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1

INTRODUCTION

1.1/ GENERAL PRESENTATION

During our thesis [Guy10], we have committed to study chaos of a certain restricted class
of discrete dynamical systems, namely the chaotic iterations, whose topological behavior
have never been studied, and to provide applications of such complex and so character-
istic dynamics in some domains of information security (hash functions and digital water-
marking). These researches are summed up in Chapter 2. Since then, we broadened
our investigations field at the level of both theory and applications.

At theoretical level, we have not limited our research to the study of a particular class of
discrete dynamical systems used by our team, with the mathematical theory of chaos,
but we became increasingly interested to the complex dynamics as a whole, for discrete
spaces and times. These dynamics can be complex due to their randomness, their chaos,
or their complexity to the same named theory, etc. The studied dynamical systems, for
their part, can be variations of chaotic iterations but also systems from computer sci-
ence (sensor networks, neural networks, pseudorandom number generators...) and from
biology (protein folding, genomes evolution...) Our approach consists in tracking down,
modeling, and studying theoretically these complex dynamics that occur in biology and
computer science, and to take benefits at applications level.

We have explained in our thesis how to construct finite state machines having a truly
chaotic behavior. The key idea consists in decompartimentalizing the machine by using at
each iterate new provided inputs when computing the output. By this process, even when
the machine has a finite number of states, it not always enter into a loop, as the input is not
necessarily periodic. Such thing has been formalized in our thesis using Turing machines
whose behavior is chaotic, in the way that it is impossible to predict the effects of a slight
alteration of the tape provided to the machine. Since then, we have continued to move
forward with these chaotic Turing machines, by notably proposing a characterization of
chaotic Moore machines and by developing applications on information hiding and digital
watermarking, hash functions, and pseudorandom number generation. At each time, our
machine for information security receives some data as input: an image to hash, a video
stream to watermark, a pseudorandom sequence to rework, and so on. We can thus
make that this treatment is chaotic in the mathematical sense of the term, and that an
adversary cannot predict what will be the hash value, the watermarked media, the next
bit of the generator, etc., knowing the past behavior of the machine. These applications
have been deepened these three last years.



vi CHAPTER 1. INTRODUCTION

A last work on the theoretical study of chaotic finite state machines consisted of the effec-
tive construction of chaotic neural networks on the one hand, and of the demonstration
that it is possible to prove that a given neural network is either chaotic or not on the
other hand: they are simply finite state machines that receive new inputs at each iter-
ate, and whose outputs can be either predicted or not depending on the complexity of
the dynamic generated by the associated iterative system. Finally, artificial intelligence
tools play an important role in some branches of information security like steganalysis:
the detection of the presence of secrete information inside images is currently realized
by using support vector machines or neural networks that learn to make the distinction
between true natural images and steganographied ones. Using this learning, they must
then be able to detect sleazy images in a given channel. We have shown that multilayer
perceptrons (some neural networks) are not able to learn really chaotic dynamics, and
have concluded for application purpose that steganalysers can be put into default using
chaotic hiding methods. These researches are summarized in Chapter 3.

The application of complex dynamics to the information hiding field has been deepened
in various directions these last three years. New hiding algorithms have been proposed,
each of them having its own particularities: digital watermarking (without extraction) or
steganography, robust of fragile, chaotic or not, inserting only one bit or a large amount
of data, coupled with our pseudorandom generator, using or not the data contained in the
host cover (via Canny filters for instance), and so on. Indeed, since our thesis, we have
tried to develop another cryptographic approach for steganography. Except a few note-
worthy theoretical works realized by the french school (Barbier, Filiol, Fontaine, Cayre,
or Bas: see, e.g., [BFM06, BA08, BM08b, BAM09, CB08b, KBB*13]), this discipline was
almost consisting in producing hiding methods and then to check if the hidden data is
detectable with steganalyzers. Used tools were signal processing (to define insertion
locations, and the features to take into account during steganalyzers conception), code
theory, and artificial intelligence (to construct steganalyzers). In particular, to the best of
our knowledge, no security proofs were produced (except for the stego-security [CB08b],
a notion far from the rigor commonly in use in cryptology), and no security notion were
clearly established since the ones of Barbier and Filiol [BM08b, BAM09]. As artificial in-
telligence (and thus steganalizers) seems to have difficulties to deal with chaos, we have
started by studying the topological properties of algorithms we have previously proposed
and of other algorithms that can be found in the state of the art. Then we have proven that
almost all our algorithms are stego-secure, the only ones currently available with the natu-
ral watermarking of parameter n = 1. Finally, these security notions being not fully formed
in our opinion, we have more recently introduced the beginning of a formal framework in
which the security of a stego-system is defined with distinguishers in the complexity the-
ory, and we have proposed the first security proofs in this rigorous framework close to
usual standards. This additional knowledge is summarized in Chapter 5.

We were also interested in pseudorandom number generation (Chapter 4), a topic not
investigated in our thesis. The starting point of our research in using chaotic dynamics
for pseudorandom generation is that, in practice, the random character of generators is
verified with statistical batteries of tests like DieHARD or TestUO1: the tests embedded
in these libraries try to find biases close to properties defined in the theory of chaos.
For instance, the system must be intrinsically complicated to be chaotic according to De-
vaney: it cannot be separated in two subsystems more easy to study, which implies that
orbits must visit the whole phase space. The same concern applies for generators, as
various statistical tests aim at regarding whether some value sets are less produced than
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other ones, or even are never returned by the generator. Similarly a chaotic system is
supposed to have elements of regularity, while the good occurrence of regular orbits is
commonly checked by various tests in the batteries mentioned above. In other words, if
a recurrent sequence is such that it varies a little when its first term is a little changed
(topological proof of non-sensitiveness), then statistical biases appear when the seed of
the generator is modified. Our approach consists in taking one or more random sources
as input (like a pseudorandom number generator or a physical source of entropy) and
realizing a chaotic iterations based post-treatment on it, in such a way that the resulting
chaotic iterations based generator possesses some provable properties of chaos. When
the generators provided as inputs are defective, we have verified several times and on
large data sets that the resulting generator has much better results on statistical tests.
On the other hand, we have also proven that some interesting properties of the inputted
generators are preserved by this post-treatment: their speed for instance, but also their
cryptographically secure property. So we are able to preserve the good properties of the
inputs, to add proven properties of chaos, while improving their statistical profile and with-
out degradation of speed. Implementations on FPGA and GPU have been also proposed
as well as a physical coupling with a chaotic laser.

In the same way, always concerning the applications of discrete complex systems to in-
formation security, we have pursued the study of the chaotic iterations based hash func-
tions, which has just been initiated in our thesis. Contrarily to what has been realized in
our thesis, we have not attempted to propose a new complete hash function but, as for
the pseudorandom number generation, to realize a post-treatment of chaotic iterations on
preexisting hash functions. By doing so, we obtain new hash functions proven as chaotic,
and when the provided hash functions are defective (among other thing regarding their
diffusion, confusion, or avalanche effect), the chaos properties have the effect of improv-
ing them, repairing these flaws. Additionally, we have proven that, when considering
cryptographic hash functions, the new hash function resulting of this post-treatment con-
tinues to possess some security properties possibly possessed by the inputted function,
like the first and second preimage resistance, or the resistance against collisions, which
are defined in the complexity theory framework. Lastly, the hash functions we propose
now are keyed ones, and they can be coupled with our generators based on chaotic it-
erations. As these research works are simple improvements of our thesis, we have only
summarized them in Appendix C.

In all the previous applications, we have at each time tried to take benefits of complex
dynamics, by proving their presence or by adding them when they were absent. We have
also taken advantage on many occasions of these complex dynamics for sensor net-
works. A second field of investigations appeared as very interesting at the end of our the-
sis, due to our specialization in this domain: the modeling, the study, and the simulation
of complex systems found in other disciplines than the computer science one. We have
acquired particular skills on complex dynamics having the following form: an operation
picked in a set of possible functions, and applied only on a variable subset of coordinates
of the system. We found out that these particular complex dynamics appeared naturally
and frequently in molecular biology, and more particularly in protein folding and in the
evolution of genomes over time.

We have started by rewriting the model of protein folding usually used in conformation
prediction tools, namely the 2D/3D HP square lattice model, thanks to a discrete dynam-
ical system, and we have proven that this system exhibited various properties of chaos.
Such a complex dynamic raises numerous questions. Firstly, the problem of predicting
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the 3D conformation of a protein being proven as a NP-complete one, such a prediction
is currently realized by using artificial intelligence tools. However, we have proven that at
least some of these tools are not able to tackle some complex dynamics, like these we
have found in the HP model. We can thus ask the question of the quality of the predicted
conformations, especially since these conformations are infrequently compared to the re-
ality due to cost reasons. Furthermore, we have discovered that some prediction tools
were consisting in finding the 3D conformation (“protein”) that minimizes the free enthalpy
of self-avoiding walks (SAW) built by elongation, while other tools operate by folding the
straight line having the size of the protein. We have proven that these two sets were dis-
joints, and that the proof of NP-completeness was true only for the first set. Thus, in the
second case, dynamics seems too complex to be predicted by artificial intelligence tools,
and the use of such tools is not a priori justified, as the problem is not currently proven
as difficult in that case. To learn more on the difficulty of an optimization problem on the
whole folded SAWSs, we have deeply studied these particular walks. Among other things,
we have: proposed various ways to formalize these folded walks, exhibited a character-
ization, proven that they are infinite in number, provided the shortest unfoldable walks
currently known, bounded their number given a number of steps, proposed algorithms
to study or generate them (with brute force, Monte-Carlo, and backtracking approaches
deployed on the Mésocentre de calcul de Franche-Comté). Finally, we have computed a
graphical software to study them, which can be freely downloaded. Let us remark that
up-to-date biological researches tend to show that proteins are mainly “intrinsically disor-
dered” and that our study of the chaos in protein folding should help people working in
this field.

The second biological iterative system subjected to local modifications we have regarded
is the genomes, which are modified during the course of their evolution, due to mutations,
insertions-deletions of nucleotides, by changes with boarder amplitude (inversion, or sim-
ple copy or deletion of large DNA strains), or by other modifications specific to repetitions
(segmentar duplication, tandem repeats, and move of transposable elements TEs). It has
become evident to us that these various operations can be modified using the iterative
systems we regularly used, and that a biomathematical modeling of evolution has not
yet been realized, except for some types of mutations and some elementary models of
transpositions of TEs. However we believed that being able to predict such an evolu-
tion, in the future as in the past, should be interesting for various reasons, like predicting
the evolution of viruses such as HIV or influenza, reconstructing the past history or the
common ancestor of bacteria strongly aggressive for our species, to better combat them
(M.tuberculosis, Y.pestis, etc.), or to help the development of synthesis biology by sim-
plifying in silico studies. We thus have proceeded to the modeling of various operations
of genomic rearrangement, to their complexity study, and we have proven that, beside
being complex, such dynamics can be predicted in some extend. We thus have rewritten
and studied the nucleotides mutations as a discrete dynamical system and have gener-
alized the so-called GTR mutation model. We have proposed mutation matrix models
having 6 parameters and have completed the theoretical study of it with a colleague of
Chrono-environnement. We have used these models on concrete cases of evolution on
S.cerevisiae, and we now study, with colleagues of the Laboratoire de Mathématiques
de Besancon (LMB), the possibility to infer a probability law of mutation on genes scale
using graphical models, to take into account the fact that closed neighbors impact more
largely the mutation probability than distant neighbors.

Concerning the move of TEs, inspired by transport equations and helped by colleagues of
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the LMB, we have written partial differential equations to describe the density evolution of
transposons (cut and paste mechanism of move) and retrotransposons (copy and paste),
and we have proposed a branching model of these latter. These models require the
knowledge of the initial conditions and reliable values for their sets of parameters, in order
to use them in numerical simulations. This is why we have realized deep researches of
TEs on Drosophila genomes, using home made dating and discovery algorithms. Other
concrete bioinformatics applications have consolidated and enriched our knowledge of
the genomes evolution. They will help us to refine our models and to populate bases of
knowledge usable for predicting such evolution. For the sake of concision, only some of
them will be evoked at the end of this manuscript.
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XVi CHAPTER 1. INTRODUCTION

1.3/ NOTATIONS

In the whole document, to prevent from any conflicts and to avoid unreadable writings, we
have considered the following notations, usually in use in discrete mathematics.

#X is the Cardinality of a set X and P(X) is the set of subsets of X. B stands for the set
{0; 1} with its usual algebraic structure (Boolean addition, multiplication, and negation),
while the symbols A, v, and @ mean respectively the AND, OR, and XOR Boolean op-
erations. IN, Z, Q, and R are the usual notations of the following respective sets: natural
numbers, integers (the natural numbers, zero, and the negatives of the natural numbers),
rational numbers, and real numbers. (M, (A), +, x,.) stands for the matrices algebra
(m rows and n columns) on A. XY is the set of applications from ) to X, and thus &A™
means the set of sequences belonging in X. The set of congruence classes modulo n, for
its part, is denoted as Z/nZ, while [a;b] = {a,a + 1,...,b} is the set of integers between
a and b. Additionally,

 the n—th term of the sequence s is denoted by s”,
* the i—th component of vector v is v;,

- the k—th composition of function f is denoted by f*. Thus f* = fofo...of, k
times,

« the derivative of fis f’.

Example . Letu : N — R? a sequence of R%. Then " is the first term of this sequence.
This is a vector having two components: u{ and u3.

We will use the notation |z| for the integral part of a real z, that is, the greatest integer
lower than z. [z], for its part, will be the smallest integer greater than =.
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2

BASIC RECALLS IN CHAOTIC FINITE
STATE MACHINES

This chapter serves as a foundation for all this HDR manuscript. We recall in it the
mathematical theory of chaos and the theoretical results regarding the chaotic finite state
machines that have been obtained during our thesis: this approach will serve as canvas
in our questioning about complex biological systems. Reader is referred to [BG13] for
further investigations or for the proofs of results recalled here.

2.1/ TOPOLOGICAL STUDY OF DISORDER

2.1.1/ HISTORICAL CONTEXT

Recurrent sequences, also called discrete dynamical systems, of the form
0 n+1 __ n
w e R, u" = f(u"), (2.1)

with f continuous, have been well studied since the early years of mathematical anal-
ysis. They are widely used, for instance to resolve equations using a Newton method,
or when approximating the solutions to differential equations using finite difference equa-
tions. The context study was the seek for convergence, which is for instance guaranteed
when using monotonic functions or contractions. In the middle of the last century, Coppel
has established a link between this desire of convergence and the existence of a cycle
in iterations [Cop55]. More precisely, his theorem states that, considering the recurrent
sequence with a function f : I — I continuous on the line segment I, the absence of
any 2-cycle implies the convergence of the discrete dynamical system.

This theorem establishes a clear link between the existence of a cycle of a given length
and the convergence of the system. In other words, between cycles and order. Con-
versely, Li and Yorke have established in 1975 that the presence of a point of period three
implies chaos in the same situation than previously [LY75]. By chaos, they mean the ex-
istence of points of any period: this kind of disorder, which is the first occurrence of the
term “chaos” in the mathematical literature, is thus related to the multiplicity of periods.
Since that time, the mathematical theory of chaos has known several developments to
qualify or quantify the richness of chaos presented by a given discrete dynamical system,
one of the most famous work, although old, being the one of Devaney [Dev89].
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2.1.2/ |ITERATIVE SYSTEMS

In the distributed computing community, dynamical systems have been generalized to
take into account delay transmission or heterogeneous computational powers. Mathe-
matically, the intended result is often one fixed point resulting from the iterations of a
given function over a Boolean vector, considering that:

- at time ¢, z! is computed using not only z!~!, but potentially any z*,k < ¢, due to
delay transmission,

« not all the components of z! are supposed to be updated at each iteration: each
component represents a unit of computation, and these units have not the same
processing frequency.

Some particular cases of these iterative systems are well documented, namely the serial,
parallel, or chaotic modes. In the serial mode, each component is updated one by one,
whereas the parallel mode consists in updating all the components at each iteration,
leading to an usual discrete dynamical system.

Finally, iterative systems in chaotic mode, simply called chaotic iterations, are defined as
follows [Rob86].

Definition . Let f : BN — BN and S € P ([1,N])"™ a sequence called “chaotic strategy”.
General chaotic iterations (f, (z°, S)) are defined by:

20 e BN
n—1 if 7 n
¥ \/: no_ T ZfZ¢S
Vn e IN*,Vi e [1,N], 2] —{ fx™ Y, ifieSm.

In other words, to obtain 2", we compute f(z"~!) and we only update in "' the com-
ponents whose indexes are into the chaotic strategy S™.

A particular case occurs when the chaotic strategy is constituted by singletons: at each
iteration, only one component is updated. Such “unary chaotic iterations” can thus be
defined by f : BN — BN, S e § = [1,N]N, and

29 e BN
n—1 oo n
Vnell\l*,vz'e[u,m]],x;t:{% ifi%S

f(m"’l)i if ¢ = S™.

Example 2. When considering the Boolean negation in unary chaotic iterations, and two
integer sequences p and q, a pseudorandom generator we called CIPRNG(p,q) version
1 [BGWO09, BGW10b] is obtained : p is S and the output of the generator is the subse-
quence (z°) ., where o(0) = ¢" and o(n + 1) = o(n) + ¢". Reason to be of the
sequence q is that, between two iterates of unary chaotic iterations, at most 1 bit will
change in the vector, and thus the sequence (™) cannot pass any statistical test: we
must extract a subsequence (xz°(™) of (") to produce the outouts. This generator is
detailed in Section 4.3.1 of Chapter 4. The algorithm CIPRNG(p,q) version 2, for its part,
extracts a subsequence from the strategy S = p to prevent from negating several times a
same position between two outputs (see Section A.2.1).
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Example 3. If we consider the Boolean negation for f, then general chaotic iterations
(f, (2%, 8)) of Definition 1 can be rewritten as: "' = z" ® s", where s" e [0,2N~1] is
such that its k—th binary digit is 1 if and only if k € S™. Such a particular chaotic iterations
is our generator called XOR CIPRNG, which is recalled in Chapter 4 too.

Rem 1. In most cases, chaotic iterations in this manuscript refers to unary chaotic itera-
tions (the context always helps to determine it).

A priori, there is no relation between these chaotic iterations and the mathematical theory
of chaos evoked in the previous section. During our thesis [Guy10], we have regarded
whether these chaotic iterations can behave chaotically, as it is defined for instance by
Devaney, and if so, in which application context this behavior can be profitable. This
questioning has led to a first necessary condition of non convergence [BCGG10].

Proposition 1. Let f : BN — BN and S € [1,N]™. If the chaotic iterations (f, (z°, S)) are
not convergent, then:

« either f is not a contraction, meaning in the discrete mathematics context that there

is no Boolean matrix M of size N satisfying Vx,y € BN, d(f(x), f(y)) < Md(z,y),
6($1, yl)

where d is here the “vectorial distance” d(x,y) = : , with § is the dis-
d(zn,yn)

. . 1 ifx #y,

crete metric defined by §(z,y) = {0 =y

term [Rob86].

, and < is the inequality term by

e or S is not “pseudo-periodic”: it is not constituted by an infinite succession of finite
sequences, each having any element of [1,N] at least once.

The second alternative of the proposition above concerns the strategy, which should be
provided by the outside world: in our thesis investigations regarding information security, it
was typically a defective cryptographic tool we want to improve, on which such a pseudo-
periodic property can be difficult to study. For instance, chaotic iterations can receive a
PRNG S as input, and due to properties of disorder of f, generate a new pseudorandom
sequence that presents better statistical properties than S. Having this approach in mind,
we thus have searched vectorial Boolean iteration functions that are not contractions.
The vectorial negation function fy : BN — INN, (2,...,2n) — (Z7,...,7ZN) is such a
function, which explains why it is often used in our information security applications based
on chaotic iterations.

The quantity of disorder generated by chaotic iterations, when satisfying the proposition
above, has then been measured in [Guy10, BGWO09]. To do so, chaotic iterations have
firstly been rewritten as simple discrete dynamical systems, as follows.

2.1.3/ CHAOTIC ITERATIONS AS DYNAMICAL SYSTEMS

The problems raised by such a formalization can be summarized as follows. Chaotic
iterations are defined in the discrete mathematics framework, considering z° € BN, S e
$ = [1,N]¥N, and iterations having the form

B flam); ifi=Sm
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where f : BN — BN. However, the mathematical theory of chaos takes place into a
topological space (X, 7). It studies the iterations z° € X, Vn € IN, 2"*! = f(2"), where
f: X — X is continuous for the topology 7.

To realize the junction between these two frameworks, the following material has been
introduced [BGWO09, Guy10]:

« the shift function: o : $ — 8, (5™)pew — (5" e,
« the initial function, defined by i : $ — [1; N, (S")new — S°,

« and Fy : [1;N] x BN — BN,

(k, E) — (Ej(s(k?,]) + f(E)k‘m>j€[[1;N]

where ¢ is the discrete metric. Let X = [1;N]Nx BN, and G (S, E) = (o(S), F¢(i(S), E)) .
We have shown in [BGW09, Guy10] that chaotic iterations (f, (S,2°)) can be modeled by
the discrete dynamical system:

X0 = (82" e x,
Vke N, Xk = Gp(XP).

That is, at each iteration, we update the component whose index is the first term of
the strategy, and we delete this first term in S. The topological disorder of chaotic it-
erations can then be studied. To do so, a relevant distance must be defined on X, as
follows [Guy10,BGW09]:

d((S,E); (S, E)) = de(E, E) + dy(S, S),
. N . . g X |Sk_§k‘
where d.(E, E) = )" 6(Ey, Ey,) and dy(S,S) = N D -
k=1 k=1

This new distance has been introduced in [BGW09, BGW10b] to satisfy the following
requirements.

» When the number of different cells between two systems is increasing, then their
distance should increase too.

* In addition, if two systems present the same cells and their respective strategies
start with the same terms, then the distance between these two points must be small
because the evolution of the two systems will be the same for a while. Indeed, the
two dynamical systems start with the same initial condition, use the same update
function, and as strategies are the same for a while, then components that are
updated are the same too.

The distance presented above follows these recommendations. Indeed, if the floor value
|d(X,Y)] is equal to n, then the systems E, E differ in n cells. In addition, d(X,Y) —
|d(X,Y)] is a measure of the differences between strategies S and S. More precisely,
this floating part is less than 10~ if and only if the first k& terms of the two strategies are
equal. Moreover, if the k" digit is nonzero, then the k" terms of the two strategies are
different.

We have then stated that,
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Proposition 2. G : (X,d) — (X,d) is a continuous function.

With all this material, the study of chaotic iterations as a discrete dynamical system has
been realized in our thesis. This study is summarized in the next section, for the sake of
completeness of this manuscript.

2.1.4/ A TOPOLOGY FOR CHAOTIC ITERATIONS

The topological space on which chaotic iterations are defined has firstly been investi-
gated, leading to the following result [GB12, Guy10]:

Proposition 3. X is an infinitely countable metric space, being both compact, complete,
and perfect (each point is an accumulation point).

These properties proven in [Guy10] are required in some topological specific formalization
of a chaotic dynamical system. Concerning G, it has been stated that.

Proposition 4. G 1, Is surjective, but not injective, and so the dynamical system (X,Gy,),
corresponding to particular unary chaotic iterations, is not reversible.

Furthermore, if we denote by Pery(f) the set of periodic points of period k for f, we have
Vk € IN, Perogy11(Gy,) = @, card (Pera,2(Gy,)) > 0.

So Gy, does not present the existence of points of any period referred as chaos in the
article of Li and Yorke [LY75]. However [Guy10]:

+ this kind of disorder can be stated for the general chaotic iterations (that is, on
X6 =P ([, N x BN),

* Gy, possesses more than n? points of period 2n.

Additionally, this existence of points of any period has been rejected by the community
to the benefit of more recent notions of chaos, like those developed these last decades
by Devaney [Dev89], Knudsen [Knu94a], etc. These approaches are recalled in the next
section.

2.2/ THE MATHEMATICAL THEORY OF CHAOS

We will present in this section various understanding of a chaotic behavior for a discrete
dynamical system. These properties will be stalked in complex systems found in com-
puter science or bioinformatics, as detailed in upcoming chapters.

2.2.1/ APPROACHES SIMILAR TO DEVANEY

In these approaches, three ingredients are required for unpredictability. Firstly, the sys-
tem must be intrinsically complicated, undecomposable: it cannot be simplified into two
subsystems that do not interact, making any divide and conquer strategy applied to the
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system inefficient. In particular, a lot of orbits must visit the whole space. Secondly, an
element of regularity is added, to counteract the effects of the first ingredient, leading to
the fact that closed points can behave in a completely different manner, and this behavior
cannot be predicted. Finally, sensibility of the system is demanded as a third ingredient,
making that closed points can finally become distant during iterations of the system. This
last requirement is, indeed, often implied by the two first ingredients.

Having this understanding of an unpredictable dynamical system, Devaney has formal-
ized in [Dev89] the following definition of chaos.

Definition 2. A discrete dynamical system z° € X, 2"*! = f(2™) on a metric space (X, d)
is said to be chaotic according to Devaney if it satisfies the three following properties:

1. Transitivity: For each couple of open sets A, B — X, there exists k € N such that
f®)(A)~ B # @.

Intuitively, a topologically transitive map has points that eventually move under it-
eration from one arbitrarily small neighborhood to any other. Consequently, the
dynamical system cannot be decomposed into two disjoint open sets that are in-
variant under the map. Note that if a map possesses a dense orbit, then it is clearly
topologically transitive.

2. Regularity: Periodic points are dense in X.

3. Sensibility to the initial conditions: There exists ¢ > 0 such that

Vee X,V0 >0,3ye X,Ine N, d(z,y) < and d(f(”)(:v),f(")(y)) > €.

Intuitively, a map possesses sensitive dependence on initial conditions if there ex-
ist points arbitrarily close to x that eventually separate from x by at least ¢ under
iterations of f. Not all points near = need to eventually separate from x under it-
erations, but there must be at least one such point in every neighborhood of x. If
a map possesses sensitive dependence on initial conditions, then for all practical
purposes, the dynamics of the map defy numerical computation. Small errors in
computation that are introduced by round-off may become magnified upon iteration.
The results of numerical computation of an orbit, no matter how accurate, may bear
no resemblance whatsoever with the real orbit.

When f is chaotic, then the system (X, f) is chaotic and quoting Devaney [Dev89]: ‘it
is unpredictable because of the sensitive dependence on initial conditions. It cannot
be broken down or decomposed into two subsystems which do not interact because of
topological transitivity. And, in the midst of this random behavior, we nevertheless have
an element of regularity.” Fundamentally different behaviors are consequently possible
and occur in an unpredictable way.

Instead of being transitive, the system can be intrinsically complicated for various other
understanding of this wish that are not equivalent one another. Such understandings are:

» Undecomposable: the system is not the union of two nonempty closed subsets that
are positively invariant (f(A) c A).

« Total transitivity: ¥n > 1, the function composition f™ is transitive.
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« Strong transitivity: Vx,y € X,Vr > 0,3z € B(x,r),Ine N, f*(z) = y.

» Topological mixing: for all pairs of disjoint open nonempty sets U and V, there exists
ng € N such that Vn > ng, f"(U) nV # 2.

Concerning the ingredient of sensibility, it can be reformulated as follows.

« (X, f) is unstable if all its points are unstable: Vo € X, 3¢ > 0, V6 > 0, Jy € X,
IneN, d(z,y) <dand d(f"(x), f"(y)) = e.

* (X, f)is expansive if 3¢ > 0, Vo # y, In € N, d(f™(z), f*(y)) = e: all the points in
the neighborhood of any = will eventually separate from x during iterations.

This variety of definitions leads to various notions of chaos. For instance, a dynamical
system is chaotic according to Wiggins if it is transitive and sensible to the initial condi-
tions. It is said chaotic according to Knudsen [Knu94a, Knu94b] if it has a dense orbit
while being sensible. Finally, we speak about expansive chaos when the properties of
transitivity, regularity, and expansiveness are satisfied [For98, Rue01].

2.2.2/ LI-YORKE APPROACH

The approach for chaos presented in the previous section, considering that a chaotic
system is a system intrinsically complicated (undecomposable), with possibly an element
of regularity and/or sensibility, has been completed by other understanding of chaos.
Indeed, as “randomness” or “infiniteness”, a single universal definition of chaos cannot be
found. The kind of behaviors that are attempted to be described are too much complicated
to enter into only one single definition. Instead, a large panel of mathematical descriptions
have been proposed these last decades, being all theoretically justified. Each of these
definitions give illustration to some particular aspects of a chaotic behavior.

The first of these parallel approaches can be found in the pioneer work of Li and
Yorke [LY75]. In their well-known article entitled “Period three implies chaos”, they redis-
covered a weaker formulation of the Sarkovskii’s theorem, meaning that when a discrete
dynamical system (£, [0, 1]), with f continuous, has a 3-cycle, then it has too a n—cycle,
VYn > 2. The community has not adopted this definition of chaos, as several degenerated
systems satisfy this property. However, on their article [LY75], Li and Yorke have studied
too another interesting property, which has led to the notion of chaos “according to Li and
Yorke” recalled below.

Let us firstly introduce the definition of Li-Yorke scrambled couple of points. This is points
that never stop to oscillate.

Definition 3. Let (X,d) a metric space and f : X — X a continuous map.
(v,y) € X? is a scrambled couple of points if liminf, .. d(f"(z), f*(y)) = 0 and
lim sup,, o d(f"(x), f"(y)) > 0.

A scrambled set is a set in which any couple of points oscillates (are a scrambled couple).
Then,

Definition 4. A Li-Yorke chaotic system is a system possessing an uncountable scram-
bled set.



CHAPTER 2. BASIC RECALLS IN CHAOTIC FINITE STATE MACHINES 10

2.2.3/ TOPOLOGICAL ENTROPY APPROACH

The topological entropy of a topological dynamical system, firstly introduced in 1965 by
Adler, Konheim, and McAndrew [AKM65], is a nonnegative real number that measures
the complexity of the system. It represents the exponential growth rate of the number of
distinguishable orbits of the iterates, for a system given by an iterated function. It can be
formulated as follows.

Let f : X — X be a continuous map on a compact metric space (X, d). For each natural
number n, a new metric d,, is defined on X’ by

dn(z,y) = max{d(f'(z), f'(y)) : 0 < i < n}.

Given any ¢ > 0 and n > 1, two points of X are ¢-close with respect to this metric if their
first n iterates are e-close. This metric allows one to distinguish in a neighborhood of an
orbit the points that move away from each other during the iteration from the points that
travel together.

A subset E of X is said to be (n,c)-separated if each pair of distinct points of E is at
least ¢ apart in the metric d,,. Denote by N(n,e) the maximum cardinality of a (n,¢)-
separated set. N(n,e) represents the number of distinguishable orbit segments of length
n, assuming that we cannot distinguish points within £ of one another.

Definition 5. The topological entropy of the map f is defined by

h(f) = lim <limsup110g N(n, e)) .

€4>0 n—0o0 n

The limit defining h(f) may be interpreted as the measure of the average exponential
growth of the number of distinguishable orbit segments. In this sense, it measures com-
plexity of the topological dynamical system (X, f).

2.2.4/ THE LYAPUNOV EXPONENT

The last measure of chaos that has been regarded in our study of complex systems is the
Lyapunov exponent. This quantity characterizes the rate of separation of infinitesimally
close trajectories. Indeed, two trajectories in phase space with initial separation ¢ diverge
at a rate approximately equal to se*, where X is the Lyapunov exponent, which is defined
below.

Definition 6. Let f : R — R be a differentiable function, and z° € R. The Lyapunov
exponent is given by:

A(z%) = lim —Zln]f

n—+w n

Obviously, this exponent must be positive to have a multiplication of initial errors, and thus
chaos in this understanding.

Having all these definitions in mind, the topological behavior of chaotic iterations pre-
sented in Definition 1 have been studied in [BG10a, BG10d, GB12]. A good introduc-
tion to chaotic iterations and their topological properties can be found in [Guy10, Guy12],
whereas [BG13] details other applications of these tools in computer science.
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Figure 2.1: Example of an asynchronous iteration graph
2.3/ THE STUDY OF ITERATIVE SYSTEMS

2.3.1/ ON THE IMPORTANCE OF STRONGLY CONNECTED ASYNCHRONOUS ITER-
ATION GRAPHS

It has firstly been stated that [BG10d, GB12]:

Theorem . G, is regular and transitive on (X, d), thus it is chaotic according to Devaney.
Furthermore, its constant of sensibility is greater than N — 1.

Thus the set C of functions f : BN — BN making the chaotic iterations of Definition 1
a case of chaos according to Devaney, is a nonempty set. To characterize functions
of C, it has been proven that transitivity implies regularity for these particular iterated
systems [BCGR11]. To achieve characterization, the following graph has been introduced
in [GB12,Guy10].

Let f be a map from BN to itself. The asynchronous iteration graph associated with f is
the directed graph I'(f) defined by: the set of vertices is BN; for all z € BN and i € [1; N],
the graph I'(f) contains an arc from x to F(i,z). The relation between I'(f) and G is
clear: there exists a path from z to 2’ in T'(f) if and only if there exists a strategy s such
that the parallel iteration of G ¢ from the initial point (s, z) reaches the point «’. Figure 2.1
presents such an asynchronous iteration graph. It thus has been proven that [BCGR11].

Theorem 2. G ¢ Is transitive, and thus chaotic according to Devaney, if and only ifI'(f) is
strongly connected.

This characterization makes it possible to quantify the number of functions in C: it is

equal to (2'\')2N. Then the study of the topological properties of disorder of these iterative
systems has been further investigated, leading to the following results.

Theorem 3. Vf € C, Per (G ) Is infinitely countable, G ¢ is strongly transitive and is chaotic
according to Knudsen. It is thus undecomposable, unstable, and chaotic as defined by
Wiggins.
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Theorem 4. (X,G #,) is topologically mixing, expansive (with a constant equal to 1),
chaotic as defined by Li and Yorke, and has a topological entropy and an exponent of
Lyapunov both equal to In(N).

2.3.2/ PRACTICAL RESOLUTION

Graphs whose strong connectivity is sought are constituted by 2™ vertices, each having »n
edges. For large values of n, to test such a property is a difficult task. We provided two
solutions which are recalled below [BCGR11].

2.3.2.1/ ALGORITHMIC GENERATION OF STRONGLY CONNECTED GRAPHS

This section presents a first solution to compute a map f with a strongly connected graph
of iterations T'(f). It is based on a generate and test approach.

We first consider the negation function f, whose iteration graph I'( ) is obviously strongly
connected. Given a graph T, initialized with T'( fy), the algorithm iteratively does the two
following stages:

1. randomly select an edge of the current iteration graph I" and

2. check whether the current iteration graph without that edge remains strongly con-
nected (by a Tarjan algorithm for instance). In the positive case the edge is removed
from T,

until a rate r of removed edges is greater than a threshold given by the user. If r is close
to 0% (i.e., few edges are removed), there should remain about n x 2" edges. In the
opposite case, if r is close to 100%, there are about 2™ edges left. In all cases, this step
returns the last graph I that is strongly connected. It is then obvious to return the function
f whose iteration graph is T'.

Even if this algorithm always returns functions with strongly connected component (SCC)
iteration graph, it suffers from iteratively verifying connectivity on the whole iteration graph,
i.e., on a graph with 2™ vertices. Next section tackles this problem: it presents sufficient
conditions on a graph reduced to n elements that allow to obtain SCC iteration graph.

2.3.2.2/ SUFFICIENT CONDITIONS TO STRONGLY CONNECTED GRAPH

We are looking for maps f such that interactions between z; and f; make its iteration
graph T'(f) strongly connected. We first need additional notations and definitions. For
x € B™ and i € [1;n], we denote by 7 the configuration that we obtain be switching the
i—th component of z, that is, ' = (z1,...,73,...,2,). Information interactions between
the components of the system are obtained from the discrete Jacobian matrix f' of f,
which is defined as being the map which associates to each configuration =z € B", the
n x n matrix
(7)) — f.
F@) = Fu@), ) = LELZRD e ),
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More precisely, interactions are represented under the form of a signed directed graph
G(f) defined by: the set of vertices is [1;n], and there exists an arc from j to i of sign
s € {—1,1}, denoted (j, s,1%), if f;j(x) = s for at least one = € B". Note that the presence
of both a positive and a negative arc from one vertex to another is allowed.

Let P be a sequence of arcs of G(f) of the form

(ila 51, iZ), (7:27 523i3)5 R (iry Sr, 7:7‘+1)'

Then, P is said to be a path of G(f) of length » and of sign II}_,s;, and 4,; is said to
be reachable from i;. P is a circuit if i,+1 = i1 and if the vertices i1,..., are pairwise
distinct. A vertex i of G(f) has a positive (resp. negative) loop, if G(f) has a positive

(resp. negative) arc from ¢ to itself.
Let o € B. We denote by f the map from B"~! to itself defined for any = € B"~! by

fa(x) = (fl(xa Oé), ey fn—l(xv a))
We denote by I'(f)® the subgraph of I'(f) induced by the subset B! x {a} of B".

Theorem 3. Let f be a map from B™ to itself such that:

1. G(f) has no cycle of length at least two;
2. every vertex of G(f) with a positive loop has also a negative loop;

3. every vertex of G(f) is reachable from a vertex with a negative loop.
Then, T'(f) is strongly connected.

At this stage, a new kind of chaotic, well-defined, and practically determinable iterative
systems that only manipulates integers has been discovered, leading to the questioning
of their computing for information security or numerical simulations of natural chaotic
dynamics. In order to do so, the possibility of their computation without any loss of chaotic
properties has first been investigated in [Guy10]. These chaotic machines, the last part
of our thesis recall, are presented in the next section.

2.4/ FROM THEORY TO PRACTICE

2.4.1/ HOW TO COPE WITH THE PROBLEM OF FINITE STATE MACHINES

The two main problems raised by the common way to implement chaotic sequences
on finite state machines are: (1) Chaotic sequences are usually defined in the real line
whereas to define real numbers on computers is impossible. (2) All finite state machines
always enter into a cycle when iterating, and this periodic behavior cannot really be stated
as chaotic.

The first problem is disputable, as the shadow lemma proves that, when considering the
sequence z"*! = truncg (f(2™)), where (f,[0,1]) is a chaotic dynamical system and

10kz] : , -
truncy(z) = [ 100]:” is the truncated version of x € R at its k—th digits, then the sequence

(z™) is as close as possible to a real chaotic orbit. Thus iterating a chaotic function on
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floating point numbers does not deflate the chaotic behavior as much. However, even
if this first claim is not really a problem, we have during our thesis researches prevent
from any disputation by considering a tool (the chaotic iterations) that only manipulates
integers bounded by N.

The second claim is surprisingly never considered as an issue when regarding cryptog-
raphy or the generation of randomness on computers, whereas it is often reported when
considering chaotic sequence generation. This issue can be solved by considering that
the chaotic strategy, which is provided to the chaotic iterations that constitute our gener-
ator, is not computed in our finite machine, but it is obtained at each iteration from the
“outside world”: encrypted video streams, microphones, or any other microscopic phe-
nomenon that generates a low-level, statistically random “noise” signal, such as thermal
noise, the photoelectric effect, or other quantum phenomenon. Indeed:

« If the chaotic strategy is a sequence (e.g., provided by a pseudorandom number
generator) computed into the finite machine, then it is periodic, and the output of
chaotic iterations is periodic too (if the seed of the inputted PRNG is not regularly up-
dated). Chaos, in that situation, is an abuse of language. However the 24000000 pos-
sible states of common machines (4 Go of RAM memory) and the shadow lemma
enable us, in a certain extend, to make such an abuse.

« If the chaotic strategy is a non periodic sequence provided at each iterate as input
to the finite machine, then for well-chosen iteration functions, the outputs of chaotic
iterations can be proven as truly chaotic (and non periodic) for the definitions re-
called above. Roughly speaking, in that case, the stated problem can be solved
in the following way. The computer must generate an output O computed from its
current state E and the current value of the non periodic input S, which changes
at each iteration (Fig. 2.2). Therefore, it is possible that the machine presents the
same state twice, but with two future evolution completely different, depending on
the values of the input. By doing so, we thus obtain a machine with a finite number
of internal states, which can evolve in infinitely different ways, due to the new values
provided by the input stream at each iteration. Thus such a machine can behave
chaotically, as defined in the Devaney’s formulation.

X = {0;1)

a—

E

—

S Y ={0;1}

Figure 2.2: A chaotic finite-state machine. At each iteration, a new value is taken from
the outside world (S). It is used by f as input together with the current state (E).

In the two situations, the first aims were initially related to information security. For in-
stance, in pseudorandom number generators, the goal was to improve the statistics of
the inputted (truly or pseudo) random sequence due to the topological properties of the
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iteration function, to add chaos properties when using truly random sequences, and fi-
nally to preserve the speed of the input’. For the pseudorandom input case, and in
situation where this pseudorandom generator has proven properties (like some aspects
of security), our hope was to preserve too such properties.

Example 4. A Moore machine whose directed graph is strongly connected is a chaotic
finite-state machine in the most rigorous understanding of the term chaos. With such
machines, the effects of an error or uncertainties on the inputs cannot be predicted. The
ordered list of visited states and of machine’s production can potentially be totally different
after this error. For instance, Figure 2.3 depicts a chaotic Moore machine while it is not
chaotic in Fig. 2.1. In the first case, if the initial state is 0 and the input word is 11111111,
the visited states are 010101010, while it is 013232323 if the input word is 12111111: a
slight change in the inputs lead to totally different visited states after this error.

2.4.2/ EVALUATING CHAOS OF COMPUTER PROGRAMS

Conversely, any algorithm that uses at each iterate a new input taken from the outside
world can potentially behaves chaotically, in the most rigorous definitions presented pre-
viously, and this behavior can be studied and proven theoretically. More precisely, let us
consider a given algorithm. Because it must be computed one day, it is always possible
to translate it as a Turing machine, and this last machine can be written as 2" ! = f(z2")
in the following way. Let (w, 1, q) be the current configuration of the Turing machine (Fig-
ure 2.4), where w = §7“w(0)...w(k)4* is the paper tape, i is the position of the tape
head, ¢ is used for the state of the machine, and § is its transition function (the notations
used here are well-known and widely used). Following the Heam’s proposal, we define f
by:

o f(w(0)...w(k),i,q) = (w(0)...w(t — Daw( + Dw(k),: + 1,¢), Iif
(5((_[,11)(1)) = (q/7a‘7_))1
o f(w(0)...w(k),i,q) = (w(0)...w@iE@ — law(@ + Lw(k),i 1,q"), if

5(Q7 ’LU(Z)) = (q/a a, (_)

"An interest of such an approach is that it is often very difficult to study mathematically the quality or
security of a truly random generator based on physical noise. By the kind of post-treatment we propose, we
can establish mathematical properties on the generator enriched by chaotic iterations.
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Figure 2.4: Turing Machine

Thus the Turing machine can be written as an iterate function z"*1 = f(z") on a well-
defined set X, with 20 as the initial configuration of the machine. Let = be a well-chosen
topology on X'. So the behavior of this dynamical system can be studied to know whether
or not the algorithm is 7-chaotic.

Given a computer program, we wonder whether its complex behavior can be evaluated,
understood, and/or used for applications. Such questionings, that have driven us from
information security to bioinformatics, have firstly concerned the realization of chaotic
machines more concrete than Turing or Moore ones. The results of such questioning are
given in the next chapter.



3

NEURAL NETWORKS AND CHAOS:
CONSTRUCTION, EVALUATION OF
CHAOTIC NETWORKS, AND
PREDICTION OF CHAOS WITH
MULTILAYER FEEDFORWARD
NETWORK

Many research works deal with chaotic neural networks for various fields of applica-
tion. Unfortunately, up to now these networks are usually claimed to be chaotic with-
out any mathematical proof. The purpose of this chapter, which is a summary of our
collaborations with Michel Salomon, Jean-Frangois Couchot, and Jacques Bahi in this
field [BGS11,BCGS12b], is to establish, based on a rigorous theoretical framework, an
equivalence between chaotic iterations according to Devaney and a particular class of
neural networks. On the one hand we show how to build such a network, on the other
hand we provide a method to check if a neural network is a chaotic one. Finally, the
ability of classical feedforward multilayer perceptrons to learn sets of data obtained from
a dynamical system is regarded. Various Boolean functions are iterated on finite states.
Iterations of some of them are proven to be chaotic as it is defined by Devaney. In that
context, important differences occur in the training process, establishing with various neu-
ral networks that chaotic behaviors are far more difficult to learn.

3.1/ INTRODUCTION

Several research works have proposed or used chaotic neural networks these last years.
The complex dynamics of such networks lead to various potential application areas: as-
sociative memories [CGHO07] and digital security tools like hash functions [LDX10], dig-
ital watermarking [SJT*04, ZLWO05], or cipher schemes [Lia09]. In the former case, the
background idea is to control chaotic dynamics in order to store patterns, with the key
advantage of offering a large storage capacity. For the latter case, the use of chaotic
dynamics is motivated by their unpredictability and random-like behaviors. Indeed, inves-
tigating new concepts is crucial for the computer security field, because new threats are
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constantly emerging.

Chaotic neural networks have been built with different approaches. In the context of
associative memory, chaotic neurons like the nonlinear dynamic state neuron [CGHOQ7]
frequently constitute the nodes of the network. These neurons have an inherent chaotic
behavior, which is usually assessed through the computation of the Lyapunov exponent.
An alternative approach is to consider a well-known neural network architecture: the Mul-
tiLayer Perceptron (MLP). These networks are suitable to model nonlinear relationships
between data, due to their universal approximator capacity [Cyb89, HSW89]. Thus, this
kind of networks can be trained to model a physical phenomenon known to be chaotic
such as Chua’s circuit [DD10]. Sometimes a neural network, which is built by combin-
ing transfer functions and initial conditions that are both chaotic, is itself claimed to be
chaotic [LDX10].

What all of these chaotic neural networks have in common is that they are claimed to be
chaotic despite a lack of any rigorous mathematical proof. The first contribution since our
thesis defense, regarding the chaotic machines, is to fill this gap using the mathematical
theory of chaos. More precisely in this chapter, which summarizes [BGS11,BCGS12b],
we establish the equivalence between chaotic iterations and a class of globally recurrent
MLP. The second contribution is a study of the converse problem, indeed we investigate
the ability of classical multilayer perceptrons to learn chaotic iterations, as defined previ-
ously. As such dynamical systems are chaotically iterated (as it is defined by Devaney)
when the chosen function has a strongly connected iterations graph, we can thus exper-
iment several MLPs and try to learn some iterations of this kind. We have shown that
non-chaotic iterations can be learned, whereas it is far more difficult for chaotic ones.
That is to say, we have discovered at least one family of problems with a reasonable size,
such that artificial neural networks should not be applied due to their inability to learn
chaotic behaviors in this context.

3.2/ A CHAOTIC NEURAL NETWORK IN THE SENSE OF DEVANEY

Let us firstly define two functions fy and f; both in B® — B™ that are used all along this
chapter. The former is the already introduced vectorial negation, i.e., fo(z1,...,2,) =
(Z1,...,ZTn). The latteris fy (x1,...,2,) = (71,21, 22,...,2,—1). It is not hard to check
that I'( fo) and I'(f1) are both strongly connected, then iterations of G, and of G4, are
chaotic according to Devaney.

With this material, we are now able to build a first chaotic neural network, as defined in
the Devaney’s formulation.

Let us build a multilayer perceptron neural network modeling Fy, : [1;n] x B" — B"
associated to the vectorial negation, where F; has been defined in Chapter 2. More
precisely, for all inputs (s,z) € [1;n] x B", the output layer will produce Fy,(s,xz). It is
then possible to link the output layer and the input one, in order to model the dependence
between two successive iterations. As a result we obtain a global recurrent neural network
that behaves as follows (see Fig. 3.1).

» The network is initialized with the input vector (S°, 2°) € [1;n] x B™ and computes
the output vector z! = Fy, (5% 2°). This last vector is published as an output of
the chaotic neural network and is sent back to the input layer through the feedback
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Hidden layers Output

Figure 3.1: A perceptron equivalent to chaotic iterations

links.

« When the network is activated at the t*" iteration, the state of the system 2* € B
received from the output layer and the initial term of the sequence (S*)*N (i.e.,
SY € [1;n]) are used to compute the new output vector. This new vector, which
represents the new state of the dynamical system, satisfies:

o't = Fp (S0, 2" e B" .

The behavior of the neural network is such that when the initial state is 2° ¢ B"™ and a
sequence (S")*N is given as outside input, then the sequence of successive published

output vectors (zt)tem* is exactly the one produced by the chaotic iterations formally
described in the equation above. It means that mathematically if we use similar input vec-
tors they both generate the same successive outputs (a:t)tE]N*, and therefore that they are
equivalent reformulations of the iterations of Gy, in X'. Finally, since the proposed neural
network is built to model the behavior of G'f,, whose iterations are chaotic according to
the Devaney’s definition of chaos, we can conclude that the network is also chaotic in this
sense.

The previous construction scheme is not restricted to function fy. It can be extended
to any function f such that G, is a chaotic map by training the network to model F :
[1;n] x B® — B™. Due to Theorem 2, we can find alternative functions f for f; through a
simple check of their graph of iterations I'(f) (or using a more efficient check as recalled
in previous chapter). For example, we can build another chaotic neural network by using
f1 instead of fp.

3.3/ CHECKING WHETHER A NEURAL NETWORK IS CHAOTIC OR
NOT

We focus now on the case where a neural network is already available, and for which
we want to know if it is chaotic. Typically, in many research papers neural network are
usually claimed to be chaotic without any convincing mathematical proof. We propose an
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approach to overcome this drawback for a particular category of multilayer perceptrons
defined below, and for the Devaney’s formulation of chaos. In spite of this restriction, we
think that this approach can be extended to a large variety of neural networks.

We consider a multilayer perceptron of the following form: inputs are n binary digits and
one integer value, while outputs are n bits. Moreover, each binary output is connected
with a feedback connection to an input one.

» During initialization, the network is seeded with n bits denoted (z9,..., ) and an
integer value S that belongs to [1;n].

« At iteration ¢, the last output vector (2, ...,z defines the n bits used to compute

e 1

the new output one (z{™',...,2L1). While the remaining input receives a new

rrn

integer value S € [1;n], which is provided by the outside world.

The topological behavior of these particular neural networks can be proven to be chaotic
through the following process. Firstly, we denote by F' : [1;n] x B® — B” the function
that maps the value (s, (z1,...,2,)) € [1;n] x B™ into the value (y1,...,y,) € B", where
(y1,---,yn) is the response of the neural network after the initialization of its input layer
with (s, (x1,...,z,)). Secondly, we define f : B" — B"™ such that f (x1,z9,...,2,) IS
equal to

(F (1, (1,22, ..., xn)), ..., F(n,(x1,22,...,2p))) .

Thus, for any j, 1 < 5 < n, we have f(a:l,xg,...,xn)j = F(j,(x1,29,...,25)). |f
this recurrent neural network is seeded with (29,...,20) and S € [1;n]", it produces
exactly the same output vectors than the chaotic iterations of F; with initial condition
(S, (29, ...,29)) € [1;n]™ x B". In other words, the output vectors of the MLP correspond
to the sequence of configurations given by the equation above. Theoretically speaking,
such iterations of F are thus a formal model of these kind of recurrent neural networks. In
the remainder of this chapter, we will call such multilayer perceptrons “CI-MLP(f)”, which

stands for “Chaotic lterations based MultiLayer Perceptron”.

Checking if CI-MLP(f) behaves chaotically according to Devaney’s definition of chaos is
simple: we need just to verify if the associated graph of iterations I'(f) is strongly con-
nected or not. As an incidental consequence, we finally obtain an equivalence between
chaotic iterations and CI-MLP(f). Therefore, we can obviously study such multilayer per-
ceptrons with mathematical tools like topology to establish, for example, their conver-
gence or, contrarily, their unpredictable behavior. An example of such a study is given in
the next section.

3.4/ TOPOLOGICAL PROPERTIES OF CHAOTIC NEURAL NET-
WORKS

As recalled previously, it has been proven in our thesis that chaotic iterations are expan-
sive and topologically mixing when f is the vectorial negation f;. Consequently, these
properties are inherited by the CI-MLP(f;) recurrent neural network previously presented,
which induces a greater unpredictability. Any difference on the initial value of the input
layer is in particular magnified up to be equal to the expansiveness constant.



CHAPTER 3. NEURAL NETWORKS AND CHAOS 21

Devaney's
chaotic
functions

ANN

[
=

MLP

Figure 3.2: Summary of addressed neural networks and chaos problems

Let us then focus on the consequences for a neural network to be chaotic according to
Devaney’s definition. Topological transitivity property implies indecomposability. Hence,
reducing the set of outputs generated by CI-MLP(f), in order to simplify its complexity, is
impossible if I'(f) is strongly connected. Moreover, under this hypothesis CI-MLPs(f) are
strongly transitive. Thus, for all pairs of points (z, y) in the phase space, a point z can be
found in the neighborhood of = such that one of its iterates f"(z) is y. Among other things,
the strong transitivity leads to the fact that without the knowledge of the initial input layer,
all outputs are possible. Additionally, no point of the output space can be discarded when
studying CI-MLPs: this space is intrinsically complicated and it cannot be decomposed
or simplified.

Furthermore, these recurrent neural networks exhibit the instability property. This prop-
erty, which is implied by the sensitive point dependence on initial conditions, leads to the
fact that in all neighborhoods of any point x, there are points that can be apart by ¢ in the
future through iterations of the CI-MLP(f). Thus, we can claim that the behavior of these
MLPs is unstable when I'(f) is strongly connected.

Figure 3.2 is a summary of addressed neural networks and chaos problems. In Sec-
tion 3.2 we have explained how to construct a truly chaotic neural networks, A for in-
stance. Section 3.3 has shown how to check whether a given MLP A or C' is chaotic
or not in the sense of Devaney, and how to study its topological behavior. Another rele-
vant point to investigate, when studying the links between neural networks and Devaney’s
chaos, is to determine whether a multilayer perceptron C is able to learn or predict some
chaotic behaviors of B. This statement is studied in the next section.

3.5/ SUITABILITY OF FEEDFORWARD NEURAL NETWORKS FOR
PREDICTING CHAOTIC AND NON-CHAOTIC BEHAVIORS

In the context of computer science different topic areas have an interest in chaos, such
as steganographic techniques that are detailed in Chapter 5. Steganography consists in
embedding a secret message within an ordinary one, while the secret extraction takes
place once at destination [SJT+04,ZLWO05]. The reverse (i.e., automatically detecting
the presence of hidden messages inside media) is called steganalysis. Among the de-
ployed strategies inside detectors, there are support vectors machines [QSL09], neural
networks [SHW03,HOZS10], and Markov chains [SMCMO06]. Most of these detectors give
quite good results and are rather competitive when facing steganographic tools. However,
to the best of our knowledge none of the information hiding schemes that have been ste-



CHAPTER 3. NEURAL NETWORKS AND CHAOS 22

ganalyzed fulfills the Devaney definition of chaos [Dev89]. As we have proposed in our
thesis a chaotic stego-system, one can wonder whether detectors continue to give good
results when facing truly chaotic schemes. More generally, there remains the open prob-
lem of deciding whether artificial intelligence is suitable for predicting topological chaotic
behaviors.

3.5.1/ REPRESENTING CHAOTIC ITERATIONS FOR NEURAL NETWORKS

The problem of deciding whether classical feedforward ANNs are suitable to approximate
topological chaotic iterations may then be reduced to evaluate such neural networks on
iterations of functions with strongly connected graph of iterations. To compare with non-
chaotic iterations, the experiments detailed in the following sections are carried out using
both kinds of function (chaotic and non-chaotic). Let us emphasize on the difference be-
tween this kind of neural networks and the chaotic iterations based multilayer perceptron.

We are then left to compute two disjoint function sets that contain either functions with
topological chaos properties or not, depending on the strong connectivity of their iter-
ations graph. As stated in the previous chapter, this can be achieved for instance by
removing a set of edges from the iteration graph I'(fy) of the vectorial negation func-
tion fy. One can deduce whether a function verifies the topological chaos property or not
by checking the strong connectivity of the resulting graph of iterations.

For instance let us consider the functions f and ¢ from B* to B* respectively defined by
the following lists:

[0,0,2,3,13,13,6,3,8,9,10,11,8,13, 14, 15]
and [11,14,13,14,11,10,1,8,7,6,5,4,3,2,1,0] .

In other words, the image of 0011 by ¢ is 1110: it is obtained as the binary value of
the fourth element in the second list (namely 14). It is not hard to verify that T'(f) is
not strongly connected (e.g., f(1111) is 1111) whereas I'(g) is. The remaining of this
section shows how to translate iterations of such functions into a model amenable to
be learned by an ANN. Formally, input and output vectors are pairs ((S?)*™,z) and
(o((SH)*N), Fy(S°, z)) as defined previously.

Firstly, let us focus on how to memorize configurations. Two distinct translations are pro-
posed. In the first case, we take one input in B per component; in the second case,
configurations are memorized as natural numbers. A coarse attempt to memorize config-
uration as natural number could consist in labeling each configuration with its translation
into decimal numeral system. However, such a representation induces too many changes
between a configuration labeled by a power of two and its direct previous configuration:
for instance, 16 (10000) and 15 (01111) are close in a decimal ordering, but their Ham-
ming distance is 5. This is why Gray codes [Gra53] have been preferred.

Secondly, let us detail how to deal with strategies. Obviously, it is not possible to trans-
late in a finite way an infinite strategy, even if both (S*)*N and o ((S*)*N) belong to
{1,...,n}N. Input strategies are then reduced to have a length of size [ € [2, k], where k
is a parameter of the evaluation. Notice that [ is greater than or equal to 2 since we do not
want the shift o function to return an empty strategy. Strategies are memorized as natural
numbers expressed in base n + 1. At each iteration, either none or one component is
modified (among the n components) leading to a radix with n + 1 entries. Finally, we give
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another input, namely m € [1,1 — 1], which is the number of successive iterations that are
applied starting from z. Outputs are translated with the same rules.

To address the complexity issue of the problem, we have computed the size of the data
set an ANN has to deal with in [BCGS12b]. We have obtained that the number of input-
output pairs for our ANNSs is

(k‘ _ 1) % pktl nk+l _ p2
2" x -
< n—1 (n—1)2 )

For instance, for 4 binary components and a strategy of at most 3 terms we obtain
2304 input-output pairs.

3.5.2/ EXPERIMENTS

To study if chaotic iterations can be predicted, we have chosen in [BCGS12b] to train the
multilayer perceptron. As stated before, this kind of network is in particular well known
for its universal approximation property [Cyb89, HSW89]. Furthermore, MLPs have been
already considered for chaotic time series prediction. In [DD10] for instance, the authors
have shown that a feedforward MLP with two hidden layers, and trained with Bayesian
Regulation back-propagation, can learn successfully the dynamics of Chua’s circuit.

In these experiments we consider MLPs having one hidden layer of sigmoidal neurons
and output neurons with a linear activation function. They are trained using the Limited-
memory Broyden-Fletcher-Goldfarb-Shanno quasi-newton algorithm in combination with
the Wolfe linear search. The training process is performed until a maximum number of
epochs is reached. To prevent overfitting and to estimate the generalization performance
we use holdout validation by splitting the data set into learning, validation, and test sub-
sets. These subsets are obtained through random selection such that their respective
size represents 65%, 10%, and 25% of the whole data set.

Several neural networks are trained for both iterations coding schemes. In both cases it-
erations have the following layout: configurations of four components and strategies with
at most three terms. Thus, for the first coding scheme a data set pair is composed of
6 inputs and 5 outputs, while for the second one it is respectively 3 inputs and 2 out-
puts. As noticed at the end of the previous section, this leads to data sets that consist of
2304 pairs. The networks differ in the size of the hidden layer and the maximum number
of training epochs. We remember that to evaluate the ability of neural networks to predict
a chaotic behavior for each coding scheme, the training of two data sets, one of them
describing chaotic iterations with strongly connected graph, are compared.

Thereafter we give, for the different learning setups and data sets, the mean prediction
success rate obtained for each output. Such a rate represents the percentage of input-
output pairs belonging to the test subset for which the corresponding output value was
correctly predicted. These values are computed considering 10 training with random
subsets construction, weights and biases initialization. Firstly, neural networks having
10 and 25 hidden neurons are trained, with a maximum number of epochs that takes its
value in {125,250,500} (see Tables 3.1 and 3.2). Secondly, we refine the second coding
scheme by splitting the output vector such that each output is learned by a specific neural
network (Table 3.3). In this last case, we increase the size of the hidden layer up to
40 neurons and we consider larger number of epochs.
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Table 3.1: Prediction success rates for configurations expressed as Boolean vectors.
| Networks topology: 6 inputs, 5 outputs, and one hidden layer |

Hidden neurons 10 neurons
Epochs 125 250 500
Output (1) 90.92% | 91.75% 91.82%
o | Output (2) 69.32% | 78.46% 82.15%
g Output (3) 68.47% | 78.49% 82.22%
5 Output (4) 91.53% | 92.37% 93.4%
Config. 36.10% | 51.35% 56.85%
Strategy (5) 1.91% | 3.38% 2.43%
o | Output (1) 97.64% | 98.10% 98.20%
5 | Output (2) 95.15% | 95.39% 95.46%
S| Output (3) 100% 100% 100%
‘é’ Output (4) 97.47% | 97.90% 97.99%
2 Config. 90.52% | 91.59% 91.73%
Strategy (5) || 3.41% 3.40% 3.47%
Hidden neurons 25 neurons
Epochs 125 250 500
Output (1) 91.65% | 92.69% 93.93%
o | Output (2) 72.06% | 88.46% 90.5%
‘g Output (3) 79.19% | 89.83% 91.59%
5 Output (4) 91.61% | 92.34% 93.47%
Config. 48.82% | 67.80% 70.97%
Strategy (5) || 2.62% | 3.43% 3.78%
o | Output (1) 97.87% | 97.99% 98.03%
5 | Output (2) 95.46% | 95.84% 96.75%
2| Output (3) 100% | 100% 100%
g Output (4) 97.77% | 97.82% 98.06%
2 Config. 91.36% | 91.99% 93.03%
Strategy (5) || 3.37% | 3.44% 3.29%

Table 3.1 formerly published in [BCGS12b] presents the rates obtained for the first coding
scheme. For the chaotic data, it can be seen that as expected configuration prediction
becomes better when the number of hidden neurons and maximum epochs increases: an
improvement by a factor two is observed (from 36.10% for 10 neurons and 125 epochs to
70.97% for 25 neurons and 500 epochs). We also notice that the learning of outputs (2)
and (3) is more difficult. Conversely, for the non-chaotic case the simplest training setup
is enough to predict configurations. For all these feedforward network topologies and all
outputs the obtained results for the non-chaotic case outperform the chaotic ones. Finally,
the rates for the strategies show that the different feedforward networks are unable to
learn them.

