G. Ahmad and . Bernot, Jean-Paul Comet, Didier Lime, and Olivier Roux. Hybrid modelling and dynamical analysis of gene regulatory networks with delays, Bibliography ComplexUs, vol.3, pp.231-251, 2006.

J. Ahmad, O. Roux, G. Bernot, J. Comet, and A. Richard, Analysing formal models of genetic regulatory networks with delays, International Journal of Bioinformatics Research and Applications, vol.4, issue.3, pp.240-262, 2008.
DOI : 10.1504/IJBRA.2008.019573

URL : https://hal.archives-ouvertes.fr/hal-00415808

E. Ozgur, M. L. Akman, L. Guerriero, C. Loewe, and . Troein, Complementary approaches to understanding the plant circadian clock, Proceedings Third Workshop From Biology To Concurrency and back, pp.1-19, 2010.

A. Alfonsi, E. Cancès, G. Turinici, B. D. Ventura, and W. Huisinga, Adaptive simulation of hybrid stochastic and deterministic models for biochemical systems, ESAIM: Proceedings, vol.14, pp.1-13, 2005.
DOI : 10.1051/proc:2005001

URL : https://hal.archives-ouvertes.fr/hal-00536559

H. Pappas, J. Rubin, and . Schug, Hybrid modeling and simulation of biomolecular networks, Proceedings of the 4th International Workshop on Bibliography Hybrid Systems: Computation and Control, HSCC'01, pp.19-32, 2001.

T. Janan, M. A. Eppig, D. P. Harris, L. Hill, A. Issel-tarver et al., Gene ontology: tool for the unification of biology, Nature Genetics, vol.25, pp.25-29, 2000.

L. Bardwell, Mechanisms of MAPK signalling specificity, Biochemical Society Transactions, vol.34, issue.5, p.837, 2006.
DOI : 10.1042/BST0340837

M. Bentele and R. Eils, General Stochastic Hybrid Method for the Simulation of Chemical Reaction Processes in Cells, CMSB'05: Proceedings of the third international conference on Computational Methods in Systems Biology, pp.248-251, 2005.
DOI : 10.1038/35004029

N. Berestovsky, W. Zhou, D. Nagrath, and L. Nakhleh, Modeling Integrated Cellular Machinery Using Hybrid Petri-Boolean Networks, PLoS Computational Biology, vol.272, issue.Pt 3, p.1003306, 2013.
DOI : 10.1371/journal.pcbi.1003306.g009

V. Bertacco, P. Minato, L. Verplaetse, G. D. Benini, and . Micheli, Decision diagrams and pass transistor logic synthesis, Int'l Workshop on Logic Synth, 1997.

A. Bockmayr and A. Courtois, Using Hybrid Concurrent Constraint Programming to Model Dynamic Biological Systems, Proceedings of ICLP'02, Bibliography International Conference on Logic Programming, pp.85-99, 2002.
DOI : 10.1007/3-540-45619-8_7

URL : https://hal.archives-ouvertes.fr/inria-00107635

A. Jennifer, . Broderick, D. Phillip, and . Zamore, Microrna therapeutics, Gene therapy, vol.18, issue.12, pp.1104-1110, 2011.

L. Calzone, F. Fages, and S. Soliman, BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge, Bioinformatics, vol.22, issue.14, pp.1805-1807, 2006.
DOI : 10.1093/bioinformatics/btl172

URL : https://hal.archives-ouvertes.fr/hal-01431364

N. Chabrier and F. Fages, Symbolic Model Checking of Biochemical Networks, CMSB'03: Proceedings of the first workshop on Computational Methods in Systems Biology, pp.149-162, 2003.
DOI : 10.1007/3-540-36481-1_13

A. Chang, I. Schomburg, S. Placzek, L. Jeske, M. Ulbrich et al., Brenda in 2015: exciting developments in its 25th year of existence. Nucleic acids research, p.1068, 2014.

