J. L. Anderson, An adaptive covariance inflation error correction algorithm for ensemble filters, Tellus A, vol.56, issue.2, pp.210-224, 2007.
DOI : 10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2

J. L. Anderson and S. L. Anderson, A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts, Monthly Weather Review, vol.127, issue.12, pp.2741-2758, 1999.
DOI : 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2

J. Arnspang, Optic Acceleration, [1988 Proceedings] Second International Conference on Computer Vision, pp.364-373, 1988.
DOI : 10.1109/CCV.1988.590013

C. Avenel, E. Mémin, and P. Pérez, Tracking Closed Curves with Non-linear Stochastic Filters, Conference on Space-Scale and Variational Methods, 2009.
DOI : 10.1007/3-540-48236-9_13

URL : https://hal.archives-ouvertes.fr/tel-00763157

S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black et al., A Database and Evaluation Methodology for Optical Flow, International Journal of Computer Vision, vol.27, issue.3, pp.1-31, 2011.
DOI : 10.1007/s11263-010-0390-2

D. Béréziat, Contributions aux méthodes variationnelles pour le calcul du flot optique : prise en compte des informations spatiales et temporelles. Habilitation à diriger des recherches, 2010.

D. Béréziat and I. Herlin, Solving ill-posed Image Processing problems using Data Assimilation, Numerical Algorithms, vol.14, issue.7, pp.219-252, 2011.
DOI : 10.1007/s11075-010-9383-z

D. Béréziat and I. Herlin, Non-linear observation equation for motion estimation, 2012 19th IEEE International Conference on Image Processing, pp.1521-1524, 2012.
DOI : 10.1109/ICIP.2012.6467161

D. Béréziat and I. Herlin, Image-based modelling of ocean surface circulation from satellite acquisitions, International Conference on Computer Vision Theory and Applications (VISAPP), 2014.

D. Béréziat, I. Herlin, and L. Younes, A generalized optical flow constraint and its physical interpretation, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), pp.2487-2492, 2000.
DOI : 10.1109/CVPR.2000.854890

M. Bertalmío, G. Sapiro, and G. Randall, Morphing active contours, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.7, pp.733-737, 2000.
DOI : 10.1109/34.865191

S. Beyou, A. Cuzol, S. S. Gorthi, and E. Mémin, Weighted ensemble transform Kalman filter for image assimilation, Tellus A, vol.140, issue.0, 2012.
DOI : 10.1175/2009MWR2835.1

URL : https://hal.archives-ouvertes.fr/hal-00793804

M. J. Black and P. Anandan, The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields, Computer Vision and Image Understanding, vol.63, issue.1, pp.75-104, 1996.
DOI : 10.1006/cviu.1996.0006

T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, High Accuracy Optical Flow Estimation Based on a Theory for Warping, European Conference on Computer Vision (ECCV), pp.25-36, 2004.
DOI : 10.1007/978-3-540-24673-2_3

D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, A Naturalistic Open Source Movie for Optical Flow Evaluation, European Conference on Computer Vision (ECCV), Part IV, pp.611-625, 2012.
DOI : 10.1007/978-3-642-33783-3_44

R. H. Byrd, P. Lu, and J. Nocedal, A Limited Memory Algorithm for Bound Constrained Optimization, SIAM Journal on Scientific Computing, vol.16, issue.5, pp.1190-1208, 1995.
DOI : 10.1137/0916069

J. Canny, A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell, vol.8, issue.6, pp.679-698, 1986.

A. J. Chorin, Numerical study of slightly viscous flow, Journal of Fluid Mechanics, vol.23, issue.04, pp.785-796, 1973.
DOI : 10.1017/S0022112073002016

T. Corpetti, E. Mémin, and P. Pérez, Dense estimation of fluid flows, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.3, pp.365-380, 2002.
DOI : 10.1109/34.990137