For the second coding scheme (i.e., with Gray Codes) Table 3.2 shows that any net-
work learns about five times more non-chaotic configurations than chaotic ones. As in
the previous scheme, the strategies cannot be predicted. Figures 3.3 and 3.4 present
the predictions given by two feedforward multilayer perceptrons that were respectively
trained to learn chaotic and non-chaotic data using the second coding scheme. Each
figure shows for each sample of the test subset (577 samples, representing 25% of the
2304 samples) the configuration that should have been predicted and the one given by
the multilayer perceptron. It can be seen that for the chaotic data the predictions are far
away from the expected configurations. Obviously, the better predictions obtained for the
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Figure 3.3: Second coding scheme - Predictions obtained for a chaotic test subset.

non-chaotic data reflect their regularity.

Let us now compare the two coding schemes. Firstly, the second scheme disturbs the
learning process. In fact in this scheme the configuration is always expressed as a natural
number, whereas in the first one the number of inputs follows the increase of the Boolean

vectors coding configurations. In this latter case, the coding gives a finer information on
configuration evolution.

Table 3.2: Prediction success rates for configurations expressed with Gray code
| Networks topology: 3 inputs, 2 outputs, and one hidden layer |

Hidden neurons 10 neurons
Epochs 125 250 500
Chaotic Config. (1) 13.29% | 13.55% | 13.08%
Strategy (2) 0.50% | 0.52% | 1.32%
. Config. (1) 77.12% | 74.00% | 72.60%
Non-Chaotic | o ieay 2) || 0.42% | 0.80% | 1.16%
Hidden neurons 25 neurons
Epochs 125 250 500
Chaotic Config. (1) 12.27% | 13.15% | 13.05%
Strategy (2) 0.71% | 0.66% | 0.88%
. Config. (1) 73.60% | 74.70% | 75.89%
Non-Chaotic | o ieqy (2) || 0.64% | 0.97% | 1.23%

Unfortunately, in practical applications the number of components is usually unknown.
Hence, the first coding scheme cannot be used systematically. Therefore, we provide a
refinement of the second scheme: each output is learned by a different ANN. Table 3.3
presents the results for this approach. In any case, whatever the considered feedforward
network topologies, the maximum epoch number, and the kind of iterations, the configu-
ration success rate is slightly improved. Moreover, the strategies predictions rates reach
almost 12%, whereas in Table 3.2 they never exceed 1.5%. Despite of this improvement,
a long term prediction of chaotic iterations still appear to be an open issue.
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Figure 3.4: Second coding scheme - Predictions obtained for a non-chaotic test subset.

Table 3.3: Prediction success rates for split outputs.
| Networks topology: 3 inputs, 1 output, and one hidden layer |

] Epochs H 125 \ 250 \ 500 \
Chaotic Output = Configuration
10 neurons 12.39% | 14.06% 14.32%
25 neurons 13.00% | 14.28% 14.58%
40 neurons 11.58% | 13.47% 14.23%
Non chaotic Output = Configuration
10 neurons 76.01% | 74.04% 78.16%
25 neurons 76.60% | 72.13% 75.96%
40 neurons 76.34% | 75.63% 77.50%
Chaotic/non chaotic Output = Strategy
10 neurons 0.76% | 0.97% 1.21%
25 neurons 1.09% | 0.73% 1.79%
40 neurons 0.90% | 1.02% 2.15%
] Epochs H 1000 \ 2500 \ 5000 \
Chaotic Output = Configuration
10 neurons 14.51% | 15.22% 15.22%
25 neurons 16.95% | 17.57% 18.46%
40 neurons 17.73% | 20.75% 22.62%
Non chaotic Output = Configuration
10 neurons 78.98% | 80.02% 79.97%
25 neurons 79.19% | 81.59% 81.53%
40 neurons 79.64% | 81.37% 81.37%
Chaotic/non chaotic Output = Strategy
10 neurons 3.47% | 9.98% 11.66%
25 neurons 3.92% | 8.63% 10.09%
40 neurons 3.29% | 7.19% 7.18%
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3.6/ CONCLUSION

In this chapter, we have recalled our works published in [BGS11,BCGS12b], in which
we have established an equivalence between chaotic iterations and a class of multilayer
perceptron neural networks. Firstly, we have described how to build a neural network that
can be trained to learn a given chaotic map function. Secondly, we found a condition that
allow to check whether the iterations induced by a function are chaotic or not, and thus
if a chaotic map is obtained. Thanks to this condition our approach is not limited to a
particular function. In the dual case, we show that checking if a neural network is chaotic
consists in verifying a property on an associated graph, called the graph of iterations.
These results are valid for recurrent neural networks with a particular architecture. How-
ever, we believe that a similar work can be done for other neural network architectures.
Finally, we have discovered at least one family of problems with a reasonable size, such
that artificial neural networks should not be applied in the presence of chaos, due to their
inability to learn chaotic behaviors in this context. Such a consideration is not reduced
to a theoretical detail: we have concretely implemented this family of discrete iterations
in a steganographic method in [BG10b]. As steganographic detectors embed tools like
neural networks to distinguish between original and stego contents, our studies tend to
prove that such detectors might be unable to tackle with chaos-based information hiding
schemes (this field of information security will be further investigated in Chapter 5).

These considerations end our post-thesis questionings regarding the theory of chaotic
finite state machines. They have been widely used these last three years to propose
concrete solutions in the field of information security. These solutions are summarized in
the next part of this manuscript.
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APPLICATION TO PSEUDORANDOM
NUMBERS GENERATION

Arguments presented in the previous chapters show that it is both possible to construct
a chaotic program that runs in a finite state machine open to the outside world, and that
any program of this kind has a behavior that can be studied in the mathematical theory
of chaos framework. We have shown that Moore or Turing machines, and even neural
networks, can be used to construct concretely such finite state machines that behave
chaotically according to Devaney and consort. A first natural use of a chaotic program is
to generate randomness for a large variety of applications, from information security to
numerical simulations: even if chaos is not randomness, these two behaviors are enough
close to hope that a chaotic dynamical system will present a good statistical profile. This
is why we have considered in our researches, new when compared to our thesis topics,
that chaotic iterations can be used for (pseudo)random number generation, leading to a
collection of so-called “CIPRNGs” chaos-based generators reviewed here.

4.1/ INTRODUCTION

Two kinds of random generators are necessary in finite state machines, namely truly
random number generators (TRNGs) and pseudorandom number generators (PRNGSs).
In a TRNG, numbers are generated using a non-reproducible source of entropy using
a physical noise to generate numbers. This noise can be obtained in different ways,
using for instance a mixture of temperature sensors, microphones, memory residuals, and
user manipulations. Such TRNG are used for instance to generate cryptographic keys or
nonces, in which non reproducibility is an important security requirement. An issue with
such generators is that, to prove or to test the randomness unbiased characteristics of
the generated numbers is a very hard task, most of the time impossible to achieve.

Even though it is sometimes possible to press ahead theoretical physics results to deduce
a random-like behavior of the considered device, such results only hold for ideal devices,
and unpredictable biases are often introduced during the concrete realization of such de-
vices. In a large scale of applications, like Monte Carlo based numerical simulations of
critical platforms (nuclear plants, etc.), the existence of possible uncontrollable biases in
the input random stream is unacceptable. Furthermore, in various concrete applications
that require a random stream, reproducibility is not a problem; indeed, it is often required.
In numerical simulations again, to be able to reproduce the same randomness to equi-
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tably test various platforms is a fair necessity. Additionally, to be dependent on hardware
devices (like sensors) may be problematic, and these latter may be more or less defective
given two computers, while it is often a necessity to have the same behavior of a given
program on two different finite machines. These reasons explain why both TRNGs and
PRNGs are useful in computer science, and more generally in any field that requires a
random source.

PRNGs being reproducible, they are most of the time constituted by a recurrent sequence
in which the first term (and sometimes the parameters of the sequence) play the role of a
seed: using the same seed and the same parameters twice leads to the same generated
pseudorandom sequence. The random-like characteristics then is verified using statistical
batteries of tests, like the NIST [BR10], DieHARD [Mar96], or TestU0O1 [SM07] reputed
ones. The adequacy of a large quantity of generated digits to the uniform distribution on
{0,1} is tested for a large variety of properties, like the intended frequency of all finite
patterns (poker test).

A good rule of thumb, developed since our thesis, consists in selecting a priori good
recurrent sequences, that is, discrete dynamical systems that have a large amount of
provable properties of disorder, before checking a posteriori its random-like behavior us-
ing the aforementioned batteries of tests. An interesting and promising category of such
discrete dynamical systems is constituted by chaotic sequences, whose disordered and
unpredictable behaviors are defined and proven in the mathematical topology framework
recalled previously.

After having proven that such chaotic finite machines exist and are concretely buildable
in previous chapters, we now investigate the interest of such chaotic finite machines for
random numbers generation. Our technique, extensively developed since our thesis,
can be considered as a post-treatment on TRNGs or PRNGs: at each iterate, a new
value is taken either from the truly random stream or from the pseudorandom one, and
the new output is computed using chaotic iterations on this input value and the internal
state. Thus our discrete dynamical system operates on the Cartesian product of the
memory states BN of the finite state machine and of an infinite set of sequences. The
sole difference from TRNG to PRNG is that this set of sequences is restricted to the ones
being eventually periodic, which is an infinite countable set. In the both cases, the finite
state machine operates on an infinite Cartesian product: the hazard of iterating on a finite
state on which chaos is at best degenerated is avoided, thanks to this approach already
presented in Chapter 2. For TRNGs, the main interest is that, when it is used as input of
the chaotic Moore machine, the output stream corresponds to a truly chaotic and random
generator. Here, chaos is mathematically proven, while random comes from theoretical
physics considerations. For PRNGs, we have finally regarded the interest to add chaos
properties on a pseudorandom sequences. To do so, we have investigated these last
years a large category of defective PRNGs, and have shown that to mix these generators
using chaotic iterations leads systematically to an improvement of their results to each
of the statistical battery of tests previously mentioned: iterating a chaotic post-treatment
on these defective generators improve their statistical behaviors. A strong correlation
appeared between chaos and random as it is understood in statistical tests, which is not
surprising as, when some chaos properties are not satisfied, then some flaws appear
in the recurrent sequence (for instance, not all the states are visited), which must be
signaled by a statistical test if the battery is well designed.

The aim of this HDR chapter is to recall and summarize all the researches we have
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performed these last years in the chaos-based pseudorandom number generation field.

4.2/ QUALITATIVE RELATIONS BETWEEN TOPOLOGICAL PROPER-
TIES AND STATISTICAL TESTS

Let us firstly explain why we have reasonable ground to believe that chaos can improve
the statistical properties of inputs. We will show in this section that chaotic properties
as defined in the mathematical theory of chaos are related to some statistical tests that
can be found in the NIST battery of tests [BR10]. We will verify later in this chapter that,
when mixing defective PRNGs with chaotic iterations, the new generator presents better
statistical properties (this section summarizes and extends the work of [BFG12a]).

There are various relations between topological properties that describe an unpredictable
behavior for a discrete dynamical system on the one hand, and statistical tests to check
the randomness of a numerical sequence on the other hand. These two mathematical
disciplines follow a similar objective in case of a recurrent sequence (to characterize an
intrinsically complicated behavior), with two different but complementary approaches. It is
true that the following illustrative links give only qualitative arguments, and proofs should
be provided to make such arguments irrefutable. However they give a first understanding
of the reason why chaotic properties tend to improve the statistical quality of PRNGs,
which is experimentally verified as shown in the end of this chapter. Let us now list some
of these relations between topological properties defined in the mathematical theory of
chaos and tests embedded into the NIST battery.

* Regularity. As recalled in Chapter 2, a chaotic dynamical system must have an
element of regularity. Depending on the chosen definition of chaos, this element can
be the existence of a dense orbit, the density of periodic points, etc. The key idea
is that a dynamical system with no periodicity is not as chaotic as a system having
periodic orbits: in the first situation, we can predict something and gain a knowledge
about the behavior of the system, that is, it never enters into a loop. A similar
importance for periodicity is emphasized in the two following NIST tests [BR10]:

— Non-overlapping Template Matching Test. Detect the production of too
many occurrences of a given non-periodic (aperiodic) pattern.

— Discrete Fourier Transform (Spectral) Test. Detect periodic features (i.e.,
repetitive patterns that are close one to another) in the tested sequence that
would indicate a deviation from the assumption of randomness.

 Transitivity. This topological property previously introduced states that the dynam-
ical system is intrinsically complicated: it cannot be simplified into two subsystems
that do not interact, as we can find in any neighborhood of any point another point
whose orbit visits the whole phase space. This focus on the places visited by the or-
bits of the dynamical system takes various nonequivalent formulations in the math-
ematical theory of chaos, namely: transitivity, strong transitivity, total transitivity,
topological mixing, and so on [BG10a]. A similar attention is brought on the states
visited during a random walk in the two tests below [BR10]:

— Random Excursions Variant Test. Detect deviations from the expected num-
ber of visits to various states in the random walk.
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— Random Excursions Test. Determine if the number of visits to a particular
state within a cycle deviates from what one would expect for a random se-
quence.

+ Chaos according to Li and Yorke. We recalled that two points
of the phase space (x,y) define a couple of Li-Yorke when
limsup,,_, o d(f™(2), f™(y)) > 0 and liminf, , o d(f™ (z), f™(y)) = 0,
meaning that their orbits always oscillate as the iterations pass. When a system is
compact and contains an uncountable set of such points, it is claimed as chaotic
according to Li-Yorke [LY75, Rue01]. A similar property is regarded in the following
NIST test [BR10].

— Runs Test. To determine whether the number of runs of ones and zeros of
various lengths is as expected for a random sequence. In particular, this test
determines whether the oscillation between such zeros and ones is too fast or
too slow.

» Topological entropy. The desire to formulate an equivalency of the thermodynam-
ics entropy has emerged both in the topological and statistical fields. Once again,
a similar objective has led to two different rewriting of an entropy based disorder:
the famous Shannon definition is approximated in the statistical approach, whereas
topological entropy has been defined previously. This value measures the average
exponential growth of the number of distinguishable orbit segments. In this sense,
it measures the complexity of the topological dynamical system, whereas the Shan-
non approach comes to mind when defining the following test [BR10]:

— Approximate Entropy Test. Compare the frequency of the overlapping blocks
of two consecutive/adjacent lengths (m and m + 1) against the expected result
for a random sequence.

* Non-linearity, complexity. Finally, let us remark that non-linearity and complex-
ity are not only sought in general to obtain chaos, but they are also required for
randomness, as illustrated by the two tests below [BR10].

— Binary Matrix Rank Test. Check for linear dependence among fixed length
substrings of the original sequence.

— Linear Complexity Test. Determine whether or not the sequence is complex
enough to be considered random.

We have recalled in Chapter 2 that chaotic iterations are, among other things, strongly
transitive, topologically mixing, chaotic as defined by Li and Yorke, and that they have a
topological entropy and an exponent of Lyapunov both equal to in(N), where N is the size
of the iterated vector, see theorems of Section 2.3. Due to these topological properties,
we are ground to believe that a generator based on chaotic iterations could probably be
able to pass batteries for pseudorandomness like the NIST one. The following sections,
recalling all our work in this field since our thesis, show that defective generators have
their statistical properties improved by chaotic iterations.
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4.3/ THE CIPRNGS: CHAOTIC ITERATION BASED PRNGS

This section focus on the presentation of various realizations of pseudorandom number
generators based on chaotic iterations.

4.3.1/ CIPRNG, VERSION 1

Let N e N* N > 2, and M be a finite subset of IN*. Consider two possibly defective
generators called PRNG1 and PRNG2 we want to improve (like the generators detailed
in the Appendix A.1), the first one having his terms into [1, N] whereas the second ones
return integers in M, which is always possible. The first version of a generator resulting
on a post-treatment on these defective PRNGs using chaotic iterations has been denoted
by CIPRNG(PRNG1,PRNG2) version 1. This (inefficient) proof of concept is designed by
the following process [BGW09,BGW10b]:

1. Some chaotic iterations are fulfilled, with the vectorial negation and PRNG1 as strat-

egy, to generate a sequence (z"), € (IB'\')]N of Boolean vectors: the successive
internal states of the iterated system.

2. Some of these vectors are randomly extracted with PRNG2 and their components
constitute our pseudorandom bit flow. Algorithm 1 provides the way to produce one
output.

Algorithm 1: An arbitrary round of CIPRNG(PRNG1,PRNG2) version 1
Input: The internal state x (an array of N 1-bit words)
Output: An array of N 1-bit words

1: fori=0,..., PRNG1() do
2. S < PRNG2();

3 x5 Tg,

4: return x;

In other words, chaotic iterations are realized as follows. Initial state 2° € BN is a Boolean
vector taken as a seed and strategy (S™),.x € [1,N]N is a sequence produced by
PRNG2. Lastly, iteration function f is the vectorial Boolean negation. So, at each it-
eration, only the S?-th component of state =" is updated, as follows

L | ML
o (4.1)

:U?_l if i = S°.
Finally, some z™ are selected by a sequence m"™ as the pseudorandom bit sequence of
our generator, where (m™),c € MY is obtained using PRNG2. That is, the generator
returns the following values: the components of 2™, followed by the components of
mO4m! mO+m!l4+m?
x , followed by the components of x , efc.

Generators investigated in the first set of experiments are the Logistic map, XOR-
shift, and ISAAC (these generators are defined in the Appendix A.1), while the re-
puted NIST [BR10], DieHARD [Mar96], and TestU01 [SMQ7] test suites have been con-
sidered for statistical evaluation. Table 4.1 contains the statistical results (number of
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Table 4.1: Statistical results of well-known PRNGs
BBS Logistic XORshift ISAAC

NIST SP 800-22 (15 tests) 2 14 14 15
DieHARD (18 tests) 2 16 15 18
TestUO1 (516 tests) 212 250 370 516

Table 4.2: Statistical results for the CIPRNG version 1
CIPRNG Version 1
Logistic XORshift ISAAC ISAAC

Test name
+ + + +
Logistic XORshift XORshift ISAAC
NIST (15) 15 15 15 15
DieHARD (18) 18 18 18 18
TestU01 (516) 378 507 516 516

tests successfully passed) obtained by the considered inputted generators, while Ta-
ble 4.2 shows the results with the first version of our CIPRNGs: improvements, published
in [BGW09, BGW10b], are obvious.

We have enhanced this CIPRNG several times, and tested these generators deeply dur-
ing our cosupervision of Qianxue Wang and Xiaole Fang theses. These improvements
and studies are detailed in Appendix A.2. We only explain in this main chapter the XOR
CIPRNG version, whose study has been realized outside these theses context.

4.3.2/ XOR CIPRNG

Instead of updating only one cell at each iteration as the previous versions of our
CIPRNGs, we can try to choose a subset of components and to update them together.
Such an attempt leads to a kind of merger of the two random sequences. When the updat-
ing function is the vectorial negation, this algorithm can be rewritten as follows [BCGH11]:

{ 20 € [0,2N — 1], S € [0, 2N — 1N (4.2)

-1 -1
VYnelN* 2" =z S"+,

and this rewriting can be understood as follows. The n!* term S™ of the sequence S,
which is an integer of N binary digits, whose list of digits in binary decomposition is the
list of cells to update in the state x™ of the system (represented as an integer having N bits
too). More precisely, the k* component of this state (a binary digit) changes if and only if
the k" digit in the binary decomposition of S™ is 1. This generator has been called XOR
CIPRNG, it has been introduced, theoretically studied, and tested in [BCGH11,BFG12a].
It uses a very classical pseudorandom generation approach, the unique contribution is
its relation with chaotic iterations: the single basic component presented in the previous
equation is of ordinary use as a good elementary brick in various PRNGs. It corresponds
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to the discrete dynamical system in chaotic iterations.

4.4/ PRESERVING SECURITY

This section is dedicated to the security analysis of the proposed PRNGs, both from a
theoretical and from a practical point of view.

4.4.1/ THEORETICAL PROOF OF SECURITY

The standard definition of indistinguishability used is the classical one as defined for
instance in [Gol07, chapter 3]. This property shows that predicting the future results
of the PRNG cannot be done in a reasonable time compared to the generation time. It
is important to emphasize that this is a relative notion between breaking time and the
sizes of the keys/seeds. Of course, if small keys or seeds are chosen, the system can be
broken in practice. But it also means that if the keys/seeds are large enough, the system
is secured. As a complement, an example of a concrete practical evaluation of security is
outlined in the next subsection.

In a cryptographic context, a pseudorandom generator is a deterministic algorithm G
transforming strings into strings and such that, for any seed s of length m, G(s) (the
output of G on the input s) has size ¢g(m) with £g(m) > m. The notion of secure PRNGs
can now be defined as follows.

Definition 7. A cryptographic PRNG G is secure if for any probabilistic polynomial time
algorithm D, for any positive polynomial p, and for all sufficiently large m’s,

[Pr[D(G(Unm)) = 1] = Pr[D(Usg(m)) = 1] < —

where U, is the uniform distribution over {0,1}" and the probabilities are taken over U,,,
Uy, (m) a@s well as over the internal coin tosses of D.

Intuitively, it means that there is no polynomial time algorithm that can distinguish a per-
fect uniform random generator from G with a non negligible probability. An equivalent
formulation of this well-known security property means that it is possible in practice to
predict the next bit of the generator, knowing all the previously produced ones. The in-
terested reader is referred to [Gol07, chapter 3] for more information. Note that it is
quite easily possible to change the function ¢ into any polynomial function ¢’ satisfying
¢'(m) > m) [Gol07, Chapter 3.3].

The generation schema developed in the XOR CIPRNG is based on a pseudorandom
generator. Let H be a cryptographic PRNG. Let S1,..., S, be the strings of length N
such that H(Sy) = S1...S; (H(So) is the concatenation of the S;’s). The XOR CIPRNG
X defined previously is the algorithm mapping any string of length 2V x4 into the string
(xo @ So @ S1)(xo D So®S1 D S2)...(x @jz(’; S;). We have proven in [BCGH11] that,

Theorem 8. If H is a secure cryptographic PRNG, then the XOR CIPRNG X is a secure
cryptographic PRNG too.
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BBS XORshift  Version 1 Cl Version2 Cl Version3 Cl Version 4 Cl

Figure 4.1: Speed comparison between BBS, XORshift, and CIPRNGs version 1-4.

4.4.2/ PRACTICAL SECURITY EVALUATION

Given a key size, it is possible to measure in practice the minimum duration needed for
an attacker to break a cryptographically secure PRNG, if we know the power of his/her
machines. Such a concrete security evaluation is related to the (7, ¢)—security notion,
which has been evaluated for various CIPRNGs in [BCGH11] and in submitted papers. A
short example of such study for the XOR CIPRNG is provided as an illustrative example
in what follows.

Let us firstly recall that,

Definition 8. Let D : BM — B be a probabilistic algorithm that runs in time T. Let< > 0.
D is called a (T, )—distinguishing attack on pseudorandom generator G if

Pr[D(G(k)) = 1| ker {0,1}¥] — Pr[D(s) = 1 | seg BM]| > ¢,

where the probability is taken over the internal coin flips of D, and the notation “egr”
indicates the process of selecting an element at random and uniformly over the corre-
sponding set.

Let us recall that the running time of a probabilistic algorithm is defined to be the maximum
of the expected number of steps needed to produce an output, maximized over all inputs;
the expected number is averaged over all coin flips made by the algorithm [Knu97]. We
are now able to define the notion of cryptographically secure PRNGs:

Definition °. A pseudorandom generator is (T,c)—secure if there exists no
(T, e)—distinguishing attack on this pseudorandom generator.

We have proven in [BCGH11] that,

Proposition °. If the inputted PRNG is (T, <)-secure, then this is the case too for the XOR
CIPRNG.

Suppose for instance that the XOR CIPRNG with the cryptographically secure BBS as
input will work during M = 100 time units, and that during this period, an attacker can
realize 10'? clock cycles. We thus wonder whether, during the PRNG's lifetime, the at-
tacker can distinguish this sequence from a truly random one, with a probability greater
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than ¢ = 0.2. We consider that the modulus of BBS N has 900 bits, that is, contrarily to
previous sections, we use here the BBS generator with relevant security parameters.

Predicting the next generated bit knowing all the previously released ones by the XOR
CIPRNG is obviously equivalent to predicting the next bit in the BBS generator, which
is cryptographically secure. More precisely, it is (7, ¢)—secure: no (T, ¢)—distinguishing
attack can be successfully realized on this PRNG, if [FS97]

_ L(N)
= 6N (loga(N))e—2M?2

— 2"Ne 2M?logs (8N~ M) (4.3)
where M is the length of the output (M = 100 in our example), and L(V) is equal to
2.8 x 10 3exp (1.9229 x (N In 2)5 x (In(N In 2))§)

is the number of clock cycles to factor a N —bit integer.

A direct numerical application shows that this attacker cannot achieve his (10'2,0.2) dis-
tinguishing attack in that context.

4.5/ THE CIPRNG FAMILY: FURTHER PROPOSALS

An approach to find update functions such that the associated generator presents a
random-like and chaotic behavior has been proposed in [BFGW11]. To do so, the vecto-
rial Boolean negation has been used as a prototype. It is then explained how to modify
this iteration function without deflating the good properties of the associated generator,
leading to eight CI;PRNG(PRNG1, PRNG?2) versions of the CIPRNG version 1. They
all can pass the DieHARD battery of tests.

Similarly, in [BCGW11], a method using graph with strongly connected components is
proposed as a selection criterion for chaotic iterate function. By using the algorithm pro-
posed in [BCGR11] and recalled in Section 2.3.2.1, ten new functions are proposed for
replacing the vectorial negation. These chaotic PRNGs are then subjected to the NIST
statistical battery of tests.

Finally, in [BCGH11,CG13] a new pseudorandom number generator based on the XOR
CIPRNG is proven to be chaotic according to the Devaney’s formulation. We thus pro-
posed an efficient implementation for GPU that successfully passes the BigCrush tests,
deemed to be the hardest battery of tests in TestU01. Experiments show that this PRNG
can generate about 20 billion of random numbers per second on Tesla C1060 and NVidia
GTX280 cards. It is then established that, under reasonable assumptions, the proposed
PRNG can be cryptographically secure.

4.6/ CONCLUSION

In this chapter, the researches we have published these last years on chaotic iterations
based pseudorandom number generators have been reviewed and summarized. The ef-
fects of mixing defective PRNGs using chaotic iterations has been largely regarded, by
recalling our previously obtained improvements of their statistics, for various ways to op-
erate the chaotic iterations based post-treatment we called CIPRNG. These researches
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allow to construct both machines and computer programs having unpredictable behav-
iors. Furthermore, new topological properties can be added to existing tools with the
proposed post-treatment, without loss of security.

Motivations to use chaotic programs like chaotic PRNGs are manifold: to place itself in
good conditions when designing new algorithms, to create new kind of attacks like chaotic
viruses, to numerically simulate chaotic processes, to reinforce the security of schemes
already proven as cryptographically secure (for instance, a chaotic version of the Blum-
Goldwasser asymmetric key encryption scheme has been proposed in [BCGH11]). Or,
when regarding the information hiding field of researches studied in the next chapter,
to struggle with artificial intelligence that are used for instance in steganalyzers: we have
shown in Chapter 3 that neural networks fail in learning some chaotic iterations behaviors.

Further investigations in chaos-based PRNGs encompass the study of the choice of the
topology when comparing the quality of two different programs, or to have an absolute
scale to evaluate an algorithm. Situations where the inputted generator is a TRNG must
be deepened too, by investigating more largely the analog/numerical mixture that has
been initiated in submitted papers and in [Fan13], in which our CIPRNG receives the
output of a chaotic opto-electronic laser. Finally, the correlations between some statistical
tests and some topological properties must be systematically investigated.
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APPLICATION TO INFORMATION HIDING

5.1/ INTRODUCTION

We have explained at the beginning of this manuscript that any algorithm can be rewrit-
ten as an iterative process, leading to the possibility to study its topological behavior. As
a concrete example, we have shown during our thesis that the security level of some
information hiding algorithms (of the spread-spectrum kind) can be studied into a novel
framework based on unpredictability, as it is understood in the theory of chaos. The key
idea motivating our research works is that: if artificial intelligence tools seem to have dif-
ficulties to deal with chaos, then steganalyzers may be proven defective against chaotic
information hiding schemes. Our work has thus constituted in showing theoretically that
such chaotic schemes can be constructed. We are not looking to struggle with best
available information hiding techniques and we do not focus on effective and operational
aspects, as our questioning are more locating in a conceptual domain. Among other
things, we do not specify how to chose embedding coefficients, but the way to insert the
hidden message in a selection of these “least significant coefficient”. To say this another
way, our intention is not to realize an hidden channel that does not appear as sleazy to
a steganalyzer, but to construct an information hiding scheme whose behavior cannot be
predicted: supposing that the adversary has anything (algorithm, possible embedding co-
efficient, etc.) but the secret key, we want to determine if he can predict which coefficients
will be finally used, and in which order.

To do so and in the continuation of our thesis, a new class of security has been introduced
in [BG10c], namely the topological security. This new class can be used to study some
categories of attacks that are difficult to investigate in the existing security approach. It
also enriches the variety of qualitative and quantitative tools that evaluate how strong the
security is, thus reinforcing the confidence that can be added in a given scheme.

In addition of being stego-secure, we have proven during our thesis and published later
in [GFB10] that Natural Watermarking (NW) technique is topologically secure. Moreover,
this technique possesses additional properties of unpredictability, namely, strong transi-
tivity, topological mixing, and a constant of sensitivity equal to %: all these results are
currently submitted. However NW are not expansive, which is in our opinion problematic
in the Constant-Message Attack (CMA) and Known Message Attack (KMA) setups, when
we consider that the attacker has all but the embedding key [Guy10]. Since our thesis,
our research works in that information hiding field have thus consisted in searching more
secure schemes than NW, regarding the concerns presented in the first paragraph of this
introduction.
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5.2/ THE CZIW; CHAOTIC ITERATION BASED WATERMARKING
PROCESS

5.2.1/ USING CHAOTIC ITERATIONS AS INFORMATION HIDING SCHEMES
5.2.1.1/ PRESENTATION OF THE DHCI| PROCESS

During our thesis, we have proposed a data hiding protocol based on chaotic iterations.
The process, referred as dhCl, consisted in iterating Cls on least significant coefficients
of a cover medium. The same original image was supposed to be shared by the sender
and the receiver, the sender either iterates or not Cls on these coefficients, depending
on whether the binary information to transfer was 0 or 1, while the receiver computed the
differences between its stored image and the received one. Again, we do not focus on the
operational domain, really interesting and important but largely studied by plus competent
researchers: we take place on a conceptual level regarding the possibility to write chaotic
information hiding algorithms.

The first deepened study of such a dhCl algorithm was published in Secrypt’10 [BG10c].
The aims were to prove that a particular instance of the dhCl algorithm, called the CZW;
process, is both stego-secure and topologically secure, to study its qualitative and quan-
titative properties of unpredictability, and then to compare it with Natural Watermarking
(the topological study was realized at the end of our thesis while the stego-security has
been proven later in [GFB10]). To be able to recall the CZW; scheme, we must firstly
define the significance of a given coefficient.

This definition, given in our thesis, has been published later (in Secrypt’2011 [FGB11]).

5.2.1.2/ MOST AND LEAST SIGNIFICANT COEFFICIENTS

We first notice that terms of the original content x that may be replaced by terms issued
from the watermark y are less important than other: they could be changed without be
perceived as such. More generally, a signification function attaches a weight to each term
defining a digital media, depending on its position ¢.

Definition 1°. A signification function is a real sequence (u*)*<N.

Example 5. Let us consider a set of grayscale images stored into portable graymap for-
mat (P3-PGM): each pixel ranges between 256 gray levels, i.e., is memorized with eight
bits. In that context, we consider u* = 8 — (k mod 8) to be the k-th term of a signification
function (u*)*N . Intuitively, in each group of eight bits (i.e., for each pixel) the first bit
has an importance equal to 8, whereas the last bit has an importance equal to 1. This is
compliant with the idea that changing the first bit affects more the image than changing
the last one.

Definition 1'. Let (u*)*™ be a signification function, m and M be two reals s.t. m < M.
« The most significant coefficients (MSCs) of x is the finite vector

uMz(k‘ke]Ncmduk>Mandk<\x\);
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 The least significant coefficients (LSCs) of x is the finite vector

umz(k\ke]l\fandukgmandkghﬂ);

 The passive coefficients of z is the finite vector

upz(k‘\k:e]Nanduke]m;M[ andk‘<|:x|>.

For a given host content z, MSCs are then ranks of x that describe the relevant part of
the image, whereas LSCs translate its less significant parts. These two definitions are
illustrated on Figure 5.1, where the significance function (u*) is defined as in Example 5,
M =5,and m = 6.

(b) MSCs of Lena. (c) LSCs of Lena (x17).

Figure 5.1: Most and least significant coefficients of Lena.

Rem 2. The way to define these MSCs and LSCs coefficients in a primordial question
in concrete applications, but we currently have not deeply investigated it. The best situ-
ation, and perhaps the only one that makes possible a secure hiding process, is when
the LSCs are random and independent from the MSCs. We do not know if, given a col-
lection of images, such coefficients can be found in practice (perhaps by using statistical
batteries of tests ?). Even, we do not know if having random LSCs implies that they are
independent from the MSCs. We just signal that such images can be easily constructed,
so it all depends on the chosen game: must we necessarily use natural images ? How
a steganalyzer can separate natural from stego contents when all images are artificial ?
etc. (These fundamental questions will be a little investigated at the end of this chapter.)

5.2.1.3/ PRESENTATION OF THE CZW; DHCI| SCHEME

We have proposed in Secrypt’'10 [BG10c] to study a particular instance of the dhCl class,
introduced in our thesis and further investigated at the end of this chapter, which consid-
ers the negation function as iteration mode. The resulting chaotic iterations watermarking
process has been denoted by CZW; in this publication. It operates as follows. Let:
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* (K,N) € [0;1] x IN be an embedding key,
+ X e BN be the N least significant coefficients (LSCs) of a given cover media C,

* (S™)nen € [1,N]™ be a strategy, which depends on the message to hide M e [0;1]
and K,

* fo : BN — BN be the vectorial logical negation.

(a) Original Lena. (b) (c) Watermarked Lena.
Water-
mark.

Figure 5.2: Data hiding with chaotic iterations

So the watermarked media is C' whose LSCs are replaced by Y = X, where:

X0=Xx
Vn < N, X" = Gy (X™).

In the following section, two ways to generate (S™),ew are given, namely Chaotic It-
erations with Independent Strategy (CIIS) and Chaotic lterations with Dependent Strat-
egy (CIDS). In CIIS, the strategy is independent from the cover media X, whereas in CIDS
the strategy will be dependent on X. These strategies have been introduced in [GFB10].
Their stego-security are studied in Section 5.2.2 and their topological security in Sec-
tion 5.2.3.2.

5.2.1.4/ EXAMPLES OF STRATEGIES

CIIS strategy Let us first introduce the Piecewise Linear Chaotic Map (PLCM,
see [SQW*01]), defined by:

Definition 2 (PLCM).
x/p if  xze[0;p]
F(w,p){ (z—p)/(5—-p) if xelps]
F(1—z,p) else.

=3
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where p € ]0;%[ is a “control parameter”. Contrary to well-known chaotic maps
like the logistic map, this PLCM is unbiased and does not present obvious security

flaws [SQWT01].

We define the general term of the strategy (5™),, in CIIS setup by the following expression:
S™ = |N x K"| + 1, where:

pe [0;5]
K=MK
K"t = F(K™,p),¥n < Ny

in which ® denotes the bitwise exclusive or (XOR) between two floating part numbers
(i.e., between their binary digits representation). Lastly, to be certain to enter into the
chaotic regime of PLCM [SQW*01], the strategy can be preferably defined by: S™ =
IN x K"*P| + 1, where D e IN is large enough.

CIDS strategy The same notations as above are used. We define CIDS strategy as
in [GFB10]: Vk < N,

« if k <Nand X* =1, then S* =k,

. else Sk = 1.

In this situation, if N > N, then only two watermarked contents are possible with the
scheme proposed in Section 5.2.1, namely: Yx = (0,0,--- ,0) and Yx = (1,0,--- ,0).

Before being able to present the security study we performed after our thesis, we must
firstly recall the notion of security we have regarded and its difference with robustness.

5.2.2/ SECURITY VERSUS ROBUSTNESS
5.2.2.1/ PRESENTATION

In [PFCTPPGO06], it is claimed that: “security and robustness are neighboring concepts
without clearly established mathematical definitions”. However, robustness is often con-
sidered to be mostly concerned with blind elementary attacks, whereas security is not
limited to certain specific attacks. Indeed, it is said in [Kal01, CPFPGO05] that security en-
compasses robustness and intentional attacks. Following Kalker [Kal01], we will consider
in this manuscript the two following definitions’:

"Remark that when robustness is required in information hiding, the community tends to speak about
digital watermarking, while researchers prefer to say steganography when security is regarded. Similarly,
some authors speak about watermarking when the hidden information is only one bit, while steganography
is for larger messages, even if such use of the terminologies is less common. Such ambiguities come from
the fact that, to the best of our knowledge, no clear common mathematical definitions of steganography
and digital watermarking have been accepted by the whole community, and that this community is indeed
split in various closed subcommunities that do not communicate together, who have never seen or heard of
one another (IH/IWDW vs [IHMSP vs Crypto/Secrypt vs IEEE trans vs...). So, as we must realize a choice
in this manuscript, security will always refer to mathematical proofs (detection, separation, or extraction)
while robustness will be related to brute-force attacks (destruction of hidden message). Steganography,
watermarking, as well as steganalysis will however be used with various significations that can be deduced
from the context.
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Definition '3 (Security [Kal01]). Security refers to the inability by unauthorized users to
have access to the raw watermarking channel [...] to remove, detect and estimate, write
or modify the raw watermarking bits.

Remark that this historical security notion is not restricted to the question of determining
whether a channel of “natural” images contains or not stego-contents.

Definition * (Robustness [Kal01]). Robust watermarking is a mechanism to create a
communication channel that is multiplexed into original content [...] It is required that,
firstly, the perceptual degradation of the marked content [...] is minimal and, secondly, that
the capacity of the watermark channel degrades as a smooth function of the degradation
of the marked content.

5.2.2.2/ CLASSIFICATION OF ATTACKS

We firstly decided to take place in the framework developed in [CB08a], which defines
the following attack contexts. A few other formal security framework exist, like the one
developed by Barbier and Filiol [BM08b], but they look further away than what we intended
to study.

Definition 15. The following classes of attacks can be defined:

» Watermark-Only Attack (WOA): occurs when an attacker has only access to sev-
eral watermarked contents.

» Known-Message Attack (KMA): occurs when an attacker has access to several
pairs of watermarked contents and corresponding hidden messages.

« Known-Original Attack (KOA): is when an attacker has access to several pairs of
watermarked contents and their corresponding original versions.

» Constant-Message Attack (CMA): occurs when the attacker observes several
watermarked contents and only knows that the unknown hidden message is the
same in all contents.

5.2.2.3/ DEFINITION OF STEGO-SECURITY

In the Simmons’ prisoner problem [Sim84], Alice and Bob are in jail and they want to,
possibly, devise an escape plan by exchanging hidden messages in innocent-looking
cover contents. These messages are to be conveyed to one another by a common warden
named Eve, who eavesdrops all contents and can choose to interrupt the communication
if they appear to be stego-contents. Stego-security, defined in this context, is the highest
security class in Watermark-Only Attack setup, which occurs when Eve has only access
to several marked contents [CB08a].

Let K be the set of embedding keys, p(X) the probabilistic model of N initial host con-
tents, and p(Y|K) the probabilistic model of Ny marked contents s.t. each host content
has been marked with the same key K and the same embedding function.

Definition 1 (Stego-Security [CB08a]). The embedding function is stego-secure if VK €
K,p(Y|K) = p(X) is established.
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Stego-security states that the knowledge of K does not help to make the difference be-
tween p(X) and p(Y'). This definition implies the following property:

p(Y[K1) = -+ = p(Y[Kpy,) = p(Y) = p(X)

This property is equivalent to a zero Kullback-Leibler divergence, which is often referred
as the best definition of the "perfect secrecy" in steganography [Cac98].

5.2.3/ SECURITY EVALUATION
5.2.3.1/ EVALUATION OF THE STEGO-SECURITY

We have proven in [GFB10] the following proposition.

Proposition 8. CIIS is stego-secure, while CIDS does not satisfy this security property.

5.2.3.2/ EVALUATION OF THE TOPOLOGICAL SECURITY

To check whether an information hiding scheme S is topologically secure or not, we have
proposed in our thesis, and published later in [GFB10], to write S as an iterate process
2"t = f(z™) on a metric space (X, d). As recalled in the first chapter of this manuscript,
this formulation is always possible. So,

Definition 7. An information hiding scheme S is said to be topologically secure on (X, d)
if its iterative process has a chaotic behavior according to Devaney.

Once again, this topological notion of security has been introduced in Kerchhoffs’ based
situations (all is known but the secrete key), and our goal is that the attacker cannot
determine which least significant coefficients will or have been altered, and in which order.
He or she must not predict the behavior of the algorithm without knowing the secret key.

Due to the chaos properties of the so-called chaotic iterations, we have then deduced
in [GFB10] that,

Proposition 7. CIIS and CIDS are topologically secure.

We have then deduced qualitative and quantitative properties of topological security for
this information hiding scheme in [GFB10]: it is expansive (with a constant of expansive-
ness equal to 1), topologically mixing, etc. These properties can measure the disorder
generated by our scheme, giving by doing so an important information about the unpre-
dictability level of such a process, which helps to compare it to other data hiding methods.
Such a comparison is outlined in the next section [GFB10].

5.2.4/ COMPARISON BETWEEN SPREAD-SPECTRUM AND CHAOTIC ITERATIONS

The consequences of topological mixing for data hiding are multiple. Firstly, security can
be largely improved by considering the number of iterations as a secret key. An attacker
will reach all of the possible media when iterating without this key. Additionally, he cannot
benefit from a KOA setup, by studying media in the neighborhood of the original cover.
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Moreover, as in a topological mixing situation, it is possible that any hidden message (the
initial condition), is sent to the same fixed watermarked content (with different numbers
of iterations), the interest to be in a KMA setup is drastically reduced. Lastly, as all of
the watermarked contents are possible for a given hidden message, depending on the
number of iterations, CMA attacks will fail.

The property of expansiveness reinforces drastically the sensitivity in the aims of reducing
the benefits that Eve can obtain from an attack in KMA or KOA setup. For example, it is
impossible to have an estimation of the watermark by moving the message (or the cover)
as a cursor in situation of expansiveness: this cursor will be too much sensitive and
the changes will be too important to be useful. On the contrary, a very large constant
of expansiveness ¢ is unsuitable: the cover media will be strongly altered whereas the
watermark would be undetectable. Finally, spread-spectrum is relevant when a discrete
and secure data hiding technique is required in WOA setup. However, this technique
should not be used in KOA and KMA setup, due to its lack of expansiveness.

5.2.5/ LYAPUNOV EXPONENT EVALUATION

The Lyapunov exponent of the CZWW; algorithm has been computed in [BFG12b], to im-
prove our knowledge of its topological security. It is equal to In N, where N stands for the
number of LSCs chosen in the implementation of the algorithm.

To evaluate this Lyapunov exponent, chaotic iterations must be described by a differen-
tiable function on R. To do so, a topological semiconjugacy between the phase space
X and R has been written. As this proof is simply a rewriting in the digital watermarking
field of an unpublished result on chaotic iterations obtained during our thesis, and as Sec-
tion B.1.7 provides a Lyapunov exponent evaluation for a completely different algorithm,
we will not say any more about this publication.

5.2.6/ THE CZS, AND DZ5 IMPROVEMENTS

This first proposal extending our thesis research works has been further investigated at
the occasion of my cosupervision of Nicolas Friot’s thesis. The new methods called CZS,
and DZ; are detailed in Appendix B.

5.3/ FURTHER INVESTIGATIONS OF THE DHCI CLASS

We have recalled at the beginning of this chapter that chaotic iterations can be applied on
the least significant coefficients of a medium, either in spatial or in frequency domain, in
order to watermark it. The general process has been denoted by dhCl in our thesis, while
its particular instantiation with the negation function has been later called CZWW; (remark
that CZS, and DZs processes do not belong, stricto sensu, to the dhCl class). Since
our thesis defense, the dhCl class has been investigated more largely, by discovering
new iteration functions and evaluating both its security and robustness. Results of such
questioning are summarized thereafter.
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5.3.1/ INTRODUCTION

The study of the dhCl class has been deepened in [BCG11c] for its theoretical aspects
and in [BCG12b] for practical ones.

As for the CZW; scheme, the work around the dhCl class focuses on non-blind binary
information hiding scheme: the original host is required to extract the binary hidden in-
formation. This context is indeed not as restrictive as it could primarily appear. Firstly,
it allows to prove the authenticity of a document sent through the Internet (the original
document is stored whereas the stego content is sent). Secondly, Alice and Bob can
establish an hidden channel into a streaming video (Alice and Bob both have the same
movie, and Alice hide information into the frame number & iff the binary digit number k&
of its hidden message is 1). Thirdly, based on a similar idea, a same given image can
be marked several times by using various secret parameters owned both by Alice and
Bob. Thus more than one bit can be embedded into a given image by using dhCl dis-
simulation. Lastly, non-blind watermarking is useful in network’s anonymity and intrusion
detection [HKBO09], and to protect digital data sending through the Internet [ETOSDO05].

Before [BCG11c], stego-security [CB08a] and topological security were only proven on
the spread spectrum watermarking [CMK*97,HF10], and on the CZW, algorithm, which
is notably an instance of the dhCl method, but which restricts itself to the negation mode
(security proofs of CZS, and DZ3 have occurred later). We argued in [BCG11c] that
dhCl with other functions can provide algorithms as secure as the CZW; one. This work
has then generalized the algorithm recalled in Section 5.2 and formalized all its stages,
independently from the iteration mode. Due to this formalization, it has then been possible
to address the proofs of the two security properties for a larger class of iteration modes
in [BCG11c].

Then, in The Computer Journal [BCG12b], a review of the researches on the dhCl class
has been presented. Additionally, this article has investigated robustness aspects of the
process: applications in frequency domains (namely DWT and DCT embedding) have
been formalized and corresponding experiments have been given [BCG12b]. Such a
study shows the applicability of the whole approach.

5.3.2/ FORMALIZATION OF STEGANOGRAPHIC METHODS

The data hiding scheme presented in previous works does not constrain media to have
a constant size. It is indeed sufficient to provide a function and a strategy that may be
parametrized with the size of the elements to modify. Parametrized strategies have al-
ready been introduced in a previous section, leading to the notion of strategy-adapter.
The mode notion defined below achieves the same goal but for the iteration func-
tion [BCG11c].

Definition 8 (Mode). A map f, which associates to any n € IN an application f, : B* —
B", is called a mode.

For instance, the negation mode is defined by the map that assigns to every integer
n € IN* the function —,, : B" - B", —,(z1,...,2,) — (T1,...,Tn)-

We now use the previously introduced signification function to attach a weight to each
term defining a digital media, w.r.t. its position ¢, leading to the following notion of a
decomposition function [BCG11c].
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Definition 1® (Decomposition function). Let (u*)*™ be a signification function, B the set
of finite binary sequences, % the set of finite integer sequences, m and M be two reals
s.t. m < M. Any host x may be decomposed into

(UM, U, Up, OAL, Py Pp) EMX N XN X B x B x B

where

> un, um, andu, are coefficients defined in Definition 11;

1 2 lupsl
Oy = (xuwj,xubl7,__’l‘uA4 );
1 2 [um |
— U u U. B
'¢m7<xm7xm7“.,xm );
1 2 Jupl
_ u U, u
°¢p—(mp,xp,...,xp )

The function that associates the decomposed host to any digital host is the decomposition
function. It is further referred as dec(u, m, M) since it is parametrized by u, m and M.
Notice that v is a shortcut for (u*)*<N.

Definition 2° (Recomposition). Let (was, tm, Up, Oar, G, Dp) € N X N x N x B x B x B s.t.

* the sets of elements in uy;, elements in u,,, and elements in u, are a partition of
[1,n];

* une| = loml, [uml| = loml, and fuy| =[]

One may associate the vector

lunrl || |up|

_ % ) b ) % .
xr = 2 @M'euﬁw + 2 Spm‘eu”;n + Z @p'eu;
i=1 i=1 i=1

where (e;);en is the usual basis of the R—vectorial space (RN, +,.). The function that
associates x to any (unr, um, up, ¢ar, ¢m, ¢p) following the above constraints is called the
recomposition function.

The embedding consists in the replacement of the values of ¢,,, of 2’s LSCs by . It then
composes the two decomposition and recomposition functions seen previously. More
formally [BCG11c]:

Definition 2! (Embedding media). Let dec(u, m, M) be a decomposition function, = be
a host content, (ups, U, up, a1, dm, ¢p) be its image by dec(u, m, M), and y be a digital
media of size |u,,|. The digital media = resulting on the embedding of y into x is the image
of (unr, um, up, 41, Y, ¢p) by the recomposition function rec.

We have thus been able in [BCG11c] to reformulate the dhC/ information hiding scheme,
as follows:
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Definition 22 (Data hiding dhCl). Let dec(u,m,M) be a decomposition func-
tion, f be a mode, S be a strategy adapter, = be an host content,
(UM s U, Up, D01, P, Dp) bE S image by dec(u,m, M), q be a positive natural number,
and y be a digital media of size | = |uyy,|.

The dhCl dissimulation maps any (x,y) to the digital media = resulting on the embedding
of  into x, s.t.

We instantiate the mode f with parameteri = |u,,|, leading to the function f; : B! —
B..

We instantiate the strategy adapter S with parametery (and some other ones even-
tually). This instantiation leads to the strategy S, € [1; ™.

We iterate Gy, with initial configuration (Sy, ¢, ).

i is the ¢-th term.

To summarize, iterations are realized on the LSCs of the host content (the mode gives
the iterate function, the strategy-adapter gives its strategy), and the last computed con-
figuration is re-injected into the host content, in place of the former LSCs.

Host Computation of

u, P,
Choice of Choice of it.
Strat. Adapter number g
Computation
of strategy —@\
Choice of
mode

Computation
of map

Iterating G, ¥

//l

atermarked
media

Figure 5.3: The dhCl dissimulation scheme

We are then left to show how to formally check whether a given digital media z results
from the dissimulation of y into the digital media = [BCG11c].

Definition 22 (Marked content). Let dec(u, m, M) be a decomposition function, f be a
mode, S be a strategy adapter, q be a positive natural number, and y be a digital media,
(UM s U, Up, D01, O, @p) bE the image by dec(u, m, M) of a digital media x.

Then z is marked with y if the image by dec(u, m, M) of z is (upr, wm, up, ¢ar, Y, ¢p) Where
7 is the right member of GS{I (Sy, Om)-
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Various decision strategies are obviously possible to determine whether a given image
z is marked or not, depending on the eventuality that the considered image may have
been attacked. For example, a similarity percentage between x and z can be computed,
and the result can be compared to a given threshold. Other possibilities are the use of
ROC curves or the definition of a null hypothesis problem. These strategies have already
been discussed in a previous section, they can be adapted, mutatis mutandis, to the
generalized dhCl algorithm detailed above.

The next section, always extracted from [BCG11c], recalls some security properties and
shows how the dhClI dissimulation algorithm verifies them.

5.3.3/ SECURITY ANALYSIS

We have proven in [BCG11c], using the stochastic matrix theorem, that,

Theorem 7. Lete be positive, | be any size of LSCs, X ~ U (B'), f; be animage mode s.t.
I'(f;) is strongly connected and the Markov matrix associated to f; is doubly stochastic.

In the instantiated dhCl dissimulation algorithm with any uniformly distributed (u.d.)
strategy-adapter which is independent from X, there exists some positive natural number
g s.t. [p(X?) —p(X)| <e.

Proof 1. See [BCG11c].

Since p(Y'|K) is p(XY) the method is then stego-secure. We have then focused on topo-
logical security properties, and have deduced from the characterization recalled in Theo-
rem 2 that,

Proposition 8. Functions f : B® — B" such that the graph T'(f) is strongly connected
lead to topologically secure dhCl dissimulation algorithms.

Theorem 7 relies on a u.d. strategy-adapter that is independent from the cover, and
on an image mode f; whose iteration graph T'(f;) is strongly connected and whose
Markov matrix is doubly stochastic. We have shown in [BCG11c] that the CIIS strategy
adapter [GFB10] has the required properties and have mentioned that [QBCG11] has
presented an iterative approach (which has been recalled in Section 2.3.2) to generate
image modes f; such that I'(f;) is strongly connected. Among these maps, it is obvious
to check which verifies or not the doubly stochastic constrain.

5.3.4/ DISCOVERING ANOTHER RELEVANT MODE
We can conclude from the previously summarized article that we are left to provide:

 an u.d. strategy-adapter that is independent from the cover,

« an image mode f; whose iteration graph T'(f;) is strongly connected and whose
Markov matrix is doubly stochastic.

We have recalled in the previous section that the CIIS(K,y, a, 1) strategy adapter has the
required properties. In all the experiments provided in [BCG12b], parameters K and «
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are randomly chosen in |0, 1[ and ]0, 0.5] respectively, while the number of iteration is set
to 4 x Im, where Im is the number of LSCs that depends on the domain.

[BCG12b] has then used the iterative approach of Section 2.3.2 to generate image modes
f1 such that T'(f;) is strongly connected, which has been proposed in [BCGR11] and
recalled in the first part of this manuscript. Among these maps, it is obvious to check
which verifies or not the doubly stochastic constrain. We have already stated that the
negation mode matches these hypotheses, so it is relevant in that context. As a second
example, we have considered in [BCG12b] the mode f; : B! — B! s.t. its i-th component
is defined by

7; if 7 is odd

x; @ x;—1 if 7 is even.

i - | (5.1)

Thanks to Theorem 7, we have deduced in [BCG12b] that its iteration graph T'(f;) is
strongly connected, and have finally proven that its Markov chain is doubly stochastic by
induction on the length [.

5.3.5/ DHCI IN FREQUENCY DOMAINS

Even though, as stated previously, our aim is not to focus on operational realizations
of our proposal, this aspect must be regarded a few, at least to show the possibility to
construct in practice a chaotic information hiding scheme which is reasonable regarding
commonly admitted requirements. We recall in this section the experimental protocol
applied in [BCG12b].

5.3.5.1/ DWT EMBEDDING

We have firstly explained in [BCG12b] how the dhCl dissimulation can be applied in the
discrete wavelets transform domain (DWT). The Daubechies family of wavelets has been
chosen: each DWT decomposition depends on a decomposition level and a coefficient
matrix (Figure 5.4): LL means approximation coefficient, when HH, LH, HL denote re-
spectively diagonal, vertical, and horizontal detail coefficients. For example, the DWT
coefficient HH2 is the matrix equal to the diagonal detail coefficient of the second level of
decomposition of the image.

LL2|LHZ

LH1
HLZ|HH2

HL1 HH1

Figure 5.4: Wavelets coefficients.

The choice of the detail level is motivated by finding a good compromise between robust-
ness and invisibility. Choosing low or high frequencies in DWT domain leads either to a
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very fragile watermarking without robustness (especially when facing a JPEG 2000 com-
pression attack) or to a large degradation of the host content. In order to have a robust but
discrete DWT embedding, the second detail level (i.e., LH2, HL2, HH2) that corresponds
to the middle frequencies, has been retained in [BCG12b].

Let us consider the Daubechies wavelet coefficients of a third level decomposition as
represented in Figure 5.4. We then have translated these float coefficients into their 32-
bits values, and have defines in [BCG12b] the significance function « that associates to
any index k in this sequence of bits the following numbers:

« u* = —1if k is one of the three last bits of any index of coefficients in LH2, HL2, or
in HH2;

« u* = 0if k is an index of a coefficient in LH1, HL1, or in HH1;

« uF = 1 otherwise.

According to the definition of significance of coefficients (Def. 11), if (m, M) is (—0.5,0.5),
LSCs are the last three bits of coefficients in HL2, HH2, and LH2. Thus, decomposition
and recomposition functions are fully defined and dhCl dissimulation scheme can now be
applied.

Figure 5.5 shows the result of a dhCl dissimulation embedding into DWT domain. The
original is the image 5007 of the BOSS contest [PFB10b]. Watermark y is given in
Fig. 5.5(b). From a random selection of 50 images into the database from the BOSS
contest [PFB10b], we have applied in [BCG12b] the dhCl algorithm with mode f; defined
in the previous section and with the negation mode.

(a) Original Image. (b) (c) Watermarked Image.

Figure 5.5: Data hiding in DWT domain

5.3.5.2/ DCT EMBEDDING

We have then explored the discrete cosinus transform (DCT) frequency domain embed-
ding in [BCG12b], by following the protocol detailed below.
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Let us denote by z the original image of size H x L, and by y the hidden message,
supposed here to be a binary image of size H' x L. The image z is transformed from the
spatial domain to DCT domain frequency bands, in order to embed y inside it. To do so,
the host image is firstly divided into 8 x 8 image blocks as given below:

H/8 L/8
x = U U x(k, k).
k=1k'=1
Thus, for each image block, a DCT is performed and the coefficients in the frequency
bands are obtained as follows: zpcr(m;n) = DCT (x(m;n)).

To define a discrete but robust scheme, only the three following coefficients of each
8 x 8 block in position (m,n) has been possibly modified in [BCG12b]: zpor(m;n) s ),
xpor(m;n) a2y, OF xpcr(m;n)aqs)- This choice can be reformulated as follows. Co-
efficients of each DCT matrix are re-indexed by using a southwest/northeast diagonal,
such that iDCT(m,n)1 = xDCT(m; n)(Ll), z'DCT(m, n)g = xDCT(m; n)(2,1), iDCT(m,n)g =
rper(m;n) i), ipcr(m,n)s = xpor(m;n)s 1), - and iper(m,n)es = xpor(m;n) g g)-
So the signification function can be defined in this context by:

« if k mod 64 € {1,2,3} and k < H x L, then u* = 1;
« else if k mod 64 € {4,5,6} and k < H x L, thenu* = —1;

. else uF = 0.

The significance of coefficients are obtained for instance with (m, M) = (—0.5,0.5) lead-
ing to the definitions of MSCs, LSCs, and passive coefficients. Thus, decomposition and
recomposition functions are fully defined and dhCl dissimulation scheme has then been
applied in [BCG12b].

5.3.6/ IMAGE QUALITY

This section focuses on measuring visual quality of our steganographic method. Tradi-
tionally, this is achieved by quantifying the similarity between the modified image and
its reference image. The Mean Squared Error (MSE) and the Peak Signal to Noise
Ratio (PSNR) are the most widely known tools that provide such a metric. However,
both of them do not take into account Human Visual System (HVS) properties. Recent
works [EAP*06,SB06,PSE*07,MB10] have tackled this problem by creating new metrics.
Among them, what follows focuses on PSNR-HVS-M [PSE*07] and BIQI [MB10], consid-
ered as advanced visual quality metrics. The former efficiently combines PSNR and visual
between-coefficient contrast masking of DCT basis functions based on HVS. This metric
has been computed in [BCG12b] by using the implementation given at [psn11]. The latter
allows to get a blind image quality assessment measure, i.e., without any knowledge of
the source distortion. Its implementation is available at [biq11].

Results of the image quality metrics obtained in [BCG12b] are summarized in Table 5.1.
In wavelet domain, the PSNR values obtained in [BCG12b] are comparable to other ap-
proaches (for instance, PSNR are 44.2 in [TCLO5] and 46.5 in [VDB10]), but a real im-
provement for the discrete cosine embedding is obtained (PSNR is 45.17 for [CFS08], it is
always lower than 48 for [MBO08], and always lower than 39 for [MK08]). Among steganog-
raphy approaches that evaluate PSNR-HVS-M, results of our approach are convincing.
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Embedding DWT DCT
Mode fi neg. fi neg.
PSNR 42.74 | 42.76 | 52.68 | 52.41

PSNR-HVS-M | 44.28 | 43.97 | 45.30 | 44.93
BlQl 35.35 | 32.78 | 41.59 | 47.47

Table 5.1: Quality measures of our steganography approach [BCG12b]

Firstly, optimized method developed along [Ran11] has a PSNR-HVS-M equal to 44.5
whereas our approach, with a similar PSNR-HVS-M, should be easily improved by con-
sidering optimized mode. Next, another approach [MCBE10] have higher PSNR-HVS-M,
certainly, but this work does not address robustness evaluation whereas the study pre-
sented in [BCG12b] is complete. Finally, as far as we know, [BCG12b] is the first one that
has evaluated the BIQI metric in a steganographic context.

With all this material, we have then evaluated the robustness of our approach
in [BCG12b].

5.3.7/ ROBUSTNESS

Previous sections have formalized frequency domains embedding and has focused on
the negation and f; modes. In the robustness given in this continuation, dwt(neg), dwt(fl),
dct(neg), and dct(fl) respectively stand for the DWT and DCT embedding with the negation
mode and with this instantiated mode.

For each experiment presented in [BCG12b], a set of 50 images is randomly extracted
from the database taken from the BOSS contest [PFB10b]. Each cover is a 512 x 512
grayscale digital image and the watermark y is given in Figure 5.5(b). Testing the robust-
ness of the approach is achieved in [BCG12b] by successively applying on watermarked
images attacks like cropping, compression, and geometric transformations. Differences
between ¢ and ¢,,(z) have then been computed. Behind a given threshold rate, the im-
age is said to be watermarked. Finally, discussion on metric quality of the approach given
in [BCG12Db] is recalled in Section B.1.6.

5.3.7.1/ ROBUSTNESS AGAINST CROPPING

Robustness of the approach is evaluated by applying different percentage of cropping:
from 1% to 81%. Results obtained in [BCG12b] are recalled in Figure B.1. Figure 5.6(a)
gives the cropped image where 36% of the image is removed, while Figure B.1.5 presents
effects of such an attack. From this experiment, we have concluded in [BCG12b] that all
embedding has similar behavior. All the percentage differences are so far less than 50%
(which is the mean random error) and thus robustness is established.

