N

N

Incrementality and effect simulation in the simply typed
lambda calculus

Lourdes del Carmen Gonzalez Huesca

» To cite this version:

Lourdes del Carmen Gonzalez Huesca. Incrementality and effect simulation in the simply typed
lambda calculus. Computer Science [cs]. Universite Paris Diderot-Paris VII, 2015. English. NNT: .
tel-01248531

HAL Id: tel-01248531
https://inria.hal.science/tel-01248531

Submitted on 4 Jan 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/tel-01248531
https://hal.archives-ouvertes.fr

DIDEROT

PPPPPP

PARIS

UNIVERSITE PARIS DIDEROT — PARIS 7

SORBONNE PARIS CITE -
Crzia—

ECOLE DOCTORALE SCIENCES MATHEMATIQUES DE PARIS CENTRE
LABORATOIRE PREUVES, PROGRAMMES ET SYSTEMES — EQUIPE 772

THESE DE DOCTORAT
EN INFORMATIQUE

Présentée et soutenue par

Lourdes del Carmen
GONZALEZ HUESCA

le 27 novembre 2015

INCREMENTALITY AND EFFECT SIMULATION
IN THE SIMPLY TYPED LAMBDA CALCULUS

INCREMENTALITE ET SIMULATION D’EFFETS
DANS LE LAMBDA CALCUL SIMPLEMENT TYPE

devant le jury composé de

Mme. Delia KESNER . Présidente
M. Hugo HERBELIN : Directeur

M. Yann REGIS-GIANAS : Directeur
Mme. Catherine DUBOIS : Rapporteuse
M. Sylvain CONCHON . Rapporteur
M. Daniele VARACCA : Examinateur

Mme. Sandrine BLAZY . Examinatrice

ii

Abstract

Certified programming is a framework in which any program is correct by construc-
tion. Proof assistants and dependently typed programming languages are the representa-
tives of this paradigm where the proof and implementation of a program are done at the
same time. However, it has some limitations: a program in Type Theory is built only with
pure and total functions.

Our objective is to write efficient and certified programs. The contributions of this
work are the formalization, in the Simply Typed Lambda Calculus, of two mechanisms
to achieve efficiency: to validate impure computations and to optimize computations by
incrementality.

An impure computation, that is a program with effects, and its validation in a func-
tional and total language is done through a posteriori simulation. The simulation is per-
formed afterwards on a monadic procedure and is guided by a prophecy. An efficient
oracle is responsible for producing prophecies which is actually, the monadic procedure
itself translated into an effectful programming language.

The second contribution is an optimization to perform incremental computations. In-
crementality as a way to propagate an input change into a corresponding output change is
guided by formal change descriptions over terms and dynamic differentiation of functions.
Displaceable types represent data-changes while an extension of the simply typed lambda
calculus with differentials and partial derivatives offers a language to reason about incre-
mentality.

iii

iv

Résumeé

La programmation certifiée offre un cadre dans lequel tout programme est correct
par construction. Les assistants de preuve et les langages de programmation avec types
dépendents sont les représentants de ce paradigme, ou la prévue et 'implementation
d’un programme sont faites au méme temps. Toutefois, il existe certaines limitations : un
programme écrit en théorie des types est construit seulement avec des fonctions pures et
totales.

Notre objectif est d’écrire des programmes efficaces et certifiés. Les contributions de
cette these sont la formalisation, dans le lambda calcul simplement typé, de deux méca-
nismes pour améliorer 'efficacité : la validation des calculs impurs et I'optimisation des
calculs incrémentaux.

Un calcul impur, c’est-a-dire un programme avec effets, et sa validation dans un lan-
gage fonctionnel et total est fait 4 'aide d’une simulation a posteriori. La simulation est
effectuée apres, par une procédure monadique et elle est guidée par une prophétie. Un
oracle efficace est responsable de la production des prophéties et lui est en fait, la procé-
dure monadique traduite dans un language de programmation généraliste.

La deuxiéme contribution est une optimisation pour les calculs incrémentaux. L'incré-
mentalité consiste a propager des changements des entrées en changements des sorties,
elle est guidée par les descriptions formelles du changement des termes et une différen-
ciation dynamique des fonctions. La représentation des changements de données est pris
en charge par les types déplacables et une extension du lambda calcul simplement typé
avec dérivées et dérivées partielles offre un language pour raisonner sur l'incrementalité.

vi

Remerciements — Agradecimientos

Mon aventure appelée doctorat a été marquée par des rencontres avec plusieurs personnes.
Ces remerciments sont dédiés a toutes ces personnes, que je vais essayer de toutes nommer .

En premier lieu, je veux remercier Delia Kesner pour ses efforts en faveur des liens a-
cademiques. Sans son conseil, je ne serais jamais m’engagée dans le doctorat au sein de
'équipe mr.

Aussi, dans ce premier merci, je suis trés reconnaissant du travail d’encadrement et
d’encouragement de Yann Régis-Gianas. Dés le premier jour, il a été un soutien académique
et aussi dans les affaires administratives frangaises. Merci pour me rappeler toujours le sens
pédagogique et pour me montrer un autre regard de mon travail.

Merci a Hugo Herbelin pour étre une figure constante dans l’équipe, pour nous faire
confiance a Yann et moi dans cette aventure.

Un grand merci aux rapporteurs qui ont accepté la responsabilité de lire et comprendre
mon travail. A Catherine Dubois pour les (nombreuses) remarques et commentaires qui ont
amelioré ce manuscrit. A Sylvain Conchon pour ses commentaires trés preécis.

Et un deuxiéme grand merci aux examinateurs, Sandrine Blazy et Daniele Varacca, pour
prendre part au jury.

Cette aventure a eu que de grandes contributions académiques: toute U'équipe mr? et
surtout le laboratoire PPS ont été d’excellents fournisseurs de savoir avec les membres perma-
nents et les personnes invitées, aussi avec les nombreux séminaires et groupes de travail.

Cette premiére année a Place d’Italie a facilité le développement de mon premier ‘noyau
dur’, lie a Uapprentissage de la langue et culture francaise et au coté fraternité CoQ: Pierre,
Pierre-Marie, Matthias et Guillaume. Je vous remercie énormément de l’encouragement et de
la gentillesse de tous ces jours avec votre patience et soutien.

Pendant les célébres journées PPS a Trouville 2012, j'ai découvert le vrai laboratoire et
quelques mois plus tard nous nous sommes tous rencontrés dans notre nouveau bdtiment.
Depuis cela, le groupe de thésards est devenu plus qu’une bande des potes au labo, mais une
bande de gens qui n’a cessé d’ajouter plus de membres.

C’est ici que mon deuxieme ‘noyau dur’ a été crée : Ioana, Kuba, Shahin qui m’ont adopté
et m’ont surtout encouragé pendant la rédaction de cette thése. Merci Ioana d’étre une des
mamacitas les plus fortes et cools du monde. Merci Shahin pour mettre en perspective mes
origines et de vivre sans avoir peur. Merci Kuba pour toujours ajouter des images et phrases
et parce que ‘eres un hombre muy honrado que le gusta lo mejor...’

1. Si jamais vous n’étes pas présent dans cette partie, je tiens a vos présenter mes excuses les plus sincéres
car mon cerveau est devenu intitil ces derniéres semaines, mais certainement vous étes présente dans mon coeur.

vii

viii

Je tiens & remercier aux thésards qui m’ont toujours fait sourire: Etienne 2, Matthieu,
Flavien, Giulio, Ludovic, Jovana, Hadrien, Thibaut, Marie. Et tous les thésards dont la
présence a contribué aux journées trés agréables au labo.

Merci aussi aux thésards Liafa, en particulier a Bruno et Jehanne qui ont toujours de-
scendu les escaliers pour venir nous visiter et surtout pour partager les soirées.

Samy, Rafa, Luis, Shadi, merci pour les soirées, cafés et discussions trées variées.

Les couloirs de PPS bien silencieux m’ont fait aussi sourire, merci a Juliusz pour toujours
avoir une histoire a raconter, merci a Paul-André pour les samedis avec le son du violon et
plus récemment, merci pour les bonjours de Daniel. Merci aux stagiaires avec lesquels on a
partagé un efé au labo et qui sont restés plus dans le coin: Philipp, Kenji et Béa.

Le boulot administratif a toujours été un succés grace a deux super responsables adminis-
tratives, merci Lindsay, merci Odile.

Un coté académique international a influencié ces années, merci a Tim Griffin pour me
montrer les origins du COQ, a Beta pour ses nombreuses visites et discussions sur n‘importe
quel sujet, a Daniel pour le sourire brésilien, a Pablo et Elisa.

No puedo dejar de dar las gracias al lugar donde vivi por mds de la mitad de este tiempo
acd y en donde conoct otra parte de mi pais: la Maison du Mexique en citéU. Ahi tuve el
privilegio de conocer a muchas personas, las cuales han sido mi apoyo mds grande todo este
tiempo. Gracias por las fétes, les pique-niques, les dimanches culturels, les petits week-ends,
las vacaciones y por la isla. Merci Denis por ser la primera en recibirme con una sonrisa
aquel 31 de diciembre. Merci Alberto por las pldticas deportivas y las no tan deportivas...
Merci Juan Carlos por las discussions sobre la vida y la musica. Merci a todos los que
compartimos mds que una ciudad de estudiantes: Fer, José, Vero, Ale, Dama, Arturo, Nuria,
Daniel, Braulio, Alejandro, Xiomara, Ale, Laura...

También las visitas fueron un gran apoyo: Edgar, Mini, Liliana, Emilio, Daniela, Noé,
Merari, Arturo, Nancy, Adriana, Selene, Moni, Ame. Gracias por los juegos, los ‘chats’y por
las visitas turisticas que me ayudaron a conocer mds.

El apoyo a la distancia ha sido constante: Favio, Liliana y Rafa, siempre al pendiente, mil
gracias. Gracias Felipe por sofiar(me) y contestar siempre, sin importar mis crisis y locuras.

Finalmente, las gracias infinitas van hacia mi familia: a mi mamd por siempre estar ahi,
y a Criss y a Carlos, los tres que son todo junto con los dos pilares de mi vida. No puedo dejar
de agradecer a quien me inicioé en la computacion. Y a pesar de todo, ‘por hacerme el paro’
en cualquier circunstancia y por el apoyo incondicional, gracias Joel.

Un dia nos pidieron, como ejercicio, que describieramos el doctorado en tres palabras. A
mi mente vinieron las palabras: desafio, introspeccion, constancia, resistencia y aprendizaje.
Mi decision de iniciar un doctorado fue motivado por la idea de aprender, de dar un paso
mds en el camino profesional, por la necesidad de compartir el conocimiento, pero no com-
prendi que este camino estd hecho para convertirse en maestro de uno mismo. Después de
estos cuatro afos, definidos por autoaprendizaje y por ponerse a prueba constantemente, he
aprendido mds que sélo lo académico, la capacidad de asombro por cosas nuevas y por lo
desconocido, pero sobre todo he aprendido el sentido de la amistad.

2. Gracias por corregir mi francés!

Contents

1 Introduction

1.1
1.2
1.3

A-Calculus and Proof ASSistants v v v v v v v e e e
This thesis o e
Preliminaries and Notations o o v i v v v i e s e e

Lightweight proof by reflection

2 Proof by reflection

2.1
2.2
2.3
2.4
2.5

Reflection
Proof by computation e
Certifying proof by Reflection
DISCUSSION . .« v v v v vt et e e e e e e e e
Towards another approach to proof-by-reflection

3 Reflection by simulation

3.1

3.2
3.3
3.4
3.5

Am a purely functional monadic language
3.1.1 Simulation e
3.1.2 Meta-theory e e e
Av,1 a call-by-value impure functional language
A posteriori simulation of effects Lo oL
Examples of simulable monads
Chapter conclusions

Incrementality

4 Optimization via data-differences

4.1
4.2
4.3
4.4

Incremental computationol
Incrementality i e e e e e e e e e e e
Change description e
Towards Incrementality

ix

10

21

21
24
25
26
27
28

31
33
35
36
46
50
52
55

61

X CONTENTS

5 A deterministic differential lambda calculus 77
5.1 The A—diffcalculus 77
5.2 Displaceable types e 81
5.3 Meta-theory e 83

5.3.1 Equivalence 88
5.4 Soundness e e e e e e e e e e e e 89

6 Recursion and Data-Types in \—diff 99
6.1 Differentiation of multiple-argument functions 99
6.2 Fixed-Points e e e e e e 100
6.3 Structural displacements over algebraic data-types 101
6.4 Examples e e 106

7 Closing remarks 111
7.1 M—diff Related work 111

7.1.1 A theory of changes for Higher-Order Languages 111

7.1.2 DiSCUSSION v i i et e e e e e e e e e e e 113

7.2 Conclusions e e e 113

7.3 Futurework e e e 114
Bibliography 117

Note: British English is used along this document, but some established nouns in literature
come from American English.

Chapter 1

Introduction

One of the principal and practical aspects of Computer Science is to give solutions
to problems by computations through algorithms or programs. The computer scientist
may see in the solution of abstract problems an opportunity for creativity, where once a
solution is found the curious scientist takes the challenge further and seeks to improve it.

Ideally, problem solving should obey a cycle of development and program improve-
ment more or less as the following schema: a specification of the problem to be solved, a
sketch of the solution, an implementation and finally, some optimisations to the solution
or to the implementation in order to improve the performance.

The optimisations may vary depending on the user and the desired behaviour. We are
confident that they should not belong to an isolated phase at the end of the process, they
must be included at different levels and stages of program design and implementation.

Also, the development process should be directed by techniques and standards ded-
icated to obtain better solutions and to ensure that the final program indeed satisfy the
specification, that it actually solves the problem. Furthermore, the design and implemen-
tation phases are guided not only by the specification but they are commonly influenced
by the programming paradigm in which the solution will be carried out.

A higher demand of software within a short developing time and the necessity of trust-
worthy programs with respect to their specification become more and more ubiquitous. In
addition to this, the errors or program failures due to specification mismatch or encoding
flaws should not be present in the implementation.

We can argue that the above remarks can be alleviated by adding a phase of program
verification to the development cycle, where a formal validation of the implementation
should be carried out. In practice, the verification is substituted by a merely code test and
is occasionally totally skipped from the development cycle.

In order to ease the program verification, to amend the errors or even prevent them,
we claim that any program development must be done in an environment which ensures
the correctness of programs from the very process of design and creation.

However, there exist a large number of computing paradigms, many different, some
of them share certain qualities while other contrast the abstraction and understanding of
programming. The user must choose the best among them, which offers convenient tools
in order to perform reliable software developments.

2 CHAPTER 1. INTRODUCTION

To restrict the possible failures the programmer can make, some researchers and users
support the functional paradigm as a safe development environment [53]. The confidence
in functional programming languages has been largely considered, they offer a modular
and high-level environment to create well-structured programs. They are closer to math-
ematics, and hence the program specifications can be verified rigorously and almost in a
direct way.

Furthermore, there is an increasing interest in providing a rigorous verification of pro-
grams, i.e., to validate that a program meets a specification through a formal and mech-
anised proof. This draws the attention to the recently called certified programming para-
digm, a new concept of programming where the programs are correct by construction [29].
As functional programming, certified programming is a strict and elegant framework for
abstraction, verification and coding, based on type theory.

Through this introductory chapter, the reader will be immersed into the universe of
theoretical aspects of programming languages leading to the certified programming par-
adigm which is the inspiration of the work and research done during my PhD. We give a
brief reminder of the \-Calculus and its relation with proof assistants, our contributions
and some initial notations.

1.1)\-Calculus and Proof Assistants

A-Calculus is a model of computation, a formalism where functions are the central ob-
ject of study. The original theory defined by Church in 1932, is a language to manipulate
functions in its most pure and abstract form. Curry includes the notion of type for any
lambda-expression in 1934, thus initiating the second most studied functional formalism.

While the two models of calculus, Church and Curry, are sufficient for reasoning about
functions in a general setting, there is a practical side where computability becomes a
tangible task thanks to (abstract) machines.

A-Calculus inspired the first machines and their programming languages. Since then,
there is a double encouragement between formal and practical aspects of the calculus,
leading to more and more complex developments which raise to expressive theories and
moreover, specialise a variety of programming languages [57, 91].

During the second half of the 20th century, the development of (typed) theories as
formal frameworks to model many classes of programming languages, inspired more the-
ories and promote implementations to realise the concept of computation.

In particular, A\-Calculus is considered as the basis of functional programming [106].
This paradigm of computing is a theory also characterised as ‘pure and elegant’, in the
sense that is considered as a high-level language where reasoning is clear and programs
are easier to verify given the closeness to mathematics.

As said before, the necessity of programs with fewer errors, developed in less time and
with a high level of reliability, demands complex and specialised frameworks for software
development. The more a program development is based and constructed following an
accurate design, the more we will trust its reliance to the specification.

1.1. N\-CALCULUS AND PROOF ASSISTANTS 3

Thus, the formal approach of type theory in functional programming makes this par-
adigm a perfect environment to develop correct programs by construction. As a com-
putational model, per se, the typed theories enable to reason about languages and their
properties, bringing closer a formal verification.

The Curry-Howard correspondence enables a direct construction of programs from
a mathematical specification, it considers Type Theory as a language of proofs where
solutions to problems are given through demonstrations of logical formulae. It is founded
on two notions: a formula describes a calculation that is, a specification is given through
a logical statement, and given a formula a proof of it can be decorated resulting in a
program. Then, the correspondence between formulae and types, between proofs and
programs, ensures that demonstrating a formula or finding an inhabitant of a type will
deliver a program that satisfies its specification.

This correspondence inspires many programming languages and also theorem provers
or proof assistants. The latter are computer programs to help the verification of proofs.
For an historical and accurate presentation of the propositions as types principle we refer
the reader to the work of Wadler [112].

Foundations of Theorem Provers

Scott presented in 1969 a formal language which served as an approach to denota-
tional semantics for programming languages, this model was named Logic of Computable
Functions (LCF). After this, Milner was inspired and proposed in 1972 a Logic for Com-
putable Functions (also abbreviated as LCF), a theorem prover. This logic was refined and
later in 1979 Milner together with Gordon and Wadsworth presented the Edinburgh LCF !,
an interactive theorem prover along with its meta-language ML. The latter was conceived
as a language to develop proof tactics in the theorem prover. While it was a functional
and polymorphic language of the initial proposal, it evolved as a prominent programming
language with imperative and sophisticated features. Two major implementations of the
meta-language are SML and OCAML 2.

This was the beginning of the interactive theorem provers era, those systems that help
users to make proofs while ensuring the correctness of them. Nowadays, they are just
called theorem provers or proof assistants, while a more general name is proof manage-
ment systems >.

The original implementation of LCF included data-types to prove logic formulae: a
type to denote a theorem (thm) which is a pair of conclusion and hypotheses, a validation
which is a function from a list of theorems that implies the theorem to be demonstrated
and a tactic is a function to transform goals. They are related as follows:

1. We will always make reference to Edinburgh LCF just as LCF.

2. The current implementations can be found in http://www.smlnj.org/ and http://ocaml.org/.

3. Inside the community of proof assistants, there is an indistinct use of proof assistants and theorem
provers to refer to the same computational frameworks. The interactive adjective was added to denote an
implicit feature of these systems which is nowadays essential. We continue to use them interchangeably.

http://www.smlnj.org/
http://ocaml.org/

4 CHAPTER 1. INTRODUCTION
thm = form * form list
goal = form * simplset * form list
tactic = goal -> (goal list * validation)

validation = thm list -> thm

Figure 1.1 — LCF data-types

A tactic is a tool, a heuristic to transform a goal into a sequence of simpler goals using
the information available in the context of the proof. It includes a validation which is a
rule that mimics an hypothetical judgement, using the schema of premises and conclusion.
When a tactic is applied to a goal, it replaces the current goal with the premises of the
rule, to generate a list of new sub-goals to be proven together with a validation. The
validation or witness of the tactic is maintained, is usually the name of the tactic. In this
way, at the end of the proof, the witnesses and the order they were applied form a proof-
script which will be checked. This process describes a user interaction with the theorem
prover to direct the construction of a proof.

A useful feature of the system is provided by a mechanism to combine and compose
tactics, named then tacticals. Since tactics are functions, their composition through a
tactical gives a higher-order tactic to ease the construction of complex proofs. It is also
used to control how the current list of goals can be focused and merged.

In the LCF theorem prover, a tactic can only be applied to the focused goal, this means
that the global state of the system all along the proof is not tracked but used in each step
of the proof. Despite the validations, an interpretation of a proof-script, outside the proof-
development is meaningless.

Meanwhile, the spread of the above theories and the influence of the ideas in LCF
together with a (philosophical) foundation of Martin-Lof in 19714, as a system for intu-
itionistic or constructive proofs, inspired the modern theorem provers.

The Martin-Lof Type Theory is an expressive typed A-calculus, with a predicative type
system, an infinite sequence of type universes and equality for types. Later, more expres-
sive extensions of A-calculus as the System F by Girard and Reynolds in the mid 1970’s
formalised the polymorphism of ML. Then, in the beginning of 1980’s the work of Huet
and Coquand set the foundations of a theory of dependent types called The Calculus of
Constructions. Later, in 1985, the first implementation of the Calculus of Constructions
appeared as a type-checker for lambda expressions.

Together with this theory, other efforts of many researchers started pushing on the
realisation of systems and languages to program efficient decision procedures and more
ambitiously, to contribute to the first versions of a theorem prover based on the Calculus

4. Notes and transcriptions of lectures given by Martin-Lof are classical references: ‘On the meanings of
the logical constants and the justifications of the logical laws’ and Intuitionistic Type Theory.

1.1. N\-CALCULUS AND PROOF ASSISTANTS 5

of Constructions®. In particular, the work of Paulin-Mohring, added some automation to
the tactics. Later, she also extended the formal and practical way to describe data-types
with inductive constructions and principles in the Calculus of Constructions. This gave
the theoretical base of the modern CoqQ, the The Calculus of Inductive Constructions.

Proof management systems

A theorem prover based on Type Theory is an interactive system for symbolic manip-
ulation guided by the user. Its central activity is to build proofs of theorems and to verify
formal developments or what we call theories.

Any theorem prover has a specification language and is usually composed of two in-
dependent parts:

1. a proof-development environment, to construct proofs interactively controlled by
the user, and

2. a proof-checker, to verify the proof-term obtained at the end of a proof.

The user gives definitions and properties, all the information needed by the system in
order to support and develop a theory. As described before, while trying to demonstrate
a statement or theorem, the proof assistant considers the statement as a goal. Then, a
tactic breaks the goal into simpler sub-goals which in their turn have to be demonstrated.
This process continues until the goals are facts easy to proof and finishes when there are
no more goals to prove. Up to here, the proof construction process is managed by the
first component of the theorem prover, the so-called proof engine. Finally, a composition
of tactics gives a proof-script describing the construction of the proof.

The proof-checker or type-checker is the implementation of the type theory in which
is inspired the theorem prover, it is called the kernel. Then, constructing a proof is compa-
rable with the inhabitant problem, where given a context and a type, then a proof or term
is searched. Therefore, a final proof verification by the kernel is needed to ensure that
the proof-term obtained is a well-typed term in the type theory. Any proof is type-checked
when it is finished. The process generates a proof-term corresponding to the proof-script.

We highlight the following facts of the LCF, as ancestor of the modern proof manage-
ment or development systems like CoQ, ISABELLE, HOL, NUPRL, etc. They are also the
result of deep analysis and implementation experiences of several authors [116, 9]:

e Tactics are (deduction) rules associating premises to a conclusion. Some systems
implement a backward reasoning, others use the forward reasoning.

e The proof-scripts are just a sequence of tactics and system instructions: they are
unstructured, sometimes heavy (depending on the user experience) and at the same
time fragile since outside the proof, there is no current information to keep track of
the proof and the context where a tactic was applied. This makes the proof sensitive
to small changes.

5. A detailed history is available in the Notes on the prehistory of Coq http://github.com/coq/coq/
blob/beedccef9ddc8633c705d7c5ee2f 1bbbb3ec8asd7/dev/doc/README-V1-V5.

 http://github.com/coq/coq/blob/beedccef9ddc8633c705d7c5ee2f1bbbb3ec8a47/dev/doc /README-V1-V5
 http://github.com/coq/coq/blob/beedccef9ddc8633c705d7c5ee2f1bbbb3ec8a47/dev/doc /README-V1-V5

6 CHAPTER 1. INTRODUCTION

e The Poincaré principle states that the proofs carried out in a proof assistant must be
verified. A verification of a proof is done until it is completed, by the proof-checker.

e The kernel must be reliable, since the proof verification depends on it. Hence the it
is usually a small, isolated and human-certified program. This is called the de Bruijn
criterion.

e Some proof management systems allow that parts of proofs are achieved by compu-
tations. Then, there is no need of verification of those calculations. This is related
with the computational power of the type theory on which is based the theorem
prover offering great benefits.

Coq

The CoQ proof assistant, defined nowadays as a formal proof management system, is a
well-established interactive system for developing and checking proofs. It is based on a
formal language: the Calculus of Inductive Constructions, a powerful type theory.

It provides a framework where the user defines and elaborates theories, offering a
safe, strict and formal environment to reason about them. The system helps the user
through proofs while it can also generate automatic proofs because of its features to do
proof-automation.

The proof-terms obtained after the demonstration process are certified by the kernel of
CoQ. The kernel is essentially a type checker which is the implementation of the Calculus
of Inductive Constructions, it takes a term or proof which is treated as an inhabitant
candidate for a type or formula.

Thanks to the Curry-Howard correspondence, COQ is also considered as a functional
programming language since the proofs are lambda-terms. Moreover, as we said earlier,
the type theory behind CoQ is highly expressive and there is always a way to perform
computations at any level, that is, the convertibility of terms and types is ensured by the
conversion rule which characterises the computation or reduction of them.

Many contributors since then, have consolidated this influential framework for defin-
ing and formalising theories including a part of mathematics itself. For more historical
details and implementation description of COQ, the online documentation® can be con-
sulted as well as the Coq’Art book [20].

Proofs in CoQ

Theorem provers give confidence in the formalisation and the proofs carried out while
developing a theory. Their evolution responds to user demands and each system must in-
corporate user creativity as (permanent) features. Therefore, expanding the mechanisms
for proof development like extensions for tactics, facilities for programming or deduction
reasoning are desirable. All the tools or techniques for alleviating the process of proof
construction must be all sound.

6. http://coq.inria.fr/documentation/

http://coq.inria.fr/documentation/

1.2. THIS THESIS 7

The focus on providing an efficient environment while constructing and checking
proofs has been largely explored. There are several parts that can be improved by the
system developers, in order to get a better overall performance on proof management.

As proposed by Milner, there should be a language support for writing new tactics in
theorem provers that is, achieving efficiency of development by means of improving the
tactic language. In CoQ we would like to build interactively proofs with more complex
constructions and techniques for proof automation. To achieve this, there is a language for
tactics named L., proposed by Delahaye [36] to enrich the current tactic combinators.
Formally, £,,. is a higher order language to design domain specific tactics. Nowadays,
most of the provided tactics are definitions of such combinations of primitive tactics.

However, one of the shortcomings of £,,. is that tactics used to construct proofs are
unsafe ’. This language can be improved by means of types for tactics as is suggested by
Delahaye.

Efficiency in theorem provers can also be gained by improving the machinery to guide
and verify proofs, by means of improvements in the interaction with the kernel and the
tactic engine. Improvements for system development have many contributions: libraries
for specialised theories (see the list of users’ contributions ®), tactic languages to enhance
the mechanisation of proofs [36, 118], improvements to the user back-end framework for
example the asynchronous edition of proofs [17], interaction with other theorem provers
to cooperate in a large developments, etc. All of this turns COQ into a sophisticated
programming language where the program development arises naturally, for instance the
RUSSELL extension [101] to develop programs with dependent types.

1.2 This thesis

We have highlighted that the functional paradigm provides a formal approach to pro-
gramming and ensure correct programs. Unfortunately, it disregards to be used while
solving low level problems or when incorporating imperative techniques to obtain effi-
cient solutions.

Besides, the effects offered by a low-level language, unavoidable when reaching the
innermost practical aspects of computing, need to be studied and therefore incorporated
in the models of pure lambda calculus to represent and to reason about programming
mechanisms.

The focus of this work is on formal techniques that extend the models of the simply
typed lambda calculus, inspired by some practical motivations taken from the everyday
programming, and with the aim to be applied in a system for formal proof assistance.

Our goal is to reason about two improvements to be carried out in a total functional
programming language: to verify the simulations of effects a posteriori and the optimiza-
tion by incrementality through data-change description.

7. As pointed out in various works, there are disadvantages with the treatment of tactics inherited form
LCF, for example the exhaustive comparison made by Harrison [47].
8. https://coq.inria.fr/contribs/

https://coq.inria.fr/contribs/

8 CHAPTER 1. INTRODUCTION

The Paral-ITP project This work was supported mainly by the ANR project Pervasive
Paralellism in Highly-Trustable Interactive Theorem Proving Systems. The project involves
the interactive theorem provers ISABELLE and COQ and its main goal is to overcome the
sequential model of both proof assistants to make the resources of multi-core hardware
available in large proof developments®.

The project proposal stated a PhD student to work towards the conception and study
of a formal repository based on Logical Frameworks (LF) [46]. The formal repository, also
named the prover repository, was planned as an entity which must be highly sensitive to
handle the dependencies between different versions of terms. All actions performed over
the repository must be logically sound: history management and operations like fine-
grained requests and the propagation of (non-sequential) changes must ensure a sound
control of formal content.

The above ideas originate the research reported in this thesis where its concrete and
future goal is to obtain a certified type-checker for CoQ. This is a bigger project which can
be divided in two parts, the first to improve or make a new proposal for a tactic language
and the second to achieve the formalization of a prover repository. The idea of a formal
repository depends on the design of a typed language for tactics, which will provide safe
proof-scripts in order to facilitate their use and control within the repository.

A dependent type theory, as LF or the Calculus of Inductive Constructions, could serve
as a robust theory for a formalization of the repository and its operations as suggested
by the project proposal. While the rigorous frameworks of LF and VeriML [102] can be
the basis for the formal repository, we chose another line of investigation where research
was conducted in the direction to define a typed language to improve the tactic language
of CoQ. This results in a proposal of an effectful language to write decision procedures
whose formalization will be elaborated in the first part of this thesis.

One of the project’s main goals described above seeks to improve CoOQ by giving a
new way of certification of proof-terms to be used in the repository. We chose to start
the research towards the improvement of proof-development by setting an incremental
framework, which one future application will allow the incremental construction and
certification of proofs. The incremental flavour is inspired by a new model of computa-
tion where programs automatically respond to changes in their data. A recent paradigm
supporting incrementality is the so-called self-adjusting computation which uses several
techniques to write self-adjusting programs as normal programs. The second part of this
thesis introduces a language where incremental computations are part of the evaluation
process.

The ideas of changeable data and incrementality could lead a formal repository, in
where fragments or complete proof-terms, which are already certified, are stored in order
to improve the type-checking process. As we said, this work is pretended to be done in col-
laboration of a typed language for CoQ’s tactics to construct safe proof-terms throughout
the proof development process.

The contribution of this thesis states an initial theoretic support to the formal reposi-
tory, a long term goal to be elaborated in the future. In the following, we briefly describe

9. For more information visit http://www.1lri.fr/~wolff/projects/ANR-Paral-ITP/.

http://www.lri.fr/~wolff/projects/ANR-Paral-ITP/

1.2. THIS THESIS 9

the contributions which are focused on providing methods for reasoning within effect
simulation and incrementality in the simply typed lambda calculus.

Cybele: lightweight proof by reflection

This work conciliates imperative features in the pure and total theory of CoQ by adding
effects through monads like in purely functional approaches. This enhancement allows
the user to write efficient and trustworthy programs in a certifying environment. More-
over, since in theorem provers the construction of proofs (or programs) can be simplified
by performing computations at type level, the enhancement is used in proof development
using the reflection technique.

The joint work with Yann Régis-Gianas, Guillaume Claret and Beta Ziliani states a way
to describe effectful decision procedures. The main idea is to use an untrusted compiled
version of a monadic decision procedure written in Type Theory within an effectful lan-
guage as an efficient oracle for itself. The evaluation of decision procedures is executed
with the help of what we call a prophecy, acquired by the execution of an instrumented
code in an impure programming language (OCAML). The prophecy is a small piece of
information to efficiently simulate a converging reduction in Type Theory. This work is
the Cybele project 1° which results in a new style of proof by reflection characterised by a
lightweight simulation of effectful programs.