URL : https://hal.archives-ouvertes.fr/hal-00329724

G. Cottet and P. Koumoutsakos, Vortex methods : Theory and practice, 2000.
DOI : 10.1017/CBO9780511526442

A. Cuzol, P. Hellier, and E. Memin, A Low Dimensional Fluid Motion Estimator, International Journal of Computer Vision, vol.21, issue.3, pp.329-349, 2007.
DOI : 10.1007/s11263-007-0037-0

URL : https://hal.archives-ouvertes.fr/inserm-00140892

J. D. Adamo, N. Papadakis, E. Mémin, and G. Artana, Variational assimilation of POD loworder dynamical systems, Journal of Turbulence, vol.8, issue.9, pp.1-22, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00596160

A. E. Deane, I. G. Kevrekidis, G. E. Karniadakis, and S. A. Orszag, Low???dimensional models for complex geometry flows: Application to grooved channels and circular cylinders, Physics of Fluids A: Fluid Dynamics, vol.3, issue.10, pp.2337-2354, 1991.
DOI : 10.1063/1.857881

P. Dérian, P. Héas, C. Herzet, and E. Mémin, Wavelets to reconstruct turbulence multifractals from experimental image sequences, 7th Int. Symp. on Turbulence and Shear Flow Phenomena, 2011.

P. Dérian, P. Héas, C. Herzet, and E. Mémin, Wavelets and optical flow motion estimation, Numerical Mathematics : Theory, Methods and Applications, 2012.

R. Deriche, Using Canny's criteria to derive a recursively implemented optimal edge detector, International Journal of Computer Vision, vol.1, issue.2, pp.167-187, 1987.
DOI : 10.1007/BF00123164

K. Drifi, Motion estimation by data assimilation in dynamic reduced order models, 2013.

K. Drifi and I. Herlin, Assimilation d'images dans un modèle réduit pour l'estimation du mouvement, Groupe d'Etudes du Traitement du Signal et des Images (GRETSI), 2011.

K. Drifi and I. Herlin, Coupling reduced models for optimal motion estimation, International Conference on Pattern Recognition (ICPR), pp.2651-2654, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00803622

G. Evensen, The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynamics, vol.53, issue.4, pp.343-367, 2003.
DOI : 10.1007/s10236-003-0036-9

T. M. Hamill, J. S. Whitaker, and C. Snyder, Distance-Dependent Filtering of Background Error Covariance Estimates in an Ensemble Kalman Filter, Monthly Weather Review, vol.129, issue.11, pp.2776-2790, 2001.
DOI : 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2

L. Hascoët and V. Pascual, Tapenade 2.1 user's guide, 2004.

L. Hascoët and V. Pascual, The Tapenade automatic differentiation tool, ACM Transactions on Mathematical Software, vol.39, issue.3, p.2013
DOI : 10.1145/2450153.2450158

I. Herlin, D. Béréziat, and K. Drifi, Learning reduced models for motion estimation on ocean satellite images, Hydrodynamic modeling of the Black Sea Dynamics, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00646272

I. Herlin, D. Béréziat, and N. Mercier, Recovering Missing Data on Satellite Images, Scandinavian Conference on Image Analysis (SCIA), pp.697-707, 2011.
DOI : 10.1137/1.9780898717921

URL : https://hal.archives-ouvertes.fr/inria-00612328

I. Herlin, D. Béréziat, N. Mercier, and S. Zhuk, Divergence-Free Motion Estimation, European Conference on Computer Vision (ECCV), pp.15-27, 2012.
DOI : 10.1007/978-3-642-33765-9_2

URL : https://hal.archives-ouvertes.fr/hal-00742021

I. Herlin and K. Drifi, Learning reduced models for motion estimation on long temporal image sequences, 2012 IEEE International Geoscience and Remote Sensing Symposium, 2012.
DOI : 10.1109/IGARSS.2012.6351591

URL : https://hal.archives-ouvertes.fr/hal-00730515

I. Herlin and E. Huot, Monitoring surface currents from uncertain image observations, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00739091

C. Homescu, L. R. Petzold, and R. Serban, Error estimation for reduced-order models of dynamical systems, SIAM Journal on Numerical Analysis, vol.43, issue.41, pp.693-1714, 2005.