5.3.7.2/ ROBUSTNESS AGAINST COMPRESSION

Robustness against compression is addressed by studying both JPEG and JPEG
2000 image compression. Results obtained in [BCG12b] are respectively presented in
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(a) Cropped image
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Figure 5.6: Cropping results
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Fig. B.2(a) and Fig. B.2(b). Without surprise, DCT embedding which is based on DCT
(as JPEG compression algorithm is) is more adapted to JPEG compression than DWT
embedding. Furthermore, we have a similar behavior for the JPEG 2000 compression
algorithm, which is based on wavelet encoding: DWT embedding naturally outperforms

DCT one in that case.
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Figure 5.7: Compression results

5.3.7.3/ ROBUSTNESS AGAINST CONTRAST AND SHARPNESS

Contrast and Sharpness adjustments belong to the classical set of filtering image attacks.
Results of such attacks are presented in Fig. 5.8 where Fig. 5.8(a) and Fig. 5.8(b) sum-
marize effects of contrast and sharpness adjustment respectively [BCG12b].
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Figure 5.8: Filtering results

5.3.7.4/ ROBUSTNESS AGAINST GEOMETRIC TRANSFORMATIONS

Among geometric transformations, we have focused in [BCG12b] on rotations, i.e., when
two opposite rotations of angle 8 are successively applied around the center of the image.
In these geometric transformations, angles range from 2 to 20 degrees. Results obtained
in [BCG12b] are summed up in Figure B.3: Fig. 5.9(a) gives the image of a rotation of 20
degrees whereas Fig. B.1.5 presents effects of such an attack. It is not a surprise that
results are better for DCT embedding: this approach is based on cosine as rotation is.
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Figure 5.9: Rotation attack results

5.3.8/ EVALUATION OF THE EMBEDDING

We are then left to set a convenient threshold that is accurate to determine whether an
image is watermarked or not. Starting from a set of 100 images selected among the Boss
image panel, we have computed in [BCG12b] the following three sets: the one with all the
watermarked images W, the one with all successively watermarked and attacked images
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WA, and the one with only the attacked images A. Notice that the 100 attacks for each
image are selected among these detailed previously.

For each threshold ¢ € [0,55] and a given image z € WA u A, differences on DCT have
been computed in [BCG12b]. The image has been claimed as watermarked if these
differences are less than the threshold.

In the positive case and if = really belongs to WA it is a True Positive (TP) case.

In the negative case but if = belongs to WA, it is a False Negative (FN) case.

In the positive case but if z belongs to A, it is a False Positive (FP) case.

Finally, in the negative case and if x belongs to A, it is a True Negative (TN).

The True (resp. False) Positive Rate (TPR) (resp. FPR) has thus been computed by
dividing the number of TP (resp. FP) by 100.
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True Positive Rate
o
>

0.2
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False Positive Rate

Figure 5.10: ROC curves for DWT or DCT embeddings

Figure B.5 recalled the obtained Receiver Operating Characteristic (ROC) curve. For the
DWT, it shows that best results are obtained when the threshold is 45% for the dedi-
cated function (corresponding to the point (0.01, 0.88)) and 46% for the negation function
(corresponding to (0.04, 0.85)). It allows to conclude that each time LSCs differences
between a watermarked image and another given image ¢ are less than 45%, we can
claim that ¢’ is an attacked version of the original watermarked content. For the two DCT
embedding, best results have been obtained when the threshold is 44% (corresponding
to the points (0.05, 0.18) and (0.05, 0.28)).

We have thus conclude some confidence intervals for all the evaluated attacks
in [BCG12b]. The approach is resistant to:

« all the cropping where percentage is less than 85;

» compression where quality ratio is greater than 82 with DWT embedding and where
quality ratio is greater than 67 with DCT one;
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« contrast when strengthening belongs to [0.76, 1.2] (resp. [0.96,1.05]) in DWT (resp.
in DCT) embedding;

« all the rotation attacks with DCT embedding and a rotation where angle is less than
13 degrees with DWT one.

5.4/ A CRYPTOGRAPHIC APPROACH FOR STEGANOGRAPHY

Our last reflections in the field of information hiding are theoretical ones, discussing the
relevance of the stego-security notion in this field. Results of these thoughts, published
in a second accepted paper at IHMSP’13 (9th Int. Conf. on Intelligent Information Hiding
and Multimedia Signal Processing, Beijing, China) are given thereafter [BGH13].

5.4.1/ DRAWBACKS OF THE STEGO-SECURITY NOTION

Theoretically speaking, the stego-security notion matches well with the idea of a perfect
secrecy in the WOA category of attacks. However, its concrete verification raises several
technical problems difficult to get around. These difficulties impact drastically the effective
security of the scheme, as explained in [BGH13].

For instance, in a stego-secure scheme, the distribution of the set of watermarked images
must be the same than the one of the original contents, no matter the chosen keys.
But how to determine practically the distribution of the original contents? Furthermore,
claiming that Alice can constitutes her own subset of well-chosen images having the same
“good” distribution is quite unreasonable in several contexts of steganography: Alice has
not always the choice of the supports. Moreover, it introduces a kind of bias, as the
warden can find such similarities surprising. Suppose however that Alice is in the best
situation for her, that is, she has the possibility to constitute herself the set of original
contents. How can she proceed practically to be certain that all media into the set follow a
same distribution p(X)? According to the authors opinion, Alice has two possible choices:

1. Either she constitutes the set by testing, for each new content, whether this media
has a same distribution than the ones that have been already selected.

2. Or she forges directly new images by using existing ones. For instance, she can
replace all the least significant bits of the original contents by using a good pseudo-
random number generator.

In the first situation, Alice will realize a x? test, or other statistical tests of this kind, to
determine if the considered image (its least significant bits, or its low frequency coeffi-
cients, etc.) has a same distribution than images already selected. In that situation, Alice
does not have the liberty to choose the distribution, and it seems impossible to find a
scheme being able to preserve any kind of distribution, for all secret keys and all hidden
messages. Furthermore, such statistical hypothesis testings are not ideal ones, as they
only regard if a result is unlikely to have occurred by chance alone according to a pre-
determined threshold probability (the significance level). Errors of the first (false positive)
and second kind (false negative) occur necessarily, with a certain probability. In other
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words, with such an approach, Alice cannot design a perfect set of cover contents hav-
ing all the same probability p(X). This process leads to a set of media that follows a
distribution Alice does not have access to.

The second situation seems more realistic, it will thus be further investigated in the next
section [BGH13].

5.4.2/ TOWARD A CRYPTOGRAPHICALLY SECURE HIDING

We recall in this section the theoretical framework for information hiding security we have
proposed in [BGH13], which is more closely resembling that of usual approaches in cryp-
tography, as those presented for PRNGs in Definitions 7 and 8. It allows to define the
notion of steganalyzers, it is compatible with the new original scenarios of information
hiding that have been dressed above, and it does not have the drawbacks of the stego-
security definition. A similar but not equivalent approach can be found in the works of
Barbier and Filiol (see [BM08Db] for instance).

5.4.2.1/ DEFINITION OF A STEGOSYSTEM

Definition 2% (Stegosystem). Let S, M, and K = B’ three sets of words on B called
respectively the sets of supports, of messages, and of keys (of size {).

A stegosystem on (S, M, K) is a tuple (Z, £, inv) such that:
* T is a function fromS x M x K to S, (s,m, k) — Z(s,m,k) = ¢,

« £ is a function from S x K to M, (s, k) — E(s, k) =m/’.

e inv is a function from K to K, s.t VE e K,¥(s,m) € S x M,
E(Z(s,m,k),inv(k)) = m.

* Z(s,m, k) and E(c, k") can be computed in polynomial time.

7 is called the insertion or embedding function, £ the extraction function, s the host con-
tent, m the hidden message, k the embedding key, k' = inv(k) the extraction key, and s’
is the stego-content. IfVk € K,k = inv(k), the stegosystem is symmetric (private-key),
otherwise it is asymmetric (public-key).

5.4.2.2/ HEADING NOTIONS

Definition 25 ((T,¢)—distinguishing attack). Let S = (Z,&,inv) a stegosystem on
(A, M, K), with A = BM. A (T, <)—distinguishing attack on the stegosystem S is a prob-
abilistic algorithm D : A — {0, 1} in running time T, such that there exists m € M,

|Pr[D(Z(s,m,k)) =1|kerK,ser A] = Pr[D(z) =1|zep A]| > ¢,

where the probability is also taken over the internal coin flips of D, and the notation e
indicates the process of selecting an element at random and uniformly over the corre-
sponding set.
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Definition 26. A stegosystem is (T,¢)—undistinguishable if there exists no
(T, e)—distinguishing attack on this stegosystem.

Intuitively, it means that there is no polynomial-time probabilistic algorithm being able to
distinguish the host contents from the stego-contents [BGH13].

5.4.2.3/ A CRYPTOGRAPHICALLY SECURE INFORMATION HIDING SCHEME

To show the effectiveness of the approach, we have provided and proven in [BGH13]
a first cryptographically secure information hiding scheme, according to the definition
above.

Theorem 8. Let
1 .1 1 2 2 2 ro.r r
S:{81782,...,SQN,Sl,SQ,...,SQN,...,81,82,...,S2N}

a subset of BM = A. Consider G : B — BY a (T,<)—secure pseudorandom number
generator, and I(sé, m, k) = Sin@G(k)' Assuming that r is a constant, and that from i, j

one can compute the image s;'- in time Ty, the stegosystem is (T'— Ty — N — 1,¢)-secure.

Intuitively, S is built from r images containing N bits of low information. The image 331
corresponds to the i-th image where the N bits are set to j.

The last application in information security, namely the chaotic hash functions, are de-
tailed in Appendix C.
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Low COST MONITORING AND
INTRUDERS DETECTION USING
WIRELESS VIDEO SENSOR
NETWORKS

In [BGMP11,BGMP12], we have presented a solution to the joint scheduling problem in
surveillance applications using a wireless video sensor network (WVSN). We have pro-
vided a chaotic sleeping scheme and conducted a theoretical and simulation analysis of
both performances and security. To our knowledge, only random approaches have been
extensively studied in the literature to turn off video nodes without degrading the surveil-
lance quality. Even if such methods present good scores in detecting random intrusions
while preserving the lifetime of the network, they do not encompass the situation of a
malicious attacker. That is to say, the intruder is not supposed to know something about
the surveillance scheme, he cannot observe the behavior of WVSN for a while, or he is
not authorized to deduce anything from his possible knowledge. In this chapter, we recall
our proposal to tackle the situation where the attacker is not supposed passive: he is
smart and does not necessarily choose a random way to achieve his intrusion. In addi-
tion of preserving the network lifetime and being able to face random attacks, we have
shown in [BGMP11,BGMP12] that our scheme is also capable to withstand attacks of a
malicious adversary due to its unpredictable behavior.

6.1/ SMART THREATS

6.1.1/ INTRODUCTION

Let us suppose that an adversary tries to reach a location X into the area without being
detected. We have considered in [BGMP11] that this situation leads to two categories of
attacks against WVSN surveillance.

On the one hand, the attacker only knows that the area is under surveillance. He tries
to take its chance, for example by following the shortest way or by trying a random path.
In this first category of attacks that we called “blind elementary attacks” in [BGMP11],
the intruder does not know how the surveillance is achieved as he does not observe the
WVSN.
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On the other hand, in the second category of attacks, called “malicious attacks”
in [BGMP11], the intruder is supposed to be intelligent. He can try to take benefits from
his observations to understand the behavior of the WVSN. After having recorded the dy-
namic of the WVSN for a given time, the malicious intruder can try to determine when
video nodes are turned on. This prediction can help the intruder to find a way to reach X
without being detected.

In our opinion, the most reasonable way to evaluate the consequences of a malicious
attack is to suppose, following [BGMP11], that the intruder has access to the surveillance
scheme. With this supposition, our security model proposed in [BGMP11] encompasses
the case where an attacker can have a physical access to a given node, thus determining
the embedded mechanism used for video surveillance. In this Kerckhoffs-based principle,
the attacker knows all but the initial parameters of the nodes. Moreover, he can observe
the WVSN for a while. To achieve his intrusion, he can use all of the acquired knowledge
— the sole difficulty is his lack of a secret parameter (the secret key) used to initialize the
surveillance process.

The context of blind elementary attacks is well-known and understood: it has been studied
alotin the last decade, and various solutions have already been proposed, see [BGMP11]
for related works. However, to the best of our knowledge, the case of an intelligent intruder
(smart threat) has not yet really been treated. In [BGMP11], we have proposed a scheme
able to withstand attacks encompassing these malicious intrusions, and thus to offer a
first solution to the problem raised by the smart threats existence hypothesis.

Technically speaking, the approach proposed in [BGMP11] offers several benefits. Firstly,
the node scheduling algorithm does not need location information. Therefore, the energy
consumption is reduced because there is no need to locate the node itself and its neigh-
bors. Secondly, we have shown that it performs as well as a random scheduling, in terms
of lifetime and intrusion detection against blind elementary attacks (see Section 6.4).
Lastly, due to its chaotic properties, its coverage is unpredictable, and thus a malicious
adversary has no solution to attack the network (Section 6.3).

6.1.2/ CLASSIFICATION OF MALICIOUS ATTACKS

We have initiated during our thesis a link between security notions in wireless sensor
networks (WSNs) and digital watermarking, by proposing in [BGM10b, BGM14] to use
digital watermarking techniques for data aggregation through WSNs. We then have nat-
urally proposed in [BGMP12], which is an extension of [BGMP11], to translate notions
from the information hiding security field to describe malicious attacks in wireless video
sensor networks, due to numerous relations between these two disciplines. This proposal
is recalled in what follows.

When a malicious adversary attacks a WVSN, he can concentrate his efforts either on the
global network or on some specific nodes. Depending on the considered situation, he can
perform either an active attack, modifying the network architecture or a node, or a passive
attack based only on observations. He can have access to several WVSN using the same
algorithm. Furthermore, he can build its own network to make some experiments. His
objective is to find the secret key used in the targeted network: with this knowledge, the
attacker will be able to predict the behavior of the video sensor nodes.

Active attacks have been already investigated several times in the literature. These stud-
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ies encompass the cases where nodes can be added, moved, modified, or removed,
where communications between nodes can be observed or changed, and where the
global architecture of the network is attacked. However, some WVSN are such that any
modification of the network is signaled, leading to the impossibility of such active attacks.
On the contrary, passive observations and deductions of a malicious attacker are always
possible. To the best of our knowledge, these threats have not been investigated be-
fore [BGMP12].

The passive malicious attacks have been classified in [BGMP12] as follows.

* In the Target Only Attack (TOA), the adversary can only observe targeted net-
works.

* In the Constant Key Attack (CKA), the adversary has access to several WVSNs
using the same secret key. The areas under surveillance and the network archi-
tecture change from one WVSN to another, but the attacker knows that all these
networks use the same algorithm with the same secret key.

+ In the Known Original Attack (KOA), the attacker had previously accessed to the
WVSN and its area. He had the opportunity to test various keys in a previous
access. He hopes that this knowledge will help him to determine a way to realize
his intrusion when the WVSN is really launched.

+ Inthe Chosen Key Attack (CKA), the adversary has access to an exact copy of the
network and area under surveillance than the one he want to attack. He has realized
for instance a miniature model or a computer simulator having exactly the same
behavior than the targeted network and its area. He can thus try several secret
keys, and if he achieves to reproduce exactly the same behavior for the network,
then he can reasonably suppose that the true secret key has been discovered.

« Finally, in the Estimated Original Attack (EOA), the attacker has only an estima-
tion/approximation of the network and its area.

In each of these categories, the sole objective of the attacker is to obtain the value of the
secret key. With this knowledge, he will be able to determine the WVSN behavior, finding
by doing so a way to achieve his intrusion.

6.1.3/ SECURITY LEVELS IN CKA

We now take place in the Chosen Key Attack problem, and following [BGMP12], we recall
here how to map the stego-security notion in this field. Let ko be the secret key used to
initiate the video-surveillance. Denote by Y} the probabilistic model that the attacker can
build with his observations, and by KK the set of all possible keys.

Definition 27 (Insecurity). The WVSN is insecure against the Target Only Attack if and
only if3k; € ]K,p(Ykl) = p(YkO) andVksy € ]K,p(Ykz) #* p(YkO)
On the contrary,

Definition 28 (Security). The WVSN is secure against the Target Only Attack if and only
itvk e K, p(Yy) = p(Yk,)
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In that situation, we can easily translate the fact that the mutual information Z(ko, Y%,) is
equal to 0, which means a perfect secrecy [BGMP12].

6.2/ CHAOS-BASED SCHEDULING

We then have proposed in [BGMP11] a scheduling process making possible to withstand
attacks of a malicious intruder. This scheme is summarized thereafter.

6.2.1/ NETWORK CAPABILITIES

The WVSN is supposed to be constituted by 2N nodes V;,i € [0,2N — 1]. Each V; is able
to wake up on a specific signal, to survey a given area (and to detect intrusions), to send
a wake up signal to another node V;, and to go to sleep when it is required. Furthermore,
it is supposed that V; embeds:

» The mechanisms required by the intrusion detection: a sensing function ¢;(¢), such
as a camera, which returns some digital data at each listening time, and a decision
function d;(c¢) which returns if an intrusion is detected in this sensing values (c;(t))
or not.

 An internal clock having the time T; = ;T as a reference.

* A vector of N binary digits, called the state of the system V;, and the capability to
swap each bit of this vector (0 < 1).

» An integer ¢;, called listening time, initialized to 0.

In other words, each node V; can achieve chaotic iterations, as they have been presented
at the beginning of this manuscript. Thus, each node can compute, easily and by using
a few resources, a hash value and some pseudorandom numbers following methods that
have been recalled in Chapters C and 4 respectively. We denote by ¢; the seed of the
PRNG used in node V;, which is equal to a secret parameter p; at time ¢ = 0. This secret
parameter with N bits has been generated by a cryptographically secure PRNG, and thus
it is uniformally distributed into [0; 2N — 1]. The internal state of node V; is initialized to the
binary decomposition of g;.

6.2.2/ DEPLOYING THE NETWORK

The deployment of video sensor nodes in the physical environment is the first operation
(step) in the network lifecycle proposed in [BGMP11]. It may take several forms. Sensor
nodes may be randomly deployed dropping them from a plane, and placed one by one
by a human or a robot. Deployment may be a one time activity or a continuous process.
These methods have been extensively studied in the literature. In the method proposed
in [BGMP11], the sole requirement to satisfy is to guarantee the uniform distribution into
the region of interest.
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6.2.3/ INITIALIZATION OF THE WVSN

Attime t = 0, a subset Z c [0,2N — 1] of nodes are in the wake-up state and Vi € Z, e}’ =
T;.

6.2.4/ SURVEILLANCE

The principle of surveillance application is defined as follows. Ateachtime t; = jxTy,j =
1,2,...

1. If a sleeping node V; has received n?*l > 1 wake up orders during the time interval
[t; — 1,¢;], then it goes into active mode and sets its listening time ¢/ to n/ ™' T;.

2. If an active node V; has received nﬁ"_l > 1 orders to wake up during the time interval
[t;_1,t,], then it increments its listening time: e = ¢ " + %~ 'T;.

(2

3. For each node V; having a listening time e? # 0:

» V; ensures the surveillance of its area during Ty,

« If, during this time interval, an intrusion is detected, then the WVSN is under
alert.

* If t; is the first listening time of V; after having activated, then:
— The hash value h? of the sensed value ¢;(t;) is computed.
— The seed g; of the PRNG of V/ is set to h?’ + t;, where + is the concate-
nation of the digits of h7 and ¢; (thus even if b/ = h!* k < j, we have
g’ # 9.
— The N bits of the state of the system V; are set to Efj where Efj is the
binary decomposition of ¢ shown as a binary vector of length N.

4. N bits are computed with the PRNG of V;. These bits define an integer 5} € [0, 2N —
1]. Then the bit of £/ in position S’ is switched, which leads to a new state E/7*'.
By doing so, chaotic iterations (Cls) are realized.

5. Each active node V; decreases its listening time: e/’ = e/’ — 1.

(2
6. For each active node having its listening time efj =0:

« V; sends the wake up order to node Vi, where k e [0,2N — 1] is the integer
whose binary decomposition is the last state of the system V; (Efj“).

» V; goes to sleep.

6.3/ THEORETICAL STUDY

6.3.1/ SCHEDULING AS CHAOTIC ITERATIONS

The scheduling scheme presented in [BGMP11] can be described as Cls. The global
state E* of the whole system is constituted by the reunion of each internal state E! of each
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node i. This is an element of BN*2". The strategy at time ¢ is the subset of [0; N x 2N]
constituted by all of the strategies that are computed into the awaken nodes at time t.
More precisely, if the node V;, has computed the strategy S} at time ¢, then the global
strategy S* will contain the value S} + k x N. Lastly, the iteration function is the vectorial
negation defined : BNx2" _, BNx2" A subsequence E™' is extracted from E, which
determines the changes that occur in the network: nodes whose binary id is into E™" are
nodes that achieve the surveillance at the considered time. Let us remark that S* and m*
depend both on the outside world, due to the fact that S! are regularly seeded with the
digest of some sensed values.

6.3.2/ COMPLEXITY

Even if the hash function and the PRNG presented in previous chapters can be replaced
by any cryptographically secure hash function and PRNG, we do not recommend their
substitution. Indeed, all of the operations used by our scheme can be achieved by Cls.
Each iteration of Cls is only constituted by the negation of a few binary digits. Obviously,
such an operation is fast and does not consume a lot of energy. By doing so, we thus
obtain an efficient video surveillance scheduling scheme compliant with WVSN require-
ments. Section 6.4 will detail more quantitatively this fact.

6.3.3/ COVERAGE

The coverage of the whole area has been guaranteed in [BGMP11] due to the following
reasons.

Firstly, the scheduling process corresponds to Cls. These iterations are chaotic according
to Devaney, thus they are transitive. This transitivity property is the formulation of an
uniform distribution in terms of topology. It claims that the system will never stop to visit
any sub-region of the whole area, regardless of how tiny the region is.

Secondly, as the choice of the nodes to wake up at each time are done by using Cls,
this selection corresponds to the returned value of our PRNG recalled in Chapter 4. This
CIPRNG(X,Y) version 1 takes two PRNGs X,Y as input sequences, realizes Cls with X
as strategy, the vectorial negation as update function, and selects the states to publish as
outputs by using the second PRNG Y. By such a combination, we improve the statistical
properties of the inputted PRNG used as strategy, and we add chaotic properties. Indeed,
the scheduling process corresponds to the CIPRNG(X,Y) generator, with X=m and Y=5.
As Y is statistically perfect in [BGMP11] (Y is CIPRNG(ISAAC,ISAAC) version 1, which
can pass the whole NIST, DieHARD, and TestUO1 batteries of tests, see Chapter 4), the
random distribution of the states is then guaranteed.

Finally, experiments of Section 6.4 will recall that this intended uniform coverage is well
obtained in practice.
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6.3.4/ SECURITY STUDY
6.3.4.1/ QUALITATIVE APPROACH

Let us suppose that Oscar, an intruder, knows that the scheduling process is based on
Cls, i.e. he knows the whole algorithm, except the seeds that have been used to initiate
the PRNGs of each node. By doing so, we respect the Kerckhoffs’ principle: the adversary
has all except the secret key. Oscar’s desire is to reach a particular location X of the area
without being detected. To achieve his goal, he can choose two strategies. On the one
hand, he can try a blind elementary attack, either by following a random way from its
position to X, of by choosing the shortest path. The next subsection and the experiments
recall the arguments of [BGMP11], which indicate that such an attack cannot work. On the
other hand, Oscar can try to take benefits both from his knowledge and his observations.
However, if he can determine the nodes that are awaken at time ¢, he cannot predict the
awaken nodes at time t + 1,¢ + 2, ... To do so, he should be able to obtain St*1, §t+2 .
which are computed from the digests of some values that will be sensed in the future. As
our hash function satisfy the avalanche effect, due to its chaotic properties, any error on
the sensed value lead to a completely different digest [BGMP11].

As Oscar cannot determine the sensed values of each node, at each time and with an in-
finite precision, he does not have the knowledge of the current state of the global system.
He has only access to an approximation of this state. As the global scheduling process
is chaotic, this error on the initial condition is magnified at each iteration, leading to the
impossibility for Oscar to predict the scheduling process. This qualitative approach for
security is recalled in the section below.

6.3.4.2/ CHAOTIC PROPERTIES

We have investigated in [BGMP12] the topological properties presented by the proposed
video-surveillance scheme. As proven in [GFB10] and recalled at the beginning of this
manuscript, chaotic iterations are expansive and topologically mixing when f is the vec-
torial negation f,. Consequently, these properties are inherited by the WVSN presented
previously, which induce a greater unpredictability. Any difference on the initial parameter
of the WVSN is in particular magnified up to be equal to the expansivity constant.

The topological transitivity property, for its part, implies indecomposability. Hence, reduc-
ing the observed area in order to simplify its complexity, is impossible if I'( f) is strongly
connected. Moreover, under this hypothesis the surveillance scheme is strongly transi-
tive. Among other things, the strong transitivity leads to the fact that without the knowl-
edge of the initial awaken nodes, all scheduling are possible. Additionally, no nodes of the
output space can be discarded when studying the video-surveillance scheme: this space
is intrinsically complicated and it cannot be decomposed or simplified [BGMP12].

Finally, these WVSNs possess the instability property. This property, which is implied by
sensitive point dependence on initial conditions, leads to the fact that in all neighborhoods
of any point z there are points that can be apart by ¢ in the future through iterations of the
WVSN. Thus, we can claim that the behavior of these networks is unstable when I'(f) is
strongly connected.
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6.3.4.3/ CRYPTANALYSIS IN CKA FRAMEWORK

As recalled in Section 6.3.1, the proposed videosurveillance scheme can be rewritten as:

{XOGX

6.1
XM = Gy (X0, (6.1)

where the phase space is X = [1; N x 2NN x BN*2" | X0 depends on a secret parameter
p=(p1,...,pN) € (]BN)N whose binary digits are uniformy distributed, and f; stands for
the vectorial negation on BN*2",

We then have proven in [BGMP12] that,

Proposition °. The videosurveillance scheme proposed in this chapter is secure when
facing a chosen key attack.

6.4/ SIMULATION RESULTS

This section recalls simulation results, proposed in [BGMP11] and extended in [BGMP12],
on comparing our chaotic approach to the standard C++ rand()-based approach with
random intrusions. We have used the OMNET++ simulation environment and the next
node selection will either use chaotic iterations or the C++ rand() function (rand() %
2™) to produce a random number between 0 and 2".
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Figure 6.1: Percentage of active nodes.

For these set of simulations, 128 sensor nodes (therefore n = 7) are randomly deployed
ina 75 x 75m? area. Unless specified, sensors have a 36° AoV and sensor nodes capture
at the rate of 0.2fps. Each node starts with a battery level of 100 units and taking 1 picture
consummes 1 unit of battery. When a node V; is selected to wake up, it will be awake for
T; seconds. We set all T; = T = 20s in [BGMP11]. According to the behavior recalled
in Section 6.2, before going to sleep after an activity period of ¢; T, V; will determine the
next node to be waked up. It can potentially elect itself in which case V; stays active for at
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least another T' period. The elected node can be already active, in which case it simply
increases its e¢; counter. We set about 50% of the sensor nodes to be active initially (each
sensor draws a random value between 0 and 1 and if the value is greater than 0.5, it
will be active). This initial threshold is tunable but we did not try to vary this parameter
in [BGMP11]. The obtained results have been averaged over 10 simulation runs with
different initial seeds. Figure 6.1 recalls the percentage of active nodes. Both the chaotic
and the standard rand () function have similar behavior: the percentage of active nodes
progressively decreases due to battery shortage.

37 —+—stealthTime - chaos |- mean
-@-stealthTime - rand{} - mean

stealth time {second}

T T
1000 2000
time {second)

Figure 6.2: Stealth time.

To compare both approaches in term of surveillance quality, we recorded to stealth time
when intrusions are introduced in the area of interest [BGMP11]. The stealth time is
the time during which an intruder can travel in the field without being seen. The first
intrusion starts at time 10s at a random position in the field. The scan line mobility model
is then used with a constant velocity of 5m/s to make the intruder moving to the right
part of the field. When the intruder is seen for the first time by a sensor, the stealth
time is recorded and the mean stealth time computed. Then a new intrusion appears
at another random position. This process is repeated until the simulation ends (i.e., no
more sensor nodes with energy). Figure 6.2 recalls the obtained mean stealth time over
the whole simulation duration. Figure 6.3, for its part, shows the same results but with
a sliding window averaging filter of 20 values. As the nodes are uniformly distributed in
the area of interest, we found in [BGMP11] a strong correlation between the percentage
of active nodes and the stealth time, as it can be expected. The result we wanted to
highlight in [BGMP11] is that our chaotic node selection approach has a similar level of
performance in the presence of random intrusions than standard rand () function while
providing a formal proof of non-prediction by malicious intruders.

The last result shown in [BGMP11] is the energy consumption distribution. We recorded
every 10s the energy level of each sensor node in the field and computed the mean and
the standard deviation. Figure 6.4 recalls the evolution of the standard deviation during
the network lifetime. We can see that the chaotic node selection provides a slightly better
distribution of activity than the standard rand () function [BGMP11].
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Figure 6.3: Stealth time.
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Figure 6.4: Evolution of the energy consumption’s standard deviation.
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TOWARD A SECURITY FRAMEWORK
FOR WIRELESS SENSOR NETWORKS

Previous chapter that focuses on WSN based videosurveillance has emphasizes, in our
opinion, the importance to have a mathematical approach for dealing with security when
facing malicious attackers in wireless sensor networks. These first investigations, in-
spired by information hiding security whose issues have been signaled previously in this
manuscript, have then been more systematically regarded, with the need to bring a rigor-
ous framework for security questions in WSNs. This is why a complete security framework
for wireless sensor networks, investigating all the aspects of security related to WSNs, is
proposed in [BGM] (currently submitted). This rigorous theoretical framework encom-
passes: (1) secure communication (communication systems, indistinguability, nonmal-
leability, message detection), (2) cryptographically secure scheduling, (3) secure routing,
and (4) secure aggregation of data. We tried to constitute in [BGM] a formalism as rig-
orous as possible, inspired by equivalent formulations in cryptography, but compliant with
all the constraints of a WSN. This contribution is summarized thereafter.

7.1/ SECURITY IN WSN: GENERAL PRESENTATION

Wireless nature of communication, lack of infrastructure and uncontrolled environment
improve capabilities of adversaries in WSN. Stationary adversaries equipped with power-
ful computers and communication devices may access whole WSN from a remote loca-
tion. They can gain mobility by using powerful laptops, batteries and antennas, and move
around or within the WSN. In this section, we consider a WSN where nodes communi-
cate together by sending data publicly. These transmitted data contain a message whose
confidentiality must be preserved. For instance, transmitted data is the cryptogram of a
message, modulated in an electromagnetic radiation, or the message is dissimulated into
the electromagnetic radiation by using a spread spectrum information hiding technique.

Wireless communication helps adversaries to perform variety of attacks. A secure com-
munication can be used to provide the following general security goals:

* One-wayness (OW): The adversary who sees transmitted data is not able to com-
pute the corresponding message.

+ Indistinguability (IND): Observing transmitted data, the adversary learns nothing
about the contained message.
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* Non-malleability (NM): The adversary, observing data for a message m, cannot
derive another data for a meaningful message m’ related to m.

The OW and IND goals relate to the confidentiality of messages through the WDN.
The IND goal is, however, much more difficult to achieve than the one-wayness. Non-
malleability guarantees that any attempt to manipulate the observed data in order to ob-
tain a valid data will be unsuccessful (with a high probability).

The power of a polynomial attacker (with polynomial computing resources) very much
depends on his/her knowledge about the system used to transform information in data.
The weakest attacker is an outsider who knows the public embedding algorithm together
with other public information about the setup of the system. The strongest attacker seems
to be an insider (he/she is inside the network) who can access the extraction device
(recovering information from data) in regular interval. The access to the extraction key is
not possible as the extraction device is assumed to be tamperproof.

An extraction oracle is a formalism that mimics an attacker’s access to the extraction
device. The attacker can experiment with it providing data and collecting corresponding
information from the oracle (the attacker cannot access to the decryption key). In gen-
eral, the public-key WSN may be subject to the following attacks (ordered in increasing
strength):

» Chosen information attack (CIA): The attacker knows the embedding algorithm
and the public elements including the public key (the embedding oracle is publicly
accessible).

* Nonadaptative chosen data attack (CDA1): The attacker has access to the ex-
traction oracle before he sees a data that he wishes to manipulate.

» Adaptative chosen data attack (CDA2): The attacker has access to the extraction
oracle before and after he observes a data s that he wishes to manipulate (assuming
that he is not allowed to query the oracle about the data s).

The security level that a public-key WSN achieves can be specified by the pair (goal,
attack), where the goal can be either OW, IND, or NM, and the attack can be either
CIA, CDA1, or CDA2. For example, the level (NM,CIA) assigned to a public-key network
says that the system is nonmalleable under the chosen message attack. There are two
sequences of trivial implications

- (NM,CDA2) = (NM, CDA1) = (NM,CIA),
- (IND,CDA2) = (IND, CDA1) = (IND,CIA),

which are true because the amount of information available to the attacker in CIA, CDA1,
and CDA2 grows. Figure 7.1 shows the relation among different security notions. Con-
sequently, we can identify the hierarchy of security levels. The top level is occupied by
(NM,CDA2) and (IND,CDA2). The bottom level contains (IND,CIA) only as the
weakest level of security. If we are after the strongest security level, it is enough to prove
that our network attains the (IN D, C D A2) level of security.
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(NM,CDA2) —> (NM,CDAl) —s (NM,CIA)

0 l l
(IND,CDA2) —» (IND,CDA1) —> (IND,CIA)

Figure 7.1: Relations among security notions

7.2/ RIGOROUS FORMALISM FOR SECURE COMMUNICATIONS IN
WSNSs

In this section, we explain the new principles formalism for secure communication in wire-
less sensor networks proposed in [BGM].

7.2.1/ COMMUNICATION SYSTEM IN A WSN

Definition 2° (Communication system). LetS, M, and K = {0, 1}* be three sets of words
on {0, 1} called respectively the sets of transmission supports, of messages, and of keys
(of size ¢).

A communication system on (S, M, K) is a tuple (Z, £, inv) such that:

e I:SxMxK—S, (s,mk)— I(s,m,k) =5, is the insertion function, which
put the message m into the support of transmission s according to the key k, leading
to the transmitted data s'.

e £:Sx K — M, (s,k)— E(s, k) = m/, defined as the extraction function, which
extracts a message m' from a transmitted data s, depending on a key k.

cinv: K — K, s.t. Vk e K,V(s,m) € S x M,E(Z(s,m,k),inv(k)) = m, which is the
function that can “invert” the effects of the key k, producing the message m that has
been embedded into s using k.

e 7 and £ can be computed in polynomial time, and T is a probabilistic algorithm (the
same values inputted twice produce two different transmitted data).

k is called the embedding key and k' = inv(k) the extraction key. IfVk € K,k = inv(k),
the communication system through the WSN is said symmetric (private-key), otherwise it
is asymmetric (public-key).

7.2.2/ INDISTINGUABILITY

Suppose that the adversary has two messages m1, mo and a transmitted data s in his/her
possession. He/she knows that s contains either m; or mso. Our intention is to define the
fact that, having all these materials, the key, and the insertion function (we take place into
the (IND,CIA) context), he cannot determine with a non negligible probability the message
that has been embedded into s.

The difficulty of the challenge comes, for a large extend, from the fact that the insertion
algorithm 7 is a probabilistic one, which is a common sense assumption usually required
in cryptography.
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Definition 30. An Indistinguability I-adversary is a couple (A, A;) of nonuniform algo-
rithms, each with access to an oracle O.

Definition 3! (Indistinguability). For a public communication system in WSN (I, €, inv)
on (S, M, {0,1}), we define the advantage of an l-adversary A by

k& {013
Advk=© = Pr (mo’zl(l_’s{)OI}Al(k) o Ag(k,s,mi,mo, ) =b
a =TI(s,my,k)

We also define the insecurity of S = (Z, £, inv) with respect to the Indistinguability as
InSec{g_O(t) = max {Advi_o}

where the maximum is taken over all adversaries A with total running time ¢.

We distinguish three kinds of oracles:

« The Non-adaptative oracle, denoted N/ A, where A; and A, can only access to the
elements of the communication system.

» The Adaptative oracle, denoted AD1, where A; has access to the communication
system and to an oracle that can in a constant time provide a message m’ from any
transmitted data Z(M’, m’, k"), without knowing neither M’ nor £k’ nor inv(k’). In this
context, A, has no access to this oracle.

» The Strong adaptative oracle, denoted AD2, where A; has access to the commu-
nication system and to an oracle that can in a constant time provide a message
m’ from any transmitted data Z(M’, m’, k'), without knowing neither M nor &’ nor
inv(k’). In this context, A, has also access to this oracle but for the message
Z(M,mp, k).

7.2.3/ RELATION BASED NON-MALLEABILITY

In some scenarios malicious nodes can integrate the WSN, hoping by doing so to com-
municate false information to the other nodes. We naturally suppose that communications
are secured. The problem can be formulated as follows: is it possible for the attacker to
take benefits from his/her observations, in order to forge transmitted data either by em-
bedding erroneous messages, or sending data that appear to be similar with what a node
is supposed to produce?

As wireless sensor networks have usually a dynamical architecture, the (dis)appearance
of nodes is not necessarily suspect. Authentication protocols can be deployed into the
WSN, but in some cases such authentication is irrelevant, because of its energy con-
sumption, communication cost, or rigidity. We focus, in this section, on the possibility
to propose a secured communication scheme in WSN that prevents an attacker to forge
such malicious transmitted data. Such non-malleability property can be formulated as
follows.

Definition 2. A Relation Based NM-adversary is a nonuniform algorithm A having access
to an oracle O.
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Definition 33 (Relation Based Non-malleability). For a public communication system
(Z,&,inv) on (S, M, {0,1}"), define the advantage of a NM-adversary A by

58S
$ ¢
_ kS 0.1 -
AdviM=C(m) = Pr g A(I{(s Tzl B m' € R(m)
m' — E(s' k)

where R : M — P(M) is a function that map any message m to a subset of M con-
taining messages related to m (for a given property). For instance, if we suppose that an
attacker has inserted or corrupted some nodes in a network that measures temperature,
he can make these nodes send wrong temperatures values fixed a priori.

We can now define the insecurity of S = (Z, £, inv) with respect to the Relation Based
Non-malleability as

InSecyM=9(t) = max

e g {Ade™ o }

me

where the maximum is taken over all adversaries A with total running time ¢. Similar kinds
of oracles than previously can be defined in this context.

7.2.4/ MESSAGE DETECTION RESILIENCY

We now address the particular case where transmitted data can contain or not an em-
bedded message. For security reasons, it is sometimes required that an attacker cannot
determine when information are transmitted through the network. For instance, in a video
surveillance context, suppose that an attacker can determine when an intrusion is de-
tected, or when something considered as suspicious is forwarded through the nodes to
the sink. Then he/she can use this knowledge to deduce what kind of behavior is suspi-
cious for the network, adapting so his/her attacks. Decoys are often proposed to make
such attacks impossible: transmitted data do not always contain information, some of the
communications are only realized to mislead the attacker. The quantity and frequency of
these decoys must naturally take into account the energy consumption constraint, and a
trade-off must be found on the message/decoy rate to face such attacks while preserving
the WSN lifetime. However, such an approach supposes that the attacker is unable to
make the distinction between decoys and meaningful communications. Such a supposi-
tion leads to the following definition.

Definition 3*. A Detection Resistance DR-adversary is a couple (A, A) of nonuniform
algorithms, each with access to an oracle O.

Definition 3° (Message Detection Resistance). For a public communication system
(Z,&,inv) on (S, M, {0,1}"), define the advantage of a DR-adversary A by

M(),Ml A S
. k{01
Ad’UA ~ = Pr m «— Al(k) : Ag(m,k,a) = M,
b« {0,1}
o= {Mb,I(Mg,m,k))}
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where the set defining « is a non-ordered one.

We define the insecurity of S = (Z, £, inv) with respect to the Message Detection Resis-
tance as

InSech_O(t) = max {AdvADR_O}

where the maximum is taken over all adversaries A with total running time ¢. Similar kinds
of oracles than previously can be defined in that context.

7.3/ SECURE SCHEDULING

7.3.1/  MOTIVATIONS

As stated in previous chapter, a common way to enlarge lifetime of a wireless sensor
network is to consider that not all of the nodes have to be awakened: a subset of well-
chosen nodes participates temporarily to the task devoted to the network [PMS11,MPQ9]
(video surveillance of an area of interest, sensing environmental values, ...), whereas
the other nodes sleep in order to preserve their batteries. Obviously, the scheduling
process determining the nodes that have to be awakened at each time step must be
defined accurately, both for guaranteeing a certain level of quality in the assigned task
and to preserve the network capability over time. Problems that are of importance in
that approach are often related to coverage, ratio of working vs sleeping nodes, efficient
transmission of wake up orders, and capability for the subset of network nodes to satisfy,
with a sufficient quality, the objectives it has been designed for.

In case of hostile environments, security plays an important role in the fulfillment of the
scheduling program. Indeed an attacker, observing the manner nodes are waken up,
should not be able to determine the scheduling process. For instance, in a video surveil-
lance context, if the attacker is able to determine at some time the list of the sleeping
nodes, then he can possibly achieve an intrusion without being detected (see [BGMP11]
or previous chapter).

Obviously, a random scheduling can solve the issues raised above, by guaranteeing a
uniform coverage while preventing attackers to predict the list of awaken nodes. How-
ever, this approach needs random generators on each node, which cannot be obtained
by deterministic algorithms embedded into the network. Even if truly random genera-
tors (TRNG) can be approximated by physical devices, they need a certain quantity of
resources, suppose that the environment under observation has a sufficient variability of
a given set of physical properties (o produce the physical noise source required in that
TRNG), and are less flexible or adaptable on demand than pseudorandom number gen-
erators (PRNGs). Furthermore, as recalled in Chapter 4, neither their randomness nor
their security can be mathematically proven: these generators can be biased or wrongly
designed.

Being able to guarantee a certain level of security in scheduling leads to the notion of
secure scheduling proposed in [BGM] and presented below.
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7.3.2/ SECURE SCHEDULING IN WIRELESS SENSOR NETWORKS

Two kinds of scheduling processes can be defined: each node can embed its own pro-
gram, determining when it has to sleep (local approach), or the sink or some specific
nodes can be responsible of the scheduling process, sending sleep or wake up orders to
the nodes that have to change their states (global approach).

We consider that a deterministic scheduling algorithm is a function S : {0,1}" — {0, 1},
where M > n. This definition can be understood as follows:

» The value inputted in S is the secret key launching the scheduling process. It can
be shown as the seed of a PRNG.

* In case of a local approach, the binary sequence produced by this function corre-
sponds to the moments where the node must be awaken: if the k-th term of this
sequence is 0, then the node can go to sleep mode between ¢, and tx 1.

* In case of a global approach, the binary sequence returned by S can be divided
into blocs, such that each bloc contains the id of the node to which an order of state
change will be send.

Loosely speaking, S is called a secure scheduling if it maps uniformly distributed input
(the secret key or seed of the scheduling process) into an output which is computationally
indistinguishable from uniform. The precise definition is given below.

Definition 36. A T-time algorithm D : {0,1} — 0, 1 is said to be a (T, ¢)-distinguisher
for S if
|Pr[D(S(13)) = 1] — Pr[D)") = 1]| > .

where U is the uniform distribution on {0, 1}.

Definition 37 (Secure scheduling). Algorithm S is called a (T, <)-secure scheduling if no
(T, e)-distinguisher exists for S.

Adapting the proofs of [Yao82, GGM86], it is possible to show that a (7', ¢) —distinguisher
exists if and only if a T-time algorithm can, knowing the first [ bits of a scheduling s,
predict the (I + 1)—st bit of s with probability significantly greater than 0.5. This comes
from the fact that a PRNG passes the next-bit test if and only if it passes all polynomial-
time statistical tests [Yao82, GGM86].

An important question is what level of security (7 ¢) suffices for realistic applications in
scheduled wireless sensor networks. Unfortunately, the level of security is often chosen
arbitrarily. It is reasonable to require that a scheduling process is secure for all pairs
(T, ) such that the time-success ratio 7'/c is bounded. In the next section we present an
illustration of this notion.

7.3.3/ PRACTICAL STUDY

Suppose that a wireless sensor node has been scheduled by a Blum-Blum-Shub BBS
pseudorandom generator. This generator produces bits g, 41, . . ., and the node is awaken
during the time interval [t;;¢;+1[ if and only if y; = 1.
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Let us recall that the Blum Blum Shum generator [BG85] (usually denoted by BBS) is
defined by the following process:

1. Generate two large secret random and distinct primes p and ¢, each congruent to 3
modulo 4, and compute N = pq.

2. Select a random and secret seed s € [1, N — 1] such that ged(s, N) = 1, and
compute zg = s?(mod N).

3. For 1 <i <[ do the following:

(@) z; = #2_;(mod N).
(b) y; = the least significant bit of z;.

4. The output sequence is y1,y2, ..., y-

Suppose now that the network will work during M = 100 time units, and that during this
period, an attacker can realize 10'? clock cycles. We thus wonder whether, during the
network’s lifetime, the attacker can distinguish this sequence from truly random one, with
a probability greater than ¢ = 0.2. We consider that N has 900 bits.

The scheduling process is the BBS generator, which is cryptographically secure. More
precisely, it is (T, e)—secure: no (T, ¢)—distinguishing attack can be successfully realized
on this PRNG, if [FS97]

L(N)

T < — 2"Ne2M?logy(8Ne™ ' M
6NN (loga(N))e—2M2 ¢ 0g2(8Ne M)

where M is the length of the output (M = 100 in our example), and
L(N) = 2.8 x 10 3eap (1.9229 x (N 1n(2)3) x In(N zn2)§>

is the number of clock cycles to factor a N—bit integer.

A direct numerical application shows that this attacker cannot achieve its (10'2,0.2) dis-
tinguishing attack in that context.

7.4/ SECURE ROUTING

For easy understanding, let us consider a wireless sensor network in which each node is
positioned on a square lattice P = IN?, as depicted in Fig. 7.2. The sink can be considered
as the origin of axes, leading to a system of integer coordinates for each node. When two
sensors are not aligned, there are at least two different paths of minimum length between
these two points. For instance, sensor in position (3, —2) can send messages to node
(2,1) by choosing one of the 4 following routes of same length:

* (37 _2) - (27 _2> - (27 _1> - (270) - (2a 1)7

* (37_2) - (37_1) - (2’_1) - (2’0) - (2a 1)1

,\
w
8

~—
l

(3)_1) - (3’0) - (270) - (27 1):
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u] u] a u] u] 11] u] a u] u] u]
u] u] a u] u] 11] u] a u] u] u]
u] u] a u] u] 11] u] a u] u] u]
2.0
u] u] a u] u] 11] u] a u] u] u]
= = =) = = # = =) = = =
u] u] a u] u] 11] u] a u] u] u]
(3.-2)
u] u] a u] u] 11] u] a u] u] u]
u] u] a u] u] 11] u] a u] u] u]
u] u] a u] u] 11] u] a u] u] u]

Figure 7.2: Square lattice network

 (3,-2) - (3,-1) — (3,0) — (3,1) — (2,1).

The routing of packages through the network will be claimed as secure if the choice
of the route always appears random for each external observer having polynomial time
capabilities of traffic analysis. This objective can be formalized as follows.

Definition 38. We define a distance d between two points of the square lattice P as
d((z1, 1), (22,y2)) = |z2 — 21| + |y2 — ¥ -

For instance, d((3,—2),(2,1)) = 1 + 3 = 4. We can now define the set of routes between
two sensors of the network as the set of shortest paths on P that join these two points.

Definition 3°. The set of routes between P and Q in P is defined by:

R(Pa Q) = {(807 cee 73d(P,Q)) € Pd(P’Q)Jrl ’ S0 = P7 Sd(P,Q) = Q? and Vi € [[07 d(P7 Q) - 1]]7 d(sia Si+1) = 1} |

We can now define a routing algorithm as follows [BGM]:

Definition %0. Let S be the set of all finite sequences of P and K = {0,1}™ be the set
of keys (M € IN* is the security parameter). A deterministic routing algorithm on P is a
function f : P? x K — S such thatV(P,Q) e P2, Vk e K, f((P,Q),k) € R(P,Q).

Definition 1. Let f be a routing algorithm. A T-time algorithm D : S — {0, 1} is said to
be a (T, e)-distinguisher for f if

A(P,Q) € P2, |Pr[D(f (P,Q),U(K))) = 1] = Pr[DU(R(P,Q))) =1]| > «.

where U(X) is the uniform distribution on the set X.

Definition 42 (Secure routing). The routing algorithm f is called (T, ¢)-secure routing if
no (T, ¢)-distinguisher exists for f.

7.5/ CRYPTOGRAPHICALLY SECURE DATA AGGREGATION

To finalize the definition of a cryptographically secure wireless sensor network, we need
to introduce rigorously the notion of secure data aggregation in such networks.
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Definition #® (Aggregator). Let S = (Z,&,inv) a public communication system on
(S, M, {0,1}%), and c : {0,1}" — {0,1}™, m < n, a compression function.

A c—aggregator function on S is a couple of algorithms Agg : 8P — S, Inv :
KP — K, with p > 1, such that Agg is a probabilistic algorithm, Agg and Inv can
be computed polynomially, and Vsi,...,s, € S, Ymy,...,m, € M, Vki,...,k, € K,
Agg(Z(s1,m1, k1), ... L(sp, mp, kp)) = s satisfies E(s', Inv(ky, ..., kp)) = c(my...myp).

The idea is that, as for hash functions, the security of the aggregator is based on the
security of the compression function. We have recently published examples of such se-
cured aggregation in [BGM14, BMG10, BGM10a, BGM10b]. However, as these aggre-
gation methods are based on investigations in our thesis, we will not detail them in this
manuscript.

Our last application in the field of WSNs security is about epidemiological approaches for
data survivability in unattended wireless sensor networks. We do not detail it in this part
of our manuscript, as this work has not yet been accepted. See Appendix D for further
information.
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THE COMPLEX DYNAMICS OF
PROTEIN FOLDING

We recall in this chapter our investigations in the field of protein folding, either already
published (in [BCG11a,BCGS12a, GCBB]) or currently submitted (in [BGNP13,BGG183,
BGMP13]).

8.1/ PROTEIN FOLDING IN THE 2D HYDROPHOBIC-HYDROPHILIC
(HP) SQUARE LATTICE MODEL IS CHAOTIC

8.1.1/ INTRODUCTION

Proteins, polymers formed by different kinds of amino acids, fold to form a specific tridi-
mensional shape. This geometric pattern defines the majority of functionality within an
organism, i.e., the macroscopic properties, function, and behavior of a given protein. For
instance, the hemoglobin is able to carry oxygen to the blood stream due to its 3D geo-
metric pattern. However, contrary to the mapping from DNA to the amino acids sequence,
the complex folding of this last sequence still remains not well-understood. Moreover, the
determination of 3D protein structure from the amino acid linear sequence, that is to say,
the exact computational search for the optimal conformation of a molecule, is completely
unfeasible. It is due to the astronomically large number of possible 3D protein structures
for a corresponding primary sequence of amino acids [HCS09]: the computation capabil-
ity required even for handling a moderately-sized folding transition exceeds drastically the
computational capacity currently accessible. Additionally, the forces involved in the stabil-
ity of the protein conformation are currently not modeled with enough accuracy [HCS09],
and we can even wonder if a fully accurate model is possible to find one day.

Then it is impossible to compute exactly the 3D structures of the proteins. Indeed, the
Protein Structure Prediction (PSP) problem is a NP-complete one [CGP*98]. This is why
the 3D conformations of proteins are predicted: the most stable energy-free states are
looked for by using computational intelligence tools like genetic algorithms [HSHS10], ant
colonies [SHeb], particle swarm [PHRVGJ10], memetic algorithms [IC09], or neural net-
works [DMHK95]. This search is justified by the Afinsen’s “Thermodynamic Hypothesis”,
claiming that a protein’s native structure is at its lowest free energy minimum [Anf73].
The use of computational intelligence tools coupled with proteins energy approximation
models (like AMBER, DISCOVER, or ECEPP/3), come from the fact that finding the exact
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minimum energy of a 3D structure of a protein is a very time consuming task. Further-
more, in order to tackle with the complexity of the PSP problem, authors that try to predict
the protein folding process use models of various resolutions. In low resolution models,
atoms into the same amino acid can for instance be considered as a same entity. These
low resolution models are used as the first stage of the 3D structure prediction: the back-
bone of the 3D conformation is determined. Then, high resolution models come next for
further exploration. Such a prediction strategy is commonly used in PSP softwares like
ROSETTA [BB01,CKM*05] or TASSER [ZASO05].

In [BCG11a] and its extension [BCGS12a], we have mathematically demonstrated that a
particular dynamical system, used in low resolutions models to predict the backbone of
the protein, is chaotic according to the Devaney’s formulation. Chaos in protein folding
has been already investigated in the past years. For instance, in [B691], the Lyapunov
exponent of a folding process has been experimentally computed, to show that protein
folding is highly complex. More precisely, they have established that the crambin pro-
tein folding process, which is a small plant seed protein constituted by 46 amino acids
from Crambe Abyssinica, has a positive Lyapunov exponent. In [ZW96], an analysis of
molecular dynamics simulation of a model a-helix indicates that the motion of the helix
system is chaotic, i.e., has nonzero Lyapunov exponents, broad-band power spectra, and
strange attractors. Finally, in [BUAM97], authors investigated the response of a protein
fragment in an explicit solvent environment to very small perturbations of the atomic po-
sitions, showing that very small changes in initial conditions are amplified exponentially
and lead to vastly different, inherently unpredictable behavior. These research works
study experimentally the dynamics of protein folding and state that this process exhibit
some chaotic properties, where “chaos” refers to various physical understandings of the
phenomenon. They note the complexity of the process in concrete cases, without offering
a study framework making it possible to understand the origins of such a behavior.

The approach presented in [BCG11a,BCGS12a] is different for the two following reasons.
First, we have focused on mathematical aspects of chaos. Second, we do not have stud-
ied the biological folding process, but the protein folding one as it is described in the 2D
hydrophobic-hydrophilic (HP) lattice model [BL98]. In other words, we have mathemati-
cally studied the folding dynamics used in this model, and we wondered if this model is
stable through small perturbations. For instance, what are the effects in the 2D model
of changing a residue from hydrophobic to hydrophilic ? Or what happens if we do not
realize exactly the good rotation on the good residue, at one given stage of the 2D folding
process, due to small errors in the knowledge of the protein ? Let us recall that the 2D
HP square lattice model is a popular model with low resolution that focuses only upon hy-
drophobicity by separating the amino acids into two sets: hydrophobic (H) and hydrophilic
(or polar P) [Dil85]. This model has been used several times for protein folding predic-
tion [IC10, UM93, BUAM97,HSHS10,HC10]. In [BCG11a] and its extension [BCGS12a],
we have shown that the folding process is unpredictable (chaotic) in the 2D HP square
lattice model used for prediction, and we have investigated the consequences of this fact.
Chaos here refers to our inability to make relevant prediction with this model, which does
not necessary imply that the biological folding dynamics is chaotic too. In particular, we
do not claim that these biological systems must try a large number of conformations in
order to find the best one. Indeed, the prediction model is proven to be chaotic, but this
fact is not clearly related to the impact of environmental factors on true biological protein
folding.
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Figure 8.1: Hydrophilic-hydrophobic model (black squares are hydrophobic residues)

8.1.2/ 2D HYDROPHILIC-HYDROPHOBIC (HP) MODEL
8.1.2.1/ HP MODEL

In the HP model, hydrophobic interactions are supposed to dominate protein folding. This
model was formerly introduced by Dill, who consider in [Dil85] that the protein core freeing
up energy is formed by hydrophobic amino acids, whereas hydrophilic amino acids tend
to move in the outer surface due to their affinity with the solvent (see Fig. 8.1).

As recalled in [BCG11a], in this model, a protein conformation is a “self-avoiding walk
(SAW)” on a 2D or 3D lattice such that its energy E, depending on topological neigh-
boring contacts between hydrophobic amino acids that are not contiguous in the pri-
mary structure, is minimal. In other words, for an amino-acid sequence P of length N
and for the set C(P) of all SAW conformations of P, the chosen conformation will be
C* = min {E(C)/C € C(P)} [SHO5]. In that context and for a conformation C, E(C) = —q
where ¢ is equal to the number of topological hydrophobic neighbors. For example,
E(c) = —5in Fig. 8.1.

8.1.2.2/ PROTEIN ENCODING

Additionally to the direct coordinate presentation, at least two other isomorphic encod-
ing strategies for HP models are possible: relative encoding and absolute encoding. In
relative encoding [HCS09], the move direction is defined relative to the direction of the
previous move. Alternatively, in absolute encoding [BWC99], which is the encoding cho-
sen in [BCG11a,BCGS12a], the direct coordinate presentation is replaced by letters or
numbers representing directions with respect to the lattice structure.

For absolute encoding in the 2D square lattice, the permitted moves are: forward —
(denoted by 0), down | (1), backward <« (2), and up 1 (3). A 2D conformation C of
N + 1 residues for a protein P is then an element C of Z/4ZN, with a first component
equal to 0 (forward) [HCS09]. For instance, in Fig. 8.1, the 2D absolute encoding is
00011123322101 (starting from the upper left corner). In that situation, at most 4N con-
formations are possible when considering N + 1 residues, even if some of them are invalid
due to the SAW requirement.
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8.1.3/ A DYNAMICAL SYSTEM FOR THE 2D HP SQUARE LATTICE MODEL

The objective of [BCG11a] was to state that the protein folding process, as it is described
in the 2D model, has a chaotic behavior. To do so, this process has been firstly described
as a dynamical system, as recalled below.

8.1.3.1/ INITIAL PREMISES

Let us firstly recall some preliminaries introduced in [BCG11a]. The primary structure of
a given protein P with N + 1 residues is coded by 00...0 (N times) in absolute encoding.
Its final 2D conformation has an absolute encoding equal to 0CY ... Cy_,, where Vi, C}" €
Z/4Z, is such that E(C*) = min {E(C)/C € C(P)}. This final conformation depends on
the distribution of hydrophilic and hydrophobic amino acids in the initial sequence.

Moreover, we suppose that, if the residue number n + 1 is forward the residue number n
in absolute encoding (—) and if a fold occurs after n, then the forward move can only by
changed into up (1) or down (). That means, in the simplistic model of [BCG11a], only
rotations of +7% or —7 are possible. Consequently, for a given residue that is supposed
to be updated, only one of the two possibilities below can appear for its absolute move
during a fold:

*0+—1,1— 2,2+ 3, 0r 3+~ 0 for afold in the clockwise direction, or

*1—0,2—1,3— 2, or 0 — 3 for an anticlockwise.

This fact has led us to the following definition [BCG11a]:

Definition #4. The clockwise fold function is the function f : 7./47 — 7./AZ. defined by
f(z) = x + 1(mod 4).

Obviously the anticlockwise fold function is f~!(x) = = — 1(mod 4). Thus at the n*" folding
time, a residue k is chosen and its absolute move is changed by using either f or f~.
As a consequence, all of the absolute moves must be updated from the coordinate £ until
the last one N by using the same folding function.

Example ©. If the current conformation is C = 000111, like in Figure 8.2(a), and if the

[l [ 1 ]

(a) 000111 (b) 001222
Figure 8.2: Encoding folding operation

third residue is chosen to fold by a rotation of —% (mapping f), the new conformation will
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be:
(C17 Cy, f(C3)7 f(C4>v f(CB)v f(CG)) = <O7 0,1,2,2, 2)'

That is, the one depicted in Figure 8.2(b).

These considerations have led us to a formalization of protein folding 2D model recalled
thereafter.

8.1.3.2/ FORMALIZATION AND NOTATIONS

Let N + 1 be a fixed number of amino acids, where N € IN*. We define
X = 7/47ZN x [-N;N]¥

as the phase space of all possible folding processes. An element X = (C, F) of this
dynamical folding space is constituted by:

+ A conformation of the N + 1 residues in absolute encoding: C = (C1,...,Cn) €
7,/47ZN. Note that we do not require self-avoiding walks here.

+ Asequence F e [—N;N]™ of future folds such that, when F; e [-N; N] is &, it means
that it occurs:

— a fold after the £—th residue by a rotation of —7 (mapping f) at the i—th step,
if k = Fl > 0,
— no fold at time i if k£ = 0,

— a fold after the |k|—th residue by a rotation of Z (i.e., f~!) at the i—th time, if
k <O0.

On this phase space, the protein folding dynamic in the 2D model can be formalized as
follows [BCG11a].

Denote by i the map that transforms a folding sequence in its first term (i.e., in the first
folding operation):
i: [-N;N]¥ — [=N;N]
F —  FO,

by o the shift function over [—N; N]¥, that is to say,

o: [-N;NJNV — [-N;NJN

(Fk)ke]N — (Fkﬂ)k:em’
and by sign the function:
1 if z >0,
sign(z) =3 0 ifx =0,
—1 else.

Remark that the shift function removes the first folding operation from the folding se-
quence F once it has been achieved, and that this modeling is quite clgse to the one
presented in the information hiding chapter. Consider now the map G : X — X defined
by:
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where Vk € [-N;N], fi : Z/4ZN — 7,/4ZN is defined by:
fe(Chy. oo ON) = (Chy e, O, [, B (O).

Thus the folding process of a protein P in the 2D HP square lattice model, with initial
conformation equal to (0,0, ...,0) in absolute encoding and a folding sequence equal to
(F')en, is defined by the foIIowmg dynamical system over X [BCG11a]:

X% =((0,0,...,0),F)
Xl = G(X™),V¥n e IN.

In other words, at each step n, if X" = (C, F'), we take the first folding operation to realize,
that is i(F) = F° e [-N;N], we update the current conformation C by rotating all of the
residues coming after the |i(F')|—th one, which means that we replace the conformation C
with f; ) (C). Lastly, we remove this rotation (the first term F9) from the folding sequence
F: F becomes o(F).