R. Chang, Physical chemistry for the biosciences, 2005.

Y. Chen, N. Dalchau, N. Srinivas, A. Phillips, L. Cardelli et al., Programmable chemical controllers made from DNA, Nature Nanotechnology, vol.2, issue.10, pp.755-762, 2013.
DOI : 10.1038/nnano.2013.189

H. Chiang, J. Jiang, and F. Fagesy, Building reconfigurable circuitry in a biochemical world, 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, pp.560-563, 2014.
DOI : 10.1109/BioCAS.2014.6981787

URL : https://hal.archives-ouvertes.fr/hal-01103266

A. Cornish-bowden, ), Biochemical Journal, vol.137, issue.1, p.143, 1974.
DOI : 10.1042/bj1370143

R. Daniel, R. Jacob, R. Rubens, T. K. Sarpeshkar, and . Lu, Synthetic analog computation in living cells, Nature, vol.27, issue.7451, pp.619-623, 2013.
DOI : 10.1038/nature12148

D. Domitilla, A. J. Vecchio, E. D. Ninfa, and . Sontag, Modular cell biology: retroactivity and insulation. Molecular systems biology, p.161, 2008.

F. Fages and S. Soliman, Abstract interpretation and types for systems biology, Theoretical Computer Science, vol.403, issue.1, pp.52-70, 2008.
DOI : 10.1016/j.tcs.2008.04.024

URL : https://hal.archives-ouvertes.fr/hal-01431355

F. Fages and S. Soliman, Formal Cell Biology in Biocham, 8th Int. School on Formal Methods for the Design of Computer, Communication and Software Systems: Computational Systems Biology SFM'08, pp.54-80, 2008.
DOI : 10.1007/978-3-540-68894-5_3

M. Frahm, D. Neela, K. Goswami, E. Owzar, A. Hecker et al., Discriminating between latent and active tuberculosis with multiple biomarker responses, Tuberculosis, vol.91, issue.3, pp.91250-256, 2011.
DOI : 10.1016/j.tube.2011.02.006

V. Galpin, J. Hillston, and L. Bortolussi, HYPE Applied to the Modelling of Hybrid Biological Systems, Proceedings of the 24th Conference on the Mathematical Foundations of Programming Semantics, pp.33-51, 2008.
DOI : 10.1016/j.entcs.2008.10.004

R. Ghosh and C. Tomlin, Lateral Inhibition through Delta-Notch Signaling: A Piecewise Affine Hybrid Model, Proceedings of the 4th International Workshop on Hybrid Systems: Computation and Control, HSCC'01, pp.232-246, 2001.
DOI : 10.1007/3-540-45351-2_21

D. Gilbert, M. Heiner, and S. Lehrack, A Unifying Framework for Modelling and Analysing Biochemical Pathways Using Petri Nets, CMSB'07: Proceedings of the fifth international conference on Computational Methods in Systems Biology, 2007.
DOI : 10.1007/978-3-540-75140-3_14

T. Daniel and . Gillespie, General method for numerically simulating stochastic time evolution of coupled chemical-reactions, Journal of Computational Physics, vol.22, pp.403-434, 1976.

T. Daniel and . Gillespie, Exact stochastic simulation of coupled chemical reactions, Journal of Physical Chemistry, vol.81, issue.25, pp.2340-2361, 1977.

T. Daniel and . Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems, Journal of Chemical Physics, vol.115, issue.4, pp.1716-1733, 2001.

T. Daniel and . Gillespie, Deterministic limit of stochastic chemical kinetics, The Journal of Physical Chemistry B, vol.113, issue.6, pp.1640-1644, 2009.

A. Golightly and D. J. Wilkinson, Bayesian parameter inference for stochastic biochemical network models using particle markov chain monte carlo. Interface Focus, 2011.

E. Moritz-hahn, A. Hartmanns, H. Hermanns, and J. Katoen, A compositional modelling and analysis framework for stochastic hybrid systems, Formal Methods in System Design, vol.2, issue.2, pp.191-232, 2013.
DOI : 10.1007/s10703-012-0167-z

S. Haykin and N. Network, A comprehensive foundation, Neural Networks, vol.2, 2004.

A. Hellander and P. Lotstedt, Hybrid method for the chemical master equation, Journal of Computational Physics, vol.227, issue.1, pp.100-122, 2007.
DOI : 10.1016/j.jcp.2007.07.020

J. Hemphill and A. Deiters, DNA Computation in Mammalian Cells: MicroRNA Logic Operations, Journal of the American Chemical Society, vol.135, issue.28, pp.10512-10518, 2013.
DOI : 10.1021/ja404350s

A. Thomas and . Henzinger, The theory of hybrid automata An extended version appeared in Verification of Digital and Hybrid Systems, Proceedings of the 11th Annual Symposium on Logic in Computer Science (LICS), pp.278-292, 1996.