B. K. Horn and B. G. Schunk, Determining optical flow, Artificial Intelligence, vol.17, issue.1-3, pp.185-203, 1981.
DOI : 10.1016/0004-3702(81)90024-2

P. L. Houtekamer and H. L. Mitchell, Data Assimilation Using an Ensemble Kalman Filter Technique, Monthly Weather Review, vol.126, issue.3, pp.796-811, 1998.
DOI : 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

X. Hu and N. Ahuja, Estimating motion of constant acceleration from image sequences, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition, pp.655-659, 1993.
DOI : 10.1109/ICPR.1992.201646

W. Hundsdorfer and E. J. Spee, An Efficient Horizontal Advection Scheme for the Modeling of Global Transport of Constituents, Monthly Weather Review, vol.123, issue.12, pp.554-557, 1995.
DOI : 10.1175/1520-0493(1995)123<3554:AEHASF>2.0.CO;2

E. Huot, I. Herlin, N. Mercier, and E. Plotnikov, Estimating Apparent Motion on Satellite Acquisitions with a Physical Dynamic Model, 2010 20th International Conference on Pattern Recognition, pp.41-44, 2010.
DOI : 10.1109/ICPR.2010.19

URL : https://hal.archives-ouvertes.fr/inria-00538317

E. Huot, I. Herlin, and G. Papari, Optimal Orthogonal Basis and Image Assimilation: Motion Modeling, 2013 IEEE International Conference on Computer Vision, 2013.
DOI : 10.1109/ICCV.2013.416

URL : https://hal.archives-ouvertes.fr/hal-00871330

E. Huot, I. Herlin, G. Papari, and K. Drifi, Surface circulation from satellite images : Reduced model of the black sea, Proceedings of Integrated system of the Black and Azov seas' monitoring international conference, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00878071

E. Huot, G. Papari, I. Herlin, and K. Drifi, Motion estimation on ocean satellite images by data assimilation in a wavelets reduced model, General Assembly of the European Geophysical Society (EGS), 2013.
URL : https://hal.archives-ouvertes.fr/hal-00828048

T. Isambert, J. Berroir, and I. Herlin, A multiscale vector spline method for estimating the fluids motion on satellite images, European Conference on Computer Vision (ECCV), number Part IV, pp.665-676, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00264727

T. Isambert, I. Herlin, and J. Berroir, Fast and stable vector spline method for fluid flow estimation, International Conference on Image Processing (ICIP), pp.505-508, 2007.

S. K. Harouna, P. Dérian, P. Héas, and E. Mémin, Divergence-free wavelets and high order regularization, International Journal of Computer Vision, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00646104

K. Harouna and V. Perrier, Effective construction of divergence-free wavelets on the square, Journal of Computational and Applied Mathematics, vol.240, pp.74-86, 2012.
DOI : 10.1016/j.cam.2012.07.029

URL : https://hal.archives-ouvertes.fr/hal-00727038

R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering, vol.82, issue.1, pp.35-45, 1960.
DOI : 10.1115/1.3662552

F. , L. Dimet, and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations : theoretical aspects, Tellus, pp.97-110, 1986.

Y. Lepoittevin, D. Béréziat, I. Herlin, and N. Mercier, Continuous tracking of structures from an image sequence, International Conference on Computer Vision Theory and Applications (VISAPP), pp.386-389, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00798176

Y. Lepoittevin, I. Herlin, and D. Béréziat, Assimilation de données pour estimer le mouvement et suivre un objet, Journées francophones des jeunes chercheurs en vision par ordinateur (ORASIS), 2013.