Example 7. Let us reconsider Example 6.  The unique iteration of this folding
process transforms a point of X having the form ((0,0,0,1,1,1);(3,F',F?,...)) in
G ((0,0,0,1,1,1), (+3,F', F%,...)), which is equal to ((0,0,1,2,2,2), (F', F?,...)).

Rem 3. Such a formalization allows the study of proteins that never stop to fold, for in-
stance due to never-ending interactions with the environment.

Rem 4. A protein P that has finished to fold, if such a protein exists, has the form
(C,(0,0,0,...)), where C is the final 2D structure of P. In this case, we can assimi-
late a folding sequence that is convergent to 0, i.e., of the form (F°,...,F",0...), with
the finite sequence (F°, ..., F").

We then have introduced in [BCGS12a] the SAW requirement inside the formulation of

the folding process in the 2D model [BCG11a].

8.1.3.3/ THE SAW REQUIREMENT

Let P denotes the 2D plane and

p:  Z/AZN PpN+1
(Cl,...,CN) — (Xo,...,XN)

where X, = (0,0) and

X;+ (1,00  ifC;=0,

o) Xt (0 -1 i Ci=1,
Y X+ (-1,0) if Gy =2,
X;+(0,1) ifC;=3.

The map p transforms an absolute encoding in its 2D representation. For instance,
p<(07 07 07 17 17 1)) is ((07 0)7 (17 O)a (27 0)7 (37 0)7 (37 _1)7 (37 _2)7 (37 _3))5 that iS, the first flg_
ure of Example 12. Now, for each (P,..., Py) of PN+1 we denoted by

support((Po, ..., Pn))
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the set (with no repetition): { Py, ..., Py}. For instance,
support ((0,0); (0,1); (0,0); (0,1)) = {(0,0); (0,1)}.
Then [BCGS12a],

Definition 45. A conformation (Cy,...,CN) € Z/AZN satisfies the self-avoiding walk
(SAW) requirement iff the cardinality of support(p((Ci,...,Cn))) iSN + 1.

We can remark that Definition 45 concerns only one conformation, and not a sequence of
conformations that occurs in a folding process. This definition is compliant with the self-
avoiding walks of the discrete mathematics community. However, we have discovered
in [BCGS12a], and further investigated in [GCBB] that the self-avoiding walk property in
protein folding can be interpreted in various non-equivalent ways, which will be debated
in a next section.

8.1.3.4/ A METRIC FOR THE FOLDING PROCESS

We have defined in [BCG11a] a metric d over X = Sy x [—N; N]N by:

d(X,X) = do(C,C) + dp(F, F).

where
d(a,b) =0if a = b, and d(a,b) = 1 otherwise,
N
do(C,C) = ) 6(C, Cr)2V 7,
) k=1
y 9 & |Fk— F¥|
F )= —
dr(FF) = o5 kz; 10k+1
L -

This distance for the dynamical description of the protein folding process in the 2D HP
square lattice model can be justified as follows. The integral part of the distance between
two points X = (C,F) and X = (C,F) of X measures the differences between the
current 2D conformations of X and X. More precisely, if do(C, C) is in [2¥; 25+1], then the
first & terms in the acceptable conformations €' and C' (the absolute encoding) are equal,
whereas the k + 1** terms differ: their 2D conformations will differ after the k + 1—th
residue. If the decimal part of d(X, X) is between 10~* and 10-*+1) then the next k
foldings of C and C will occur in the same place (residue), same order, and same angle.
The decimal part of d(X, X) will then decrease when the duration the folding process will
be similar increase. More precisely, F¥ = F* (same residue and same angle of rotation
at the k—th stage of the 2D folding process) if and only if the & + 1** digit of this decimal
part is 0. Lastly, % is just a normalization factor.

For instance, if we know where are now the N + 1 residues of our protein P in the lattice
(knowledge of the correct conformation), and if we have discovered what will be its & next
foldings, then we know that the point X = (C, F') describing the folding process of the
considered protein in the 2D model, will be “somewhere” into the ball B(C, 107%), that is,
very close to the point (C, F) if k is large [BCGS12a].

Example 8. Let us consider two points

* X = ((O’O’O’ 17 17 1)’ (37 _45 2))7
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Figure 8.3: Representation of the two “points” X = ((0,0,0,1,1,1);(3,—4,2)) and X’ =
((0,0,0,1,1,1); (3, —4,—6)) of the phase space X (X is in left part of the figure, X' is its
right part).

e and X' = ((0,0,0,1,1,1); (3, —4, —6))

of X. We note X = (C,F) and X' = (C',F). dc(C,C") = 0, then these two points
have the same current (first) conformation. As dp(F,F') = 2B — 0,006 is in
[1072;1073[, we can deduce that the two next foldings of X and of X' will lead to identical
conformations, whereas the third folding operation will lead to different conformations. A
possible way to represent these two points of the phase space is to draw the successive

conformations induced by these points, as illustrated in Figure 8.3.

Example °. Figure 8.4 contains the representation of the two ‘“points” X
((0,0,0,1,1,1);(3,—4,2)) and X' = ((0,0,1,2,2,2);(—4,-5)). Let (C,F) =
and (C',F") = X'. We have do(C,C") = 26=3 4 26=4 = 12 and dp
2 ("153' + 1554 +ﬁ) — 0.534, then d(X,X') = 12.534. As 12 is in [23;2'[, we
can conclude that the absolute encoding of the two initial conformations start to differ in
the third residue.

o<l

8.1.4/ FOLDING PROCESS IN 2D MODEL IS CHAOTIC
8.1.4.1/ MOTIVATIONS

In our topological description of the protein folding process in the 2D model, all the infor-
mation is embedded into the folding sequence F'. Indeed, roughly speaking, it is as if Na-
ture has a function \ that translates a protein P having a linear conformation (0, ..., 0) into
an environment F, in a folding sequence F, i.e., FF = N (P, F) [BCGS12a]. Having this
“natural” folding sequence F', we are able to obtain its true conformation in the 2D model,
by computing G™ ((0,...,0); F'), where n is the size of F. On our side, we have only a
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Figure 8.4: Representation of the two “points” X = ((0,0,0,1,1,1);(3,—4,2)) and X’ =
((0,0,1,2,2,2); (—4,—5)) of the phase space X (X is in left part of the figure, X' is its
right part).

partial knowledge of the environment £ and of the protein P (exact interactions between
atoms). We thus consider £ and P, as close as we can from E and P respectively. More-
over, we have only a model N of A as, for instance, we use various approximations: mod-
els for free energy, approximations of hydrophobic/hydrophilic areas and electro-polarity,
etc. This is why we can only deduce an approximation ' = N'(P, E) of the natural folding
sequence F = N (P, E). One important motivation of [BCG11a] is to determine whether,

having an approximation ¥ of F', we obtain a final conformation ¢' = G" ((0, .., 0); F)O

close to the natural conformation C' = G™ ((0,...,0); F'), or not. In this last sentence, n
and 7 are the sizes of F and F' respectively, and the terms “approximation” and “close”
can be understood by using dr and d¢ respectively. To sum up, even if we cannot have
access with an infinite precision to all of the forces that participate to the folding process,

i.e., even if we only know an approximation X' — ((0, . .,0),F) of X0 = ((0,...,0), F),

can we claim that the predicted conformation X' = G™ ((0,...,0),F> still remains

close to the true conformation X™2 = G"2 ((0,...,0),F) ? Or, on the contrary, do we
have a chaotic behavior, a kind of butterfly effect that magnifies any error on the evalua-
tion of the forces in presence ?

Raising such a question has led us to the study of the dynamical behavior of the folding
process [BCG11a,BCGS12a].

8.1.4.2/ CHAOS OF THE FOLDING PROCESS

We then have given in [BCG11a] two proofs of the chaotic behavior of the protein folding
dynamics in the 2D model. For the first one, we have firstly established that,

Proposition 1°. G is a continuous map on (X, d).

It thus has been possible to study the chaotic behavior of the folding process. We have



CHAPTER 8. THE COMPLEX DYNAMICS OF PROTEIN FOLDING 96

successively proven the regularity and strong transitivity in [BCG11a], leading to the re-
sult:

Theorem °. The folding process G in the 2D model is chaotic according to Devaney.

Strong transitivity states that being as close as possible of the true folding process (2D
model) is not a guarantee of success. Indeed, let P a protein under interest and F its nat-
ural folding process in the 2D model. Then, for any possible conformation C' of the square
lattice, there exists a folding sequence F very close to F leading to C.. More precisely, for
any € > 0 (as small as possible), an infinite number of folding sequences are in B,,.(F, )
and lead to C. The strong transitivity property implies that without the knowledge of the
exact initial condition (the natural folding process, and thus the exact free energy), all the
conformations are possible. Additionally, no conformation of the square lattice can be
discarded when studying a protein folding in the 2D HP square lattice model: the dynam-
ical system obtained by such a formalization is intrinsically complicated and cannot be
decomposed or simplified. Furthermore, this trend to visit the whole space of acceptable
conformations is counteracted by elements of regularity stated before: it is even impos-
sible to dress a kind of qualitative description of the dynamics in the 2D model, as two
points close to each other can have fundamental different behaviors [BCGS12a].

A consequence of Theorem 9 is that this process is highly sensitive to its initial condition.
If the 2D model can accurately describe the natural process, then this theorem implies that
even a minute difference on an intermediate conformation of the protein, in forces that act
in the folding process, or in the position of an atom, can lead to enormous differences in
its final conformation, even over fairly small timescales. In particular, it seems very difficult
to predict, in this 2D model, the structure of a given protein by using the knowledge of the
structure of similar proteins. Let us remark that the whole 3D folding process with real
torsion angles is obviously more complex than this 2D HP model. And finally, that chaos
refers to our incapacity to make good prediction, it does not mean that the biological
process is a random one [BCGS12a].

Before studying some practical aspects of this unpredictability in Section 8.1.7, we outline
in the next subsection a second proof of the chaotic behavior of this process and we
deepen its chaotic properties, as established in [BCG11a].

8.1.5/ OUTLINES OF A SECOND PROOF

We have proven in [BCG11a] that the folding dynamics can be modeled as chaotic itera-
tions (Cls). Due to this relation between protein folding in 2D HP model and Cls, we have
inherited topological properties from chaotic iterations to protein folding, and have com-
pared the ability of neural networks to predict Cls (recalled in Chapter 3) with the capacity
of artificial intelligence tools to predict the conformation of a protein using the HP model.
Let us finally remark that it is easy to study processes such that more than one fold occur
per time unit, by using Cls.

The use of chaotic iterations in order to model protein folding can be summarized as
follows [BCG11a]. At each iteration, the same process is applied to the system (i.e., to
the conformation), that is the folding operation. Additionally, it is not a necessity that all
of the residues fold at each iteration: indeed it is possible that, at a given iteration, only
some of these residues folds. Such iterations, where not all the cells of the considered
system are to be updated, are exactly the iterations modeled by Cls. Indeed, as stated
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in [BCG11a], the protein folding process with folding sequence (F"),cn consists in the
following chaotic iterations: C° = (0,0, ...,0) and,

[ Cp if i ¢ Sm
2] fszgn(z)(cn)i else

where the chaotic strategy is defined by Vn € IN, ™ = [—N;N]\[-F"; F"]. Thus, to
prove that the protein folding process is chaotic as defined by Devaney, is equivalent to
prove that the graph of iterations of the Cls defined above is strongly connected. This
last fact is obvious, as it is always possible to find a folding process that map any con-
formation (C1,...,Cn) € €y to any other (Cf,...,Cy) € €y (this is a lemma established
in [BCG11a)).

We will now investigate some consequences resulting from the chaotic behavior of the
2D folding dynamical system.

8.1.6/ QUALITATIVE AND QUANTITATIVE EVALUATIONS

First of all, the transitivity property implies the indecomposability of the system. Thus it is
impossible to reduce, in the 2D model, the set of protein foldings in order to simplify its
complexity. Furthermore, the folding process has the instability property. This property,
which is implied by the sensitive dependence to the initial condition, leads to the fact that
in all of the neighborhoods of any z, there are points that are separated from x under
iterations of f. We thus can claim that the behavior of the folding process is unstable. We
then have proven in [BCGS12a] that,

Proposition 1'. Folding process in the 2D model has sensitive dependence on initial
conditions on (X, d) and its constant of sensitivity is at least equal to 2N~!. Furthermore,
this process is an expansive chaotic system on (X,d). Its constant of expansiveness is
at least equal to 1.

8.1.7/ CONSEQUENCES

Results established in [BCG11a] only concern the folding process in the 2D HP square
lattice model. At this point, it is natural to wonder if such a model, being a reasonable ap-
proximation of the true natural process, is chaotic because this natural process is chaotic
too. Indeed, claiming that the natural protein folding process is chaotic seems to be con-
tradictory with the fact that only approximately one thousand folds have been discovered
this last decade. The number of proteins that have an understood 3D structure increases
largely year after year. However the number of new categories of folds seems to be limited
by a fixed value approximately equal to one thousand. Indeed, there is no contradiction
as a chaotic behavior does not forbid a certain form of order. As stated before, chaos only
refers to limitations in prediction. For example, seasons are not forbidden even if weather
forecast has a non-intense chaotic behavior. A same regularity appears in brains: even
if hazard and chaos play an important role in a microscopic scale, a statistical order ap-
pears in the neural network.

That is, a certain order can emerge from a chaotic behavior, even if it is not a rule of
thumb. More precisely, we have argued in [BCGS12a] that these thousand folds can be
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related to basins of attractions or strange attractors of the dynamical system, objects that
are well described by the mathematical theory of chaos. Thus, it should be possible to
determine all of the folds that can occur, by refining our model and looking for its basins
of attractions with topological tools. However, this assumption still remains to be further
investigated.

Finally we have wondered in [BCG11a, BCGS12a] whether artificial intelligence is able
to deal with chaotic dynamics as the one found in the 2D folding process. Recalling and
adapting our previous work on neural networks (Chapter 3), and helped by our Cl model,
we deduced that considered neural networks can neither learn nor predict the folding
dynamics in the 2D model with a sufficient accuracy, and discussed investigative ways to
tackle this problem.

8.2/ FOLDED SELF-AVOIDING WALKS APPLIED TO PROTEIN
FOLDING

The first version of our proof of the chaotic behavior of the folding process in the 2D model,
published in [BCG11a], was erroneous, due to a subtlety resulted from the absence of a
clear definition of the “self-avoiding walk requirement” in bioinformatics, which does not
always correspond the the self-avoiding walks (SAWSs) studied in the enumerative combi-
natorics community [BBM11,BFGG12]. The correction of our error in [BCGS12a] has led
us to investigate the various ways to understand such a requirement and to discover their
relationships in [GCBB]. Since then, we have more systematically studied these particular
folded SAWs. [BGNP13] contains a general presentation of our investigations, [BGG13]
proves our major result in this field, while [BGMP13] presents computational aspects. All
these research papers are summarized thereafter.

8.2.1/ INTRODUCTION

Self-avoiding walks (SAW) have been studied over decades, both for their interest in
mathematics and their applications in physics: standard model of long chain poly-
mers [Flo49], fundamental example in the theory of critical phenomena in equilibrium
statistical mechanics [Sla11,dG72], and so on. They are the source of very difficult prob-
lems in probabilities and enumerative combinatorics [BBM11,BFGG12], regarding among
other things the number of n—step SAW, their mean-square displacement, and the so-
called scaling limit. We shown previously that the self-avoiding walks naturally appear
in bioinformatics, during the prediction of the 3D conformation of a protein of interest.
Frequently, the two dimensional backbone of the protein is looked for in a first stage, and
then this 2D structure is refined step by step to obtain the final 3D conformation.

Protein Structure Prediction (PSP) software can be separated into two categories. On
the one hand, some algorithms construct the proteins’ structures on the 2D or 3D square
lattice by adding, at each iteration, a new amino acid at the queue of the protein. Most of
the time, various positions are possible for this amino acid, and the chosen position is the
one that optimizes a given functional (for instance, the number of neighboring hydrophobic
amino acids). On the other hand, some algorithms start from the straight line having the
size of the considered protein, and they iterate pivot moves on this structure, pivot amino
acids and angles being chosen to optimize another time a well-defined functional. We
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Figure 8.5: The first SAW shown to be not connected to any other SAW by 90 ° rotations
(Madras and Sokal, [MS88]), that is, the first discovered unfoldable SAW.

have pointed out, in our research papers on the dynamics of the protein folding process
recalled in the previous section, that these two categories of protein structure prediction
software cannot produce the same conformations [GCBB]. More precisely, in the first
category, all the conformations can be attained whereas it is not the case in the second
one.

Indeed this result, which is ignored by bioinformaticians, has been formerly discovered
by the community of mathematicians that studies the self-avoiding walks (SAWs), even
though the connection with the PSP problem has not been signaled. In their article in-
troducing the pivot algorithm [MS88], Madras and Sokal have demonstrated a theorem
showing that, when starting from the straight line of length n, and iterating the 180° rota-
tion and either both 90 ° rotations or both diagonal reflections, all the n—step self-avoiding
walks on Z? can be obtained (or, in other words, their pivot algorithm is ergodic for this set
of transformations). As a counterexample, they depicted in this article a 223-step SAW
in Z? that is not connected to any other SAW by 90° rotations (their counterexample is
represented in Figure 8.5). This first apparition of an “unfolded” SAW was indeed the
unique one in the literature, and the study of (un)folded SAWs has not been deepened
before our work in [GCBB]. In this section, we recall our first results and questionings
about various sets of self-avoiding walks that can (or cannot) be attained by +90° pivot
moves, and we deduce consequences regarding the PSP software.

8.2.2/ A SHORT OVERVIEW OF SELF-AVOIDING WALKS

We firstly recall usual notations and well-known results regarding self-avoiding walks. The
objective of this section is not to realize a complete state of the art about established or
conjectured results on SAWSs, but only to present a few list of properties that are con-
nected to our first investigations regarding the folded self-avoiding walks. For instance,
the well-known pattern theorem [MS93] is not presented here. For further results about
SAWs, readers can consult for instance [Sla11, MS93].

In the remainder of this chapter, the n—th term of a sequence s will denoted by s(n), to
be coherent with notations usually used in the enumerative combinatorics field.

Definition %6 (Self-Avoiding Walk). Letd > 1. A n—step self-avoiding walk from = € Z% to



CHAPTER 8. THE COMPLEX DYNAMICS OF PROTEIN FOLDING 100

ye Zisamapw: [0,n] — Z¢ with:

e w(0) =z andw(n) =y,
e lw(i+ 1) —w(i)| = 1, where |z| stands for the Euclidean norm,

e Vi,j e [0,n],i# j = w(i) # w(y) (self-avoiding property).

Let d € IN*. S,(x) is the set of n—step self-avoiding walks on Z¢ from 0 to z, c,(z) =
S, (x) is the Cardinality of this set, S,, = u,z¢Sn(z) is constituted by all n—step self-
avoiding walks that start from 0, whereas ¢, = }} .44 cn(x) is the number of n—step
self-avoiding walks on Z starting from 0, that is, ¢, = £S, [Sla11].

A first result concerning the number of n—step self-avoiding walks can be easily obtained
by remarking that, when m—step SAWs are concatenated to n—step SAWSs, we found all
(m + n)—step self-avoiding walks and other walks having intersections. In other words,

Proposition 2. Vm,n e IN*, ¢pin < ¢mcCn.

The existence of the so-called connective constant is a consequence of such a proposi-
tion.

Proposition 3. The limit lim,, ci/™ exists. It is called the connective constant and is
denoted by .. Moreover, we have u™ < ¢, andd < p < 2d — 1.

Various bounds or estimates can be found in the literature [Jen04a, Sla11], like ¢, =~
ApmnY~1! for A and ~ to determine (predicted asymptotic behavior) and

1 € [2.625662, 2.679193].

The pivot algorithm is a dynamic Monte Carlo algorithm that produces self-avoiding walks
using the following basic approach [MS88]. Firstly, a point p on the walk w is picked
randomly and used as a pivot. Then a random symmetry operation of the lattice, like
a rotation, is applied to the second part (suffixes) of the walk, using p as origin. If the
resulting walk is a SAW, it is accepted, else it is rejected and w is counted once again in
the sample. A more detailed and precise algorithm can be found in [MS88]. In this article,
it is shown that, quoting Madras and Sokal,

Theorem 0. The pivot algorithm is ergodic for self-avoiding walks on Z¢ provided that all
axis reflections, and either all 90 ° rotations or all diagonal reflections, are given nonzero
probability. In fact, any N—step SAW can be transformed into a straight rod by some
sequence of 2N — 1 or fewer such pivots.

The pivot algorithm is ergodic too for SAWs on the square lattice [MS88], provided that

the 180° rotation, and either both 90° rotations or both diagonal reflections, are given
nonzero probability, whereas 90° rotations alone are not enough, due to Fig. 8.5.

8.2.3/ INTRODUCING THE (UN)FOLDED SELF-AVOIDING WALKS
8.2.3.1/ PROTEIN FOLDING AS PRELIMINARIES

The overriding problem in PSP is: how to find such a minimal conformation, given all the
n—step self-avoiding walks and the sequence of hydrophobicity of the protein ?
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Figure 8.6: Protein Structure Prediction by folding SAWs

To find the best 2D conformation of a protein, given its sequence of hydrophobicity, is re-
ally not an easy task. Indeed authors of [CGP*98] have proven that, considering the set
of self-avoiding walks having n—steps and whose vertices are either black (hydrophobic)
or white squares (hydrophilic residues), to determine the SAWs of this set that maxi-
mize the number of neighboring black squares is NP-hard. Given a sequence of amino
acids, such statement leads to the use of heuristics to predict (and not to determine
exactly) the most probable conformation of the protein. These heuristics operate as in
the real biological world, folding or increasing the length of SAWs in order to minimize
the free energy of the associated conformation: by doing so, the protein synthesis in
aqueous environment is reproduced in silico. As stated previously, we have shown in a
previous work that such investigations potentially lead to various subsets of self-avoiding
walks [BCGS12a,BCG11a, GCBB].

In the first approach, starting from the straight line, we obtain by a succession of pivot
moves of 90° a final conformation being a self-avoiding walk. In this approach, it is not
regarded whether the intermediate walks are self-avoiding or not. Such a method corre-
sponds to programs that start from the initial conformation, fold several times the linear
protein, according to their embedded scoring functions, and then obtain a final confor-
mation on which the SAW requirement is verified. It is easy to be convinced that, by
doing so, the set of final conformations is exactly equal to the set of self-avoiding walks
having n steps. As the conformations obtained by such methods coincide exactly to the
well-studied global set of all SAWSs, such an approach is not further investigated in what
follows [GCBB].

In the second approach, the same process is realized, except that all the intermediate
conformations must be self-avoiding walks (see Fig. 8.6). The set of n—step SAWs reach-
able by such a procedure is denoted by fSAW,, in what follows. Such a procedure is one
of the two most usual translations of the so-called “SAW requirement” in the bioinformatics
literature, leading to proteins’ conformations belonging into fSAW,,. For instance, PSP
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Figure 8.7: Pivot move acceptable in fSAW but notin fSAW’

methods presented in [IC10, UM93, BUAM97, HSHS10, HC10] follow such an approach.
We have shown in [GCBB] that fSAW,, < S, [MS88]. In other words, in this first category
of PSP software, it is impossible to reach all the conformations of S,,.

Other approaches in the same category can be imagined, like the following one. We
can act as above, requiring additionally that no intersection of vertex or edge during the
transformation of one SAW to another occurs. For instance, the pivot move of Figure 8.7 is
authorized in the previous fSAW approach, but it is refused in the current one: during the
rotation around the residue having a cross, the rigid structure after this residue intersects
the remainder of the “protein” (see Fig. 8.8). In this two dimensional approach denoted
by fSAW’, it is impossible for a protein folding from one plane conformation to another
plane one to use the 3D space to achieve this folding. A reasonable modeling of the true
natural folding dynamics of an already synthesized protein can be obtained by extending
this requirement to the third dimension. However, due to its complexity, this requirement is
actually never used by tools that embed a 2D HP square lattice model for protein structure
prediction. This is why these particular SAWs are not really investigated in this section.
Let us just emphasize that fSAW), is obviously a subset of fSAW,, but there is a priori
no reason to consider them equal. Indeed, Figure 8.9 shows that,

Proposition 4. For all n € IN*, fSAW! < fSAW,. However, In € IN*, fSAW/ +#
FSAW,,.

Proof 2. In Figure 8.9, the unique possible pivot move is the red dot, and obviously such
move leads to the intersection between the head and the queue of the structure during
the transformation.

Note that we only studied pivot moves of +90° in our research. But to consider other
sets of transformations could be interesting in some well-defined contexts, which can
potentially lead to different new subsets of SAWSs.

A last bioinformatics approach of protein structure prediction using self-avoiding walks
starts with an 1—step SAW, and at iteration &k, a new step is added at the queue of the
walk, in such a way that the new k—step self-avoiding walk presents the best value for
the considered scoring function (see Fig 8.10). The protein is thus constructed step by
step, reaching the best local conformation at each iteration. It is easy to see that such an
approach leads, another time, to all the possible self-avoiding walks having the length of
the considered protein [GCBB].
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Figure 8.8: An intersection appears between the head and the queue during the transfor-
mation, thus this pivot move is refused in fSAW".
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Figure 8.10: Protein Structure Prediction by stretching SAWs
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In the remainder of this chapter, we give a more rigorous definition of the fSAW,, set, we
initiate its study, and compare it to the well-known S,, SAWs set.

8.2.3.2/ NOTATIONS

One of the easiest way to define the folded self-avoiding walks described previously,
that appear during the realization of the SAW requirement in PSP algorithms, is to use
the absolute encoding of a walk introduced previously in this chapter. In this encoding,
an+ 1l-step walk w = w(0),...,w(n) € (Z2)""" with w(0) = (0,0) is a sequence
s = 5(0),...,s(n — 1) of elements belonging into Z/4Z, such that:

* s(i) =0ifand only if w(i +1); = w(i); + 1 and w(i + 1)2 = w(i)e, thatis, w(i + 1) is
at the East of w(i).

* s(i) =1lifandonly if w(i + 1)1 = w(i); and w(i + 1)2 = w(i)2 — 1: w(i + 1) is at the
South of w(7).

« s(i) = 2ifand only if w(i + 1)1 = w(i); — 1 and w(i + 1) = w(i)2, meaning that
w(i + 1) is at the West of w(3).

« Finally, s(i) = 3if and only if w(i + 1)1 = w(i); and w(i + 1)3 = w(i)s + 1 (w(i + 1)
is at the North of w(z)).

8.2.3.3/ A GRAPH STRUCTURE FOR SAWS FOLDING PROCESS

We can now recall a graph structure, formerly introduced in [GCBB], which describes well
the iterations of +90° pivot moves on a given self-avoiding walk. Given n € IN*, the graph
®,, is defined as follows:

* its vertices are the n—step self-avoiding walks, described in absolute encoding;

* there is an edge between two vertices s;, s; if and only if s; can be obtained by one
pivot move of £90°on s;, that is, if there exists k € [0,n — 1] s.t.:

— either ;(0),...,si(k — 1), f(si(k)), ..., f(si(n)) = s;
—ors;(0),...,5(k—1), f71(si(k)),..., fsi(n)) = 55

Such a digraph is depicted in Figure 8.11. The circled vertex is the straight line whereas
strikeout vertices are walks that are not self-avoiding. Depending on the context, and for
the sake of simplicity, ®,, will also refer to the set of SAWs in ®,, (i.e., its vertices).

Using this graph, the folded SAWs introduced in the previous section can be redefined
more rigorously [GCBB].

Definition 47. fSAW,, is the connected component of the straight line 00...0 (n times)
in ®,,, whereas S,, is constituted by all the vertices of ®,,.

Figure 8.5 shows that the connected component fS AW (223) of the straight line in $223
is not equal to the whole graph: ®293 is not connected. More precisely, this graph has a
connected component of size 1: Figure 8.5 is totally unfoldable, whereas SAW of Fig. 8.9



CHAPTER 8. THE COMPLEX DYNAMICS OF PROTEIN FOLDING 105

can be folded exactly once [GCBB]. Indeed, to be in the same connected component is an
equivalence relation R,, on 6,,,Vn € IN*, and two SAWs w, w’ are considered equivalent
(with respect to this equivalence relation) if and only if there is a way to fold w into w’ such
that all the intermediate walks are self-avoiding [BGNP13]. When existing, such a way is
not necessarily unique.

These remarks have led us to introduce following definitions in [BGNP13].

Definition 4. Letn € N* andw € S,,. We say that:

 w is unfoldable if its equivalence class, with respect to R.,, is of size 1;

- w is a folded self-avoiding walk if its equivalence class contains the n—step straight
walk 000...0 (n — 1 times);

e w can be folded k times if a simple path of length k exists between w and another
vertex in the same connected component of w.

Moreover, we have introduced the following sets in [BGNP13]:

« fSAW (n) is the equivalence class of the n—step straight walk, or the set of all
folded SAWs.

« fSAW (n, k) is the set of equivalence classes of size k in (®,,R,,).

« USAW (n) is the set of equivalence classes of size 1 (6,,,R,,), that is, the set of
unfoldable walks.

« fLSAW (n) is the complement of USAW (n) in ,,. This is the set of SAWSs on which
we can apply at least one pivot move of +90r.

Example 1°. Figure 8.12 shows the two elements of a class belonging into fSAW (219, 2)
whereas Fig. 8.5 is an element of US AW (223).

8.2.4/ A SHORT LIST OF RESULTS ON (UN)FOLDED SELF-AVOIDING WALKS

We now give a first collection of easy-to-obtained results concerning the particular SAW
sets introduced in the previous section [BGNP13]. These results have been either ob-
tained mathematically [BGG13] or by using computers [BGMP13].

We firstly show that,

Proposition 5. The cardinality ¢,, of fSAW,, satisfies: 2"+ < ¢, < 4 x 3™.

This result is a consequence of the following lemma.

Lemma . The 2" n—step walks that take steps only in the positive coordinate directions
arein fSAW (n).

This lemma can be proven using the number of cranks of a self-avoiding walk, defined
below.
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Figure 8.11: The digraph G3 = fSAW (3)
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Figure 8.12: The two self-avoiding walks in fSAW (219, 2)
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Figure 8.13: Walks that contain only 3 and 0 in their absolute encoding are folded SAWs:
reducing the number of cranks does not introduce intersections in the walk.

Definition #° (Crank). Let w be a n—step self-avoiding walk on 7 of absolute encoding
s. w contains a crank at position k € [1,n] if s(k — 1) # s(k).

For a proof of these results, see [BGNP13]. In particular, SAWs whose absolute encoding
is only constituted by 0’s and 1’s are folded SAWSs. It is quite possible that a few 2’s or 3’s
can be added without breaking the folded character of the walk, meaning that the lower
bound could be increased.

We can now give a result regarding the US AW (n) set of self-avoiding walks.

Theorem 1. There is an infinite number of n such that USAW (n) is nonempty. In par-
ticular, the number of unfoldable SAWs is infinite.

Proof 3. A proof of this result, too long to be contained in this manuscript, can be found
in [BGG13]. It consists in creating a recursive construction process of unfoldable self-
avoiding walks, as depicted in Figure 8.19.

Proposition 6. vn < 14, fSAW(n) = 6, whereas fSAW(107) < Gy (See Fig-
ure 8.15).

In other words, let v,, the smallestn > 2 such that USAW (n) # . Then 15 < v, < 107.

Proof 4. We have computed a program that constructs the connected component of
the n—step straight line for n < 14, and at each time, we have obtained the whole &,
(see [BGMP13]). Additionally, we have obtained using a backtracking method the walk
depicted in Figure 8.16, which justifies the upper bound of 107: we have verified using a
systematic program that no pivot move can be realized in that walk without breaking the
self-avoiding requirement. These programs, their explanations and justifications can be
found in [BGMP13].

Proposition 17. vn < 28, f1SAW (n) = 6,,.

Proof . Obtained experimentally, see [BGMP13].

The results contained into the two previous propositions are summarized, with all inter-
mediate computations, in Table 8.1. The 16, values, obtained in [Jen04b], are recalled
here for comparison.



CHAPTER 8. THE COMPLEX DYNAMICS OF PROTEIN FOLDING

n o BFISAW (n) | HUSAW (n) = 4fISAW (n) | tfSAW (n)
1 4 7] 0 7]

2 12 12 0 12
3 36 36 0 36
4 100 100 0 100
5 284 284 0 284
6 780 780 0 780
7 2172 2172 0 2172
8 5916 5916 0 5916
9 16268 16268 0 16268
10 44100 44100 0 44100
11 120292 120292 0 120292
12 324932 324932 0 324932
13 881500 881500 0 881500
14 2374444 2374444 0 2374444
15 6416596 6416596 0 ?
16 17245332 17245332 0 ?
17 46466676 46466676 0 ?
18 124658732 124658732 0 ?
19 335116620 335116620 0 ?
20 897697164 897697164 0 ?
21 2408806028 2408806028 0 ?
22 6444560484 6444560484 0 ?
23 17266613812 17266613812 0 ?
24 46146397316 46146397316 0 ?
25 | 123481354908 | 123481354908 0 ?
26 | 329712786220 | 329712786220 0 ?
27 | 881317491628 | 881317491628 0 ?
28 | 2351378582244 | 2351378582244 0 ?
29 | 6279396229332 ? ? ?
30 | 16741957935348 ? ? ?
31 | 44673816630956 ? ? ?
107 ? ? >3 ?
108 ? ? >1 ?
111 ? ? >5 ?
112 ? ? >1 ?
113 ? ? >2 ?
114 ? ? >2 ?
115 ? ? >5 ?
116 ? ? >3 ?
117 ? ? >4 ?
118 ? ? >2 ?
119 ? ? >2 ?
121 ? ? >4 ?
122 ? ? >5 ?
123 ? ? >1 ?
132 ? ? >7 ?
133 ? ? >6 ?
134 ? ? > 95 ?
135 ? ? > 165 ?
136 ? ? > 40 ?
137 ? ? > 50 ?
138 ? ? > 175 ?
139 ? ? > 179 ?
140 ? ? > 66 ?
141 ? ? > 119 ?
142 ? ? > 322 ?
143 ? ? > 476 ?
144 ? ? >8 ?
145 ? ? > 18 ?
146 ? ? > 54 ?
235 ? ? >1 ?
239 ? ? >1 ?
391 ? ? >1 ?
575 ? ? >1 ?
791 ? ? >1 ?

Table 8.1: Cardinality of various subsets of SAWs

108
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Figure 8.14: Generating walks that cannot be folded out

Connected components presented previously either have the straight line, or are of size
1 or 2. A reasonable questioning is to wonder whether it is possible to have larger con-
nected components different from the one of the straight line. We have shown that,

Proposition 8. It exists k > 2 such that fSAW (n, k) is nonempty.

In other words, connected components different from fSAW (n) and larger than 1 or 2
elements exist. The result, which has been experimentally obtained in [BGMP13], can
be proven by exhibiting a counterexample: Figure 8.17 shows a connected component of
size 5.

We have thus defined a diameter function D on the connected components of &,,, such
that D(C) is the length of the longest shortest path in the connected component C' of
®,,. Consider the connected component of the straight line fSAW (n), we have the re-
sult [BGNP13],

Proposition 1°. The diameter of fSAW (n) is equal to 2n: D(fSAW (n)) = 2n.

Example 1. In fSAW (2), this diameter corresponds, for instance, to the shortest path
03 — 00 — 11 — 12 — 23 (see Figure 8.18).
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FSAW(n)
nfSAW(n)
) G, forn <14 b) Diagram of ®,, for n = 107

Figure 8.15: Vien diagram for ®,,
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Figure 8.16: Current smallest (107-step) SAW that cannot be folded out
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Figure 8.18: The digraph 69 = fSAW (2)

8.2.5/ A LIST OF OPEN QUESTIONS

Our last investigations in the field of unfolded self-avoiding walks have consisted in enu-
merating in [BGNP13] a list of open questions that have appeared to us as interesting.
Some of them should be very easy to solve, whereas other ones may involve a degree of
difficulty.

In the following we define fSAWY(n) as the class of equivalency of the n—step straight
walk on Z? and ¢ is the equivalent of &, in Z?. Note that fSAW?(n) is equal to
fSAW (n), as introduced in Definition 8.2.3.83.

1. For any dimension d, do we have the existence of n € IN* such that fSAWY(n) <
6d?

2. fSAW?(2) and fSAW?(3) are obviously connected graphs, but they are not Eule-
rian. Indeed, more than two vertices have an odd degree both in fSAW?(2) and
FSAW?(3) (see Figures 8.18 and 8.11). Is it the case for all fSAW?(n) ?

3. fSAW?(2) and fSAW?(3) are Hamiltonian graphs, with the following Hamiltonian
circuits:

*00—->03—-32—-23>10—> 11 - 22 - 33 - 30 —» 21 — 12 — 01 — 00 for
fSAW?(2) (see Figure 8.18).

* 000 — 003 — 010 — 011 — 012 — 001 — 030 — 323 — 330 — 301 — 300 —
333 — 322 — 321 — 332 — 303 — 232 — 233 — 230 — 223 — 212 — 211 —
210 — 221 — 222 — 111 — 110 — 121 — 122 — 123 — 112 — 101 — 100 —
103 — 032 — 033 — 000 for fSAW2(3) (see Figure 8.11).
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Is it a coincidence, or is it the case for every fSAW9(n) ?
4. What is the exact value of the diameter D(fSAW9(n)) ?

5. Do we have a connective constant for fSAW?(n). That is, does the limit
limy, 4 o0 @1/” exist, and can we bound it ?

6. u, = tUSAW(n) is an increasing sequence (for d = 2, or for any d)? Does it grow
at a given (linear or exponential) rate?

7. Let k € IN. Is the sequence v, = #fSAW (n, k) increasing with n ? If so, at which
rate, and does it depend on the dimension d? And what about the sequence wy =
ffSAW (n, k) for a given n ?

8. More simply, is there an unfoldable walk in Z3 ?

9. Are the connected components of G¢ convex ? In other words, given two SAWSs in
a same component C. Are all (or at least one) the shortest paths connecting them
on Z%in C?

10. Is there a generating function expressing the folded self-avoiding walks more simply,
making it possible to enumerate them on the square lattice (like what has been
realized in [CEG93]).

11. When we can fold a self-avoiding walk until a straight line, is it possible to fold it in
such a way that the number of cranks decreases ? And for two given self-avoiding
walks w; and w; of the same connected component of 6,,, such that w; has more
cranks than wj, is there a path from w; to w; whose vertices’ number of cranks is
decreasing ? Is there a relation between the vertex depth and the number of cranks
in z4?

8.2.6/ CONSEQUENCES ON PROTEIN FOLDING

This first theoretical study about folded self-avoiding walks raises several questions
regarding the protein structure prediction problem and the current ways to solve
it [BGNP13]. In one category of PSP software, the protein is supposed to be synthe-
sized first as a straight line of amino acids, and then this line of a.a. is folded out until
reaching a conformation that optimizes a given scoring function. By doing so, the ob-
tained backbone structures all belong into fSAW (n), where n is the number of residues
of the protein. The second category of PSP software consider that, as the protein is
already in the aqueous solvent, it does not wait the end of the synthesis to take its 3D
conformation. So they consider SAWs whose number of steps increases from 1 to the
number of amino acids of the targeted protein and, at each step k, the current walk is
stretched (one amino acid is added to the protein) in such a way that the pivot & is placed
in the position that optimizes the scoring function they consider. By doing so, the possi-
ble predicted backbones are the whole ®3. The two sets of possible conformations are
different, at least when considering 2D low resolution models.

We have shown in our research that (1) to take place in the first situation (folding the
straight line by a succession of pivot moves) can be interesting as the number of possible
SAW conformations is smaller than £®,,. Indeed this interest is directly related to the rate
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?
A

(b) Second best conformation (score 24)

Figure 8.19: lllustration of chaos in protein folding (conformations have been predicted
using RaptorX)

ifSAW (n)
(O
tional advantage is obvious. However, we have currently no idea of such a gain, that is, of
the growing rate of § fSAW (n) compared to §®,, < 1. (2) The use of heuristics instead of
exact methods (like SAT solvers for instance) is a priori not justified for PSP software that
fold the straight line. Indeed, the PSP problem has been proven NP hard on the set 6,
of all possible SAWs. As they consider a strict subset of it, the complexity of the problem
might be reduced due to a lower number of cases to consider. However, Proposition 15
tends to indicate that this problem still remains difficult in fS AW (n), which nevertheless
necessitates a rigorous complexity proof. (3) Biologically speaking, to suppose that the
proteins wait to be completely synthesized before starting to fold appears as unrealistic,
as the synthesis occurs in an aqueous solvent. Indeed, the protein starts to fold during
its synthesis. Furthermore, in our opinion, it is restrictive to consider that the head of the
protein definitively stops to fold after having synthesized. Such a supposition is equivalent
to make a confusion between local (the SAW at step k) and global (the final optimal SAW)

< 1. If this rate decreases dramatically when n increases, then the computa-
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optimization. Indeed, we recognize honestly that we have no idea to determine if this third
approach (continuously folding the walk while stretching it) is more reasonable than the
previous ones, and if it is equivalent to either fSAW (n) or to ®,, (or if it constitutes a third
different subset of SAWSs).

Our goal is only to point out the importance to determine the best dynamical system to
model protein folding before programming it in PSP software, as this model determines
which conformations can be predicted. A last remark to emphasize the importance of
such a study: as recalled previously, we have proven in [BCG11a] that the dynamical
system used in the “folding the straight line” category is chaotic according to Devaney,
meaning that any wrong choice of pivot move (due to approximations in the scoring func-
tion, for instance) can potentially become dramatic. Other research works ( [BUAM97]
for instance) tend to show that the protein folding process intrinsically embeds a certain
amount of chaos. Thus, to use a more or less erroneous model to predict the conforma-
tion could have grave consequences in prediction quality. Figure 8.19 shows the two best
conformations predicted by RaptorX [PX11], a well-known PSP software. We can see
that using twice a same model, but with different parameters can potentially lead to quite
different conformations, illustrating a possible effect of some chaotic properties exhibited
by the chosen model. We can reasonably wonder what is the effect of a wrong model in
such a prediction.



9

STUDY OF GENOMIC
RECOMBINATIONS

After proteins, we naturaly have studied the complex evolution of DNA sequences
over time. This evolution has firstly been described with a discrete dynamical system
in [BGPa], before investigating the particular cases of mutations [BGP12a, BGP12b,
BGPb] and of transposable elements.

9.1/ CHAOS PROPERTIES IN GENOMIC EVOLUTION

9.1.1/ INTRODUCTION

Due to mutations or recombination, some variations occur in the frequency of each codon,
and these codons are thus not uniformly distributed into a given genome. Since the late
‘60s, various genome evolutionary models have been proposed to predict the evolution
of a DNA sequence as the generations pass. Mathematical models allow the prediction
of such an evolution, in such a way that statistical values observed into current genomes
can be at least partially recovered from hypotheses on past DNA sequences. More-
over, it can be attractive to study the genetic patterns (blocs of more than one nucleotide:
dinucleotides, trinucleotides...) that appear and disappear depending on mutation param-
eters.

A first model for genomes evolution has been proposed in 1969 by Thomas Jukes and
Charles Cantor [JC69]. This first model is very simple, as it supposes that each nucleotide
A,C,G,T has the probability m to mutate to any other nucleotide, as described in the
following mutation matrix,

* M m m
m * M m
m m % m
m m m *

In that matrix, the coefficient in row 3, column 2 represents the probability that the nu-
cleotide G mutates in C' during the next time interval, i.e., P(G — C). As diagonal
elements can be deduced by the fact that the sum of each row must be equal to 1, they
are omitted here.

This first attempt has been followed up by Motoo Kimura [Kim80], who has reasonably
considered that transitions (A «—— G and T' <—— (') should not have the same mutation
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rate than transversions (A «—— T, A C, T G, and C «—— @), leading to the
following mutation matrix:

QT ¥
Qo % o
S % O Q
* o Q o

This model has been refined by Kimura in 1981 (three constant parameters, to make a
distinction between natural A «—— 7', C' < G and unnatural transversions), leading to:

x ¢ a b
c * b a
a b = c
b a ¢ =

Joseph Felsenstein [Fel80] has then supposed that the nucleotides frequency depends
on the kind of nucleotide A,C,T,G. Such a supposition leads to a mutation matrix of the
form:
* o Tgq TT
TA * TG TT
TA T % 7T
TA T TG *
with 374, 37¢, 31g, and 3w denoting respectively the frequency of occurrence of each
nucleotide. Masami Hasegawa, Hirohisa Kishino, and Taka-Aki Yano [HKY85] have gen-
eralized the models of [Kim80] and [Fel80], introducing in 1985 the following mutation
matrix:
*  prc amg Brr
fra = Prg amr
ary Prec x Prr
pra amc Pre  *

These efforts have been continued by Tamura, who proposed in [Tam92, TN93] a simple
method to estimate the number of nucleotide substitutions per site between two DNA
sequences, by extending the model of Kimura (1980). The idea is to consider a two-
parameter method, for the case where a GC bias exists. Let us denote by wgc the

frequency of this dinucleotide motif. Tamura supposes that 7¢ = m¢ = W% and 4 =
1-—- . . .
T = WGC, which leads to the following rate matrix:
* k(1 -7co)/2 (1-mce)/2 (1-mae)/2
/€7TGC'/2 * ﬂgc/2 71’(;0/2
(1—-7mge)/2 (1—mge)/2 * k(1 —7mge)/2
Wgc/Q 7TGC/2 HTFGC/Q %

In the last model of Tamura [TN93], the two different types of transversions (A < 7, C <
() can have a different rate, whereas transversions are all assumed to occur at the same
rate (but that rate is allowed to be different from both of the rates for transitions):

* rmTc TG T
™A * TG R1TT
RoT A TC * T

™A TC RoTT G *
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All these models lead to the so-called GTR model [Yan94], in which the mutation matrix
has the form (using obvious notations):

# facme  fagma  farmr
facma * fecama  formr
fagma  feamo * T
farma  ferme T *

A second category of models focus on di or trinucleotides evolution. It has been initiated
by the Markov approach of [GY94], which has used a 61 x 61 rate matrix for protein-coding
DNA sequences, and at the same time in [MG94]. More recently, Didier Arques, Jean-
Paul Fallot, and Christian Michel have proposed in 1998 a first evolutionary model on the
{A,C,G, T} alphabet that is based on trinucleotides [AFM98]. With such a model, the
mutation matrix has now a size 64 x 64 (there are 64 trinucleotides). In this model, the 3
parameters p, q, r correspond, for a given trinucleotide XY Z, to the probability p of muta-
tion of the first nucleotide X, the mutation probability ¢ of Y, and the probability r that Z
mutates. As for the nucleotides based models, this new approach has taken into account
only constants parameters. In 2004, Jacques M. Bahi and Christian Michel have pub-
lished a novel research work in which the model of 1998 has been improved by replacing
constants parameters by new time dependent parameters [BM04]. The common point of
all the models studied by Michel et al. is that almost all their mutation matrices are sym-
metric. Finally, Jacques M. Bahi and Christian Michel have recently introduced in [BG08],
a last model with 3 constant parameters, but whose evolution matrix evolves over time. In
other words, trinucleotides that have to mutate are not fixed, but they are randomly picked
among a subset of potentially mutable trinucleotides. CM model outperforms largely the
standard models, being closer to the observed frequencies of trinucleotides (for the evi-
dences of such a claim, see [BM08a]).

The starting point of [BGPa] is to investigate possible reasons justifying the performance
of the CM model. Obviously, to suppose that not all of the trinucleotides have to mutate
at each time is reasonable as, for instance, the stop codons have very small mutation
probabilities. However, such a biological claim is not sufficient to explain the success of
the CM model to simulate with accuracy the dynamics of mutations into genomes. Our
proposal is that the dynamics of genomes evolution is indeed chaotic, as it is defined by
the Devaney’s formulation. This is why linear non-chaotic models of evolution are far from
what they attempt to model, leading to a poor accuracy in their prediction. Contrarily,
we have recalled that discrete dynamical systems in chaotic iterations mode satisfy the
Devaney’s definition of chaos. Thus the CM model, which is based on chaotic iterations,
uses a chaotic dynamical system to describe a chaotic behavior, leading to a nucleotides
mutation model of the same nature than the phenomenon under study.

We have demonstrated in [BGPa] that, contrary to inversions and transpositions, muta-
tions occurring in genomes have a chaotic dynamics. In particular, such results imply
that linear models for nucleotides evolution prediction are quite irrelevant. Let us remark
that, as emphasized in the partial but representative literature survey presented above,
mathematical models for DNA evolutionary changes have majorly focused on stochastic
models for nucleotide mutations, whereas [BGPa] is more largely concerned by model-
ing the dynamical behavior of the “evolutionary history” of a DNA sequence. In other
words, existing researches use probabilistic models, while we have regarded in [BGPa]
the predictable character of DNA evolution under mutations, inversions, and transposi-
tions. This is why the proposed approach necessitates to redefine the well-known op-
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erations of mutations, inversions, and transpositions as dynamical systems on relevant
topological spaces, leading to formulations of DNA evolution quite different from existing
well-established researches. The contribution [BGPa] is summarized thereafter.

9.1.2/ GENOMICS MUTATIONS AS A DISCRETE DYNAMICAL SYSTEM

9.1.2.1/ PRESENTATION OF THE PROBLEM

As stated previously, the question raised by this research work is to determine whether
the evolution of a DNA sequences under evolution can be predicted or not. Obviously,
this questioning is related to the determination of the possible chaotic nature of such an
evolution.

In this section, we will more specifically focus on the following problems. Firstly, given
a genome (or any DNA sequence) G of interest, and a more or less precise idea of
mutations that it will probably face in future (for instance, some areas into the genomes
are known to mutate more frequently than other ones), is it possible to infer a set of the
most probable genomes that can result, in the future, from this original sequence G after
mutations ? Secondly, given a sequence known at the current generation (say, at time
t™), is it possible to determine what was the most probable aspect of this sequence in the
past (at time t"™, m < n)? Thirdly, given two DNA sequences, the second one being the
result of some mutations on the first one, is it possible to discover the mutations sequence
that has changed the first sequence in the second one (taking into account the fact that a
given nucleotide can mutate several times).

Obviously, with no information about the mutation rate and history of the considered DNA
sequence, this prediction is quite impossible. But what appends if we can follow the
DNA sequence on some generations, learning by doing so information about the possible
form of its mutations sequence ? For instance, following a lineage of Escherichia coli
during 40000 generations [LMO08] gives us a lot of information concerning the behavior of
mutations in the genomes of the considered lineage. Is it possible to use this knowledge
to predict the genome of this lineage at generation number 45000 ? In other words,
knowing the initial DNA sequence G° at time ¢° and the 40000 first terms of the mutations
sequence, can we predict the DNA sequence at time #4500 ?

With  the knowledge of G° and the whole mutations sequence
S = (8Y,...,8%000) " the genome G*° can be obtained without prediction, but what
happens to our capability to make prediction when using only the head (S°, ..., 540000)
of this sequence ? This head can be seen as an approximation of the true mutations
sequence S, and if the evolution dynamics of the mutations is quite stable through
approximations, then this prediction makes sense. Following [BGPa], to measure the
stability of the mutations dynamics through small errors or approximations, and the
capability to predict the evolution of genomes under mutations, we must firstly write this
mutation operation as a dynamical system, provide an accurate distance that corre-
sponds to the “approximation” cited below, and measure the effects of our ignorance on
the complete mutations sequence on the prediction of genomes evolution.
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9.1.2.2/ FORMALIZATION OF DNA MUTATION EVOLUTION

A genome having N nucleotides is formalized here as a sequence of N integers belonging
into {1, 2, 3,4}, where 1 (resp. 2,3, and 4) refers to the adenine (resp. cytosine, guanine,
and thymine). An evolution under nucleotides mutations of this genome is a sequence of
couples of [1,N] x [1, 4], where we suppose that [BGPa]:

+ time has been divided into a sequence t°,¢!,...,t",... such that at most one muta-
tion can occur between two time intervals,

« the i—th couple of the mutation sequence is equal to (m, n) if and only if the m—th
nucleotide of the genome is replaced into the nucleotide n. If the m—th nucleotide
was n, then no mutation has occurred at time #*.

Such a sequence will be called “mutations sequence” in the remainder of this chapter.

SN = U ([1,N] x [1,4])™ will denote the (infinite) set of all possible mutations (finite)
neN

sequences. We introduce the phase space Ay = [1,4]N x Sy as the set of mutating

genomes. It is constituted by couples of points that store the information of a genome
and its future evolution: the first coordinate of the couple is the current DNA sequence
whereas the second coordinate is the sequence of mutations that will appear in the future
(the problem is that this sequence can only be, in the best case, approximated con-
cretely).

Example '2. For instance, the point ((1,1,2,1,3),((2,2),(2,3), (1,4))) € X5 corresponds
to the evolution {AACAG, ACCAG, AGCAG, TGCAG}: the left coordinate (1,1,2,1,3)
means that we start with the sequence AACAG, whereas the second coordinate
((2,2),(2,3),(1,4)) explains that:

1. the first mutation (2,2) is a substitution of the second nucleotide by C,
2. the second mutation (2, 3) is a substitution of the second nucleotide by G,

3. the third and last mutation (1,4) refers to the substitution of the first nucleotide by
T, which is designed here by 4.

Before describing the mutation operation on the phase space X\, let us highlight the
following points [BGPa].

 Mutation sequences like S = ((2,2), (2,2), (2,2)) are accepted, even if there actually
is no change happening. Such sequences are useful to describe an absence of
mutation during two time units, which is, biologically speaking, relevant.

» Multiple changes cannot occur simultaneously. However, such a situation can be
taken into account by considering sequences of sets of couples, instead of se-
quences of couples. This generalization is realizable by adapting, mutatis mutan-
dis, the remainder of this section by considering such sets sequences. However,
we do not see fit to burden the proposed model, as it is easy to check that proofs
presented in what follows continue to hold in this more general set.
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Let us now introduce the initial and shift operators i and o defined respectively by

Q: SN — [1,N] x [1,4]
(s%s1,..)) — Y
and
o: SN — SN
(9,8, ..)) — (s',82..)).

With this material introduced in [BGPa], the mutation operation M over Xy can be written
as follows: M : Ay — X, s.t.

M((G1,...,Gn),S) = ((G1,- ., Gy),-1,i(9)2, Gi(s), 41, - - -, Gn), 0(9)) -

In other words, the nucleotide at position i(.S); in the genome (G, ..., Gy) is replaced by
the nucleotide i(.5)2, and the first substitution (.5) in the mutation sequence S is removed
(as the mutation has already been achieved). Thus the DNA evolution as the generations
pass can finally be written as the following discrete dynamical system [BGPa]:

(9.1)

X0 = (G 8) e Ay
Xn+1 — M(XTL)

Example '3. Let us consider Example 12 another time. As stated before, X° =
((1,1,2,1,3),((2,2),(2,3),(1,4))) € &s5. Then X' = M(X% = ((1,2,2,1,3),
((2,3),(1,4))), X2 = M(XYH) = ((1,3,2,1,3), ((1,4))), and X3 = M(X?) =
((4,3,2,1,3),2). The last DNA sequence, obtained after 3 mutations (3 iterations of the
dynamical system), is thus equal to G® = X3 = (4,3,2,1,3), which is TGC AG.

Using this natural formalism, it has been possible to study whether the genomic evolution
under mutations can be predicted or not in [BGPa]. A question that can immediately
strike one is how chaotic behavior can be studied in the space of genomic sequences of
predetermined length N, which is a discrete finite space. That is, how would topological
analysis be pursued ? Indeed, a careful look reveals that the space is not really that of a
genomic sequence, but instead the space of the evolutionary history of such a sequence,
which is a discrete but infinite space. As explained previously in this manuscript, the
discrete character of the infinite phase space is not a problem, as the sole requirement
when studying the chaotic behavior of a recurrent sequence on a set X is that X is a
topological space and that the iteration function is continuous for the associated topology.

9.1.2.3/ A METRIC FOR MUTATION BASED GENOMES EVOLUTION

A relevant metric has then been introduced in [BGPa], in order to measure the correctness
of the prediction, and to give consistency to the notion of approximation that has been
used several times in the previous section. Let us remark that this metric is not a measure
of similarity between two genes or DNA sequences, like the Needleman-Wunch or the
Smith-Waterman measures. It intends to measure the distance between two observed
evolutions of DNA sequences.

This metric must be defined on the set Xy, to detail how close is a predicted DNA evolu-
tion to the real one. It has been constructed as follows [BGPa). Given X = (X1, X»),Y =
(Y1,Y2) € A, the number d(X,Y):
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* has an integral part that computes the differences between the two DNA sequences
X (for instance, the predicted or approximated genome) and Y; (the real genome),
that is, the number of nucleotides that do not correspond in the two genomes (Ham-
ming distance).

* has a fractional part that must be as small as the evolution processes X,Y will
correspond for a large duration. More precisely, the k—th digit of d(X,Y") will be
equal to 0 if and only if, after £ generations, the same position (nucleotide) will be
changed in both X; and Y; genomes, and the same nucleotide is inserted in each
case.

Such requirements has led to the introduction of the following function [BGPa]:
VX,Y € X\, d(X,Y) = dg(X1, Y1) + dg(Xa, Y5)
where

N
da(X1,Y1) = Y 6(XF,YP),

k=1
9 ¢ F(X5 - YF)
ds(X2,Ys) = N Z o
k=0
. . . . 1ifz # v,
where ¢ is the discrete metric on R, that is, for z,y € R, d(z,y) = 06l and
else,

F : R? — R* is given by F(z1,22) = |z1] + §(0,z2). It has been possible to prove
that [BGPa],

Proposition 2°. Function d is a metric on Xy.

9.1.2.4/ THE TOPOLOGICAL STUDY OF MUTATIONS

We have firstly proven in [BGPa], using the sequential characterization of the continuity,
that,

Proposition 2'. The mutation operation M is a continuous function on (Xy, d).

It has then been demonstrated that M is regular and (strongly) transitive on (&Xy,d),

[§J+1

and that it has a constant of sensitivity equal to N + . We thus have claimed

that [BGPa],

Theorem '2. Mutations that occur into genomes have a chaotic behavior according to
Devaney.

Further investigations of the topological behavior of mutations has then been realized
in [BGPa]. We have firstly deduced that genomic mutations possess the instability prop-
erty: in all neighborhoods of any genome evolution (G, S) there are points that can be
separated with distance bigger than ¢ in the future through mutations. We then have
shown that the mutation operator M is expansive, and its constant of expansiveness is at
least equal to 1. Additionally, topological transitivity implies indecomposability: reducing
the size of the genome or DNA sequence in order to simplify its complexity, is impos-
sible. And, lastly, genomic mutations are topologically mixing, and chaotic according to
Knudsen on (Xy, d). See [BGPa] for detailed proofs of these results.
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9.1.2.5/ DISCUSSION

Conclusion of this study of mutations is that they present a chaotic behavior leading to
the impossibility to measure the long term effect of an error in predicting the location
and frequency of mutations into genomes. In the worst case scenario, this error will be
amplified until having a completely different genome (all the nucleotides are different, as
the constant of sensibility is greater than the length of the genome). However this case
is rather marginal, mutations do not occur so frequently as the generations pass, and a
mutation implies a change of only one nucleotide, leading to the opinion that, at least
in short term, the general aspect of the genome under consideration still remains under
control when only mutations occur.

Inversion and transpositions are other genomics rearrangements that mostly affects more
than one nucleotide. Thus an error in the prediction of these operations can potentially
impact more largely the genome evolution. This is why their dynamics have been studied
in [BGPa], to measure the impact of error prediction.

9.1.3/ INVESTIGATING THE DYNAMICS OF TWO OTHER GENOMICS REARRANGE-
MENTS

We have firstly regarded in [BGPa] the case of inversions. To do so, some definitions
useful to formalize them have been introduced, they are recalled below.

Definition 0. The complementary function c : [1,4] — [1,4] is defined by c(1) = 4,
c(4) =1,¢(2) =3,andc(3) = 2.

Then the complement of adenine A is thymine T, and ¢(2) = 3 means, for instance, that
the complement of cytosine is guanine. We then have defined the inversion process on a
chromosome:

Definition ®'. Let N € N*, and (ny,...,nn) a chromosome. Inversions have the form:
(nl, PN 73 N £ 7 17 R ,?7,3;1 nj,njﬂ, ey nN) —

(N1, snim1,c(ng).c(njq) ... c(nier). c(ni), njii, ..., nN).

For instance, ACCTGTAATGTTA is a possible inversion of
ACCTTTACTGTTA. Obviously, it is impossible to map the DNA sequence
AAAAAAAA into CCCCCCCC using only inversions, as the complement of A is
T. This fact is in contradiction with the property of transitivity, leading to the statement
that [BGPa],

Theorem 3. The inversion rearrangement is not chaotic on the set of all genomes of size
N.

We have then investigated the case of transposons. Transposons are DNA se-
quences that can move into a given genome following a cut and paste mech-

anism’: (nl, RN 7 1 NN 1 2 R 7 B RN () P 17 "N B nN) — (nl, ey M1, MG, -,
Ny iy .. M, N1, - - -, iy ). Obviously this transposition cannot fit the requirements of

"Transposons will be more systematically studied at the end of this chapter
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transitivity, as the number of adenines, thymines, guanines, and cytosines are preserved.
Then, for instance, it is impossible to join a genome with an high rate of thymine, starting
transpositions on a genome with a low rate of 7. Thus [BGPa],

Theorem 4. Transposition of transposons is not chaotic according to Devaney,.

We thus have stated in [BGPa] that transpositions and inversions alone do not exhibit a
chaotic behavior, without constructing rigorously a related dynamical system (as explicit
counter-examples have been provided).

9.2/ THE SPECIFIC CASE OF NUCLEOTIDE MUTATIONS

9.2.1/ INTRODUCTION

We have presented at the beginning of this chapter a short review in mutations model-
ing. Other works of interest have been published on related models (codon-substitution
model) in [YNH98, Miy11]. However, due to mathematical complexity, the matrices that
have been investigated in state of the art to model evolution of DNA sequences are al-
ways limited, either by the hypothesis of symmetry or by the desire to reduce the number
of parameters under consideration. These hypotheses allow their authors to solve theo-
retically the DNA evolution problem by computing directly the successive powers of their
mutation matrix. However, one can wonder whether such restrictions on the mutation
rates are realistic.