The contribution described in this thesis, is to analyse and state the requirements
of simulation by studying the relation between two languages, one representing Type
Theory without effects and the other representing a general purpose effectful language.
The notion of a posteriori simulation is the main support on which rests a new style of
proof-by-reflection. A formalisation of the lightweight approach to proof by reflection
enables an extension of the lambda calculus with monads and an operator to simulate
computations.

Incrementality

Among the computational optimizations, an intuitive technique is to avoid repeated
computations by data re-use. Incremental computation as a programming paradigm,
takes advantage of similar computations in order to reduce the costs. The incrementality
can be achieved in several ways and can be present in explicit program transformations
or in implicit features of some program developments.

An analysis of many efforts to add incrementality in computations leaded to propose
a functional approach by a differential treatment of data and programs, that is a combi-
nation of a change theory for data dissection and a formal language for program differen-
tiation.

The contribution to incremental computation is achieved by dynamic differentiation
of functions to take advantage of computed results from old program inputs and func-
tion differentials. It is inspired in the differential lambda calculus [38] and in a type-
directed change description. A new system meeting these ideas, \-diff, is defined and of-

10. Visit http://cybele.gforge.inria.fr/.

http://cybele.gforge.inria.fr/

10 CHAPTER 1. INTRODUCTION

fers to the user the ability to reason about fine-grained input changes which are reflected
into efficient computed results. The computation by means of a gradual and steady sub-
computations, led by smooth input transformations. The language \-diff, exposed in this
thesis, is a framework for analysis and reasoning about incremental computation and is
not intended to be an optimal implementation of incrementality.

Thesis Organisation

Following the above topics, the thesis is organised in two main parts, one for reflection
by simulation (Chapters 2 and 3) and one for incrementality (Chapters 4 to 7).

Each part is self-contained, however the foundations of both are commented in the
next section for preliminary theoretical concepts.

1.3 Preliminaries and General Notations

In this section, we present some basic notions to level the knowledge of the reader with
the concepts used through this work. Other concepts are more common to be included
as background, such as the formal system which is the base for the languages in this
work, the simply typed M-calculus!'. Nevertheless, the chapters in this work are self-
contained and in what follows, we restrict ourselves to present a brief description where
some statements of properties are given without their proofs.

Relations

Given a set S, a binary relation R is a collection of pairs of elements in S, we use
an infix notation for relations. Given a relation R we say that R* is the reflexive and
transitive closure of R.

The notation € is used to denote a finite sequence or a vector of elements ¢ye; ... e,
where n > 0. The length of a vector is the number of its elements. If a function F
is defined over e then we abusively write F (e) for the pointwise extension of F to a
sequence of elements.

Simply typed lambda calculus

A-calculus as an abstract system to represent and perform computations is a model
which was first formulated as a pure theory, now distinguished as the untyped lambda
calculus. It is composed by variables, abstractions or functions, and applications of terms.
There are no constants nor any other primitives.

The terms created under these three basic elements are infinitely many and some of
them are not adequate for characterising the solution to a given problem, for instance
consider an application of a function with the wrong type of arguments.

11. The conventional references are: H. Barendregt [12, 13, 14], B. Pierce [92], R. Harper [45], among
others [11] who traditionally recall the pillars of the programming language theory.

1.3. PRELIMINARIES AND NOTATIONS 11

We want to get rid of those terms in order to prevent misbehaviours while encoding
programs. Therefore, imposing syntactical restrictions to the terms in order to reduce
the non-sense terms or wrong constructions, gives an accurate system where simple types
limit the terms to those which make sense to compute. This idea was coined by Milner in
the famous phrase ‘Well typed programs do not go wrong’.

Simply typed A-Calculus, a la Church, is the language generated by the constructions
in the grammar of Figure 1.2 whose principal syntactic classes distinguish terms and
types. The terms are built up from typed variables, lambda abstractions binding a single
variable to a body sub-term and applications of a left sub-term to a right sub-term. The
types include abstract basic types denoted by . and the functional-type with hypothesis o
and conclusion 7 types. The third syntactic class encompasses the class of typing contexts
which are collections of all distinct typed variables.

Syntax
tyr,s = x|Xx’.s|rs
T,0 = L|lo—>T ' w= o|T, 27
] Static Semantics
2" el D% s:7 'kr:o—-r 'Fs:o
—— VAR ABS App
F'z:71 '-Xe%.s:0—>T F'ers:7

Figure 1.2 — Simply Typed Lambda Calculus

Static semantics

We choose to present first the static semantics, that is the rules for type assignation,
to give to the reader an attachment to a notion that will be implicit in this work, the
treatment of well-typed terms. The static semantics are typing judgements relating terms
to types under typing contexts. The judgement I' - ¢ : 7 is read as ‘the term ¢ has type 7
under the context [’ and the rules are defined inductively on the form of terms. A variable
carries her own type and a lambda abstraction has a function-type constructed with the
type of the linked variable and the type of the body sub-term. The type of an application
results from the types of its sub-terms: if the left sub-term has a function-type and the
right sub-term agrees with the type of the hypothesis then, the type of the application is
the conclusion type of the function-type.

Notation A lambda abstraction is generalised to multiple binding: Azg. Azy. ... A\x,.t =
Axg, ..., x,.t = AT.t. The syntactic equality between elements is denoted by =.

A multi-argument function is represented in a curried form if its arguments are ex-
pected one by one that is, the function is a chain of A-abstractions. The uncurried version
of the multi-argument function expects all the arguments in a tuple.

12 CHAPTER 1. INTRODUCTION

Operations

Operations over terms are essential for reasoning, here we present the operations used
in this work. Each of these definitions can be extended according to the new elements of
the corresponding system extensions addressed in later chapters.

Definition 1.1 (Free and Bound variables)
The set of free variables of a term FV (t) is defined inductively:

V(") ¥ (zn
FV(ao.s) % Fv(s)\{z°}
FV(rs) % FV(r)JFV(s)

Bound variables are those which are not free.

Definition 1.2 («-equivalent terms)
Any two terms are a-equivalent if they are syntactically equal up to the renaming of their
bound variables.

Definition 1.3 (Substitution)
The substitution of a variable by a given term in another term is defined inductively, a re-
naming of bound variables in A-abstractions is considered before the substitution.

xlr =1t] =t
yle = 1] =y
(Ay.s) [x = t] = M.s[z = t] where x # y
(rs) [z := t] rle = t]s[z = t]

Dynamic semantics

The concept of computation is realised by means of input processing by applying func-
tions. There are two main ways to describe the process of obtaining outputs: by a precise
description of every computation made until an irreducible expression is reached, named
a reduction relation between two terms; or a description of the values obtained at the end
of the process, named an evaluation of a term.

A value is an object which cannot be reduced any more, it is impossible to apply at
least one more reduction step. The collection of values is a syntactic class, distinguishing
those objects form the rest of terms in the grammar defining the language. In the case
of the simply typed lambda calculus, the values are the abstractions, but for instance in a
calculus including the natural numbers as primitives, the numbers and constant functions
are also values.

A normal form is also a term on which it is not possible to make progress, that is, there
does not exist a term ¢’ from which a given ¢ is reduced by a stepping rule. The collection
of normal forms is a semantic distinction between terms, it is defined by a proposition and
not directly in the syntax as the definition of values.

The two notions of dynamic semantics, for a call-by-value strategy, are formalised by
small-step semantics and big-step semantics whose respective rules appear in Figure 1.3.

1.3. PRELIMINARIES AND NOTATIONS 13

Small-step semantics

v o= Ax.s E = []|vE|Et
3-RED t— 1 REFL
RED —————
(Az7.s) v —> s[z =] Elt] — &t t—"t
t1 — 1 ty —* t
TRANS — 2 y 2 i
tl I t3
’Big-step semantics‘
v ou= (Az7%.s)[n] n = o|n; x>0

ntrl Ax?.t)[n] nksl u nix—ukt|ov
nk Ax?.s | (Ax?.s)[n] nkErs|wv

Figure 1.3 — Dynamic Semantics for a call-by-value strategy.

The small-step semantics reduces a term by making explicit each computation. The
use of evaluation contexts 1, emphasizes the reduced expression or redex in the term. The
contexts and reduction rules define the call-by-value strategy of reduction, where each
term has a left-to-right order of reduction and the S-reduction makes progress simplify-
ing a function: introduces an input value in the body-term of the function by using the
substitution operation.

A full reduction of a term is obtained after applying exhaustively the reduction rules
and it is defined by the reflexive and transitive closure of reduction (—).

The big-step operational semantics makes use of an environment 7, a partial function
from variables to values. The values in this calculus are functions that depend on the
context that is, they are \-abstractions all along with its current environment of evalua-
tion [n], called closures.

We write n ¢ || v where | relates a term ¢ and a value v under a given environment
n whose domain is the set of free variables in ¢. The relation is defined inductively over
terms: a variable is evaluated to its corresponding value in the environment, a lambda-
abstraction is evaluated to a closure and the evaluation of an application rests in the
evaluation of the function-body of its left sub-term under an extended environment with
the value of the right sub-term evaluation.

It is possible to recover from small-step semantics the big-step semantics, and vice
versa, that is they are equivalent by means of value-ending chains of reductions using
—* in the former semantics and the | relation in the latter.

14 CHAPTER 1. INTRODUCTION

Properties

Simply typed A-calculus enjoys many properties derived from the semantic relations.
From type assignation, the traditional lemmas of inversion of typing and uniqueness of
types to ensure well-typed terms. Together with small-step semantics we have the prop-
erties of determinism and subject reduction also known as type preservation. Each exten-
sion of \-calculus used in this work contains the corresponding statements and proofs for
these properties, they are stated and proved in the appropriate places in future sections.

Logical Relations

Logical relations can be defined as predicates to describe properties of terms. We fol-
low the notation of logical relations used by Ahmed [8] and we make some recalls to
conduct the reader toward the work of Reddy et al. [49] who stress the closer relation be-
tween logical relations and Reynolds work on parametricity. The last authors consider the
logical relations and parametricity as a more general form of abstraction which enables
information hiding through the structure over which the relation is defined.

One of the applications of logical relations is the proof of meta-level theorems [97].
Most of the applications are adopted to prove theorems of type theory where the (tradi-
tional) method of proving by induction over one syntactical structure as terms, types or
judgements do not give strong enough induction hypotheses.

There are different choices between languages on which interpret a type theory, re-
ferred also as the object language. One useful choice is to take the same type theory
as meta-language. Other choices consider the set interpretation of types or a domain
interpretation. The case of set theory as meta-theory interprets the type theory as:

[t] = X for each basic type and a given set X [oc — 7] = [o] = [7]

In order to have more logical relations than just a set and function spaces —, we
add some relation operators like the set operators: product X, sum -, power set P,
predicates 0, among others. On the one hand, logical relations do not require to com-
pose, but in the other hand they could have a mapping operation known as parametric
transformation [49].

The logical relation approach to proofs is a two step procedure. The first step is to
define a logical relation adapted to the target type theory and to the property to demon-
strate. This is done inductively by defining a type-indexed family of relations. In the case
of a theory of the simple typed lambda calculus, we consider that any logical relation at
least must detail and extend the following definition:

Definition 1.4 (Logical Relation)
A logical relation is a family of type-indexed n-ary relations R = {R.} such that the terms
of a n-tuple have the same type and

e if T is a basic type i, then R, < [¢]"

e if 7 is a function type, then R,_,. (r1,...,r,) if and only if for all n-tuples (si, ..., Sy),
if Ry (s1,...,8,) then R, (1181, ...,7n Sp)-

1.3. PRELIMINARIES AND NOTATIONS 15

Logical relations are defined strictly following the structure of types and this structure
is reflected and preserved in the relation. In other words, the above definition and exten-
sions of it comprises the well-typing of a term, a condition for a term to has the property
of interest and a condition to ensure that the logical relation is preserved by evaluation
of elimination forms.

The second step is to show the completeness and soundness of the logical relation:
that any well-typed term of the theory belongs to the relation and that any element which
belongs to the relation has the desired property.

Lemma 1.1 (Completeness of a Logical Relation)
Consider a well-typed term, I' - ¢ : 7, then R, (t).

Lemma 1.2 (Soundness of a Logical Relation)
Any term such that R, (t) has the property characterised by the relation.

Coq

As commented before, the Curry-Howard correspondence is a principal paradigm on
which CoQ is based. The constructive logic which used by CoqQ is the Calculus of Inductive
Constructions. This calculus has only one syntactic category for types and terms '2:

t, r = s sort
|z |c|C|Z identifiers
| Valt | Xat.r |lete =rint|tr
| caset of rg...1, elimination
| fix x {z" 1y :=t} recursion

There are three sorts in the calculus: Prop, Set and Type, which represent the proposi-
tional or logical level of the language and the hierarchical universes of types, respectively.
The sort Type has an enumeration according to the type level needed in the theory.

The identifiers give the global definitions of the language and are included in contexts
when doing proofs. The identifiers are variables and names for constants, constructors
and types. Together with the third syntactic category built the terms of the language.
The computational terms include the product V which is an upper-level abstraction for
function definition while the other terms are the usual constructions for abstraction, term
application and local definitions (let). The elimination form case, goes together with
the inductive definitions introduced by constants Z. Finally, another elimination form is
recursion and is performed by a fix-point term.

A context, while constructing a proof, includes hypotheses as variables = : ¢, defini-
tions of constants ¢ := ¢ : r and inductive declarations Z (I'z := I'.) where the context I'z
contains the inductive types and I'. the corresponding constructors.

Any term in this calculus has a type and the evaluation always terminates. This condi-
tion is continuously verified syntactically by the system through the positive requirement

12. We follow the presentation used by Letouzey [61] and the CIC language description in the reference
manual: http://coq.inria.fr/distrib/current/refman/.

http://coq.inria.fr/distrib/current/refman/

16 CHAPTER 1. INTRODUCTION

for types and by well-founded definitions for elimination forms. The recursive calls must
show a clear use of the function over a sub-component of the parameter.

The dynamics of the calculus, the reduction of terms, is done mainly by a strong call-
by-value strategy. This kind of reduction differs from the one described previously in our
presentation of A\-Calculus, since in the Calculus of Inductive Constructions the reductions
are carried out pervasively. This means that the body-terms of \-abstractions are likely to
be reduced.

The system provides other reductions as the ¢, 9, ¢ or n reduction rules, each one to re-
duce respectively: inductive terms, definitions, let-terms and to permorm the n-expansion
of the \-calculus.

The whole combination of these rules defines the conversion rule stating that two
expressions are equivalent ¢ = s. The relation ¢t = s is read as ¢ is convertible with s and
is a reflexive, symmetric and transitive relation over the above strong reduction rules.
Then, two terms are convertible or equivalent if they are reduced to identical terms or are
convertible up to n-expansion:

'U:o F'¢:T I' =T =5y U

CONV
't¢t:U

where the relation =g;,,, represents the set of reduction rules in the language.

Monads

The purely functional approach reviewed up to this point does not allow a represen-
tation of computational effects as memory location, perform input/output, error handling
or exceptions, non-determinism, etc.

The monadic approach to functional programming proposed by Moggi [76] offers an
extension and interpretation of a A\-Calculus to represent computations by abstracting a
program logic inside a structure. The data-type constructor M 7 represents computations
that will produce a value of type 7. It consists of two operations, one named the unit -
operation to encapsulate an expression as a trivial computation and another operation
to perform and compose computations named bind. These operations allow to explicitly
describe sequential computations.

A single effect is an instance of a monad which needs a specific definition for the two
operations of unit and bind. Any monad holds the three monadic laws characterising the
equivalences between computations.

In Figure 1.4 is depicted the extension of A-Calculus with the terms for monads. The
dynamic semantics uses the strong reduction where the values include unit terms.

References in the literature of monads include the work of Wadler [111, 113]. The
success of this theoretical approach is used in practice in several (functional) program-
ming languages to ease a structured programming, such as in HASKELL [65, 81]. In this
language, the operations unit ¢ and bind r s are written return t and r >>= s respec-
tively. Using the type-class abstraction for polymorphism, to regroup types and manage
overloading of functions, the Monad class describes four monadic operations:

1.3. PRELIMINARIES AND NOTATIONS 17

Syntax
t,r,s == ---|unitt]|bindrs E u= - |unit&|bindEs|bindvé
v u= .- |unitwv
T, O M7
] Static Semantics
't:7 'r:Mo '-s:o0—- M7
. — UNIT _ BIND
' unitt: M7 unit I' = bindrs: M~
’ Dynamic Semantics
Cowmp

bind (unit v) (Az?.s) — sz = v]

| Monadic Laws |

bind (unit t)r = rt
bindt (Ax?.unit x) = t
bind (bindts) r = bindt (Ax?.bind (sx) r)

Figure 1.4 — Monads

class Monad m where

(>>=) :ma->(a->mb) >mb
>>) c:ma->mb->mb
return :: a -> m a

fail i String -> m a

Any instantiation must declare the definition of the >== operation. Also, the popular
do-notation is used to give structure to monadic programs. This is a syntactic sugar to
hide the details of bind-applications and to make clear the compositions. For instance the
term bind t1 (\x -> bind (f x) (\y -> return y)) can be rephrased as:

do

x <- t1
y <- f x
return y

There is a large range of effects that can be represented by monadic definitions. For
example, the effect representation where programs have an optional outcome or where
functions can return or not meaningful values, is done through the monadic type Maybe
(in HASKELL) or the Option-type (in ML-like languages). The instantiation in HASKELL,
of the monadic operators is the following:

data Maybe a = Nothing | Just a

18 CHAPTER 1. INTRODUCTION

instance Monad Maybe where

(Just x) >>=k =k x
Nothing >>= _ = Nothing
return = Just
fail _ = Nothing

The one-effect representation by one monadic type can be generalised into a multiple-
effect monad by the combination of effects using monad transformers. It is a type con-
structor that takes a monad and returns a new monad by ‘lifting’ the monad, it is defined
in HASKELL also as a type-class:

class MonadTrans t where
1lift :: (Monad m) =>ma -> tm a

This generalisation is done by taking an existing monad m, and encapsulating the type
into another monad t.

For the Maybe type, the monad transformer is defined by encapsulating the optional
value inside the monadic argument m:

newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }

instance Monad m => Monad (MaybeT m) where
return = MaybeT . return . Just
x >>= f = MaybeT (do maybe_value <- runMaybeT x
case maybe_value of
Nothing -> return Nothing
Just value -> runMaybeT (f value))

instance MonadTrans MaybeT where
1lift m = MaybeT (1iftM Just m)

Lightweight proof by reflection
using a posteriori simulation
of effectful computation

19

Chapter 2

Proof by reflection

Among the problems a computer scientist faces to, there are those whose solution is
achieved by deciding if an object has a property or not, that is where the computations are
focused to produce a ‘yes’ or ‘no’ answer for a given statement . For instance, consider
the following problem:

Congruence problem Given a set S of equivalent terms s; ~ s;, determine whether or not
two given elements s and s’ are equivalent from set S.

The word equivalent refers to the fact that a pair of objects are considered as equals
because they share the same properties or have the same behaviour under a specific sce-
nario, not only because they could have the same form or syntax. This problem does not
examine the properties of the objects but just the fact that they are related, in order to
decide if a given equivalence follows from a set of equivalences.

The meaning of equality between elements arises when we can relate them directly
by definition, that is when s ~ s’ belongs to S, or because we can go from s to s’ by
passing through some equivalences in S. This is better known as the Leibniz equality, the
ability of substituting equals by equals. Then, we say that the equivalence s ~ s’ follows
from S when a path between the elements s and s’ is found. The notion of paths is derived
from considering the relation ~ as an equivalence relation: any element is equal to itself
(reflexivity), if two elements are equal s; ~ s, then they are also related the other way
around s, ~ s; (symmetry) and given two equal elements and one of them is equal to a
third one, then the first element is equivalent to the third element: s; ~ s, and sy ~ s3
then s; ~ s3 (transitivity).

A popular and efficient solution to this problem is achieved by computing the equiv-
alence closure of the set of equivalences using the union-find algorithm due to Tarjan et
al. [37, 105, 104]. This method computes the equivalence classes of the set S and then
decide if the representatives of the classes of terms s and s" are the same.

It is based on two principal operations: one to merge two equivalence classes, by uni-
fying the representatives of the classes named the union operation, and a second operation
named find, to search for the representative of the class of a given element. Hence, this
algorithm is called the union-find algorithm.

1. We are not considering decision problems like the Halting Problem, nor even problems in the spirit of
Logic Programming.

21

22 CHAPTER 2. PROOF BY REFLECTION

There are many variations, abstractions and applications inspired on the couple union-
find leading to efficient implementations. A range of problems get better run time when
solved by computing a closure, and also the so called disjoint-set data structures, to main-
tain a structure for the elements and their representatives, lead to better data handling
([78] and [35], chapters 22 and 24).

Let us analyse some possible implementations of the intuitive solution of path find-
ing for the equivalence problem. The following is a first and very naive pseudo-code
approximation of the algorithm described above.

is_equivalent (S, <s, s’>) : Bool
C := singleton(S)
while C != S do

A :=¢C
for <si,sj> in S do union(C,si,sj)
S :=A

return (find(C,s) == find(C,s’))

The function is_equivalent expects two arguments, the set of equivalences together
with the pair of elements to be tested, and it returns a boolean value. We start by creating
an initial closure where each element is its own representative, this is achieved by the
function singleton 2. Then we have a while-loop to compute the closure of S, guarded by
the comparison between the actual closure C and the previous one S. The union function
computes the representatives and we use it to create a new closure at each iteration. The
loop stops when the closure does not change after the union operation. Then, the closure
is C and we can verify if the representatives of the elements s and s’ are the same or not
by comparing the results of the find function.

To implement this pseudo-code, the programmer may expect a comfortable way to
bring an optimal implementation where coexist all the benefits and components of ef-
fectful and imperative languages. For instance features as control-flow operators and a
global state, where a specialised data-structure is available to maintain the elements of S
together with their representatives.

A ‘more elegant’ implementation is possible by means of functional program with ef-
fects, a development admissible using a monadic extension of the language, as HASKELL
offers. Here is another pseudo-code, similar to the one given above:

is_equivalent :: Monad m => a -> a -> UnFndST a m Bool
is_equivalent S (s, s’) =
do x <= iter (\x-> \y -> union x y) S
u <- find x
v <- find y
return (u == v)

2. In a formal way, we can denote |S| as the set of single elements of a set of equivalences S: if s; ~ s; €
Sthen s; € |S| and s; € |S].

23

This program shows an imperative encoding using the monadic approach. The data-
structure S and all the functions are operations of a monad. The do-notation is a syntactic-
sugar to ease the use of effectful operators belonging to a specific monad, which in this
case is the monad transformer UnFndST a m Bool parametrized by the type of the ele-
ments in equalities a, a monad m to keep the state of the structure for the representatives
and the boolean type for the returning value 3.

The work of Conchon and Fillidtre [31], proposes a persistent data structure to main-
tain a class-partition of a given set. This functional approach also incorporates imperative
features (effects) in a functional paradigm to provide an efficient solution to union-find
problems.

We have described, quickly, two possible implementations of the algorithm. The first
one under an imperative setting and a second one that mimics a structural approach but
that belongs to a functional setting. These programming approaches could be prejudged
to be distant and opposed since the paradigms of imperative and functional programming
have been historically confronted, but this not the case in the pseudo-code exposed so far,
as the reader can see.

However, we can say that there is a third paradigm which is becoming attractive in the
programming community. As introduced earlier in this work, the certified programming
approach to problem solving provides a strict but secure development setting where the
programmer can trust the correctness of programs. In this spirit, we can use a theorem
prover to solve a subset of problems which are matter of deciding properties such as our
problem.

The reader can argue that the functional approach is enough in order to ensure that
the implemented program meets the specifications of an algorithm, but in the following
we will explore another elegant* implementation using a theorem prover which appeals
to the expressive power of a dependent type theory.

In order to solve the congruence problem via a theorem prover, the programmer sets
up a proper framework with definitions and auxiliary statements, then declares a state-
ment (a theorem or a type) which describes the problem. At the end, a program is con-
structed as the proof of the statement inside the particular framework is completed. Now,
the implementation of a solution is a matter of producing a proof. Let us explore some
ways to construct such a proof.

First, we suppose that a framework or theory for equivalences is developed in the
theorem prover, in this case CoQ°. Then, in the traditional way of proof construction,
founded by the Logic for Computable Functions, to prove the statement program we use
a rewrite tactic thoroughly until the wanted equivalence is found or not. This is carried out
by the programmer who repeatedly types rewrite H; whenever a hypothesis H; is available
to make progress in the proof.

3. There is a package developed by Thomas Schilling with the implementation of the union-find algo-
rithm: http://hackage.haskell.org/package/union-find.

4. This time, the elegant qualifier for the certified programming approach is subjective.

5. For example the library Equivalence by Matthieu Sozeau, a Type-class for setoids.

http://hackage.haskell.org/package/union-find

24 CHAPTER 2. PROOF BY REFLECTION

Thanks to the mechanism for combining tactics (tacticals), there is another way to
prove the statement. Tacticals factorise the repeated tactics and therefore alleviate the
(tedious) interaction between the programmer and the theorem prover.

We recall an important characteristic of CoQ discussed in the introduction chapter, the
conversion rule which performs reductions on every term of the language and therefore
types are likely to be evaluated. Using this feature, another way to construct a proof for
our theorem is to perform computations under the theory for equivalences, resulting in a
proof that would look as follows: simpl; reflexivity. This tactical reduces the goal and the
new goal to prove is an equality which can be solve by reflexivity.

This proposal to conduct the proof is well known as reflection, because after the trans-
formation of the goal by reduction, that is using a version of the compute tactic, most of
the time the proof is usually finished by an application of the reflexivity tactic. The pro-
gram that corresponds to the above two-tactic-proof seems to be a more natural sketch of
proof using a theory of equivalences.

In this chapter we will take a closer look at the technique of proof by reflection, which
inspires the work exposed in the first part of this thesis. We start by explaining roughly
the concept of reflection to narrow its use in theorem provers, specifically in the CoQ
system.

2.1 Reflection

As just described, regarding proof construction, most of the work is done by the user
whose reasoning can be exploited to guide proofs even under automation. In the case
of the CoQ theorem prover, several efforts have been made to incorporate techniques to
ease the process of proof construction. One of these techniques considers the practical
utility of computational reflection to write decision procedures [23, 20, 80, 48].

The intricate concept of computational reflection, or simply reflection, can be explained
grosso modo as a self-optimisation technique or as a process of reasoning and acting upon
itself [100]. In her thesis [71] and further research ®, Maes elaborates a general concept of
computational reflection: ‘an activity performed by a computational system when doing
computations about its own computation’.

Other authors, specialised in the field of theorem proving, prefer to identify a two-level
language abstraction, composed of the so-called object-language and meta-language’.
For instance, Harrison gives an accurate definition of reflection as a technique that em-
ploys a meta-logic to analyse and simplify proofs and appeals to specialised decision algo-
rithms [47].

Certainly, the above attempt to find and establish a general definition of computational
reflection is entangled and for sure, leaves the reader obfuscated. We hope to unravel this
definition in the rest of the chapter.

6. http://www.idi.ntnu.no/grupper/su/courses/dif8901/presentations2001/t05-maes.pdf
7. The meta-language is a language to make statements about statements of the object-language.

 http://www.idi.ntnu.no/grupper/su/courses/dif8901/presentations2001/t05-maes.pd f

2.2. PROOF BY COMPUTATION 25

As starting point, we go back to the definition of Harrison where logical theories are
useful as their own meta-theory to make and prove statements about themselves. The
two-level abstraction in theorem provers like COQ relates the Calculus of Inductive Con-
structions as meta-level and the computational model as object-level. Therefore the re-
flection is done in between these levels: a property or theorem stated at the object level
is proved by reflecting a similar proof of the translation of the property in the meta-
language.

As we will see, this approach of proof production differs from the traditional proof
style, where each step in a proof is correct thanks to a tactic. In the following we are
going to explore two different approaches of proof by reflection.

2.2 Proof by computation

The reflection technique in its form of proof by computation is used by CoQ since
types may embed computation, as we saw in the certified programming approach to the
solution of the equivalence problem.

Proving a statement by reflection is carried out by doing computations until the proof
has converged into a last goal which is solved by a test of equality, commonly as an
instance of the reflexivity of equality. Therefore, some proof steps are replaced by com-
putations which reduces the size of proofs and also the time of proof-term type-checking
whose verification also requires computation. In this way, a hard theorem or statement is
demonstrated only once and then multiple instances can be proven easily.

Consider a problem to be solved in C0Q, it can be stated as a property P at object level.
In a general setting, the ingredients to perform a proof using reflection are the following:

e a targeted class of problems defined by a type B, for the reified property R (P),
where the function to reify a term is a translation from the meta-level to the object-
level,;

e a boolean decision procedure for B, say D;
e an interpretation function | : B — Prop
e and a soundness proof of the decision procedure.
The theorem stating the soundness of D, let name it sound, has the following type:

Ve :B, Dx =true — |z

And a proof of sound applied to a specific instance b = R (P) results in a proof-term for | b
with the form:
sound b (refl_eq (D b))

The reflection technique guarantees that the proof-term above has type | b only if D b
is convertible to true. In this way, the proof of property P that we attempt to construct is
achieved through the proof of IR (P).

Beside the advantage of performing computations at type level, we have to stress two
facts related to decision procedures in this approach:

26 CHAPTER 2. PROOF BY REFLECTION

e for writing the decision procedure D, the programmer is restricted to only use total
functions since COQ expects that each procedure in it terminates

e and the proof of soundness of D could require extra work that may be of greater
difficulty than the proof of the original goal.

As a result, the implementation of decision procedures is sometimes over simplified to
shorten the proof of soundness, which may lead to inefficiencies.

Nevertheless, there is a powerful extension for proof by reflection, SSREFLECT ex-
tension, which is actively used in long mathematical proofs, for instance the computer-
checked proofs of the 4-colour theorem and the Odd Order theorem.

Small Scale Reflection extension for CoQ

The Mathematical Components project leaded Georges Gonthier® aims to show the
modular formalization of mathematical theories under a computational environment. The
project contributes to CoQ with the small scale reflection extension or SSREFLECT [42], a
set of extensions for a pervasive use of computations in formal proofs.

Its main objective is to provide a methodology to prove complex theorems, where
there is an extensive use of computations with symbolic representations. Since the COQ
system is interactive, all the functionalities provided by the SSREFLECT extension stay
always guided by the user through a strong framework for proof management.

Among the functionalities, the most prominent ones are: an extension of the proof
scripting language, a support to perform forward steps in proofs and the improvement of
some basic tactics of CoQ. All this changes are meant to enhance the experience while
doing formal proofs by linking a logical and a symbolic approaches.

However it demands an expert user level of CoQ as the decision procedures demon-
strated under this extension are hard to prove.

2.3 Certifying proof by Reflection

Another variant of the reflection technique is named certifying proof by reflection,
which reduces the cost of development of decision procedures as the user can code and
run efficient decision procedures in a general purpose programming language. The so-
phisticated decision procedure is used as an untrusted oracle by the theorem prover. The
oracle generates a certificate which only needs to be validated [44].

In the following we describe the ingredients of this variant:
e a type B which provides a description of a class of problems in COQ;

e an untrusted but (hopefully) efficient oracle D written in a general purpose language
which generates certificates;

e a corresponding interpretation function | from class B to the type Prop;

8. Official site: http://www.msr-inria.fr/projects/mathematical-components-2/

 http://www.msr-inria.fr/projects/mathematical-components-2/

2.4. DISCUSSION 27

e a certificate checker, check, in CoQ whose type is Vz : B, C — bool where C is the
type of the certificates

e and a proof of the soundness of the certificate checker.

In this variant, the type of the soundness theorem soundcpeck is
Vo : B, Vy: C, checkzy = true — |z
Then, for a specific instance b = R(P) of type B, a proof-term for | b has the form:

soundcheck b (D b) (refl_eq (checkb (Db)))

The proof-term corresponding to demonstrate the decision procedure statement must
include the certificate and its validation. Thus the corresponding proof-term becomes very
heavy. Nevertheless, the definition of the certificate checker is simpler than the decision
procedure.

We can notice some features of the certifying proof by reflection:

e the user can implement an efficient oracle which is no longer trusted, since the
language in which the implementation is done offers big facilities but is unreliable

¢ and the decision procedure always returns a certificate that must be checked by the
certificate checker which is easier to prove than the decision procedure.

Despite the effort invested to develop an efficient decision procedure as an oracle, its
implementation has only weak guarantees, i.e. each time we want to use a certificate, the
checker will be called to validate it. Only if the certificate is validated, then the property
holds for the considered instance. Then the proof of P corresponds to proof of term I b.

2.4 Discussion

Choosing the better solution to the equivalence problem among the approaches to
reflection described above, depends on the user experience while performing proofs.

The two approaches presented in the preceding sections are illustrated in Figure 2.1.
Recall that they share almost the same components and the key part in each style consists
in writing decision procedures and proving their soundness.