Y. Lepoittevin, I. Herlin, and D. Béréziat, Object's tracking by advection of a distance map, 2013 IEEE International Conference on Image Processing, pp.3612-3616, 2013.
DOI : 10.1109/ICIP.2013.6738745

Y. Lepoittevin, I. Herlin, and D. Béréziat, Continuous tracking of structures from an image sequence, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00798176

R. Leveque, Numerical Methods for Conservative Laws, Lectures in Mathematics. ETH Zürich, 1992.

J. Lions, Optimal Control of Systems Governed by Partial Differential Equations, 1971.
DOI : 10.1007/978-3-642-65024-6

M. Loève, Probability Theory, 1978.

J. Lumley, The structure of inhomogeneous turbulence Atmospheric Turbulence and Radio Wave Propagation, pp.166-178, 1967.

O. M. Aodha, G. J. Brostow, and M. Pollefeys, Segmenting video into classes of algorithmsuitability, Conference on Computer Vision and Pattern Recognition (CVPR), pp.1054-1061, 2010.

V. Mallet, Ensemble forecast of analyses: Coupling data assimilation and sequential aggregation, Journal of Geophysical Research: Atmospheres, vol.113, issue.D22, 2010.
DOI : 10.1029/2008JD009991

URL : https://hal.archives-ouvertes.fr/inria-00547903

H. H. Nagel and W. Enkelmann, An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.8, issue.5, pp.8565-593, 1986.
DOI : 10.1109/TPAMI.1986.4767833

M. Nielsen, L. Florack, and R. Deriche, Regularisation and scale space, 1994.

T. Oguz, P. L. Violette, and U. Unluata, The upper layer circulation of the Black Sea: Its variability as inferred from hydrographic and satellite observations, Journal of Geophysical Research, vol.13, issue.2, pp.569-581, 1992.
DOI : 10.1029/92JC00812

P. R. Oke, P. Sakov, and S. P. Corney, Impacts of localisation in the EnKF and EnOI: experiments with a small model, Ocean Dynamics, vol.130, issue.1, pp.32-45, 2007.
DOI : 10.1007/s10236-006-0088-8

N. Papadakis, P. Héas, and E. Mémin, Image Assimilation for Motion Estimation of Atmospheric Layers with Shallow-Water Model, Asian Conference on Computer Vision, pp.864-874, 2007.
DOI : 10.1007/978-3-540-76386-4_82

URL : https://hal.archives-ouvertes.fr/hal-00596194

N. Papadakis and E. Mémin, Variational optimal control technique for the tracking of deformable objects, 2007 IEEE 11th International Conference on Computer Vision, 2007.
DOI : 10.1109/ICCV.2007.4408944

URL : https://hal.archives-ouvertes.fr/hal-00596203

N. Papadakis and E. Mémin, A Variational Technique for Time Consistent Tracking of Curves and Motion, Journal of Mathematical Imaging and Vision, vol.28, issue.1, 2008.
DOI : 10.1007/s10851-008-0069-2

URL : https://hal.archives-ouvertes.fr/hal-00596154

N. Papadakis, Assimilation de données images : application au suivi de courbes et de champs de vecteurs, Thèse, Université Rennes 1, 2007.

G. Papari, P. Campisi, and N. Petkov, New Families of Fourier Eigenfunctions for Steerable Filtering, IEEE Transactions on Image Processing, vol.21, issue.6, 2012.
DOI : 10.1109/TIP.2011.2179060

N. Peterfreund, Robust tracking of position and velocity with Kalman snakes, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.21, issue.6, pp.564-569, 1999.
DOI : 10.1109/34.771328

M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry : A Practical Guide. Experimental Fluid Mechanics, 2007.
DOI : 10.1007/978-3-662-03637-2

M. Rajaee, K. F. Sture, L. Karlsson, and . Sirovich, Low-dimensional description of free-shear-flow coherent structures and their dynamical behaviour, Journal of Fluid Mechanics, vol.37, issue.-1, pp.1-29, 1994.
DOI : 10.1017/S0022112088001818

Y. Rathi, N. Vaswani, A. Tannenbaum, and A. J. Yezzi, Tracking Deforming Objects Using Particle Filtering for Geometric Active Contours, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.8, pp.291470-1475, 2007.
DOI : 10.1109/TPAMI.2007.1081

D. Rempfer, Investigations of boundary layer transition via Galerkin projections on empirical eigenfunctions, Physics of Fluids, vol.8, issue.1, pp.175-188, 1996.
DOI : 10.1063/1.868825

M. Restelli, L. Bonaventura, and R. Sacco, A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows, Journal of Computational Physics, vol.216, issue.1, pp.195-215, 2006.
DOI : 10.1016/j.jcp.2005.11.030

P. Sakov and P. R. Oke, A deterministic formulation of the ensemble Kalman filter : An alternative to ensemble square root filters. Tellus, 2008.