Focusing on this question, we have used in [BGP12a] a recent research work of Lang and
Murray [LMO08], in which the per-base-pair mutation rates of the Yeast Saccharomyces
cerevisiae have been experimentally measured. The results of [LM08], which are sum-
marized in Table 9.1, as led in [BGP12a] to the following mutation matrix for gene ura3:

6 8
40m 11m l%nz
1-m —

T |

% & s O

— = = 1-m

23 23 23
where m is the mutation rate per generation in ura3 gene, which is equal to 3.80 x
10~'%/bp/generation, or to 3.0552 x 10~"/generation for the whole gene [LM08]. Similarly,

the mutation matrix for canl gene can be computed, which is equal to:

i Mmoo dm
LT 10 10
21m I9m 20m
2= oy 2= 22
50 50 50
40m  12m 20m |
= = q4_, ==
72 72 72
I9m 4dm 5m
fme oMy

18 18 18
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Mutation ura3 CANI1
T—-C 4 4
T - A 14 9
TG 5 5
C—->T 16 20
C— A 40 21
C -G 11 9
A—-T 8 4
A—-C 6 5
A—G 0 1
G->T 28 20
G—-C 9 12
G— A 26 40
Transitions 46 65
Transversions 121 85

Table 9.1: Summary of sequenced ura3 and canl mutations [LM08]

with m = 6.44 x 10~'%/bp/generation, or 1.1418 x 10~%/generation for the whole canl gene.

We thus have deduced, in the Third International Conference on Computational Systems-
Biology and Bioinformatics (CSBio 2012 [BGP12a]), that none of the existing genomes
evolution models can fit such mutation matrices. This deduction leads to the fact that hy-
potheses must be relaxed, even if this relaxation implies less ambitious models: current
models do not match with what really occurs in concrete genomes, at least in the case of
this yeast. Having these considerations in mind, the data obtained by Lang and Murray
have been used in [BGP12a,BGP12b] and further deepened in [BGPb], in order to pre-
dict the evolution of the rates or purines and pyrimidines in the particular case of ura3.
Mathematical investigations and numerical simulations have been proposed, focusing on
this particular gene and its associated matrix of size 2 x 2 (purines vs. pyrimidines), and
of size 3 x 3 (cytosines and thymines compared to purines). [BGP12a,BGP12b] focus on
two particular matrices, while the extension [BGP12a] investigates systematically all the
possible mutation matrices of sizes 2 x 2 and 3 x 3. These research works are summed
up in this section.

9.2.2/ NON-SYMMETRIC MODEL OF SIZE 2 x 2

In this section, our first general genome evolution model focusing on two populations
of interest is recalled [BGP12a,BGP12b]. These two populations can be “purines and
pyrimidines”, “cytosine and other nucleotides”, or “stop codons and other codons” for
instance. This first model has been introduced in [BGP12a, BGP12b] to illustrate the
generality of the proposed method, and as a pattern for further investigations. It is applied

to the case of purines versus pyrimidines rates in the yeast Saccharomyces cerevisiae.
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Nucleotides Evolution Rates

— Purine

0.56) — Pyrimidine ||

0 1 2 3 4 5 6 7 8 9
Time (1 unit = 400000000 generations)

Figure 9.1: Prediction of purine/pyrimidine evolution of ura3 gene in symmetric Cantor
model.

9.2.2.1/ THEORETICAL STUDY

Let X and Y denote respectively the occurrence frequency of the two populations of

interest in a biological sequence (nucleotides, trinucleotides, etc.), and M = < Z b >

d
the associated mutation matrix, with a = P(X — X), b= P(X - Y),c= P(Y — X),
and d = P(Y — Y) satisfying
b=1
{a’ =4 9.2)
c+d=1,

andthusM=<a 1_a’>.
c 1—c¢

The initial probability is denoted by Py, = (X, Yj), where X, and Y|, denote respectively
the initial frequency of the two populations. So the occurrence probability at generation
nis P, = PyM™, where P, = (X(n) Y (n)) is a probability vector such that X (n) (resp.
Y (n)) is the rate of the first (resp. second) population after n generations.

We have proven in [BGPDb] the following result.
Theorem 15. Consider a DNA sequence under evolution, whose mutation matrix is M =

(“ I—a > witha = P(X — X) andc = P(Y — X).

c 1—c¢

e Ifa =1,¢c =0, then the frequencies of X andY do not change as the generation
pass.

» Ifa = 0,c = 1, then these frequencies oscillate at each generation between (X, Yp)
(even generations) and (Y, Xy) (odd generations).

» Else the value P, = (X(n) Y(n)) of frequencies at generation n is convergent to
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Nucleotides Evolution Rates

— Purine
0.56) — Pyrimidine|

0 1 2 3 4 5 6 7 8 9
Time (1 unit = 1 mutation)

Figure 9.2: Prediction of purine/pyrimidine evolution of ura3 gene in non-symmetric Model
of size 2 x 2.

the following limit:

Let us finally remark that this theorem encompasses and generalizes the well-known “RY-
coding”, as used for instance in [PLHPO1].

9.2.2.2/ NUMERICAL APPLICATION

For numerical application, we have considered in [BGP12a, BGP12b] mutations rates
in the ura3 gene of the Yeast Saccharomyces cerevisiae, as obtained by Gregory |I.
Lang and Andrew W. Murray [LMO08]. As stated before, they have measured pheno-
typic mutation rates, indicating that the per-base pair mutation rate at ura3 is equal to
m = 3.0552 x 10~ 7/generation. For the majority of Yeasts they studied, ura3 is consti-

tuted by 804 bp: 133 cytosines, 211 thymines, 246 adenines, and 214 guanines. So
246 + 214 133 + 211 . . .
Ry = JT ~ 0.572, and Yy = ;T ~ 0.428. Using these values in the his-

torical model of Jukes and Cantor [JC69], we have obtained the evolution depicted in
Figure 9.1. Theorem 15, for its part, has allowed us to compute the limit of the rates of
purines and pyrimidines [BGP12a,BGP12b]:

« Computation of probability a: « = P(R > R) = (1-m)+P(A - G)+P(G — A).

The use of Table 9.1 implies that @ = (1 — m) + m <0 + 20

6+8+28+9
T

>, where z is such that

1a=P(RHY)=m( ),i.e.,x:77,andsoa=157h7n.
« Computation of probability c: Similarly, c = P(Y - R) = P(C — A) + P(C —
G)+P(T—-A)+PT—-G)= T,whereasl—c=1—m+2(;m. Soc= %n
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The purine/pyrimidine mutation matrix that corresponds to the data of [LM08] is thus equal

to [BGP12a,BGP12b]:
| flm 5lm
(M )
9

1-— =
9

Using the value of m for the ura3 gene leads to 1 — a = 2.02357 x 1077 and ¢ =
2.37627 x 10~7, which can be used in Theorem 15 to conclude that the rate of pyrimidines
is convergent to 45.992% whereas the rate of purines converge to 54.008%. Numerical
simulations using data published in [LMQ8] are given in Figure 9.2, leading to a similar
conclusion [BGP12a,BGP12b].

9.2.3/ A FIRST NON-SYMMETRIC GENOMES EVOLUTION MODEL OF SIZE 3 x 3
HAVING 6 PARAMETERS

In order to investigate the evolution of the frequencies of cytosines and thymines in the
gene ura3, a model of size 3 x 3 compatible with real mutation rates of the yeast Saccha-
romyces cerevisiae has been presented in [BGPb].

9.2.3.1/ FORMALIZATION

Let us consider a line of yeasts where a given gene is sequenced at each generation, in
order to clarify explanations. The n—th generation is obtained at time n, and the rates of
purines, cytosines, and thymines at time n are respectively denoted by Pr(n), Po(n), and
Pr(n).

Let a be the probability that a purine is changed into a cytosine between two generations,
that is: a« = P(R — C). Similarly, denote by b,c,d, e, f the respective probabilities:
P(R—-T),P(C—>R),P(C—-T),P(T— R),and P(T — C). Contrary to what is often
required, P(R — () is not supposed to be equal to P(C — R), and the same statement
holds for the other probabilities. For the sake of simplicity, we will consider in [BGPb] that
a,b,c,d, e, f are not time dependent. Let

1—a-—> a b
M = c 1—c—d d
e f l—e—f

be the mutation matrix associated to the probabilities mentioned above, and P,, the vector
of occurrence, at time n, of each of the three kind of nucleotides. In other words, P,, =
(Pr(n) Pc(n) Pr(n)). Under that hypothesis, P, is a probability vector: Vn € N,

* Pg(n), Pc(n), Pr(n) € [0,1],
* Pr(n) + Poc(n) + Pr(n) =1,
Let Py = (Pg(0) Pc(0) Pr(0)) € [0, 1]? be the initial probability vector. We have obviously:

Pr(n+1) = Pr(n)P(R — R) + Pc(n)P(C — R) + Pr(n)P(T — R).
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Similarly, Po(n + 1) = Pr(n)P(R — C) + Pc(n)P(C — C) + Pp(n)P(T — C) and
Pr(n+1) = PrR(n)P(R —T) + Pc(n)P(C — T) + Pr(n)P(T — T). This equality yields
the following one,

P, =P, 1M = PoM". (9.3)

In [BGPb], we have wondered if, given the parameters a, b, ¢, d, e, f as in [LM08], one can
determine the frequency of occurrence of any of the three kind of nucleotides when n is
sufficiently large, in other words if the limit of P, is accessible by computations.

9.2.3.2/ RESOLUTION

Determination of A/" in the general case. The characteristic polynomial of M is equal
to [BGPDb]
xu(z) =(z—1) (w2+(s—2)x—|—(1—s+p)),
where
s=a+b+ct+d+e+ f,
p=ad+ae+af+bc+bd+bf +ce+cf+de,
det(M)=1—s+p.

The discriminant of the polynomial of degree 2 in the factorization of x,; is equal to
A= (5—2)2—4(1 —s—p) = s?—4p. Let 21 and x5 the two roots (potentially complex or

equal) of s, given by
_ 2 _
s—|—2+2«/s 4p. (9.4)

—s+2— /s —4dp

2

and zo =

xIr1 =

Letn e N,n > 2. As xy is a polynomial of degree 3, a division algorithm of X™ by s (X)
leads to the existence and uniqueness of two polynomials @,, and R,,, such that

X" = Qn(X)XQ(X) + Rn(X)7 (95)

where the degree of R, is lower than or equal to the degree of y s, i.e., Ry (X) = a, X? +
bnX + ¢, With a,,, by, ¢n, € R for every n € N. By evaluating © in the three roots of x,
we find the system

1 =a,+b,+c,
T o= anx% + bpr1 + cp

1
o= an:c% + byxo + Cp

)
This system is equivalent to
cn + by + an =1
bo(x1—1) + ap(z?—1) =27 -1
bn(ze —1) + an(x% —-1) =az5-1
If we suppose that =1 # 1, 22 # 1, and x1 # x2, then standard algebraic computations
have led in [BGPb] to

Ap =

1 zy—1 ot -1
Tro — T 332—1 a;l—l ’

r1+1 x3—1+ o+ 1 27 —1
1 —ToTo—1 xz9g—x121—1"

by =

| cn=1—a, —b,.
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Using for i = 1,2 and n € N the following notation,

n_
zp —1

Xi(n) = P (9.6)
and since x5 — x1 = VA, the system above can be rewritten as [BGPb]
[ _ X)) = Xi(n)
n \/Z b
(2 + 1) Xi(n) — (21 + 1) X2(n)
{ b, = , 9.7
VA ®7)
.T1X2(n) — ngl (TL)
n=1+ :
| € VA

By evaluating 9 in M and due to the theorem of Cayley-Hamilton, we finally have for
every integern > 1,

M"™ = a,M? + b, M + c,I3, (9.8)

where I is the identity matrix of size 3, a,,, b,, and ¢, are given by 7 and M? is given
by [BGPb]

a® + 2ab + ac — 2a —a® —ab —ac —ab + ad — b?
+b2+be—2b+1 | —ad+2a+bf —be —bf +2b
M2 —ac — be — ¢? ac + ¢ + 2cd — 2c bc — cd — d?
B —cd+2c+de | +d>+df —2d+1| —de—df +2d
—ae —be +cf ae —cf —df be + df + €% + 2ef
—e? —ef +2¢ —ef — f2+2f | -2+ f2-2f+1

Determination of /" in particular situations. Formulations of -7) only hold for z; #
x9, 1 # 1, and x4 # 1. We then have investigated in [BGPb] these latter cases.

Preliminaries. Let us firstly remark that, as the mutation matrix M is stochastic, we have
necessarily0 <a+b<1,0<c+d<1,and 0 < e+ f < 1. These inequalities imply that

e [0,3]. Consequently from the definition of p one can check that p = ad + a(e + f) +
blc+d)+bf +cle+ f)+de<ad+a+b+bf +c+ de < s, as each parameter is in [0, 1].
To sum up,

0<p<s<3. (9.9)
Suppose now that A > 0. Then (@4 and ©9) imply that [BGPb]
xl:we[_g;”’mzwe [_;’;} (9.10)

Suppose that x; = 1. Then —s = /s? —4p <= s =p=0. Soa=b=c=d =
e = f = 0, and the mutation matrix is equal to the identity of size 3. Conversely, if
a=b=c=d=e=f=0,thenz; = 1.

In that situation, the system does not evolve [BGPD].
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Suppose that 5 = 1 (and 2; # 1). Then s = 1/s?2 —4p < p = 0. In that situation,
z1 = 1 — s. Let us consider ) another time: X" = Q,(X)x2(X) + anX? + b, X + c,.
1 is root of multiplicity 2 of y2, whereas z; = 1 — s is its third root. As the case z; = 1
has already been regarded, we can consider that s # 0. These facts lead to the following
system:

1 =ap+by+cy,
n = 2ap, + by,
(1—35)" =(1-35)%a, + (1 —8)by + cp.

Standard computations, not detailed here, have led us to the following formula [BGPb]:

_ —l+sn+(1—s)"

n — 2 Y

b (39) +8(32—2s)n+(8—3)(1—8)”’ (9.11)

(5= 1)(25 — 1) — s(s — 1)2n — (2 — 35 + 1)(1 — s)"
52 '

Cp =

Case 71 = 25 # 1 (A = 0). Then ®19 implies that z; = 1 — s/2 € [-3,1). From a
differentiation of %) one deduces that z; satisfies the following system for every n € N*,

1 =a, + b, + ¢y,
b = anx% + bpr1 +
nx’f_l = 2a,x1 + by,

Standard algebraic computations, detailed in [BGPb], give, since z1 # 1,

271 Xa(n)

ZL‘1—1 :L'1—1

ap =N

by = X () — an(a1 +1) (9.12)

 chn=1—a, b,

where X (n) is defined in (),

9.2.3.3/ CONVERGENCE STUDY

Convergence study in the general case We suppose in this section that x; # o,
z1 # 1, and x5 # 1. So formulations of ©7) hold for a,,b,, and ¢,. We have split the
study convergence in several sub-cases in [BGPb]. All obtained results are recalled here
without proof.

Theorem 6. Suppose that |z,| < 1 and |zs| < 1. Then the frequencies Pg(n), Po(n),
and Pr(n) of occurrence at time n of purines, cytosines, and thymines in the considered
gene, converge to the following values:

ce+cf +de+ (df —bf)Pr(0)
p—bf+df

g PR(TL) —>
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ae + af +df + (df —bf)Pc(0)

* Pc(n) — P
_ ad + be + bd + (df — bf)Pr(0)
Pr(n) — b bf +df

Theorem 7. Suppose that |z1| > 1 and |z»| < 1, where z; and x- are given by %4, Then
the evolutionary model is well formulated if and only if —M? + (zo + 1)M — 2913 = 0. In
that case, we have

. Pg(n) —> (1-—a—-b— m)PIf(E)x—; cPc(0) + ePr(0) ,
+ Pol) — PO ]d__xf”PC(m +1Pr(0)
* and Pr(n) — Lal0) + 20) J1r£1:c_2 e~ f—2)Pr(0)

Theorem '8, Suppose that |x1| < 1 and |zs| > 1, where z; and x» are given by 4. Then
the evolutionary model is well formulated if and only if M? — (z1 + 1)M + x113 = 03. In
that case, we have (Pr(n) Pc(n) Pr(n)) — (Pr(0) Po(0) Pr(0)) x My.

Theorem . Suppose that |z1| > 1 and |z,| > 1, where z; and x5 are given by ®*). Then
the evolutionary model does not evolve in time : P, = P, for every n € IN.

Theorem 20, Using the notations as previously, suppose that |z1| = 1,2z, # 1, and |zs| #
1. Then the evolutionary model is not convergent. More precisely, we have:

e Pr(2n) = (a® + 2ab + ac — 2a + b? + be — 2b + 1) Pr(0) + (—a® — ab — ac — ad + 2a +
bf)Pc(0) + (—ab + ad — b* — be — bf + 2b) Pr(0),

e PR< +1 (1 —a—b)PR( ) aPC( bPT(O)

+1) =
* Po(2n) = (—ac —be— c® — cd + 2¢ + de) Pg(0) + (ac + ¢ + 2¢d — 2¢ + d* + df — 2d +
1)Pc(0) + (be — c¢d — d? — de — df + 2d) Pr(0),

 Po(2n+ 1) = ¢Pg(0) + (1 — ¢ — d)Po(0) + dPp(0),

e Pr(2n) = (—ae—be+cf —e —ef +2e)Pr(0) + (ae —cf —df —ef — f2+2f)Pc(0) +
(be +df + €%+ 2ef —2e + f2 —2f +1)Pp(0),

e Pr(2n+1) = ePr(0) + fPo(0) + (1 — e — f)Pr(0),

Theorem 2'. /f |zy| = |xo|, but z1,22 € C\R, then (Pg(n) Pc(n) Pr(n)) =
(Pr(0) Po(0) Pr(0)) x (anM? + b, M + c,I3), where

sin ("70) sin ((R_Tl)e)

T = sin (%) sin(f)
2 sin ("29) sin (%) cos (g)
° bn = 5
sin(0) sin (g)
i (10 o; (n=3)0
Cn:l_sm(2)sm( 5 )

sin(@) sin (g)

with e = ;.
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Convergence study in particular situations The case where z; = 1 has already been
discussed, it implies thata = b =c =d = e = f = 0, and so the system does not evolve.
Let us investigate the other particular situations.

Theorem 22, Using the same notations as above, suppose thatp = 0 (or zo = 1, which is
equivalent). Then the system is well formulated if and only if M? +s(s—2)M — (s —1)2I3 #
0. In that situation, we have:

. either s €]0,2], and so (Pp(n) Po(n) Pr(n)) — (Pa(0) Po(0) Pr(0)) x
8—12[—M2 L s(3— )M + (s —1)(25 — 1)I3].

e ors = 2, and so (Pr(2n) Pc(2n) Pr(2n)) — (Pgr(0) Pc(0) Pr(0)) whereas
(Pr(2n+1) Pc(2n+1) Pr(2n+ 1)) — (Pgr(0) Po(0) Pr(0)) x (—2M? + 4M +
21I3).

Theorem 23. Using the same notations as previously, suppose that (a+b+c+d+e+ f)? =
4(ad + ae + af + bc + bd + bf + ce + cf + de).

Then the probabilities Pr(n), Pc(n), and Pr(n) of occurrence at time n of a purine, cyto-
sine, and thymine on the considered nucleotide, converge to the following values:

. Pp(n) — ;%(ce +ef +de)(Pr(0) + Po(0) + Pr(0)),
. Po(n) — ;iz(ae + af + bf)(Pr(0) + Po(0) + Pr(0)),

* Pr(n) — Si;(ad + bc + bd)(Pr(0) + Pc(0) + Pr(0)).

9.2.4/ APPLICATION IN CONCRETE GENOMES PREDICTION

We have considered another time in [BGP12a, BGP12b] the numerical values for mu-
tations published in [LMO08]. Gene ura3 of the Yeast Saccharomyces cerevisiae has
a mutation rate of 3.80 x 10~'%/bp/generation [LM08]. As this gene is constituted by
804 nucleotides, we can deduce that its global mutation rate per generation is equal to
m = 3.80 x 10719 x 804 = 3.0552 x 10~ 7. Let us compute the values of a, b, c,d, e, and f.
The first line of the mutation matrix is constituted by 1—a—b = P(R — R),a = P(R - T),
andb = P(R — C). P(R — R) takes into account the fact that a purine can either be pre-
served (no mutation, probability 1 — m), or mutate into another purine (A — G, G — A).
As the generations pass, authors of [LM08] have counted 0 mutations of kind A — G, and
26 mutations of kind G — A. Similarly, there were 28 mutations G — T'and 8: A — T,
s036: R — T. Finally, 6: A - C and 9: G — C lead to 15: R — C mutations. The
total of mutations to consider when evaluating the first line is so equal to 77. All these

. . 26 36 15
considerations lead to the factthat 1 —a — b = (1 —m) + Moy @ = 7—77% and b = 7—77”
19m 4m, 51m 16m
A similar r ning | =—,d=—,e=——,an = —.
similar reasoning leads to ¢ 53 23,6 67,a df =
205m 207488m?
In that situati = ="~ 8134 x 1077 = =~
n that situation, s =a+b+c+d+e+ f = 8.134 x 10~ 7, and p 118657

854221m? m (205 854221
1632 x1078. S0 A =82 ~-dp=———— >0,21=1— — | — ——— ), and
8 ST 9136589 M 2 (77 "\ 9136589
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Nucleotides Evolution Rates
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Figure 9.3: Prediction of evolution concerning the purine, thymine, and cytosine rates in
ura3. Non-symmetric Model of size 3 x 3.

m [ 205 /| 854221
we have, due to Theorem 16:

ce +cf +de+ (df —bf)Pr(0)
p—0bf +df

* Pp(n) —

ae +af +df + (df —bf)Pc(0)

* Foln) = b b+ df

ad + be + bd + (df — bf)Pr(0)
p—bf +df

b PT(n) —>

. . 4
Using the data of [LM08], we have found in [BGP12a,BGP12b] that Pr(0) = 460 ~ 0.572,

804
133 211
Fo(0) = oo ~ 0.165, and Pr(0) = oo ~ 0.263. S0 Pr(n) — 0.549, Fe(n) — 0.292,

and Pp(n) — 0.159. Simulations corresponding to this example are given in Fig. 9.3,
they confirm these values.

9.3/ STUDYING THE TRANSPOSABLE ELEMENTS

We have continued to investigate the different ways the genomes evolve over time, which
has led to first results regarding the (retro)transposition of transposable elements. This
work in progress is realized with colleagues of the Laboratoire de Mathématique de
Besancon (Alexei Lozinsky, Romain Biard, and Landy Rabehasaina) and of Chrono-
environnement (Antone Perasso).
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9.3.1/ INTRODUCTION

A transposable element (TE, transposon or retrotransposon) is a DNA sequence that can
change its position within the genome. TEs are thus mobile (they represent one of several
types of mobile genetic elements), self-replicating, moderately repeated, and ubiquitous
DNA sequences. They are powerful mutators by inserting themselves into genes and
their regulatory regions, and by promoting chromosomal rearrangements, as they consti-
tute a high proportion of genomes: they represent 40% of the human genome, 15% of
the genome of Drosophila melanogaster, and up to 95% of the genome in some plants.
These elements have thus played a significant role in species evolution and population
adaptation.

TEs are assigned to one of two classes according to their mechanism of transposition,
which can be described as either copy and paste (class | TEs) or cut and paste (class I
TEs).

» Retrotransposons (class I): These elements, which are quite similar to retro-
viruses like HIV, are copied in three stages: (1) they are transcribed from DNA
to RNA, and (2) the RNA produced is then reverse transcribed to DNA. (3) This
copied DNA is finally inserted at a new position into the genome. Retrotransposons
are commonly grouped into three main orders:

— TEs with long terminal repeats (LTRs): like retroviruses, these elements en-
code their own reverse transcriptase, which is used in the reverse transcription
step (stage number 2)

— Long interspeared elements (LINEs): they encode reverse transcriptase, lack
LTRs, and are transcribed by RNA polymerase Il

— Short interspeared elements (SINEs), for their part, do not encode reverse
transcriptase and are transcribed by RNA polymerase lll.

* DNA transposons (class Il): These elements follow a cut-and-paste transposition
mechanism, which does not involve a RNA intermediate.

Not all DNA transposons transpose through the cut-and-paste mechanism. In some
cases, defined sometimes as a third class of TEs, a replicative transposition is observed
in which a transposon replicates itself to a new target site, which occur for instance for
the Helitron element.

9.3.2/ A FIRST PDE MODEL FOR TRANSPOSITION
9.3.2.1/ THEORETICAL FOUNDATIONS

In our mind, there was a strong link to discover between the transposition dynamics of
TEs and partial differential equations like transport equations. This is why we have asked
Alexei Lozinski to model the evolution of TEs due to the aforementioned two kinds of
modifications, namely the cut-and-paste and the copy-and-paste ones, and we currently
develop algorithmic methods to provide relevant initial conditions and parameters to the
obtained PDEs. For the sake of completeness, and as the establishment of these PDEs
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shows the data to obtain computationally, we recall here this modeling, principally ob-
tained by my colleague (helped by me).

In both cases, we assume that the elements’ distribution at any time can be well described

by a density function p(t, z). In other words, the number of elements between positions a
b

and b, 0 < a < b<1,attimetis supposed to be equal to | p(t,x)dx. We assume that

transpositions occur with rate X in time, i.e., the probability (%[hat a given element will be
transposed during a time interval (¢, t+ At) is AAt+o(At). The probability density to jump
from z to y at time ¢ is denoted by p(z,y). Remark that, in the cut-and-paste situation,
the element moves from z to y, whereas in the copy-and-paste one, the element at z still
continues to be in xz while an additional copy is obtained in y.

Another important phenomenon to consider in the model is the death of TEs. We as-
sume that it happens with rate ~ in time, i.e., the probability that a given element will be
destroyed during a time interval (¢,¢ + At) is vAt + o(At). The parameters ), v, and the
function p(x, y) must be obtained from experimental data. We now write the equations for

p-

The cut-and-paste regime. Let us consider two real numbers 0 < a < b < 1 and count
the transposons between a and b at times ¢ and ¢ + At respectively. When going from ¢
and t + At, the elements can (1) move outside the interval, (2) come from the outside, or
(3) die. Taking into account these 3 mechanisms for transposons gives:

b
- f f p(z, y)o(t, z)dedy
(0,1)\(a,db) Ja

b b
+f f p(z,y)p(t, x)dzdy —’yAtf p(t,z)dz.
a J(0,1)\(a,b)

b b
f p(t + At, z)dr = J p(t,x)dx + NAt

a a

a

This equation can be rewritten as follows:

J‘b p(t + At,zi - p(tjx)dx . {_ rp(t?x)dx N Lb folp(y,:c)p(t, y)dydx] ) ijp(w)dx'

a a a

Taking the limit At — 0 and observing that a and b are arbitrary, we obtain equation for p
(transposons case):

op !

o (H2) = A , p(y, x)p(t, y)dy — p(t, ) | — vp(t, 2). (9.13)
Let us now reobtain the usual transport equation from the above one. For this, we should
further assume that when a transposon is cut-and-pasted from position z, it arrives with an
high probability to position z+a(z), where the jump function a(z) must also be determined
experimentally. More specifically, we assume that,

p(a:,y) = 5a:+a(a:) (y) + O(GQ), (914)

where O(a?) means some term of order of (maxa)2. We thus substitute this form for the
probability inside the equation above, multiply it by any test function ¢ (that vanishes at 0
and 1) and integrate, to finally obtain:

1 ap 1

5 (b 2)o(2)de = f (=A(p(t, z)a(2))" —yp(t, ))p(x)dzr + O(Aa?).
0 0
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Fig. 1. Mitotic chromosomes of D. melanogaster, showing euchromatic regions, heterochromatic
regions, and centromeres. Arms of the autosomes are designated 2L, 2R, 3L, 3R, and 4. The
euchromatic length in megabases is derived from the sequence analysis. The heterochromatic
lengths are estimated from direct measurements of mitotic chromosome lengths (67). The
heterochromatic block of the X chromosome is polymorphic among stocks and varies from
one-third to one-half of the length of the mitotic chromosome. The Y chromosome is nearly
entirely heterochromatic.

Figure 9.4: Drosophila melanogaster chromosomes

Hence, if we neglect the terms of order \a?, the density should satisfy:

3o ap)
at T

= —p. (9.15)

Note however that hypothesis on p(z,y) (Equation 14) can be very false. For example,
the element at z may want to go to x + a with probability 1/2 and to = — a also with
probability 1/2. Then, the simple transport equation above will not be adequate. The
equation that holds under most general assumptions is Eq.(%13),

The copy-and-paste regime. Consider any 0 < a < b < 1 and count the retrotrans-
posons between a and b at ¢t and t + At. When going from ¢ and ¢ + At, the elements
can be (1) added by a copy and paste, or (2) they can be destroyed. Taking into account
these two mechanisms gives

b b b rl b
J p(t + At,z)dr = J p(t,x)dx + )\Atf J p(y, z)p(t, y)dydx — yAtJ p(t, z)dx.
a JO

a a a

Taking the limit AT — 0, and observing that ¢ and b are arbitrary, gives the equation for p
(density of retrotransposons):

1
Dt,0) =3[ pla ot n)dy — (0,3, (9.16)

9.3.2.2/ DATA ACQUISITION: GENERAL APPROACH

In order to use the partial differential equations of (18 and (19 (or, at least (®13), which
enable us to predict the spatial and temporal evolution of retrotransposons and trans-
posons respectively, we need:

» The initial condition: current spatial distribution of each type of transposable ele-
ment in each chromosome of Drosophila melanogaster as presented in Figure 9.4.

» The probability law p(x, y) of jumps: the probability that a transposable element in x
will later be in y, where xz and y are two locations inside the same chromosome.
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The species we have considered is the Drosophila melanogaster (FlyBase [MLS*13],
release 5.51), as it is the most studied species regarding transposable elements.

To obtain an initial condition to the partial differential equations (1% and ©-16) we have:

1. divided each half chromosome in twenty parts (fifty parts in a second run of experi-
ments),

2. counted the number of TEs of the considered type in each part, using FlyBase, and
plotted histograms

3. interpolated these histograms in two manners, to obtain a continuous function:

+ Lagrange polynomial interpolation minimizing the squared errors at the middle
of histograms (degree 50),

* spline curves.

Indeed we can find in FlyBase a list of all the 5409 elements that have been discovered
in the four chromosomes of D.melanogaster. For each element, the location (which place
in which chromosome) is well specified. The sole difficulty with such an approach is that
the file provided by FlyBase does not specify if the element is a retrotransposon with
LTR, a retrotransposon without LTR, a Helitron, or a DNA transposon. To do so, we have
contacted Emmanuelle Lerat (Laboratoire de Biométrie et de Biologie Evolutive, Lyon),
who has sent us an Excel file in which the category of each of the 5409 elements is
specified: we just needed to automatically cross-check the information given.

Examples of initial conditions are provided in Figures 9.5(a) and 9.5(b) for transposons of
chromosome 2R, in Figures 9.6(a) and 9.6(b) for retrotransposons with LTR in chromo-
some 2L. For the sake of comparison, other interesting obtained results are provided in
Appendix G.

To obtain the probability law p(z, y) of jumps, for each chromosome C' and each location
x, we have:

« obtained, with FlyBase [MLS*13], the LTR elements that are present in z;
* looked for in C the locations y containing the same retroelement, but less degraded,

— the reference sequence, for each type of LTR retrotransposon (there are 1321
types of retrotransposons with LTRs: Dm88, Burdock, etc.), is obtained with
Repbase Update [JKP*05],

— the degraded rate between the sequence found and the reference one is ob-
tained by a similarity rate computed from a Smith-Waterman local alignment
(thanks to the water command of emboss package),

— we thus consider that, when an element is more degraded, this is because it is
older;

» plotted 3D histograms (the height of the bar at (z,y) is p(x, y)) and 3D interpolated
splines.

Examples of obtained results are depicted in Figures 9.5 and 9.6.
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(a) Initial condition, polynomial version (b) Initial condition, splines version

(c) Histograms of DNA jumps (d) Splines of DNA jumps

Figure 9.5: Chromosome 2R, DNA elements

9.3.3/ A BRANCHING PROCESS APPROACH

9.3.83.1/ CONCRETE CASE STUDY

We have regarded the cases of LTR, Non-LTR, and Helitrons elements in each chromo-
some of D.melanogaster, divided in either 20 parts or 50 parts. For each element of
each kind, and each part of each chromosome, we have considered that this element
has arrived at this location at generation 10k if it has a similarity score equal to 10k% with
the DNA sequence of this element referenced in Repbase Update [JKP*05]. Indeed we
have supposed that nucleotide mutations are uniformly distributed in time and space (in
the whole genome): the degradation of an element is thus proportional to the duration it
has spent in the considered location.

A few obtained results are depicted in Figure 9.7 for Helitron elements in chromosomes
2 and 4. We can see that, in chromosome 2, these elements are concentrated near the
centromere while they are more uniformly distributed in time and space in chromosome
4. Abscissa represent 20 time generations (in arbitrary unity) while ordinates are the
20 parts of the considered chromosome. Finally, larger discs are for higher Helitrons
concentration.
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(a) Initial condition, polynomial version (b) Initial condition, splines version

(c) Histograms of LTR jumps (d) Splines of LTR jumps

Figure 9.6: Chromosome 2L, LTR elements

9.3.3.2/ THEORETICAL MODELING

Motivations We can observe in some chromosomes a gaussian-like distribution of
transposable elements centered on the centromere. Our idea was that, after the initial
insertion of a retrotransposon in a given chromosome, as it has the same probability to
be copied at its left or at its right, we finally obtain a gaussian distribution of presence for
this element, and centered on its initial position. Then, when several retrotransposons
are inserted in the chromosome, with an initial location close to the centromere (it is more
likely to be destructed before its first transposition, when its first introduction is in coding
sequences), we obtain a superposition of independent normal distributions, all centered
near the centromere, which should finally lead to a global gaussian distribution for all the
retrotransposons.

We have demanded to probabilistic colleagues of the LMB if such an hypothesis were cor-
rect, thus explaining the observed gaussian distribution. The answer has been provided
by Romain Biard and Landy Rabehasaina, their modeling is recalled thereafter.

Model We consider a branching random walk on R of which particles model transpos-
able elements. This process starts with one particle located at the origin at time 0. At
each time k, every particle currently in the process dies (0 child) with probability pg, sur-
vives and stays at the same location (1 child, itself) with probability p,, or survives, stays
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Figure 9.7: Helitron’s evolution

at the same location and duplicates at one other random location (2 children, itself and
one other) with probability po. We use the following notation:

« V") (z) € R be the position of the individual = belonging to generation n;

* Z, the number of elements at generation n.
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We also assume that the distance from one transposable element to its duplicate is ran-
domly distributed as a common distribution V' that we suppose centered and with variance
0%, but independently from the other occurring displacements at a given time. One im-
portant aspect of the model is that (Z,).en is @ Galton Watson process. In particular,
if

m = p1 + 2p2

denotes the mean number of offsprings by a transposable element, then one has the
following almost sure convergence

Zn
2 LW, n— 4o, (9.17)
mn

for some finite random variable W, see e.g. Theorem 1 p.9 of [AN04].
Gaussian framework

Gaussian aymptotic distribution We are interested in the behavior of how transpos-
able elements are located as the number of generation n grows. The key to the asymptotic
form of how they are distributed for large n lies in a Central Limit Theorem for branching
random walks. It was proved in a refined form by Kaplan [Kap82] and states that

1
mCard {x| Vv (z) < \/ﬁy} — W®(y), n — +o0, almost surely

for all y € R, where W is defined by (9.17) and @ is the cumulative distribution function
of the (0, 0%) distribution. This implies that the empirical cumulative distribution of the
transposable elements verifies, thanks to (9.17), and on the set of non extinction,

ZiCard {2 VO () < vy} — (). n - <0, (9.18)

i.e., that one has that TEs have for large n a repartition that is roughly N (0,no?) dis-
tributed. In the following sections, variance of displacements o, is very small compared
to the considered number of generations in the study, so that the limiting distribution of
transposable elements can be considered N (0, 02,) distributed with 02, := no?.

Global gaussian distribution Let us now assume that the position at time 0 of one
transposable element is random and also normally distributed with mean 0 (which corre-
sponds to position of the centromere). We are now interested in the distribution of position
V() of a given element at generation n.

Proposition 22. Assume that position of one transposable element at V (z¢) ~ N(0,03)
and that the distribution of the position of one element x given it is a descendant from x,
is normally distributed with mean V (z¢) and variance o%. ThenV (z) ~ N (0,08 + 02)).
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Proof ¢ (Biard & Rabehasaina). We proceed by proving that the characteristic function of
V(z) is that of a N (0,03 + 02,) random variable. We indeed have

Ee™V(®) — B | Be V() |V(370)]

E[exp{ Ve %]

E [exp (iV (x0)1}] { ”2},

2
ol e ool 7]
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CONCLUSION

The study, the modeling, and/or the exploitation of complex discrete dynamics that appear
in applications such that bioinformatics or information security, raise numerous questions
rich in perspective. Some of them are detailed hereafter.

10.1/ THEORY OF COMPLEX SYSTEMS

The generalization of chaotic iterations (Cls) in iterative systems, proposed in our thesis,
must be deeply studied and exploited. The ergodic theory is the natural extension of the
mathematical theory of chaos: instead of using a topological description of the dynamics,
ergodicity is based on measure theory. With this latter, complex dynamics we study
should be described more quantitatively, and we could for instance provide more concrete
and measured descriptions of the security that our algorithms exhibit.

Similarly, we are still at the beginning of the exploitation of the complexity theory as a
description and evaluation of our complex dynamics. This theory should be more sys-
tematically investigated, both on the theory viewpoint and for security proofs. Additionally,
Cls is a particular case of so-called “screw products” studied in mathematical topology:
at each iterate, a function is picked in a predefined set of applications, and this latter is
used to update the current state of the system. Finally, another mathematical community
has defined a notion of random dynamical systems. Results taken from these theoreti-
cal domains of research could help us to explore and understand complex dynamics that
occupy Uus.

10.2/ SENSOR NETWORKS

The importance of the network’s topology, of sensors scheduling politics, of faults toler-
ance, and of resistance against attacks... have just been taken into account in our project
funded by the Région Franche-Comté regarding prognostics and diagnostics failures in
industrial systems. This discovered importance should be proven both theoretically and
experimentally, and good practices in this area should be emphasized.

The global approach of security within wireless sensor networks, recently initiated, should
be completed and the use of chaos in these networks, proposed by us in the fields
of video-surveillance and security, should be generalized and more concerted. Finally,
we have started to use epidemiological models and predator-prey equations, for alert
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spreading (in WSNs) or data survivability (in unattended WSNs). These promising mod-
els should be deepened.

10.3/ INFORMATION SECURITY

Our first research works in the use of complex dynamics for the purpose of information
security should be pursued in various directions.

At PRNGs level, links between chaos and statistical quality of the generators should be
better understood. Guaranteed results of success or failure for some statistical tests, in
presence of well defined topological properties, should be established. Our good results
of Cls post-treatment with the vectorial negation should be confirmed by using other func-
tions making the Cls chaotic. Finally, we should better disseminate these good results to
ensure that more people will use these generators.

In the field of information hiding, the cryptographic approach for steganography must be
pursued and extended, by cryptanalyzing algorithms proposed in the literature and by de-
veloping various scenarii of attacks. Similarly, the promising approach of post-treatment
on hash functions should be deepened, and other properties of cryptographical security
should be proven as preservable, compatible with chaotic iterations.

10.4/ BIOINFORMATICS

We have proposed first models for describing the dynamics of transposable elements
(TEs), using partial differential equations and branching processes. An approach using
cellular automata has just been initiated and must be deepened. Data have been ex-
tracted from the genome of D.melanogaster to serve as parameters for these models (in
case of copy-and-paste: retrotransposon category of TEs). These models must now be
enriched and exploited, to deduce consequences at genetic diseases level and regarding
genomes plasticity. These parameters must be found in other species too, and compared
with currently obtained ones, to better identify the modification of TEs’ dynamics depend-
ing on the regarded taxon. Phenomena such as the rapid contamination of P element in
D.melanogaster must be explained, and the Ping-pong model for this P element must be
justified too, either by using a percolation model or a predator-prey one. The presence
or absence of long terminal repeat LTR sequences must be taken into account in our
dynamical models, and the case of transposons (cut-and-paste) must be equated and
studied. Similarly, we must continue to deepen the other operations involved in genomes
evolution: mutation matrices must be of size 4 without symmetry, graphical models to
infer mutation laws at genes scale must be finalized, whereas the dynamical systems we
have written to describe different kind of genomics rearrangements (inversion, duplica-
tion, etc.) must be unified and studied. Finally, a numerical simulator integrating these
mathematical models and exploiting a basis of knowledge must be realized (it is already
started).

At protein folding level, folded self-avoiding walks must be investigated more deeply.
Among other things, the shortest unfoldable SAW must be found, the proof of NP-
completeness for stretching SAWs must be adapted to the folded ones, and chaos prop-
erties found in the folding dynamics must be related to the phenomenon of intrinsically
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disordered proteins. Finally, other currently going on projects in bioinformatics raise nu-
merous analysis problems of complex systems, whose solution will help us to better un-
derstand and simulate the evolution of genomes.






A

COMPLEMENTS REGARDING OUR
PRNG RESEARCH WORK

A.1/ SOME WELL-KNOWN GENERATORS

We first introduce various well-known pseudorandom number generators. They have
been used previously in this article, to evaluate the quality of a post-treatment based on
chaotic iterations.

A.1.1/ BLUM BLUM SHUB
The Blum Blum Shub generator [BBS86] (usually denoted by BBS) takes the form:

e l,m—1]
2t = (™ x ™) mod m, y" T = 2" mod (log(m)),

where m is the product of two prime numbers p and ¢, such that:

* p and ¢ are congruent to 3 modulus 4

e ged(p(p — 1), ¢(q — 1)) should be small’

y™ is the returned sequence, whereas log refers to the logarithm to base 2.

This generator is known to be secure for sufficiently large p and ¢q. However, in this article,
we do not focus on security, but on statistical improvement of defective generators: we
want to show that deficient PRNGs can be improved using the chaotic iterations post-
treatment. A way to find such defective generators is to use good ones like this BBS but
in a wrong context (small prime numbers, in this situation).

A.1.2/ THE LOGISTIC MAP

The logistic map is given by:

'Euler’s totient ¢(n) is an arithmetic function that counts the number of positive integers less than or equal
to n that are relatively prime to n.
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2" = a2 (1 — 2™), with 2° € (0,1), p € [0, 4],

where z is a real number. The logistic map was originally introduced as a demographic
model by Pierre Francois Verhulst in 1838. In 1947, Ulam and Von Neumann [UN47]
studied it as a PRNG. This essentially requires mapping the states of the system (2"),, .
to {0,1}N. A simple way for turning =™ to a discrete bit symbol r is by using a threshold
function as it is shown in Algo.2. A second usual way to obtain an integer sequence from
a real system is to chop off the leading bits after moving the decimal point of each x to
the right, as it is obtained in Algo.3.

Algorithm 2: An arbitrary round of logistic map 1
Input: the internal state x (a decimal number)
Output: » (a 1-bit word)

sz — 4x(l — )

. if z < 0 then

1
2

3 r <« 0;
4: else

5 r«—1;
6: return r;

The logistic map is a famous example of Devaney’s chaotic dynamical system for u €
(3.99996, 4]. However, it is statistically biased and its implementation on machines with
finite precision raises a lot of problems. In this article, we have used it with the method of
Algorithm 2 and a threshold equal to 0.5.

Algorithm 3: An arbitrary round of logistic map 2
Input: the internal state = (a decimal number)
Output: r (an integer)

10 ¢ —4x(1 —x)

2: 7« |10000000z|

3: return r;

A.1.3/ LINEAR CONGRUENTIAL GENERATOR

The linear congruential generator (LCG) is defined by the recurrence:
2 ef0,m—1], z" = (az" '+ ¢)modm (A1)

where a, ¢, and z° are positive integers lesser than m, called respectively the multiplier,
increment, and seed of the generator [SM02]. LCG is one of the oldest and best-known
generator. It will have a full period for all seed values if and only if:

1. ¢ and m are relatively prime,
2. a — 1 is divisible by all prime factors of m,

3. a — 1is a multiple of 4 when m is a multiple of 4.
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In this article, 2LCGs and 3LCGs refer as two (resp. three) combinations [SM02] of such
LCGs, as follows:

« the first LCG s; has parameters (m1, a1, ¢1) and the second one sz has parameters
(ma, az, c2),
+ the combination is 2" = (s — s4) mod (m; — 1), where s and si are the states of

the two LCGs components at step n.

In other words:
st = (a1 x sTf_l + ¢1) mod my
sy = (ag x s’f_l + ¢2) mod ma
" = (st — s%) mod (my — 1).

These formulas can be easily adapted for the combination of 3 linear congruential gen-
erators. The inputted LCGs must satisfy the requirement recalled above, and one must
also have m1 > m2. For further details, see [com88].

A.1.4/ MULTIPLE RECURSIVE GENERATORS

The multiple recursive generators (MRGs) are based on higher order recursion k£ [SM02]:
e o,m—1], "= (alz" '+ .. + 2" modm, (A.2)

where a',...,a* € [0,m — 1]. Combination of two MRGs (referred as 2MRGs) has also
been used in this article, they are defined like the multiple LCGs:

st = (ats" L+ ..+ abs" ) mod my,
s = (adsh ™t + ...+ abshTF) mod mo,
" = (st — sy) mod (mq).

The combination method is thus obtained by subtracting the states modulo m;. For rea-
sons not debated in this document, usual implementations of this 2MRG that present
correct statistics suppose that k = 3, a} = 0,a? > 0,a} < 0,a} > 0,a3 = 0, aj < 0, and
finally a] x (m1 mod a]) < m1 whereas a? x (ma mod a}) < ms. These requirements have
been followed in our experiments.

A.1.5/ UCARRY

UCARRY acronym refers to generators based on linear recurrences with carry. This
includes the add-with-carry (AWC), subtract-with-borrow (SWB), and shift-with-carry
(SWC) generators.

The add-with-carry generator, proposed by Marsaglia and Zaman, is based on the fol-
lowing linear recurrence with carry. Given a modulus m and two positive different inte-
gers r and s, and for integers initial values ¢ € {0,1} and 0, ..., 2% € [0,m — 1], where
k = max(r, s), compute for n > k:

" = (2" + 2" + 1) mod m,
no_ (xnfr 4o 4 Cnil)/m,

(A.3)

Q.
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and return at each iterate the output =™ /m, that is, their quotient.

The SWB generator, for its part, uses the same inputs and has the recurrence:

2" = (2" — 2" — 1) mod m,
n 1 if (2" =2 - <0 (A.4)
C =
0 else,

and the output is ' /m another time.
Finally, the shift-with-carry SWC generator designed by R. Couture is based on the fol-
lowing recurrence:

"=(a'2" ' ® ... @a"z" " D) mod 2v,
n _ (alxnfl @ (_Barxnfr @Cnfl) / qw -

8

(A.5)

Q)

with output equal to z/2%. The initial values are (2°,...,2"~1) and c is the initial carry.
Restrictions: 0 < r, and w < 32.

A.1.6/ GENERALIZED FEEDBACK SHIFT REGISTER

By GFSR we referred to a particular generalized feedback shift register generator based
on the recurrence:
" =" @k (A.6)

Each z" is a 32-bit vector, k and r are positive integers such that r < k. The output at
step n is u, = :En/2l, where %, is the integer formed by the first [ bits of z,,, and [ < 32.
xo, ..., Tp_1 Must be provided as k initial bit vectors. Proper initialization techniques for
this generator have been discussed in the literature, they have been respected during our
implementations.

A.1.7/ NONLINEAR INVERSIVE GENERATOR

Finally, INV stands for the nonlinear inversive generator, as defined in [SM02], which is:

n [ (@ +a?/z" )y modm if 2" £ 0
T { a! if 271 = 0. (A7)
The generator computes z via the modified Euclid algorithm (see [SMO02]). If m is prime
and if p(z) = 22 — a'z — a? is a primitive polynomial modulo m, then the generator has
maximal period m. Restrictions: 0 < 20 < m,0 < a' < m and 0 < a®> < m. Furthermore,
m must be a prime number, preferably large.

A.1.8/ XORSHIFT

XORshift is a category of very fast PRNGs designed by George Marsaglia [Mar03]. It
repeatedly uses the transform of exclusive or (XOR) on a number with a bit shifted version
of it.
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The state of a XORshift generator is a vector of bits. At each step, the next state is
obtained by applying 3 times the following operations to w-bit blocks in the current state,
where w = 32 or 64: replace the w-bit block by a bitwise XOR of the original block with
a shifted copy of itself by respectively a, b, and ¢ positions, where —w < a,b,¢ < w. The
direction of the circular shift is either the left or the right, depending on the signs of a, b,
and c.

For instance, Algorithm 4 is the 32-bit XORshift with (a, b, ¢) = (—13,17, —5), which has a
period of 232 — 1 &~ 4.29 x 10°.

Algorithm 4: An arbitrary round of XORshift algorithm
Input: the internal state z (a 32-bits word)

Output: y (a 32-bits word)

Dz — 2@ (2 « 13);

z—2z2@®(z>»17);

z— 2@ (z «5);

Y <z

return y;

AN -

In this article, we have always supposed that the directions of the circular shifts are:
left/right/left, which was not required in the original paper of Marsaglia. Other improved
versions of this XORshift exist in the literature, we have chosen this historical one in our
researches for its speed and statistical flaws.

A.1.9/ ISAAC

ISAAC is an array-based PRNG and a stream cipher designed by Robert Jenkins (1996)
to be cryptographically secure [Jen96]. The name is an acronym for Indirection, Shift,
Accumulate, Add, and Count. The ISAAC algorithm has similarities with RC4 [cit03]. It
uses an array of 256 32-bit integers as the internal state, writes the results to another
256-integer array, from which they are read one at a time until empty, at which point they
are recomputed. Since it only takes about 19 32-bit operations for each 32-bit output
word, it is extremely fast on 32-bit computers.

We give the key-stream procedure of ISAAC in Algo.5. The internal state is x, the output
array is r, and the inputs 32-bit words a, b, and ¢ are those computed in the previous
round. Normally a, b, ¢, and the array z are initialized with some random sequences.The
value f(a,i) in Algo.5 is a 32-bit word, defined for all « and i € {0, ..., 255} as:

a<«13 ifimod4=0,
. ax»6 ifimodd=1,
fla,i) = (A.8)

a2 ifimod4d=2,
a>» 16 ifimod4 = 3.
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Algorithm 5: An arbitrary round of ISAAC algorithm
Input: «, b, ¢, and the internal state «, they are 32-bit words
Output: an array r of 256 32-bit words
1: c—c+ 1,
2:b—b+c
3: whilei =0,...,255do
4: S «— X;;
5 a< f(a,i) + T(i1128) mod 2565
6: T — a+b+ T(x2) mod 2565
70 T < S+ T(2;510) mod 2565
8
9

: b« i
. return r;

A.2/ VARIOUS IMPROVEMENTS OF THE CIPRNG VERSION 1

In this section, a few results obtained at Qianxue Wang and Xiaole Fang thesis occasion
are recalled.

A.2.1/ THE CIPRNG VERSION 2

After the proof of concept of CIPRNG version 1, a second version of generator based on
chaotic iterations has been introduced in [WBGF10,BGW10a], in order to obtain outputs
at the same speed than the inputted generators. The basic idea in this improvement
is to prevent from changing a bit twice between two outputs, reducing by doing so the
generation time. To do so, the meaning of sequence (m™) must be changed: it now
defines the number of bits to change between two outputs (instead of the number of
chaotic iterations).

The output of the sequence PRNG2 is normally uniform in [0,232 — 1]. However, we do
not want the output of (m™) to be uniform in [0, N], because in this case, the returns of
our generator will not be uniform in [0,2" — 1], as it is illustrated in the following example.
Suppose that 2° = (0,0,0). Then m° € [0, 3]: the number of bits we can change in z° is
between 0 and 3.

Table A.1: Statistical results for the CIPRNG version 2
CIPRNG Version 2
Logistic XORshift ISAAC ISAAC

Test name
+ + + +
Logistic XORshift XORshift ISAAC
NIST (15) 15 15 15 15
DieHARD (18) 18 18 18 18

TestUO1 (516) 516 516 516 516
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« It m® = 0, then no bit must change between the first and the second output of our
CI PRNG Version 2. Thus we have only 1 possibility for 2!, namely z! = (0,0,0).

« If m® = 1, then exactly one bit must change, which leads to three possible values
for 21, that is, (1,0,0), (0,1,0), and (0,0, 1).

> efc.

Each value in [0,2% — 1] must be returned with the same frequency, then the values
(0,0,0), (1,0,0), (0,1,0), and (0,0, 1) must occur for ! with the same probability. Finally
we see that, in this example, m® = 1 must be three times more probable than m® = 0.

This leads to the following general definition for the probability of m = i: P(m™ =) = g—]fy

!
with C¥ = ﬁ Thus Yn e N, m" = g(PRNG2()"), where
k=1 koo
gly) =k <= > Cy <y< > Cy.
i=0 i=0

We have adapted the outputs of PRNG2 to obtain a sequence corresponding to the num-
ber of changes between two outputs of the CIPRNG(PRNG1,PRNG2) version 2. We must
also adapt the outputs of the strategy PRNG1: the strategy indicates the coordinates to
change, and we do not want to change twice a given coordinate between two outputs
of the CIPRNG. More precisely, the m" first terms of the strategy must be different, as
we want to obtain m° changes between the initial state and the first output. Then, the
terms in position m® + 1, ..., m! must be all different too for the same reason, and so one.
However, PRNG1 does not necessarily provides such a particular sequence. This is why
we must operate a decimation on it, as explained in [WBGF10,BGW10a].

Let (d*,d?,...,d") € {0,1}" be a mark sequence, counting the number of occurrences of
each integer between two outputs. It is such that whenever 3% | d = mF, then Vi, d; = 0:
after each output of the CIPRNG, this counting sequence is reset. This mark sequence
will control the PRNG1 sequence b as follows. Let ¥’ be the numbers produced by
PRNG1:

«ifd” #1,then S¥ = v/, d” =1,and k = k + 1,
. if & =1, then b/ is discarded (it has already occurred in this output).
The basic design procedure of this optimized generator, released and tested in [WBGF10,

BGW10a], is summed up in Algorithm 6, whereas the good obtained results are summa-
rized in Table A.1.

A.2.2/ INVESTIGATING THE STATISTICAL IMPROVEMENTS OF CHAOS-BASED
CIPRNGS POST-TREATMENT

CIPRNGs versions 1, 2, and XOR have been widely experimented these last three years,
on various inputted pseudorandom generators, most of them being more or less defective.
Obtained results are summarized thereafter.

The following well-known PRNGs have been considered for experiments:
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Algorithm 6: An arbitrary round of the CIPRNG(PRNG1,PRNG2) version 2
Input: the internal state = (V bits)
Output: a state » (/V bits)
:fori=0,...,Ndo
d; < 0;
1« 0;
m «— g(PRNG2());
while i < m do
S «— PRNG1();
if ds = 0 then
Ts < Ts,
ds < 1;
1<— 1+ 1;
return z;

TN G RN

—_

LCG, MRG for linear congruential PRNGs;

AWC, SWB, SWC, and GFSR for lagged ones;

INV from type ICG (inversive congruential generators);

lastly, 2LCG, 3LCG, and 2MRG to study the effects on mixed PRNGs.

We have performed various statistical tests on these generators, showing that they re-
veal several issues, as summarized in Table A.2. The tests studied here are the NIST
suite [BR10] and DieHARD battery of tests [Mar96].

linear lagged icg mixed

lcg | mrg | awc | swb | swc | gfsr | inv | 2lcg | 3lcg | 2mrg

NIST (11) 11| 14 | 15 | 156 | 14 | 14 | 14 | 14 14 14

DieHARD (18) | 16 | 16 | 15 | 16 | 18 | 16 | 16 | 16 16 16

Table A.2: NIST and DieHARD tests suite passing rates for PRNGs without CIPRNG
method

Then we have performed statistical analyses on each of the aforementioned CIPRNGs.
The results are reproduced in Table A.3, they have not yet been published (currently under
reviewing process). An asterisk “*” means that the considered passing rate has been
improved. We can observe that, except for the XOR CIPRNG, all of the CIPRNGs have
passed the 15 tests of the NIST battery and the 18 tests of the DieHARD one. Moreover,
considering these scores, we can deduce that both the single Version 1 CIPRNG and the
single Version 2 CIPRNG are relatively steadier than the single XOR CIPRNG approach,
when applying them to different PRNGs. However, the XOR CIPRNG is obviously the
fastest approach to generate a Cl random sequence, and it still improves the statistical
properties relative to each generator taken alone, although the test values are not as
good as desired.
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Table A.3: NIST and DieHARD tests suite passing rates for PRNGs with CIPRNG method

Types Linear Lagged icg Mixed

lcg | mrg | awc | swb | swc | gfsr | inv | 2lcg | 3lcg | 2mrg
Version 1
NIST 15* | 15* | 15 | 15 | 15* | 15 | 15* | 15* | 15" | 15
DieHARD 18* | 18~ | 18* | 18* | 18 | 18* | 18* | 18* | 18" | 18"
Version 2
NIST 15* | 15* | 15 | 15 | 15* | 15 | 15* | 15* | 15 | 15
DieHARD 18* | 18* | 18* | 18* | 18 | 18* | 18* | 18* | 18" | 18"
XOR ciprng
NIST 14* | 15* | 15 | 15 | 14 | 15" | 14 | 15" | 15 | 15
DieHARD 16 | 16 | 17* | 18" | 18 | 18" | 16 | 16 16 16

To have a realization of the XOR CIPRNG that can pass all the tests embedded into the
NIST battery, we will now investigate the “Multiple XOR CIPRNG” variations of the XOR
post-treatment in the following sections.

A.2.3/ VARIATIONS ON THE XOR CIPRNG

We now regard the possibility to use various successive terms of a given deficient gener-
ator S in order to improve its statistics. Such a desire, which still remains general chaotic
iterations, leads to the definition of the multiple XOR CIPRNG, introduced in [BFG12a]
and detailed below:

{ 9 ef0,2N —1],5 e [0,2N — 1N

Vn e ]N*, " = pn—1 @ S @ gnm+1 &) Snm-‘rm—l’ (Ag)

where S stands for the inputted PRNG. We show in Table A.4 that a threshold value m
(called the functional power) can always be found such that the multiple XOR CIPRNG
becomes able to pass the whole NIST battery. The existence of this threshold illustrates
in a certain extend the progressive appearance of the effects of chaos.

The results presented in this section have reinforced our confidence in the capability for
chaos to act as post-treatment on defective pseudorandom number generators, in order
to improve their statistics. However, we can regret the following flaws for all the currently
proposed CIPRNGs.

1. Up to now, speed performances are not really good, as in (single) CIPRNGs ver-
sions 1 and 2 we must call various times the inputted generators between two out-
puts. Similarly the XOR CIPRNG can satisfactorily improve defective generators
only by grouping (xoring) a potentially large number of successive terms produced
by the input (this is the Multiple XOR CIPRNG).

2. As presented here, XOR and multiple XOR can only handle one inputted generator.
However, an interesting strategy when designing new generators using formerly
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Table A.4: Functional power m making it possible to pass the whole NIST battery
Inputted PRNG lcg | mrg | swc | gfsr | inv | 2lcg | 3lcg | 2mrg

Threshold value m || 19 7 2 1 11 9 3 4

released ones is to take the best of each input: speed of the first inputted PRNG
and security of the second one, for instance.

3. CIPRNGs versions 1 and 2 and multiple XOR CIPRNGs have better statistical per-
formances than XOR CIPRNG, because they use various successive terms of the
inputs to produce one output: chaos has time to express itself and high correlations
between two successive inputs of the deflated PRNGs are broken by doing so.

We will thus introduce two new methods to take the best of each version. These methods
have been published in [BFGW13].

A.2.4/ “LUT” CIPRNG(XORSHIFT,XORSHIFT) VERSION 3

The LUT (Lookup-Table) CIPRNG version 3 is an improved, mixed version of both the
CIPRNG version 2 and the XOR CIPRNG. The key-ideas, developed in [BFGW13], are:

1. To use a Lookup Table for a faster production of strategies than in CIPRNG version
2. These strategies satisfy the same property than the ones provided by the dec-
imation process, reducing by doing so the correlations of successive terms in the
inputted PRNG.

2. To operate as in XOR CIPRNG, by computing z"*! = 2" @ S™ directly (general
chaotic iterations of the vectorial negation instead of unary chaotic iterations).

This generator will not be explain in details in this manuscript, only statistical tests re-
sults will be presented next pages. Readers interested by such a generator are referred
to [BFGW13].

A.2.5/ THE VERSION 4 CATEGORY OF CIPRNGs

The CIPRNG version 4 is an improvement of the multiple XOR CIPRNG, in which we will
use m PRNGs instead of m successive terms of one PRNG. Or, more precisely, subsets
of these mm PRNGs. By doing so, the problem of speed can be resolved by computing
them in parallel, whereas the two other issues will no longer be problematic.

In the XOR CIPRNG z"*! = 2" @ S, the k' component of its state (a binary digit)
changes if and only if the k" digit in the binary decomposition of the n—th term S™ of the
inputted generator is 1. In version 4, instead of updating only one cell at each iteration
as the first versions of our CIPRNGs, a subset of components is chosen and updated.
We have already shown that, taken alone, this XOR CIPRNG does not improve a lot the
possibly defective inputted generator S. A first solution has been proposed in the multiple
XOR CIPRNG by xoring various successive terms of S before xoring the result with the
last state of the system. We have shown that this method is able to really improve the
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inputted generator. However, its principal flaw is that, for a large number of generators, all
the terms gmn gmn+l  gmn+m—1 myst be computed step by step, and m can be large
for very defective PRNGs. A second but less critical flaw is that the XOR CIPRNG only
receives one inputted generator. However, as stated before, some situations exist where
we want to take benefits from various inputted generators: security of the first PRNG,
speed of the second one, and so on.

It is possible to add more complexity and speed in the multiple XOR CIPRNG, by consid-
ering a set of M inputted generators, picking randomly a subset of them at each iteration,
and xoring their xored values with the internal state of the system. This algorithm, based
another time on general chaotic iterations and currently submitted, can be written as in
Algo.7.