D D
R(P): B D(R(P)) : bool R(P):B D(R(P)) : C
(P):B——2 DR(P)): boo P):B—L . D(R(P))
R sound R soundcheck.check
P : Prop = IR(P) : Prop P : Prop = IR(P) : Prop
77 : 73 —A : 7) CONV 7{? : P A : 73 CONV

Figure 2.1 — Two styles of Proof by reflection: original and certified.

28 CHAPTER 2. PROOF BY REFLECTION

The main objective is to find a proof for P and after the reflection technique, the proof
A obtained from conversion of term | R(P) gives the proof.

In the original style of proof by reflection, the language does not have native imper-
ative features, like effects, and usually is a total programming language. Therefore, the
decision procedure of the congruence problem and its proof is distant from the solution of
the union-find algorithm but this contrasts with the clarity of the statement and its (short)
proof performed by reduction. The final proof-term is a proof of equality, which is small
and its type-checking is just a convertibility check.

The following is the instance of the above diagram, for the case of proof by computa-
tion of our decision problem of equivalences, where 7 is the type of the elements in the
equivalences, the data-type for pairs represent an equivalence and a list of pairs represents
the set of equivalences S:

e the class of problems is described by the type list (7 x 7) x (7 x 7)

e the interpretation function embeds the above type into the meta-level
1(S, €i,J)) : Prop
e applying the decision procedure gives a value of boolean type D (S, {i,j)) : bool

e and the theorem which states the soundness of the decision procedure is
sound : Vx : B, Dx = true — Ix.

Then, if we show that D (S, (i, j)) = true then we can conclude that s; ~ s;.

In a certifying style, the decision procedure is written in a general purpose language,
typically an effectful language, and is mostly used as an untrusted but sophisticated or-
acle by the theorem prover. The final proof-term has to embed the certificate check and
therefore it cannot be small as in the proof by computation style, moreover there must be
a dedicated checker for the certificate.

In our example, the equivalence decision procedure is implemented under the certify-
ing approach as follows: the two types B and | are the same to the ones in the proof by
computation approach, then:

e the untrusted oracle is the decision procedure which returns certificates: D : B — C
e the theorem to check certificates is: check : Vx : B, C — bool
e and the soundness statement is: soundcpeck : V& : B, v : C, checkzy = true — | .

In this setting, the programmer has more freedom to give an efficient implementation of
the decision procedure.

2.5 Towards another approach to proof-by-reflection

The above analysis of three approaches, seeking an optimal solution for our problem,
reveals their advantages. The first, an imperative approach, is an efficient solution in a
powerful and enriched language. The second, a functional with an imperative flavour,
proposes a solution closer to the previous one in an environment where the verification of
the specification is reliable. The third one offers the correctness of the program implicitly
in a theorem prover.

2.5. TOWARDS ANOTHER APPROACH TO PROOF-BY-REFLECTION 29

Our aim is to exploit the benefits of certified programming to have correct programs
by construction. The functional and imperative solutions are used in the two approaches
to reflection and exploited their benefits. We can think in carry further their use. Then,
in order to improve the use of theorem provers, consider a monadic extension of the
Type Theory (on which is based the theorem prover), to add the imperative facilities as
offered the monadic approach in functional programming. This will offer the advantages
mentioned before: the reflection technique ensures shorter proofs and the monads will
allow the user to develop efficient decision procedures, all in the same certified paradigm.

However, a theorem prover like COQ imposes an environment where each program
must terminate. It is possible to describe terms that diverge but it is not permitted to eval-
uate them. The monadic extension needs to ensure that each monadic statement written
in the enriched language is total, this could be guarantee by a certificate of termination.
But which is the best oracle to deliver certificates than a correct program?

The proposal we have in mind is to use a decision procedure as its own oracle. A
procedure is constructed and verified in a safe and efficient language (the monadic exten-
sion) whereas is not evaluated, it will be simulated by means of a guided evaluation (to
ensure its termination). The guided evaluation is performed by using a certificate which
is the result of a ‘real’ execution in an effectful language.

We propose a new approach to reflection as just described [30]: the idea is to use an
(untrusted) compiled version of a monadic decision procedure written in Type Theory within
an effectful language, as an efficient oracle for itself.

The next chapter explains the proposal of reflection by simulation, a novel lightweight
style of proof by reflection together with a formalisation of the requirements for a monadic
extension of a type theory which is the first contribution of this thesis.

30

CHAPTER 2. PROOF BY REFLECTION

Chapter 3

Reflection by simulation

This chapter presents the formalisation of the principle of a posteriori simulation in
the simply typed A-calculus, in order to study the correctness of this new approach and
the characteristics of monads to be simulable.

The decision procedures involved in this novel style are written in a total language
based on Type Theory, which is extended with monads as we have suggested earlier.
The monadic extension is inspired in the approach to add effects in a purely functional
framework, as commonly found in HASKELL programs. It also uses oracle certificates
to ensure the efficiency of decision procedures. In this way, programmers have a set of
effects at their hands (references, exceptions, non-termination) bringing the amenities
of a general purpose programming language, together with dependent types to enforce
(partial) correctness.

The choice of a dependent Type Theory framework, in the final implementation, im-
poses some constraints. The strict and total environment of CoQ does not allow the user
to write and execute a total function which at the end, is a value encapsulated by a monad.
Specifically, there is no total function of type M+ — 7 for a given arbitrary monad M r.
This restriction is minimised by means of what we characterise as a simulable monad, that
will be presented and developed later on.

A posteriori simulation The evaluation of decision procedures, in monadic style, is de-
signed to be executed or simulated with the help of a certificate that we call a prophecy
and depends on the simulable monad.

After the decision procedure is programmed, it is compiled into an impure program-
ming language (OCAML) with an efficient computational model which performs all the
effectful computations. The extraction procedure in CoQ plays the role of compilation and
is possible to be adjusted as needed [63]. The compilation maps the monad operators to
effectful terms and it also instruments the code to compute a small piece of information
that will serve as prophecy to efficiently simulate a converging reduction.

Finally, a relation of a posteriori simulation stands between the compiled monadic de-
cision procedure and the original monadic procedure through the collected information
as a prophecy. The lightweight approach is depicted in Figure 3.1 for a decision proce-
dure D b.

31

32 CHAPTER 3. REFLECTION BY SIMULATION

Coo

Reify the goal R(P) as b
compile & instrument D b

Define a decision procedure
D:V¥x:B,M (Ix)
C(Db) —,
F—/ No proof of Ib

The evalua- in time allocated
tion converges by the user
and gives a prophecy p 1

Type-check the proof-term for | b
sound (refl_eq (is_unit (|}, Db)))

Figure 3.1 — Lightweight proof by reflection

As the reflection technique requires, the property P is reified into a term b of type B.
Then, a decision procedure D for terms of type B is given and its return value has a
monadic type for interpreted terms Ix. The compilation of the instance of the decision
procedure D b, is instrumented to collect information during its execution in the effectful
language. This resulting piece of information will be the prophecy to simulate back the
decision procedure in the CoQ proof assistant.

Once inside the effectful language, the compiled term is executed: either the execu-
tion takes a long time or it does not finish, or the evaluation converges. In the first case,
the user can stop the execution and hence no prophecy is generated, meaning that the
simulation process will not be finished. The second case, where the evaluation converges,
the compiled term gives a prophecy p which is used as a certificate for the guided evalu-
ation back in the theorem prover. The proof of the soundness theorem is the proof of the
property P: sound (refl_eq (is_unit (|, Db))).

We are interested in the formalisation of the above process and moreover the require-
ments a monad needs to achieve a simulation. The formalisation proposed uses two
languages, one to represent the type theory with a monadic extension and one for the
impure language where the prophecies are generated. We make this formalisation over
the simply typed A-calculus but we think that the results presented are extensible to full
Type Theory and OCAML.

On the one hand, we define \y a purely functional and strongly normalizing program-
ming language parametrized by a monad M. On the other hand, we define)\, ; an impure
functional and non-terminating programming language. The parameter monad M of \y
is abstractly specified by a set of requirements. Accordingly, A, | offers impure operators
that match the effectful primitives of monad M. Through this chapter, we develop both
languages offering the constructions needed to formalise the lightweight style.

3.1. Aym A PURELY FUNCTIONAL MONADIC LANGUAGE 33

Roughly speaking, given a computation® ¢ of a monadic type M 7, we determine on
which conditions there exists some information p such that the evaluation of the com-
putation using such information can witness an inhabitant of type 7. This forces a close
relation between the two languages, the soundness of the simulation shows this relation:
if a compiled computation C(¢) converges to a value while recording some information p
in A\, |, then the same evaluation can be simulated a posteriori in Ay using that piece of
information as a prophecy. This prophecy completes the computation to get a reduced
computation |},, ¢ convertible to a monadic value unit ¢, where ¢’ is the inhabitant of the
proof we are looking for.

The two following sections describe the languages \y and A, . Then we link both
languages by the principal theorem of soundness of the a posteriori simulation. Finally we
discuss some examples of simulable monads and in the chapter conclusions we give some
closing remarks and comment the available plug-in for CoQ, Cybele? for a lightweight
proof by reflection.

3.1 J\m a purely functional monadic language

The language)\ is an extension of the simply typed A-calculus a la Curry with eval-
uation contexts to characterise a call-by-value small-step semantics. The language, its
dynamic semantics and the typing rules are depicted in Figure 3.2.

The terms of language)\ include variables, lambda abstractions, term applications
and a set of constant symbols c. Constants include the usual monadic combinators for
effects [111]: unit lifts a term of type 7 as a computation of type M 7, and bind composes
two given computations.

An additional constant is | whose role is to perform a posteriori simulation using a
prophecy value p of type P. When applied, instead of writing | ¢ p, we write |, ¢ *> which
is read as ‘the computation of ¢ reduced using the prophecy p’.

Prophecies are distinguished constants that will guide and complete the reduction of
a monadic term. The characterisation of prophecies will be explained later by a set of
requirements shared between languages Ay and)\, ;. We emphasise that each prophecy
is produced in language A, by a compiled computation, this will be established and
formalised in the next section where the compilation of terms of the monadic language is
presented.

Constants are kept abstract by regrouping them into the syntactic category V. They
include constants of basic types and other specific effectful primitives ¢, for example re-
cursion or state operators.

Reduction of terms is directed by evaluation contexts which are described by the syn-
tactic category £. They are just terms of the language with one ‘hole’ (represented by | |),
containing an emphasised redex which is the focus of the call-by-value reduction.

1. The decision procedures are programs or monadic terms, from now on we call them computations.
2. http://cybele.gforge.inria.fr
3. This convention is used along the chapter.

http://cybele.gforge.inria.fr

34 CHAPTER 3. REFLECTION BY SIMULATION

t,r, s x|l Ax.s|rs|c
¢ == unit | bind |||V E == []|vE|Et|bindEL|],E
w, v, w = x| Ax.s|unitr
T, O o—T7|M7|P ' == o|I', 2"
’Dynamic Semantics‘
/
B-RED CoMP-RED RED t—1
(Ax.s) v— sz = v] bind (unit) s — s E[t] — &[]
]Static Semantics\
" el Iz +s:71 '-r:0-—>r I'-s:0
— VAR ABS ApP
'z:7 ''EXMe.s:o—7 I'Frs:T
Pt:7 I'-r:Mo ''s:0—> M7
. UNIT . BIND
I'unitt: M7 I' -bindrs: Mt

'—t:Mr 'p:P
F'Hlpt: M7

EVAL

Figure 3.2 — The language \y

In order to accomplish a call-by-value reduction strategy we also distinguish the syn-
tactic category of values which include variables, \-abstractions and terms whose head
symbol is the unit constructor. The reduction process is performed in the traditional way
by a step-by-step rewriting of the emphasised redex via some axioms and the context
rule RED.

There are three reduction axioms: the usual -reduction for lambda terms (3-RED),
a reduction of the composition of computations (CoMp-RED) and a set of d-reductions
for unfolding constant definitions (J.-RED) which is left abstract until basic types and a
monad are fixed.

Each constant c in V is a term with a non-negative arity, in particular when a fully ap-
plied constant is reduced, then the corresponding reduction axiom will be triggered. For
example, numerical constants and primitive operations, like addition, are basic constants
and only the full-applied operations can be reduced.

The intended reduction behaviour of constant || is similar to the monadic primitive run.
The action of the later is to take a monadic term, unwrap the term from the monad and
reduce it retrieving a result of a possibly non-monadic type. Here, the simulation constant
is used to represent the fact that a monadic term must be reduced using a prophecy
returning a computation.

3.1. Aym A PURELY FUNCTIONAL MONADIC LANGUAGE 35

Routine operations over terms that accompany any lambda calculus (see the prelimi-
naries) are also assumed for language Ay, such as the set of free and bounded variables,
a-conversion, substitution, etc. The substitution is defined as a mapping between vari-
ables and closed terms.

The full reduction of terms is done by the reflexive and transitive closure of the small-
step semantics. We are interested in reasoning on [3J-convertibility between terms, then
we write ¢; = t, when ¢, is Sd-convertible into ¢,, that is when both terms fully-reduce to
syntactically equal terms.

With respect to the static semantics, types in Ay include functional types and type
constructor applications, which are assumed to be well-formed. M and P are the type
constructors for monad and prophecy, respectively.

The type assignment uses typing environments or contexts, which are sets of variables
including the free variables of the term to be typed. Typing environments I', are defined
inductively by the empty context and the binding operation to add a variable with its type
to a given context. We say that a variable is in the last position in a context when that
variable appears in the rightmost place in it.

The judgements for type assignment are the last set of rules in Figure 3.2 relating
contexts, terms and types: lambda terms, abstractions and applications, have the tradi-
tional rules inherited from the simply typed A-calculus. For the monadic combinators, the
typing rules are as expected: the UNIT and BIND rules assign a monadic type to the corre-
sponding terms unit and bind. Since we are reasoning under an abstract monad M we left
undefined the typing rules for the monad primitives in V. Finally, the applied constant |
has a monadic type which is captured by rule EVAL. As we mentioned before, only the full
application of constants to terms can be reduced and the typing rules described enforce
this *.

In the following we state the requirements for prophecies and monads needed to sup-
port our a posteriori simulation approach to reflection. The remaining of this section is
dedicated to some definitions and state the lemmas and theorems to prove properties
about the language.

3.1.1 Simulation

Up to now, we stated the basis of a simple language with a monadic extension where
computations can be expressed. We set the features addressed to simulate computations
in the system \y through a set of requirements where the standard notion of monad is
extended with a mechanism of simulation directed by a prophecy.

Definition 3.1 (Simulable monad)

A type constructor M is a simulable monad if it is equipped with constants unit, bind, | and
an associated type for prophecies P, such that the Requirements 0, 1, 2, 3 and 4 are fulfilled
by well-typed closed terms.

4. The reader can always deduce the type of a non-fully applied term by the rules given in Figure 3.2,
since the judgement hypotheses appear in the same order as the sub-terms are applied. For example,
consider | whose typeis M7 — P — M.

36 CHAPTER 3. REFLECTION BY SIMULATION

Requirement 0 (About prophecies)
We require the existence of a total order < over values of type P with a minimal element
denoted as 1.

Definition 3.2 (Convergence)

Consider the minimal element of any collection of prophecies, we write xt for |, (unit t)
and we say that a computation has converged if there exist a prophecy p and a term r such
that |, t is convertible to *r. If term t is closed, then the reduced term r is a value.

Requirement 1 (Standard monadic laws)

bind (unit t) f = ft
bindt (Az.unit x) = t
bind (blnd tl tg) t3 = bind tl ()\.QT bind (tg .17) tg)

Requirement 2 (Evaluation)

Vit,p, |punitt=unitt.
V't s,p1,p2, p1 < pg and |, t = *s implies that |,, t = xs.
Vp, Up bind tl t2 :Up bind (Up t1>t2

Definition 3.1 states five requirements for a monad to be simulable. The require-
ment zero ensures the existence of an order over prophecies while the first and second
requirements are the conditions to conduct the simulable reduction of computations in
system A\y. Requirements 3 and 4 are the conditions for a successful information track-
ing from the compiled version of a computation in order to simulate it back. They are
described in Section 3.2, which presents the oracle language, a lambda calculus with an
operational semantics devoted to collect information to be used as prophecy.

3.1.2 Properties

The language exposed so far has the properties of the simply typed A-calculus: unique-
ness of types, closed and well-typed terms are either values or can make a reduction step
(progress property), dynamic semantics preserves types (type preservation), and any well-
typed term is normalizing, that is, the reduction yields a normal form. We give the proof
of these properties as well as some auxiliary definitions and additional properties, starting
by some properties related to type assignment, following a well known presentation of
type systems (Pierce et al. [92]).

Lemma 3.1 (Permutation of contexts)
If I'—t:7andI" is a permutation of I then I" ¢ : 7.

Proof Induction on the type derivation I' - ¢ : 7 (1).

e CaseI'—x: 7.
Consider an environment [where variable = belongs to. Then, any permutation I"
of I has variable x and therefore I'' - z : 7 holds.

3.1. Aym A PURELY FUNCTIONAL MONADIC LANGUAGE 37

The induction hypotheses are the properties instantiated for the corresponding premises
of the typing rule (1).

e Case '+ A\z.s:0 — 7.
The premise in the typing judgement is: I', 27 - s : 7 (2).
The induction hypothesis (2) gives a typing assignment for the sub-term s under a
permutation of context I', % which we call IV = I", 27, that is a permutation in
which the abstracted variable is in the last position of the environment and I is a
permutation of I". Then, we can apply rule LAM with the above information and
conclude that term Az. s has type 0 — 7 using context I'”.

e Case['rs: 7.
In this case, the induction hypotheses are the statements of permutation and weak-
eningfor'+-r:o0—->7@)and '+ s: 0 (4).
Take the same permutation of environment I, say [for premises (3) and (4). Then
by rule App we can assign the type 7 to the term application r s under I".

e Case I' - unit t' : M 7.
The induction hypothesis considers a permutation of context I" such that IV - ¢ : 7.
Then, by rule UNIT, it is possible to assign type M 7 to term unit ¢’ using the above
judgement.

e Case ' - bindrs: M.
This case takes two induction hypotheses, one for I' — r : Mo and the second one
forT's:0—> M.
Consider the same permutation in the instantiations of the induction hypotheses.
Then, we can use the typing rule BIND to give type M 7 to t.

e Case' |, t' : M.
From judgement I' - ¢ : M 7, the induction hypothesis states that ', 47 ' : M 7.
The induction hypothesis ensures the typing assignment M7 for term ' under a
permutation [of context I'. Then, taking the same prophecy p we can assign the
monadic type M 7 to |}, ' under I". O

Lemma 3.2 (Weakening of contexts)
If Tt : 7 and given a variable y of type 7’ such that y ¢ T, then T, y™ — ¢t : .

Proof. The proof is performed by induction on the type derivation I" - ¢ : 7 (1).

e CaseI'-z: 7.
Take any environment I" in which the variable z of type 7 belongs to. Adding a fresh
variable y of type 7’ to the typing context does not modify the type of variable x
following rule VAR.

The induction hypotheses are the properties instantiated for the corresponding premises
of the typing rule (1).

e CaseI' - M\x.s:0 — 7.
The premise in the typing judgement is: I', % s : 7 (2). We want to prove that,
under an extension of I, we keep the same arrow type for A\z. s. From the induction

38

CHAPTER 3. REFLECTION BY SIMULATION

hypothesis (2), we can extend the context into I, 27, 3° (3) and preserve the type
of s. Take a permutation of the above context (3), where in its last position appears
the variable x. Then we can use rule LAM and conclude.

CaseI'-rs:T.

In this case, the induction hypotheses are the statements of permutation and weak-
ening forI'—r:0 — 7 (4) and I" + s : o (5). The extension of I" with y of type 7’ in
judgements (4) and (5) generate judgements: I, 4™ - r:0 — rand I, y" - s: 0.
They can be used as premises in rule App to conclude that T, "' rs: 7.

Case ' - unit ' : M 7.
The induction hypothesis I', ™ — ¢’ : 7 as premise of rule UNIT allows to prove that
term unit ¢’ has the same type under the above context extension.

Case I' - bindrs: M.

This case takes two induction hypotheses, one for I' + r : Mo and the second one
for’'s:0 > M7

Take the extension of context I" used in the induction hypothesis T, 4™ . By applying
the rule BIND to judgements T, 4™ -7 : Mo and T, 4™ - s : 0 — M1 we can assign
the type M 7 to term bindr s.

CaseI' |, t' : M.

From judgement I' - ¢ : M 7, the induction hypothesis states that ', 4™ ' : M 7.
Then by applying rule EVAL to the last judgement, we can conclude that the type
of |, t is M7 under the context extension. O

When a term with a specific form has a given type, we can deduce the form of the type
from the typing rules in Figure 3.2, this is the inversion lemma:

Lemma 3.3 (Inversion of typing in Ay)

IfU' o :7thena” .

IfT" = A\x.s: 7 then there exist o and 7’ such that T =0 — 7/ and I, 2 + s : 7.
IfT'+ rs: 7 then there exists o suchthat ' —r:0 > 7and '+ s : 0.

If " - unit t : 7 then there exists 7’ such that T = M7 and '+t : 7'.

If " - bindr s : 7 then there exist o and 7’ such that T = M7, ' r:Moand ' + s :
oc— M7

IfT' |, t : 7 then there exist P and 7’ such that T = M7, ' =p:Pand ' —t: M7".

Proof The proof is direct from analysis of the last rule used in the typing derivation of
the hypothesis. In each case there is always a single choice leading to a unique shape for
type 7. []

Using the typing rules of \\;, we ensure the assignment of a unique type to any term
in the language.

Theorem 3.4 (Uniqueness of types)
Consider a typing context I' and a term t. If t is typeable under T" then it has a unique type
and there is one derivation to build it.

3.1. Aym A PURELY FUNCTIONAL MONADIC LANGUAGE 39

Proof. The proof is to show that for a given term, the type derivation is unique. This is
achieved because the static semantics of the system is syntax directed and at each step of
the derivation there is a single choice of the rule to be used. O

In the definition of language A\, we gave a syntactic condition to distinguish values
as irreducible terms. However, we can also decide the form of a closed value by knowing
its type. They are the canonical forms and they are useful in later proofs.

Lemma 3.5 (Canonical forms of \y)
e Ifo v: 0 — 7 then there exist x and s such that v = A\x. s.

e If o v : M7 then there exists r such that v = unit r.

Proof. Recall that among the values defined in Figure 3.2, there are lambda abstractions
and computations under the unit constructor. This minimises the potential cases of closed
values to be analysed in the proof.

The first type assignment gives a function type to value v. This is possible through rule ABs
and from the two available values, only the function abstraction can be used in that rule.
The type assignment ¢ — v : M7 can not be used to type an abstraction as stated in the
inversion lemma 3.3. Therefore unit r for some term r is the value that fits best and the
applied rule is UNIT. O

The semantics of language)\, ensures the progress of any chain of reduction, and
therefore, for closed and well-typed terms we avoid stuck reductions.

Theorem 3.6 (Progress)
If o -t : T then either t is a value or there exists t' such that t — t'.

Proof. Induction on the derivation of & |- ¢ : 7 and case analysis of the evaluation contexts
used in reduction.

e Case o - A\x.s: 7.
The theorem holds for any lambda abstraction since it is considered a value.

e Caseob17s:T.
The term application is well typed and by inversion 3.3 we know that the sub-
terms r and s have type ¢ — 7 and o respectively. Consider the induction hypothesis
instantiated for them, we analyse the following cases:

e If r is a value v of function type then it is a canonical form, i.e. an abstraction
as stated in Lemma 3.5. Then, we proceed to inspect term s: if it is a value then
we can apply the axiom -RED to reduce and therefore there exists a term ¢'.

If it is not a value, then by induction hypothesis, there exists a reduction s —
s’ which can be applied as premise in rule RED for context v £.

e If r is not a value, we can ensure a reduction of term r s by means of the
reduction of r in rule RED over context £ s.

e Case o |~ unit r : 7.
A term of the form unit r is already a value.

40 CHAPTER 3. REFLECTION BY SIMULATION

e Case o |- bindrs: 7.
Consider the two instantiations of the induction hypothesis for » and s of type Mo
and 0 — M ¢’ respectively.

e If r is a value, then by Lemma 3.5 it is a canonical form: unit »’. Then, we can
apply the reduction axiom COMP-RED to reduce computations.

e If r is not a value, then we can perform a reduction on it and therefore, exists
term ¢’ which is the reduction of context bind £ s.

o Case o |, t' : 7.
The induction hypothesis for this case is the statement for term ¢’ which by inversion
has type M 7’ for some 7'.

e If ¢ is a value then, following Lemma 3.5, it is a canonical form say unit r.
The proof is to show that |, unit » (1) is a value or it can make progress. By
Requirement 2, we ensure the progress of term (1) (through the corresponding
o-rule of |).

e If ¢’ is not a value then a reduction can be done inside the context |}, £. O

Another property relating the static and dynamic semantics, is the theorem which
shows that after a reduction step of a well-typed term, the type of the reduced term
remains the same. To achieve this proof, we must ensure the preservation of the type
after a substitution which will be useful in the case of type preservation of applications,
we prove this property and then the theorem for type preservation.

Lemma 3.7 (Type preservation under substitution)
T, 2 +t:7andT +v:othenT -tz = v]: 7.

Proof. Suppose that I' - v : ¢ (1). The proof is carried out by induction on the deriva-
tion I + t : 7 where I" = I', x°. We analyse the cases of the last rule used in the
derivation.

e CaseI', 2% -y :T.
If y = x then 7 = ¢ and the variable preserves the type after the substitution. If the
variables are different, then the substitution does not affect variable y which already
belongs to I' and keeps its type 7.

o CaseI', x7 - \y.s: 7/ — 1.
Choose the variables x and y to be different. By inversion Lemma 3.3, we ensure
that I - s : 7 where I/ = T, 27, 4" . Following Lemma 3.1, take a permutation of
environment [where the right-most variable is z. Then the induction hypothesis
preserves the type of s after applying the substitution: I', y™ s[z := v]: 7.

Finally we can assign type 7/ — 7 to the abstraction \y.s [z := v] under environ-
ment " using the typing rule LAM.

e Casel', 2% rs:T.
This case has two induction hypotheses for IV 7 : 0 — 7 and I'' + s : o, the terms
preserve their types after the substitution. Then we can derive the type 7 for the
application r s using rule App with context I'.

3.1. Aym A PURELY FUNCTIONAL MONADIC LANGUAGE 41

e Case ', 7 - unitt' : M 7.
By inversion, the type of term ¢ is 7 and by induction hypothesis, the type of
t'[x := w] is preserved. Then, using rule UNIT the last term has type M7 and
therefore the type is preserved.

e CaseI', 7 + bindrs: M.
The inversion Lemma 3.3 gives the types for terms r and s, Mo and 0 — M~
respectively using the type context I'. Then, by induction hypothesis both terms
preserve their type after substitution. To prove that term (bindrs) [z = o] =
bindr [z := w]|s[z := wv] has also type M, it is sufficient to apply the typing
rule BIND with the induction hypotheses as premises.

o CaseI', 27 |, t' : M.
The induction hypothesis for this case is the type preservation of the corresponding

type M 7 of term ¢ after substitution [x := wv]. Then, the application of rule EVAL
with the induction hypotheses I', 7 —t' : M7 and I', % p : P shows the preser-
vation of type M 7 after the substitution (|}, t') [z = v] =], t'[z = v]. O

Theorem 3.8 (Type preservation)
IfT'—t:7andt — t' then "+t : 7.

Proof. Induction on the last rule used in derivation I" - ¢ : 7 with analysis of reduction of
term ¢.

e CasesI'xz:7, ' Ax.s:7and I' - unit r : 7.
A variable, a lambda abstraction or a unit-term cannot be reduced, so we discard
this cases.

e Case['—rs: 7.
By inversion Lemma we know that there exists o such that ' + r : ¢ — 7 (1)
and I' s : o (2). We proceed by analysis of the reduction of the application.
e 3-RED where (Az.7") v — 7' [z = v].
In order to assign a type to 7’ [z := wv] we use Lemma 3.7 with I', 27 —+' : 7
obtained by inversion of (1) where r = Az.7’.

e RED where £[s] =vsand s — .
By induction hypothesis, term s’ preserves the type o. Then, we use this hy-
pothesis together with (1) in rule ApP to assign type 7 to term v s'.

e RED where &[r] =rsand r — 7.
This sub-case uses the induction hypothesis of typing of r’ together with hy-
pothesis (2) in rule App. This gives the type 7 to the application 1’ s.

e Case ' - bindrs: 7.
We ensure by the inversion Lemma that there exist types o and 7’ such that 7 = M 7/,
F'r:Mo @ andT'+ s: 0 — M7’ (4). We analyse the ways of reducing the
term bind r s.
e COMP-RED where bind (unit r’') s — s[z = t/].
The terms unit »’ and s are well typed and by inversion we ensure that ' and s
have type o and (4) respectively. Then we can apply Lemma 3.7 with these
typing statements to ensure that the substitution s [z := 7’| has type M 7.

42 CHAPTER 3. REFLECTION BY SIMULATION

e RED where £[r] = bindrs and r — 7.
The rule BIND assign type M 7’ to term bind 7’ s using I — 7’ : M o, which holds
by induction hypothesis, and (4).
o Case ' -, t' : 7.
We know, by inversion, that 7 = M7’ for some 7/ and that ' ¢ : M7’ (5) and T" -
p: P (6).
e RED where &[t'] =], t'.
Consider the induction hypothesis for ¢ — t” which preserves type M 7’. Then,
to prove that I' |, t” : 7 we use the above hypothesis together with (6) in
rule RED.

e A §-reduction of |.
Since the monadic type M 7 is abstract, then the typing preservation must be
ensured by the definition of rule for reduction of |. O

In Theorem 3.4 we showed that the typing assignment is deterministic. We can ensure
the same property for the reduction relation as stated in the following lemma:

Lemma 3.9 (Determinism of dynamic semantics)
The small-step reduction — is deterministic.

Proof. The reduction strategy imposed by the dynamic semantics through the evaluation
contexts (call-by-value with left to right) gives a unique derivation. Il

Normalization

The normal forms are terms on which it is not possible to make progress, that is,
terms that do not contain any redexes. They include the values of system \y and other
irreducible terms as defined by the grammar in Figure 3.3.

>

Ae.s |unit i |m |t
m u= x|c|mt|bindmi

Figure 3.3 — Normal forms of Ay

In order to prove that any well-typed term has a normal form, that is for any term ¢
there exists a normal form ¢ such that t —* £, we follow the approach of Joachimski and
Matthes [56] where two logical relations W and WN f are defined to characterise the
normal forms in \y defined above.

The relation WA, defined in Figure 3.4, has four cases for terms with a specific shape
which verify recursively the normal forms of their sub-terms. Another case for ground
cases, characterised by relation WL. And a final case to make emphasis that reduction
lead to normal forms.

Prophecies in \y are considered as constants and the membership of constants in
relation WA is ensured by the cases of the ground relation WV, they are abstract and will
be defined after establishing the basic types.

3.1. Aym A PURELY FUNCTIONAL MONADIC LANGUAGE 43

W (z) if 2" eT.

W (e) if Tc:T.

WE (1 s) if T=rs:7, W, (r) and WN? (s).
WNL . (\z.s) if I Av.s:0 —7and WNE™ (s).

WNE (rs) if Trs:7, WNL__(r) and WN' (s).

WAN . (unit) if T unitt: M7 and WNL (t).

WAN 3, (bind 7 s) if T+ bindrs: M7, WA, (r) and WNT_ . (s).
WA (1) iF W (1),
WANE (1) if D —t:71, t— t' and WNT ().

Figure 3.4 — Logical relation for weak normalisation.

To complete the definition of the logical relations, the completeness and soundness
of WAL are proved below. An auxiliary lemma of substitution of normal forms is also
demonstrated.

Lemma 3.10 (Substitution in YWAN/)
Consider WN'L (t'). If WN'L' (t) where I' = T, 2° then WN (t[z := t]).

Proof Suppose that WA~ (s) (1). To prove that WAL (¢ [z := s]) we proceed by induc-
tion over WAL ().

o Case WNT' (\z.s).
The substitution gives the term Ax.s[z := t]. In order to show that this term be-
longs to relation WA we must prove that the body-term also belongs to the relation.

