A. Abraham, E. P. Rocha, and J. Pothier, Swelfe: a detector of internal repeats in sequences and structures, Bioinformatics, vol.24, issue.13, pp.241536-241543, 2008.
DOI : 10.1093/bioinformatics/btn234

URL : https://hal.archives-ouvertes.fr/pasteur-00336123

A. Abyzov, A. Valentin, and . Ilyin, A comprehensive analysis of non-sequential alignments between all protein structures, BMC Structural Biology, vol.7, issue.1, p.78, 2007.
DOI : 10.1186/1472-6807-7-78

N. , A. , and D. Fischer, Analysis of topological and nontopological structural similarities in the PDB : new examples with old structures, Proteins, vol.25, issue.3, pp.354-65, 1996.

R. Andonov, K. Yanev, and . Crandall, A_purva : User Manual 1), pp.0-2, 2011.

M. Andrade, C. Perez-iratxeta, and C. Ponting, Protein Repeats: Structures, Functions, and Evolution, Journal of Structural Biology, vol.134, issue.2-3, pp.117-148, 2001.
DOI : 10.1006/jsbi.2001.4392

A. Andreeva, D. Howorth, C. Chothia, E. Kulesha, and . Murzin, SCOP2 prototype: a new approach to protein structure mining, Nucleic Acids Research, vol.42, issue.D1, pp.310-314, 2014.
DOI : 10.1093/nar/gkt1242

A. Andreeva, A. Prli?, T. J. Hubbard, and . Murzin, SISYPHUS--structural alignments for proteins with non-trivial relationships, Nucleic Acids Research, vol.35, issue.Database, pp.253-262, 2007.
DOI : 10.1093/nar/gkl746

S. Angaran, M. E. Bock, C. Garutti, and C. Guerra, MolLoc: a web tool for the local structural alignment of molecular surfaces, Nucleic Acids Research, vol.37, issue.Web Server, pp.565-70, 2009.
DOI : 10.1093/nar/gkp405

Z. Aung and K. Tan, MatAlign: PRECISE PROTEIN STRUCTURE COMPARISON BY MATRIX ALIGNMENT, Journal of Bioinformatics and Computational Biology, vol.04, issue.06, pp.1197-1216, 2006.
DOI : 10.1142/S0219720006002417

J. Bahr, J. Thompson, O. Thierry, and . Poch, BAliBASE (Benchmark Alignment dataBASE): enhancements for repeats, transmembrane sequences and circular permutations, Nucleic Acids Research, vol.29, issue.1, pp.323-329, 2001.
DOI : 10.1093/nar/29.1.323

H. Berman, . Westbrook, . Feng, T. Gilliland, . Bhat et al., The Protein Data Bank, Nucleic Acids Research, vol.28, issue.1, pp.235-242, 2000.
DOI : 10.1093/nar/28.1.235

K. Åsa, D. Björklund, A. Ekman, and . Elofsson, Expansion of protein domain repeats, PLoS Computational Biology, vol.2, pp.959-0970, 2006.

K. Åsa, D. Björklund, S. Ekman, J. Light, A. Frey-skött et al., Domain rearrangements in protein evolution, Journal of Molecular Biology, vol.353, issue.4, pp.911-923, 2005.

S. E. Bliven, P. E. Bourne, and A. Prli, Detection of circular permutations within protein structures using CE-CP, Bioinformatics, vol.31, issue.8, pp.311316-1318, 2014.
DOI : 10.1093/bioinformatics/btu823

S. Bliven and A. Prli?, Circular Permutation in Proteins, PLoS Computational Biology, vol.26, issue.3, p.1002445, 2012.
DOI : 10.1371/journal.pcbi.1002445.s002

S. Brenner, M. Koehl, and . Levitt, The ASTRAL compendium for protein structure and sequence analysis, Nucleic Acids Research, vol.28, issue.1, pp.254-260, 2000.
DOI : 10.1093/nar/28.1.254

C. Bru, E. Courcelle, S. Carrère, Y. Beausse, S. Dalmar et al., The ProDom database of protein domain families: more emphasis on 3D, Nucleic Acids Research, vol.33, issue.Database issue, 2005.
DOI : 10.1093/nar/gki034

URL : https://hal.archives-ouvertes.fr/hal-01214150

R. Daniel, S. Caffrey, . Somaroo, D. Jason, J. Hughes et al., Are protein ?protein interfaces more conserved in sequence than the rest of the protein surface, pp.190-202, 2004.