Algorithm 7: An arbitrary round of the version 4 Cl generator
Input: the internal state = (N bits)
Output: a state » of N bits
cfori=1,...,M do
S(i) = PRNG2_i();
T = PRNG1();
r=x@®h(T,S(1),5(2),... S(M)),
return r;

QR wh

S(1),85(2),...,S(M) are the M inputted PRNGs, whereas 17" e [0,2Y — 1] gives which
sequences must be considered at the current iteration, as follows. Let (¢7,t5,...,t%,) €
{0,1}M be the binary representation of the M-bit number T". Then the sequence
S™(1),5™(2),...,S™(M) is decimated with & function as follows: if ¢ = 0, then S™(i) is
discarded, else S" (i) is kept for bitwise exclusive or computing. In brief, the produced
output sequence z", based on chaotic iterations, is updated by a bitwise exclusive or
of an irregular decimation of S(1), S(2), ..., S(M), according to the bits of 7". Note that
an efficient GPU implementation of this generator can be found in [BCGH11], which has
successfully passed the stringent TestUO1 battery of statistical tests [SM02].

A.3/ RANDOMNESS QUALITY OF CIPRNGSs

In this section, we recall the last statistical investigations we have published. The detalil
of CIPRNG:s tests results and references can be found in [Wan12, Fan13].

Table A.5 compares all the versions of CIPRNG (XORshift, XORshift) against the NIST
and DieHARD batteries. We can see that XORshift alone fails both the two batteries,
whereas the generator based on discrete chaotic iterations (CIPRNGs versions 1-4) can
improve it.

Generators investigated in this second set of experiments are now respectively the BBS
(with very bad security parameters: m of 32 bits and outputs of 4 bits), a Logistic map,
XORshift, and ISAAC, while the NIST, DieHARD, and TestUO1 test suites have been
considered for statistical evaluation. Let us recall that Table 4.1 contains the statistical
results obtained by the considered inputted generators. In Table A.6 are shown the results
obtained by the version 3 of our CIPRNGs. These results confirm that the CIPRNGs
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CIPRNG version

XORshift | 1 2|13 |4

NIST (15 tests) 14 15|15 |15 | 15
DieHARD (18 tests) 15 18 | 18 | 18 | 18

160

Table A.5: NIST and DieHARD results for XORshift alone and CIPRNG (XORshift, XOR-

shift) versions 1-4.

Table A.6: Statistical results for the LUT CIPRNG version 3

LUT CIPRNG Version 3
Logistic XORshift  ISAAC BBS

Test name
+ + + +
Logistic XORshift XORshift XORshift
NIST (15) 15 15 15 8
DieHARD (18) 18 18 18 8
TestUO1 (516) 516 516 516 356

version 3 are all able to pass these tests, except when using the very deflated BBS
generator. This issue is solved with the version 4, as shown in Table A.7. This last version
of the CIPRNG family offer thus a great compromise among statistical performances and
efficiency (Figure 4.1 provides a speed comparison between the slow BBS generator, the
fast XORshift, and the CIPRNGs version 1-4). It can be considered as very suitable both

for software and hardware implementations.

Table A.7: Statistical results for the CIPRNG version 4

CIPRNG version 4
Logistic XORshift ISAAC BBS

Test name
+ + + +
Logistic XORshift XORshift XORshift
NIST (15) 15 15 15 15
DieHARD (18) 18 18 18 18

TestUO1 (516) 516 516 516 516
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FURTHER DEVELOPMENTS IN
INFORMATION HIDING

B.1/ THE CZS; CHAOTIC ITERATION BASED STEGANOGRAPHIC
PROCESS

After the introduction of CZW; in [GFB10], there were only two information hiding
schemes being both stego-secure and topologically secure. The first one is based on
a spread spectrum technique called Natural Watermarking. It is stego-secure when its
parameter n is equal to 1 [CB08a]. Unfortunately, this scheme is neither robust, nor able
to face an attacker in KOA and KMA setups, due to its lack of expansiveness [Guy10].
The second scheme both topologically secure and stego-secure has been presented in
the previous section. However, this CZWV,; process allows to embed securely only one bit
per embedding parameters. The objective of [FGB11] was to improve the scheme studied
in [GFB10], in such a way that more than one bit can be embedded. Such a study led to
the definition of the CZS, scheme presented here.

B.1.1/ THE IMPROVED ALGORITHM

Let us firstly recall the notations and terminologies introduced in [FGB11], which extend
the ones presented in Chapter 2.

Definition 52, Let k € IN*. A strategy adapter is a sequence which elements belong into
[0,k — 1]. The set of all strategies with terms in [0, k — 1] is denoted by Sk.

Intuitively, a strategy-adapter aims at generating a strategy (S*)**™ where each term S
belongs to [1,n].

Definition 33. Let k € IN*. The initial function is the map i), defined by:

ik Sk — [[(), k — 1]]
(Sn)nelN — SO

Definition 34. Let k € IN*. The shift function is the map o;, defined by:

Ok - Sk I Sk
(Sn)nE]N > (Sn—‘rl)nE]N
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Let us additionally recall the following notations.

- 20 ¢ BN the N least significant coefficients of a given cover media C.
« mY e BP is the watermark to embed into z°.

* S; € Sy is a strategy called place strategy, giving the location (LCS) where to
insert the message at each iteration.

* S9 € Sp is a strategy called choice strategy, providing which bits from the message
must be inserted at the given iteration.

» Lastly, S3 € Sp is a strategy called mixing strategy, as it is required for chaos to
mix the message at each iteration.

The information hiding scheme published in [FGB11] was formerly called Steganography
by Chaotic Iterations and Substitution with Mixing Message (SCISMM in short), and has
been renamed CZS- in later publications. It is defined by V(n,i,j) € IN* x [0; N — 1] x
[0; P —1]:

n:{ | SO

mgp it ST =i

n =
J m?tif S§ = j.

{ mi 7t if Sy £
J

The stego-content is the Boolean vector y = z* € BN.

B.1.2/ SECURITY STUDY OF THE CZS,

After having introduced the CZS,, we have studied its security in [FGB11].

B.1.2.1/ STEGO-SECURITY

We have proven in [FGB11] that,
Proposition 23. CZS, is stego-secure.

Proof 7. See [FGB11].

B.1.2.2/ TOPOLOGICAL SECURITY

Topological model We have firstly proven in [FGB11] that CZS» can be modeled as a
dynamical system in a topological space, as follows. Let

F: [o;N—1] x BN x [0;P — 1] x B? — BN

(k7 xz, A7 m) — <5(k7j)$] + 5(k’j).m/\)je[[O;N—1]]
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where + and . are the boolean addition and product operations.

Consider the phase space X, defined as follow:

Xy =Sy x BN x Sp x B x Sp,
where Sy and Sp are the sets introduced in Section B.1.1.

We define the map Gy, : > — A5 by:

gfo (Sl,ZE, Sg,m, Sg) =
(O'N(Sl), F(iN(Sl), x, iP(SQ), m), UP(SQ), Gfo (m, Sg), O'P(Sg))

CZS- can be described by the iterations of the following discrete dynamical system:

{ X0e X,
XM = ng(Xk),

Then, by comparing X> and the phase space & formerly introduced in this manuscript,
we have verified in [FGB11] that.

Proposition 2*. The phase space X, has, at least, the cardinality of the continuum.

A new distance on X; We have defined in [FGB11] a new distance on &> as follows:
VX, X eX,if X = (Sl,l’, So,m, 53) and X = (Sl, z, 89,10, Sg), then:

do(X,X) = dpn(z, %) + dge(m,mh)
+  dsy(S1,51) + dsp(S2,52) + dsp(S3,53).

Continuity of CZS, To prove that CZS, is another example of topological chaos in the
sense of Devaney, Gy, must be continuous on the metric space (X>,dz). We thus have
proven in [FGB11] that,

Proposition 25, G, is a continuous function on (X, ds).

CLS, is chaotic Then, in [FGB11], (X2, Gy,) has been proven to be topologically tran-
sitive, regular, and sensitive dependence on initial conditions. We thus have the re-
sult [FGB11]:

Theorem 24, G, is a chaotic map on (X», ds) in the sense of Devaney.
So we can claim that CZS-, is topologically secure.

B.1.3/ CORRECTNESS AND COMPLETENESS STUDIES

Without attack, the CZS, scheme has to ensure that the user can always extract a mes-
sage and that this latter is the watermark, provided the user has the correct keys. These
two demands correspond respectively to the study of completeness and of correctness
for the proposed approach, which have been investigated in [BCF*13]. We have firstly
established that,
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Proposition 6. Let 3(S,) be the set (without repetitions) {S}, 52, ..., 5.} of cardinality
k, k < l. This set contains all the elements of = that have been modified along the CZS»
iteration process. Let us consider 3(S.)p defined by {S3, 5%, ..., S} where d; is the
last iteration that has modified the element i € 3(.S,).

Message can be extracted from the stego-content if and only if 3(S.)p = [0; P — 1].

Under this condition, one bit of index j of the original message m? is thus embedded at
least twice in 2!. By counting the number of times this bit has been switched in S,,,, the
value of m; can be deduced in many places. Without attack, all these values are equal
and the message is immediately obtained. After an attack, the value of m is obtained as
mean value of all its occurrences. The scheme is thus complete. Notice that if the cover
is not attacked, the returned message is always equal to the original due to the definition
of the mean function.

B.1.4/ DECIDING WHETHER A POSSIBLY ATTACKED MEDIA IS WATERMARKED

Let us consider a first media y that is watermarked with a message m and a second one,
namely 4/, which is an altered version of y, i.e., where some bits have been modified. Let
m’ be the message that is extracted from /.

We have checked in [BCF*13] how far the extracted message m/’ is from m. To achieve
this, we have considered the set M = {ilm; = 1} of the Boolean vector message m
and similarly the set M’ for the message m’. Most of similarity measures depend on
the functions «, b, ¢, and d, all from B x BP to N, and respectively equal to a(m,m’) =
|M ~ M|, b(m,m’) = |M\M'|, c(m,m’) = |M"\M|, and d(m,m’) = |[M ~ M’| (|]S| and S
respectively denote the cardinality and the complementary of any set S). In what follows
a, b, ¢, and d respectively stand for a(m,m’), b(m, m’), ¢c(m,m’), and d(m, m’).

According to [RDBMO03] the Fermi-Dirac measure Sgp is the one that has the highest
discrimination power, i.e., which allows a clear separation between correlated vectors
and uncorrelated ones. The measure is recalled hereafter with respect to the previously
defined scalars a, b, and c.

Frp(y) — Frp(%)
Srole) = Fep(0) — FFD(%Q) ’
1
F; = )
Fo() Lt o2 )

b+c
where ¢ = arctan(

), @o is /4, and v is 0.1.

The distance between m and m’ is then computed in [BCF*13] as 1 — Sgp(m,m’) and
is thus a real number in [0; 1]. We have proposed in [BCF*13] that, if such a distance is
lower than a given threshold, v’ will be declared as watermarked and not watermarked
otherwise. Next section presents a practical robustness evaluation of CZS, using this
decision rule.
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B.1.5/ ROBUSTNESS STUDY OF THE PROCESS

This section is devoted to the recall of the robustness study of the CZS, scheme real-
ized in [BCF™13]. For the whole experiments, a set of 100 images has been randomly
extracted from the database taken from the BOSS contest [PFB10b]. In this set, each
cover is a 512 x 512 grayscale digital image. The considered watermark m is given in
Fig. 5.2(b). Testing the robustness of the approach is achieved by successively apply-
ing on watermarked images attacks like cropping, compression, geometric transforma-
tions,. .. Differences between m and m’ have been computed as described in the previous
section.

We have firstly evaluate the robustness of the CZS- approach by applying different per-
centages of cropping, from 0.25% to 90%. Results are recalled in Fig. B.1, which presents
effects of such an attack. All the percentage differences are so far less than 97% and thus
robustness is established.

1.0

I o o
> o =3
T T T

Fermi-Dirac measure betw. Marks

o
N
T

o
==
o

0.2 0.4 0.6 0.8 1.0
Percentage of Cropping

Figure B.1: Cropping Results

Robustness against compression has then been addressed in [BCF*13], by studying
both JPEG and JPEG 2000 image compressions. Results are respectively presented in
Fig. B.2(a) and Fig. B.2(b). It is not hard to see that robustness is well established for
JPEG2000 compression: for all the ratios larger than 10%, the watermark is retrieved.
However, as stated in [BCF*13], this scheme is not robust against JPEG compression for
a ratio inferior to 90%. Remark that a potential solution can be to insert the watermark
in least significant coefficient of the image described in frequency domain, for instance
using either discrete cosine or with wavelet transform.

Among geometric transformations, we then focused on rotations, i.e., when two opposite
rotations of angle 6 are successively applied around the center of the image. In these
geometric transformations, angles range from 2 to 60 degrees. Results are presented
in Fig. B.3: thanks to an efficient embedding, our scheme is resistant to all that type of
attacks.

The first step of the CZS, scheme studied in this subsection has defined = as the LSBs
of the host image, it is thus based on LSB modifications. We have then considered
in [BCF*13] two types of attacks modifying these LSB sets (see Fig B.4). The former
consists in setting to zero a subset of this one. Results are expressed in Fig. B.4(a) and
show that the scheme is robust, unless 95% of the LSB is erased. In this case the image
is really damaged. The latter consists in applying again this scheme on the watermarked
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Figure B.2: Compression Results
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Figure B.3: Rotation Attack Results

image but with another message. Results of Fig. B.4(b) show that this scheme is robust
against that type of attack, provided the number of iterations is lesser than 1.75 times the
number of pixels. With more iterations, the image is dramatically modified: more than
50% of the LSB is switched.

B.1.6/ EVALUATION OF THE EMBEDDINGS

A Receiver Operating Characteristic (ROC) approach has finally been implemented
in [BCF*13], to find the most adapted threshold w.r.t. the separation between water-
marked images and other ones.

Figure B.5 recalls the obtained ROC curve. This latter is close to the ideal one that is
without False Positive and False Negative answer. The threshold with best results is a
distance equal to 0.97. With such a value, we can give some confidence intervals for most
of evaluated attacks. The approach is resistant to all the cropping where percentage is
less than 90%, to a JPEG2000 compression where quality ratio is greater than 5%, to all
the rotation attacks, and to LSB erasing when less than 95% LSBs are set to 0.
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Figure B.4: LSB Modifications
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Figure B.5: ROC Curves for DWT or DCT Embeddings

B.1.7/ LYAPUNOV EVALUATION OF CZS,

We finally close the study of the CZS, process by recalling the way we evaluated its
Lyapunov exponent in Secrypt13 [BFG13].

B.1.7.1/ A TOPOLOGICAL SEMI-CONJUGACY BETWEEN X5 AND R

In this section, by using a topological semi-conjugacy, we recall that CZS,; modeled by
Gy, on X can be described as iterations on a real interval. To do so, new notations and
terminologies must be introduced.

Let Xnpy = Snv x BN x Sp x BP x Sp. In what follows and for easy understanding, we
will assume that N = 3 and P = 2. So N + P = 5 and NP2 = 12. However, an equivalent
formulation of the following can be easily obtained by replacing the bases 5 and 12 by any
base (N + P) and (NP?). N has only to be greater than P.

Definition 3. The function v : [1,N] x [1,P] x [1,P] — [0,NP? — 1] is defined by:
W (S0, 88, 81) = (SE— 1)P2 4 (Si— 1)P + (S8, — 1).
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This function aims to convert a strategy of triplets in a simple strategy of integers ex-
pressed in a different basis, see Table B.1. Obviously, v is a bijective function, the re-
verse operation will be denoted by »~!. The three projections of ¢)~! are denoted by:

Ut (¥ (95 96 S0)) = Sp vy (¥ (S, 86 97)) = St and g (v (S5, 86 57)) = S

Base | Base | Base Base
N=3|P=2|P=2| NP*=12
LS [ St | Su [¢(5950) |

1 1 1 0

1 1 2 1

1 2 1 2

1 2 2 3

2 1 1 4

2 1 2 5

2 2 1 6

2 2 2 7

3 1 1 8

3 1 2 9

3 2 1 10

3 2 2 11

Table B.1: Some values for ¢ (see Definition 55).

Definition 6. Let us define ¢ : Xap) = S3 x B? x S5 x B? x S — [0,2°[, as follows. If
(Sp7 E7 SC7 M7 Sm) = ((527 S}%? . )7 (E07E17 EQ?-ES); (Sg7 Sclv .. )7 (M()y M1)7 (Srorw S%’u .. )) )

then ¢ (Sp, E, S¢, M, Sy,) is the real number:

2 4
- whose integral part e is Z 24k Ey + 2 24k M5, that is, the binary digits of e are

k=0 k=3
Ey By E9 Mo M;y.

« whose decimal part s is equal to: s = 0, (S35, S0, S5,) ¥ (S, St, Sh,) ¥ (S2,52,52) ...

pr~erMm

= 3% 127*8k=1 5 s thus expressed in base 12.

pr~ecrm pr~cr~¥m

As notified in [BFG13], ¢ realizes the association between a point of A(s.,) and a real
number into [0,2°[. We must now translate the steganographic process CZS,, which is
represented by Gy, as iterations on this real interval. To do so, two intermediate functions
over [0, 2°[ denoted by e and s has been introduced in [BFG13].

Definition 7. Letz € [0,2°[ and:

4
* ep,...,eq the binary digits of the integral part of z:: |x| = Z 24ke,.
k=0

* (s"rew the digits of x, expressed in base 12, where the chosen decimal de-
composition of x is the one that does not have an infinite number of 11:

+o0
x=|z|+ 2 sF127kL,
k=0
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e and s are thus defined as follows:
e: [0,2°[ — B3 xB?
x [ ((60,61,62);(63,64))
and
s: [0,25] — [0, 11]"
x — (Sk)ke]N

We have thus been able to define the function g, whose goal is to translate the stegano-
graphic process CZS, represented by Gy, on an interval of R [BFG13].

Definition 8. ¢ : [0,2°[ — [0,2°[ is such that g(z) is the real number of [0, 2°[ defined
below:

« its integral part has a binary decomposition equal to ey, . . ., e}y, with Vi € [0, 2] :
;) oe(@) ifi# ! (50)
T 6(x)2+w;l(50) ZfZ = wl_l (80)

andVi e [3,4]:
| el if i # 3 (s°)
e(a); + 1 (mod 2) ifi=13"(s"),

- whose decimal part is s(z)!, s(z)?, ...

4 400
In other words, if z = Z 24 ke, + Z s® 127F1 then:
k=0 k=0

224 ©ler (3067 (89) + 1 (mod 2)) + 3.1 0y (6(k, v ("))

4
+ 324 F(ep + (k15" (s”) (mod 2)) Z shtl1g—k-1
k=3

where ¢ is the discrete Boolean metric introduced prewously.

Numerous metrics can be defined on the set [O, 25[, the most usual one being the Eu-
clidian distance A(x,y) = |y — x|2. However, this Euclidian distance does not reproduce
exactly the notion of proximity induced by distance d; on &5 introduced in a previous sec-
tion, which is more relevant for the targeted applications. Indeed d, is richer than A, this
is why we have introduced the following map in [BFG13].

Definition . Given z,y € [0,25[, D denotes the function from [0, 2° [2 to R* defined by:
D(z,y) = De (e(z),e(y)) + Ds (s(x), s(y)), where:

4
Z ek,ek and D Z |S — &

We have thus proven in [BFG13] that,

Proposition 27. D is a distance on [0,2°].
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The convergence of sequences according to D is not the same than the usual conver-
gence related to the Euclidian metric. For instance, if 2 — z according to D, then
necessarily the integral part of each z" is equal to the integral part of = (at least after
a given threshold), and the decimal part of 2™ corresponds to the one of = “as far as
required”. D is richer and more refined than the Euclidian distance, and thus is more
precise.

v has been constructed in order to be continuous and onto, so we obtained the following
theorem in [BFG13].

Theorem 25. The steganographic process CZS, represented by (Gy,, X2) can be consid-
ered as simple iterations on R, which is illustrated by the semi-conjugacy given below:

g
(X2 da) —2 (Xzz)da)

‘| E
([02[D) —— ([0.2°[D)

In other words, X5 is approximately equal to [0,2V*P[. We have thus remarked in [BFG13]
that,

Proposition 28. The process CZS, represented by ¢ defined on R has derivatives of all
orders on [0,2°|, except on the 385 points in I defined by: I = {% /me[0;25 x 12]}} .

Furthermore, on each interval of the form %, n%;l
function having a slope equal to 12:Vx ¢ I, ¢’ (z) = 12.

, withn € [0;2° x 12[, g is a linear

We are now able to recall the way to evaluate the Lyapunov exponent of CZSs.

B.1.7.2/ TOPOLOGICAL SECURITY OF CZS5 ON R

CZS, represented by the function G, on &5 is topologically secure, that is to say (Gy,, X>)
is chaotic in the sense of Devaney. We can deduce the same property for CZS, repre-
sented by the ¢ function on R for the order topology. Indeed (Gy,, X2) and (g, [0,2°[p)
are semi-conjugate by ¢ as recalled below. So (g, [0, 2°[p) is a chaotic system according
to Devaney, because the semi-conjugacy preserves this character [For98]. However the
topology generated by D is finer than the topology generated by the Euclidean distance
A, which is the order topology. This is why we have proven in [BFG13] that,

Theorem 28, [et X be a set, and T, 7’ two topologies on X such that 7' is finer than .
Let f : X — X, continue for both  and 7'.

If (X, f) is chaotic in the sense of Devaney, then (X, f) is also chaotic.

Finally, according to Theorem 26, we have deduced in [BFG13] that the steganographic
process CZS, represented by g is chaotic in the sense of Devaney, for the order topology
on R. Having these assertions in mind, we have then formulated the following theorem:

Theorem 27, The steganographic process CIS, represented by g on R is chaotic in the
sense of Devaney, when the usual topology of R is used (the order topology).
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This result is weaker than Theorem 24, which establishes the chaotic property of CZS,
for a finer topology. It is as if the chaos observed using usual tools like the Euclidian dis-
tance is still preserved when considering more powerful tools (higher resolution, i.e., finer
topologies). The result contained in Theorem 27 is however interesting, as it confirms
that approach followed in [BFG13] does not lead to deflated properties.

Indeed, our studies take place in a system other than the one usually considered in
computer science (x> instead of R), in order to be as close as possible to the targeted
computer machines. By doing so, we prevent from any loss of chaotic properties when
computing the scheme written in mathematical terms. However, it might be feared that the
choice of a discrete mathematics approach leads to a disorder of lower quality. In other
words, perhaps we have avoided a situation of great disorder lost during the computation
into finite machines. But the cost of such success may be to obtain a weaker disorder ?
Theorem 27 proves exactly the contrary.

B.1.7.3/ EVALUATION OF THE LYAPUNOV EXPONENT

Let £ = {2°€[0,2°] /Vne N,z" ¢ I}, where I is the set of points in the real interval
where g is not differentiable (as it is explained in Proposition 28). Then [BFG13].

Theorem 28, Y2V € £, the Lyapunov exponent of CIS, having z° for initial condition is
equal to A\(z°) = In(12) > 0.

Rem 5. The set of initial conditions for which this exponent is not calculable is countable.
This is indeed the initial conditions such that an iteration value will be a number having the

form 1% with n e IN. Moreover, for a system having N + P cells (a number of LSCs equal

to N and a secret message to embed of width equal to P), we will find, mutatis mutandis,
an infinite uncountable set of initial conditions 2° € [0; 2N*P[ such that A(z°) = In(NP?).

So, itis possible to make the Lyapunov exponent of the scheme CZS- as large as possible,
depending on the number of least significant coefficients of the cover media we decide
to consider, and on the width of the message to embed. As proven in [GFB10], a large
Lyapunov exponent makes it impossible to achieve the well-known “Estimated Original
Attacks” [CB08a].

B.2/ THE DZ; STEGANOGRAPHIC PROCESS

In [BCFG12a, BCFG12b], a new steganographic algorithm named DZ3 is presented. It
is inspired from CZW; and CZS, respectively published in [FGB11] and [GFB10], and
recalled previously in this chapter. Compared to the first one, DZ3 is a steganographic
scheme, not just a watermarking technique. That is, in our understanding, it can embed
more than one bit. Unlike CZS», which requires embedding keys with three strategies,
only one sequence is required for D73, so it is easier to implement. Indeed DZ; is a faster
instance of CZS,, as there is no message mixing in it. DZ3 is well-defined mathematically
and its security is evaluated in [BCFG12a], whereas [BCFG12b] provides algorithms and
investigates its robustness, comparing it to some well-known watermarking schemes,
namely the YASS [SSMO07], nsF5 [FPK07], MMx [KDRO06], and HUGO [PFB10a] algo-
rithms detailed in the Appendix B.3.
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B.2.1/ MATHEMATICAL DEFINITIONS AND NOTATIONS
New notations and terminologies must be introduced another time in order to be able to
define mathematically the DZ3 steganographic process. They are provided thereafter.

Definition 0. The support of a finite sequence S of n terms is the finite set S(S) =
{S*, k < n} containing all the distinct values of S. lts cardinality is s.t. #5(S) < n.

Definition 1. A finite sequence S € Sy of n terms is injective if n = #S(S). It is onto if
N = #S(S). Finally, it is bijective if and only if it is both injective and onto, son = N =
#S(9).

“S is injective” reflects the fact that all the n terms of the sequence S are distinct, while “S
is onto” means that all the values of the set [1; N] are reached at least once.

B.2.2/ THE NEW DZ; PROCESS

In this section, the new algorithm introduced in [BCFG12a] and studied in [BCFG12b] is
recalled. Let P € IN* be the width, in term of bits, of the message to embed into the cover
media. A\ e IN* is the number of iterations to realize, which is s.t. A > P. 2 € BN is for
the N LSCs of a given cover media C supposed to be uniformly distributed. m e B is
the message to hide into 2. Finally, S € Sp is a strategy such that the finite sequence
{S* ke [\— P+ 1;A]} is injective.

Rem 6. The width P of the message to hide into the LSCs of the cover media z° has to
be far smaller than the number of LSCs.

The proposed information hiding scheme is defined by:

Definition 62 (D73 Data hiding scheme). V(n,i,j) e IN* x [0;N — 1] x [0; P — 1]:

LS
T = .

The stego-content is the Boolean vector y = z* € BN, which will replace the former LSCs,
that is, LSCs of the cover media are replaced by the vector y.

B.2.3/ SECURITY STUDY

A security study of the DZ3 steganographic process has been realized in [BCFG12a].
Conclusion of this study is summarized thereafter.

Proposition 2°. DZ; is stego-secure.

This proof of this proposition, provided in [BCFG12a], holds for the following restrictive
hypotheses:

- Distribution of LSCs: We have supposed that 2° ~ ¢/ (BY) to prove the stego-
security of the data hiding process DZs. This hypothesis of the uniform distribution
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of the least significant coefficients is obviously the most restrictive one, but it can be
obtained at least partially in two possible manners. Either a channel that appears
to be random (for instance, when applying a chi squared test, or for test batteries
recalled in a previous chapter) can be found in the media. Or a systematic process
can be applied on the images to obtain this uniformity, as follows. Before embedding
the hidden message, all the original LSCs must be replaced by randomly generated
ones, hoping so that such cover media will be considered to be noisy by any given
attacker. Let us remark that, in the field of data anonymity for privacy on the Inter-
net, we are in the “watermark-only attack” framework. As it has been recalled in
Table ??, in that framework, the attacker has only access to stego-contents, having
so no knowledge of the original media (i.e., before introducing the message in the
LSCs random channel). These considerations, which have been deepened in later
publications, will be discussed more largely at the end of this chapter.

+ Distribution of the messages m: In order to prove the stego-security of the data
hiding process DZs, we have supposed that m ~ U (BP). This hypothesis of the
uniform distribution of the message to hide is not really restrictive. Indeed, to en-
crypt the message before its embedding into the LSCs of cover media, which is
usually required for obvious security reasons, is sufficient to achieve this goal. To
say it different, in order to be in the conditions of applications of the process D73,
the hidden message must be encrypted.

+ Distribution of the strategies S: To prove the stego-security of the data hiding
process DZs, we have finally supposed that S ~ U/ (Sp). This hypothesis is not re-
strictive too, as any cryptographically secure pseudorandom generator (PRNG) sat-
isfies this property. With such PRNGs, it is impossible in polynomial time, to make
the distinction between random numbers and numbers provided by these genera-
tors. For instance, Blum Blum Shub (BBS) [Jun99], Blum Goldwasser (BG) [VV85],
or ISAAC [Jen96], recalled in the chapter focusing on PRNGs, are convenient here.

After this theoretical study of the DZ3 steganographic process realized in [BCFG12a],
we have investigated practical aspects, discussing about its concrete implementation and
evaluating its robustness in [BCFG12b], while article [BCFG12a] already mentioned deals
with its ability to face steganalyzers. These practical aspects are summarized below.

B.2.4/ IMPLEMENTING THE DZ3; SCHEME

In the algorithms recalled here, the following notations are used: S denotes the embed-
ding and extraction strategy, H the host content or the stego-content depending of the
context. LSC stands for the old or new LSCs of the host or stego-content H depending
of the context too. N denotes the number of LSCs, A the number of iterations to realize,
M the secret message, and P the width of the message (number of bits).

The DZ3 scheme theoretically presented in [BCFG12a] has been practically described by
three main algorithms in [BCFG12b]:

1. Algorithm 8 generates the embedding strategy, part of the embedding key (with the
LSCs and the number of iterations).
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2. Algorithm 9 embeds the message into the LSCs of the cover media using the strat-
egy. The strategy has been generated by the first algorithm and the same number
of iterations is used.

3. Algorithm 10 extracts the secret message from the LSCs of the media (the stego-
content) using the strategy, which constitutes with the message length the extraction
key.

Two other complementary functions must be used:

1. Algorithm 11, which allows to extract MSCs, LSCs, and passive coefficients from
the host content. Its implementation is based on the concept of signification function
described previously.

2. Algorithm 12 rebuilds the new host content (the stego-content) from the correspond-
ing MSCs, LSCs, and passive coefficients. This function realizes the opposite op-
eration of Algorithm 11.

Rem 7. These two algorithms depend of the definition of the MSCs, LSCs, and passive
coefficients, which can correspond to a spatial or frequency description of the host con-
tent. This is why they are not documented here.

Algorithm 8: strategy(N, P, \)

/* S is a sequence of integers into [0,P — 1], such that (Sy,,...,Sn+P—-1)
is injective on [0, P —1]. */

Result: S: The strategy, integer sequence (S, S1, .. .).

begin

ng«—L—P+1;

if P> N ORng < 0then

L return ERROR

S «—— Array of width ), all values initialized to 0;

cpt «— 0;

while cpt < ng do
Sept «——Random integer in [0, P — 1].;

L cpt «— cpt + 1,

A — We generate an arrangement of [0, P — 1];
for k € [0,P — 1] do

L Sno-i—k — Ak;
return S

B.2.5/ EVALUATION AGAINST STEGANALYZERS

The steganographic scheme detailed in [BCFG12a] has been compared to state of
the art steganographic approaches, namely YASS [SSMO07], HUGO [PFB10a], and
nsF5 [FPKO7] detailed in the Appendix B.3. This study, realized in [BCFG12a], is sum-
marized thereafter.
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Algorithm 9: embed(LSC, M, S, \)

Result: New LSCs with embedded message.
begin

N «— Number of LSCs in LSC;

P «—— Width of the message M;

for k € [0, \] do

i «— Sk,
L return LSC

Algorithm 10: extract(LSC, S, A, P)
Result: The message to extract from LSC.
begin
RS «—— The strategy S written in reverse order.;
M «—— Array of width P, all values initialized to 0;
for k € [0, \] do
i «— RSy;
L Mi «— LSCi;
L return M

The steganalysis is based on the BOSS image database [BFP11], which consists in a set
of 10 000 512x512 greyscale images. We have randomly selected 50 of them to compute
the cover set. Since YASS and nsF5 are dedicated to JPEG support, all these images
have been firstly translated into JPEG format thanks to the mogrify command line. To
allow the comparison between steganographic schemes, the relative payload is always
set with 0.1 bit per pixel. Under that constrain, the embedded message m is a sequence
of 26214 randomly generated bits. This step has led to distinguish four sets of stego
contents, one for each steganographic approach.

We have next used in [BCFG12a] the steganalysis tool developed by the HugoBreakers
team [KF11,KFH11] based on Al classifier and which won the BOSS competition [BFP11].
Table B.2 summarizes these steganalysis results expressed as the error probabilities of
the steganalyser, as they are given in [BCFG12a]. The errors are the mean of the false
alarms and of the missed detection. An error that is closed to 0.5 signifies that deciding
whether an image contains a stego content is a random choice for the steganalyser.
Conversely, a tiny error denotes that the steganalyser can easily classify stego content
and non stego content.

The best result is obtained by HUGO, which is closed to the perfect steganographic ap-
proach to the considered steganalyser, since the error is about 0.5. However, even if
the approach detailed in [BCFG12a] has no optimization, these first experiments shown
promising results.

B.2.6/ ROBUSTNESS STUDY

This section summarizes the robustness study presented in [BCFG12b]. Each experi-
ment is build another time on a set of 50 images, which are randomly selected among
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Algorithm 11: signi fication Function(H)
Data: H: The original host content.
Result: M SC: MSCs of the host content H.
Result: PC': Passive coefficients of the host content H.
Result: LSC: LSCs of the host content H.
begin
L/* Implemented by the user. */
return (M SC, PC,LSC)

Algorithm 12: buildFunction(M SC, PC,LSC) )
Result: H: The new rebuilt host content.
begin
/* Implemented by the user. */
L return (M SC, PC,LSC)

database taken from the BOSS contest [BFP11]. Each cover is a 512 x 512 greyscale dig-
ital image. The relative payload is always set with 0.1 bit per pixel. Under that constrain,
the embedded message m still remains a sequence of 26214 randomly generated bits.

According to previous similar work in the field of information hiding, we have conducted
in [BCFG12b] our evaluation following a same canvas than other robustness studies doc-
umented previously in this chapter. We have firstly chosen some classical attacks like
cropping, compression, and rotation ones. The robustness of D73 has then been tested
by successively applying on stego content these attacks. Differences between the mes-
sage that is extracted from the attacked image and the original one are then computed
and expressed as percentage.

Different percentage of cropping (from 1% to 81%) have been firstly applied on the stego
image in [BCFG12b], Fig. B.6 (c) recalls effects of such attacks. We have then addressed
robustness against JPEG and JPEG 2000 compression, and results are summarized in
Fig. B.6 (a-b). Attacks based on geometric transformations have finally been addressed
through rotations: as presented previously in this chapter, two opposite rotations of angle
f are successively applied around the center of the image. In these geometric transfor-
mations, angles range from 2 to 20 degrees. Effects of such attacks are also recalled in
Fig. B.6 (d).

From all these experiments, one can conclude that the steganographic scheme does not
present obvious drawback and resists to all the attacks: all the percentage differences
are so far less than 50%.

All researches presented in previous sections have started from the CZWW; process, pro-
ceeding by successively correcting its drawbacks. By doing so, we have had a retreat
from chaotic iterations. At the same time, the chaotic iterations based information hid-
ing (dhCl) process, whose the CZW; scheme historically arises from, continued to be
investigated in parallel. Results of these investigations are detailed in the next section.
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Steganographic Tool | DZs YASS | HUGO | NsF5
Error Probability 0.4133 | 0.0067 | 0.495 | 0.47

Table B.2: Steganalysis results of HugoBreakers steganalyser applied on steganographic
scheme
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Figure B.6: Robustness of DZ35 scheme facing several attacks (50 images from the BOSS
repository)

B.3/ SOME WELL-KNOWN STEGANOGRAPHIC SCHEMES

We recall in this appendix some state of the art information hiding schemes. One should
find more details in [Fri09].

B.3.1/ YASS

YASS (Yet Another Steganographic Scheme) [SSMQ7] is a steganographic approach ded-
icated to JPEG cover. The main idea of this algorithm is to hide data into 8 x 8 randomly
chosen inside B x B blocks (where B is greater than 8) instead of choosing standard 8 x 8
grids used by JPEG compression. The self-calibration process commonly embedded into
blind steganalysis schemes is then confused by the approach. In the paper [SSM], fur-
ther variants of YASS have been proposed simultaneously to enlarge the embedding rate
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and to improve the randomization step of block selecting. More precisely let be given a
message m to hide, a size B, B > 8, of blocks . The YASS algorithm follows:

1. computation of m which is the Repeat-Accumulate error correction code of m
2. in each big block of size B x B of cover, successively:

(a) random selection of an 8 x 8 block b using w.r.t. a secret key.

(b) two-dimensional DCT transformation of b and normalisation of coefficient w.r.t
a predefined quantization table. Matrix is further referred to as v'.

(c) afragment of m' is embedded in some LSB of t/. Let " be the resulting matrix.

(d) The matrix b” is decompressed back to the spatial domain leading to a new
B x B block.

B.3.2/ NSF5

The nsF5 algorithm [FPK07] extends the F5 algorithm [Wes01]. Let us first have a closer
look on this latter

First of all, as far as we know, F5 is the first steganographic approach that solves the
problem of remaining unchanged a part (often the end) of the file. To achieve this, a
subset of all the LSB is computed thanks to a pseudorandom number generator seeded
with a user defined key. Next, this subset is split into blocks of z bits. The algorithm takes
benefit of binary matrix embedding to increase it efficiency. Let us explain this embedding
on a small illustrative example where a part m of the message has to be embedded into
this « LSB of pixels which are respectively a 3 bits column vector and a 7 bits column
vector. Let then H be the binary Hamming matrix

|

The objective is to modify = to get y s.t. m = Hy. In this algebra, the sum and the product
respectively correspond to the exclusive or and to the and Boolean operators. If Hzx is
already equal to m, nothing has to be changed and = can be sent. Otherwise we consider
the difference § = d(m, Hx) which is expressed as a vector :

— o O
O = O
e )
S O =
_ o =
— = =

1
1
0

01
0= ( 09 ) where 6; is 0 if m; = Hx; and 1 otherwise.
03

Let us thus consider the jth column of H which is equal to 5. We denote by z’ the vector
we obtain by switching the jth component of z, that is, 77 = (21,...,7j,...,2,). Itis not
hard to see that if y is @/, then m = Hy. It is then possible to embed 3 bits in only 7
LSB of pixels by modifying on average 1 — 23 changes. More generally, the F5 embedding

efficiency should theoretically be %5;.

However, the event when the coefficient resulting from this LSB switch becomes zero
(usually referred to as shrinkage) may occur. In that case, the recipient cannot determine
whether the coefficient was -1, +1 and has changed to 0 due to the algorithm or was
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initially 0. The F5 scheme solves this problem first by defining a LSB with the following
(not even) function:

1—2 mod2ifz<0

x mod 2 otherwise.

LSB(z) = {

An next, if the coefficient has to be changed to 0, the same bit message is re-embedded
in the next group of x coefficient LSB.

The scheme nsF5 focuses on steps of Hamming coding and ad’hoc shrinkage removing.
It replaces them with a wet paper code approach that is based on a random binary matrix.
More precisely, let D be a random binary matrix of size = x n without replicate nor null
columns: consider for instance a subset of {1, 2*} of cardinality n and write them as binary
numbers. The subset is generated thanks to a PRNG seeded with a shared key. In this
block of size x, one choose to embed only k elements of the message m. By abuse, the
restriction of the message is again called m. It thus remains x — k (wet) indexes/places
where the information shouldn’t be stored. Such indexes are generated too with the keyed
PRNG. Let v be defined by the following equation

Dv = §(m, Dx). (B.1)

This equation may be solved by Gaussian reduction or other more efficient algorithms. If
there is a solution, one have the list of indexes to modify into the cover. The nsF5 scheme
implements such a optimized algorithm that is to say the LT codes.

B.3.3/ MMX

Basically, the MMx algorithm [KDR06] embeds message in a selected set of LSB cover
coefficients using Hamming codes as the F5 scheme. However, instead of reducing as
many as possible the number of modified elements, this scheme aims at reducing the
embedding impact. To achieve this it allows to modify more than one element if this leads
to decrease distortion.

Let us start again with an example with a [7,4] Hamming codes, i.e, let us embed 3
bits into 7 DCT coefficients, D, ..., D7. Without details, let p1,. .., p7 be the embedding
impact whilst modifying coefficients Dy,..., D7 (see [KDRO6] for a formal definition of
p). Modifying element at index j leads to a distortion equal to p;. However, instead of
switching the value at index j, one should consider to find all other columns of H, ji, j»
for instances, s.t. the sum of them is equal to the jth column and to compare p; with
pi, +pj,- If one of these sums is less than p;, the sender has to change these coefficients
instead of the j one. The number of searched indexes (2 for the previous example) gives
the name of the algorithm. For instance in MM3, one check whether the message can be
embedded by modifying each time 3 pixel or less.

B.3.4/ HUGO

The HUGO [PFB10a] steganographic scheme is mainly designed to minimize distortion
caused by embedding. To achieve this, it is firstly based on an image model given as
SPAM [PBF10] features and next integrates image correction to reduce much more dis-
tortion. What follows discuss on these two steps.
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The former first computes the SPAM features. Such calculi synthesize the probabilities
that the difference between consecutive horizontal (resp. vertical, diagonal) pixels be-
longs in a set of pixel values which are closed to the current pixel value and whose
radius is a parameter of the approach. Thus a fisher linear discriminant method de-
fines the radius and chooses between directions (horizontal, vertical...) of analyzed
pixels that gives the best separator for detecting embedding changes. With such in-
stantiated coefficients, HUGO can synthesize the embedding cost as a function D(X,Y)
that evaluates distortions between X and Y. Then HUGO computes the matrices of
pi; = max(D(X, X0)+), . D=(X, X®)7), ;) such that X))+ (resp. X+ ) is the
cover image X where the the (i, j)th pixel has been increased (resp. has been de-
creased) of 1.

The order of modifying pixel is critical: HUGO surprisingly modifies pixels in decreasing
order of p; ;. Starting with Y = X, it increases or decreases its (i, j)th pixel to get the
minimal value of D(Y,Y)+), . and D=(Y,Y(#)~), ;. The matrix Y is thus updated at
each round.



C

APPLICATION TO HASH FUNCTIONS

Hash functions are cryptographic tools involved, among other things, in integrity checking
and password storage. They are of prior importance to improve security of exchanges
through the Internet. However, as security flaws are regularly identified in standards in
this domain, new ways to hash digital data must always be investigated.

During our thesis, we have initiated the use of chaotic iterations for hash func-
tions [BG10a,BG10d]. The idea was to compose a new hash function by mixing elements
of the SHA-1 and of chaotic iterations. The first work after our thesis was to rationalize
and simplify this hash function, and to study its behavior computationally: diffusion and
confusion have been obtained, justifying in our opinion the interest of adding chaos to ex-
isting hash functions. Since these first investigations, and due to our reflections on PRNG
post-treatments as presented in Chapter 4, our research works have then taken another
direction: instead of creating from scratch a new hash function, our approach is now to
realize a post-treatment on existing hash functions that preserves their properties while
adding chaos.’

C.1/ INTRODUCTION

Security or privacy of data exchanged through the Internet are guaranteed by protocols
that make an adequate use of a few cryptographic tools as secure pseudorandom num-
ber generators or hash functions. Hash functions are applications that map words of any
lengths to words of fixed lengths (often 256 or 512 bits). These hash functions allow, for
instance, to store passwords in a secure manner or to check whether a download has
occurred without any error. They can be designed to depend from a given parameter,
called a key. According to their field of application, the requirements an hash function
has to satisfy can change. They need at least: to be very fast, such that the diffusion of
the digest into the set of hash values occurs (whatever the bias into the inputted mes-
sage), and such that a link between a message and its digest is impossible to establish
in practice (confusion). The possibility to use a key or to distribute the computation on
numerous threads must often be offered in several applications. Finally, in the computer
security field, stringent complexity properties have to be proven, namely the collision,
first-preimage, and second-preimage resistances, the unpredictability, and the pseudo-

"This review chapter summarizes partially my research works regarding hash functions, which has led to
3 journal and 2 conference articles, 3 of them being published after my thesis [BCG11b, GB12, BCG12a].
They have been realized in collaborations with Jean-Frangois Couchot, and Jacques Bahi.
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randomness properties. Each of these latter have a rigorous formulation in terms of
polynomial indistinguishability.

Several hash functions have been proposed as candidates to be a standard in computer
science. Such standards are designed by the scientific community and selected, after
peer studies, by administrations as the NIST one (National Institute for Standards and
Technologies of the US government). SHA-1 is probably the most widely used hash
functions. It is present in a large panel of security applications and protocols through the
Internet. However, in the last decade, security flaws have been detected in this latter.
As the SHA-2 variants are algorithmically close to SHA-1 and produce finally message
digests on principles similar to the MD4 and MD5 message digest algorithms, a new hash
standard has been defined during the SHA-3 contest.

Inspired by this contest, and as standards always finish to be broken which requires to
always regard new investigative directions, we have formerly proposed our own family
of hash functions during our thesis [BG10a, BG10d]. Being designed by using discrete
dynamical systems, and taking benefits from the various established topological prop-
erties recalled previously, this new family of hash functions that mix SHA-1 and chaotic
iterations is thus based on a different approach. In the first publications after our thesis,
this new family has been dramatically simplified and studied both theoretically and prac-
tically [BCG11b, GB12,BCG12a]. However, creating from scratch a new hash function
is a very hard task that requires strong knowledge in this field. Additionally, our more
recent researches in the fields of chaotic finite state machines and of chaotic iterations
based pseudorandom number generators have emphasized the interest to realize a post-
treatment on existing objects, in order to add chaos properties while preserving existing
properties. This is why in our most recent proposals, we have added an ingredient of
chaos to existing hash functions, in order to reinforce their properties.

As in other fields of information security, the use of chaos to design hash functions is often
disputed, for the following reasons [sZIC97, GWHCO09]. Methods of existing chaos-based
hash functions [WZZ03, XLW09a, XLW09b, XSL10] usually transform the initial message
into its padded fixed length version and then translated into a real number. Next, with a
chosen chaotic map, methods set the initial algorithm parameters according to the secret
key and start iterations. It is then supposed that the final hash function preserves the
properties of chaos. But, in our opinion, this claim is not so evident. Moreover, even
if these algorithms are themselves proven to be chaotic, their implementations on finite
machines can result to loss of chaos properties. The main reason already evoked in this
manuscript is that chaotic functions (embedded in these researches) only manipulate real
numbers, which do not exist in a computer.

The hash function we have proposed since our thesis does not simply integrate chaotic
maps into algorithms hoping that the result remains chaotic; we have conceived algo-
rithms and have mathematically proven that they are chaotic. To do both, as in Chapter 4,
our theory and our implementation are based on finite integer domains and finite states
iterations, where only one randomly chosen element is modified at each step. By do-
ing so, the complete chaotic behavior of asynchronous chaotic iterations is capitalized to
produce a truly chaotic keyed hash function.

This chapter summarizes our researches published in [BCG11b, GB12, BCG12a] and
new works under submission. Compared to our thesis investigations [BG10a, BG10d],
we have completely rethought, simplified, and fixed some drawbacks in the hash function
proposed in our thesis. Then, in a second time, we have rethought it: our approach
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consists now in realizing a post-treatment on existing hash functions, to improve their
profile, while it was previously to design an hash function from scratch.

C.2/ BACKGROUND SECTION

Definition 63 (Secure Keyed One-Way Hash Function [BSNP96]). Let ' and X be two
alphabets, let k € K be a key in a given key space, letl be a natural numbers which is the
length of the outout message, and let h : K x I't — X! be a function that associates a
message in X for each pair of key, word in K x I'*. The set of all functions h is partitioned
into classes of functions {hy : k € K} indexed by a key k and such that h;, : Tt — ! is
defined by hi(m) = h(k,m), i.e., hy, generates a message digest of length [.

Aclass {h; : k € K} is a Secure Keyed One-Way Hash Function if it satisfies the following
properties:

1. the function hy, is keyed one-way. That is,

(a) Given k andm, it is easy to compute hy(m).
(b) Without knowledge of k, it is
- difficult to find m when hy.(m) is given; this property is referred as preimage
resistance;
» difficult to find hy(m) when only m is given.

2. The function hy, is keyed collision free, that is, without the knowledge of k it is difficult
to find two distinct messages m and m’ s.t. hy(m) = hi(m’). A weaker version of
this property is the second preimage resistance which is established if for a given
m it is difficult to find another message m’, m # m/, such that hi,(m) = hx(m').

3. Images of function h;, has to be uniformly distributed in %! in order to counter statis-
tical attacks.

4. Lengthl of produced image has to be larger than 128 bits in order to counter birthday
attacks.

5. Key space size has to be sufficiently large in order to counter exhaustive key search.

Finally, hash functions have to verify the avalanche criteria, which means that a difference
of one bit between two given medias has to lead to completely different digest. Intuitively,
the topologically transitivity and the sensitivity on initial conditions respectively address
the preimage resistance and the avalanche criteria. Section C.4 formalizes this intuition.

The next section presents the hash function we have published and studied in [BCG11b,
GB12,BCG12a]. It is based on chaotic iterations and on SHA-1, and it simplifies and
rationalizes our first proposal formerly introduced during our thesis.

C.3/ CHA0S-BASED KEYED HASH FUNCTION ALGORITHM

The hash value is obtained as the last configuration resulting from chaotic iterations of
G,. We then have to define the pair X° = ((S?)*€B, z9), i.e,, the strategy and the initial
configuration x°.
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C.3.1/ COMPUTING 2"

The first step of the algorithm is to transform the message in a normalized n = 256 bits
sequence z°. This size n of the digest can be changed, mutatis mutandis, if needed.
Here, this first step is close to the pre-treatment of the SHA-1 hash function, but it can
easily be replaced by any other compression method.

To illustrate this step, we take an example, our original text is: “The original text’.

Each character of this string is replaced by its ASCII code (on 7 bits). Following the SHA-1
algorithm, first we append a “1” to this string, which is then

10101001 10100011 00101010 00001101 11111100 10110100 11100111 11010011 10111011
00001110 11000100 00011101 00110010 11111000 11101001

Next we append the block 1111000, which is the binary value of this string length (120)
and let R be the result. Finally another “1” is appended to R if and only if the resulting
length is an even number.

10101001 10100011 00101010 00001101 11111100 10110100 11100111 11010011 10111011
00001110 11000100 00011101 00110010 11111000 11101001 1111000.

The whole string is copied, but in the opposite direction:

10101001 10100011 00101010 00001101 11111100 10110100 11100111 11010011 10111011
00001110 11000100 00011101 00110010 11111000 11101001 11110000 00111110 01011100
01111101 00110010 11100000 10001101 11000011 01110111 00101111 10011100 10110100
11111110 11000001 01010011 00010110 010101.

The string whose length is a multiple of 512 is obtained, by duplicating enough this string
obtained above, and truncating it at the next multiple of 512. This string is further denoted
by D. Finally, we split our obtained string into two blocks of 256 bits and apply to them
the exclusive-or function, from the first two blocks to the last one. It results a 256 bits
sequence, that is in our example:

00001111 00101111 10000010 00111010 00001110 01100111 01111000 10011101 01010111
00110101 11010100 01101001 11111001 00011011 01001110 00110000 11000111 00101101
10001001 11111001 01100010 10111010 11001110 10101011 10010001 11101110 01100111
00000101 11000100 00011111 01001111 00001100.

The configuration z° is the result of this pre-treatment and is a sequence of n = 256
bits. Notice that many distinct texts lead to the same string z°. The algorithm detailed
in [BCG11b, GB12] always appended “1” to the string R. However such an approach
suffered from generating the same 2 when R has length 128. In that case the size
of its reverse is again 128 bits leading a message of length 256. When we duplicate
the message, we obtain a message of length 512 composed of two equals message.
Resulting Xor function is thus 0. This improvement, proposed in [BCG12a], allows thus
to avoid this drawback.

Let us build now the strategy (S)'® that depends on both the original message and a
given key.
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C.3.2/ COMPUTING (S?)tB

To obtain the strategy S, the chaotic proven pseudorandom number generator, detailed
in [BCGH11] and recalled in Chapter 4, is used. The seed of this PRNG is computed
as follows: first the ASCII code (on 7 bits again) of the key is duplicated enough and
truncated to the length of D. A xor between D and this chain gives the seed of the
PRNG, that is left to generate a finite sequence of natural numbers S* in [1,n] whose
length is 2n.

C.3.3/ COMPUTING THE DIGEST
To design the digest, chaotic iterations of Gy, are realized with initial state X° =
(S8, 20) as defined above. The result of these iterations is a n = 256 bits vector.

Its components are taken 4 per 4 bits and translated into hexadecimal numbers, to obtain
the hash value:

AF71542C90F450F6AE3F649A0784E6B16B788258E87654B4D6353A2172838032.

As a comparison if we replace “The original text” by “the original text”, the hash function
returns:

BAD8789AD6924B6460FSE7686A24A4228486DC8FDCAE15F1F681B91311426056.

To sum up, this hash function consists in realizing chaotic iterations with the vectorial
negation and an initial condition constituted by:

» a compression function for the internal state,

* a prng seeded with the media to hash for the strategy.

We then investigate qualitative properties of this algorithm.

C.4/ QUALITY ANALYSIS

We show in this section that, as a consequence of recalled theoretical results, this hash
function tends to verify desired informal properties of a secure keyed one-way hash func-
tion [BCG12a,BCG11b].

C.4.1/ THE AVALANCHE CRITERIA

In our opinion, this criteria is implied by the topological properties of sensitive depen-
dence to the initial conditions, expansiveness, and Lyapunov exponent. We recall that a
function f has a constant of expansiveness equal to ¢ if an arbitrarily small error on any
initial condition is always magnified till ¢, while the function Gy, verifies the expansiveness
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property if there exists any constant ¢ > 0 such that forany X and Y in X, X # Y, we
canfinda k e Ns.t. d(G’Ji0 (X), G’}O(Y)) > ¢. We have proven in previous works [GFB10]
and recalled in Chapter 2 that (X, Gy,) is an expansive chaotic system. lIts constant of
expansiveness is equal to 1.

Next, some dynamical systems are highly sensitive to small fluctuations in their initial
conditions. The constants of sensitiveness and of expansiveness have been historically
defined to illustrate this fact. However, in some cases, these variations can become enor-
mous, can grow in an exponential manner in a few iterations, and neither sensitiveness
nor expansiveness are able to measure such a situation, which has led to the introduction
of the Lyapunov constant recalled in the first chapter of this hdr. We recall that, by using
a topological semi-conjugation between & and R, we have proven in [Guy10] that, for
almost all X, the Lyapunov exponent of asynchronous iterations G, with X° as initial
condition is equal to In(n).

We can now justify why, in our opinion, the topological properties of the proposed hash
function lead to the avalanche effect. Indeed, due to the sensitive dependence to the
initial condition, two close media can possibly lead to significantly different digests. The
expansiveness property implies that these similar medias mostly lead to very different
hash values. Finally, a Lyapunov exponent greater than 1 lead to the fact that these two
close media will always finish to have very different digests.

C.4.2/ PREIMAGE RESISTANCE

Let us now recall our topological justifications about the preimage resistance of our keyed
hash function denoted by » [BCG11b]. As stated at the beginning of this chapter, an
adversary given a target image D should not be able to find a preimage M such that
h(M) = D. One reason (among many) why this property is important is that on most
computer systems user passwords are stored as the cryptographic hash of the password
instead of just the plain-text password. Thus an attacker who gains access to the pass-
word file cannot use it to then gain access to the system, unless it is able to invert target
message digest of the hash function.

We now explain why, topologically speaking, our hash function is resistant to preimage
attacks [BCG11b]. Let m be the message to hash, (S,2") its normalized version (i.e.,
the initial state of our chaotic iterations), and M = h(m) the digest of m by using our
method. So chaotic iterations with initial condition (.S, A/) and iterate function Gy, have
x0 as final state. Thus it is impossible to invert the hash process with a view to obtain
the normalized message by using the digest. Such an attempt is equivalent to trying to
forecast the future evolution of chaotic iterations by only using a partial knowledge of its
initial condition. Indeed, as M is known but not S, the attacker has an incertitude on the
initial condition. She/he only knows that this value is into an open ball of radius 1 centered
at the point M, and the number of terms of such a ball is infinite.

With such an incertitude on the initial condition, and due to the numerous chaos proper-
ties possessed by the chaotic iterations (as these stated in Section C.4.1), this prediction
is impossible. Furthermore, due to the transitivity property, it is possible to reach all
of the normalized medias, when starting to iterate into this open ball. These qualita-
tive explanations can be formulated more rigorously, when considering a more general,
post-treatment oriented instance of the proposed hash function. Such a formulation, cor-
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responding to our most recent thoughts in this discipline, is provided with the collision
resistance property in Section C.6, while the next sections investigate some computa-
tional and experimental aspects of security.

C.4.3/ ALGORITHM COMPLEXITY

In this section, we recall the complexity of the hash function published in [BCG11b]:

Theorem 22, Let! be the size of the message to hash and n be the size of its hash value.
The algorithm detailed along these lines requires O(1) + O(n?) elementary operations to
produce the hash value.

Proof 8. See [BCG11b].

C.5/ EXPERIMENTAL EVALUATIONS

Let us now give some examples of hash values before statistically studying the quality of
hash outputs.

C.5.1/ EXAMPLES OF HASH VALUES

Let us consider the proposed hash function with n = 256. We consider the key to be
equal to “my key”.

To give illustration of the confusion and diffusion properties, we will use this function to
generate hash values in the following cases:

« Case 1: The original text message is the poem Ulalume (E.A.Poe), which is con-
stituted by 104 lines, 667 words, and 3754 characters.

» Case 2: We change serious by nervous in the verse “Our talk had been serious
and sober”

» Case 3: We replace the last point ‘.’ with a coma ‘.

» Case 4: In “The skies they were ashen and sober”, skies becomes Skies.

« Case 5: The new original text is the binary value of the Figure C.1.

» Case 6: We add 1 to the gray value of the pixel located in position (123,27).

» Case 7: We subtract 1 to the gray value of the pixel located in position (23,127).
The corresponding hash values in hexadecimal format are:

» Case 1: 0B4730459FBB5E54A18A9CCD676C8396365B0104407D98C866FDAAS51A07FOEA45,
« Case 2: 752E28088150B98166D870BC2417734223A59463D44B83E9808383B30F8B8409,
+ Case 3: C10EED0A9D44856847F533E5647D0CCD2C58A08643E4D3ESD8FEAODAOE856760,
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Figure C.1: The original plain-image.

Case 4: 52BF23429EC3AD16A0C9DEO3DF51C4204466285448D6D73DDFB42E7A839BEESO,

Case 5: 5C639A55E2B26861EBI9DS8EADDF92F9355B6214ADC01197510586745D47C888B8,
+ Case 6: E48989D48209143BAE306AC0563FFE31EABO2E5E557B49E3442A840996BECFC1,

Case 7: EC850438A2D8EA95E691C746D487A75512BEE63F4DDB4466C11CD859671DFBEB.

These simulation results are coherent with the topological properties of sensitive depen-
dence to the initial condition, expansiveness, and Lyapunov exponent: any alteration in
the message causes a substantial difference in the final hash value.

C.5.2/ STATISTICAL EVALUATION OF THE ALGORITHM

We focus now on the illustration of the diffusion and confusion properties [Sha49]. Let
us recall that confusion refers to the desire to make the relationship between the key
and the digest as complex and involved as possible, whereas diffusion means that the
redundancy in the statistics of the plain-text must be "dissipated"” in the statistics of the
cipher-text. Indeed, the avalanche criterion is a modern form of the diffusion, as this term
means that the output bits should depend on the input bits in a very complex way. This
section summarizes the simulations provided in [BCG12a].

C.5.2.1/ UNIFORM DISTRIBUTION FOR HASH VALUES

To show the diffusion and confusion properties verified by our scheme, we have firstly
given an illustration of the difference of characters distribution between a plain-text and
its hash value, when the original message is again the Ulalume poem. Such a distribution
is recalled thereafter. In Figure C.2(a), the ASCII codes are localized within a small area,
whereas in Figure C.2(b) the hexadecimal numbers of the hash value are more uniformly
distributed.

A similar experiment has been realized with a message having the same size, but which
is only constituted by the character “0”. The contrast between the plain-text message and
its digest are respectively presented in Figures C.3(a) and C.3(b). Even under this very
extreme condition, the distribution of the digest still remains uniform. To conclude, these
simulations tend to indicate that no information concerning the original message can be
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Figure C.2: Values distribution of Ulalume poem
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Figure C.3: Values distribution of the “00000000” message

found into its hash value, as it is recommended by the Shannon’s diffusion and confusion
requirements.

C.5.2.2/ BEHAVIOR THROUGH SMALL RANDOM CHANGES

We now consider the following experiment. A first message of 1000 bits is randomly
generated, and its hash value of size n = 256 bits is computed. Then one bit is randomly
toggled into this message and the digest of the new message is obtained. These two
hash values are compared by using the hamming distance, to compute the number B; of
changed bits. This test is reproduced ¢ = 10000 times. The corresponding distribution of
B, is shown in Figure C.4 [BCG12a].

As desired, Figure C.4 shows that the distribution is centered around 128, which re-
inforces the confidence put into the good capabilities of diffusion and confusion of the
proposed hash algorithm. To analyze these results, the following common statistics have
been used in [BCG12a].

- Mean changed bit number B = 1 Y B,.
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Brin  Bmaa B P(%) AB AP%)
n = 256 87 167 127.95 49.98 8.00 3.13
n=>512 213 306 255.82 49.97 11.29 2.21
n=1024 446 571 51154 4996 1597 1.56

Table C.1: Statistical performance of the proposed hash function

» Mean changed probability P = %.

* AB = n Z:':l(Bz — B)?
1
cap= b Py

The obtained statistics are listed in Table C.1 where n belongs to {256, 512,1024}. In that
study, starting from a message of length 1000 and its digest, all the messages that have
one bit of difference are further generated and the digest of the new message is obtained.
Obviously, both the mean changed bit number B and the mean changed probability P
are close to the ideal values (3 bits and 50%, respectively), which illustrates the diffusion
and confusion capability of our algorithm. Lastly, as AB and AP are very small, these
capabilities are very stable.