This holds by the induction hypothesis WA™L"*" ().

e Case WAL (rs).
By induction hypothesis, we know that WAL __(r[z := #])and WA (s[z = t]).
Following the definition of the logical relation we can conclude that
WE(r[z == t]s[z = t]).

e Case WA}, (unit 7).
The term r [z := t'] belongs to relation WA by induction hypothesis and therefore,
by definition, the term unit » [z := #'] belongs to the relation WA/}, .

e Case WAL, (bind7s).
The induction hypotheses WA, (r [z := t']) and WNL_, (s[z := t']) allow to
conclude that (bind7 s) [z :=] = bind (r[z := t']) (r[z := t']) belongsto WN},,.
e Case W ().
The relation W has three cases:

e { = z with two sub-cases
If + = z, then WY (z) holds since after substitution of term ¢, the term belongs
to relation WA by hypothesis (1).
If x # z then WNT (z) already holds.

44

CHAPTER 3. REFLECTION BY SIMULATION

e ¢ = ¢ which is not affected by the substitution.
e t = r s which holds by induction hypotheses of its sub-terms.

Case WAL (r) where r — 7.
From induction hypothesis, WAL (' [z := #]) and following the last case of the
definition of relation WA/, then WAL (r [z := ¢]) holds. O

Lemma 3.11 (Completeness of WA/T)
IfT t: 7 then WNL (2).

Proof. Induction over I' — ¢ : 7. We use the the inversion Lemma 3.3 in the inductive
cases.

CaseI' -2 :7
The variable z belongs to the typing context I, then it is in relation W and therefore
it also belongs to WAL,

CaseI'-Ar.s:0— T

The inversion Lemma assigns type 7 to the body-term s under I', . Then we can
instantiate the induction hypothesis: WAL %" (s) This hypothesis ensures that the
abstraction belongs to relation WA/

o—oT"*

CaseI'-rs:7

By inversion of typing, we ensure that there exists a type o such that I' — r :
o — tand I' - s : o, then we can suppose the induction hypotheses: WNL_ _(r)

and WN? (s). We can conclude that the application r s belongs to relation WAL
since each sub-term also belongs to the relation.

CaseI' = unitt: M7
The induction hypothesis state that WAL (¢) since by inversion I |- ¢ : 7. Therefore,
unit ¢ belongs to WA/}, ...

Case I' - bindrs: M
The inversion ensures that there exists a type o such that ' - r : Mo and I' I s :
o — M. Then, we obtain two induction hypotheses: WA}, (r) and WN™E_,,_ (s).

They allow us to conclude that bind r s belongs to relation WA}, . O

Lemma 3.12 (Soundness of WA/T)
For any term such that WN'™ (t), then it has a normal form.

Proof Induction over WAL (t). We will show that term ¢ is reducible until reaching a
normal form #.

Case WNL__(\z.s)

A lambda abstraction does not reduce, it is a normal form.

Case WAL (rs)
By definition we have the following hypotheses: WA __(r) and WANY (s). Then,

by induction over these hypotheses there exist the normal forms 7 and § for terms r
and s respectively. And therefore the application reaches the term 7 8.

3.1. Aym A PURELY FUNCTIONAL MONADIC LANGUAGE 45

The above term could have no more reductions and in that case it is a normal form.

If we can go forward in one more reduction step, it is necessarily when the normal
forms have the following forms: # = A\x.t' for a variable x and a term ¢, and § = v
for a value v. Both normal forms belong to the corresponding type-indexed rela-
tion WA . A reduction is possible, by rule 5-RED, into term ¢’ [z := v]. In order to
prove that this term has a normal form we proceed by arguing two facts.

First, that the sub-term ¢’ has a normal form, since by definition WA (\z. t').
And second, that the substitution of v gives a normal form as proved in Lemma 3.10.
Therefore ¢’ [x := v] has a normal form which is the normal form of r s.

e Case WA, (unit t)
Following the definition of relation WA/}, ., the sub-term #' also belongs to the re-
lation. Then, by induction hypothesis the term ' has a normal form say ¢ and
therefore the reduction of the term unit ¢’ has the normal form unit #'.

e Case WA, (bind7 s)
By induction hypotheses we ensure the normal forms 7 and § exist since by definition
WNy, (r) and WAL, (s).

Then, to show that bind 7 § has a normal form we analyse the term itself. If one of
the normal forms is a variable, then the term is a normal form.

If both sub-terms are not variables and have the following forms: # = unit r and
§ = Az.t/, then we can perform one step reduction to ¢ [z := r]. This term has a
normal form following definition WA and Lemma 3.10.

e Case WY (t)
This case has two main sub-cases:

e t =z ort = c. A variable or a constant are normal forms.
e t = rs. By definition W! __(r) and WA (s). Then by induction hypothesis,

o—>T
both terms have a normal form and an application of normal forms is a normal
form. We cannot do a reduction step since the terms in relation ¥V include only

variables and constants.

e Case WA (t') where t — t'.
By definition, WAL (¢') holds and therefore there exists a normal form of term ¢t/
say t’ which is also the normal form of ¢ since there is only one reduction from ¢ to
t'. N

Monadic normal forms

The normal forms are useful to distinguish a subset of computations in the language \y.
Moreover, we want to use them to characterise the reduced computations that need a
prophecy in order to complete their reduction. This is achieved by the monadic normal
forms, a subset of the normal forms defined in Figure 3.3 whose returning type is always
monadic and may have as many arguments as wanted. These types are defined by the
following grammar:

pr=17—>p| M7

46 CHAPTER 3. REFLECTION BY SIMULATION

Definition 3.3 (Monadic normal forms)
For all t such that T - t : p, there exists a monadic normal form ¢ and t is [36-convertible
to £.

We ensure that each well-typed computation in \y, is likely to be reduced into a
monadic normal form. We do not include the terms |, ¢ as computations, since this
construction serves only as a mechanism to perform simulations. As we mentioned before,
the terms |, ¢ can make progress only by making progress on the inner computation ¢ and
later on we will show that they can be reduced with the assistance of a prophecy.

The language Ay includes the operators for a simulable monad where the prophecies
are given terms, which as we mentioned before, are values computed in the effectful
language. The next section presents a language with effectful primitives and the last
requirements to complete the a posteriori simulation framework.

3.2)\, a call-by-value impure functional language

The impure functional and non-terminating language A, ;, has the same syntax as Ay
except that for this language, the set of constants only consists of effectful primitive oper-
ators. The language is also equipped with an instrumented big-step operational semantics
for a call-by-value reduction strategy. We chose a big-step semantics since we only focus
on converging executions of compiled terms. The executions are carried out under envi-
ronments 7 assigning closed values to variables. Closed values comprise full applications
of effectful constants to values and function closures:

ni=.|n; >0 vi=cT | (Az.s)[n]

The judgement for the instrumented semantics is n + s |,y v, which is read as
‘the execution of a term s under the environment 7 converges to a value v and computes
a prophecy p’ from an initial prophecy p’. The reader may notice that a standard big-
step operational semantics can be recovered by erasing the annotation p — p’ in each
judgement of Figure 3.5, meaning that the evaluation of terms does not depend on the
computation of prophecies. That is, the rules just carry the prophecies while the rules for
effectful constants, which are abstract for now, are responsible for increasing the prophe-
cies. They will be characterised later by the Requirement 4.

EVAL-VAR EvVAL-LAM
nEx popn () nEAr.s |pop (Az.s) [n]

1= 81 Up—>p1 (/\I‘ 5) [77,] 1= 82 up1—>p2 U1 77,;I = U S UPz—’P’ v
Nt 5182 pop v

EVAL-APP

Figure 3.5 — Instrumented semantics of A, |

3.2. Ay A CALL-BY-VALUE IMPURE FUNCTIONAL LANGUAGE 47

The purpose of the instrumented semantics is to monotonically refine the prophecy
at each step of the computation in order to recover enough information for a successful
simulation. The third requirement ensures this property:

Requirement 3 (Monotonicity of prophecy computation)

Vop, p'ynt s |py v implies p<p'.

Compilation

We recall one of the key features in our lightweight approach to proof by reflection:
the connection between the monadic and the effectful languages to obtain the prophecies
needed to simulate computations. In order to connect both languages, as we mentioned
in the introduction, we use a compilation function from the monadic language to the
effectful language.

The compilation is defined in Figure 3.6, it replaces the monadic constructs unit and
bind with their respective definitions in the identity monad and converts each effectful
primitive ¢ € V into the corresponding impure primitive construction of \, | °.

The translation of |, is explicitly undefined as a consequence of the fact that this
operator cannot appear in any well-typed user-written monadic term because it is only
useful for a simulation of computations in language \y.

TERM COMPILATION

Clz) = =z C(unit) = Az.x
C(Az.s) = Xz.C(s) C(bind) = Az,y.yzx
C(rs) = C(r)C(s) C(l,) = wundefined

TYPE COMPILATION
Clo »71) = C(o) —>C(T1) Clo) = o
CMT) = C(1) C(T',z™) = C(I), 26

TYPING CONTEXT COMPILATION
Figure 3.6 — Compilation of terms, types and typing contexts from Ay to A, | .

Prophecies are common to both languages but they have different purposes. In A, |,
the type for prophecies is kept fully abstract to the programmer, it is not available since
only the instrumented compiled code is allowed to generate prophecies. While in lan-
guage)\ the prophecies are treated as given elements which are valuable for reduction.

The following lemmas collect the properties ensuring the well behaviour of compila-
tion.

5. Recall that there is no specific monad M as parameter and our monadic constants remain abstract.

48 CHAPTER 3. REFLECTION BY SIMULATION

Lemma 3.13 (Compilation and substitution)
Compilation commutes with substitution: C(t[z := t']) = C(t)[z := C(t)].

Proof. Induction on ¢, using definition in Figure 3.6.

e Caset =y.
Suppose that y = z, then the compilation of the substitution gives C(¢') which is the
same result when applying the substitution to the compilation of variable z.
If y # 2 then the substitution does not affect neither y nor C(y) and therefore both
sides are equal.

e Caset = \y.s.
The substitution applied to the A-abstraction internalises it and therefore the com-
pilation of term A\y. s [z := '] is Ay.C(s[z = t']).
On the other side, the application of the substitution to the compilation of \y. s gives
Ay.C(s)[z == C(t)].
Then we can conclude that both terms are equal since the body-terms are equal by
induction hypothesis.

e Caset =rs.
Tﬁzeinduction hypotheses are the following: C(r [z := t']) = C(r)[z := C(¥)] and
C(s[z = t])=C(s)[z = C(t)]
Then C(r [z := t'])C(s[z := t'])and C(r) [z := C(¥')]C(s) [z := C(')] are equal.

e Caset = unit r.

On one side, we have the compilation of term (unit r) [z :=], which is the ap-
plication (Az.x) (C(r [z := t'])) since the substitution passes through the construc-
tor unit.

On the other side, the compilation of term unit r is the application (Az.z) C(r),
which after applying the substitution is (A\z.z) [z := t/|C(r) [z := C(¢')]. The first
substitution does not affect the term Az. z and the induction hypothesis C(r[z := t])
C(r)[z := C(t')] leads to conclude that both sides are equal.

e Caset = bindrs.
The compilation of a bind term is the application of the abstraction Az, y.y = to the
compilation of its sub-terms, C(r) and C(s).
Then, on one side we have the compilation of term (bindrs) [z := C(t')] which
gives the term (Az,y.yz) C(r[z := t'])C(s[z = t'])
On the other side, the application of the substitution to the compilation gives the
term: ((\z,y.yz) C(r)C(s)) [z = t'].
We can conclude that both sides are equal by internalising the substitution in the
last term above and by applying the induction hypotheses for terms r and s. O

Lemma 3.14 (Compilation and typing)
IfT +t:7in Ay, then C(T') - C(t) : C(7) is a valid typing judgement in A, ,.

Proof. Induction over I' - ¢ : 7. We use the same typing rules as in Figure 3.2 to assign a
type to variables, \-abstractions and applications.

3.2. Ay A CALL-BY-VALUE IMPURE FUNCTIONAL LANGUAGE 49

e Case'-uz: 7.
The variable = belongs to the type environment I'. Then the compilation of the
environment also has the variable x whose type is C(7). Therefore the judge-
ment C(I') - z : C(7) is well formed.

e Case '+ My.s:0 — 7.
The compilation of a A-abstraction is also an abstraction but this time over the com-
piled body-term, \y.C(s). In order to verify that the judgement C(I") - Ay.C(s) :
C(o) — C(r) is well-formed we use the induction hypothesis: C(I'), y°®) I C(s) :
C(7).

e Case['—rs: 7.
An application is compiled by compiling its sub-terms. Then, by the induction hy-
potheses for terms r and s the following judgement holds: C(T") C(r) C(s) : C(c) —
C(7).

e Case ' —unitt: M.
The compilation of term unit ¢ is an application: (Az.z) C(t).

Consider the induction hypothesis of term ¢, C(I') — C(¢) : C(7) (1). We can also
give the specific type C(7) — C(7) to the term Az.x (2) under the same typing
environment C(I"). Therefore, using the rule of application App with (1) and (2) we
conclude that the following judgement is well-formed: C(T') - (Az.x) C(¢t) : C(7)
where C(M 1) = C(7).

e CaseI' - bindrs: M.
For the bind operator, the corresponding compilation is also an application:
(Az,y.yx) C(r)C(s).
To assign a type to the above term, we use the induction hypotheses: C(I") - C(r) :
C(Mg) and C(T") - C(s) : C(o) — C(M), and the typing judgement for the abstrac-
tion Az, y.y xr whose type is obtained by taking the types of the induction hypothe-
ses: C(Mo) — (C(e) - C(MT)) - C(MT). O

Prophecies

The evaluation of the translation of an effectful constant ¢ in V, must extend the
prophecy in a sufficient way to make the simulation converge. This property is the last
requirement of a monad to be simulable, it details the collection of information to obtain
a prophecy.

Requirement 4 (Adequate instrumented compilation)

n = C(tl) UPi"PiJrl V;

then Ju,|,c (to,...,t,) = *u
D Cle (for 1)) Uy v b lfo.- . Tn)

. A
vaa"'7pn+17p7 lf { ’

The evaluation of the compilation of a constant increases the prophecy by augmenting
it at each sub-term evaluation, that is, if the constant has sub-terms, the prophecy depends
on the prophecies of the evaluation of them. If the constant has a zero-arity, then the

50 CHAPTER 3. REFLECTION BY SIMULATION

increment in the prophecy must be ensured by the definition of the evaluation rule for it.
In this way, the semantics of \, | ensures a proper growth of the initial prophecy.

The above requirement ends Definition 3.1 characterising what a simulable monad is:
a standard monad (Requirement 1) with an operator to simulate computations with the
help of prophecies (Requirements 2 and 0), which are obtained after the evaluation of
the compilation (Requirements 3 and 4).

In Section 3.4 we will discuss some examples to made more reliable this definition,
while in the next section we demonstrate that the simulation of effects in \y; is correct.

3.3 A posteriori simulation of effects

Up to now, we have described two languages, \v and A, |, to formalize the lightweight
approach to proof by reflection, the goal of this chapter. These languages are presented as
two separate entities which have in common some syntax, along with the corresponding
typing rules, whose operational semantics only differ on the approach of small-step or
big-step reduction of terms and the most remarkable feature, the capability to write and
simulate or evaluate imperative terms or computations.

The aim of this section is to exhibit a close relationship between these systems. Through
the main theorem 3.16, we claim that the witness obtained in), is used as a valid
prophecy to perform a simulation back in Ay to get a computational term under the unit
constructor. Specifically, it states that given a computation ¢, if the evaluation of C(t)
converges, then the prophecy p obtained in the evaluation process is enough to simulate ¢
back in \y.

Dynamic Semantics and other remarks Even if the language \y has monadic terms©,
the translation or compilation into language)\, | maps every monadic term into a term in
the simply typed lambda calculus with effectful primitives. There, we consider only the
terms which converge using the big-step semantics.

We also recall that the instrumented semantics of A\, ; does not influence the reduction
process, but just collect information to have prophecies. Moreover, while evaluating a
term in), , it does not matter on which prophecy we start an evaluation, as long as
the evaluation converges, then it will generate a sufficient prophecy as ensured by the
dynamic semantics: the evaluation of values does not change the starting prophecy and
the prophecy growth is carry out by rule EVAL-APP and ensured by Requirements 3 and 4.

In the following, we show that the simulation of computations is correct by using an
auxiliary lemma to prove the simulation of monadic normal forms”.

6. The simulation operator || is not taken into account since it does not have a translation as discussed
in Section 3.2.
7. Recall that a monadic normal form has a type of the form p ::=7 — p | M 7.

3.3. A POSTERIORI SIMULATION OF EFFECTS 51

Theorem 3.15 (A posteriori simulation of normal forms)

Let t be a monadic normal form, s — t : 79 — --- — 7, — M. Then, for all terms s; such
that o \ s; : 7;, if the compilation of C(t s ...s,) converges, « - C(tsq ...s,) Jpp v, then
there exists a term r such that |, (£so . ..s,) reduces to unit r.

Proof. Induction on #, defined in Figure 3.3.

e Case { = unit 5.
We want to prove that there exits r such that ||, unit § = unit . Requirement 2
allows to conclude that r = 3.

e Case f = bindm 5.
Let us analyse the hypotheses, the typing and the compilation of .
By inversion Lemma 3.3, there exists a type o such that the type of m is monadic,
Mo (1), and the term § has function type o — M7 (2).

The derivation of evaluation . — C(bindm3§) |, v where the compilation of
term bindm § is the application (Az,y.yx) C(m)C(8), has two significant sub-der-
ivations: « - C(m) p—p, v1 (8) and « - C(8) |p,—p, v2 (4).

Now, we proceed to prove that the simulation of bindm § reduces to unit r for a
term r using prophecy p’. Requirement 2 allows to internalise the simulation and
then the term to be reduced is |}, bind (|}, m) 5.

The induction hypothesis is available for term m, since it is a sub-term of ¢ and
the hypotheses (1) and (3) hold. Therefore there exists a term 7’ such that ||,, m =
unit 7’ and we can continue the reduction of |},, bind (unit 7’) § using rule COMP-RED.

The evaluation process goes to |}, $7’. In order to prove that this last term reduces
to unit r we apply the induction hypothesis supported by (2): for any argument
applied to term &, the compilation . ~ C(5r') |,,-y w converges and therefore
there exists a term r such that |, §7' = unit r.

e Caset =rs.
By inversion of the typing hypothesis ¢ - 7§ : 79 — --- — 7,, = M, there exists a
type o suchthato - §:0candeo+7:0 >7179—> - > 7, > MT.
The evaluation . - C(7§ s ...s,) |,y v holds as hypothesis and then the proof is
to show that ||,y 7§ s ...s, = unit r for some term r.

Note that the induction hypothesis holds for term 7 since it is a sub-term of ¢. Then
we can conclude that there exists r such that |, 7§ is equivalent to unit r, since we
already know that term 7 with its arguments s, ... s, reduces to unit r using the
prophecy p'.

e Caset = ct.
We claim that each effectful constant, when the monad M is instantiated, is reduced
by the corresponding ¢-rule of the dynamic semantics. This reduction together with
the adequate prophecy gives a unit term, as ensured by the Requirement 4. O]

Theorem 3.16 (A posteriori simulation)
Let -t : M7 be a computation whose compilation converges, that is « — C(t) |,y u.
Then, there exists a term r such that |, t = unit r.

52 CHAPTER 3. REFLECTION BY SIMULATION

Proof. Suppose that . - C(t) ||,y u for a closed and well-typed computation ¢.

Consider the normal form 7 of the term ¢ that is, reducing |,» ¢ through rule RED where
the evaluation context is |J,, £. The reduction of term ¢ before requiring a prophecy is
ensured by Lemma 3.3 in section 3.1.2.

We conclude by Lemma 3.15, there exists a term r such that |,/ ¢ is equivalent to unit r.[]

3.4 Examples of simulable monads

We discuss the non-termination and partiality effects as a simulable monad. For ease of
reading and writing of terms we use the abbreviation ros for: bindr (Az.bind s (A\y. (zy))).

The “trace” prophecy. First, notice that, given a monad M with an underlying effect-
ful computation model specified by a reduction relation, there is always a prophecy to
simulate a converging effectful reduction: the reduction chain itself. Indeed, it suffices
to define the type of prophecy as the abstract syntax trees of an impure programming
language that implements the effectful computational model. The operator || can then be
implemented as an interpreter for these abstract syntax trees defined by induction over
the length of the converging reduction chain. However, while this prophecy is very infor-
mative, it is such a naive implementation of prophecies which is not efficient because of
the interpretation overhead.

Non-termination and partiality. The type M = nat — Option 7 defines an adequate
monad to represent non-terminating computations of type 78. A general fix-point oper-
ator is defined by induction over a natural number as input representing the number of
the steps of recursion. If this number is large enough then the computation terminates
and produces a result ¢. In case of termination, the result of a computation is denoted
by Some ¢, the non-termination is denoted by None. For this monad, the expected type for
prophecies is nat and the instrumentation only has to compute an over-approximation of
the number of iterations of all the fix-points of the program. We present the corresponding
extensions to the languages Ay and A, .

In system)y, the extension is guided by the introduction of two type constructors:
nat for natural numbers and Option 7 for partial computations of type 7. This extension is
defined in Figure 3.7.

The constants for natural numbers include the (infinite) numerals and the binary op-
erations of addition and multiplication. The Option type, also known as the Maybe type, is
used when referring results may fail. This type encapsulates meaningful results under the
Some constructor and the no-result value is specified by the empty constructor None. We
also provide case analysis for both types: the recn destructor allows a possible primitive
recursion over natural numbers and the matchOpt supplying the analysis over partiality
terms.

8. This approach follows the standard non-termination monad, where termination is gained when a
computation is a function taking an approximation level n as argument to compute an optimal result.

3.4. EXAMPLES OF SIMULABLE MONADS 53

Syntax

= ---|n |+ | x|recn | None | Some | matchOpt
-| n | None | Somewv
-+ | nat | Option
= ---|reecn€rs|recnvEs|recnvué
| SomeS | matchOpt £ 7 s | matchOptv € s | matchOptv u &

m
MM QA e
|

’Dynamic Semantics

—
recn recn

recn 0 v u 2 o recn (n + 1) vy vg reen, vy (recn n vy vg)

Omatcho OmatchO
matchOpt None v, vy ———% v, matchOpt (Some v) w1 vy "%, 4y,

]Static Semantics

I' -t :nat 't :nat
— Num ADD MULT
I'-n:nat F}——Ftltg nat Fl—*tltgznat

[t:nat Chr:T '+ s:7— (nat - 7)
I'~recntrs:r

RECN

No '—t:r so
NE ME
I' - None : Option T I' - Somet : Option T

'+t : Optiono F=r:7 '-s:0—>71
I' - matchOptitrs: 7

MATCHOPT

Figure 3.7 — Non-termination and partiality.

The basic combinators of the partiality monad are defined as:

unit £ %0 Az Somet

bindt; t, % Az.matchOpt (1) None (\y. (t2y))

While the type of prophecies P is nat, the simulation operator is defined by case analysis
on the reduction of the application of a natural number to a monadic term:

Iyt " matchOpt (tp) (Am.tm) (Az. unit x)

e If value ¢ p is None it means that the computation failed or diverged. We choose to
reset the computation as another computation that waits for an extra natural num-
ber m to complete the evaluation. This choice expects that the oracle can produce a
prophecy adequate to simulate it back.

e If there exists v such that u is Some v, then we return v as a computation.

54 CHAPTER 3. REFLECTION BY SIMULATION

Remark that the evaluation contexts defined in Figure 3.7, impose an evaluation order
from left to right in sub-terms of the matchOpt and recn constructors, while the dynamic
semantics reduces terms when all sub-terms are values.

In Ay, the effectful primitive rec € V is a defined combinator denoting a general fix-
point:
recr < Ay, z.recn z (Az.None) ¢,
where ¢, = Az. (| unit r) o (J, unit 2)) y

Recall that M 7 is defined as nat — Option 7, and therefore the derived typing rule for rec
is the following:

Cr:(rn>Mn) >M(n > Mmn)
C'recr: M (11 > M)

REC

In A\, |, the constants are the same as the extension given in Figure 3.7, only the recur-
sion constant is replaced by the fix ; operator which allows the computation of arbitrary
fix-points:

n; f —> ﬁXft — t U(erl)Hp/ v
N fixet {pop v

EVAL-FIX

We propose as compilation of C(rec) the term fix f and when evaluating the compi-
lations in language \, |, we propose as starting prophecy the value 1 to ensure an over
approximation in the number of recursive calls needed to simulate the computation fix; t.

The above definitions verify requirements of Definition 3.1:

Requirement 0
We use the standard order over natural numbers whose minimal element | is equal
to 0.

Requirement 1
The monadic laws are verified by straight $é-reduction.

Requirement 2
The prophecies behave well while reducing computations:

e The reduction of unit r ignores any prophecy, that is when evaluating |}, unit r,
the term matchOpt in the definition takes the second option since the ap-
plication (unit) p gives Somer and therefore the whole evaluation reduces
to unit r. Then |, unit ¢ = unit ¢.

e When a computation has converged, that is when |, ¢ is equivalent to »r for
some term r, the computation has been successfully evaluated in a fixed num-
ber of recursive-steps of recn, defined by the number p. Then the evaluation of
the same term ¢ with a natural number greater than p will also converge.

e In order to prove that |, bind¢;t, =, bind (|, t1)t, we proceed by replac-
ing the corresponding definitions of the terms, performing reductions when
permitted and by analysis of the values of terms ¢, p and \y. (t2y) p.

3.5. CHAPTER CONCLUSIONS 55

To complete this proof, it is needed to extend our definition of term equiva-
lence from [d-equivalence, which at the end is a syntactical equivalence, to a
contextual equivalence where the behaviours of two terms are compared obser-
vationally.

Requirements 3 and 4
The evaluation rule EVAL-Fix always increases the prophecy, therefore at the end of
any evaluation of fix we will obtain a prophecy adequate to simulate the term.

Example (Factorial). Given a natural number n, the following function computes the fac-
torial number n!
factn ¥ if (n=0) then 1else (factn —1) xn

Then, we can define the factorial function in \y as:

fact n Y recrn where r = Ay.recn y1 (Az.y x 2)

The computed prophecy p, by C(fact n), is obtained from evaluation « i~ fixgae: 770 |5, v,

where the final prophecy p is equal to n + 1 since at each step performed by rule [EVAL-FIX]
the new prophecy is increased one.

3.5 Chapter conclusions

Proof by reflection is a powerful technique to simplify proofs in theorem provers, we
claim that the lightweight approach presented and formalised in this chapter takes the
best of two worlds, using type theory to write correct decision procedures and enjoying
more facilities from effectful programming.

Type theory as a total language is a robust tool for developing proofs, extending it
with general purpose programming primitives intensifies its expressive power. But pro-
gramming with dependent types and partial functions add a challenge, the constraint
of showing that any program terminates. We have shown that the simulation of effect-
ful computations converges thanks to the prophecies obtained during execution of their
compiled counterpart. That is, the new approach ensures efficient programs to be used as
their own oracles and whose certificates or prophecies help to mimic them back in type
theory. In this way, the challenge of proving termination of computations is ensured and
is not managed explicitly by the programmer.

The formalisation of the underlying systems presented in this work are straightforward
extensions of the simply typed lambda calculus.

The core language is system \y which is parametrized by a simulable monad M to
have one specific effect. The constant | and the type constructor P are unusual with
respect to the traditional monadic extensions of the lambda calculus. They are inspired
in the notions of compilation and certificates [22, 24]. Any proposal of simulable monad
M must include the definition of the compilation of its effectful primitives and show the
fulfilment of the requirements.

The second language), | is an extension whose constants are effectful operations.

56 CHAPTER 3. REFLECTION BY SIMULATION

The main theorem relates small-step semantics of Ay and big-step semantics of A, ;:
let - — t : M T a computation which compilation converges to a value and produces a prophecy
p, then there exists a term r such that |}, t = »r i.e. the prophecy simulates a computation.

The simulable monad given in Section 3.4 corresponds to the usual instances of mon-
ads for effects, where a monad models one particular and single effect. Of course, setting-
up an effectful framework to write decision procedures must ensure a wider sort of effects
than the general formalisation given so far. This can be achieved by giving an ad-hoc
monad for having all the desired effects, that is a combination of monads as the well-
known monad-transformers [81].

The lightweight approach to reflection with a monad including a combination of ef-
fects, is available through a prototype plug-in explained below.

Cybele plugin

The use of CoQ as a framework to develop the new style of reflection has the benefits
of programming with dependent types. This extension, due to Claret® and reported to-
gether with Régis-Gianas and Ziliani [30], is used to develop proofs using the method we
described.

There is only one ‘monolithic’ monad used in Cybele to define the effectful operations
of partiality, non-termination, state and printing, all together. The monad-type M is a
combination of these effects and its definition is parametrized by a signature to type the
memory operations:

MY a = State.t ¥ — («a + string) x State.t ¥

The non-determinism can be programmed on top of the monad, and when simulating
general recursion, one of the basic, most used and desired effects, the combination of |
and recn perform a kind of delimited recursion. This implementation uses the extrac-
tion mechanism of CoQ to obtain an OCAML program to be the oracle. The extraction
definition follows the translation in Figure 3.6.

When using the plug-in, the user can witness what we claim as lightweight approach:
we keep the power of the dependently-typed system of CoQ despite the fact that we
are working in a monad and we also get a great performance gained for type-checking,
leaving to the user just the job of designing an efficient decision procedure whose proof
of correctness will be a matter of a simple evaluation.

The formalisation of the lightweight proof by reflection is done entirely in the sys-
tem Ay. As the reader perceived all along this chapter, most of the proofs of lemmas and
theorems related to the simulation process are accomplished by the reduction of terms
where the use of prophecies is needed.

In the real implementation, the plug-in does the simulation also through reduction,
addressed to obtain a weak head normal form of a formula or theorem. The reduction is
completed in order to check if the final term is indeed a term under the unit constructor:

unit_witness : Vo : M7, P — is_ unitz = true —» 7

9. http://cybele.gforge.inria.fr

http://cybele.gforge.inria.fr

3.5. CHAPTER CONCLUSIONS 57

This test achieves the reflection process where the decision procedure is the argument
of monadic type in is_ unit : M7 — bool. As established by the certifying approach to
reflection, a verification of the prophecy p is always done before the reduction of the
decision procedure, in our approach it is just a matter of type checking the prophecy.

Congruence problem Our example of Chapter 2 is implemented in Cybele following
Corbineau, who in his master thesis [34] gives a reflexive version of the algorithm, which
is purely functional and proved correct. A large part of the code is devoted to prove
termination and implementing functional arrays.

We show the Find function implemented using Cybele using the partiality monad to
avoid proving termination. Notice its dependent type and the hash-table to keep track
of the representatives of elements, which is a mutable structure with a read and a write
operations. The code incorporates the invariants to prove termination. The dependentfix
operator in the monad allows non-termination. The type S is the signature to type the
memory operations.

Program Definition Find hash u : M S {u’: Index.t | u == u’} :=
dependentfix (fun i => {j: Index.t | i == j}) (fun find i =>
let! eq_proof := MHash.Read hash i in
let (i’, j, Hij) := eq_proof in
if i == i’ then (* case i = i’: should always be the case *)
if i == j then (* case i = j: we find it *) return (exist _ j Hij)
else (* case i <> j: we have to continue from j *)
let! r := find j in
let (k, Hjk) :=r in
do! MHash.Write hash i (EqProof.Make (i := i) (j := k) _) in
return (exist _ k)
else (* case i <> i’: unexpected *) error "Find: i <> i’")

Figure 3.8 — Find function for congruence problem in Cybele.

The result of this function is the representative term «/, equal to the input term u.
The proof term is generated in the monad, so the invariants are checked dynamically. For
example the comparison of 7 and ¢/, that is the proof that invariant : = ¢ holds, does not
have to be statically proven. The result is used to coerce a proof of 7/ = j to i = j (done
automatically by the Program command in our example). If the invariant check fails, we
raise an exception handled by the partiality monad.

In this way we can partially specify programs. Notice that we are not forced to use par-
tial programs, we can also use pure COQ functions leading to stronger static guarantees.
This flexibility is not available in functional languages like OCAML.

58 CHAPTER 3. REFLECTION BY SIMULATION

To summarise, the differences between the reflection approaches discussed along this
chapter reveals the pragmatic way of doing reflection under the new approach:

e Original proof by reflection approach: first state and prove a correct decision proce-
dure and then use it.

e Certified proof by reflection approach: develop an untrusted decision procedure
then proof that each certificate checks and also that the checker is correct, then
finally use the procedure.

e Lightweight proof by reflection approach: provide a monadic decision procedure
and use it from the very beginning, then if it works we can check the prophecy and
simulate it back.

Therefore, the lightweight proof by reflection via the a posteriori simulation of effect-
ful computations promotes a simple, easy and strong variant of the proof by reflection
technique inside the CoQ theorem prover.