A. Caprara, R. Carr, S. Istrail, G. Lancia, and B. Walenz, 1001 Optimal PDB Structure Alignments: Integer Programming Methods for Finding the Maximum Contact Map Overlap, Journal of Computational Biology, vol.11, issue.1, pp.27-52, 2004.
DOI : 10.1089/106652704773416876

N. Carl, J. Konc, B. Vehar, and D. Janezic, Protein???Protein Binding Site Prediction by Local Structural Alignment, Journal of Chemical Information and Modeling, vol.50, issue.10, pp.1906-1919, 2010.
DOI : 10.1021/ci100265x

F. Cazals, S. Kanhere, and . Loriot, Computing the volume of a union of balls, ACM Transactions on Mathematical Software, vol.38, issue.1, pp.1-19, 2011.
DOI : 10.1145/2049662.2049665

URL : https://hal.archives-ouvertes.fr/hal-00849809

B. Chakrabarty and N. Parekh, PRIGSA: Protein repeat identification by graph spectral analysis, Journal of Bioinformatics and Computational Biology, vol.12, issue.06, p.1442009, 2014.
DOI : 10.1142/S0219720014420098

G. Chapuis, M. L. Boudic-jamin, R. Andonov, H. Djidjev, and D. Lavenier, Parallel seed-based approach to protein structure similarity detection, Parallel Processing and Applied Mathematics, pp.278-287, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00881507

G. Chapuis, M. L. Boudic-jamin, and R. Andonov, Hristo Djidjev , and Dominique Lavenier. Parallel seed-based approach to multiple protein structure similarities detection, Scientific Programming, 2015.

L. Chen, L. Wu, Y. Wang, S. Zhang, and X. Zhang, Revealing divergent evolution, identifying circular permutations and detecting active-sites by protein structure comparison, BMC Structural Biology, vol.6, issue.1, p.18, 2006.
DOI : 10.1186/1472-6807-6-18

L. Chen, L. Wu, Y. Wang, S. Zhang, and X. Zhang, Revealing divergent evolution, identifying circular permutations and detecting active-sites by protein structure comparison, BMC Structural Biology, vol.6, issue.1, p.18, 2006.
DOI : 10.1186/1472-6807-6-18

H. Cheng, B. Kim, V. Nick, and . Grishin, MALIDUP: A database of manually constructed structure alignments for duplicated domain pairs, Proteins: Structure, Function, and Bioinformatics, vol.34, issue.Part 5, pp.1162-1168, 2008.
DOI : 10.1002/prot.21783

G. Csaba, F. Birzele, and R. Zimmer, Systematic comparison of SCOP and CATH: a new gold standard for protein structure analysis, BMC Structural Biology, vol.9, issue.1, p.23, 2009.
DOI : 10.1186/1472-6807-9-23

B. A. Cunningham, J. J. Hemperly, T. P. Hopp, and G. M. Edelman, Favin versus concanavalin A: Circularly permuted amino acid sequences, Proceedings of the National Academy of Sciences, pp.3218-3222, 1979.
DOI : 10.1073/pnas.76.7.3218

P. Daniluk and B. Lesyng, A novel method to compare protein structures using local descriptors, BMC Bioinformatics, vol.12, issue.1, p.344, 2011.
DOI : 10.1103/PhysRevLett.57.2607

O. Dror, H. Benyamini, R. Nussinov, and H. Wolfson, MASS: multiple structural alignment by secondary structures, Bioinformatics, vol.19, issue.Suppl 1, pp.95-104, 2003.
DOI : 10.1093/bioinformatics/btg1012

U. Emekli, D. Schneidman-duhovny, J. Haim, R. Wolfson, T. Nussinov et al., HingeProt: Automated prediction of hinges in protein structures, Proteins: Structure, Function, and Bioinformatics, vol.34, issue.3/4, pp.1219-1246, 2008.
DOI : 10.1002/prot.21613

A. Richard, J. George, and . Heringa, The REPRO server : finding protein internal sequence repeats through the Web, Trends in biochemical sciences, vol.25, issue.10, pp.515-517, 2000.

M. Gerstein, A. M. Lesk, and C. Chothia, Structural Mechanisms for Domain Movements in Proteins, Biochemistry, vol.33, issue.22, pp.6739-6749, 1994.
DOI : 10.1021/bi00188a001

. Godzik, The structural alignment between two proteins : is there a unique answer ? Protein science : a publication of the, pp.1325-1363, 1996.

A. Godzik, A. Skolnick, and . Kolinski, Regularities in interaction patterns of globular proteins, "Protein Engineering, Design and Selection", vol.6, issue.8, pp.801-810, 1993.
DOI : 10.1093/protein/6.8.801

D. Nicola, . Gold, M. Richard, and . Jackson, Fold independent structural comparisons of protein-ligand binding sites for exploring functional relationships, Journal of molecular biology, vol.355, issue.5, pp.1112-1136, 2006.