C.6/ TowARD A CHAOTIC ITERATIONS BASED POST-TREATMENT
FOR HASH FUNCTIONS

In previous sections, we have explained what have been the improvements of the
hash function formerly introduced during our thesis. This first version of a chaotic it-
eration based hash function was initially a kind of mixture between SHA-1 and some
chaotic iterations. The first post-thesis stage of our investigations was to simplify this
hash function, to make it appears exactly as chaotic iterations, to evaluate experimen-
tally its diffusion and confusion properties, while relating them to topological proper-
ties [BCG11b,GB12,BCG12a]. The second most recent stage of our thoughts regarding
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hash functions consists in showing that, given a secured hash function, it is possible to
realize a post-treatment on the obtained digest using chaotic iterations that preserves the
security of the hash function. Furthermore, if the media to hash is obtained frame by
frame from a stream, the resulted chaotic hash machine inherits the chaos properties of
the chaotic iterations presented previously. This second approach will be presented with
more details in this manuscript, as this work is not yet accepted (only submitted).

Let us firstly introduce some definitions.

C.6.1/ DEFINITIONS

Definition 6* (Collision resistance). For a keyed hash function h : B* x B* — B", define
the advantage of an adversary A for finding a collision as

K& Bk , m # m’

Ad’UA = Pr (m’ m/) - A(K) : h(K, m) = h(K, m/)

(C.1)

where $ means that the element is picked randomly. The insecurity of h with respect to
collision resistance is
InSecy(t) = max {Adva} (C.2)

when the maximum is taken over all adversaries A with total running time t.

In other words, an adversary should not be able to find a collision, that is, two distinct
messages m and m’ such that h(m) = h(m').

Definition 65 (Second-Preimage Resistance). For a keyed hash function h : BF x B* —
B™, define the advantage of an adversary A for finding a second-preimage as

$ k !
K <B* m #m
Advp(m) = Pr[ S ACK) YR, m) = h(K,m) ] (C.3)
The insecurity of h with respect to collision resistance is
InSecy(t) = max { max {AdvA(m)}} (C.4)
A meBF

when the maximum is taken over all adversaries A with total running time t.

That is to say, an adversary given a message m should not be able to find another mes-
sage m’ such that m # m’ and h(m) = h(m'). Let us now give a post-operative mode
that can be applied to a cryptographically secure hash function without loosing the cryp-
tographic properties recalled above.

Definition 66, Let
¢ kl)kZan € ]N*:
e h:(k,m)e B x B* — h(k,m) € B" a keyed hash function,
* S keBR2— (S(k)), € [1,n]™:
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— either a cryptographically secure pseudorandom number generator (PRNG),
— or, in case of a binary input stream m = m°||m!||m?||... where Vi,|m?| = n,
(S(k)i)ie]N = (mk)iG]N'
« K = B* x B*2 x IN called the key space,

e and f : B® — B" a bijective map.

We define the keyed hash function Hy, : KK x B* — B™ by the following procedure
Inputs: k= (ki,k2,n)e K
m € B*
Runs: X = h(ky,m), or X = h(ky,m) ifm is a stream
fori=1,...,n:
X =G(X, 5%
return X

H,, is thus a chaotic iteration based post-treatment on the inputted hash function h.
The strategy is provided by a secured PRNG when the machine operates in a vacuum
whereas it is redetermined at each iteration from the input stream in case of a finite ma-
chine open to the outside. By doing so, we obtain a new hash function #; with /4, and
this new one has a chaotic dependence regarding the inputted stream.

C.6.2/ SECURITY PROOFS

The two following lemma are obvious [GBC].

Lemma 2. /f f : B — B" is bijective, then VS € [1,n], the map G;s : = € B" —
Gy(z,S)1 € B" is bijective too.

Proof®. Lety = (y1,...,y,) € B" and S € [1,n]. Thus

Gf,S(yL - YS—1, fﬁl(yS)7yS+17 cee 7yn)l =Y.
So Gy s Is a surjective map between two finite sets.

Lemma 3. Let S € [1,n]N and N e N*. If f is bijective, then Gysn : © € B" —>
GY (x,S)1 € B" is bijective too.

Proof 0. Indeed, G, s, = Gjgsn o...o Gy is bijective as a composition of bijective
maps.

We can now state that [GBC],

Theorem 0. Jf h satisfies the collision resistance property, then it is the case too for Hy,.
And if h satisfies the second-preimage resistance property, then it is the case too for H,,.

Proof 11. LetA(kl, kg, n) = (ml, mg) such that Hh ((k‘l, kQ, n), ml) = Hh ((kl, k’Q, n), mQ).
Then Gf,S(k2),n (h(ml)) = Gf,S(kz),n (h(mg)) So h(ml, ]{31) = h(mg, kl)

For the second-preimage resistance property, letm, k € B* x K. Ifa message m’ € B* can
be found such that Hy,(k,m) = Hp(k,m'), then h(ki,m) = h(k1,m’): a second-preimage
for h has thus be found.
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Finally, as #;, simply operates chaotic iterations with strategy S provided at each iterate
by the media, we have:

Theorem 3. In case where the strategy S is the bitwise xor between a secured PRNG
and the input stream, the resulted hash function H;, is chaotic.

Rem 8. S should be m* @ z* where (z*) is provided by a secured PRNG if security of H},
is required.

C.7/ CONCLUSION

The hash function family formerly proposed during our thesis has been completely
rethought and simplified. Drawbacks in the former version have been fixed, by considering
that chaotic iterations should rather be used as a post-treatment on existing hash func-
tions, instead of embedding them into de novo hash function design. Moreover, various
cryptographic properties have been proven to be preserved during this post-treatment,
leading to better experimental results for the proposed hash functions. These investiga-
tions are justified by the fact that, in 2004, MD5 and SHA-0 have been broken. An attack
over SHA-1 has been achieved with only 269 operations (CRYPTO-2005), that is, 2000
times faster than a brute force attack (that requires 28° operations). Even if 269 opera-
tions still remains impossible to realize on common computers, such a result based on a
previous attack on SHA-0 is a very important one: it leads to the conclusion that SHA-2
is not secure. So, in continuation to the SHA-3 contest, new original hash functions, or
improvements for existing ones, must be found.

In this proposal, security of existing hash functions is reinforced by the unpredictability of
the behavior of the proposed post-treatment. The resulting hash function, a combination
between an existing hash function and chaotic iterations, satisfies important properties of
topological chaos such as sensitivity to initial conditions, uniform distribution (as a result
of the transitivity), unpredictability, and expansiveness. Moreover, its Lyapunov exponent
can be as great as needed. The results expected in our study have been experimentally
checked these last three years. The choices made in these first studies are simple. But
these simple choices lead to desired results, justifying that such a post-treatment can
possibly improve the security of the inputted hash function. And, thus, such an approach
should be investigated more largely. This is why, in future work, we will test other choices
of iteration functions and strategies. We will try to characterize topologically the diffusion
and confusion capabilities. Other properties induced by topological chaos will be explored
and their interest for the realization of hash functions will be deepened. Furthermore,
other security properties of resistance and pseudorandomness will be proven. We will
thus compare the results of this post-treatment on several hash functions, among other
things with the SHA-3 finalists.






D

EPIDEMIOLOGICAL APPROACHES FOR
DATA SURVIVABILITY IN UNATTENDED
WIRELESS SENSOR NETWORKS:
CONSIDERING THE SENSORS LIFETIME

Our last investigations in the field of wireless sensor networks’ security have regarded the
particular case of data survivability in unattended WSNSs, introduced in the next section.
This work, currently submitted to New Generation Computing (Springer, [GMB]), empha-
sizes the importance of epidemiological models for tackling the difficulties raised by such
a problem. This first apparition of biology in complex systems will be more systematically
studied in the last part of this manuscript.

D.1/ DATA SURVIVABILITY IN UNATTENDED WSN

Unattended Wireless Sensor Networks (UWSNSs), which have been introduced by Di
Pietro et al. in [DPMS*08], are WSNs characterized by the sporadic presence of the
sink. These UWSNSs are useful for instance to detect poaching in a national park, or as a
monitoring system to check the pressure of an underground pipeline, as stated in [PV13].
In such networks, nodes collect data from the area under consideration, and then they
try to upload all the stored data when the sink comes around. Information survivability
is a key problem in UWSNs as these latter are more subject to malicious attacks than
traditional WSNs [MT08]: the dimension of the area is often prohibitive in such networks,
while the absence of the sink facilitates the work of attackers [GMB].

Epidemic theory has already been considered for data survivability in UWSN in pres-
ence of attackers [DPV11,PV13]: SIS, SIR, and SIRS models have been investigated by
authors of these research works, in order to derive the parameters that can assure infor-
mation to survive. In these articles, S(¢) compartment is constituted by sensors that do
not possess the datum at time ¢, while I(¢) is the compartment of sensors that possess
it. Finally, the R(¢) compartment is constituted by sensors that have been compromised
by the attacker, see [GMB] for further explanations.

However, as stated in [GMB], authors of [DPV11, PV13] surprisingly never consider that
in a wireless sensor network, nodes’ energy is provided by a battery that can be emptied



APPENDIX D. EPIDEMIOLOGICAL APPROACHES FOR DATA SURVIVABILITY IN UNATTENDED WIRELESS
SENSOR NETWORKS: CONSIDERING THE SENSORS LIFETIME 196

due to data acquisition, transmission, or simply functioning cost of keeping alive. More
precisely, the topology of the networks they consider is static, the network’s lifetime is
unbounded, and sensors cannot die due to empty batteries [GMB]. Indeed, their work is
more related to unattended wired sensor networks (on main power) but not with a battery
as S + I (SIS model) or S + I + R (SIR and SIRS models) are constant. Our intention
in [GMB] is to deepen their interesting work, by bringing their proposal from wired sensor
networks to WSNs, refining theirs models, and producing more theoretical results on each
model. This last contribution in the field of WSNs security is summarized in what follows.

D.2/ A SIR MODEL FOR DATA SURVIVABILITY IN UWSNS

D.2.1/ INTRODUCING THE KERMACK & MCKENDRICK MODEL

In this section, the SIR model formerly presented in [DPV11, PV13] is firstly recalled.
Then, consumption hypotheses underlined in this model are precised, as in [GMB], while
theoretical results on the behavior of the compartments of the network are further inves-
tigated.

In unattended wireless sensor networks the presence of the sink is sporadic. However
the duration between two visits of the sink to the network (its absence) can sometimes be
considered negligible, in a first approximation, compared to the time required to empty a
sensor battery. In such UWSNSs, the death processes of sensors can be neglected if the
aim is to study the immediate consequences of an attack between two visits of the sink.
Under such an assumption, the global network can be divided in three compartments,
namely the sensors S susceptible to receive the datum of interest (intrusion detection,
etc.), the ones that currently store it I, and the recovered sensors R that have been
compromised by the attacker: their stored datum has been removed [GMB].

Suppose now that between S and I, the transmission rate is bI, where b is the contact
rate, which is the probability of transferring the information in a contact between a suscep-
tible sensor and a sensor having the datum. Indeed, as proven by Di Pietro et al., such a
situation occurs when the wireless sensor network is composed by n sensor, and if each
sensor forwards the datum with probability % [DPV11,PV13]. Suppose additionally that

between I and R, the rate of recovery is c: the attacker is able to individuate the sen-
sors containing the target information, and to destroy each of them with this probability c.
Notice that, if the duration of the information survivability is D, then ¢ = %, as a sensor
experiences one recovery in D units of time.

s ML T IR

Figure D.1: SIR model

Under such hypotheses and as stated in [DPV11, PV13], the sensors population follows
the so-called SIR model of Kermack & McKendrick [KM27] depicted in Figure D.1. Re-
mark that the total sensors population is equalto N = S+ I+ R = Sy + Iy + Ro, which
is a constant: as emphasizes in [GMB], the number of awaken, alive sensors does not
evolve. In particular, only two of the three populations of sensors have to be studied.
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D.2.2/ FIRSTS THEORETICAL RESULTS
. X(t) . e ,

Consider now that z(t) = T denotes the fraction of individuals in the compartment X.

The SIR model can be expressed by the following set of ordinary non-linear differential

equations [GMB]:

(ds
dt
di
dt

= —bis

= bis — ci (D.1)

dr
\ dt

= ci.

Obviously, the typical time between transmissions is 7; = b~! while the typical time until
attack when having the information is equal to 7, = ¢~!. Thus

Ec
T. b

is the average number of transmissions between a sensor having the datum and others
before it lost this information due to the attacker [GMB]. Such a statement explain why, in
the SIR historical model, the dynamics of the infectious class depends on the reproduction
ratio defined by

Ry = é,

C
which corresponds here to the expected number of new informed sensors (so-called “sec-
ondary infections”) providing a single sensor with the datum where all sensors are suscep-
tible [GMB]. Furthermore, direct standard analyses manipulations (variables separation
and then integration) lead to the following form for the susceptible sensors compartment:
s(t) = s(0)exp (—Ro(r(t) —r(0))).
di

. . , - 1 .
As p7i (Ros — 1)ci, if the basic reproduction number satisfies Ry > 0V’ there will be

an information outbreak with an increasing number of sensors with the datum. In other
words, R, determines whether or not the information will spread through the network.

All these facts are summarized in a proposition of [GMB] recalled below.
Proposition 30. Consider a sensor network that aims to monitor a given area, and that

has to spread an alert or an information to a sink, whose presence is sporadic. Suppose
that an attacker tries to remove the datum in sensors’ memory, and that:

1. all sensor activities are negligible, in terms of energy,

2. when a sensor has the datum, it spreads the information to its neighbors with a
probability b, until being attacked.

Denote by T; the typical time between transmissions, T, the typical time an informed sen-
sor loses its information due to the attacker, and by s(0) the initial fraction of susceptible
sensors. So the information will spread through the network if and only if T; < s(0)Te.
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In other words, this proposition states that if the reproduction ratio is greater than one,
then an “epidemic” occurs since the prevalence (the infective ratio) increases to a peak
and then decreases to zero. Otherwise there is no epidemic since the prevalence de-
creases to zero [GMB].

Phase space (b=0.4, c=0.15)
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Figure D.2: Phase space (s, i) with b = 0.4, ¢ = 0.15 (SIR model).

We then have shown in [GMB] that is possible to be more precise in the formulation of
Proposition 30, following an approach similar to [Het00].

Proposition 31. The fraction s(t) of sensors susceptible to receive the information is a
, . o , , , T. ,
decreasing function. The limiting value s(o) is the unique root in (0, ?) of the equation
t

1= r(0) — s(0) + ; In (jg;) .

Additionally,

« if Ty > s(0)T., then the fractional number i(t) of sensors having the datum de-
creases to zero ast — oo,

- else i(t) first increases up to a maximum value equal to

T T

1 —7r(0) — = <1+ln s(OT:
T e

where ln stands for the natural logarithm.

and then decreases to zero as t — o,

Proof 2. See [GMB].

The phase space of the solutions of the SIR system with given parameters is provided in
Figure D.2 while the evolution of s and i is depicted in Figure D.3. Remark that the results



APPENDIX D. EPIDEMIOLOGICAL APPROACHES FOR DATA SURVIVABILITY IN UNATTENDED WIRELESS
SENSOR NETWORKS: CONSIDERING THE SENSORS LIFETIME 199

1.2

1.0p

0.8

0.6

0.4

0.2f

0.0f

_020.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure D.3: Evolution of the fractions s and i of susceptible and having the datum sensors
with b = 0.4, ¢ = 0.15,5(0) = 0.9, and i(0) = 0.1 (SIR model).

presented in this section hold for a transition rate between susceptible and informed sen-
sors having the form F' = ai, which thus represents the force of information. Nonlinear
forces of information, or infection, can be investigated too, to model more realistically the
information survivability (see [GMB] for further details).

D.2.3/ ANOTHER UNDERSTANDINGS FOR THE RECOVERED COMPARTMENT

In the previous section, the R compartment was constituted by sensors that have been
compromised by the attacker, which will be referred in what follows as Situation 1. As
remarked in [GMB], it is possible to attribute at least two other understandings to this
compartment, for an unattended wireless sensor network whose lifetime is dependent on
energy consumption and in absence of attacks.

This compartment can be constituted by dead sensors, when considering that the sole
action on the energy is the information transmission, and that the unique way to death for
a sensor is to have too much transmitted the datum. In other words, in this Situation 2,
sensors send information messages to their neighbors until emptying totally their batter-
ies. The sink will receive the information when it will interrogate the network at time ¢ if
I(t) # 0.

A third situation can be considered without any changes in formalization, except redefin-
ing the meaning of the R compartment. Indeed, it can be interesting to consider that a
sensor is first susceptible to receive an information message for a while, then in a sec-
ond time it owns and transmits the information, before finally entering into the third age
of its life, the recovered state in which it will lose its ability to transmit the information.
Materials of the previous section tackles too this scenario, when considering the network
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lifetime sufficiently large compared to information spreading, in order to neglect sensors’
death due to energy consumption. The question raised by [GMB] is then to determine the
quantity of informed sensors on large timescales.

However, in a large amount of situations, energy consumption and the death of sensors
cannot be neglected, this is why a “natural” death rate for all compartments is introduced
in [GMB] and recalled in the next section. Such an approach generalizes the models
presented in the current section.

D.3/ CONSIDERING ENERGY CONSUMPTION FOR DATA SURVIV-
ABILITY IN UWSNS

D.3.1/ A SIR MODEL WITH NATURAL DEATH RATE

Cs {1 ——{x] ITIL4IIL4RI

m lm’ m
(a) Situation 2 (b) Situations 1 and 3

Figure D.4: SIR models with natural death rate

The previous section considers that all sensor activities are negligible, in terms of energy,
except the transmission of information in situations 2 and 3, which is reasonable in a first
approximation. It is however possible to refine the SIR model in these two last situa-
tions, in order to consider that sensors’ energy decreases too in absence of information
transmission [GMB].
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(a) Situation 2 (b) Situations 1 and 3

Figure D.5: Phase space (s,i) with b = 0.4,¢ = 0.15,m = 0.01, SIR model with natural
death rate in the three situations.

In Situation 2, the R compartment of the SIR model is constituted by dead sensors. This
compartment is populated by susceptible nodes that have naturally died (death rate m)
without having received the datum and by sensors of the I compartment which die at
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another rate ¢ supposed to be greater than m, as they have to transfer the datum, an
energy-consuming task. This situation, introduced in [GMB], is depicted in Figure D.4(a).

In the two other situations investigated in [GMB], the R compartment is constituted by
living sensors that do not transmit the datum anymore, either because they have been
corrupted and thus have lost it (first situation), or because their batteries must be pre-
served (third one). This new situation is closed to the SIR model of Figure D.1, except
that a the new network is characterized by a death rate for each sensors compartment
(see Figure D.4(b)). Notice that the death rate m' of the I compartment is a priori different
from the one of S and R compartments, as it is reasonable to suppose that the datum
transmission implies more energy consumption. However, setting m’ = m is possible
too [GMB].

The SIR model of Equation (®1) can be adapted as follows for Situation 2:

d
d—j = —bis —ms

di
{ — b ; D.2
7 bis — ci (D.2)

l — +
P ¢l + ms,
while it has the following form in Situations 1 and 3:

ds
dt

= —bis —ms

di . . .
= = —ci— D.3
9 g bis —ci —m'i (D.3)

dr .
— =ci —mr.

dt

We have then investigated the long-term behavior of these models in [GMB]. Regarding
Situation 2, it is natural to think that, for large timescales, all sensors will take place in the
third R compartment of died sensors, as all the batteries are continually emptied (either
due to natural consumption or because of the information transmission). It has been
proven in [GMB] by considering that in an equilibrium point (s*,i*,7* = 1 — s* — i*), we
haveﬁ—ﬂ—@—() and so
dt — dt dt
(bi* +m)s* =0
(bs™ —c)i* =0
ci* + ms* = 0.
As c > 0,m > 0,i* > 0, and s* > 0, we can conclude from the third equation above that
s* =1* =0, and so r* = 1. The Jacobian is equal to
—bi—m —bs 0
J(s,i,1) = 0 bs—c 0
m c 0
and its characteristic polynomial in (0,0,1) is A(A+c¢)(A+m). The eigenvalues being neg-

ative, the equilibrium (0,0, 1) is attractive. These results are summarized in the following
proposition [GMB].
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Figure D.6: Evolution of the fractions s and i of susceptible and having the datum sensors
with b = 0.4,¢ = 0.15,m = 0.01, s(0) = 0.9, and (0) = 0.1, SIR model with natural death
rate in Situations 1 and 3.

Proposition 32. Consider an unattended wireless sensor network divided in three sets
of sensors, the first category S being susceptible to receive a given datum, the second
one I having and transmitting this latter, and the third one R being constituted by dead
sensors.

Suppose that the death rate is m for S compartment and ¢ for I’s one, and that the
transmission rate is bl between S and I. In that situation, for all initial conditions and all
positive parameters b, ¢, and m, the system is convergent to the equilibrium point (0,0, 1).

In particular, in that situation, the datum cannot survive a long time in the UWSN.

As remarked in [GMB], Equation D.3 can be resolved similarly: from bi*s* + ms*, we
deduce that s* =0 (as b > 0, m > 0, and i* > 0). So bi*s* — ci* —m/i* implies that i* = 0
too. Finally, from the third line, we conclude that »* = 0. Eigenvalues of the characteristic
polynomial of the Jacobian in (0,0,0) are —m and —c¢ — m/, which are negative. So
this equilibrium point is attractive too, and a similar proposition than previously can be
formulated, with the same conclusion, both for Situations 1 and 3 [GMB]. Phase spaces
for the three situations are provided in Figure D.4 while Fig. D.8 depicts the evolution of
the fractions s and ¢ in Situations 1 and 3.

To put it in a nutshell, to achieve data survivalibity in UWSNSs, the birth of awaken sensors
must be considered, which is the subject of the next subsection.
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Figure D.7: SIR model with natural birth and death rates

D.3.2/ A SCHEDULING PROCESS IN DATA SURVIVABILITY

Suppose now that a scheduling process, like the ones presented in previous chapters,
is planned to enlarge the network’s lifetime. At the initial stage, only a small part of
the sensor nodes is awakened. New sensors are then awakened periodically during the
whole network’s lifetime at a rate [, repopulating by doing so the S compartment. Along
with this birth rate, a natural death rate m is considered in [GMB] for each of the three
kind of sensors, while the R compartment is for corrupted sensors in the original situation
1, as depicted in Figure D.7. Remark that such a model is compatible with living and
awaken nodes that have stopped to transfer the information in Situation 3.

To model such a scenario requires to rewrite the first line of Equation (P2 leading to the
following system [GMB]:

(d

d—izl—bis—ms

di

d—izbz‘s—ci—mi (D.4)
ar _ .

dt—cz mr.

This updated system is the usual SIR model with vital dynamics, but we have not sup-
posed the birth and death rates equal in [GMB]. Let us notice that it is possible to show
that the problem is well formulated, as the triangle 7' = {(s,7) | s = 0,i > 0,s + 1 < 1} still
remains positively invariant.

A study of this system supposes to consider the Poincaré-Bendixon theorem in phase
space and the use of Lyapunov functions [Het00]. However, as explained in [GMB], it
can be understood by considering what will happen to the information in a long run: will
it die out or will it establish itself in the network like an endemic situation in epidemio-
logical models? The long-term behavior of the solutions, which depends largely on the
equilibrium points that are time-independent solutions of the system, must be investi-
gated to answer this question. Since these solutions do not depend on time, we have
s'(t) =1i'(t) = r'(t) = 0, which lead to the system [GMB]:

0=10—0bis—ms
0 =bis— (c+m)i

0=ct—mr.

+m

r = Ei from the last equation, and either i = 0 or s = ¢ from the second one. On

m
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. l . , ,
the one hand, if i = 0, then r = 0, and s = - from the first equation. This leads to the
equilibrium solution
l
(,0,0) .
m

As the number of sensors having the datum is 0 in this point, it means that if a solution
of the system approaches this equilibrium, the fraction ¢ will approach 0, and the datum
tends to disappear from the network: an information-free equilibrium. Remark that the
existence of this equilibrium is independent of the parameters of the system: it always
exists [GMB].

. . l
On the other hand, if i # 0, then s = HTm # 0 from the second equation, and 3= bi+m
according to the first equation. Substituting s and solving for ¢, we find

Z,_bl—m(c+m) ~ Rol—-m
 ble+m) b

with Ry = , Which is a positive number iff Ry > 1.

m(c+ m)

Ry is the reproduction number of the information, which tells us how many secondary
informed sensors will one informed sensor produces in an entirely susceptible network,
as:

. : . . [
+ a network which consists of only susceptible nodes in a long run has — sensors;
m

* ¢ + m is the rate at which sensors leave the I compartment. In other words, the

. . . 1. :
average time spent as an informed sensor is n time units.
C m
» The number of data transmissions per unit of time is given by the incidence rate b1.S.
If there is only one informed sensor (I = 1) and every other sensor is susceptible

(S = —), then the number of transmissions by one “infective” node per unit of time
m

. bl
is —.
m
So the number of data transmissions that one informed sensor can achieve during

the entire time it is not attacked, if all the remained sensors are susceptible, is equal
bl .
to————, thatis, Ry [GMB].
m(c+ m)

So if Ry > 1, the number of sensors having the datum is strictly positive in this equilib-
rium solution: if some other solutions of the system approach this equilibrium as time
goes large, the number of sensors having the datum will remain strictly positive, and the
information remains in the network and becomes endemic.

These statements are summarized in the following proposition [GMB].

Proposition 33, /If either Ry < 1 or s(0) = 0, then any solution (s(t),i(t)) is convergent to
the equilibrium without information (1,0).

If Ry > 1 then there are two equilibriums: the non attractive information-free equilibrium
and the endemic equilibrium. This latter is attractive so that solutions of the ODE system
approach it as time goes to infinity: the information remains endemic in the UWSN.
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Phase space (b=0.4, c=0.15, I=0.015, m=0.01)
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Figure D.8: Evolution of the fractions s and ¢ of susceptible and having the datum sensors,
SIR model with natural birth and death rates (Ry = 3.75).

As remarked in [GMB], the attacker’s desire is to have Ry < 1 to tend to an information-
free equilibrium, whereas R, must be greater than 1 for the sink to face such attack. If
the attacker has the opportunity to observe the network running a certain duration, then
he or she can infer the values of parameters b, ¢, m, and [. Let N be the number of data

- . . . . bl .
transmissions by one informed node per time unit, that is, N = —. If the attacker is able

to detect and infect the informed nodes in a time

lower than i, then he or she is
. . . c + m N . . .
sure that Ry < 1: the data will not survive in the network [GMB]. The sink interest, for its

small, which can be achieved in the following manner:

, bl
part, is to have — large and
m c+m

* increasing the birth rate b,
* increasing the lifetime of sensors to reduce m,

* increasing the data transmission rate b, but m increases when b increases,

if possible, reducing ¢ by considering countermeasures against data removal.

D.4/ NUMERICAL SIMULATIONS

We then have verified experimentally the Proposition 33 on a basic wireless sensor net-
work in [GMB]. In this simulation, the initial number of susceptible sensors is set to 300
while 3 nodes initially receive the datum.



CoOoONOOOTA~WN =

APPENDIX D. EPIDEMIOLOGICAL APPROACHES FOR DATA SURVIVABILITY IN UNATTENDED WIRELESS
SENSOR NETWORKS: CONSIDERING THE SENSORS LIFETIME

from random import random
from pylab import =

S,1,R = 1[1,[1.[]

b,c,I ,m=0.4,0.015,0.4,0.03
cpt,n,nn = 0,300,3
lifetime = 300

X=[(len(S),len(1),len(R))]
for t in range(lifetime):
while random ()<l :
S.append(cpt)
cpt += 1
for sensor in S:
if random () <m:
S.remove(sensor)
elif random()<b:#/(len(S)+len(l)+len(R)):
S.remove(sensor)
| .append(sensor)
for sensor in |:
if random ()<m:
| .remove (sensor)
elif random ()<c:
| .remove (sensor)
R.append(sensor)
for sensor in R:
if random ()<m:
R.remove (sensor)

Figure D.9: Python program to simulate a SIR-compartmented UWSN.

The simulator, written in Python language, is detailed in Listing D.9, while Figure D.10
shows the obtained result. We can see that the I compartment is never empty, leading to
a data survivability in this wireless sensor network [GMB].
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Compartments evolution for b,c,I,m = 0.4,0.015,0.4,0.03
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Figure D.10: Simulation of SIR model with birth and death rates and Ry > 1






E

OTHER COMPLEX APPLICATIONS IN
BIOINFORMATICS

Our studies of complex biological systems have led us to participate to projects with
biologists of Chrono-environnement and of the Faculté de médecine de Besangon, in
which some bioinformatics stages was too complicated to be tackled with usual available
tools. Due to large amount of data and of their plurality of forms, they required to develop
ad hoc programs and the use of the Mésocentre de calcul de Franche-Comté. Some of
these projects are recalled thereafter, with more or less details.

E.1/ INVESTIGATING THE CESTODES EVOLUTION

E.1.1/ A MOLECULAR PHYLOGENY OF 33 EUCESTODA SPECIES BASED ON
COMPLETE MITOCHONDRIAL GENOMES

We have firstly actively participate to the elaboration of a biomolecular phylogeny
of a large collection of Eucestoda genomes. This research work, currently submit-
ted [CLBGB], is a collaboration with Jacques M. Bahi and two colleagues of Chrono-
environnement (Nathalie C6té and Matthieu Le Bailly), in the framework of the PEG
project’ founded by the Région Franche-Comté. Our major contributions to [CLBGB]
are summarized thereafter.

E.1.1.1/ INTRODUCTION

Cestoda (Cestoidea) is a class over a thousand species of parasitic flatworms of the phy-
lum Platyhelminthes, whose members live in the digestive tract of vertebrates as adults,
and often in the bodies of various animals as juveniles. All vertebrate species can be
parasitised by at least one species of tapeworm.

The phylogeny of the Eucestoda subclass of Platyhelminthes has evolved through
the ages, moving from morphological characteristics to the recent use of molecu-
lar data, leading to a more and more precise knowledge of the respective relation-
ship between species within this subclass. The latest morphological and ecological
based phylogenies of the Taenia has been realized one decade ago by Hoberg et

'Paléoparasitologie et application & I'évolution des génomes
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al. [HAQJO1, HJR00, Hob06]. They have considered various characteristics related to
morphology, geographical spread, intermediate and definitive hosts, in the largest set
of Taenia that has ever looked at (see Table E.2). However, inferred phylogenies were
often contradictory when changing the studied characteristics, and the appearance of se-
quenced genes and genomes has led researchers to specify problematic relationships
using DNA or amino acid sequences. Finally, the most recent and one of the most com-
plete study about molecular phylogeny of Taeniidae has been published in [NLI*]. In this
article, interesting proposals to retought the phylogenetic relationship of species within
this family have been suggested, but some weaknesses in their tree topologies make that
these proposals must be further investigated, which is one objective of our research work
summarized in this chapter.

More precisely, Taenia and Echinococcus have been considered for a long time as the two
valid genera in the Eucestoda family Taeniidae, due to morphological similarities. How-
ever, even though the members of the Echinococcus genus are highly similar both for the
features of development and ecology, it is not the case for Taenia. Indeed, this genus was
formerly divided into various genera remarkably diverse in terms of morphology and other
characteristics usually used to establish a phylogeny. The recent development of molec-
ular phylogeny has brought elements of response to the questioning of the monophyly of
the Taenia genus. This is why, in [NLI*], two new genera in the Taeniidae have been pro-
posed, namely the resurrection of Hydatigera Lamarck, 1816 and the creation of a new
genus Versteria. Authors of this previous research work have arrived to this conclusion
of the Taenia paraphyly thanks to molecular phylogenetic analyses using molecular phy-
logenetic trees of 18S ribosomal DNA and concatenated exon regions of protein-coding
genes (pepck and pold).

Objective of [CLBGB] summarized in this chapter was twofold. On the one hand, our
intention has been to question the Nakao et al. hypotheses regarding the resurrection of
Hydatigera Lamarck, 1816 and the creation of a new genus Versteria[NLI*]. On the other
hand, our goal was to improve the knowledge of the Eucestoda phylogeny with molecular
analyses.

The first objective has been achieved by considering sets of data different from [NLI*]. In
our study recalled here, the Taenia and Echinococcus genera are regarded twice, namely
by considering the complete mitochondrial genomes and by extracting their twelve genes.
The first approach is motivated by the desire to limit the amount of data treatments, to
be as close as possible to the DNA information: only a multiple global alignment has
been performed on the complete genomics sequence using M-Coffee [NHHOO]. By doing
S0, sources of errors inferred by any sequence post-treatment, like annotation errors for
instance, are as reduced as possible. This first approach has been possible due to the
fact that all the Eucestoda mitochondrial genomes share the same genes in the same
order: large rearrangements of sequences have thus not occurred in this set of data. The
second approach was more classical: the 12 genes are taken from the NCBI annotated
genomes. All alleles of each gene are converted into amino acids and then aligned with
M-Coffee. In the two approaches, both maximum likelihoods and Bayesian inferences
are realized to produce similar phylogenetic trees. This second approach was similar
to [NMS*07], but the set of species, the tools used during analyses, and the questioning
are different.

Our study is complementary to the Nakao et al. one, as (1) the set of data is much greated
and not similar (18S ribosomal DNA and concatenated exon regions of two protein-
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Species Family Order Accession

Diph.latum Diphyllobothriidae  Pseudophyllidea NC_008945
Diph.nihonkaiense Diphyllobothriidae  Pseudophyllidea NC_009463
Dipl.balaenopterae Diphyllobothriidae  Pseudophyllidea NC_017613
Dipl.grandis Diphyllobothriidae  Pseudophyllidea NC_017615
Dipy.caninum Dipylidiidae Cyclophyllidea NC_021145
Echi.canadensis Taeniidae Cyclophyllidea NC_011121
Echi.equinus Taeniidae Cyclophyllidea NC_020374
Echi.felidis Taeniidae Cyclophyllidea NC_021144
Echi.granulosus Taeniidae Cyclophyllidea NC_008075
Echi.multilocularis Taeniidae Cyclophyllidea NC_000928
Echi.oligarthrus Taeniidae Cyclophyllidea NC_009461
Echi.ortleppi Taeniidae Cyclophyllidea NC_011122
Echi.shiquicus Taeniidae Cyclophyllidea NC_009460
Echi.vogeli Taeniidae Cyclophyllidea NC_009462
Hyme.diminuta Hymenolepididae  Cyclophyllidea NC_002767
Spir.erinaceieuropaei Diphyllobothriidae  Pseudophyllidea NC_011037
Taen.asiatica Taeniidae Cyclophyllidea NC_004826
Taen.crassiceps Taeniidae Cyclophyllidea NC_002547
Taen.hydatigena Taeniidae Cyclophyllidea NC_012896
Taen.krepkogorski Taeniidae Cyclophyllidea NC_021142
Taen.laticollis Taeniidae Cyclophyllidea NC_021140
Taen.madoquae Taeniidae Cyclophyllidea NC_021139
Taen.martis Taeniidae Cyclophyllidea NC_020153
Taen.multiceps Taeniidae Cyclophyllidea NC_012894
Taen.mustelae Taeniidae Cyclophyllidea NC_021143
Taen.ovis Taeniidae Cyclophyllidea NC_021138
Taen.parva Taeniidae Cyclophyllidea NC_021141
Taen.pisiformis Taeniidae Cyclophyllidea NC_013844
Taen.saginata Taeniidae Cyclophyllidea NC_009938
Taen.serialis Taeniidae Cyclophyllidea AB731674

Taen.solium Taeniidae Cyclophyllidea NC_004022
Taen.taeniaeformis Taeniidae Cyclophyllidea NC_014768
Taen.twitchelli Taeniidae Cyclophyllidea NC_021093
Schi.mekongi (Trematoda) Schistosomatidae Strigeidida NC_002529

Table E.1: Eucestoda + outgroup taxa and their accession numbers

211
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coding genes versus complete mitochondrial genomes and complete 12 mit. genes),
(2) alignment tools are different (T-Coffee [NHHO00] and R-Coffee vs. M-Coffee and Mus-
cle [Edg04]), and (3) Bayesian analyses tools are not the same too (MrBayes [HRO1]
and PhyML [GDL*10] vs. PhyloBayes [LLB09] and PhyML verified with MrBayes and
RAxXML [SLO5]), while the conclusions are convergent. Statements and hypotheses
of [NLI™] have been confirmed, whereas elements of response have been proposed to
the questionings raised in this former article focusing on the Taeniidae phylogeny.

Regarding the second objective, the number of species we have studied in this molec-
ular analysis makes that the knowledge of the Eucestoda phylogeny is improved. In
the Taeniidae family, some species have been considered by only one or two molecular
studies in the state of the art phylogenies, namely T.pisiformis and T krepkogorski. Our
research has improved the knowledge of their sister relationship with other species within
this family. Additionally, other Eucestoda families have been added in our study, leading
for the first time to a global vision of respective relationships between various families
and genera of this subclass. More precisely, the seven species not related to the Taeni-
idae family that have been regarded by us are: Diphyllobothrium latum, Diphyllobothrium
nihonkaiense, Diplogonoporus balaenopterae, Diplogonoporus grandis, Dipylidium can-
inum, Hymenolepis diminuta, and Spirometra erinaceieuropaei. The large amount of data
has led us to develop original solutions on the Mésocentre to achieve our goals.

E.1.1.2/ MATERIALS AND METHODS

Taxa details 33 complete mitochondrial genomes of Eucestoda representing respec-
tively two Diphyllobothria, two Diplogonoporus, one Dipylidium, nine Echinococcus, one
Hymenolepis, one Spirometra, and seventeen Taenias were used to construct a molec-
ular phylogeny with Schistosoma mekongi (Trematoda: Digenea: Strigeidida: Schisto-
somatoidea: Schistosomatidae) as outgroup. All these genomes are listed with their
accession numbers and other taxonomic information in Table E.1.

A large part of species studied in previous molecular-based phylogenic researches are
represented in this sample used in [CLBGB], while the introduction of new other ones,
never investigated in a molecular phylogeny context, has been possible due to recent
mitochondrial genome releases, see Table E.2.

Complete mitochondrial genomes analyses In the first series of experiments, a mul-
tiple sequence alignment of the 34 complete mitochondrial genomes has been realized
using the optional M-Coffee of the alignment program T-Coffee [NHHO00]. M-Coffee is a
multiple sequence alignment package, part of the T-Coffee distribution. Instead of com-
puting a multiple sequence alignment on its own, M-Coffee uses other packages to com-
pute the alignments, namely: clustalw [LBB*07], partial order alignment (poa [LGS02]),
muscle [Edg04], probcons [DMBBO05], mafft [KIKTMO05], pcma [PSGO03], and T-Coffee. It
then uses T-Coffee to combine all these alignments into one unique final alignment. This
multiple approach enables the use of computation center like the Mésocentre one. Quot-
ing the T-Coffee’s author, “in practice we have shown that the combined alignments are
on average better than the initial alignments. Furthermore, the regions where they agree
tend to be correctly aligned.” An analysis of Eucestoda phylogeny based on a multiple se-
quence alignment provided by Muscle only has also been achieved, see supplementary
materials of [CLBGB].



APPENDIX E. OTHER COMPLEX APPLICATIONS IN BIOINFORMATICS 213

=)
— o~ _ =
g8 g3 0
< 5 2 = 2 3
T = g z Zz = =
o — _% by g o o
S 8 2 S - Z 2
= s £ § % & 8§
TS 2 % & 0% % %
° o « ] 2 T © 3
2 2 P o ‘T o o #©
2 3 3 £ = § £ ¢z
o o o © =1 = © <
I I =T z J X Z =
Diphyllobothrium latum X
Diphyllobothrium nihonkaiense X
Diplogonoporus balaenopterae X
Diplogonoporus grandis X
Dipylidium caninum * * X
Echinococcus canadensis X2 X + X
Echinococcus equinus X X + X
Echinococcus felidis X X + X
Echinococcus granulosus X X + X
Echinococcus multilocularis X X + X
Echinococcus oligarthrus X * X + X
Echinococcus ortleppi X X + X
Echinococcus shiquicus X X + X
Echinococcus vogeli X X + X
Hymenolepis diminuta X
Spirometra erinaceieuropaei X
Taenia acinonyxi X X X
Taenia asiatica X X X X X X X X
Taenia brachyacantha X X
Taenia crassiceps X X X X X X X X
Taenia crocutae X X X X
Taenia dinniki X X
Taenia endothoracicus X X X
Taenia gonyamai X X X
Taenia hyaenae X X X X
Taenia hydatigena X X X X X X
Taenia ingwei X X
Taenia intermedia X

Taenia krabbei X
Taenia krepkogorski
Taenia laticollis

Taenia macrocystis
Taenia madoquae
Taenia martis

Taenia multiceps
Taenia mustelae
Taenia olngojinei
Taenia omissa

Taenia ovis

Taenia parenchymatosa
Taenia parva

Taenia pencei

Taenia pisiformis
Taenia polyachantha
Taenia pseudolaticollis
Taenia regis

Taenia rileyi

Taenia saginata
Taenia selousi

Taenia serialis

Taenia simbae

Taenia solium

Taenia taeniaeformis
Taenia taxidiensis
Taenia twitchelli

Total 55

x
x X
x X

X X X X
X X X X
XX X X
XX X X

X X X P57 X X X X X X
<
x
N

X< X X
<

S
KX X X X
XX X X
XX X X

X X X
NWOOROWOWANWILNWNWONONINWOAN 22 NORWWNRONOW— = WWWWWwowww—= = = = = Total of studies

PIX XX XXX XXX XXX X XXXXXXXXXXX
PIX XX XXX XXX XXX X XXX XXXXXXXX

Wl X X X X 7 X X X

Rx >xx x x

X X X
19 18 16 33

Table E.2: Eucestoda in state of the art phylogenies (* when serving as outgroup; + when
present in dataset but not used in phylogenetic analyses; X™ when n representents of
the species).
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Figure E.1: Cestodes phylogeny using Bayesian inference (PhyloBayes) on amino acid
sequences.

Contrary to previous studies, mitochondrial sequences used in our first series of experi-
ments are the complete genomes (not only gene features). Such an approach requires
more computational resources but it reduces the number of treatments on data (align-
ment of subsequences, concatenations whose appropriateness must be checked, and
so on), reducing by doing so the risk of errors [CLBGB]. The unique pre-treatment real-
ized on these genomes is an artificial circular rotation on the sequence. Indeed we have
verified that all these Platyhelminthes (the 33 Cestodes and the Trematoda serving as
outgroup) have the same twelve genes in the same order, which is: cox1, cox2, nadeé,
nad5, cox3, cytb, nad4l, nad4, atp6, nad2, nad1, and finally nad3. So, to facilitate the
multiple sequence alignment and to improve the quality of the M-Coffee result, beginning
location of cox1 gene has been obtained from NCBI, and circular rotation of genomes
have been achieved in [CLBGB], in such a way that each data used in M-Coffee starts at
the beginning of a cox1 gene. 12222 distinct alignment patterns have been obtained, with
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a proportion of gaps and completely undetermined characters in this alignment equal to
40.31%.

FindModel (http://www.hiv.lanl.gov/content/sequence/findmodel), which is based on the
program ModelTest, has been used in order to identify the best substitution model. A
subset of 20 aligned genomes (without the outgroup) has been extracted from the out-
put of M-Coffee and sent to the FindModel website. All possible 28 models have been
investigated and Weighbor has been chosen for the initial tree construction method. The
General Time Reversible GTR model with gamma-distributed rate variation across sites
has been identified as the best model among all tested ones.

Phylogeny has then been reconstructed in [CLBGB] with the maximum-likelihood (ML) op-
timality criterion method as implemented in PhyML version 20120412 website [GDL*10]
using the multiple genome alignment provided by M-Coffee. Based on the ModelTest
study, the general time reversible model with a proportion of invariable sites and gamma-
distributed rate variation across sites (GTR+I+G) was identified as the best suited model
in the dataset under consideration. Both the proportion of invariable sites and the Gamma
distribution parameter have been estimated by PhyML, the nucleotide equilibrium fre-
guencies were empirical. The initial phylogenetic tree was estimated using the BIONJ
algorithm [Gas97], NNIs were selected as tree topology search, whereas the optimise
tree topology option has been set as yes. Finally, the robustness of ML trees has
been checked by 1000 BS replicates. All the trees where rooted using the Schistosoma
mekongi genome as outgroup taxon, see [CLBGB] for further details.

Alternative phylogenies have been inferred in [CLBGB] by using RAXML version
7.2.8 [SLO5]. This program is another well-known ML method, using the same multiple se-
quence alignment. GTRGAMMA has been chosen as first nucleotide substitution model.
All model parameters have been estimated by RAXML (the GTRGAMMA implementation
uses 4 discrete rate categories). The sequences have been added one by one in random
order and RAXML have inferred the best starting tree using the parsimony optimality cri-
terion. The bootstrap analysis to get support values for the tree with the best likelihood
has been achieved using a random number seed and by letting RAXML to automatically
determinate a sufficient number of bootstrap replicates. The standard bootstrap search
has stopped after 150 replicates with FC Bootstopping criterion: after every 50 bootstrap
replicates, the RAXML performs 100 random splits of the bootstrap replicate set into two
halves and computes the Pearson and Sierk correlation coefficient in the two halves from
the 100 splits. Bootstrapping (BS) stops if there are at least 99 splits whose halves show
a correlation coefficient greater than 0.99. Having computed the bootstrap replicate trees,
they have been used to draw bipartitions on the best ML tree. Let us remark that GTR-
CAT, GTRCATI, and GTRGAMMAI models have been tested too in [CLBGB]. The same
result, provided in supplementary data, have finally been obtained.

Bayesian inference methods have completed the study with the use of PhyloBayes MPI
version 1.4f [LLB09], a message-passing-interface system for multi-core computing of
the PhyloBayes 3.3f Monte Carlo Markov Chain (MCMC) sampler for phylogenetic re-
construction. According to their authors, its main distinguishing feature compared to
other phylogenetic MCMC samplers is the use of non-parametric methods for model-
ing among-site variation in nucleotide or amino-acid propensities. The global exchange
rates has been inferred from the data (CAT-GTR settings). Two runs have been launched
with 32 processes on the Mésocentre de calcul de Franche-Comté computer facilities on
the same alignment file (34 taxa, 22777 sites) than above and with random seeds until
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reaching a largest discrepancy observed across all bipartitions (maxdiff) lower than 0.1
(using a burn-in of 1000, and sub-sampling every 10 trees).

For the robustness of the process, a last Bayesian inference using the well-known Mr-
Bayes [HRO1] has been finally achieved in [CLBGB]. MrBayes is a Bayesian program
for phylogeny. It has received the same data than PhyloBayes, RAXML, and PhyML,
and the same substitution model. The Markov Chain Monte Carlo analysis was run for
2 millions generations. In order to estimate the posterior probabilities of phylogenetic
trees, the run was sampled every 100 generations (4002 trees have been produced).
New generations have been computed in the Bayesian approach until obtaining a stan-
dard deviation between the two runs launched by MrBayes lower than 0.005. Tracer
(http://beast.bio.ed.ac.uk/Tracer) has been used to define a burn-in of 500 generations.
The obtained results, reported in the suplementary data of [CLBGB], are coherent with
PhyML, RAXML, and PhyloBayes.

Each analyses has been conducted twice, whereas FigTree 1.4.0 (http://tree.bio.ed.ac.uk)
and TreeGraph 2.0.47-206 beta (http://treegraph.bioinfweb.info/) have been used as a
tree plotter and a tree editor respectively.

Amino acids analyses Amino acid sequences have been used in the second series
of experiments. These sequences have been obtained from the NCBI website and then
aligned using M-Coffee another time. We do not provide supplementary information on
these analyses based on amino acids, as obtained results are similar to the genomic
approach, see [CLBGB] for further details.

E.1.1.3/ PHYLOGENY OF EUCESTODA CLASS

Figure E.1 provides a phylogeny inferred from the whole 34 complete mitochondrial
genomes. Even though bootstrapping and aLRT values tend to indicate that the tree
topology is not totaly robust in a few places, three monophyletic grouping clearly appear:
Taenia spp. in clades 1a, 1b, 1¢, and 2, Echinococcus spp. in clade 3, and the remainder
of Eucestoda spp. in clade 4. The sister relationship between T.mustelae and Echinococ-
cus spp. appeared in the tree of [NLI*] is not supported here, and T.mustelae appears
within the Taenia clade. However, bootstrapping does not support totally this assess-
ment of the positioning of this species regarding both Taenia and Echinococcus, and this
questionning raised in [CLBGB] must be confirmed in further researches.

Clade 2 consisting of T.taeniaeformis, T.krepkogorski, and T.parva is identical to clade 2
of [NLI*]. In both cases, bootstrapping are sufficiently large to consider the phylogenetic
relationship between these species as resolved: T.taeniaeformis and T.krepkogorski are
sister species and their clade is sister to T.parva. The clade 2 retains a sister position
to the other members of Taenia spp. except for T.mustelae. This assertion of [CLBGB],
which is along the state-of-the-art (both molecular [NLI*] and morphological [HAQJO1,
HJR*00, Hob06] analyses, except that T.krepkogorski has not been regarded by Hoberg
et al.), is highly supported by Bayesian analyses and ML.

The remainder of Taenia species constitutes the clades 1a-c. Each clade alone has a
well-supported tree topology, but the relative positions of these three clades is not highly
supported by bootstrapping: the relationship of T hydatigena regarding to these three
clades cannot be obtained with ML or Bayesian analyses. Nodes’ clusters separated by
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Accession Species Cestodes’ order Order 2
NC 012147 Clonorchis sinensis X

NC 002546 Fasciola hepatica X

NC_011127 Opisthorchis felineus X

NC_002354 Paragonimus westermani X

NC_008074 Schistosoma haematobium X
NC_002544 Schistosoma japonicum X

NC_002545 Schistosoma mansoni X
NC_002529 Schistosoma mekongi X

NC_008067 Schistosoma spindale X
NC_009680 Trichobilharzia regenti X

Table E.3: Gene order in Trematoda species. Order 2 is: cox1, cox2, nad6, atp6, nad2,
nad>5, cox3, cytb, nad4l, nad4, nad3, nadi.

long branches in Taenia species claim in [CLBGB] for a taxonomy revision within Taenia,
as it has already been suggested by previous biomolecular phylogenic studies (see [NLI*]
for instance).

Clade 3 is only constituted by Echinococcus spp. This phylogenetic relationships of
Echinococcus is identical to the cladogram inferred by the nucleotide data of mitochon-
drial genes [NMS*07] (ML and partitioned Bayesian analyses using concatenated data
sets of nucleotide and amino acid sequences) and [HNW*07]. Among other things, sister
species relationships between E. ortleppi and E. canadensis, and between E. multiloc-
ularis and E. shiquicus have been confirmed in [CLBGB]. It is very closed to the one
of [SIMT09], inferred by the nucleotide data of nuclear genes, the sole differences are
the relative position of E.shiquicus and E.multilocularis regarding the remainder of the
clade.

The remainder of the Eucestoda phylogenetic tree is constituted by clade 4 which illus-
trates that Diplogonoporus spp. (Dipl.latum and Dipl.nihonkaiense) have a sister relation-
ship with Diphyllobothrium spp. (Dipl.balaenopterae and Dipl.grandis) and that Spirome-
fra erinaceieuropaei has a sister position to the other members of this clade. ML and
Bayesian analyses yield a robust support for this clade [CLBGB].

E.1.1.4/ DISCUSSION

Phylogeny of Eucestoda class cannot be inferred using gene order, as all species stud-
ied here share the same arrangement of genes (i.e., same order). In addition of using an
amino acids multi-locus approach for investigating Eucestoda phylogeny, we have consid-
ered the whole mitochondrial genomes in [CLBGB], to reduce sequences pre-treatments
leading to possible fakes and noises in deduced relationships. This way to proceed allows
to present a complementary approach for Taenia and Echinococcus species compared
to previous studies, reinforcing by doing so the confidence in convergent results. Fur-
thermore, the number of investigated taxa is larger than previous molecular phylogenies,
even for the Taeniidae family.

The choice of Schistosoma mekongi as outgroup is justified as follows [CLBGB]. As
there was no molecular phylogeny of cestodes encompassing both Pseudophyllidea and
Cyclophyllidea orders, it would not be possible to determine without ambiguity the first
cestoda which has gone away from the remainder of this class, that is, the most divergent
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species of this class. Furthermore, our desire was to establish a molecular phylogeny
of the whole cestodes whose mitochondrial genome was available, we could not lost a
cestode species by taking it as outgroup. Trematode species have the double advantage
to be a separated class but which is sufficiently close to cestodes. When investigating the
genes order of this class, we discovered in [CLBGB] that all the species whose complete
mitochondrial genome was available shared a same genes order with cestodes, except
for some species within the Schistosoma genus (see Table E.3). The fact that trematodes
and cestodes are two different classes is sometimes disputed due to close morphological
and ecological characteristics. This is why the outgroup is within the Schistosoma genus,
because the presence of a second genes order that can be found neither in the remainder
of trematodes nor in cestodes claims for an old divergence of this genus. However we
wanted to realize global alignment of the whole mitochondrial genomes, so we choosed
in [CLBGB] the outgroup between members of this genus that share the same gene
order than the cestodes, that is, between Schi.japonicum and Schi.mekongi. This choice
is probably not optimal, and distance between Schi.mekongi taxa and all Eucestoda must
be investigated more deeply.

Previous studies suggested a possibility that at least two cryptic species might exist within
the T taeniaeformis taxon, which uses felids as definitive and rodents as intermediate
hosts [JYL*"12,NLI*,LHL*08]. The phylogenetic study presented in [CLBGB] illustrates
that these species could be T krepkogorski and T.parva.

The previous molecular phylogeny of Nakao et al. inferred from a data set of 18S rDNA
on the one hand, and on the protein-coding genes pepck and pold has demonstrated
Taenia to be paraphyletic [NLI*]. This study has led to the following monophyletic clades
within members of Taenia.

Clade 1a, constituted by very closed species, is characterized by the utilization of Bovidae
and Suidae as intermediate hosts. It contains human-taenia spp. This clade 1a corre-
sponds exactly to the clade 1a of Nakao et al. [NLI™]. Clade 1b, which corresponds to
Taenia using members of the order Rodentia as intermediate hosts, are equal in [NLI*]
and in the present analysis. It contains T.martis, T.twitchelli, and T.crassiceps.

These two clades appear for the second time in a molecular phylogeny study and us-
ing various sets of data, while they have no correspondence in the previously proposed
genera within the Taeniidae. As in [NLI*], such a result strongly suggests that the for-
mer proposed genera are invalid. Another common result with Nakao et al. is that both
the pattern of their host selection and their phylogenetic positions are quite approved by
morphological phylogenies ( [HJR*00, Hob06]).

A third clade (1c) sister to clade 1a were not present in [NLIT]. It contains T.pisiformis and
T laticollis. These species have closed geographical range, intermediate, and definitive
hosts, as stated in [HJR*00]. This result provides the position of T.laticollis compared
to membes of clades 1a and 1b, a question raised by Nakao et al. [NLI"]. However,
T hydatigera continues in [CLBGB] to have a problematic cladistic relationship with other
species within the genus Taenia.

In the last phylogeny study inferred from nuclear protein-coding genes [NLI*], clade 2
consisting in T.parva, T.krepkogorski, and T.taeniaeformis that utilize rodents as interme-
diate hosts, and viverrids and felids as definitive carnivore hosts, appeared as sister to
all the other Taeniidae taxa including Echinococcus, whereas analyses on both nuclear
18S rDNA and mitochondrial protein-coding genes consider that clade 2 is a sister of
Taenia s.s. The ML and Bayesian analyses on complete mitochondrial genomes or cod-
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Current name Nakao et al’s proposal [NLI"]
Taenia krepkogorski | Hydatigera krepkogorski
Taenia parva Hydatigera parva

Taenia taeniaeformis | Hydatigera taeniaeformis
Taenia mustelae Versteria mustelae

Table E.4: Summary of taxonomic changes in [NLI"]

ing sequences presented in [CLBGB] validate the second hypothesis. More precisely,
this study confirms the need of the resurrection of Hydatigera for clade Il, as it has been
formerly proposed in [KNY*11,NLIT]. This genus currently contains Hydatigera parva
(Baer, 1926) Wardle & McLeod, 1952, H.taeniaeformis (Batsch, 1786) Lamarck, 1816,
and H.krepkogorski Landa & Schultz, 1934. This genus Hydatigera Lamarck, 1816 was
historically composed by 6 species, namely Taenia balaniceps Hall, 1910, T.laticollis,
T.lyncis Skinker, 1935, T.macrocystis (Diesing, 1850), T.parva, and T.taeniaeformis, while
T.krepkogorski and T.hyperborea von Linstow, 1905 have been added later into this genus
in [Yam59] and [Abu64] respectively. They majorly share in common the primary use of
felids as definitive hosts and the particular structure of their strobilocescus. As in [NLI*],
we conclude in [CLBGB] to the fact that T./aticollis and T.crassiceps do not belong into
the Hydatigera genus, even if they are not very distant together in the Taeniidae family.

The basal position of T.mustelae has been already stated using both morphologi-
cal [HJR"00] and both mitochondrial protein-coding and nuclear genes [NLI*] analyses.
As in Nakao et al., T.mustelae appears as sister to Echinococcus in [CLBGB]. The molec-
ular phylogenetic analysis presented in our article thus confirms that T.mustelae is more
linked to Echinococcus than to other Taenia species. This assessment is consistent with
the erection of a new genus, namely Versteria, formerly proposed in Nakao13. This
erection has been proposed after convergent molecular and morphological observations:
quoting Nakao et al., “T.mustelae differs distinctively from the members of Taenia ss. in
its morphological miniaturization, especially in its very small rustellar hooks.”

E. oligarthrus and E. vogeli, whose definitive hosts are derived from carnivores
that immigrated from North America after the formation of the Panamanian land
bridge [NMS*07], occupies the the basal positions of the phylogenetic tree. Like
in [NMS*07], our study [CLBGB] reinforces the theory suggesting that the ancestral
homeland of Echinococcus was North America or Asia, depending on whether the an-
cestral definitive hosts were canids or felids.

The remainder of our phylogenetic analysis of the Eucestoda class brings the relative rela-
tionship of Diphyllobothrium, Diplogonoporus, Dipylidium, Hymenolepis, and Spirometra
genera with regards to the Taeniidae family. Three families of Eucestoda are represented
in the data set of [CLBGB], namely the Taeniidae, Hymenolepididae, and Diphylloboth-
riidae ones. These three families are clearly apparent in our study: Spirometra, Diphyl-
lobothrium, and Diplogonoporus species are grouped together in 4, all the Taeniidae sp.
(clades 1, 2, and 3) constitute the upper side of the tree, and its remained part is con-
stituted by the two species of the Hymenolepididae family, that is, Dipylidium caninum
and Hymenolepis diminuta. The order level is respected: clade 4 constituted of gen-
era Spirometra, Diplogonoporus, and Diphyllobothrium are within the Diphyllobothriidae
family, so they belong in the Pseudophyllidea order. This clade presents a sister rela-
tionship with the remainded species, which are all in the Cyclophyllidea order: Dipylidium
caninum, Hymenolepis diminuta, and the Taeniidae, another family of Cyclophyllidea or-
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der [CLBGB].

E.1.2/ ANCESTOR RECONSTRUCTION
E.1.2.1/ ALGORITHMIC METHOD

Having available a phylogeny of the Cestodes considered as reliable by us, our next
research work in the study of complex evolution of these species were to reconstruct the
mitochondrial genome of each ancestor of the Taeniae genus. Our approach is detailed
thereafter.

Consider the two closest species? having a sister relationship in the phylogenetic tree of
Figure E.1. We call brother1 and brother2 these two species, while cousini, cousin2,
and cousin3 are the three closest genomes of brother1 and brother2. We achieve two
runs of Muscle [Edg04] alignment tool on this set of mitochondrial genomes (complete
sequences): the first run allows us to realize a circular shift on these genomes, as a
pre-treatment, to improve the accuracy of the second final alignment of length n.

Denote by b;[k] (resp. bo[k], c1]k], co[k], cs3[k], and a[k]) the k-th letter of the DNA
sequence (mitochondrial genome) of brother1 (resp. brother2, cousin1, cousin2, cousing,
and the ancestor of brother1 and brother2). Then, for k = 1..n:
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,cok]} < {G, T}, then alk]
11. elif {b1[k],b ,eolk]} < {G, C}, then a[k] =
12. elif - in {b1[k], b2[k]} then a[k] =7 (a nucleotide or an insertion -),

13. else a[k] = N (any nucleotide).

The process is iterated again by replacing the two brothers by their ancestor.

We have applied this procedure to the subtree of Taeniae depicted in Figure E.2. By doing
so, four ancestors have been reconstructed, the oldest one being the common ancestor
of the clade constituted by T asiatica, T.saginata, T.multiceps, T.madoquae, and T.serialis.
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T.hydatigena
T.solium
T.ovis
T.asiatica
T.saginata
T.multiceps
T.madoquae
T.serialis

Figure E.2: Subtree whose ancestors have been reconstructed

b1 ‘ bQ ‘ C1 ‘ Co ‘ C3 ‘ a
T.saginata T asiatica T.multiceps | T.serialis | T.madoquae | ancestor1
Tserialis | T.madoquae | T.multiceps | T.saginata Tasiatica | ancestor2
ancestor2 | T.multiceps | T.saginata | T.asiatica Tovis ancestor3
ancestor1 ancestor3 Tovis Tsolium | Thydatigena | ancestor4

Table E.5: “Brothers” and “cousins” in Taeniae genus

For each couple of brother used in our simulations, the selected cousins and the name of
the ancestor are detailed in Table E.5.

The number of ambiguous nucleotides (not 'ATCG-’ but 'RNYWKSN?’) in each ances-
tor are given in Table E.6, while the aNy column counts specifically the occurrences of
N’ in the ancestor. The single nucleotide polymorphisms between the couples of broth-
ers, and between each brother and its ancestor, are provided too as an interval: the
first value focuses on the ’ATCG-’ alphabet while the second one is for the extended
"ATCGRNYWKSN?-" alphabet. In other words, the real number of SNPs is between these
two extremal values.