Incrementality

59

Chapter 4

Optimization via data-differences

As mentioned in the introduction, it is common knowledge that an ideal cycle for
program development may have a phase of optimization to impact positively either the
design or the implementation of programs. Identifying the places where an optimization
can be done requires a deep analysis of the problem and the phases of the development.
These analyses may conduct to a more suitable abstraction of the problem and there-
fore a more precise specification, an enhanced solution or an implementation with better
performance.

There are different techniques for optimization, some of them consider that an algo-
rithm or a pseudo-code may have syntactic transformations leading to a better run-time,
for instance the compilation optimizations. These transformations could be user-driven,
be a feature of the programming paradigm or of the implementation language.

This chapter reviews some approaches to optimization, with a focus in those at com-
putation level and development framework. We start by going over the subject of in-
cremental computation to set up the concept of incrementality and then reviewing the
approaches to change description towards our proposal to optimization.

4.1 Incremental computation, a state of the art

Repeating actions or tasks is an inherent behaviour of computing. The most primitive
computer operations, at low-level, perform repeatedly small calculations. At high-level,
to solve abstract problems, we appeal to algorithms where performing repeated compu-
tations leads to a solution. By instinct, we are always pushing the limits of computations
and therefore a re-computation seems not to be helpful to improve performance.

It often happens that we cannot avoid re-computations because some parts of a pro-
gram are necessarily used several times under the same or similar inputs. A very handy
example showing this behaviour is the factorial function. To compute the factorial for
number n, following the mathematical definition, we need to call the factorial function
with input n — 1 which recursively invokes the factorial function with decreased inputs
until the input is 0. While computing the factorial of another number, say m, the recursive
calls will at one point be the same to some of the already computed factorials obtained in
the process for n.

61

62 CHAPTER 4. OPTIMIZATION VIA DATA-DIFFERENCES

This behaviour suggests that it is possible to take advantage of certain computations
already done. One of the approaches to reuse previous results is the memoization tech-
nique [74, 79]. The computed outputs are stored in a (memo-)table together with the
corresponding input and whenever a computation is required, the program (or a pro-
gramming language facility) will search for that input in the table and retrieve the output
to be reused. This approach claims that the cost of execution is reduced since a complete
computation is replaced by a look-up operation over the memo-table. While the storage
space will increase, the memoization invests more in optimizations for table-access and
updates than in the storage cost of a possible (enormous) memo-table.

The memoization technique takes into account the reuse of results just because an
input is the same. This kind of optimizations is based on modifying the functions or the
given code in order to implicitly recover and reuse values. As we will see through this
chapter, there are other alternatives for optimizations that are focused in the difference
between data to take advantage of the sub-computations and partial results. Moreover,
there are other optimizations whose enhancements are consequences of the features of-
fered by the framework of development.

Considering that any change in the input will reflect a change in the output, we turn
our attention to study the relationships of input changes in order to give a framework
where the optimization of programs is systematic.

We are more interested in considering the optimization via incremental computation
which roughly speaking, is a process that takes advantage of small changes in inputs to
gradually compute a result, a process to avoid re-computations and reuse outputs. Then,
an important issue is the way to decide if an output is reusable or not. As we will see,
this decision depends on the program, its input and the output. That is, regarding how
a function acts over different inputs and the obtained outputs, we can try to establish a
relationship between the input differences and the output differences.

The first approaches to incremental computation were inspired in practical instances
of computing and some early uses date back to the 1980’s. In a bibliographic collection
about incremental computation, Ramalingam and Reps [98] define the goal of incremen-
tal computation as ‘... to make use of the solution to one problem instance to find the
solution to a nearby problem instance.” They organized and classified the existing ap-
proaches in a large range of computational contexts. This article is an accurate summary
of what we consider a first wave of computational optimization by incrementality, in the
end of 20th century. We take this classification to revisit quickly some approaches to draw
a road towards our approach to incrementality.

Finite differentiating

An incipient approach to incrementality is proposed by Paige, in his Ph.D disserta-
tion [83], and then in a joint work with Koenig [84].

The former idea is to analyse FORTRAN programs and apply formal differentiation
to some parts or functions in the program. The analysis of the programs focuses on
improving expensive parts which are used repeatedly. The hypotheses of this analysis

4.1. INCREMENTAL COMPUTATION 63

states that a function, which is used many times inside a region of the program, could
be pre-computed outside that region and reuse its value as many times as needed. But
there is a constraint, the function cannot be pre-computed in isolation since its arguments
depend on the changing context of the region. Then, an optimization suggested by a
technique named ‘iterator inversion’ uses old values, the inputs and their differences or
changes to compute a new result.

The program is transformed into an incremental version to keep track of the changes
of the function inputs inside the region. In this way, a pre-computation of the function
can be done outside the region and the function redefined inside the region reuse the pre-
computed value and computes the small changes in order to obtain subsequent partial
values. The optimization is achieved by avoiding computations of the function with an
entirely new input at each call.

In subsequent work, the authors use the term finite differencing to name the program
transformation described above. This method performs a program parsing which identi-
fies the expensive computations and then makes a transformation to replace these parts
by cheap partial sub-computations. The optimization by differentiation is achieved by
the transformation: the sub-computations obtain a value gradually, starting with a given
input and calculating intermediate values by adding a small increment to that input. The
authors claim that they apply the technique of strength reduction, a compiler transforma-
tion, which is a general approach to optimization and therefore it can be applied to any
programming language.

This work has served as a background for other compilation and program transforma-
tions, which are closer to incrementality (some of them are explained later).

Dependency graphs

Another early approach to incrementality for program optimisation is proposed by
Reps, Teitelbaum and Demers [99]. They use attribute grammars to describe language-
based editors and the files created with these editors. An attribute grammar is a formal
grammar where the productions have associated values. A computation of values is done
in the abstract syntax trees of the corresponding language expressions.

The authors represent each file by an attribute tree and whenever it is modified, the
tree is modified by a corresponding tree-operation. The dependency graphs are used to
represent the functional dependencies between the attributes in the tree. A full attribute
tree gives a program, and then modifying a program is also carried out by modifying the
tree.

The iterative process of tree evaluation and modification leads to unnecessary re-
computations in the parts of the tree that do not have changed. This scenario suggests
that re-computation can be performed only on the modified sub-trees and then propagate
these modifications through the rest of the tree.

The graph representation enables a dissection of the programs where the changes un-
der context are exposed and then the incremental computation arises naturally.

64 CHAPTER 4. OPTIMIZATION VIA DATA-DIFFERENCES

Incremental compiler

Years after, Yellin and Strom define the incremental computation as a general approach
to treat problems that recompute slightly different data [117]. They took the finite dif-
ferentiating approach and the idea of change propagation of the dependency graphs,
commented before.

They propose a language called INC, for incremental computation, which has a com-
piler that takes a program and transforms it into an efficient and incremental version
automatically. The compiler considers a program as a data-flow graph to express the
dependencies between computations. Then, the compiler uses the finite differentiating
technique to generate a new program with extra functions to recover old outputs and
inputs to be reused when necessary. The authors claim that this new approach to incre-
mentality ensures lower cost computations performed using the compiled program than
the ones done with the program without the transformation.

One of the motivations and possible applications of this work is to offer an incremental
programming environment.

The above efforts to deliver efficient programs belong to compiler transformations
and programming tools implementing incremental solutions. While some of them point
to general applications, they are conceived and used in a particular language or field. The
next scope is directed to perform incremental computations in a theoretical framework.

Incremental reduction

In the beginning of the 1990’s, a functional approach to incrementality was proposed
by Field and Teitelbaum. They give an algorithm to perform incremental reduction in the
untyped lambda calculus [39, 40].

Given a set of lambda-terms which are slightly different between them, the algorithm
recognizes the common sub-terms of these terms by computing their weak-head normal
forms. The terms are represented by closures to highlight the redexes in a term and
a representation by abstract syntax trees is used to depict terms. A closure is a pair
consisting of the body term of an abstraction and an environment which maps a variable
to the term to be substituted in the reduction.

This representation of terms identifies the shared redexes and performs non-overlapping
reductions. In addition to the tree representation with closures, the authors include an-
other kind of nodes, the fork node denoted A, in the spirit of Wadsworth [114]. Then,
a single tree can represent multiple terms which are similar, by means of factorizing the
common sub-terms by a fork node. The incremental approach is carried out by reduction
over the graph as the tree representation allows a propagation of the performed reduc-
tions that are the same and will be potentially reused.

This approach to incrementality is achieved as a feature of the framework without
doing modifications to the original terms, in contrast with the above work of program
transformation. Let us continue with another development offering to the user an envi-
ronment capable of producing incremental programs.

4.1. INCREMENTAL COMPUTATION 65

Incrementalization for efficiency

The work of Liu in the beginning of the 21st century is one of the more developed and
fruitful concerning incremental computation. As a starting point, she gives an accurate
classification of incremental computation into three categories [68].

The first one encompasses the on-purpose incremental algorithms where the optimiza-
tion is achieved from the conception of the solution and therefore the whole program will
be efficient by design. For instance, the recursive nature of the factorial function makes
implicit the division in sub-parts which can be reused.

The incremental algorithms are classified under the dynamic programming paradigm
in which there is a technique to solve problems with the motto of ‘divide and conquer’,
that is to split the original problem into sub-problems whose aim is to reduce the num-
ber of computations by reusing them. A well known technique for this is memoization,
mentioned before, which stores intermediate results in order to reuse them in future com-
putations and hence reduce the cost of computation.

The second category is called incremental execution frameworks, where some meth-
ods are applied to problems that can have an incremental solution, but not for deriving
incremental algorithms. The incremental frameworks must provide a language for de-
scribing programs and their inputs, to include a definition of the various classes of input
changes that the framework can handle and maybe a particular incremental algorithm
to handle the input changes. Then, each input change is mapped to a change that the
framework can manage and the incremental computation is achieved through the change
management.

The third and more general category includes the incremental-program derivation ap-
proaches where a program is transformed to become incremental by a systematic process.
This is done by program analysis and transformations, where a relation between inputs is
established in order to obtain results efficiently and using some properties of the original
program.

The first approaches exposed so far in this chapter, belong to the third category as well
as the work of Liu and her collaborators [93, 70] which is classified by themselves within
this category.

The subsequent work done by these authors focus separately into three techniques to
obtain incremental programs with respect to input change operations:

e the store and reuse of returned values [66];
e the reuse of some intermediate results in combination with the returned values [67]
e and the use of auxiliary information, which is retrieved thanks to an invariant anal-

ysis of the program [69].

Later collaborations of the mentioned authors do not pursue into more sophisticated
frameworks or incremental developments, but they inspired the next computational par-
adigm.

66 CHAPTER 4. OPTIMIZATION VIA DATA-DIFFERENCES

Self-Adjusting Computation

In the contributions mentioned up to this point, the idea of input-output and pro-
gram dependencies, have been taken to a limit by a framework baptised Self-Adjusting
Computation by Acar, after his Ph.D dissertation in 2005 [4]. He and his collaborators
propose algorithms and techniques under a framework that allows writing self-adjusting
programs as normal programs. This framework is available ! as extensions of the ML and
C programming languages and is applied to practical areas of computer science.

In his thesis, Acar proposes a refinement of the approaches briefly discussed above
by the introduction of the self-adjusting computation paradigm as a model of computing.
This paradigm is an optimization where programs automatically respond to changes in
their data. He considers that ‘a computation is a first-class mathematical and computa-
tional object that can be remembered, re-used and adapted to changes in the environ-
ment.’

The key idea is the connection between computations and data. As long as an input
has changed it triggers a change propagation all over the computation leading to faster
outputs. This idea is carefully addressed by a typed-directed discrimination of expres-
sions, between changeable and stable data.

The components of the self-adjusting framework are: a (modal) type system where
the expressions are tagged accordingly to their modifiable nature and a detailed evalua-
tion schema using dependency graphs to ensure an improved memoization and change
propagation.

As we said before, the original memoization technique uses a memo-table to store the
computed outputs where the corresponding input serves as key to index the table. The
improved memoization, named selective memoization [5] modifies the table indexation by
using branches which are detailed lists of events to realize the link between data and con-
trol. Each branch records the actions performed by an input until an output is computed
and then stored in the memo-table.

The framework for selective memoization is strongly directed by types which are re-
sponsible for creating the branches for indexing. Any expression whose value can change
has a modal type !7, this means that in the evaluation process, this value may change
and therefore leads to new outputs. For instance, the factorial function written in this
framework has function type from !nat to nat. The input will be explored to keep track of
itself inside the program.

An efficient representation of the computations is carried out by traces, which are
dependency graphs created and maintained during the executions to bind parts of the
program and the inputs that can modify the result. Then, the incrementality in the self-
adjusting computation paradigm is achieved by the memoized traces. The function-calls
and memory locations are linked by the control dependencies between the program and
the inputs. Then, incrementality is completed by the change propagation over the graph
that is, the edition of traces by means of enhanced algorithms for adaptivity and memo-
ization.

1. http://www.umut-acar.org/self-adjusting-computation

http://www.umut-acar.org/self-adjusting-computation

4.2. INCREMENTALITY 67

A last ingredient to boost this approach to incrementality is the dynamization of algo-
rithms for the traces or dependency graphs [6]. The dynamic dependency graph ensures
an optimal representation of code and data for re-computation after input changes, that
is the change propagation.

This model of computing has been largely developed, on the one side it has been used
to enhance specific problems to show its applicability, for example problems in computer
graphics as rendering [107, 82]. On the other side, a significant contribution to reasoning
about self-adjusting programs is presented in the thesis of Ruy Ley Wild [64, 7]. This work
gives high-level tools to write and reason about programs, where the theory of traces is
studied in depth to identify the applicability of self-adjusting computation and formal
reasoning about efficient change propagation.

4.2 Incrementality

The approaches presented above probably are the most prominent work around incre-
mentality. The two last contributions, Liu’s and Acar’s frameworks, perform incremental-
ity in two different ways but keep the spirit on which is based the incrementality-based
optimization: the relation between programs and input changes. They also share the
field of application of incrementality, both frameworks are directed to improve programs
developed under an imperative paradigm. Therefore, program transformations and infor-
mation flow analysis are the main techniques to improve programs.

We remark that Liu’s approach can be classified as a method for a posteriori incremen-
tality. In order to obtain an incremental solution, a program has to follow a mechanized
process to be transformed into an incremental program. While the approach of Acar is
to provide tools to the programmer in order to construct and reason about incremental
programs from the beginning of a development.

We define incrementality as any computing task addressing program and computation
optimization through a reuse of old instances of a program to compute gradually new
instances.

We keep the following definition of incremental program and change from Liu’s work
for our purposes:

Definition 4.1 (Incrementality)

Given a program P and an operation @, a program P’ is called an incremental version of
P under @ if the latter computes P (z @ d) efficiently by making use of the computation of
P (z), the intermediate results or auxiliary information of P (z).

The parameter d can be regarded as a change of the input x. Then the input change combines
the old input x and a change d to form a new input ' = x @ d.

Our proposal is aimed by a detailed approach to describe changes which will lead to a
new approach for incrementality analysis. The notion of incrementality depends mainly
on the definition of input changes, therefore we claim that the most important factor
for incrementality is the change description. Hence, we go on with the state of art of
incremental computation by exploring some theories of change.

68 CHAPTER 4. OPTIMIZATION VIA DATA-DIFFERENCES

4.3 Change description

The strong premise used in this part of the work is that programs are sensible to
changes, we want to reflect the input changes into the program itself to compute new
outputs. Then, an essential characteristic to achieve incrementality is to formalise changes
or displacements ? with an adequate degree of detail in such a way that the input change
which will be mapped faithfully into an output change.

We are confident that the description of changes depends on the way the objects are
defined and the denotation of differences. We are convinced that a functional paradigm
provides a detailed and strong framework and therefore we adopt a paradigm where
data-types are the change unit to describe displacements between objects in a collection.
These claims are supported by the following techniques for data dissection.

Zipper

The functional pearl of Huet, The Zipper [52], is inspired in the functional represen-
tation of efficient imperative structures because of their proficient handling of data. The
author explains an abstraction for tree representation with efficient edition functions. He
proposes a data structure to place under focus a position in a tree in order to highlight
the context and lead efficiency by local edition operations and tree navigation in constant
time.

A location shapes the focus on one of the nodes of the tree, it is made up of a tree
and a path containing the description of a tree traversal 3:

type tree =
Item of item
| Section of tree list

type path =
Top
| Node of tree list * path * tree list

type location = Loc of tree * path

The artificial type item, is here a general type for any collection of objects to be ma-
nipulated. For instance, the zipper for binary trees is the following:

type binary_tree =
Nil
| Cons of binary_tree * binary_tree

2. From now on, the words increment and change will be used indistinctly together with the word
displacement, to refer to what modifies data.
3. We follow the original presentation implemented in OCAML.

4.3. CHANGE DESCRIPTION 69

type binary_path =
Top
| Left of binary_path * binary_tree
| Right of binary_tree * binary_path

type binary_location = Loc of binary_tree * binary_path

The depiction of structures into a focus and a context, started by the zipper, is then
taken as a successful functional representation as we will see in the following works.

Locations in generic programming

The generic approach to functional programming is the abstraction of functions over
data-types. Then, a generic, type-indexed or polytypic function is a function that can be
instantiated on many data types to obtain a class of functions rather than only a definition
over a single data-type [55, 50].

Hinze, Jeuring and Loh study this approach [51] and they give an implementation
of Huet’s zipper in Generic HASKELL. Type-indexed definitions offer to the user a more
expressive framework where functions are defined by induction on the structure of types.

As these authors showed, the generic framework allows the description of a class of
locations: the generic zipper for an arbitrary data-type Fiz F 4, is a pair with an element
of the data-type and the context for it. The context is a generic definition of a path in an
element, this is done by means of the functor construction for data-types using the types
whose kind> is * — *:

Id = AAA
KT = AAT
F1+F2 = ANAF1A+F2A

F1xF2 = AAF1AxF2A

For example, the data-type definition for lists using the above functor constructions is
List = Fixz (K 1+ Id x List)

The authors also define the tree navigation functions claiming to provide a ‘free’ move-
ment of the focus through the element. In the following, we exhibit only the definition
for locations to show the shape-directed approach to data dissection:

Loc{F ::x —> %y = *
Loc{(F) = (FixF,Context(F)(FizF))

Context (F ::% — x) 1 * — %
Context(F) = AR.Fix(AC.1+ Ctx{(F)CR)

4. The formal definition of data-types is given by least-fixed points of functors, following the categorical
approach to (co)induction [108].
5. A kind is the type of a type.

70 CHAPTER 4. OPTIMIZATION VIA DATA-DIFFERENCES

Cte(F x> %) &1 *—> %> *
Ctx{ld) = ACR.C
Ctx (K1) ACR.0
Ctx (K Char) ACR.O
Ctx(F1+ F2) AC R.Ctx(F1)C R+ Ctz(F2)CR
Ctz(F1x F2) = ACR.(Ctx(F1YCRx F2R) + (F1R x Ctz(F2)C R)

The functional approach to describe a focus and a context is generalized and exten-
sively studied in the next theory. We deviate from the functional programming approach
to data dissection to recall some aspects of calculus, which will serve for understand the
approaches below.

Differential Calculus

Calculus as a theory of change encourages ideas and appears as a recurrent model
in many areas of computer science. The differential calculus studies the rates of change
and the main concept of derivative governs the theory. A derivative f’ of a function f is
obtained after a differentiation process, and is the measure of how a function changes as
its input change, is the quotient of differentials or differences. It is also defined as the
best linear approximation of a function in a point.

The differential of a function is computed using its derivative: d;(x,d,) = f'(x)d, and
depends on the input value x and the difference between another value d, = ©zz’, where
d, is considered small.

Containers

McBride proposes a syntactic decomposition of tree-like data-types and elaborates an
influential theory for differentiating data structures [72]. This work considers data-types,
more precisely equality types in ML, as polynomials. The types are denoted as functors®
and constructed by a combination of type variables, unit, void, sum and product types,
and least fixed points.

The author discovered that giving ‘by hand’ a definition of a one-hole context of a
data-type, turns in the same as deriving (as in calculus) the polynomial or functor of the
concerned data-type. The rules described to obtain a context are very similar to the rules
of differentiation of calculus. The reader can notice that these are similarities are also
present between this approach and the generic approach presented above.

After computing the context using the rules given by McBride [72] and replicated in
Figure 4.17, the type of the one-hole context is a functor corresponding to the zipper of
the former data-type and named from now on a container.

6. Recall that under the categorical approach, data-types are formalised as initial algebras, here the
notation for least-fixed points is the p-abstraction.
7. The notation 7’|, is for substitution in functors.

4.3. CHANGE DESCRIPTION 71

Op 1
O,y = 0
0.0 = 0
0:(S+T) = 0,5+0,T
0,1 = 0
0(SxT) = 0,5xT+Sx%x0a,T
Oz (py.F) (120 Fly—py.r + Oy Fly—py.r x 2

Figure 4.1 — Derivatives of functors

Intuitively, the container of a data-type is a structure that follows the same shape of
a term but has a hole in it®, waiting to be filled. Each data-type and its corresponding
derivative are accompanied by a plug-in function which computes a new object from a
context and a sub-term.

For instance consider the data-type for binary trees whose initial algebra (functor) is

Tree & ;X1 + X x X. Then, we obtain a tree decomposition after differentiating with

respect to the free variable: TreeZip %' ;1Z.1 + (Tree + Tree) x Z. The reader can notice
that the container has the shape of the functor for the list data-type uX.1 + A x X.
Moreover, we say that the focus over a binary tree is a structural focus since the hole in
the context takes in a sub-tree. This last remark is revealed by the recursive construction
Tree x Z.
The implementation in HASKELL of the binary trees, its one-hole contexts and the

plug-in function is shown below:

data Tree = Empty | Node Tree Tree

data TreeCtx = Left Tree | Right Tree

type TreeZip = [TreeCtx]

plugTree :: TreeZip -> Tree -> Tree

plug [] t =t

plug (Left t1 : z) t = Node (plugTree z t) tl
plug (Right t2 : z) t = Node t2 (plugTree z t)

Let us see another example, the zipper for the data-type of lists of type A:

data List A = Nil | Cons A (List A)

data ListCtx A Prefix (List A) | ConsC A (ListCtx A)

type ListZip A = [ListCtx A]

8. As the evaluation contexts of the A\-Calculus small-step semantics.

72 CHAPTER 4. OPTIMIZATION VIA DATA-DIFFERENCES

pluglist :: ListZip A -> List A -> List A

plug [J 1 =1

plug (h : z) 1 =h : (plug z 1)

The derivative is ListZip & uZ.ListA + A x Z. This case allows to make what we call an
atomic focus since we can replace an element in the list due to recursive construction Ax Z.
It also allows a structural focus, which is just matter of list replacement corresponding to
the ‘left’ part of the container.

In this approach to dissect objects, we identify two sorts of focus: the structural and
the atomic one, which depend on the unique context obtained after the differentiation
process:

e when there are no free variables in the functor the derivation is done with respect to
the bound variable under the u-binder, this gives us a data-type for contexts through
a structural focus;

e when the derivative is carried out with respect to one of the free variables in the
functor, we obtain a data-type for an atomic displacement.

As well, this approach seems to be more suited to our requirements for a mechanised
and fine grained change description:

e the derivative is syntax-directed and therefore easy to mechanise,
e we can distinguish the kind of focus from the type of the context,

e it is already formalised and largely developed by McBride, Altenkirch and Abbott,
together with other collaborators [73, 1, 2].

However,
e this approach is not flexible despite of computing a context for each data-type,

e the unique type for the context should be interpreted in various ways, as to offer
different focus (for example the container for the list data-type represents the struc-
tural and atomic focus),

e and we want to represent a focus over non standard sub-structures of an object.

To illustrate what we consider as a drawback in this theory, let us analyse the rule to
derive a functor of the form S + 7'. The corresponding container describes the change in
one of the two sides: 0,5 + 0,7. Consider a displacement of an object that ‘change of
side’, that is an object of the form inl s is displaced into an object inrt. This means that a
change, from S to 7" must be interpreted by the change 0,7 and the container does not
provides explicitly a construction for this.

The reader can argue that there is no need to add a direct representation for this
kind of displacement but we are looking for a fine-grained change description, that is a
complete description in the sense that for any two elements = and y of type 7', there exists
a difference d such that y = = @ d.

4.3. CHANGE DESCRIPTION 73

Derivatives of lambda-terms

The Differential Lambda Calculus, formerly developed by Ehrhard and Régnier[38]
and then continued by Vaux [109], is a framework to differentiate A-abstractions. It is
rooted in denotational and linear logic semantics where program interpretation, by partial
functions and power series respectively, suggests function differentiation as in calculus.

The notion of approximation of continuous functions, by a sequence of finite functions,
leads to consider that this approach could help to develop a theory of changes where a
program is considered as a derivable entity.

The following intuition allows us to understand the interpretation of linearity and
differentials in the lambda calculus.

Consider a function f : £ — F which is derivable, then its derivative f’ is another
function from E to the space of linear applications Dy : £ — (E — F). If e € E then,
f'(x) - e is the derivative of f at point x in the direction of e. Under the model of Ehrhard
and inspired by linear logic [41], the above notion is indeed a linear application of f’(z)
to e.

Formally, the differential \-calculus is a non-deterministic calculus for dynamic differen-
tiation of functions, that is a calculus extended by means of an operator for A\-abstractions’
differentiation together with a linear application of arguments.

The calculus used in this work has an evaluation under the call-by-name strategy. It
includes a construction to represent the derivative of a term with respect to its i-th argu-
ment, D;t, and a reduction rule for differentiation which introduces the partial derivative
operation ¢ over terms:

ot
Di(Ax.t)-v=Ax. | — v
L) (5
An important feature of this calculus is the non-determinism of reduction, introduced
when deriving with respect to a variable that occurs several times in a term or when
deriving a term application. The rules are given in Figure 4.2.

oy o v ifr=y
oz U T 1 0 otherwise
ONy. s e =) 0s .
or 0T Wl\e !

@. — @ + Dr- é

P vo= P vl s r P v s
oDr-s or 0s

Franil D(ax-v>~s—|—DT-(ax-v)

Figure 4.2 — Rules for partial derivatives in the differential lambda calculus

74 CHAPTER 4. OPTIMIZATION VIA DATA-DIFFERENCES

Remarks made by Vaux show the importance of linearity in this calculus. The first
notion to recall is that a term is said to be linear if it uses only once an argument in
reduction. This is connected with the head linear reduction of the former calculus and
with the notion of derivative. The partial derivative operation over terms stands for all
the terms obtained by the linear substitution. Its definition follows the rules of function
derivation except for function application whose rule is similar to the rule for deriving a
function product.

While the differential A-calculus is a strong theory to study function differentiation,
it is desirable to pursue a computational approach. An attempt to do this is the work of
Vaux, whose extension of differentials to a non-pure functional calculus is done in the \u-
calculus, a combination of the above theory with the p-calculus of Parigot [85]. However,
this approach remains non-deterministic which takes us to reformulate another modifica-
tion of the differential lambda calculus to design a practical programming language.

4.4 Towards Incrementality

The two main axes of the bibliography and work reviewed in this chapter are on
the one side, program transformations and frameworks for incrementality, and on the
other side data dissection and change description. The first developments were practical
enhancements of programs and focused on compilation techniques while we choose to
analyse the approaches to data description for changes in functional programming.

We want to meet both subjects by means of an input change description for an optimal
propagation to realise incrementality in a deterministic lambda calculus.

Change description for incrementality in a functional approach

The principal motivation to use incrementality is to take advantage of outputs while
keeping the connection between input changes with the output computation. This is
well accomplished by the powerful framework of Acar where a tight relation of data and
control provides a new model of computation.

While the machinery for change propagation is based on the strong dependencies
between data and the program, there is no clear displacement treatment. A new input
is never described as the result of applying an input change, but as a low-level approach
by means of replacement in memory. The description of change we retrieved from the
numerous articles and collaborations in the self-adjusting paradigm is a merely location
update which implies a process of re-computation of outputs. The adaptative style of
programming is more likely to be applied in imperative programming.

A recent collaboration of Acar with Chen, Dunfeld and Hammer [28] describes a func-
tional application of the self-adjusting paradigm. This work gives some techniques to
transform functional programs into a self-adjusting version of it.

Given a program P, the user has to label the type of an input that may change, follow-
ing the duality of changeable-stable expressions in this paradigm. Then a polymorphic
translation generates a family of programs indexed by the changeable arguments in a

4.4. TOWARDS INCREMENTALITY 75

program. This gives different choices of incremental programs, from the possible combi-
nation of changeable inputs and the change propagation in each incremental program.

Despite the functional approach, this application of the self-adjusting paradigm does
not describe changes: it just make explicit the ‘changeability’ of an input in order to select
the correct (incremental) implementation.

The framework of self-adjusting computation and its implementation are not suitable
for reasoning about incrementality, while it is a powerful framework for the user, all the
mechanisations and incremental computations are done in background, out of the reach
of the user.

The other approaches reviewed in this chapter draw a refinement of ideas that con-
verge into a computational model for incrementality, as the formal approach by the dif-
ferential \-calculus. In this calculus, an input is almost treated in the same way as in
the self-adjusting approach: since this calculus is an extension of the pure A-calculus,
there is not a notion of state or memory and therefore the input changes are achieved by
substitution of term displacements: = &® d.

Nevertheless, both include a notion of function optimization where the input displace-
ment is implicitly specified as change by replacement.

The work of Cai, Guiarruso, Rendel and Ostermann [25] proposes a framework for
automatic incrementalization, ILC (incrementalizing \-calculi), which supports static dif-
ferentiation and a change theory to describe term displacements.

The framework is based on a A-calculus parametrized by a user-defined plugin con-
taining basic types, primitive operations and a change structure with incremental prim-
itives. The system performs program transformations by means of the operation Derive,
which computes the derivatives of programs. The theory of changes is a dependent-type
theory where any type has a set of displacements and operations to update a term and to
compute a change or displacement.

While our proposal to incrementality was being studied, the ILC framework was elabo-
rated. Both frameworks have been developed independently. We will discuss and compare
ILC with our contribution in the last chapter 7. In the following we present and in the
next chapter we elaborate our contribution.

Contribution

We want to propose a better approach to program optimization via incrementality,
according to us economises computations and gives an infrastructure strong and modular
enough to reason and to program.

The contribution of this work is to transform programs using derivatives to achieve
incrementality in the spirit of the differential \-calculus. We propose an approach where
change description is controlled by the user who should define the granularity of how
displacements are defined.

We will develop a theory to describe changes that rests in a deterministic differen-
tial lambda calculus where the programmer does not have to change the way he or she
reasons when programming, that is in a functional manner.

76 CHAPTER 4. OPTIMIZATION VIA DATA-DIFFERENCES

Dependent type theory as a powerful and expressive language, enables to refine spec-
ifications, in particular this could lead to describe changes in great details. It is advan-
tageous to elaborate a theory for changes where an object can be described by another
object and a difference. This delivers a more reliable propagation of the change and an
efficient computation of outputs.

We propose a deterministic differential \-calculus for a general and functional ap-
proach to incrementality where functions are susceptible to propagate changes. The
combination of function derivation and a specific granularity of data dissection gives a
model of incrementality. We adopt a local representation of change by displacements, the
data description by object dissection: an (new) object 2’ is split into an (old) object = and
a difference d: 2@, d =2 20,2 =d.

The next chapter is devoted to present a calculus for incrementality where the descrip-
tion of changes is not limited to small differences to achieve incremental computations
but is headed by data-shape and where a program differentiation is achieved dynamically.

Chapter 5

A deterministic differential lambda
calculus

The system called \-diff, to be elaborated in this chapter, assembles a change theory
under the name of displaceable types, emphasizing the importance of term displacements
in order to achieve incrementality, and the function displacement treatment by differen-
tials and partial derivatives.

The differentials and partial derivatives, as center of the A-diff calculus, permits us to
mechanically and dynamically obtain a program transformation to propagate change by
means of the so called displacements.

5.1 The)\—diff calculus

We present a system that allows reasoning about differentials and formal derivatives
of functions in the spirit of A-calculus where functions are first class objects. The result
of a program using a given argument can be reused to obtain a new result through the
derivative of the program and a difference between the old and new arguments. We talk
about differences or distances between two terms of same type in the \-calculus.

The system \-diff is defined as an extension of the simply typed A-calculus in Church-
style, with pairs and a differential operator D for functions. It is depicted in Figure 5.1.

The terms are built up from fully applied constants and typed variables together with
term constructors for pairs, projections, lambda abstractions binding a typed variable to
a body-term, applications and a constructor to differentiate functions. The restriction of
function differentiation is achieved by the semantics as we will see later.

The second syntactic class describing values includes fully applied constants to val-
ues denoted as §.u, pairs of values and closures as values of abstractions to capture the
environment.