D. Goldman, S. Istrail, and C. H. Papadimitriou, Algorithmic aspects of protein structure similarity, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039), 1999.
DOI : 10.1109/SFFCS.1999.814624

H. Lesley, . Greene, E. Tony, S. Lewis, A. Addou et al., The CATH domain structure database : new protocols and classification levels give a more comprehensive resource for exploring evolution, Nucleic acids research, pp.35-291, 2007.

A. Guerler and E. Knapp, STRATEGIES OF NON-SEQUENTIAL PROTEIN STRUCTURE ALIGNMENTS, Genome Informatics 2009, pp.21-29, 2010.
DOI : 10.1142/9781848165786_0003

H. Hasegawa and L. Holm, Advances and pitfalls of protein structural alignment, Current Opinion in Structural Biology, vol.19, issue.3, pp.341-349, 2009.
DOI : 10.1016/j.sbi.2009.04.003

J. Havrilla and A. Sacan, Meta-analysis of protein structural alignment, 2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops, pp.72-76, 2012.
DOI : 10.1109/BIBMW.2012.6470218

M. Heinig and D. Frishman, STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins, Nucleic Acids Research, vol.32, issue.Web Server, pp.500-502, 2004.
DOI : 10.1093/nar/gkh429

B. Henrissat, A classification of glycosyl hydrolases based on amino acid sequence similarities, Biochemical Journal, vol.280, issue.2, pp.309-325, 1991.
DOI : 10.1042/bj2800309

URL : https://hal.archives-ouvertes.fr/hal-00310263

B. Henrissat and A. Bairoch, New families in the classification of glycosyl hydrolases based on amino acid sequence similarities, Biochemical Journal, vol.293, issue.3, pp.781-789, 1993.
DOI : 10.1042/bj2930781

URL : https://hal.archives-ouvertes.fr/hal-00310595

L. Holm and J. Park, DaliLite workbench for protein structure comparison, Bioinformatics, vol.16, issue.6, pp.566-567, 2000.
DOI : 10.1093/bioinformatics/16.6.566

L. Holm and C. Sander, Protein Structure Comparison by Alignment of Distance Matrices, Journal of Molecular Biology, vol.233, issue.1, pp.123-161, 1993.
DOI : 10.1006/jmbi.1993.1489

L. Holm and C. Sander, Parser for protein folding units, Proteins: Structure, Function, and Genetics, vol.347, issue.3, pp.256-68, 1994.
DOI : 10.1002/prot.340190309

L. Holm and C. Sander, Dali: a network tool for protein structure comparison, Trends in Biochemical Sciences, vol.20, issue.11, pp.478-480, 1995.
DOI : 10.1016/S0968-0004(00)89105-7

L. Holm, S. Kääriäinen, P. Rosenström, and A. Schenkel, Searching protein structure databases with DaliLite v.3, Bioinformatics, vol.24, issue.23, pp.2780-2781, 2008.
DOI : 10.1093/bioinformatics/btn507

T. Hrabe and A. Godzik, ConSole: using modularity of Contact maps to locate Solenoid domains in protein structures, BMC Bioinformatics, vol.15, issue.1, p.119, 2014.
DOI : 10.1038/35100529

N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti, E. D. Castro et al., The PROSITE database, Nucleic Acids Research, vol.34, issue.90001, pp.227-257, 2006.
DOI : 10.1093/nar/gkj063

C. Rivoire, A. Sangrador-vegas, J. D. Selengut, C. J. Sigrist, M. Scheremetjew et al., InterPro in 2011 : new developments in the family and domain prediction database, Database issue), pp.40-306, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00697960

J. Jorda, V. Andrey, and . Kajava, T-REKS: identification of Tandem REpeats in sequences with a K-meanS based algorithm, Bioinformatics, vol.25, issue.20, pp.252632-252640, 2009.
DOI : 10.1093/bioinformatics/btp482

URL : https://hal.archives-ouvertes.fr/hal-00423755

W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.33, issue.12, pp.2577-637, 1983.
DOI : 10.1002/bip.360221211

H. Kao, W. Tzou, Y. Hsu, C. Chen, and T. Pai, IRIS : Internal Repeat Identification System, 2009.

M. Karplus, B. Ichiye, and . Pettitt, Configurational entropy of native proteins, Biophysical Journal, vol.52, issue.6, pp.1083-1088, 1987.
DOI : 10.1016/S0006-3495(87)83303-9

B. Kobe, V. Andrey, and . Kajava, When protein folding is simplified to protein coiling: the continuum of solenoid protein structures, Trends in Biochemical Sciences, vol.25, issue.10, pp.509-515, 2000.
DOI : 10.1016/S0968-0004(00)01667-4

R. Kolodny, P. Koehl, and M. Levitt, Comprehensive Evaluation of Protein Structure Alignment Methods: Scoring by Geometric Measures, Journal of Molecular Biology, vol.346, issue.4, pp.1173-88, 2005.
DOI : 10.1016/j.jmb.2004.12.032

