions

	An Hybrid client-side recommender system
	Introduction
	Content Based model
	Hybrid Model
	Predicting under the cold-start scenario (new item problem)
	Conclusions

	Privacy considerations and their impact on the predictive accuracy of the system
	Perturbation of the user profile
	Keyword-based filtering
	Conclusions

	Conclusions
	Bibliography