The third class include basic types, product types and functional types.

The other syntactic classes encompass the partial functions 7 from variables to closed
values called environments and the class of typing contexts I', which are collections of all
distinct typed variables.

77

78 CHAPTER 5. A DETERMINISTIC DIFFERENTIAL LAMBDA CALCULUS

t,r,s,d = ct|a"|{sy, so)|fstt|sndt|Az?.s|rs|Dr n o= «|n;aT >0
u, v, w = 0.0 | {wy, we)y | (Ax7.8)[n]
T,0,p = L|loyxoy|o—>T ' w= o|I')a”

’Dynamic Semantics

ni-ctl d.u ni=a{n(r)
nk s w Nk s | wo n ikt {w, wy) n ikt {w, wy)
n = (51, 82) | {wy, wo) n = fstt | wy ntsndi | wy

nErl Q2] nEslw i —wkt|ov
nk Ax?.s | (Ax?.s) [n] nkErs{wv

n=r{ (A?.s) 1]

Js ,
ntDr] ()\<x", df(")>.axd) (']

] Static Semantics

Vi, T'+t;:0; 2T el

_ ' CONST - VAR
F'kect:e 'a2":7
' sy1:01 ' s9:09 I'bHt:01 %09 I'bt:01 %09
PAIR FsT SND
[(s1, 89): 01 X 09 I' - fstt: oy I'=sndt: o9
a2 +s:7 'r:o0—-r '-s:0
ABS App
I'-Xe?.s:0—>71 I'rs:r
I'r:o—r1
DIFF

F'Dr:oxAlo) > A1)

Figure 5.1 — \-diff

The syntactic equality between elements is denoted by =. We use = for equivalence
between terms, a formal definition is given in a later sub-section (5.3.1), meanwhile we
refer to it as an equivalence relation where terms r and s are observationally equivalent,
written r = s, if and only if replacing occurrences of term r by term s in a given term ¢ does
not affect the observable results of the evaluation of term ¢. We highlight that constant
functions ¢ are partial, injective for equivalent elements and surjective.

5.1. THE A\—DIFF CALCULUS 79

The dynamic semantics is defined through a big-step operational semantics with en-
vironments, the evaluation process is for well-typed terms which allows us to know the
types of the terms. This typing-knowledge is useful because some types will be required
while differentiating as we explain later. We write n - ¢t | v to relate a term and a value
under a given environment 7 and we say that term ¢ has converged to value v under 7.

This relation is defined inductively over terms: a fully-applied constant ¢ is evaluated
to the value of function ¢, , a variable is evaluated to its corresponding value in the envi-
ronment, a pair of terms reduces to a pair of values, a term projection is evaluated to the
corresponding value of a pair of values, a A-abstraction is evaluated to a function closure
and the evaluation of an application rests in the evaluation of the function-body of its left
sub-term under an extended environment with the value of the right sub-term evaluation.

Finally, the evaluation of D r introduces the partial derivative of the body-term of the
function value obtained by the reduction of term r. The corresponding value is a closure
which waits for a pair argument-displacement to use it in the partial derivative. The clo-
sure is a A\-abstraction which is explicitly shown as an uncurried function, abstracting over
a pair of variables. The partial derivative function always generates a term in system \-diff
as we will see later.

When evaluating an uncurried function, abstracting over a pair and applied to two
arguments, both abstracted variables are introduced in the environment with the corre-
sponding values. A partial evaluation is allowed after curryfing the function.

Before introducing the partial derivatives and more importantly the algebra for type
displacements, we explain the type assignment of system A-diff. Typing judgements relate
terms to types under typing contexts: I' - ¢ : .

A fully-applied constant has basic type where each of its arguments is well-typed, a
variable carries its own type then its type assignment is direct just after ensuring that
the variable belongs to the typing environment. A pair a has product type constructed
with the two types of its sub-terms, a projection has the corresponding type from the
product type of the hypothesis and a lambda abstraction has a function-type constructed
with the type of the bound variable and the type of the body sub-term. The type of an
application results from the types of its sub-terms: if the left sub-term has a function type
and the right sub-term agrees with the hypothesis’ type of the function then, the type of
the application is the conclusion type of the function type.

For term differentiation, we must ensure that the only terms allowed to be differen-
tiated are function terms, this is the assumption in rule DIFF: if the type of the term r
is o — 7, then the type of Dr is also a function type from a product type, of type o to-
gether with its displacement type A(c), to the displacement type A(7). Function A(—) is
given later, in the general framework for displacements (see Definition 5.1).

When assigning type to values, we use the appropriate rules from the ones above
using an empty context. The case of closures considers the domain of the abstracted
environment as typing context to assign a type to the \-abstraction® :

1. This notion of abstraction of environments, or closures, is due to Milner and Tofte [75].

80 CHAPTER 5. A DETERMINISTIC DIFFERENTIAL LAMBDA CALCULUS

'-X’.s:0—>T1 dom(I") = dom(n)

CLOSURE
o (A.s)[n]:0—> T

Partial Derivatives In Figure 5.2, the partial derivative function is defined for any well-
typed term in \-diff, it is a closed function over terms. Remark that the evaluation process
is performed on well-typed terms, this allow to remember the type assignation. Also, the
evaluation is the only way a partial derivative can be introduced, therefore it makes use
of the variable d,, of type A(c) which is introduced by the differentiation of functions.

oct [of
ordy ' \ow.d,

yt d, iifx=y
or,d, | 0, otherwise
0{s1,82) 05, 0 89
or,d, \or,d, or,d,
ofstt fet ot dsndt q ot
or,d, > ox,d, or,d, > ox,d,
oNy?.s Ny 0s
or,d, v ox, d,

oDr or
= D
or,d, or,d,
Figure 5.2 — Partial derivative of a term with respect to a variable 27

For any vector of terms, we extend the definition of partial derivatives in a natural
way: B
at Jto oty
oz, d, oxr,d, Ox,d,

The partial derivative of constants delegates the derivation to the corresponding con-
stant ¢ which in its turn makes use of each of the derivatives of the corresponding sub-
terms ¢. Derivatives of variables depend on whether or not the variable is the one we
derive with respect to, in both cases we obtain a displacement. The partial derivation
of pairs and projections is recursive in its sub-terms. The partial derivation of functions

5.2. DISPLACEABLE TYPES 81

and function differentials are also recursive, these terms are partially derived by passing
through the constructors of abstraction and differentiation.

The case of term application r s combines two displacements of the function-term r of
type o: the first one that takes into account the displacement of its argument while the
second uses a new argument obtained with the displacement of s of type 7.

The combination of displacements by functions @ and © is defined in the following
subsection by an algebra which handles the displacements of terms in \-diff.

Notation We use the letter d in sans-serif font to represent terms which stand for differ-
ences whereas the variables representing differences are written d2(7). The subscript of
variables for differences is necessary to remember the displaced term. We omit the type-
superscript of these variables when it can be deduced from the context (as in Figure 5.2).
And since the use of typed variables could be heavy for the reader, from now on we will
omit the type of variables when it can be also deduced from the context.

The product type and their corresponding terms, pairs and projections, are part of
the system. In the rest, when developing recursive definitions or proofs over terms, we
collapse the cases of projections into only one case for ‘fst’ since both cases are quite
similar.

The explicit use of pairs in some \-abstractions is to emphasize that a function ex-
pects two-arguments. This notation is aimed by the typing rule DiFF in Figure 5.1 and
appears in the evaluation of function differentiation. With this notation we avoid the use
of term projections when a function argument has a product type and we can access those
variables in one step when handling partial derivatives.

5.2 Displaceable types

Terms of type 7 can be transformed or displaced, we propose a general framework to
displace terms directed by types.

Definition 5.1 (Displaceable types)
A type 7 is displaceable by (p, ®., ©;, 0,, ®,) where the displacements have type p. There
exists an identity displacement 0, and the following operators are provided:

the displacement operator @, :7 —p— T
the difference operator ©,:7 —T — p
the displacement composition O, :p—p—p

Function A(—) returns the type of displacements of T, whenever it is displaceable.

The above operators are constants in the system. Instead of following a prefix notation,
we use an infix notation for writing any displacement operator r@s where © € {®, ©, ©}.
Recall that the difference operator r © s is intended to be read as the ‘the change from s
to .

The corresponding value of constant functions remains in infix notation:

82 CHAPTER 5. A DETERMINISTIC DIFFERENTIAL LAMBDA CALCULUS

ntErl v nt sl v
nNkEr@s | dpv, vs

Figure 5.3 — Dynamic Semantics of displacement operators.

We extend in a natural way the operators applied to vectors of terms of the same
length:

TQS=(ro@50) ... (1@ sy) dpUT = (0pug Vo) - - - (0p Un Vy,)

Displacement of basic types For basic types ¢, we suppose that each type is defined
together with its displaceable type A(:) and all the constants and primitive functions c
with their corresponding derivatives ¢. Therefore we say that constant values ¢, are given
and these include the value functions J. , since they are used in the definition of partial
derivatives.

For the product and function types we give their particular definitions:

Definition 5.2 (Product displacement)

Suppose two types, o, and oy, are displaceable respectively by (p1, ®o,, Ooys 05y, O,) and
b.y (p27 ®027 SX% 0027 Gaz)'

Then the product type o1 x o9 is displaceable by (p1 X p2, oy x0sr Ooix0ss Oy xoes Ooyxos)
where 0,,x,, = {0,,, 0,,) and constant functions for operators are

6@01><02 {wy, wa) (ur, ug) = (w1 Bg, Uy, Wy Doy Usg)
5@51 Xo9 <w17 w2> <w3’ w4> = <w1 @0’1 w?)) w2 @0’2 w4>
6@01 X oo <u17 'LL2> <U’37 U4> = <U1 @a’l us, U2 @0’2 'LL4>

Definition 5.3 (Function displacement)

Suppose a type T is displaceable by (p, ®,, ©,, 0, ®,). Then the function type 0 — T
is displaceable by (¢ — p, ®o—r, Qo1 Opsry Qo) Where 0,_,, = Az7.0, and constant
functions of operators are defined by

Owo, (AY7 1) [m] (A27.12) [2] = (A27. 1 @ ta) [0#]
0coor (AY7-t1) [m] (A27.12) [2] = (A27.t1 ©, t2) [n%]
000r (AY7- 1) [m] (A27.12) [2] = (Az7.81 O, t2) [1%]

where 1= is the partial function from variables to values obtained from the union of environ-
ments 1, and 1. There are two renamings inside terms t, and t, respectively: variables y
and z are now variable x. The type of displacements for type 0 — T is denoted as o — A(T).

Definition 5.4 (Displaceable properties)
Consider a type T displaceable by (p, ®., ©, 0,, ©,). We assume that the following proper-
ties hold for t and s of type T and displacements d and d':

to, t=0, t®, (sO, t) =5 1@, 0, =1t

d®;0,=0,0,d=d t®, (do,d)=(t@, d) @ d

5.3. META-THEORY 83

5.3 Meta-theory

This subsection presents the meta-theory of A\-diff whose aim is to show the properties
of the function differentials and partial derivatives. The notion of contextual equivalence
needed to prove the soundness of the derivatives is included at the end of the section.

We start by giving some properties of the system related to the semantics. Partial
derivation is a function over terms, we can perform substitutions over them as well as
renaming and commutation with displacements.

Lemma 5.1 (Substitution and partial derivatives)
A renaming of the variable of a partial derivative is allowed:

ot o - _ Otz = Z]
oo d, [z = z]|d, = d.] = o d

I}

Consider a term with a partial derivative with respect to a variable x. Applying a substitution
[z := s| where z # z gives:

ot ,_0t[z = s
0x, d, [z = sl = ox, d,

Proof. Induction over term ¢ using definitions in Figure 5.2.
We analyse the case of renaming a partial derivative of a variable while the rest of the
cases follow immediately by induction.

e Caset =y and y # x.
On the left side Y

the identity displac’ement. On the right side, the substitution y [z := z]| does not
affect variable y. Then, the partial derivation also gives the identity displacement.

is equal to 0 and therefore the substitutions does not affect

e Caset = .
The first partial derivative is the displacement d, which after substitution gives d..
The partial derivative of x [z := z] is the partial derivative of z whose value is d..

The second statement also follows by induction. O

Lemma 5.2 (Partial derivatives equivalences)
The a-conversion of terms with partial derivatives holds:

ot 0t
A a7, df(o)>_ o d = 22", df(0)>_ <(9x0 7 [z = z][d, = dz])

Moreover, the commutation between displacements holds:

61?1 61?2 _atléD‘rtQ

ox, d, Dam ox,d, Ox,d,

where 7 is the type of t; and A(r) is the type of ts.

84 CHAPTER 5. A DETERMINISTIC DIFFERENTIAL LAMBDA CALCULUS

Proof. Induction over term ¢ and term ¢, using Lemma 5.1 and definitions in Figure 5.2.C]

Definition 5.5 (Consistent environment)
An environment n is I'-consistent or consistent with respect to context I, written n : I, if both
have the same domain and for each n (x™) = v we can derive o — v : T when 7 € .

Lemma 5.3 (Weakening of typing contexts)
IfT'+t:7and z° ¢ dom(T') then I', 27 ¢ : 7.

Proof. We proceed by induction over typing derivations. O

Lemma 5.4 (Weakening of environments)
Consider an environment n which is I'-consistent and a closed value w of type o.
Ifntt | vand z ¢ dom(n) thenn; 2° — w it | v.

Proof. Induction over the evaluation derivations. Il

Lemma 5.5 (Inversion of typing in A-diff)
o IfI" ct: 7 then T = for a basic type and there exist o; such that I" - t; : o; for each
sub-term.

o IfI'a™ : 7 then x™ € I.

o If I' - (s1, s9) : T then there exist oy and oy such that 7 = o1 x 03, ' = 1 : 0y
and ' + s : o09.

o IfI" |- fstt : 7 then there exist oy and oy such that 7 = oy and '+t : 01 X 09.

e IfI' - sndt : 7 then there exist o, and o, such that T = oo and I' -t : o1 X 0o.

o IfI'— A\x7.s: 7 then there exists 7' such that T = o — 7' and I, 2 + s : 7.

e IfI' - rs: 7 then there exists o suchthat ' +r:o0 —->7and '+ s : 0.

o IfT'+ Dr : 7 then there exists o such that 7 = 0 x A(o) > A(t)andr: o0 — 7.

e Ifo(A\x?.s)[n] : T then there exist 7" and 1/ such that T = 0 — 7" and I, 2° s : 7.

Proof Induction over the typing rules in Figure 5.1. We review the last two cases.

e Case ' —=Dr: 7.
The last rule used to assign type 7 to term D r is necessarily rule DIFfF. Then, type 7
has the form ¢ x A(o) — A(7) and the sub-term r is a function.

e Case o (\x7.5s)[n] : 7.
The unique rule to assign a type to a closure is rule CLOSURE described in page 80.
Therefore, taking the domain of the environment 7 we can obtain the typing con-
text I'. L

Lemma 5.6 (Uniqueness of types)
Each term of \-diff has a unique type obtained by just one derivation using the rules given in
Figure 5.1.

Proof. This proof is syntax-directed by the typing rules to derive a unique type for a given
term and typing context. [

5.3. META-THEORY 85

Up to now, we give some standard properties for the system \-diff and we want to
ensure that the partial derivative operation is compatible with the system, in particular
with the type assignation. The following lemma shows that the partial derivatives are
well typed.

Lemma 5.7 (Typing the Partial Derivative)
Consider a typing context I including variable x° and a term t whose type 7 is displaceable

by (p’ ®7—7 @7—7 OT7 @T)'

: o ot
If TV, 2% t : 7 then its derivative

has type A(7) = p under the context I, 27, d5(*) 2,

Proof. We proceed by induction on ¢ of displaceable type 7. We will show that each term
in Figure 5.2 has type A(7) under the typing context I, 27, d(7).
e Caset =ct

The proof that term ¢ (

o“:ftd has type A(¢), since the definition of the derivative
¢ must be A(¢) as remarked iﬁ paragraph 5.2.
e Caset =y
e If y = 2 then ¢ = 7 and therefore the proof is direct, since term d2(*) has
type A(o).
o If y # x then the derivative is the identity displacement 0, which has the
desired type A(7).
For the inductive cases, consider the following induction hypotheses for terms r and s.
L.H.r

IfT" + r: 7 — 7 and displaceable by (¢, ®,/, ©,/, 0.+, ®), then 662 has type
'I’ X
p =71 — A(7) (1) in context I, 27, d2().
I.H.s 5
If ' + s : 7/ with displaceable type (¢, ®,, ©,, 0/, ®,), then 3 Sd has type
x? xr

A(") = p/ (2) in context I, 27, d2(),

e Caset = (s1, S2)

We want to proof that W (3) has type Aoy x 03).

y

The typing hypothesis supposes I', z* (s1, s2) : 01 x 09. By inversion of this
judgement, we know that I', 2 + s; : o7 and I', 2 sy : 0. Instantiate the

0s 0s
! has type A(oq) (4) and o, 21

induction hypothesis I.H.s for terms s; and s,:

has type A(o3) (5).

By definition of partial derivatives in Figure 5.2, the derivative (3) is the pair con-
(3 S9

ox,d, and oxr,d,

ses (4) and (5) which has type A(oy) x A(oz) and from Definition 5.2 is equal to

Aoy x 03).

al‘, T

681

structed by . Thus, we can construct this pair using the hypothe-

2. Variable 27 is not forced to be a free variable of term ¢. The variables 7 and d5” appear in the last
or rightmost position in the typing context to emphasise that they are fresh variables. Recall the definition
of rule DIFF, here the pair of variables appears curried in T".

CHAPTER 5. A DETERMINISTIC DIFFERENTIAL LAMBDA CALCULUS

e Caset =fsts
By inversion of the type assignation I' | fsts : 7, we know that I' - s : 01 x 05 with

fst
7 = 0;. We want to proof that 0 (fsts) has type A(oq) (6).
Instantiate the induction hypothesis [I.H.s] with 7’ = o; x 05, where a&sd (7 has
x? X

type A(oy) x A(os). Then, the first projection of (7) is the first projection of term s
which has type (6).

e Caset =My .s

. . [0
We want to show that if term ¢ has type 7/ — 7 then the abstraction \y™ . (p Sd) (8)
x? xr

has type A(7" — 7) which by Definition 5.3 is equal to 7/ — A(7) (9).

Take the induction hypothesis I.H.s with I" = T, ', 27, d>(®) (10) and p' = A(0).
Construct a lambda abstraction of 4° over term (2) from a permutation of con-
text (10) where variable y appears in the last position, and using rule ABS to obtain
term (8) of type (9).

e Caset=rs
Consider o as the type of r s, and by inversion of typing we know that it exists 7’/
such that » : 7/ — 7 and s : 7/. The proof of this case is to show that the following
term has type A(o)

0s or 0s
00 (s 5 yoso (s (@505))

Instantiate the induction hypotheses I.H.r and I.H.s, and consider the typing context
T, 27, d2(?), We proceed by dissecting (11) in the following sub-proofs:
oS
has type A(7').
o, d:c> as type A(7)

Since term r has function type we can apply the typing rule DIFF of Figure 5.1
to ensure that D r has type 7" x A(7') — A(7).

0s ,
6$,dx> : A(7) (12).

Therefore, the application of term D r to the pair constructed with term s and
its derivative (12) has type A(7).
or

o, da:) has type 7 — A(7).
This holds by induction hypothesis I.H.r.

ja

1. Show that (Dr) <3,

From hypothesis I.H.s we can derive that (

2. Show that <

-~

3. Show that | s®. %%) has type 7.
ox,d,

The displacement operator ¢ given in Definition 5.1 returns a term of type 7/
which is the displacement of term s by (12) of type A(7').

Finally we use the corresponding displacement functions of the displaceable type A(7),
to combine the above terms and to obtain a term of type A(7).

5.3. META-THEORY 87

e Caset =Dr 3
This case requires to prove that whenever » : 7/ — 7 then D (p ii > has type
x? T
A(T x A(T) = A(T)).

Take the induction hypothesis I.LH.r. We can apply the typing rule DIFF from Fig-

ure 5.1 in order to construct a differential of type 7 x A(7) — A(A(7’)) correspond-
or

ing to term of type 7/ — A(7). This is achieved by Definition 5.3. O

y

Lemma 5.8 (Deterministic evaluation)
Consider an environment n and a term t such that FV (t) < dom(n). If n + t | v and
nkt| v thenv =7

Proof. Consider derivation — ¢ | v (1). Suppose that there exists another derivation
ntt] v (2), then the we want to show that v = v’.

The evaluation rules in Figure 5.1 are unique for each term, therefore there is always
a unique choice of the last rule in the derivation (2) which is the same in (1). O

The evaluation in system A-diff ensures the preservation of types.

Lemma 5.9 (Type preservation)
Consider a well typed term I' — t : 7 and an environment n which is I'-consistent. If there
exists a value v such thatn +—t || v, then o - v : 7.

Proof. Suppose I' t : 7. The proof is done by induction on the last rule used in the
derivation of n ¢t | v (1).
For each case consider an environment 7 : I' following Definition 5.5, where we as-
sume any set of values u; for . The induction hypotheses ensures the property for sub-
derivations in (1).
e Casentct| o, w
A constant is reduced to a value ¢. w. Then we want to proof that the above value
has type ..
The function value 6. is given and maps values to basic values, then the type of this
function verifies that the type of its codomain is .
e Casen 2" | n (27)
Following Definition 5.5, each value in environment 1 has the same type as the
variable it is linked to. Therefore, n (z) = w; has type 7.
e Casen - (s1, s2) | (wi, wa)
In order to proof that {w;, w,) has type o1 x o0, we consider the induction hypotheses
for each s; withi € {1,2}: nt s | w; (2) withT + s; : 0; and o + w; : 0;. Using
rule PAIR with the hypotheses (2), we can assign the product type to the pair of
values.
o Casen fstt || wy
The induction hypothesis states thatif ' -t : 0y x opandn +—t | vtheng - v :
o1 X 09 (3) where v = (wy, wa).
Therefore, we can apply the fst projection to value v and conclude that fst v has type
o1 by using the typing rule FST.

88 CHAPTER 5. A DETERMINISTIC DIFFERENTIAL LAMBDA CALCULUS

e Casent Az7.s || (Az?.s)[n]
Assigning a type to a closure is assigning the type to the lambda abstraction under
a typing context which is the domain of the environment 7. This is exactly the
induction hypothesis.

e Casentrs|wv
This case has three induction hypotheses:

e Ifntr | wyandI'+7r: 0 — 7 where w; = (Az?.t) 1] (4), thens - w; : 0 — 7.
e Ifns || wyand '+ s: o then o - wy : 0.
o If ;2° — wy + t | v where t is the body-term obtained in (4), and its

corresponding type judgement is I, z° | ¢ : 7 where " is the domain of 7’ as
defined in rule CLOSURE on page 5.1. Then ¢ - v : 7 (5).

The proof is to show that value v from 7 - r s | v has type 7 under the empty typing
context. But this is the third induction hypothesis (5).

e Casen-Dr | w
We want to proof that I' - w : 0 x A(c) — A(7) where w is the closure

ot
()\ (z7, d3)). —) [7'] (6). The typing hypothesisis ' = Dr : 0 x A(c) — A(7).

The induction hypothesis about n +— r | (Az?.t)[n/], ensures that the closure
(Ax?.t) [] (7) has function type o — 7 (8) under an empty context.

The inversion Lemma 5.5 in (8) gives a type assignation for the body-term ¢ using
context [V such that dom(I") = dom(n/) and hence I", 2z ¢ : 7 (9).

The partial derivative of ¢ has type A(7) as consequence of Lemma 5.7 applied to (9)
and therefore I", 7, d2() |- (f}&td : A7) (10).

seboy U

After abstracting twice in (10) and uncurrying the variables x and d,, we have the
t
following: I + A(z7, d3(?)). &ad : 0 x A(o) — A(r), which finally can be used
T

y T

to assign a type to the closure (6) keeping the same environment 7'. [

5.3.1 Egquivalence

In earliest definitions we used an equivalence between terms without a formal defini-
tion, now we will state a definition for it which allows us to support the definitions and
to prove theorems in this chapter.

The equivalence of terms or programs is based on the idea of getting equivalent out-
puts when the equivalent terms are used interchangeably inside term-contexts. These
contexts follow the same structure of terms but they have a missing sub-term, they have
a hole. The name of contextual equivalence to refer term equivalence, is originated by
term-contexts [94]. But this notion is a.k.a observational equivalence, that is when filling
a term-context with any of the pretended equivalent terms, gives the same observation.

Since we use a big-step semantics, we use an observational approach to term equiva-
lence via extensionality. Let us take an example to show the desired behaviour.

5.4. SOUNDNESS 89

Example (Equivalence). Consider the following evaluationsn + (A\y™.x) [z = Az%.z] |v
and n; x* — (Az7.2)[n] = A\y".z | v'. Ideally, we may think of v = v’ but this is not the
case, since v = (A\y.\z.2)[n] and v' = (M\y.z)[nn; x — (Az.z)[n]], are different syntactic
values. Nonetheless, these terms together with their evaluation contexts give the impression
of returning the same answer or the same observable results when applied to the same values.

Therefore, instead of using syntactic equality we can relate both terms by an obser-
vational equivalence. The equivalence of terms is achieved by a ground definition for
equivalent values which is mutually defined with equivalent environments since they are
needed for the equivalence between function closures in the same spirit of the terms in the
example. The reader may notice the one-way relation for equivalence in both definitions
below, Definition 5.7 is not symmetric.

Definition 5.6 (Environment and value equivalence)

Given a typing context I, two I'-consistent environments 1, and 1, are equivalent if and only
if their domains are the same and for each variable z, 1, () =, 12 () holds.

The relation =, stands for the relation between values of the same type:

1. adequacy for fully applied constants:
values obtained from the same constant functions are compared syntactically

d. W =, 0. u if and only if 6. W = 6.u
2. function closures are compared extensionally:
(Az7.t) [n] =, (\y°.t') ['] if and only if for each & |- s : o,
if n=(Ax?.t) s | v thenn = (\y".t') s || v and v =,
3. pairs of values are compared point-wise:

{wy, we) =, {uy, ugy if and only if wy =, uy and we =, uy

Definition 5.7 (Contextual equivalence)

Given a context I', we say that two terms r and s are related or equivalent, t = s, when they
have the same type under I' and for a given consistent environment), if there exists a value u
for n 1t || u then there exists v such that n + s | v and u =, v.

5.4 Soundness

The goal of this section is to demonstrate that the behaviour of computations in pres-
ence of differentials and derivatives, that is an evaluation of a term incrementally, gives
the same result as if it is evaluated in the ‘traditional’ way.

The notion of result equality is treated by the observational equivalence defined in 5.3.1.
As well, the proofs in this section are strongly based on the properties stated about our
change theory defined in subsections 5.2 and 5.3, for instance the equivalences between

90 CHAPTER 5. A DETERMINISTIC DIFFERENTIAL LAMBDA CALCULUS

term displacements (see the properties in definition 5.1). Then differential approach to
incremental computation is sound and allows to reason under displacements.

A refinement of the evaluation of displacements of constants has to be settle down for
later arguments.

Definition 5.8 (Displacements of constants)
Consider a basic type ¢ displaceable by (p, ®,, ©,, 0,, ®,) and a fully-applied constant ¢ such
thatT' - ct : .
Given a I'-consistent environment n, if the evaluation of the constant converges n - ct | J.,
then the value is unique.
Moreover, suppose that there is a value displacement say 6. wv, then the constant values
commute under the displacements:

dg, (0.W) (0, WT) = I, (g WD)

o

where o; is the corresponding type of the i-th argument of c.

The proof of the principal Theorem 5.14 shows the equivalence between a displaced
term by its partial derivative and the same term under the substitution of the new term
(x @, d,). This theorem makes use of each of the lemmas in this section, which state
equivalence properties of displacements ®.

First, Lemma 5.10, states the equivalence between a displacement of a given function
and its application to another term. Lemma 5.11, is about the distribution of the differen-
tial D ¢ over a term and its displacement. This lemma leads to achieve the demonstration
of the immediate Lemma 5.12. This lemma shows that, the evaluation of a term displaced
by the change in variable x and the evaluation of same term under an environment where
the variable is updated by a displaced value, behaves the same.

Lemma 5.10 (Function displacement I)
IfT+t:0 —>71and '+ s: o for any terms t and s and given a displacement of the former
then the following property holds:

(t@Byord) s=tsd,ds

Proof We want to prove that both sides of the equivalence converge respectively to a
value and those values are equivalent v = v'.

Consider an environment 7 which is I"-compatible.

Suppose that the evaluation of the left side n - (¢t ®,,d) s | v (1), converges with the
following sub-derivations:

ek t@®r,d || (Az7.t) . t})[n=] (2) which follows from rule in Figure 5.3 in-
stantiated for @, ., and from Definition 5.3 where n — ¢t || (\y°.¢;)[m] (3) and
ntd | (Az7.t3) [2] (4). The environment 7= is the union of environments 7; and
12, sub-terms ¢} and ¢}, in (2) have respectively the renaming of y and z by a fresh
variable z;

5.4. SOUNDNESS 91

e nt s | w (5) for some value w

e and nx; 27 — w t|; @, t; | v which requests two sub-derivations, one for each
argument for the displacement operator: n=; 2 — w t] || vy (6) and n=; 27 —
w =ty || ve (7), to give the left-value v in (1) is dg. v1 va.

On the right side, the evaluation n ts @, ds || v’ converges when the following sub-
derivations converge: nts || v3 (8) and n —ds | vy (9).
Since evaluation is deterministic, we use derivations above to obtain v' = dg_ v3 v4:

e derivations (3) and (5) to obtain (8): 7;; y — w - t; | vs (10)

e derivations (4) and (5) to obtain (9): 79; z — w I t5 | vy (11)

Now, by renaming the variable y by z in derivation (10), following Definition 5.6, we
obtain 7;; y — w + t| | v3. And by weakening the environment to add elements in
environment 7, using Lemma 5.4, we obtain the evaluation (6) and therefore we can
conclude that v3 = v; since evaluation is deterministic.

Both actions are possible since variable = does not appear in (10), and the weakening can
be carried out since the domain of 7, contains the free variables of Az7. ¢, and not the free
variables of ¢;.

The same reasoning can be applied to convert (11) into (7) which implies that vy = v,.
And therefore conclude that both sides converge to the same value. O

Lemma 5.11 (Function differential distribution over displacements)
Consider a term of function type, I' - t : 0 — 7 then the following holds:

ot ot
btoD (&75,0[90) =D (t@)&x,dx)

Proof. Let the evaluation of term ¢ converge, n — t | (Ay?.s)[n’] (1). Then, we want to
t t

ﬂa Jv(@andn+D ([t ¢ | v (3).

ox, d, or,d,

From (2), the value v is a closure following Definition 5.3 for function displacement:

(AL d57) 5 @ae 1) [ne]

prove that v = v’ fromn — Dt &® D <

/ as /
where s = <8y,dy) ly == =]ld, = d,]and " = (

which are respectively derived from:
)t

9
) I (A (g, 5y >] withy - =C) O 2] @)

or

3
oy, dyl

)l = alldy = da]

e« Dt | ()\<y“, e

ot
oxr,d,

S
0y, d,
D)
ST (2y, dy, 0w, d,

On the other hand, the evaluation to get v' (3) uses the evaluation of the function dis-

ot

ox,d,
previous evaluations (1) and (4) again on Definition 5.3 for function displacement.

placement: n - t @ | w where w = (A\2§.s[y := 2] ®, 7 [y1 := 23])[n*] using

92 CHAPTER 5. A DETERMINISTIC DIFFERENTIAL LAMBDA CALCULUS

Then, by the evaluation rule for differentials we obtain the value

, - o 08|y == z|®. r =z
to (V%dff . 220 ;]22 d " 2]) 7

The definition of observational equivalence for function closures takes any term of the
corresponding argument-type to be applied in order to compare the results of functions.
We proceed to apply a value {u, d) to closures v and v and test the equivalence of their
results.

Given that the all these terms are values, we analyse the following evaluations:
0 = d = d = d - d
N 2 e dzl HdI—(OS[y Zl][Y z1])®A(7)<aT[yl Zl][Y1 Z1]) llw

=
0z1,d,, 0z1,d,,

0sly == 2]@ rly = 2] I
622, dzg

Both judgements are a-equivalent and following Lemma 5.2 the above displacements us-

ing ®a(-) and @-, are equivalent. Therefore, by determinism and since both environments

are equivalent, the values w and w’ are equivalent. Il

nx; 22— U5 day > d =

Lemma 5.12 (Displacements in Environments)

Consider a well-typed term t under context I, x” and a displacement d corresponding to
the free variable x. If ' is I"-compatible, then the values of the following evaluations are
equivalent:

ja

ox,d,

n;r—uv;d,—>d+td; | w n'; x> (0g,vd) -t | o
Proof Induction over ¢. Let n an extended environment: n = n'; z +— v; d, — d.
e Caset =y
dy
Suppose n - y @, =——
or,d,
proof that w = w’. This case gives two sub-cases:

l w(@)and ;2 — (dg,vd) -y | v’ (2) then we want to

1. From hypothesis (1) where y = = we know that n - @, d, || w where value w
is the displacement of (z) by n (d.).
On the other side, evaluation (2) returns the value of variable x which is the
same term above.