T. A. Henzinger, P. Ho, and H. Wong-toi, HYTECH: A model checker for hybrid systems, CAV'97: Proceedings of the 9th International Conference on Computer Aided Verification, pp.460-463, 1997.

T. A. Henzinger, L. Mikeev, M. Mateescu, and V. Wolf, Hybrid numerical solution of the chemical master equation, Proceedings of the 8th International Conference on Computational Methods in Systems Biology, CMSB '10, pp.55-65, 2010.
DOI : 10.1145/1839764.1839772

L. Alan, . Hodgkin, F. Andrew, and . Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of physiology, vol.117, issue.4, pp.500-544, 1952.

J. John and . Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proceedings of the national academy of sciences, pp.2554-2558, 1982.

K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks, vol.4, issue.2, pp.251-257, 1991.
DOI : 10.1016/0893-6080(91)90009-T

. De-an, . Huang, R. Jie-hong, R. Jiang, C. Huang et al., Compiling program control flows into biochemical reactions, Proceedings of the International Conference on Computer-Aided Design, pp.361-368, 2012.

M. Hucka, The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics, vol.19, issue.4, pp.524-531, 2003.
DOI : 10.1093/bioinformatics/btg015

T. Ideker, T. Galitski, and L. Hood, : Systems Biology, Annual Review of Genomics and Human Genetics, vol.2, issue.1, pp.343-372, 2001.
DOI : 10.1146/annurev.genom.2.1.343

H. Jiang, D. Marc, K. Riedel, and . Parhi, Digital logic with molecular reactions, 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp.721-727, 2013.
DOI : 10.1109/ICCAD.2013.6691194

H. Jiang, D. Marc, . Riedel, K. Keshab, and . Parhi, Digital Signal Processing With Molecular Reactions, IEEE Design & Test of Computers, vol.29, issue.3, pp.21-31, 2012.
DOI : 10.1109/MDT.2012.2192144

M. Kanehisa and S. Goto, KEGG: Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Research, vol.28, issue.1, pp.27-30, 2000.
DOI : 10.1093/nar/28.1.27

J. R. Karr, J. C. Sanghvi, D. N. Macklin, M. V. Gutschow, J. M. Jacobs et al., A Whole-Cell Computational Model Predicts Phenotype from Genotype, Cell, vol.150, issue.2, p.389, 2012.
DOI : 10.1016/j.cell.2012.05.044

R. Thomas, R. M. Kiehl, M. K. Mattheyses, and . Simmons, Hybrid simulation of cellular behavior, Bioinformatics, vol.20, issue.3, pp.316-322, 2004.

M. Kwiatkowska, G. Norman, and D. Parker, Using probabilistic model checking in systems biology, ACM SIGMETRICS Performance Evaluation Review, vol.35, issue.4, pp.14-21, 2008.
DOI : 10.1145/1364644.1364651

R. Matthew, A. Lakin, D. Phillips, and . Stefanovic, Modular verification of dna strand displacement networks via serializability analysis, DNA Computing and Molecular Programming, pp.133-146, 2013.

R. Matthew, S. Lakin, L. Youssef, A. Cardelli, and . Phillips, Abstractions for dna circuit design, Journal of The Royal Society Interface, vol.9, issue.68, pp.470-486, 2012.

R. Matthew, S. Lakin, F. Youssef, S. Polo, A. Emmott et al., Visual dsd: a design and analysis tool for dna strand displacement systems, Bioinformatics, issue.22, pp.273211-3213, 2011.

O. Maler and G. Batt, Approximating Continuous Systems by Timed Automata
DOI : 10.1007/978-3-540-68413-8_6

M. Wr-wayne-martin, M. Wieler, and . Gee, Midbrain iron content in early Parkinson disease: A potential biomarker of disease status, Neurology, vol.70, issue.Issue 16, Part 2, pp.1411-1417, 2008.
DOI : 10.1212/01.wnl.0000286384.31050.b5

H. Matsuno, A. Doi, M. Nagasaki, and S. Miyano, HYBRID PETRI NET REPRESENTATION OF GENE REGULATORY NETWORK, Biocomputing 2000, pp.338-349, 2000.
DOI : 10.1142/9789814447331_0032