J. A. Sethian, Level Set Methods and Fast Marching Methods : Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, 1999.

D. Shulman and J. Herve, Regularization of discontinuous flow fields, [1989] Proceedings. Workshop on Visual Motion, pp.81-86, 1989.
DOI : 10.1109/WVM.1989.47097

S. Stankovi´cstankovi´c, I. Djurovi´cdjurovi´c, and R. Herpers, Velocity and acceleration estimation in video sequences by the local polynomial periodogram, International Symposium on Signal Processing and Its Applications, 2003.

D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.2432-2439, 2010.
DOI : 10.1109/CVPR.2010.5539939

M. Sussman and E. Fatemi, An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow, SIAM Journal on Scientific Computing, vol.20, issue.4, 1999.
DOI : 10.1137/S1064827596298245

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Suter, Motion estimation and vector splines, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition CVPR-94, pp.939-942, 1994.
DOI : 10.1109/CVPR.1994.323929

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Szeliski and H. Shum, Motion estimation with quadtree splines, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.18, issue.12, pp.1199-1210, 1996.
DOI : 10.1109/34.546257

A. N. Tikhonov, Regularization of incorrectly posed problems, Sov. Math. Dokl, vol.4, pp.1624-1627, 1963.

O. Titaud, A. Vidard, I. Souopgui, and F. Dimet, Assimilation of image sequences in numerical models, Tellus A, vol.105, issue.C8, pp.30-47, 2010.
DOI : 10.1111/j.1600-0870.2009.00416.x

URL : https://hal.archives-ouvertes.fr/inria-00332815

G. K. Vallis, Atmospheric and oceanic fluid dynamics, p.745, 2006.
DOI : 10.1017/CBO9780511790447

C. Vogel, S. Roth, and K. Schindler, View-Consistent 3D Scene Flow Estimation over Multiple Frames, European Conference on Computer Vision (ECCV), Lecture Notes on Computer Sciences, 2014.
DOI : 10.1007/978-3-319-10593-2_18

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer, Modeling temporal coherence for optical flow, 2011 International Conference on Computer Vision, 2011.
DOI : 10.1109/ICCV.2011.6126359

A. Wedel, D. Cremers, T. Pock, and H. Bischof, Structure- and motion-adaptive regularization for high accuracy optic flow, 2009 IEEE 12th International Conference on Computer Vision, pp.1663-1668, 2009.
DOI : 10.1109/ICCV.2009.5459375

M. Werlberger, T. Pock, and H. Bischof, Motion estimation with non-local total variation regularization, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.
DOI : 10.1109/CVPR.2010.5539945

R. Wildes and M. Amabile, Physically based fluid flow recovery from image sequences, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.969-975, 1997.
DOI : 10.1109/CVPR.1997.609445

Y. Wu, T. Kanade, C. Li, and J. Cohn, Image registration using wavelet-based motion model, International Journal of Computer Vision, vol.38, issue.2, pp.129-152, 1023.
DOI : 10.1023/A:1008101718719

A. Yilmaz, O. Javed, and M. Shah, Object tracking, ACM Computing Surveys, vol.38, issue.4, p.13, 2006.
DOI : 10.1145/1177352.1177355

C. Zhu, R. H. Byrd, P. Lu, J. Nocedal, and L. , Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization, ACM Transactions on Mathematical Software, vol.23, issue.4, pp.550-560, 1997.
DOI : 10.1145/279232.279236