2. Now take the hypothesis (1) where y # x. Then the identity displacement and
the evaluation is n - y @, 0, | w. Which following Definition 5.4, is simplified
into term y @, 0, = y and therefore w = 7’ (y).

On the other side, the evaluation gives the value of variable y in environment
n'; x— (0g, vd) which is the same value as before.

Therefore w = w'.

e Caset =ct
This case remains abstract.

5.4. SOUNDNESS 93

I.H.r

I.H.s

0
Consider I' - r : 0/ — o, and 7 consistent with ', d2®). If n - 7 ®yr_s % I w
‘,'E7 X
andn'; x — (5@pvd) For | u then u = '
. . . Alp) 0s
Consider I' - s : o, then for 1 compatible with I, d2?. If n - s @, o | u and
ox, Qg

n'; xz— (6g,vd) s | v thenu=u'

Case t = (s1, S2)
Consider the induction hypotheses for sub-terms s; as instances of I.H.s above. Sup-

(3<51, 82> f
“ord lw @) and n'; z — (6, vd) - (s1, s2) |

w’ (4), then the proof is to show that w = w'.

pose that 7 - {(s1, $2) @o, xo,

Following the definition of partial derivatives and the definition of pair displace-
ments, the term in (3) converges into (v; ®,, u1, vs B,, usy Where each sub-term s;
S5

converges to v; from the induction hypothesis and the derivative p
x? X

converges
to u;.
The pair in (4) converges to value (w/, w}) where w), is the evaluation of the terms

s; under environment 7' ; = — (dg, vd). We can conclude by induction hypothesis
that the value pairs are equivalent since the comparison is made point wise.

Caset = fsts

Take an instance of the induction hypothesis I.H.s as follows:

ifn - 5@y xo, 652 | (wy, weyand 0 ; x — (5@pvd) s | (wl, wh) then w; = w,

for each i € {1,2}.
Using the term projections, fst and snd we can conclude that w; = w..

Caset = \y” . s
Consider the induction hypothesis I.H.s, to proof that:

ifn - A7 s Do Ny 0s | w()and n'; x — (5@pvd) = Ay s || w (6)

oz, d
then w = w'. o

Following Definition 5.3, the value w in (5) is equal to (Ay”’. 5 @y &Osd) [n] (7).
lf‘E7 xr

We use Definition 5.6: take any term r of type ¢’ to be applied to both (7) and (6).
Suppose also that this term converges to value w.

Then, by induction hypothesis we can conclude that the evaluation of the body-
term in (7) under environment 7n; y — u and term s under environment 7’ ; x —
(6g, vd) ; y — u are equivalent.

Caset=rs
Consider the induction hypotheses for terms r and s with environment
n=mn;x—uv;d, — d.

The left evaluation is n - r s ®, ;i:; | w (8), which after applying the definition
0T, Qg

94

CHAPTER 5. A DETERMINISTIC DIFFERENTIAL LAMBDA CALCULUS

of partial derivatives gives:

—rsa, ((Dr) 0s o or ® 0s !
A AN o0x, d, Alr) ox, d, 5 7 Oz, d, v

And after using the equivalence for displacement composition in Definition 5.4:

0s or Js
n ~ <TS@7— (DT) <S, M>> @7— (M <S@U M;)) llw (9)

Recall that n s || vy and n - r | (Az7.t') "] where 7" is an extension of 7.
Then, the above evaluation (9) has the following sub-evaluations:

(a) the term r s converges to value u which is obtained from the evaluation of ¢
undern”; x—v;d, —d; 2z — vy ;

(b) Dr converges into function ()\ (27, d2)y. 63 ! g) "] ;

0
(c) the pair <$, . Sd > converges to value (v, d,) under 7 ;
o) at, "
reduces to ()\z 7z dx) [7"] and

or

(d) the partial derivative
oxr,d,

0s
(&) s®, m reduces to g, v ds.

The value w in (9) is g, w; we and the respective values w; are obtained from the

displacement and the differential described as follows:

the displacement obtained from term in (b) is the evaluation of under envi-

Z? z
ronment 1" ; z — v,; d, — d,, and the differential is obtained from term in (d) by
/

the evaluation of

1 ",
o under environment 7" ; z — g, Us ds.
sy Uy

The proof is to show that value w is equivalent to the value obtained in evaluation
n'; x+— (g, vd) - rs |} v, which is indeed the evaluation of term ¢’ under context
n'; x— (5@pvd) ;2 U,

We can conclude that this holds by induction hypothesis over term ¢': the evaluation
¢ (t’® ot)@ ot
© T oz,d,) T Ox,d,

Caset=Dr
The induction hypothesis is for term r of function type ¢ — 7 where n r |

(A7) [n'].

The proof is to show that w = w’ from evaluations: n — Dr @
where 7' = 0 x A(o) > A(r) and 7/’ ; = — (Jg, vd) + (D7) | w’ A1).

From evaluation (10) and following definition in Figure 5.2 the term to be evaluated

under environment 7" ; x — v; d, — d; 2z — vy; d, — d,.

oDr

is Dr®, D v
s D1 ox,d, ox,d,

Then, we can apply the induction hypothesis to conclude. O

0
— which by Lemma 5.11 is equivalent to term D (r D !) .

5.4. SOUNDNESS 95

Lemma 5.13 (Function displacement II)
Consider a program r applied to an argument I' r s : 7 and a displacement of argument s
say d, then the following holds:

rs®, (Dr) {(s,d)y=r (s®,d)

Proof. Suppose thatI' - rs: 7andletn : I" be a consistent environment. Then we proceed
by evaluating both terms, if n - rs@®, (Dr) {(s,d) | v Q) andn + r (s®,d) | v' (2)
then v = " must hold.

The evaluation of (1) is achieved by the displacement evaluation rule in Figure 5.3
for @, where its sub-terms converge to values as follows:

e s converges to v; where
ntrl A7)] @), nEslu@) and 7'; z—ukt | vy (5).

e (Dr) (s, d) converges to v, through the following:
ot

D A(z7, d2@)y ——

nt+Drl < (27, dE >(3z,dz

the rule defined in Figure 5.1 with (3) as hypothesis; the evaluation of the pair

(s, d) converges into (u, d) using (4) and given that d is also a value, and finally the

ot
0z,d, b o2

The evaluation of the second term (2), has the following evaluations as hypotheses:

) [1] is the evaluation of the differential using

value v, is obtained by the evaluation n’; z — u; d, — d

e the evaluation of term r, which is the same evaluation as before (3);
e the evaluation of the displacement of argument s, 7 s®,d | v3 where vz = dg_ ud

eandn; z—uvsHt| .

Then, we have for first term (1), the value v = dg_vjvy. For the second (2), the value
n'; z— v3 t || v'. The final step of the proof is to demonstrate that values v and v’ are
equivalent. But this is ensured by Lemma 5.12. O

Theorem 5.14 (Soundness of partial derivatives)
Consider a typing context I' = I", d>() where I" is the context in T" ~ t : 7. Then the
following holds:

ot
oxr,d,

t®, tlr == 2@, d,]

Proof. Induction on derivation I'' + ¢ : 7. Let n a I'-consistent environment, we show that

t
ifnl—tGBTaﬁd lvandn+t[z = 2@®,d,] | v/ thenv ="
x? X
o Caset =y
Suppose 7 - y @, 35‘2 lv@andn+ylzr = 2®,d,] | v (2) then we want to
C J xX

prove that v = v'. This case has two sub-cases:

96

I.H.r

I.H.s

CHAPTER 5. A DETERMINISTIC DIFFERENTIAL LAMBDA CALCULUS

1. Instantiate the hypothesis (1) where y = z, thatisn 2@, d, | v.
Then, value v is the outcome of function dg, applied to values obtained from:
nt=a{n(r)and n - d. | n (de).
On the other side, evaluation (2) gives the same displacement operation after
applying the substitution, since executions are deterministic (see Lemma 5.8)
we have v = v'.

2. The hypothesis (1), where y # =z, takes the identity displacement and the
evaluation becomes 7 — y @, 0, || v. By Definition 5.4, we can simplify the
term y @, 0, = y and obtain v = 7 (y).

On the other side, the substitution does not affect y leading to the evaluation
of variable y, n =y || n (y) and v' = n (y).

Therefore v = v’ since in both sub-cases we obtained v = v'.

e Caset =ct

dct
ox,d,

Suppose n - ct @, lv@ andnt (ct) [z := 2@,d,] | v' (4) to prove that
v=".
The induction hypothesis for this case holds for each sub-term ¢;: if I' — ¢; : o,

then for n compatible with I, if n - ¢; ®,, aé’t& | u; (5) where n + t; | v; and
x? xr

0 (Qét; | wi,andn - t;[x = x®,d,] | u; (6) then u; = ul.
X, Qg
Hypothesis (3) requires the evaluations of ¢t and the partial derivative ; C; . They
‘/L" X

reduce respectively to 6.u (7) and 6. ww (8) following Definitions in 5.1 and 5.2.
In evaluation (4), the substitution takes place inside the sub-terms. Then, the eval-
uation has the sub-derivations of the induction hypothesis (6).

Finally, the proof is to show the equivalence between values 6, u®, 6. uw and 6.’
For this we appeal to Definition 5.8.

Consider I' - 7 : ¢/ — o, and 7 consistent with I', d2®). If n - r @pr_s ail | w
ox,d,
andntrfz = 2®,d,] | v thenw =w'.
. . . Alp) 0s
Consider I' - s : o, then for n compatible with I, d2?. If n - s ®, o | wand
x? xr

nkslr = v@®,d,]| | v thenw =w'.

Case t = (s1, S2)

The induction hypotheses for sub-terms s; are two instances of I.H.s above. Suppose
0 (s1, s

that n - (s1, $2) Doy xos ;;d2> J v andn (s, s2) [z := v@D,d,] | v (10),

then the proof is to show that v = ¢/

From hypothesis (9) and following the definition of partial derivative for pairs in

Figure 5.2 and Definition 5.2, the value v is the pair (v; ®,, u1, v2 By, u2) Where s;

5.4. SOUNDNESS 97

converges to v; from the induction hypothesis and the derivative

converges
or,d, &
to u;.

The second hypothesis (10) converges to the pair (w/, w)) where w/ is the evaluation
of s;[zr := &, d,] from induction hypotheses.

The values v;®,,u; and w/] are equivalent, also by induction hypothesis, and therefore
the pairs are equivalent since the comparison is made point wise.

e Caset = fsts
Consider the induction hypothesis I.H.s where o = 0; x o5 that is:

ifn k- s Py, xos ﬁad | {wr, weyand n = sz = @, d,] | {wi, ws) then w; = w;

for each i € {1, 2}.

The above evaluations can be used as hypotheses in the rules for evaluate a term
projection, fst and snd and therefore w; = wy.

e Caset = \y7.s
Consider again the induction hypothesis I.H.s, we want to prove that given n +—

N5 By NY . (/\y"/.s) v = z®,d,] | v (12)

then v = v'.

ox d

0s

) mas),
and in evaluation (12), the value v’ is equal to (\y”". (s[z = z @, x])) [n] (14).

In order to prove that v = ¢/, let us use Definition 5.6: take any term r of type ¢’ to
be applied to both (13) and (14). Suppose also that this term converges to value w.

Following Definition 5.3, the value v in (11) is equal to ()\y .S @y

This changes the proof, instead of proving that v = ¢ from (11) and (12), we
will proof that w = w’ which are the values obtained from evaluating the appli-
cations (13) and (14) to r, respectively.

From the induction hypothesis, we know that the body-terms of the above closures
behave equivalently and therefore the applications will result in equivalent values,
w = w', since the evaluation environments are the same, n extended with y — .

e Caset=rs
Consider the induction hypotheses for terms r and s.
ja
rs

The left evaluation is: n + rs @, fi
ox,d,

respective values w; are obtained from the evaluations r s and

| v (15) where v = dg, wy we and the

ors

ow,d,

On the other hand : n + (rs) [z = « @)p »] | ¢ relies on derivations n +
rlr = x@,d,] | viandnF s[z = 2@,d;] | v} following the distribution of
the substitution operation. By induction hypotheses, these terms are equivalent to

| vy (16) and n - s @y ——— | va (7).

ors

or,d,

those in derivations: n + r ®,_,, ——

6d 6d

From now we will reason through equivalences to proof that the terms (7 s)®,

and (rs) [z := @, d,] are equivalent.

98

CHAPTER 5. A DETERMINISTIC DIFFERENTIAL LAMBDA CALCULUS

Consider the terms in (16) and (17), following Lemma 5.10 we can distribute the

application of them into: ® 0s @ ar @® 0s
PP ' "0 7 0x,d, "\ Oz, d, s 7 ox,d,))’

Then, by Lemma 5.13 we can use the equivalence on the left side to obtain:

. (D7) 0s @ or @ 0s
PEBr AT % ox, d, "\ 0z, d, S 7 0z, d,

Finally, through definition 5.4 we can obtain a term that composes the displace-

ments:
®. (D) 0s o or ® 0s
e AN o0x, d, AT 0x.d, 5o ox, d,

This term gives exactly the term (15) after applying the corresponding definition in
Figure 5.2.

Caset=Dr
Consider the induction hypothesis for term r of type 0 — 7 where n - r || (A\z7.¢") [1/'].

D
Then we want to show that v = ¢’ from evaluations: n — Dr & % | v (18)
ox, d,
where 7/ = 0 x A(0) > A(r)and n - (D7) [z := 2@, d,] | v (19).

On hypothesis (19) we can internalise the substitution and apply the induction hy-

ja
pothesis: n D (r® or | v (20)
ox,d,
Then, in order to proof that (18) and (20) converge to equivalent values we use
Lemma 5.11. [

Chapter Conclusions

We finish this chapter by recalling the incremental approach by differentials: the sys-

tem A-diff permits the incremental evaluation of a program, the user only has to define
the types and its displacements. However, this pure calculus is not expressive enough
to develop useful programs. In the next chapter, we discuss two extensions to provide a
more practical system in which one can study and reason about incremental computation.

Chapter 6

Recursion and Data-Types in the
deterministic differential lambda
calculus

The system A-diff includes the basic constructions to compute functions and its deriva-
tives. Now, we give some extensions to the system where the most representative are the
expressions for fixed-points and data-types all along with their derivatives to analyse the
incrementality over them.

6.1 Differentiation of multiple-argument functions

A generalisation of the system is letting the user to choose the variable with respect to
a function of multiple arguments will be derived.

Definition 6.1 (Differentiation with respect to the i-th argument)

Let the term t be evaluated into an abstraction of n-arguments, that is (A\xg°...z%".s) [1'].
Then, the differentiation of t with respect to argument i is obtained while evaluating the
term D; t and gives the following closure:

0 s
Az (2T, dAEDN g /
< Ty <xz y Y, > Ty ax“d% [77]

The dynamic semantics respects the position in which the displacement d,, is introduced,
that is by adding a pair of the variable z; and the displacement to the abstraction of the
partial derivative, the abstractions that are before or after variable x; remain unchanged.

All definitions and properties in the previous chapter are likely to be preserved under
the exchange of symbol D by the symbol D; to point out the position of the concerned
variable.

99

100 CHAPTER 6. RECURSION AND DATA-TYPES IN A\—DIFF

6.2 Fixed-Points in \-diff

Recursive functions are a powerful construction in programming languages, in the
following we add to the differential A-calculus a construction allowing the definition of
general fixed-points. This is achieved by the term funf.Az”. s.

The above term is a function in which the variable f may or may not appear free in
term s. Therefore, recursive functions and named lambda-abstractions are represented
by the function expression fun. This expression could be a fixed point or just a function as
before: if f appears free in s it means that the expression is a fixed point, while if it does
not appear it means that it is a standard A-abstraction and therefore the function-term is
a definition under name f.

The definitions for \-abstractions given in the system \-diff, in Figures 5.1 and 5.2,
are supplemented by the definitions in Figure 6.1.

tyr,s u= - |funfz.s
v, w = .- | (funfAz?.s)[n]

’Dynamic Semantics

nt funfz?. s | (funf\x?.s)[n]

nbrl (funfaz®.t)[n] nEslw 05 f (funfra®)] wt o
nkrslowv

ntr | (funfAz?.s) 1]

0s ,
n=Dr (funf)\<x”, sy, .)[n]

] Static Semantics

L, fo7, 2+t 71

FUN
' funf . t:0—>71
’ Partial derivative
ofunfy?.t ot
——=—— = funf.\y°.
or,d, unf-Ay or,d,

Figure 6.1 — \-diff: Functions.

6.3. STRUCTURAL DISPLACEMENTS OVER ALGEBRAIC DATA-TYPES 101

The new construction, for named and recursive functions, uses the same notion as
before for the semantics as A-abstractions. The evaluation of a function leads to a closure,
the term application has a second rule where the first term has to be a named function
and then the evaluation of the body-term of the function is performed using an extended
environment binding the name f with the function and the variable x with the value of
the second term.

The differentiation has also a second rule when the term to be differentiated is a
named function. This rule accomplishes the differentiation in the same way as for \-
abstractions: the differential of a function will wait for the pair argument-displacement.
When calculating the partial derivative, the action to be performed is also the same as
before, the derivative operation passes through the function-name and the argument ab-
straction.

Meta-theory for functions

The following lemmas related to typing properties of functions are proven immediately
from rules in Figure 6.1.

Lemma 6.1 (Inversion)
IfT - funf\z°.t : T then there exists o’ such that T = 0 — o’ and I, f~° 27 t : o'.

Lemma 6.2 (Typing the Partial Derivative)

Consider a typing context I and a term t whose type 7 is displaceable by (p, ®., ©,, 0,, O,).
If T,y + funf\z?.t : ¢ — T then its derivative has type 0 — A(7) under the context
T,y dyA("/).

Lemma 6.3 (Type Preservation)
Consider a well typed function I" + funf.Ax°.t : ¢ — 7 and an environment n which is
I'-consistent. If there exists a value v such that n + funf \x.t | v, theno v :0 — 7.

This extension has more interesting applications when used over data-types like natu-
ral numbers, lists or binary trees. We propose another extension of \-diff with algebraic
data-types.

6.3 Structural displacements over algebraic data-types

In this section we define data-types in the differential lambda calculus using the fol-
lowing notation:

Definition 6.2 (Algebraic data-type)
Let R be an enumerable set of data-constructor identifiers, where K ranges over it. An alge-
braic data-type 1 is defined by an equation of the form:

d
I :ef Z Kl 1 0; where 0; =00 > """ —O0in,
1€l

102 CHAPTER 6. RECURSION AND DATA-TYPES IN A\—DIFF

7 is a finite set of indices for the number of constructors and K,’s with i € T are pairwise
distinct with zero or more arguments .

This way of describing data-types resembles the functional definitions like data in
HASKELL or the Inductive type in COQ. For instance, the unit type whose unique con-
structor is , is defined as I; 4t . We write 7 + o as a short cut for the sum-data-type I, .,
whose constructors are L (left) and R (right), it is defined by:

def

L., = T+ R:o

Other examples are the data-types for booleans and natural numbers:

def def
bool < true + false nat < zero + suc : nat

The significant additions to system A-diff are depicted in Figure 6.2.

The abstract base types ¢ will now be instantiated by the types I. Some constants ¢
become the constructors K; and the general elimination form of any data-type is the case
operator which is labelled with the corresponding inductive type. Recall that data-types
used here define inductive objects constructed using the data identifiers K,’s and destructed
by an instance of the elimination term case.

A constructor K of an inductive type I has as many arguments as defined in the corre-
sponding type definition. We call a branch the function associated (by =) to a constructor
identifier in the elimination expression casey, it also has as many arguments as the con-
structor has. The casej elimination contain the corresponding branch for each constructor
of the type I. A branch or a sequence of branches are defined by the syntactic category b
where the head-branch is the left-most branch in a sequence.

The evaluation of a case-term considers the value of the term to be destructed. Then,
the evaluation continues by comparing the value against the sequence {b, | --- | b,,}, the
comparison is denoted by .

When comparing a term (a full applied constructor) with a branch, the semantic rules
check whether or not the constructor identifier is the same as the constructor of the head-
branch in the sequence. If they are the same, the evaluation proceed under the extended
environment using the values of the value-constructor and taking the body-term of the
associated function. If the identifiers are different, then the comparison continues with
the rest of the sequence. We ensure that this exhaustive process succeeds since the static
semantics takes the elimination expression containing all cases for the corresponding con-
structors of the inductive type I. Therefore at some point both constructors, the one of
the value and the one in head-position, will coincide making progress in the evaluation.

The definition of partial derivatives is extended with the cases for constructors and
elimination forms. The definitions given in Figure 6.2 are dedicated to support our par-
ticular choice to define data-type displacements in the section that follows (see Defini-
tion 6.3).

1. Note that the equation could be recursive, i.e., o; ;, may be some I. If K; has zero arguments, then it
does not have an associated type o;.

6.3. STRUCTURAL DISPLACEMENTS OVER ALGEBRAIC DATA-TYPES 103

Syntax
t,r,s == x| K;|casert of {b} | (s1, sey|fstt|sndt
| Az s | funfAz?.s |rs|Dt
b o= Ki= M0y | K= Ayg™, . yn)b
v, w == Kyw | (Ax?.s)[n] | (funfrz?.t) [n]
T,0,p = llogxoy|o—T

’Dynamic Semantics ‘

vV si, Nk sl w; Nkt w ntA{bo| -+ by} o w | v
nkKs| Kiw n t casert of {by| -+ |bm} | v
M5 Ye > WY W, 1y v

n = A{Ki = Ayg™, .y b)Y o Ko | v

n = {b} v~ Kew || v
N {Ki = M0,y b v K@ | v where K # Ky

] Static Semantics

ViEI, je{O,ni}, ' K:Ui,0_>"'_)0-i,ni VSZ‘J‘, FI—SZ‘J‘ 2055

CONSTR
I'-Ks:I

0“,0 U"7 . .
I'FKi:oig— - — 0in, DAy ooy o o T

5 T — BRANCH
PEKi= Ay, yn, o120 —> T

CASE
[t casert of {bg| -+ |bp}: 7

Figure 6.2 — \-diff: Algebraic types

When deriving an inductive constructor, an auxiliary function congy computes the
displacement of the element by internalising the change of = on each sub-expression s;.
The function cong is a congruence operation whose aim is to generate a displacement over
the same constructor:

Kis; @1 congy. (a) =K, (s; @ d)

The partial derivative of the elimination expression case; makes use of a given deriva-
tive dcase;. This auxiliary function is expected to be given, in the sense that the user
provides the derivatives of the primitive operations, included the elimination forms. The
arguments of this function are described in the next definition of the displacement.

104 CHAPTER 6. RECURSION AND DATA-TYPES IN A\—DIFF

0K;s; (s;)
= cong,

ox,d, or,d,
Ocasert of {by | -+ | by} ot - _— \—=A(e) OTp
= d t Ay°. A0 \d)
or,d, casel or,d, (y--To <p) y v ox,d,
—F —F —A (U'm) a Tm
AT T Y™\)
(AT rm) (J y o, d)

where i€ {0, m}
bi = K= \yo™, g™y and 0 =1D d,
= Kz =)\?E r;

Figure 6.3 — Partial derivatives for algebraic data-types

Data-type displacement

We proceed to characterise a proposal of displacement for data-types where the change
propagation permeates in every element of a data-type. This definition is syntax-directed
following the constructors of the algebraic data-type.

Definition 6.3 (Algebraic data-types displacement)
Assume an algebraic data-type 1 with constructors K;, i € Z. If each type o; of constructor
K, is displaceable by (p;, ®s,, O0,, 0., Os,), then 1 is displaceable by (p, @1, S, 0, Op) such
that

P def Zr + Z Kiig 10, + ZKi:A(ai)

i,0eT i€l

where
s a constructor for the zero-displacement

Z
Ki_¢ s a constructor for displacement from K; to K,
K; is a constructor for the inner displacement in K;

Additionally, the displacement for a data-type must be accompanied of the corresponding
primitive definition congy. for each constructor K; and the elimination expression dcasey.

Of course, the number of constructors of A(I) depends on the combinations of the
constructors of I and could be large enough to be handled easily. The reader can argue
that some of the displacement constructors are redundant and a shorter definition could
be given instead. For sure, there are more smarter and specialized displacement defini-
tions for particular cases of algebraic data-types, here we continue to elaborate this one
which we say; it can be obtained mechanically from a given inductive type I.

Meta-theory for data-type displacements

Lemma 6.4 (Inversion)
o IfI' - K;5 : 7 then 7 = I for some inductive type and there exist o;; such that
I' - s, @ 0y for each sub-term.

6.3. STRUCTURAL DISPLACEMENTS OVER ALGEBRAIC DATA-TYPES 105

o If " casert of {by| -+ | by} : 7 then there exist I and o; such that I' + ¢ : I and
'+ b; : 5; — 7 for all b,.

Proof. Immediate from typing rules in Figure 6.2. O

Lemma 6.5 (Canonical forms)
If o+ v: 1 then v = K;w for some K; of the inductive type 1.

Proof. By analysis of the values in this extension, the type assignation can only be used to
give type to an inductive constructor as shown in the previous lemma. O

Lemma 6.6 (Typing the Partial Derivative)
Consider a typing context I and a term t whose type 7 is displaceable by (p, ®,, ©-, 0., O,).
ot

ox,d,

If ', 2° & t : 7 then its derivative has type A(7) under the context T, 7, d5().

Proof. We proceed to demonstrate the inductive cases for any constructor and any elimi-
nation form.

e Caset =K;3s
The hypotheses of induction are valid for the sub-terms s;, that is:
0 Si

g has type A(o;).

y T

whenever IV, 2 - s; : 0; then the derivative

Then, to prove that congy aj,sdm has type A(I) we appeal to the definition of
function cong, which internalise the displacement.

e Caset = caseyt of {by| ...| by}
The proof is to show that Ocaset o;:{cbii L | b} has type A(7).
Following the definition of the partial 7de:;ivative this points to the auxiliary function
dcaser ¢t defined in the tuple for I displaceable as in Definition 6.3. O

Lemma 6.7 (Type Preservation)
Consider a well typed term I' — t : 7 and an environment n which is I'-consistent. If there
exists a value v such that n—t | v, then o v : 7.

Proof. We analyse the cases for the new terms, a constructor and the case elimination.
The induction hypotheses are instances of terms s; and ¢’ in each case.

e Caset =K;3
By induction hypotheses, each sub-term s; evaluates into w; and therefore the type
of K; w has inductive type I.

e Caset = casert' of {bg | -+ | by}
For this case, the induction hypotheses are the typing assignations for term ¢ and
the branches.

Then, term ¢ converges into value w and the hypothesis of the evaluation ensures
the correct branch to perform the evaluation which also converges. O

106 CHAPTER 6. RECURSION AND DATA-TYPES IN A\—DIFF

Theorem 6.8 (Correctness of partial derivatives of data-types)
Consider a typing context I' = I, d®() where I" is the context in I \~ t : 7. Then for n a
I'-consistent environment the following holds:

ot

Proof. We have the cases for the new terms, any constructor and the case elimination.
The induction hypotheses are instances of terms s; and ¢’ respectively.

e Caset =K;5s
This case is proved by using equivalences, the left part begins as a displacement:

Ki
Kis@r i

ox,dy

By applying definition for partial derivatives, the term is: K; 35 @y congy, ((,Jasd)
A\ 0T, Gy

Then, by definition K;s @y congy, (d) = K(s@®, d) and induction hypotheses for

terms s; we obtain the right part: K; (5[z = 2®, d,]).

e Caset = casert' of {by | --- | by}
This case remain abstract since the definition of dcase; is not provided. O

Our approach to displacements over data-types is aimed to be mechanised while it
helps to propagate the change smoothly over terms in the system. The choice of inductive
definitions for data-type representation arises naturally in the functional and certified
approach to programming as we exposed in Chapter 4 in the various approaches to change
description.

However a possible mechanisation is not entirely independent, the user is required to
give the primitive definitions for the derivative of the case elimination and the definition
of the cong function. We mentioned this in Definition 6.3, where a displaceable algebraic
data-type expects those definitions. This could be alleviated since the type A(I) is also
algebraic and therefore the definition of dcase is the case elimination of A(I).

In the following, we elaborate two examples to exhibit the use of the above exten-
sions. Since our goal is to define total functions, we suppose a constant fail to denote an
undefined value.

6.4 Examples

Example (Booleans). In Figure 6.4 appears the extension of A-diff for the boolean data-
type: bool = true | false. It includes the corresponding type for boolean displacements
A(bool) = dbool, which is obtained ‘mechanically’ by Definition 6.3.

The syntactic category for constructors in \-diff is extended with the two constructors for
booleans and the boolean displacements which describe a detailed way to change: the Z,qo
constructor state the empty-change, the T'T and F'F displacements characterise a change

6.4. EXAMPLES 107

I == ---|bool|dbool
K == ---|true|false | Zpoot | TT | FF |TF | FT

Casepool t Of true = sq|false = s9

dcasepooi td (s1[2 1= @, d.]) (ﬁiscli) (soz == 2@, dx])(05)

Figure 6.4 — Displaceable Booleans

that does not modifies the shape of the original object, and finally the last two constructors
TF and F'T show the transformation of a boolean construction.

Therefore, the boolean type is displaceable by means of: (dbool, @pool, Obool; Obools Obool)
together with the definition of dcase,.,. The corresponding constants ¢ are defined for a
full-value application 2:

Ogpoy Dd = casegpoord of { T'F = false| F'T = true | _=b}

Casepool by Of { false = caseb; of {false = F'F'|true = FT}

000 1B = | true = caseb; of {true = T'T'|false = TF} }
Casedpool d1 Of { TT = casedyof {TT = TT|TF = TF | = fail}
| FF = casedyof {FFF'= FF|FT = FT | = fail}
Oopey d1d2 = | TF = casedyof {FT = TT|FF =TF | _= fail}
| FT = casedyof {TT = FT|TF = FF | _= fail}
| Zbool = d2 }

An implementation of the case elimination of displacements shows the detailed processing
of change:

dcasepoo; (b : bool) (d: dbool)
(btrue : 7) (dbtrue : A(7))
(bfalse : 7) (dbfalse : A(7)) :=
Casegpool d of { TT = caseb of {true = dbtrue | = fail}

| FF = casebof {false = dbfalse| = fail}
| TF = casebof {true = ! (bfalse) | = fail}
| FT = casebof {false = ! (btrue) | = fail}
‘ Zbool = OA(T) }

Recall in the above term, that the sub-terms of the case-term have type T and therefore the
displacements have type A(7). The bang-operator ('), performs an absolute displacement by

2. We use the term b to denote any value of type bool.

108 CHAPTER 6. RECURSION AND DATA-TYPES IN A\—DIFF

replacing the value with a recomputation. It produces a displacement and its type takes the
elements to reconstruct a term.

We claim that this description, while could seem exaggerated to describe booleans trans-
formations, is an optimal representation for change, and promotes an efficient change prop-

agation in functions that depend on boolean inputs.

Let us see two boolean functions, the not and xor operations.

not = A\z.casex of {true = false|false = true}

xor = Azy.casex of {true = noty/|false = y}

Their respective partial derivatives are the functions whose body-terms are the partial deriva-
tives of the boolean values and the not operation. The corresponding derivatives are the
following:

Dnot = A{x, d,).dcasepoo xd,true TT false FF

t
Dxor = MA{x, d,) y.dcasepoo x d; (noty) (i;ody) () Odbool

Example (Natural numbers). The data-type for natural numbers with its displeceable type,
the definition of term dcase,,: has the displacements for replacement, those with a explicit
substitution of the new value of x, and the displacements where a change propagation will
be done.