K. Oishi and E. Klavins, Biomolecular implementation of linear I/O systems, IET Systems Biology, vol.5, issue.4, pp.252-260, 2011.
DOI : 10.1049/iet-syb.2010.0056

J. Pahle, Biochemical simulations: stochastic, approximate stochastic and hybrid approaches, Briefings in Bioinformatics, vol.10, issue.1, pp.53-64, 2009.
DOI : 10.1093/bib/bbn050

J. Puchaka and A. M. Kierzek, Bridging the Gap between Stochastic and Deterministic Regimes in the Kinetic Simulations of the Biochemical Reaction Networks, Biophysical Journal, vol.86, issue.3, pp.1357-1372, 2004.
DOI : 10.1016/S0006-3495(04)74207-1

L. Qian and E. Winfree, Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades, Science, vol.332, issue.6034, pp.1196-1201, 2011.
DOI : 10.1126/science.1200520

. Wiegand, Uptake of homologous single-stranded fragments by superhelical DNA, Journal of Molecular Biology, vol.116, issue.4
DOI : 10.1016/0022-2836(77)90272-8

R. Rojas, Neural networks: a systematic introduction, 2013.
DOI : 10.1007/978-3-642-61068-4

F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain., Psychological Review, vol.65, issue.6, p.386, 1958.
DOI : 10.1037/h0042519

H. Salis and Y. N. Kaznessis, Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions, The Journal of Chemical Physics, vol.122, issue.5, p.54103, 2005.
DOI : 10.1063/1.1835951

H. Salis, V. Sotiropoulos, and Y. N. Kaznessis, Multiscale hy3s: Hybrid stochastic simulation for supercomputers, BMC Bioinformatics, vol.7, issue.1, p.93, 2006.
DOI : 10.1186/1471-2105-7-93

I. Schomburg, O. Hofmann, C. Baensch, A. Chang, and D. Schomburg, Enzyme data and metabolic information: BRENDA, a resource for research in biology, biochemistry, and medicine, Gene Function & Disease, vol.1, issue.3-4, pp.3-4109, 2000.
DOI : 10.1002/1438-826X(200010)1:3/4<109::AID-GNFD109>3.0.CO;2-O

S. Shai, R. Shen-orr, S. Milo, U. Mangan, and . Alon, Network motifs in the transcriptional regulation network of escherichia coli, Nature genetics, vol.31, issue.1, pp.64-68, 2002.

. Tyson, A hybrid model of mammalian cell cycle regulation, PLOS Computational Biology, vol.7, issue.2, p.1001077, 2011.

D. Soloveichik, G. Seelig, and E. Winfree, Dna as a universal substrate for chemical kinetics, Proceedings of the National Academy of Sciences, pp.5393-5398, 2010.

R. Thomas, Boolean formalisation of genetic control circuits, Journal of Theoretical Biology, vol.42, pp.565-583, 1973.

S. Thorpe, A. Delorme, and R. Van-rullen, Spike-based strategies for rapid processing, Neural Networks, vol.14, issue.6-7, pp.715-725, 2001.
DOI : 10.1016/S0893-6080(01)00083-1

H. Wagner, M. Mller, and K. Prank, COAST: Controllable approximative stochastic reaction algorithm, The Journal of Chemical Physics, vol.125, issue.17, p.174104, 2006.
DOI : 10.1063/1.2361284

A. Wieckowska, N. Nizar, . Zein, M. Lisa, R. Yerian et al., In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease, Hepatology, vol.42, issue.1
DOI : 10.1002/hep.21223

K. Yano, Y. Sasaki, K. Rikino, and K. Seki, Top-down passtransistor logic design. Solid-State Circuits, IEEE Journal, issue.6, pp.31792-803, 1996.

C. Yung-chi, H. William, and . Prusoff, Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction, Biochemical Pharmacology, vol.22, issue.23, pp.3099-3108, 1973.
DOI : 10.1016/0006-2952(73)90196-2

D. Yu, Z. , and G. Seelig, Dynamic dna nanotechnology using stranddisplacement reactions, Nature chemistry, vol.3, issue.2, pp.103-113, 2011.

D. Yu, Z. , and E. Winfree, Control of dna strand displacement kinetics using toehold exchange, Journal of the American Chemical Society, vol.131, issue.47, pp.17303-17314, 2009.

G. Peter and Z. , Neural networks for classification: a survey. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol.30, issue.4, pp.451-462, 2000.