Table E.7, for its part, gives the number of mutations per trinucleotide site between a
species and its direct ancestor. The position of the first '?’ specified, and the number
of mutations are only considered before this position, as the location of these mutations
become impossible after having a doubt between a nucleotide and an indel ’-’, which is
signaled in the ancestor with a character '?’. In the obtained results, it is not obvious that
the third trinucleotide site is preferred. However, we should determine whether an higher
mutation rate on the third site in Table E.7 is correlated to the nature of the sequence
(coding or not): indeed, due to our circular rotation of some genomes in the first run of
alignments, we do not know this nature, which may change from one row to another one

2Number of SNPs (single nucleotide polymorphisms) in the global alignment of the whole genomes

by ‘ bo ‘ Ambiguous ‘ aNy ‘ snp(bi, ba) ‘ snp(bi,a) ‘ snp(be, a)
T.saginata | Tasiatica 286 96 819 299..554 | 296..551
Tserialis | T.madoquae 502 156 1229 450..913 | 355..818
ancestor2 | T.multiceps 604 487 728 198..673 | 427..996
ancestor1 ancestor3 742 523 > 630 211..902 | 276..942

Table E.6: SNPs between couple of genomes and their ancestor
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Situation known | Distribution of SNPs
Species until position per trinucleotide site
ancestor1 718 (2,33,7)
ancestor2 787 (1,30, 7)
ancestor3 718 (6,35,11)
T asiatica 3581 (31, 20, 73)
T madoquae 1888 (59, 49, 14)
T.multiceps 787 (5,41, 12)
T.saginata 3581 (43, 43, 27)
Tserialis 1888 (58,52, 7)

Table E.7: Mutations per trinucleotide site

(a) Asiatica (b) Saginata

Figure E.3: SNPs locations compared to the ancestor

in this table.

Finally, Figure E.3 indicates the locations of genes in T.asiatica and in T.saginata, and
the locations of SNPs they share with their common ancestor (that is, ancestor1): no
correlation clearly appears between the coding character of a sequence and the muta-
tions’ density, even though silent mutations (without modification of the associated amino
acid, due to the recurrent character of the genetic code) may be more frequent in coding
sequences.

The last common ancestor (ancestor4) is provided in Appendix F. The next sections are
devoted to our first investigations in the attempts to provide a confidence score for this
ancestor.

E.1.2.2/ MATHEMATICAL FOUNDATIONS

For the sake of simplicity, we now consider only one cousin:
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VANVA

Figure E.4: Tree of ancestors

generation n + 1

1. if the two brothers b; and b, are equal in position [, then we put by [k] in a[k]

2. elif bi[k] = c[k], then a[k] = bi[k]
3. elif ba[k] = c[k], then a[k] = by[k]
4. else a[k] = N.

Our reconstruction confidence can be evaluated as follows®. Let {X,, n € IN} be the
Markov chain such that, at generation n, X,, = (X, (7))i=1,... 2= is the set of individuals
i € {1,...,2"} with genetic material X,,(i). Xo = Xo(1) is the original ancestor. We let
S the set of values of the X,,(i)’s, so that for all n, X,, takes its values in set S2". It is
assumed that the transition between X,, and X, is such that

27L

P(Xn41 = (m?+1)i:1,...,2”+1| X = (mf)i=1,...0n) = H[p(mgljll’mk) p(mgljlamk)]
k=1

2n
= TPk = 1) = ] Xoh) = ) BXna(24) = mi | () = )]

for some given function p(., .) that explains the probabilistic mechanism that gives expres-
sion of genes from one parent to its immediate two children. It is clear that, if (k,)nen is
a path along the tree partially represented in Figure E.4, with k,, € {1, ...,2"} for all n and
kn+1 € {2k, — 1,2k}, then {X,,(k,), n € IN} is a Markov chain with state space S. For
example, {X, (1), n € IN} is a Markov chain, which corresponds to the leftmost path on
the tree. However, if (k;,)new and (k],)new are two paths, corresponding Markov chains
{X,(kn), n € N} and {X,(k}), n € IN} have same distribution, but are not independent
(as they are issued from the same starting point X(1)).

In practice, we observe X, ;1 = (X,41(4));=1. 2n+1 and we want to "reconstruct” one
ancestor X,,(1). To this end, if said observations are m/ ™, i € {1,...,2"*!}, we construct

3This proof is due to our colleagues Landi Rabehasaina and Romain Biard (LMB), “mandated” by us to
solve the problem of the pertinence of the reconstructed ancestors.
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deterministically a candidate m” for X,,(1) thanks to some (deterministic) function

ml = f( n+1 m721+1 mg+1>

that takes into account both immediate descendants X,, (1) and X,,;+1(2) of X,,(1), but
also its "cousin" X,,;1(3). The goal is to choose f adequately such that

py(mi™ L my L mi ) = P(X(1) = f(mi ™ my L mE ] X (1) = mi ™ X (2
(

)
is close to 1. A close form of this quantity is available if the distribution 7, of X, (1) is
known. In that case, (E.1) is equal to

Py i)

P(Xp41(1) = mi™h X1 (2) = my Y X (1) = f(miH my™h omgth),
P(Xp11(1) = m1+1 Xp+1(2) = my™*
p(m?+1’f(m111+1 mgLJrl ngrl)) ( n+17f( n+1 n+1 mgl+1)) (

ZmeS p(m?+1v m) p(ngrl? m)ﬂ-n (m)

There are two approaches:

 Either n is small and =, is an a priori distribution fixed by an expert,

» Or n is large, in which case one can suppose that X,, has reached its stationary

distribution, i.e.
2n+1

1
] (E3)
=1

E.1.2.3/ EXPERIMENTAL EVALUATION

We have measured the confidence we can put in ancestori, the direct ancestor of
T.asiatica and T.saginata. Listing E.5 details how we have defined the ancestor function
f that appears in the previous section.

def f(X,Y,2):
if X==Y: return X
elif X==Z: return X
elif Y==Z: return Y
else: return ’'N’

Figure E.5: The ancestor function f

Then, we have computed the mutation matrix between ancestor1 and its two children. It
is equal to*

0.767945544554  0.0210396039604 0.0717821782178 0.139232673267
0.0763052208835  0.746987951807  0.0542168674699 0.122489959839
0.0702247191011 0.0147471910112  0.78441011236  0.130617977528
0.0650429799427 0.0309455587393 0.0547277936963 0.849283667622

“Remark that this mutation matrix is compatible with none of the state-of-the-art nucleotides evolutionary
models recalled at the beginning of this part.
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where rows and columns follow the 'ACGT’ order and, at row X and column Y, we found
p(X,Y), which is equal to the probability a nucleotide X in ancestor1 becomes Y in either
T.asiatica or T.saginata. To obtain this matrix, we started with a 4 x 4 matrix initiated by
zeros, and for each position k:

* we add 0.5 at row X and column Y7, where a[k] = X and b, [k] = Y1,

* we add 0.5 at row X and column Y5, where a[k] = X and by[k] = Y.

Finally, the matrix is renormalized to have a sum of each row equal to 1.

T, foOr its part, is equal to 0.24221, 0.07908, 0.47257, and 0.20614 for respectively A, C,
T, and G. To obtain it, we have simply computed the frequency of each nucleotide in the
genome of T.saginata.

With all this material, it has been possible to compute p¢ (b1, b2, c), which measures the
confidence we can put in our ancestor a(by,b2). The obtained results are provided in
Table E.8. In this table, a p; probability close to 1 indicates that we can have an high
confidence in the associated ancestor reconstruction. Low probabilities are due to the
simplifications we have operate on our process to be able to compute mathematically
these probabilities. In particular, probabilities equal to 0 are due to situations where we
put an any 'N’ nucleotide in the ancestor: in that case, the letter put in the reconstructed
ancestor is never the nucleotide (letter) that was really present in the true real ancestor.
Deeper investigations in that direction, to be closer to the process really implemented (as
it is described in Section E.1.2.1), will improve the values contained in Table E.8.

E.1.2.4/ POSSIBLE IMPROVEMENT: TO INFER MUTATION LAW ON GENE SCALE

Study presented in previous sections is a proof of concept showing that it is possible to
reconstruct the ancestors of closed species, and that a confidence score can be deduced
from the reconstruction. However, this first approach presents various flaws, the most
important one being probably to suppose that the mutation rate is constant whatever the
location, leading to a constant mutation matrix.

We have regarded how to relax this hypothesis using the so-called graphical model ap-
proach [KFGTO07]: the initial hypothesis is that any nucleotide’s probability mutation de-
pends on all the other nucleotides of the considered gene, as follows. Consider a gene of
length n. The Markov chain is supposed a priori to be a complete graph with 4™ nodes,
having each vertex connected to all other ones: each gene can a priori becomes any
other gene due to mutations. However, almost all the edges have a probability close to
0. The graphical model approach needs a large collection of data, which is used to re-
move, in this graph with (4”)2 edges, a very large amount of edges, in such a way that
the remained ones are those whose probability may be not negligible, as inferred by the
observed data.

With Stéphane Chrétien from the LMB, we have started to study the graphical model
approach for genes mutations, in the particular case of NAD3 gene in the Cestodes,
Nematodes, and Trematodes families. To do so, we have extracted its DNA sequence
in 100 genomes of these families, realize a global alignment using Muscle, computed a
similarity distance between each aligned sequence (using the same measure than in the
Needleman-Wunch algorithm, with EDNAFULL amino acid matrix, and penalties of -10
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bl b2 C pf(bl,bg,c) bl bg C pf(bl, bQ,C)
AlA|A 0.9762 AlA|C 0.9762
Al A |G 0.9762 AlA|T 0.9762
A|C| A 0.4082 AlC|C 0.4702
AlC|G 0.0 AIC|T 0.0
AIG|A 0.4997 A|lG|C 0.0
AlG|G 0.4250 AIG|T 0.0
Al T|A 0.4740 A|T|C 0.0
AlT|G 0.0 Al TI|T 0.4778
C/A|A 0.4082 C|A|C 0.4702
C|A|G 0.0 C|A|T 0.0
CIC|A 0.9864 C|C|C 0.9864
cC|C|G 0.9864 C|C|T 0.9864
C|G|A 0.0 C|G|C 0.4742
C|G|G 0.3531 C|G|T 0.0
C|T|A 0.0 C|T]|C 0.3484
C|T|G 0.0 C|T|T 0.5982
G|A|A 0.4997 G|A|C 0.0
G|A|G 0.4250 G| AT 0.0
G|C|A 0.0 G|C|C 0.4742
G|C|G 0.3531 G|C|T 0.0
G|G|A 0.9776 G| G|C 0.9776
G| G |G 0.9776 G|G|T 0.9776
G|T|A 0.0 G| T|C 0.0
G| T|G 0.4588 G| T|T 0.4771
TIAA 0.4740 T|A|C 0.0
TIA|G 0.0 TIA|T 0.4778
T|C|A 0.0 T|C|C 0.3484
T|C|G 0.0 T|C|T 0.5982
T|G|A 0.0 T|G|C 0.0
T G|G 0.4588 TIG|T 0.4771
T|T|A 0.9731 T|T]|C 0.9731
T|T|G 0.9731 T T|T 0.9731

Table E.8: p; values in all situations
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and of -0.5 for gap opening and extending respectively). Additionally to this similarity ma-
trix of size 100 x 100, we have translated all the obtained alignments as binary sequences,
having a 1 in position k in the work in row i, column j, if and only if the NAD3 gene in
genomes ¢ and j present the same nucleotide in position k. With all this material, we
are currently computing the graphical model method. It will allow us to obtain the first
global mutation law of a gene, and to compare it to the constant mutation matrix obtained
previously.

E.2/ TOWARDS THE ANCESTOR OF THE Mycobacterium Tubercu-
losis COMPLEX

E.2.1/ GENERAL PRESENTATION

The Mycobacterium tuberculosis complex (MTBC) consists of a few bacterial species
inside the Mycobacterium genus that evolve in a clonal manner. This complex contains
M.tuberculosis, M.bovis, M.bovis BCG, and M.africanum. The most commonly accepted
scenario is that MTBC has appeared 40,000 years ago in the Horn of Africa, its progenitor
species (or last common ancestor) being probably an evolved and mutated M.canettii, the
smooth group of M.tuberculosis [BHS*12].

We currently have available in the NCBI website 65 complete genomes of Mycobacterium
genus, among which 31 belong in the strict MTBC and 5 are M.canettii strains. However,
during our first investigations of this complex [GCR™], only some of them were accessible,
that is, the 18 genomes of Table E.9. Our final objective regarding MTBC was to validate
(or not) the hypothesis considering that the last common ancestor of this complex is
related to M.canettii. Remark that M.canettii still remains an existing bacteria, we thus
have a complex of species having numerous different strains that have evolved these
last 40,000 years from an archaic M.canettii on the one hand, and the current strains
of M.canettii that have evolved too from their ancestral compositions on the other hand.
Our proposal in [GCR™] was to reconstruct the ancestors of both the MTBC and of the
genomes of M.canettii currently available, and to compare the two obtained ancestors.

To achieve this goal, we have chosen the following steps for the two groups of
species [GCR*]:

1. To determine genes constituting the core genome of these species, that is, genes
belonging in all the genomes.

2. To extract genes in the core genome in order to reconstruct a reliable phylogeny of
this collection of strains (and validate or not the phylogenetic proposal of [BHS*12]
recalled in Figure E.6(a)).

3. To reconstruct each ancestor in this phylogenetic tree, until the last common one.

4. Finally, to compare the last common ancestors of the two groups of strains (MTBC
and M.canettii).

Each of these steps is detailed hereafter.
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content (EPFL)

Figure E.6: Phylogenetic trees of the MTBC complex

Accession nb. Species Strain Nb. of transposases
NC _016804.1 M.bovis BCG Mexico 54
AM412059.2 M.bovis BCG | Moreau RDJ 54
NC_002755.2 | M.tuberculosis | CDC1551 45
NC 009525.1 | M.tuberculosis H37Ra 73
CP001642.1 M.tuberculosis | CCDC5180 76
NC_000962.2 | M.tuberculosis H37Rv 82
CP003233.1 M.tuberculosis | RGTB327 82
NC 012943.1 | M.tuberculosis | KZN 1435 85
CP002992.1 M.tuberculosis CTRI-2 77
CP001976.1 M.tuberculosis KZN 605 83
CP001662.1 M.tuberculosis | KZN 4207 76
AP012340.1 M.tuberculosis Erdman 57
NC _016934.1 | M.tuberculosis uT205 0
NC_015758.1 M.africanum GM041182 55
CP001641.1 M.tuberculosis | CCDC5079 79
CP003234.1 M.tuberculosis | RGTB423 77
NC 009565.1 | M.tuberculosis F11 87
NC 012207.1 M.bovis BCG Tokyo 172 52

Table E.9: Transposases per genome in the MTBC

228

(@) Minimum spanning tree on 13382 SNPs [BHS*12] (b) Maximum Likelihood on genes order and
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E.2.2/ CORE AND PAN GENOME

To set the ideas, let us explain in a short example what are the core and pan genomes.
Consider a genome (G constituted by three genes: g1, g2, and g3 while a second genome
G4 is constituted by ¢1, g3, 94, and g5. The core genome of GG; and G is their intersection,
that is, {g1, g3}, while the pan genome is their union: {g1, g2, 93, 94, g5} -

Core genome is useful to determine which genes are necessary for the bacteria, that
is, the fundamental functionality of the species, whereas pan genome helps to under-
stand the variability inside the strains. Additionally, molecular phylogenies compare DNA
sequences shared in common in the collection of regarded species. So, in order to con-
struct a phylogeny of MTBC, we need to find genes shared by the whole species, that is,
genes belonging in the core genome.

To determine the core genome of our 18 genomes of MTBC, we have downloaded the
coding sequences of the 18 complete genomes from the NCBI website [GCR*]. These
DNA sequences contain approximately 4,000 genes (protein coding sequences, exons
and introns) in a fasta file having the following form:

>1cl|NC_002755.2_cdsid_NP_334410.1 [gene=dnaA] [protein=chromosomal
replication initiation protein] [protein_id=NP_334410.1] [location=1..1524]
TTGACCGATGACCCCGGTTCAGGCTTCACCACAGTGTGGAACGCGGTCGTCTCCGAACTTAACGGCGACC
CTAAGGTTGACGACGGACCCAGCAGTGATGCTAATCTCAGCGCTCCGCTGACCCCTCAGCAAAGGGCTTG
GCTCA...CGTCAAAGAACTCACCACTCGCATCCGTCAGCGCTCCAAGCGCTAG
>1cl|NC_002755.2_cdsid_NP_334411.1 [gene=dnaN] [protein=DNA polymerase

III subunit beta] [protein_id=NP_334411.1] [location=2052..3260]
ATGGACGCGGCTACGACAAGAGTTGGCCTCACCGACTTGACGTTTCGTTTGCTACGAGAGTCTTTCGCCG
ATGCGGTGTCGTGGGTGGCTAAAAATCTGCCAGCCAGGCCCGCGGTGCCGGTGCTCTCCGGCGTGTTGTT
GACCGGCT. ..

Genes are thus constituted by an headline starting by >, which contains various informa-
tion like the gene’s name and location, and followed by the DNA coding sequence.

A first idea to constitute the core genome may be to use gene names: core genome is
constituted by genes whose name are present in all the genomes whereas pan genome
has genes whose name appears at least once in the collection of genomes. However,
this simple approach cannot work, as:

» Annotation tools used by researchers making the submission of their genome in
the NCBI website are manifold, leading to different names for a same gene in the
collection of genomes (a same sequence identified as two different genes using two
different tools).

« The same gene may be well-identified, but naming conventions may be different
in two different annotation tools (spelling mistakes, various conventions for using
capital letters or abbreviations).

» Finally, some genes have no name, but simply an indication like “putative protein”
as in the UT-205 genome.

Our approach in [GCR™] has then consisted in extracting the ~ 80,000 DNA coding se-
quences from these 18 genomes, and to compare them two by two using the needle
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command of the Emboss package, which is based on the so-called Needleman-Wunch
global alignment algorithm (the computation of the 80, 000% similarity scores has required
2 months using 50 cores on the Mésocentre de calcul de Franche-Comté). Roughly
speaking, two DNA sequences will be considered as two alleles of a given gene if their
similarities are greater than a predefined threshold. The idea at the basis of our approach
was that:

+ All strains in the complex are supposed to derive from a common ancestor, and their
clonal evolution reduces horizontal genes transfer. So, apart a few gene loss or gain
due to mutations, genomic recombination, or transposases (TEs), all strains must
share approximately the same collection of genes, which is the one of the ancestor.
To say this another way, the core genome of the complex should be close to the pan
genome.

« This MTBC complex is very recent, so the various alleles of each genes must be
close one to each other.

The result of this computation is an undirected graph whose vertices are the 80, 000 cod-
ing sequences g1, ..., gsoooo, €ach vertex being connected to the 80,000 other vertices.
The edge between two vertices g; and g;, for its part, is the similarity score ; ; obtained
after the global alignment of these two DNA coding sequences. Finally, all edges having a
similarity score lower than a given threshold (set at 90% in our experiments) are removed
from the graph, and the remained connected components of the disconnected graph are
called genes.

» Genes whose connected component contains at least one representative of each
genome belong in the core genome.

» Pan genome is the collection of all the connected components.

For the MTBC and a threshold set at 90%, we found a core genome of 1349 genes
and a pan genome of 7323 genes. 1,177,378 SNP locations were identified after having
realized a global alignment of each gene (18 alleles) and counting the variations in these
alignment (Hamming distance).

Rem °. In our approach [GCR*], two coding sequences s, and s, with a low similarity
score can still be two alleles of a same gene. Indeed, the necessary and sufficient condi-
tion is that a chain g1, g9, - . . , g1 can be found in the 80, 000 coding sequences such that all
the similarity scores of (s1, g1), of (gi, gi+1), and of (g, s2) are greater than the threshold.

E.2.3/ INVESTIGATING THE MTBC PHYLOGENY

The ancestor reconstruction must be based on a relevant phylogenetic tree of the MTBC:
as in Section E.1.2, we need to determine the closest species and their neighboring
strains, to be able to produce a relevant direct ancestor of these sister species.

A first phylogenetic study can be found in [BHS*™12]: the authors analyzed 435
M.tuberculosis complex isolates of the same clade. By focusing on the H37Rv genome,
they produce 13382 SNPs. Later, they compare 44 genomes to this one regarding these
SNPs (the way they extract this phylogenetic tree is not completely detailed). Their ob-
tained tree is depicted in Figure E.6(a). Even though this work can be considered as
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(a) SNPs of strict core genome (neighbor joining (b) SNPs of strict core genome (FastME)
tree)

(c) Genes content (neighbor joining tree) (d) Genes content (FastME)

Figure E.7: New phylogenetic trees of the MTBC complex
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Figure E.8: Symmetric difference with H37Rv
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Figure E.9: Largest synteny block

thorough and sound, it is only based on SNPs, and we believe that its conclusion should
be reinforced by other approaches, focusing on gene order or content, before launching
the reconstruction process.

A first tree based both on gene content and order has been obtained during our col-
laboration with Yu Lin and Bernard Moret (EPFL), whose research works concentrating
especially on such phylogenetic reconstruction. Their produced tree is depicted in Fig-
ure E.6(b). As their result does not correspond to the tree based on SNPs, we decided
in [GCR™] to further investigate the phylogenetic relationship inside MTBC using the DNA
coding sequences similarity classes obtained previously.

Our obtained results are depicted in Figure E.7 for SNPs in our core genomes and for
gene contents. Other results for metrics related to synteny blocs (size of the largest
synteny bloc, the average size of synteny blocs, and the number of synteny blocs re-
spectively) have been obtained too [GCR*], but for the sake of concision they are not
documented in this manuscript. At each time, the trees have been obtained by launch-
ing either FastME [DGO02] turn key program for phylogenetic reconstruction, or a single
well-known neighbor joining tree algorithm [SN87].
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Figure E.10: Average size of synteny blocks

In almost all obtained trees, H37Ra and H37Rv appear as sister species, which is coher-
ent regarding their history. See Figure E.11 for an annular comparison between these two
genomes, based on the similarities computation of the previous section. We then have
obtain the following neighboring lists: the first strains in each list are the genomes closest
to H37Ra and H37Rv.

» Genes order: CTRI_2, UT205, Africanum, Mexico, Moreau, Tokyo_ 172, KZN1435,
KZN4207, KZN605, F11, CDC1551, Erdman, CCDC5180, CCDC5079, RGTB327,
RGTB423,

» Genes content: CTRI_2, UT205, Africanum, F11, KZN4207, KZN605, KZN1435,
Tokyo_172, Moreau, Mexico, CDC1551, CCDC5180, Erdman, CCDC5079,
RGTB327, RGTB423, see Figure E.8,

* SNPs of the core genome: UT205, CTRI_2, F11, KZN605, KZN4207,
KZN1435, RGTB327, CDC1551, Erdman, Tokyo_172, Mexico, Moreau, Africanum,
CCDC5180, RGTB423, CCDC5079,

which lead to the following cousins ranking: CTRI_2 (1), UT205 (2), F11 (14), KZN4207
(15), KZN605 (16), Africanum (16), KZN1435 (17), Tokyo_172 (21), Mexico (22), Moreau
(23), CDC1551 (27), Erdman (31), RGTB327 (34), CCDC5180 (36), CCDC5079 (41),
RGTB423 (44). This list is a good compromise, taken into account the size of the largest
synteny block (Fig. E.9), the average size of synteny blocks (Fig. E.10), or the number of
synteny blocks (Fig. E.12).

We thus have launched in [GCR*] a reconstruction process of the ancestor of H37Ra
and H37Rv, and with the list of cousins above. The size of each class of equivalency
in the pan genome of either (H37Ra,H37Rv) or (H37Ra, H37R, CTRI2, UT205, F11,
KZN4207v) comfort us, as they are always equal to 2 in the first case and mainly equal
to 6 in the second case, see Figure E.13.
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(a) Differences

(b) Similarities

Figure E.11: Annular comparison between H36Ra and H37Rv
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Figure E.13: Sizes of equivalency classes
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Figure E.14: Inversions found in the set of data (EPFL)

(a) Africanum vs KZN605

(b) Africanum vs Tokyo_172

(c) CCDC5180 vs Tokyo_172

(d) Tokyo_172 vs Mexico

Figure E.15: Genomes comparison

E.2.4/ RECONSTRUCTION OF THE ANCESTOR OF H37RA AND H37Rv

Two ways are possible for reconstructing the direct common ancestor of two bacterial
genomes like H37Ra and H37Rv. The first approach consists in processing as in the
Cestodes case (Section E.1.2): to realize a global alignment of the two genomes, and
to iterate on this alignment nucleotide per nucleotide (for each position, if the nucleotides
in H37Ra and H37Rv are A, then put A in the ancestor, etc.) The problem with this ap-
proach is that a mitochondrial genome of Cestode has approximately 16,000 nucleotides
while H37Rv (bacterial genome) has for instance 4,411, 532 base pairs. Common global
alignment tools are unable to tackle such large genomes, but Mummer [KPD*04] soft-
ware seems to be capable to achieve such thing. We are currently investigating this
tool, regarding whether its results are sufficiently accurate to achieve an ancestor recon-
struction. If so, a particular strategy must be discovered to face genomic recombination
we have discovered in the MTBC genomes, depicted in Figures E.15, E.16, and E.14:
duplication and inversions have obviously occurred in the MTBC [GCR™].
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The second approach consists in the three following steps:

1. Work first on genes level, by determining genes content and order in the ancestor
using the data provided by its children and their cousins. The method used in the
Cestodes case can be directly adapted to integer lists (each integer being the id of
the similarity class).

2. Then, for each gene, produce the ancestor following an identical approach than in
the Cestodes case.

3. Finally, fill the hollow cavities (non coding sequences) with exactly the same method
than in the second step above.

Such a reconstruction has been realized on 3 couples of genomes. However, we do not
have reach the last common ancestor of the MTBC, due to an important problem found
at the first stage of our reconstruction process. This problem, presented in the position
paper [GCRT], is emphasized in the next section.

E.2.5/ NCBI ANNOTATIONS PROBLEM

We have computed the symmetric difference A between each couple of genomes G; and
G-, (sets of classes of equivalency), which is defined by:

GlAGQ = (Gl U Gg)\(Gl M GQ) = (Gl\Gg) U (GQ\Gl)

The cardinality of each symmetric difference is provided in Figure E.17. Surprising sym-
metric differences have appeared in this complex. For instance, the symmetric difference
between H37Rv and RGTB423 is equal to 2,063, while H37Rv has approximately 4,000
genes. This difference is surprisingly large for two strains belonging in the same species.
As a comparison, the symmetric difference between H37Rv and Africanum strains, which
belong in two separated species, is equal to 290. Indeed, RGTB327 and RGTB423 are
both very distant from the remainder M.tuberculosis strains.

Other illustrations of this problem can be found in Figures E.12, E.10, or in E.8 for in-
stance. Note that H37Rv can be considered as a reference of M.fuberculosis species, as
it is in revision 3 and because it is majorly humanly annotated (the scientific community
focus their efforts in improving the annotation quality of this genome). We found some
M.tuberculosis strains in the left part of these graphs (so, these genomes are close to
H37Ryv, which is natural, as they belong into the same species), then strains from M.bovis
and M.Bovis BCG, reasonably at a larger distance from H37Rv, as we consider different
species. Finally, after an obvious break-off (see Fig. E.8), we find again 6 M.tuberculosis
strains: CDC1551, CCDC5180, Edrman, CCDC5079, RGTB327, and RGTB423.

Other problems can be emphasized [GCR*]:

* As stated previously, core and pan genomes should have approximately the same
size, due to the clonal evolution and recent history of the MTBC complex. However
we have obtained 1,349 genes in the core genome and 7,323 genes in the pan
genome.
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Figure E.16: Annular comparison between KZN4207 and...
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Figure E.18: Sizes of equavalency classes

» We have found 2, 347 classes of size 1, that is, 2, 347 coding sequences are distant
of at least 10% of each of the other 77, 653 coding sequences. A sequence so distant
to all the other ones can be explained by an horizontal gene transfer from a different
bacterial species. But supposing that 2, 347 such transfers have occurred these last
40,000 years in a clonal complex (in which an horizontal transfer is quite impossible)
is not realistic.

« Similarly, we have 354 classes of size 2, 368 classes of size 3, and 140 classes of
size 4. The scarcity of such coding sequences in the collection of genomes can only
be explained by horizontal transfers, which are impossible in this clonal complex.

+ Finally, we have found 112 classes of transposable elements (DNA transposases)
in the man genome, and 45 classes in the core genome. The largest class has 189
representatives. As shown in Table E.9, their spreading seems correlated to their
human virulence, while they seem to be at the origin of the inversion in the KZN
strains (related to an epidemic of tuberculosis in India). However, some strains in
this table seem to have a number of transposases incompatible with such state-
ments, and indeed surprisingly low (like CDC1551, Erdman, or UT205).

Our explanation of this situation is that either the annotation is wrong, or the DNA se-
quence is problematic (assembling errors, for instance). Such a statement invalidates our
work achieved until now. It necessitates to:

1. Use relevant tools to evaluate the quality of the complete DNA sequence.

2. Use exactly the same (good) annotation tool on all the unannotated genomes, like
GeneMaskS which achieves to rediscover 2/3 of the coding sequences of H37Ry,
see Table E.10.

3. Start over the whole reconstruction process.
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Gene prediction software | Good ORFs
Glimmer 2558
Genemask 2768
Rast 2560

Table E.10: Gene prediction scores of the best GPS on H37Rv

E.3/ OTHER PROJECTS

E.3.1/ Escherichia coli

The epidemiology of ESBL-producing Escherichia coli (ESBLEC) is complex. It combines
their spread into the community setting, nosocomial acquisition, and the horizontal trans-
fer of plasmid carrying blagspr genes. The determinants of the spread of these strains
in the community remain poorly known, particularly the role of environmental dissemina-
tion. The objective of [BPS*] was to (i) to quantify the ESBLEC throughout the wastewater
(WW) network of the city of Besancon, eastern France, (ii) to compare the ESBLEC loads
between hospital and community WW, (iii) to assess the clonal diversity of ESBLEC and
the blapspy diversity throughout the WW network. Our work in this project consisted in
genotyping by multi-locus sequence typing (MLST), and in analysing the MLST data.

MLST was performed according to the protocol described in the E. coli MLST website
http://mist.ucc.ie. Nucleotide sequences were determined for internal fragments of the
adk, fumGC, gyrB, icd, mdh, purA, and recA genes, on both strands, and were compared
with sequences in the above-mentioned E. coli MLST website for the assignment of allele
numbers and sequence types (ST). Clonal complexes (CC) are defined as a group of STs
sharing at least 5 loci, using the START2 software. All chromatograms were imported,
assembled, edited, and trimmed in Geneious Pro (5.3.6, Biomatters Ltd, Auckland, New
Zealand). We concatenated the sequences of adk, fumGC, gyrB, icd, mdh, purA, and recA
genes to form a 3,423-bp sequences alignment. The best-fit nucleotide substitution model
for this data was GTR+G+l, as determined with jModelTest 0.1.1. We used the Shigella
dysenteriae Sd197 as the outgroup strain. Maximum likelihood tree was constructed with
RaxML 7.2.8 [SLO5] and visualized with dendroscope. In every case, 1000 bootstrap
repetitions gave values above 900 for most branches.

E.3.2/ Pseudomonas, CHLOROPLASTS, ETC.

We have achieved the same work than in the MTBC, but with 98 chloroplastic genomes.
All the complete genomes have been annotated with Dogma, core and pan genomes have
been obtained, and the results have been compared with those obtained with annotated
genomes from the NCBI website. Results are satisfactory in the first situation, they are
currently studied by a phylogenetician, while we have started a phylogenetic study of this
collection of plants.

MLST data have been used too for Pseudomonas aeruginosa. The project consists in
studying the genotypic and phenotypic evolution of an epidemic strain during 13 years of
its hospital dissemination. Establishing core and pan genomes of this species is under
study too, with an approach similar to the one applied on the Mycobacterium tuberculosis
complex.
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Other projects currently going on encompasses the study of the dissemination of trans-
posases in the MTBC, to the evaluation of the danger related to the inhalation of myco-
toxines produced by Stachybotrys chartarum, and to the characterization of heavy metals
poilluted lands using transporter genes in fungi.
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LAST COMMON ANCESTOR OF
T.asiatica, T.saginata, T.multiceps,
I. madoquae, AND I.serialis

ATGCTGTTAGTATAAG-TTATTATRTTTCTTTTCCAAAGAAAAGATCTA-TTTTTGTAGACNGTATA--TA
AATGTCTATTGTTCCTRTTTTTAATGCTTCTTTTGTTGGTTTTTTTTTRGTTGGTTTATTTTTATGAAAGG
TTAAATTNTTTTTGATATTTTTAATNTGTGCTATTTTATCAATAGTRATATTTGTATTTGATGGGTTNGGT
AAGRYTNTTCATTATGAATCTGCNTTTTGGTTGTTTGTTTTTAGNGANGTTATGATTTTTGGTAGATTTTT
AACATGTTGTTTATTTTTTGATTCTTGATCTTATGAAAAATTGTCTAGATCTTTNGAGATACCTTTTGTTG
GGTGTTTTGTTTTATTAGGTTCTAGTATTACTGTTACTGCGTTTCATCATTTATTAGGTTGNAAGTATTGT
GATTTTTTTTTGTTTTTGACTGTNRTTTTAGGGTTNAGTTTTGTNGTTTTGCAGATTTCTGARATGGAAGA
TATAAGTGTTAATATATTTGATACNAGATTTCATGCTAGAAGATTTTGTACTGTTGGNTTACATTTTAGTC
ATGTTTTATTAGGTGTNGTTGGATTNAGTACNATTTTATTRGTWGGNAGNAGTANGTTTGGNGTTTATCGT
TGTACTGTTTTNACATGRTATTGRCATTTTGTNGATTATATATGRTTACTTGTTTATACTATAGTNTATGT
NTGTTART??T?7?7-———- TTACTAATAGGTTATGTAAACTARTAGATTGTGGTTCTATTGAATACTTGTT
AATTTNN?GT-AGTATTAGTAAATT-NATGGTTAGGTTATTTCGACGTAATTTGATAGATTTGCCAATTAG
TTATTCTCTTAATTATTATTGAAGTAGGGGATTTGTNCTTTCTGNTTTTATGNTTATNCAAATATTAACTG
GTGTAGTNTTGTCTTTTTTATATGTTGCNGATTATTTGTGTAGTTTTTTNATGGTTATGAGNTTRTCAAAA
GATTCTTTTTTTACTTGATGTTTGCGGTATTGGCATATGATAGGTGTTAAAGTGTTGTTTGGTTTACTTTT
TGTTCATATGGCTCGTGCTTTRTATTATTCNAGTTATAAAAAGAAGGGTGTATGAAATGTAGGGTTTGTTT
TRTATTTATTNGTTATGGGTGAGGCTTTTACTGGATATATATTNCCTTGNCATCAAATGTCTTATTGRGCT
GCTACTGTTTTAACATCTATAGTNGATAGATTGCCTATTTTTGGTAGTGTTGTTTATAAGTATGTNGTTGG
TGGATTTTCTGTNTCAGGTATAACTTTAATTCGTGTGTTRTCTGTGCATATTTGTTINGGTTTTGTTATTT
TNGGNTTNATGRTTNTTCATATGTTTTATTTACATAAGAGTGGTAGNAGTAAACCTTTATTTTCNTTTAAT
TATTTNAGNGATGTAATTTATTTTCATTCTTATTTTACGGTTAAGGATTTTGTNTTGTTTATGATAGTTGN
TAGGTTTGTAGTTTTTTGATTATTTRTAAGACCTGATGCTTTAGTTGATATAGAGGCRTATTTAGAGGCTG
ATCCNTTGAATACTCCTGTTTCAATTAAGCCTGARTGATATTTTTTAKCATTTTATGCTATTTTACGTTGT
ATAGGNTCTAAGATTGGTGGTTTNGTGTTNATTNTAGCGTTTTTGTTTTTTTTGTGAGTNCCTACTAATAG
TGGTTCRAGTGTNTATAAWGTATGRCGTCANGTTAAATTTTGNTTNATTGTAAGTTINTTTTTTTCTTTAA
TTTATTTNGGTGGTTGTCATCCTGAGTATCCTTATCTTTTTNTATGTCAGTTATTTAGYATTAGTATGGTT
ATNCTTATGTTTNTTTTTAAGATTTATTAATTNGTTTTNTAANTNA??-——————- ATGGTTAGTTTATTT
TTAATTTTTTGTTCTGTAATWGGNGTTAGTTTTTTTTTATCTATTACTCGATTTTTGAATAGTTTAATANT
NTTGGAAAATTTTAATGTTTTAATTTTRATGTTTTGTTTGATTTTTTCTTCTTTTGATAGTCATATGATTT
TTATGGCATTAATGGTTATTTCTACTGTGGAGATAATTGTRGGTTTAGTTGTNTTRACACGNGTTTGNGAR
TGTTCTTCTTCATTAGANTTAATAGRTTTTTAATAGTTTTANTNTGTATATTTNTATCNTTATTATTTAGT
TGTGGKGTTAAATGTATGAGTATRTTTAGTATGAAAGTTTTTAANGGAATGTTTATATTTGATTCTATTAG
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TTTTTATTTAATTATTTTRGTGTTRTTATTAGGTTTATATAGACAGATTATGTTTTATANTATGTTNAGTR
ATGTTGTTCGTGTNTATTTATTTTTTAGATTRGGTTTTACTGTNTTNAGNTTTTGTGTNAATCATTGTGTN
GTTTTTTGATGTGTNTATGAGTTRTCNATGTTRCCTTTACTTTAYTTRATTTTTAGAGANTCTCCTTATTC
TGAGCGATTTTTGGCNGGTTGATATTTTTGTGGTTATCTTTTAAGTACTAGATTNCCATTAATTTTRATTT
TATTATATTTGTCTTTANTTAAAGATTCTTTTTTINTTTAGTGAGTGGARTTNTAATGGTNGTGTTTCTTTA
NTTGTTTATTATTTGTTGTCTTTTATTTTTTTTACTAAGGTGCCGTTNGTTCCTTTTCATACGTGATTGCC
TATAGTACATGCTGAAGCTATAAGTATAGTTTCAATATTTTTAAGNGGTTATATAATGAAGCTTGGATTAT
TAGGNGTTTATCGTTGTGCTAGTTTTATTTTTAGTGGNRGNTTTTTGTGATATTTRTTTTTATGNTGTATT
NTATCTATATTTTTTTTAATTACRTCATGTAGTGARTTAGATGGNAAGCGTTGATTAGCATTTTTAAGTTT
AGCTCATATAGTRGTTCCNTTTTTAGGNTTTTATATTAGWGATTGRTCTAATATAAAATTTTCTTTTTTTT
ATTGTTTAGGTCATGGNTTAAGTGCTGGTATAGTGTTTGGNTTATTGTGNTGTTTTTATGATGTTTCGCAT
ACTCGTAAATGAATTTTATTGAAGTCAAGTATTAAAGGTGTARGTTTAATGAGAATTGTGGTTTTTAGNTT
ATTAAGATTGTGTTCGTTTCCTACTACTATTCANTTTTTTTGTGAGGTNGGGTTAGTTAGACANAGGTTTG
GATTTTTNATNTATTTATTATTTTGATGTTTTTATTTATTTTTTGGTGGTCTTGTGCCGTTNATATTATGT
GGNCATTTRTTAATTCGTAGRGAGTGTTATGAATCTGTTGNTGCTTGTTATTATTCTCATTTTTATTTTTT
GNTTTTTCTTTGTTTGTGATGTTATTTTGGNATATTAGTTTTATAA?GTNN--TRTTTAATGTGGTGTGTG
N-TATGCATTTTACATTTTGGTTGTAAAGGTGATTAGTAATCCGTTAAATTTCTCTTAGCTTAAG?TTTAA
AGCGTCAATTTGAAGCGTTGGAGATAATNTAATTAGAGAGACTGGTAAGTTAANTTAAACTGTGGGGTTCA
TGTCTCCATTATACAC??TTTT----GTGTCTGGTTGARTTTA?--NTATGTTTNRTAATGTTAATGATTT
TAGTTCTTTAATGATTTTNATAAATAAGTTTGTTTTAGGTGATGTTGTTTATTATTATTTTAGTGTTTTAG
GTTGGGTTTTRTTTTTGTTTTTGTGTTATCGTTTNCCTTATTGTTATAGTCCTTTTTTATTTAGTGTNNTT
TTANTTAGTGTNGTNTTTAGNTGTTTTGTINTCTTTTTTTTTAAGTCGTATTTGTGATAAARTRAATTTATT
TTTTAGTTCNTTTATTCCTGTNGGTACTCCTATTTATATATGTCCATTAGTGTGTGTTGCTGAGTTAATAA
GTTATATTATTCGTCCNGTAGTATTGATTTTACGTCCTTTTATNAATATAAGTTTGGGTTGTTTTGGAGCN
GTTGCATTAGGTAAATTAAGNTTAATTAGNNGTTGRTGATGTATAGTGNTATTTTTTTTATTTTTTTATGA
AGTTTTTGTTGCTTTAGTTCATTGATTTATTGTGACTAGAATTTTNGCGTTTTCAGTTGATCATTAATART
GRNTATTGTTCGTTKGGGTTATTTAGATGTNGTTNTTTTTTCTTTAATTTTTTCTNTATTTTTTTGTTTTT
TGTGTTGTGTNGTTGATAGTTTATTAGGRTTTTGAGTTTTTTTAGANTTGTGTGGATTNTCNATTATACCT
TCATTNTTTTTTAATGTTAGRTCTATGTCTTATAAATTTTATAATTCTATTCTTTGTTATGTRATAATGTC
TGGATTRTCTTCTGTATTATTAGTTTCTGGGTTATTANTRRTNRGRTTATATTATTTTGTTTATTTTGGGT
TTGTRGTTAAGTTTGGATTATTTCCTTTTATGTTTTGGGTTTATCGAGTTTTTAGTATTGGTAAATGAGTN
TTTATATATTTATTAAGTGTTGTAATGAAGTTTCCNGTTATATTTTTTTGTTTTTTNTATGAGACNAAWAA
TTTAAAGATTGTATATATTGATTGTTTTTTTACTATTTTTTINTGTTGTTTTTINGTNTGGTTTTTTAGTT
TTAGTTGGGANTATATTTGGTGTCATATTTCNTTGACTTCTGTTGCTACATTAGTTGTGGCNTGTTTTTGT
AGNAGNATTGAAGTGTGNTTTTTTATTTATTGTTATTATTTTATTTGGGCTAGNTTRANNATAGTTTATTT
TGTNGTNGTATCTAGTAGTANAGATTTNAAGRGTTATNTATTTTGGGTGTTTTGTTTTTTNTTATTNGTTA
CTCCTGTNTCTTTTCCTTTATTTTATAAGTTGAGTGTTAGTNTTGGTATTTTATATTCNTCTATTTATTTA
TTGTTNGTATGAAGAATATATAGATTTTCTGAACAGYTNTTTCTTTATAAGTTGGCTAGTGAATATTTTTA

???7--TGTGTGGCTTTAGTTTAATNAAAATRGTGATTTGTCTAGTCATAGATGGTAGTTTAGTAACCAAG
TCRCT?GTT-—————————- TATGATTATTTTTGGGT--TTATTAGTGGTTTAACAGGTTTGTTAGTTAGT
TTATTNATTATAGCTTTTTTTATTTTAGGNGAGCGTAAGATTTTGGGTTATTCTCAGTTTCGTAAGGGTCC
TAAAAAGGTTGGTATTATTGGGTTGCTTCARAGATTTTCTGATTTGTTAAAGTTNATAGTTAAGTTTAAGA
ATTATGGTTTTCAAAGTCGTAGATGAGTTGGTTTATTTGGNGTTATATTNTTNGTTGGTTTAGTTATTTAT
TATTCNTTTGTNTATGGTGGTTATTATAGRTATAGTTTTAATTCNCTTTCNTTRTTATGNTTTTTGGTTAT
NACYAGNTTTTGTAGTTATTCTATATTRTGTACAGGTTGGGGTAGTTATAAAAGTTATTCGTTTTTAAGTT
CAATTCGTTGTGCTTTTGGNTCTATAAGGTTTGAGGCTTGTTTTATGTGTATTRTTATATTTTCTGCATTG
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TGTTATTGTAGNTATAGTTTGGTGGATTTTTTTTTAAGTGGTTGGTTRTCNGTTRTGATTTTTCCTTGTNT
GTTAATTTTNTATATAATATGTATTTTATGTGAAACTAATCGTACTCCNTTTGATTATGGTGAGGCTGAAA
GNGAGTTAGTTAGTGGTTTTAAAGTTGAGTATAGTGGTATATATTTTACATGTTTNTTTGCATGTGAGTAT
ATAATTATATTTATTTTTTCATGNTTAGGNATGATTTTNATGTTTGGTGGTGGGTTTATTGGTAGTATATT
TTTATTNTTTTGTTTGNTTTTTTTTATGTGGGCTCGAGCTACATTACCNCGTGTTCGTTATGATTATTTTG
TNAAWTTTTTTTGNGANGTATGTTTATGTTTNTTNATTTTNAGNTTTTTTGTTATNGTTAATT——--- GTC
TATATAGATTA-TTTTAAATCGTGATGCTGTTAACTTCAGGAAATGGTTNNRTACCATTATAGTCG-TGTN
TG-—-TTNTGNTN-—--?TNTCTAATCTTAGTTTAATTTTAGAATNNAGRTTTTGGGGATCTTTGGTCTCA
A-TTTGAGAGATTTGRNGTTAATAGGGCTGCATTAGCAGGTCACTTTGATATAGTGAATTGTGAATTTG--
ATATTCCGTTAATATTA--—-NGT???T7?-TTTTATCTATGTATTCTAA?NTNNAAGAGGCTGAATTCTTAC
TTCAGTAATGTGAG-TTTCACTATAGGTTAATGATTTTATTINNTTTTTAGTAGTATTTTINTTTTTTGGGTT
NTGTTTTNTTATTTATTTTTTTTGTTCTGGTTTRTTNAAAAAGATTGTGGATGTTGGTTTTGGGTGAGGTA
GNTCTTATGAGTGTGGNTTTTTTTCTAGTGTNTTNAATTTGAATTGTTTTAGTTTTACTTATTTTTTTTTG
TTGATTATGTTTGTNATATTTGATCTTGANATTTCTTTACTTTTRAATATGCCTANNCANGGNTTRTTATT
TTNTAAATTTNGTTATTATTATNTTTTTTTAGTTTTINTTGTTGGTTGGTTTTGTGTTTGAGTTATTTAGTG
GTTATGTNCGTTGATTNTATTANT---TTAGAGGAAATTGTGAAGTTACTGCTAATAATTTCGTGTCAATT
TGGTTTGACTTTCTCTTINT???2T??7————— RATAAGATTAAGTTAGGTTAGACTAAATGTTTTCAAAA
CATTAAGTGACT--TTAT-TTAGGTCATCTTATGT-AAATGAGTGTTAAATNTTTATTAAGTTGAATATTT
ACTTTAGATCATAAGCGGGTTGGTGTRATTTATACTTTATTRGGTTTNTGNTCAGGTTTTGTAGGTTTAAG
NTTTAGTTTATTAATTCGTGTTAATTTTTTAGAGCCTTATTATAATGTGATTTCTTTGGATTGTTATAAAT
TTTTGRTTACNAATCATGGNATAATAATGATTTTCTTTTTTTTAATGCCTATTTTAATAGGTGGTTTTGGT
AAATATTTNATTCCTTTRGTTGGTGGGTTATCTGATTTNAATTTNCCTCGTTTAAATGCTTTAAGTGCGTG
GTTRTTGRTTCCTTCNATAGCTTTTCTTTTAGTTAGTATGTGTTTAGGTGCTGGTATAGGGTGAACTTTTT
ATCCNCCTTTGTCGTCATCATTATTTTCNAGTAGTAATGGTGTRGATTTTTTAATGTTTTCNTTRCATTTN
GCNGGTGCGTCTAGAATTTTTAGTTCTATTAATTTTATNTGTACTTTNTATAGAATTTTTATGACTAATAT
ATTTTCTCGTACTTCTATANTATTRTGGGCTTATTTATTTACGTCTATTTTATTATTAGTTACTCTTCCTG
TNTTAGCAGCTGCTATNACTATGCTTTTATTTGATCGTAAATTTAGTTCTGCRTTTTTTGATCCRTTAGGT
GGTGGTGATCCTGTTTTATTTCAACATATGTTTTGATTTTTTGGTCATCCNGARGTTTATGTTTTAATTCT
TCCTGGTTTTGGTATAATTAGTCATATATGTTTAAGAATAAGTATGTGTCCAGATGCTTTTGGTTTTTATG
GTTTGTTATTTGCTATGTTTTCAATAGTGTGTTTNGGAAGAAGTGTGTGNGGTCATCATATGTTTACNGTT
GGGTTAGATGTTAAGACTGCTGTATTTTTTAGTTCGGTTACTATGATAATAGGAGTACCNACAGGAATAAA
GGTTTTTACTTGNCTTTATATGCTTTTAAATTCTCGTGTNAATAAGAGTGATCCTATATTNTGNTGNATAG
TTTCTTTTATAGTATTGTTTACTTTTGGTGGTGTRACTGGTATTGTNTTGTCTGCTTGTGTATTGGATAAA
GTTTTNCATGATACTTGATTTGTTGTTGCTCATTTTCATTATGTTATGTCGTTAGGGTCTTATATAAGAAT
AATAATTATGTTTATTTGATGGTGGCCTTTRATTACTGGTTTGAGNTTAAATAAGTGTTTACTTCAATGTC
AATGTATAATATCTAAAATTGGATTTAATTTATGTTTTTTTCCTATGCATTATTTTGGGTTNTGTGGATTA
CCNCGTCGTGTTTGTATTTATGAGTGTGCTTATAATTGRATTAAAATTGTGTGTACTGTRGGTTCTTTTAT
TTCTGCTTTTAGTGGGTGTTTTTTTGTTTTTATACTTTGAGAGTCGATNGTTAATCGTAATGAGGTTTTAG
GTTCNTATGGTTCNTCTAGTTGTTATGTGGATTTTTTTATGAGTCCTGTNGCTTCTCATAATGATTATTTT
TGTTATCCGTATARTATAGATTATACTTATGGTGTNTATTATATGCGTTGGGTNGATGATTGTACNTATGT
GTTTGCTCGT??7?--GGTTTTTTAGTTTAATTTAAAATNTAGATTTTGTAAATCTATGATGGTTTNT--AT
CATTAACCTTT?-TGATTGATAAATTG-?TNATGNTTTAGTG----TTTTAGGTTTATTTGCCTTTTGCAT
CATGCTTARTGGATTTTTATAAAGTATTTTTNNAATCGAATAGTTTAGATCTTAATANCAGTTGTTTAGAA
TAT?ATTTTGTATTANGTAAATTCAG-ATAAATTGGTTTTATGATGTGATAAGTT-ATTCGTTAAATTTTA
TTTCTATTTAGTTGCTTAANTATTTTNTRTTATATGATANGTTAAAAGATTTRTCATAATATTATACTATA
NATNNAATTTTATTAAGATTAGGTTAGAGGTACCTATTTTTTGTAANTTTGTTATAAAAGATNNT ?NGTTN
GNTTT--ATAGTTANNTTGNGTGGCAACTTNN-GTTAATATRTAGTGTGTTATTTATCATTAAATAAGTAA
TTAAATTATACTAATTATTTCTCAGGGTCTTTCCGTCTGTTTATTAAAAACATTTCTAGTTTGAATNTTAA
CTAGTAGTGCCTGCCCAGTGTTGNTTTNNAA--AATAAATGGCCGCAGTATMTTGACTGTGCAAAGGTAGC
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ATAATTAATTGCCTTTTAATTGGGGGCTTGTTTGAATGGTTTGACGTGAGAGATGTGAATATTTGGTATTA
NTATGAATTTGATGTTGGGAATACAGAATTTCCANA-GTTTAATAAGACGGAAAGACCCTGGGATCTTT-T
TTTTTTGCTTGGGGCAAGTTTTAGTGTTTNACTATAATTNNGACCCTAGNTAT-—-AGTTTAGTGGGTTAA
GTTACCCCAGGGATAACAGTGTGATAATTAATAAGAGATCTTATCGAATTAATTGTTTGCCACCTCGATGT
TGACTTAGATTAAAACTTRGGTGCAGTAGTCTARGTTTTTGGTCTGTTCGACCTTATTTATCTTCATGAGT
TGAGTTAAGACCGGCGTGAGCCAGGTCGGTTCTTATCTATTGTAGAAGTTTATCAGTACGAAAGGATAGTA
AGCTTTTTTINTTGAACATGAATTGTGTTAGCTTTGCAAAAGCTAAAGAGAATTA?TTTARTAATTCCATGT
TTT?TATTAATTGTTTAACTGTGGCAAAAGAAAGTTTGTGTTTCATTAACTGCATA-AAATTAGTTTATTT
TTNG?TATGATTTAGTGTTATTTATTTTATTTAGCAGTTAATTTTTTGTTAAAANTA-AAGTTTTANAAGG
GTGANACATTA--RAAGGGGATAGGACACAGTGCCAGCATCTGCGGTTAATCTGTTTTCTTTGCTTTTNTR
TAGATTGTGTGTGTTTATTTATMTTTAAAAATAGGTTAAATTTTTTTATTTAAGTTTTAAATATTCATTTT
TATATAAAATTTATGTTTGTGACAGGGATTAGATACCCCATTAACGTATTTTGTANTATTATCTTAGTTTA
G-TAACTAAAATGGTTTGGCAGTGAGTGATTCTTTTTAGGGGAAGGTGTGGTGTAAAGGATGTTCCGCCTA
TTAATTTACTTTTATTATGTTGGTGTATATCTGGTTTAATATTATTGTTGAATNATATAAGTTTGTGTAGT
TT-NTAGTTAAGCCAAGTCTATGTGCTGCTTATAAAAGTATTCATGCGTTACTTTNATAAAGTTTTAGTTG
TAANTRCTAT--TATATTCAGGACTTAAAAGTAATGTTAAATTAGTTTGTTAATGTGAARTAAGTTTAGCT
CATGTACACACCGCCCGTCACCCTCGATTTTTATTGAGGTAAGTCGTAACAAGGTAACTTTAAATGAATTT
GAAGTTGGTTACTRNGNNNA-NTTNCTYAGTTTTAATGAAACTATCTTTATTNTATTATGATATAGTTTGT
TATATAATTGCTGTGTGTGTATTTATTTTGTGTTTTGTRTATATAATGTTATGTTGGAAANTNTTT?TAGG
TGGTGGTAGAGTTAAATTTGGTGGTGANAAACAGGTTGTTGAATTAACTTGNACTATAGTTCCTACTATGG
TTGTTTTGGTTTTATGTGCATTGAAAGTGAAATTTATAACTAGTGATTTAGATTGTTATTCTAGTGAGACT
ATTAAGATTATAGGACATCAATGNTATTGAACTTATGAGTATYCARAAGGTAGNTATGATTCTTTTNTRAC
TAAGGATTGTTTTTTNGTRGATAAGCCTATGCGTATGATTTATGGTACTCCTTATCATTTAGTNGTGACAT
CAGCTGATGTNATTCATTCGTTTTCTGTNCCATCTTTRAATTTAAAGATGGATGCTATACCKGGTCGGTTA
AATCATTTATTTTTTTGTCCTTCTCAACATGGAGCTTTTATNGGATATTGTGCTGANTTGTGTGGTGTTAA

ATTAGAGATTTTAGTTACTTYTTATTTTTTTGTGTTGTTNTTATTTTCGTTAAGGAGTCATTGTGTWTATT
ATTGTGTNTTINTTAGTTNTTAAAGCTTTGATTTCNTGTTTAATTTGTTATTTRGTNTATGGTTTTAGGTGA
TATTCATTNGTTTTTTGTTTGGTATATGTNGGTGGAGTTTATATATTNTTTATTTTTGTGTCNGTTTTTAA
ACCTAATGATAGGTTTGCTATTTATCATAAGGTTGGTGAGTCTAATGTTGTTTTATGTTTTGTANTAGGNT
TATTGTGTATGTGTTTATTTTATNGNTTGGTAAAAATTGAGTTTAGTANATTTTTGTGTACNGTNGTNGAA
GGTAGATTTTATGTINTGTTINTGTTTAACTTTGATATTTGGNTTTGTNGTTTTNAGNTTGTTGGTTAGTTG
RAAGATGAAATTTTATCGTTAGATTTTATNT-7?7?7?TNNNTCTAGTTTARC--ATATTTTAATGTGRNGGGT

TGTAAACTCTTTRAAGGCTATGGCCAACTAGGAGAANATACCG—————--- PTAAAAAAAAATTTTTTTTTIT
ACGGTATNTTCTCCTANTGTATTGAAAAATTTTAAAAT---GTAGAGATGCCAGAAAANTT?NATGGGGTT
AATTTAGGNTTAATTTATGACTTTTANAGTCTCTCTAT-———-——————- TAATTTTTCAATACANTAGGA

GAANATACCGTATTTTANANTTATNNGACTTATG??77ATATTTGATTTGAAATCAAGTTAA-TTGCTTTT
GNTAGCAACATARGTTNNTT-7?7727?TATATANT--ANAGTAGCTATGTCAGAATTTATATGAGTTAGTTTT
AAGCATTAATTATGGAAGTTTTCCTGGCTACTTTATNT???TATN?NTGTTNNTTAGCATATA-TTTGACT
TATGTTACGGCCATAAGATAGGTATTNTATATACCGTATGTTTTATGTTTANTTCTTTGTTTNGTNTTAGT
TTATGTATGTGTTTGTTNATATGATTTTGTTTTTTGTGNTGTNTTAGTTTNTGTGTTAAGTTTAAATTTTT
NTCATTAGGTGGNTATAAATGGGTGATAAAATTTGATTTTGATTTTGTTACTTTTGGTGTGGTTTTAATGT
TRNTTATATGTTTTTNTTATGTATATTTTTATACACATCATTATTTTRTAGGTGATTTNGCTGGTTTTGAG
TTGAATAAGATTATARTTTTATTTGTNGTTGTTATGGGTRTTTTAGTATCTACTGGTGATTTTTTGACNAC
TTTNATATTTTGAGAATATTTAGGTGTNGTNAGATTTTTTTTRATTTTGTTTTATGATAAATTTTTGAGAT
TACGATCRTCNGTAGTTACTTTAGTTTCTTCTCGATTTGGTGATGTATGTTTGTTTTTTTTAATAGGNTTA
AGTTGTTTTATNTATAGTAAATATTTRTTTTGTATNGTTATATTTTTTTTGATAATATTTACTAAGAGTGC
TAGATTTCCTTTTATAAGTTGGTTATTGGANGCTATGCGTGCTCCNACNCCTGTTAGTTCATTAGTTCATT
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CGTCTACTTTAGTTGCNGCTGGTATTTGGTTTGCTATGCGTTATGATTATNTNCAATTTTTTARARAATCA
ATTTNTTTTAGNGTATTGTTNATTTTRACTATTTTAATTACGGCTTTAAGAAGNTTATTTTTTNTAGATTT
NAAGAAGATTATAGCTTTATCTACATGTAAAAATATTGCRTGNTGTRTTTTATANTTGATATATGGTGATT
TAGNTCTTTCATTATTTCAATTATTAAGACATGGNGTATCTAAGTGTATNTTATTTATGTTGATAGGTGAT
GTAATGAGNGGTAGTGGTGGTTCTCANGGTAGAAATTGTGTTTATAGTACTAATTTATATGGTAAATGAAA
ATTATTTAGNTCAATTTTAGTARTTCTTGGTTTAGCAGGAGTWCCTTTTATAGGTGTNTTTTTTACTAAGC
ATTTTTTATTNTCAATGTTTGTTAAANTTGTTAANNTRGTTGTTTGTTTGATAATTTGTTTATGTATGTTT
ATGTCTTATTTATATTCTTTTCGTTTATGTGCTATTTTATTTAAARTTAAGAGTAGAATTAGATTNGGNGT
ITTINTTTTTTTTTAAATCTGGTTTGATGGTRTTTTTTTGGTTATTTATNAAATTTTATGTTTTTTTTATRT
TAGATGAAAYTGTATATCTTAAYAGATTTATNAGTTTTANTTTAATTGTNTTTCAATTRTTGTCAATT?TA
ATNAYATA-TATGTTTTATGATAGTAATTTGATAAGTAAATGAAGTAGTAGTTTRTTTGGNTGTGATAANT
TAGTNGAATTNTGTTATNNNAAGTTTTATCNTATNTTGAAAAGTGTNAGRTTATTTTTTTTTCGTTGAGAT
AAGNTTATGATTGAATTATTTACTGGTATAGGGTTATANAAYGTAGGNYATTTATTTATTTGAGTTTTATT
AAAATTGTTNATGNTT?GTGGTTTTGC?TTAATTATNTATTTNTTAATTTGGTAAA-AAAAAAATAATRTT







G

PROBABILITY LAWS OF JUMPS AND
INITIAL CONDITIONS FOR
TRANSPOSABLE ELEMENTS

We have systematically obtained all the probability laws of jumps p(x,y) and all initial
conditions for the four chromosomes and the four types of transposable elements. A few

of them have already been given in Chapter 9. A few other cases, sufficiently specific,
are provided in this appendix.

80 0

(a) Initial condition, polynomial version (b) Initial condition, splines version

(c) Histograms of DNA jumps (d) Splines of DNA jumps

Figure G.1: Chromosome 3R, DNA elements
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Our research has focused on the study of complex dynamics and on their use in both information se-
curity and bioinformatics. Our first work has been on chaotic discrete dynamical systems, and links
have been established between these dynamics on the one hand, and either random or complex
behaviors. Applications on information security are on the pseudorandom numbers generation, hash
functions, information hiding, and on security aspects on wireless sensor networks. On the bioinfor-
matics level, we have applied our studies of complex systems to the evolution of genomes and to
protein folding.

Nous nous sommes intéressés a I'étude des dynamiques complexes et a leur utilisation en sécurité
informatique et en bio-informatique. Nos premiers travaux ont porté sur les systéemes dynamiques
discrets chaotiques, et des liens ont été établis entre ces dynamiques d’'une part, et entre des com-
portements aléatoires ou complexes au sens de la théorie du méme nom. Les applications en sécu-
rité informatique concernent la génération de nombres pseudo-aléatoires, les fonctions de hachage,
I'information dissimulée, et divers aspects de sécurité des réseaux de capteurs sans fil. Niveau bio-
informatique, nous avons appliqué notre étude des systemes complexes a I'’évolution des génomes
et au repliement des protéines.
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