I == -.-|nat|dnat
K o= - |zero|suc|Zwu | ZZ|SS|ZS|SZ

casena: t of {zero = si|sucn = syn}

(981

dcasen,c td (s1 [z == 2@, d,]) <

Figure 6.5 — Displeceable Natural numbers

6.4. EXAMPLES 109

casen, m of { zero = cased of
{Onat = zero| ZZ = zero | ZSn = n | _ = fail }

Sgmd = A £ "
Bnat 110 | suc m’ = casedof {0,, = suc m’|SSd = suc (n®d)
| SZ = zero | _=fail } }
A casenat 1 of { zero = case mof { zero = ZZ|sucn = SZ }
Oom MM = | suc n/ = case i of {zero = ZSm’|suci = S <’?L@77/”L\/>}}
casep(nat) dy of { ZZ = cased, of
(Ot = 1|22 = ZZ | ZSh = ZSh|_ = fail }
| ZSm' = cased, of
(Ot = 1|22 = ZZ | ZSH = ZS7|_ = fail }
/
So didy — | §Sd" = cased;of

{ Ot = d11SZ = SZ|SSd" = SS (d ©d")
| = fail }
| SZ = cased, of
{Opat = 1|22 = SZ | ZSm' = SS | _ = fail }
|0nat:>d2 }

As the reader can see, this choice of data-type displacement scales quickly because of the
number of constructors. We end with an implementation of dcase,,; and the differentiation
of the sum operation with respect to its first argument:

dcase,,: (n:nat) (d:dnat)
(bzero : 7) (dbzero : A(7))
(bsuc: 7) (dbsuc: A(T)) :=
casegpoold Of { ZZ = casenof {zero = dbzero | = fail}

| SSd" = casenof {sucn’ = dbsucd’| = fail}
| ZS'm = casenof {zero = ! (bsucm) | = fail}
| SZ = casenof {sucn’ =!(bzero) |_ = fail}
| Znat = OA(T) }

sum = Ax,y.casex of {zero = y|sucz = suc (sumzy)}

0
Nz, d,). \y.dcasepas vdy y Opae (Sumzy) <sumxy)

D
osSum 83:,(13:

110 CHAPTER 6. RECURSION AND DATA-TYPES IN A\—DIFF

Chapter 7

Closing remarks

7.1)\—diff Related Work

The second part of this work, presented and formalised in the last two chapters, con-
tributes with a dependent ! approach to changes and a differential lambda calculus.

In this chapter we discuss a related work which is very close to our incremental pro-
posal elaborated so far. We finish with some closing remarks.

7.1.1 A theory of changes for Higher-Order Languages

As mentioned in Chapter 4, a very similar framework to incrementality was elaborated,
Cai, Guiarruso, Rendel and Ostermann? . In the following we describe and compare this
framework, focusing on differentiation by dependent change structures and the Derive
operator over terms, the reader may see the details in the article where the system named
ILC for incrementalizing A-calculi, is elaborated [25].

ILC: Incrementalizing \-calculi

The first component to achieve incrementality, is to define a dedicated theory for
change description. This is managed by the theory of changes in ILC as a dependent
theory 3 where any type has a set of displacements and operations to update a term and
to compute a change or displacement. Given type p, it introduces a structure p formed by
a dependent set of changes (every change depends on an element s of p) and the incre-
mental primitives or change operations for data-update @ and change calculation ©. A
change structure p is a mathematical instance of an abelian group.

1. The dependent approach is not related to a dependent type system per se but to the fact that any
displacement ‘depends’ on the old value.

2. Visit the site of the Incremental \-Calculus project: http://www.informatik.uni-marburg.de/
~pgiarrusso/ILC/

3. As we said, the dependent theory is for change description.

111

http://www.informatik.uni-marburg.de/~pgiarrusso/ILC/
http://www.informatik.uni-marburg.de/~pgiarrusso/ILC/

112 CHAPTER 7. CLOSING REMARKS

Definition 7.1 (Change structure)
A change structure for a given type p is a tuple p = (p, A, ®,O) if:

1. pis a set, called the base set.
Given v € p then Av is a set, the change set.
Givenve pandde Avthenv@®de p.

Given v, v' € p then v © u € Av.

SANEP SR

Given v, u € p then v ® (u© v) equals w.

The ILC framework is based on a lambda calculus parametrized by a plugin containing
basic types, its primitive operations and a change structure with incremental primitives.
basic type change structure: 7= (:,A,,®,,0,)
where @, = plugin-defined
and ©, = plugin-defined

function type change structure: 7 —0 = (7 — 0, A5, Br 0, Or o)
where A, =7 —> A, > A,

The Derive operator allows not only differentiation of functions but full differentiation
of terms with respect to all free variables, it is defined recursively:

Derive(c) plugin-defined
Derive(A\x.t) = Ax dx. Derive(t)
Derive(st) = Derive(s)t Derive(t)
Derive(r) = dx

The above definition promotes a term derivation with respect to all its free variables.
This is attested by the corresponding typing rule for Derive which needs a context for
changes in order to assign a type for the derivative of a term:

I't:r

DERIVE
', AT + Derivet : AT

The change-context AI" has dx : At for each variable = : 7 in I". Therefore, if I' ¢ : 7
holds, then the derivative is a change.

The authors show the correctness of differentiation using a correspondence between
the differential framework ILC and the non-standard denotational semantics of the lambda
calculus. The main theorem of correctness resumes in the following equivalence:

[(s@ds) = (f 5) @ (Derive([) s d;)

The article includes a formalization of the system and the meta-theory in Agda* and
an implementation in Scala®.

4. http://wiki.portal.chalmers.se/agda/pmwiki.php
5. http://www.scala-lang.org/

http://wiki.portal.chalmers.se/agda/pmwiki.php
http://www.scala-lang.org/

7.2. CONCLUSIONS 113

7.1.2 Discussion

Although some similarities between the system just described and our approach (the
dependent change description, an operator to compute derivatives and function differen-
tiation) we can distinguish some differences.

Differentiation We claim that the ILC system allows a static differentiation of any \-
term, not only functions, while the system A-diff includes a formal constructor for function
differentiation and an extra term-operation for partial derivatives of terms. This means
that the latter is a framework to dynamically compute derivatives, without user interven-
tion for computing any program transformation. This also ensures a change propagation
within the evaluation of functions, that is done automatically.

For instance, the evaluation of a function differential in A-diff computes the partial
derivative of the body sub-term of the function while propagates the displacement of the
argument. In ILC the derivative of the function must be computed before evaluation
which is also an automatic transformation.

Change management In both systems, \-diff and ILC, the efficiency lies on the change
description. Any incremental function, at the end, depends on the most basic functions
and values that is, the basic types and the way they express and manage changes within
the primitive operations. Therefore, the foundations of incrementality are the change
descriptions, the plugins in ILC and the displaceable types in A-diff.

The use of plugins, which are stated by the user, makes impossible to deduce mechan-
ically the definitions of base types derivatives. The user is ‘responsible’ for the plugins,
while in our approach the user is free to give an inductive definition for data-types which
can be syntactically derived a type for data-displacements.

With respect to the efficiency achieved by means of change management, the ILC sys-
tem has a notion of self-maintainability for those functions which can obtain an output
without using the inputs but just their changes. Hence, efficient incremental computa-
tions arise naturally with self-maintainable derivatives. This statement is follows from
the remark characterising the optimizations under an incremental framework: the grad-
ual computation through changes ensure an output whose run-time does not depend on
the input size.

7.2 Conclusions

The long and wide road to achieve program optimizations has many different ways to
be walked. We chose the incrementality path aiming to understand the first steps of those
who already walked through it and to seek a new and improved proposal. While doing
this, we found another group of colleagues trying to pursue the same goal and fortunately.

We want to emphasize our position to bring incrementality in a functional paradigm:

e A faithful change description:
given a term, restrict the ways it can change and keep track of how an object can

114 CHAPTER 7. CLOSING REMARKS

change or transform into another, that is a formal way to link the changes inside the
structures, a kind of factorising the behaviour of changes in elements.

e The change reflection and propagation:
make consistent and smooth maps between input changes and outputs, that is ac-
curate input changes enable accurate outputs.

e A program transformation by means of differentiation for programs to strengthen
the reuse of values.

7.3 Future work

We hopefully will continue to extend the road of incrementality via the following
subjects.

The \-diff calculus

We consider continuing the development of the deterministic A-diff-calculus. The idea
is to extend the system until reaching the formalisation of the Calculus of Inductive Con-
structions to provide a framework to ease the reasoning of incremental programs inside
the CoQ proof assistant.

Improve memoization

One of the most used techniques to program optimization is memoization, as we stated
and reported by the self-adjusting paradigm.

Since our approach keep track of the dependencies of the inputs to reflect the changes
in the outputs we suggest to improve memoization in the following way: when searching
a key in the table which does not exist, we can reuse the value of the closer entry in the
table.

The notion of data dissection and displacements could help to decide which is the
closer element to the current input, in order to reuse its value. We can generalise this by
choosing a subset of reusable outputs. Then, a notion of neighbourhood is necessary in
order to decide and maintain the reusable values.

Incremental type-checking

Our motivation to develop an incremental approach for the lambda calculus is to im-
prove the type theory on which a proof assistant is based.

Since the proof construction is done inside a system which will finally validate the
proof by a type checking, we want to take advantage of the interactive nature of the
system to apply an incremental approach.

The idea of checking the proofs incrementally has been already suggested before [98].
Recently, the work of Puech in his PhD dissertation [96], offers a practical tool to perform

7.3. FUTURE WORK 115

incremental type-checking addressed by means of a certifying approach to programming.
The formal program verification using the certifying approach uses the basic concept of
programming with certificates. A program has a witness of the correctness of the compu-
tations performed, the certificate could be verified without the program.

Puech takes the logical framework LF of Pfenning [88] as a language where the proofs
can be represented and manipulated. He offers an OCAML library (Gasp) for program-
ming with certificates. An incremental type checker is included in this library which can
reuse sub-derivations of typing derivations.

The document model The document model in the Paral-ITP project expects a typed
repository to perform formal analysis of proof versions. The efforts achieved to this pur-
pose agree with a framework for incrementality. The interactive nature of the proof assis-
tants allows the incorporation of this kind of optimizations.

Remember that the process of proof-construction is conducted (locally) by the user in
a proof management system. The development of a theory evolves dynamically, that is, it
is large and non-linear, due to the inclusion of new definitions and all kind of changes in
statements, definitions and proofs. Moreover, the user does not start and finish a theory or
a development with just a single phase of ‘coding’ nor even with only one file or without
editions that may last for months. Additionally, the collaborative work suggests shared
developments where more than one user may take advantage of verified parts of the
theory to continue working without loosing time while re-type-checking the theorems.

We want to take advantage of incremental computing to offer a better performance
when a user is developing a theory in the CoQ proof management system. A proposal is
to consider the development of a theory as a process suitable to apply incrementality.

For instance, whenever a proof is done and afterwards a change in a definition or the
inclusion of a new theorem simplifies a finished proof by making small changes. Then we
want to earn the time spent when checking the original proof and reuse some pieces of
the proof that did not change and are already checked.

The idea of considering a proof as an object constructed incrementally suggests a proof
representation by differences leading to keep and reuse those parts which are already
proven or even type-checked in order to alleviate the proof checking.

The approach to incrementality proposed so far and a possible combination with a
powerful language extension as the Cybele plugin offers, could lead to manage proof
scripts in a formal repository to study the changes and to follow an incremental verifica-
tion of them. Then, the need of locally correct proof steps, in order to have a safe change
description to be propagated while computing, leads to work around the (ambitious) goal
of make an incremental type-checker and the development of a typed tactic language for
CoqQ.

However this is not a simple task, some obstacles have to be defeated:

1. A proof not always succeeds type-checking when typing QED at the end of a demon-
stration. This leads to the question of how to benefit of those proofs.

2. A theorem could have different proofs. This opens the question about the change
representation of proofs.

116 CHAPTER 7. CLOSING REMARKS

The remarks above are related directly to the tactics used in the proofs, hence a lan-
guage with types for tactics. The more a tactic is reliable, the more the proofs will be
verified.

Our proposal focuses on the process of creation and development of proofs by means
of proof scripts and the generation of proof-terms. A change in the proof script triggers
a change in the rest of the proof and in the proof-check. A ‘re-check’ is just a matter of
verifying the parts (in)directly affected by the change.

A formal repository can be maintained with the checked and therefore safe proof-
terms. This proposal is not aimed on deriving explicitly incremental algorithms but to
apply methods discussed in this work to obtain results efficiently.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. Derivatives
of containers. In Typed Lambda Calculi and Applications, 6th International Confer-
ence, TLCA ’03, pages 16-30, 2003.

Michael Abbott, Thorsten Altenkirch, Conor McBride, and Neil Ghani. ¢ for data:
Differentiating data structures. Fundam. Inform., 65(1-2):1-28, 2005.

Andreas Abel. Weak normalization for the simply-typed lambda-calculus in twelf
(extended abstract). In In Logical Frameworks and Metalanguages (LFM 04), IJCAR,
2004.

Umut Acar. Self-Adjusting Computation. PhD thesis, Carnegie Mellon University,
May 2005.

Umut A. Acar, Guy E. Blelloch, and Robert Harper. Selective memoization. SIG-
PLAN Not., 38(1):14-25, January 2003.

Umut A. Acar, Guy E. Blelloch, Robert Harper, Jorge L. Vittes, and Shan Leung Mav-
erick Woo. Dynamizing static algorithms, with applications to dynamic trees and
history independence. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 04, pages 531-540, Philadelphia, PA, USA, 2004. So-
ciety for Industrial and Applied Mathematics.

Umut A. Acar and Ruy Ley-Wild. Self-adjusting computation with delta ML. In
Advanced Functional Programming, 6th International School, AFP 2008, Heijen, The
Netherlands, May 2008, Revised Lectures, pages 1-38, 2008.

Amal J. Ahmed. Step-indexed syntactic logical relations for recursive and quanti-
fied types. In Programming Languages and Systems, 15th European Symposium on
Programming, ESOP 2006, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2006, pages 69-83, March 2006.

A. Asperti, W. Ricciotti, C.S. Coen, and E. Tassi. A new type for tactics. Technical
report, Department of Computer Science, University of Bologna, 2009.

Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and
Stephanie Weirich. Engineering formal metatheory. In ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL), San Francisco, California,
pages 3—-15. ACM, 2008.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univ. Press,
Cambridge, 1998.

117

118

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

BIBLIOGRAPHY

Hendrik Pieter Barendregt. The lambda calculus : its syntax and semantics. Studies
in logic and the foundations of mathematics. North-Holland, Amsterdam, New-
York, Oxford, 1981.

Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus
with Types. Perspectives in logic. Cambridge University Press, 2013.

Henk Barendregt and Herman Geuvers. In Alan Robinson and Andrei Voronkov, ed-
itors, Handbook of Automated Reasoning, chapter Proof-assistants Using Dependent
Type Systems, pages 1149-1238. Elsevier Science Publishers B. V., Amsterdam, The
Netherlands, The Netherlands, 2001.

Henk Barendregt and Herman Geuvers. Proof-assistants using dependent type sys-
tems. In Alan Robinson and Andrei Voronkov, editors, Handbook of automated
reasoning, pages 1149-1238. Elsevier Science Publishers B. V., Amsterdam, The
Netherlands, 2001.

Bruno Barras. Proof assistants. http://www.lix.polytechnique.fr/~barras/
mpri/notes/index-2-7-2.html, 2010. Master Parisien de Recherche en Infor-
matique, notes of the course.

Bruno Barras, Carst Tankink, and Enrico Tassi. Asynchronous processing of coq
documents: From the kernel up to the user interface. In Interactive Theorem Prov-
ing - 6th International Conference, ITP 2015, Nanjing, China, August 24-27, 2015,
Proceedings, pages 51-66, 2015.

Gilles Barthe, John Hatcliff, and Peter Thiemann. Monadic type systems: Pure
type systems for impure settings. In Proceedings of the Second HOOTS Workshop.
Elsevier, 1998.

P. N. Benton, Gavin M. Bierman, and Valeria de Paiva. Computational types from
a logical perspective. J. Funct. Program., 8(2):177-193, 1998.

Yves Bertot and P. Casteran. Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Springer-Verlag, Berlin, Germany;,
2004.

Matgorzata Biernacka and Dariusz Biernacki. A context-based approach to prov-
ing termination of evaluation. Electronic Notes in Theoretical Computer Science,
249(0):169 — 192, 2009. Proceedings of the 25th Conference on Mathematical
Foundations of Programming Semantics (MFPS 2009).

Jan Olaf Blech and Benjamin Grégoire. Certifying compilers using higher-
order theorem provers as certificate checkers. Formal Methods in System Design,
38(1):33-61, 2011.

Samuel Boutin. Using reflection to build efficient and certified decision procedures.
In TACS’97. Springer-Verlag LNCS 1281, pages 515-529. Springer-Verlag, 1997.

Ana Bove and Venanzio Capretta. Computation by prophecy. In Typed Lambda
Calculi and Applications. 8th International Conference, TLCA 2007, pages 70-83.
Springer, 2007.

Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, and Klaus Ostermann. A theory of
changes for higher-order languages: Incrementalizing A-calculi by static differen-
tiation. SIGPLAN Not., 49(6):145-155, June 2014.

http://www.lix.polytechnique.fr/~barras/mpri/notes/index-2-7-2.html
http://www.lix.polytechnique.fr/~barras/mpri/notes/index-2-7-2.html

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

119

Pierre Castéran and Matthieu Sozeau. A Gentle Introduction to Type Classes and
Rewriting in Coq, May 2012.

Andrew Cave and Brigitte Pientka. Programming with binders and indexed data-
types. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, POPL’12, pages 413-424, New York, USA, 2012.
ACM.

Yan Chen, Joshua Dunfield, Matthew A. Hammer, and Umut A. Acar. Implicit
self-adjusting computation for purely functional programs. J. Funct. Program.,
24(1):56-112, 2014.

Adam Chlipala. Certified Programming with Dependent Types. MIT Press, 2011. Last
draft version, April 8 2015, http://adam.chlipala.net/cpdt/cpdt.pdf.

Guillaume Claret, Lourdes Del Carmen Gonzdlez Huesca, Yann Régis-Gianas, and
Beta Ziliani. Lightweight proof by reflection using a posteriori simulation of effect-
ful computation. In Interactive Theorem Proving, Rennes, France, Jul 2013.

Sylvain Conchon and Jean-Christophe Filliatre. A Persistent Union-Find Data Struc-
ture. In ACM SIGPLAN Workshop on ML, Freiburg, Germany, October 2007.

Evelyne Contejean and Pierre Corbineau. Reflecting proofs in first-order logic with
equality. In CADE, pages 7-22, 2005.

The Coq Development Team. The Coq Proof Assistant Reference Manual Version 8.4,
2012. August 12, 2012.

Pierre Corbineau. Autour de la cléture de congruence avec coq. Master’s thesis,
ENS, 2001. In French.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms (3. ed.). MIT Press, 2009.

David Delahaye. A tactic language for the system coq. In Proceedings of Logic for
Programming and Automated Reasoning (LPAR), Reunion Island, volume 1955 of
Lecture Notes in Computer Science, pages 85-95. Springer, 2000.

Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common
subexpression problem. J. ACM, 27(4):758-771, October 1980.

Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theor:
Comput. Sci., 309(1-3):1-41, 2003.

John Field and Tim Teitelbaum. Incremental reduction in the lambda calculus. In
Proceedings of the 1990 ACM Conference on LISP and Functional Programming, LFP
’90, pages 307-322, New York, NY, USA, 1990. ACM.

John Henry Field. Incremental Reduction in the Lambda Calculus and Related Reduc-
tion Systems. PhD thesis, Cornell University, 1991.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1 — 101, 1987.

Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A small scale reflection ex-
tension for the coq system. Research Report RR-6455, Inria Saclay Ile de France,
2015.

http://adam.chlipala.net/cpdt/cpdt.pdf

120

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

BIBLIOGRAPHY

Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh
LCF, volume 78 of Lecture Notes in Computer Science. Springer, 1979.

Benjamin Grégoire, Loic Pottier, and Laurent Théry. Proof certificates for algebra
and their application to automatic geometry theorem proving. In Thomas Sturm
and Christoph Zengler, editors, Automated Deduction in Geometry, volume 6301 of
Lecture Notes in Computer Science, pages 42—-59. Springer Berlin Heidelberg, 2011.

Robert Harper. Practical Foundations for Programming Languages. Electronic text-
book, 2015. Revision 2.03 http://www.cs.cmu.edu/~rwh/plbook/2nded. pdf.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
J. ACM, 40(1):143-184, 1993.

John Harrison. Metatheory and reflection in theorem proving: A survey and cri-
tique. Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK,
1995.

Dimitri Hendriks. Proof reflection in coq. Journal of Automated Reasoning, 29(3-
4):277-307, 2002.

Claudio Hermida, Uday S. Reddy, and Edmund P. Robinson. Logical relations and
parametricity — a reynolds programme for category theory and programming lan-
guages. Electronic Notes in Theoretical Computer Science, 303:149 — 180, 2014.
Proceedings of the Workshop on Algebra, Coalgebra and Topology (WACT 2013).

Ralf Hinze. A new approach to generic functional programming. In Proceedings
of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 00, pages 119-132, New York, NY, USA, 2000. ACM.

Ralf Hinze, Johan Jeuring, and Andres Loh. Type-indexed data types. Science
of Computer Programming, 51(1-2):117 — 151, 2004. Mathematics of Program
Construction (MPC 2002).

Gérard Huet. The zipper. J. Funct. Program., 7(5):549-554, September 1997.

John Hughes. Why functional programming matters. Computer Journal, 32(2):98-
107, april 1989.

Daniel W. H. James and Ralf Hinze. A Reflection-based Proof Tactic for Lattices in
Coq. In Trends in Functional Programming, pages 97-112, 2009.

Patrik Jansson, Johan Jeuring, and Lambert Meertens. Generic programming: An
introduction. In 3rd International Summer School on Advanced Functional Program-
ming, pages 28-115. Springer-Verlag, 1999.

Felix Joachimski and Ralph Matthes. Short proofs of normalization for the simply-
typed lambda-calculus, permutative conversions and Godel’s T. Arch. Math. Log.,
42(1):59-87, 2003.

P.J. Landin. The next 700 programming languages. Commun. ACM, 9(3):157-166,
March 1966.

Slawomir Lasota, David Nowak, and Yu Zhang. On completeness of logical rela-
tions for monadic types. CoRR, abs/cs/0612106, 2006.

http://www.cs.cmu.edu/~rwh/plbook/2nded.pdf

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

121

Xavier Leroy. Functional programing and type systems. http://gallium.inria.
fr/~xleroy/mpri/2-4/, 2012. Master Parisien de Recherche en Informatique 2.4,
notes of the course.

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and
Jérébme Vouillon. The OCaml system Documentation and user’s manual release
4.02. September 24, 2014. http://caml.inria.fr/pub/docs/manual-ocaml/
index.html.

P. Letouzey. Programmation fonctionnelle certifiée — L’extraction de programmes dans
Uassistant Coq. PhD thesis, Université Paris-Sud, July 2004. In French.

Pierre Letouzey. A New Extraction for Coq. In Herman Geuvers and Freek Wiedijk,
editors, Types for Proofs and Programs, Second International Workshop, TYPES 2002,
Berg en Dal, The Netherlands, April 24-28, 2002, volume 2646 of Lecture Notes in
Computer Science. Springer-Verlag, 2003.

Pierre Letouzey. Coq Extraction, an Overview. In A. Beckmann, C. Dimitracopou-
los, and B. Lowe, editors, Logic and Theory of Algorithms, 2008, volume 5028 of
LNCS. Springer-Verlag, 2008.

Ruy Ley-Wild. Programmable Self-Adjusting Computation. PhD thesis, Carnegie
Mellon University, October 2010.

Miran Lipovaca. Learn You a Haskell for Great Good!: A Beginner’s Guide. No Starch
Press, San Francisco, CA, USA, 1st edition, 2011.

Yanhong A. Liu. CACHET: an interactive, incremental-attribution-based program
transformation system for deriving incremental programs. In KBSE, pages 19-26,
1995.

Yanhong A. Liu. Dependence analysis for recursive data. In ICCL, pages 206-215,
1998.

Yanhong A. Liu. Efficiency by incrementalization: An introduction. Higher-Order
and Symbolic Computation, 13(4):289-313, 2000.

Yanhong A. Liu, Scott D. Stoller, and Tim Teitelbaum. Strengthening invariants for
efficient computation. Sci. Comput. Program., 41(2):139-172, 2001.

Yanhong A. Liu and Tim Teitelbaum. Caching intermediate results for program
improvement. In Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-Based Program Manipulation, La Jolla, California, USA, June 21-23,
1995, pages 190-201, 1995.

Pattie Maes. Concepts and experiments in computational reflection. In Conference
Proceedings on Object-oriented Programming Systems, Languages and Applications,
OOPSLA ’87, pages 147-155, New York, NY, USA, 1987. ACM.

Conor McBride. The derivative of a regular type is its type of one-hole contexts
(extended abstract), 2001.

Conor McBride. Clowns to the left of me, jokers to the right (pearl): dissecting
data structures. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 08, pages 287-295, 2008.

http://gallium.inria.fr/~xleroy/mpri/2-4/
http://gallium.inria.fr/~xleroy/mpri/2-4/
http://caml.inria.fr/pub/docs/manual-ocaml/index.html
http://caml.inria.fr/pub/docs/manual-ocaml/index.html

122

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]
[88]

[89]

[90]

[91]

BIBLIOGRAPHY

D. Michie. “memo” functions and machine learning. Nature, 218:19-22, april
1968.

Robin Milner and Mads Tofte. Co-induction in relational semantics. Theoretical
Computer Science, 87(1):209 — 220, 1991.

Eugenio Moggi. Notions of computation and monads. Information and Computa-
tion, 93:55-92, 1991.

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type
theory. ACM Trans. Comput. Logic, 9(3):23:1-23:49, 2008.

Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence
closure. J. ACM, 27(2):356-364, April 1980.

Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, New
York, NY, USA, 1998.

Martijn Oostdijk and Herman Geuvers. Proof by computation in the coq system. In
Theoretical Computer Science, pages 293-314. Elsevier, 2000.

Bryan O’Sullivan, John Goerzen, and Don Stewart. Real World Haskell. O’Reilly
Media, Inc., 1st edition, 2008.

Ozgiir Siimer. Adaptive Inference for Graphical Models. PhD thesis, University of
Chicago, March 2012.

R. Paige. Formal Differentiation: A Program Synthesis Technique, volume 7. UMI
Research Press, Ann Arbor, Michigan, 1981. Revision of Ph.D. Thesis (1979).

Robert Paige and Shaye Koenig. Finite differencing of computable expressions.
ACM Trans. Program. Lang. Syst., 4(3), july 1982.

Michel Parigot. Apu-calculus: An algorithmic interpretation of classical natural de-
duction. In Andrei Voronkov, editor, Logic Programming and Automated Reasoning,
volume 624 of Lecture Notes in Computer Science, pages 190-201. Springer Berlin
Heidelberg, 1992.

C. Paulin-Mohring. Définitions Inductives en Théorie des Types d’Ordre Supérieur.
Habilitation a diriger les recherches, Université Claude Bernard Lyon I, December
1996. In French.

Frank Pfenning. Computation and deduction, 1997. Draft (April 2, 1997).

Frank Pfenning. Logical frameworks. In Alan Robinson and Andrei Voronkov, ed-
itors, Handbook of Automated Reasoning, pages 1063-1147. Elsevier Science Pub-
lishers B. V., Amsterdam, The Netherlands, 2001.

David Pichardie and Vlad Rusu. Defining and reasoning about general recursive
functions in type theory: a practical method. Research Report PI 1766, LANDE -
INRIA - IRISA, VERTECS - INRIA, 2005.

Brigitte Pientka and Ryan Kavanagh. A beginners guide to programming in Beluga.
June 20, 2012. http://www.cs.mcgill.ca/~complogic/beluga/tutorial.pdf.

Benjamin C. Pierce. Types and programming languages: The next generation,
2003. Invited tutorial at Logic in Computer Science (LICS).

http://www.cs.mcgill.ca/~complogic/beluga/tutorial.pdf

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

123

Benjamin C. Pierce, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Catalin
Hritcu, Vilhelm Sjoberg, and Brent Yorgey. Software Foundations. Electronic text-
book, 2015. Version 3.2 http://www.cis.upenn.edu/~bcpierce/sf.

Laurence Pierre and Thomas Kropf, editors. Correct Hardware Design and Verifica-
tion Methods, 10th IFIP WG 10.5 Advanced Research Working Conference, CHARME
’99, Bad Herrenalb, Germany, September 27-29, 1999, Proceedings, volume 1703 of
Lecture Notes in Computer Science. Springer, 1999.

A. M. Pitts. Operationally-based theories of program equivalence. In P. Dybjer
and A. M. Pitts, editors, Semantics and Logics of Computation, Publications of the
Newton Institute, pages 241-298. Cambridge University Press, 1997.

Francgois Pottier and Vincent Simonet. Information flow inference for ml. ACM
Trans. Program. Lang. Syst., 25(1), January 2003.

Matthias Puech. Certificates for Incremental Type Checking. PhD thesis, Universita
di Bologna and Université Paris Diderot, April 2013.

Florian Rabe and Kristina Sojakova. Logical relations for a logical framework. ACM
Trans. Comput. Logic, 14(4):32:1-32:34, November 2013.

G. Ramalingam and Thomas Reps. A categorized bibliography on incremental com-
putation. In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’93, pages 502-510, New York, NY, USA, 1993.
ACM.

Thomas Reps, Tim Teitelbaum, and Alan Demers. Incremental context-dependent
analysis for language-based editors. ACM Trans. Program. Lang. Syst., 5(3):449—
477, july 1983.

Brian Cantwell Smith. Procedural Reflection in Programming Languages. PhD the-
sis, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, 1982.

Matthieu Sozeau. Program-ing finger trees in coq. In Proceedings of the 12th ACM
SIGPLAN International Conference on Functional Programming, ICFP ’07, pages 13—
24, New York, NY, USA, 2007. ACM.

Antonis Stampoulis and Zhong Shao. Veriml: typed computation of logical terms
inside a language with effects. In Proceedings of the 15th ACM SIGPLAN interna-
tional conference on Functional programming, ICFP’10, pages 333-344, New York,
NY, USA, 2010. ACM. Extended version: http://flint.cs.yale.edu/flint/
publications/verimltr.pdf.

Antonis Stampoulis and Zhong Shao. Static and user-extensible proof checking.
In Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL '12, pages 273-284, New York, NY, USA, 2012.
ACM. Extended version: http://flint.cs.yale.edu/flint/publications/
svllexprf.pdf.

Robert E. Tarjan and Jan van Leeuwen. Worst-case analysis of set union algorithms.
J. ACM, 31(2):245-281, March 1984.

http://www.cis.upenn.edu/~bcpierce/sf
http://flint.cs.yale.edu/flint/publications/verimltr.pdf
http://flint.cs.yale.edu/flint/publications/verimltr.pdf
http://flint.cs.yale.edu/flint/publications/sv11exprf.pdf
http://flint.cs.yale.edu/flint/publications/sv11exprf.pdf

124

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]
[113]

[114]

[115]
[116]

[117]

[118]

[119]

BIBLIOGRAPHY

Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J.
ACM, 22(2):215-225, April 1975.

Simon Thompson. Type theory and functional programming. International com-
puter science series. Addison-Wesley, 1991.

Duru Tirkoglu. Stable Algorithms and Kinetic Mesh Refinement. PhD thesis, Uni-
versity of Chicago, March 2012.

Vene Varmo. Categorical programming with inductive and coinductive types. PhD
thesis, University of Tartu, Estonia, august 2000.

Lionel Vaux. The differential \u-calculus. Theor. Comput. Sci, pages 166-209,
2007.

Lionel Vaux. A-calcul différentiel et logique classique: interactions calculatoires. PhD
thesis, Université Aix-Marseille 2, 2007. In French.

Philip Wadler. Comprehending monads. Mathematical Structures in Computer Sci-
ence, 2(4):461-493, 1992.

Philip Wadler. Propositions as types, November 2014.

Philip Wadler and Peter Thiemann. The marriage of effects and monads. ACM
Trans. Comput. Log., 4(1):1-32, 2003.

C. P. Wadsworth. Semantics and Pragmatics of the Lambda Calculus. PhD thesis,
Oxford University, 1971.

P.M. Whitman. Free Lattices. Harvard University, 1941.

Freek Wiedijk. Comparing mathematical provers. In Mathematical Knowledge Man-
agement, Second International Conference, MKM 2003, pages 188-202, 2003.

D. Yellin and R. Strom. Inc: A language for incremental computations. In Proceed-
ings of the ACM SIGPLAN 1988 Conference on Programming Language Design and
Implementation, PLDI '88, pages 115-124. ACM, 1988.

Beta Ziliani, Derek Dreyer, Neelakantan R. Krishnaswami, Aleksandar Nanevski,
and Viktor Vafeiadis. Mtac: A monad for typed tactic programming in coq. SIG-
PLAN Not., 48(9), September 2013.

Justin Zobel. Writing for Computer Science. Springer-Verlag, 2004.