J. Konc, An improved branch and bound algorithm for the maximum clique problem, pp.569-590, 2007.

J. Konc and D. Janezic, ProBiS algorithm for detection of structurally similar protein binding sites by local structural alignment, Bioinformatics, vol.26, issue.9, pp.1160-1168, 2010.
DOI : 10.1093/bioinformatics/btq100

E. Krissinel and K. Henrick, Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2256-2268, 2004.
DOI : 10.1107/S0907444904026460

E. Krissinel, On the relationship between sequence and structure similarities in proteomics, Bioinformatics, vol.23, issue.6, pp.717-740, 2007.
DOI : 10.1093/bioinformatics/btm006

G. Lancia, R. Carr, B. Walenz, and S. Istrail, 101 optimal PDB structure alignments, Proceedings of the fifth annual international conference on Computational biology , RECOMB '01, pp.193-202, 2001.
DOI : 10.1145/369133.369199

R. A. Laskowski, V. V. Chistyakov, and J. M. Thornton, PDBsum more: new summaries and analyses of the known 3D structures of proteins and nucleic acids, Nucleic Acids Research, vol.33, issue.Database issue, pp.266-268, 2005.
DOI : 10.1093/nar/gki001

R. Lathrop, The protein threading problem with sequence amino acid interaction preferences is NP-complete, "Protein Engineering, Design and Selection", vol.7, issue.9, pp.1059-68, 1994.
DOI : 10.1093/protein/7.9.1059

M. Le-boudic-jamin and R. Andonov, Détection de novo de structures répétées au sein des protéines, JOBIM 2015

M. Levitt, Nature of the protein universe, Proceedings of the National Academy of Sciences of the United States of America, pp.11079-84, 2009.
DOI : 10.1073/pnas.0905029106

Y. Lindqvist and G. Schneider, Circular permutations of natural protein sequences: structural evidence, Current Opinion in Structural Biology, vol.7, issue.3, pp.422-427, 1997.
DOI : 10.1016/S0959-440X(97)80061-9

L. Lo-conte, E. Steven, T. J. Brenner, C. Hubbard, . Chothia et al., SCOP database in 2002: refinements accommodate structural genomics, Nucleic Acids Research, vol.30, issue.1, pp.264-267, 2002.
DOI : 10.1093/nar/30.1.264

N. Malod-dognin, M. L. Boudic-jamin, P. Kamath, and R. Andonov, Using Dominances for Solving the Protein Family Identification Problem, pp.201-212, 2011.
DOI : 10.1093/nar/gki524

URL : https://hal.archives-ouvertes.fr/inria-00609432

A. Marchler-bauer, S. Lu, B. John, F. Anderson, . Chitsaz et al., CDD: a Conserved Domain Database for the functional annotation of proteins, Nucleic Acids Research, vol.39, issue.Database, pp.39-225, 2011.
DOI : 10.1093/nar/gkq1189

E. Marcotte, T. Pellegrini, D. Yeates, and . Eisenberg, A census of protein repeats, Journal of Molecular Biology, vol.293, issue.1, pp.151-60, 1999.
DOI : 10.1006/jmbi.1999.3136

J. Martin, G. Letellier, A. Marin, J. Taly, A. G. De-brevern et al., Protein secondary structure assignment revisited : a detailed analysis of different assignment methods, BMC Structural Biology, vol.5, issue.1, p.17, 2005.
DOI : 10.1186/1472-6807-5-17

URL : https://hal.archives-ouvertes.fr/inserm-00090199

R. Matthiesen, Methods, algorithms and tools in computational proteomics: A practical point of view, PROTEOMICS, vol.23, issue.16, pp.2815-2847, 2007.
DOI : 10.1002/pmic.200700116

S. Minami, K. Sawada, and G. Chikenji, MICAN : a protein structure alignment algorithm that can handle Multiple-chains, Inverse alignments, C?? only models, Alternative alignments, and Non-sequential alignments, BMC Bioinformatics, vol.14, issue.1, p.24, 2013.
DOI : 10.1016/j.jmb.2005.12.084

B. Kevin, . Murray, R. William, J. M. Taylor, and . Thornton, Toward the detection and validation of repeats in protein structure, Proteins, vol.57, issue.2, pp.365-80, 2004.

G. Alexey and . Murzin, New protein folds, Current Opinion in Structural Biology, vol.4, issue.3, pp.441-449, 1994.

G. Alexey, S. E. Murzin, T. Brenner, C. Hubbard, and . Chothia, SCOP : A structural classification of proteins database for the investigation of sequences and structures, Journal of Molecular Biology, vol.247, issue.4, pp.536-540, 1995.

S. Niskanen and P. R. Östergård, Cliquer User's Guide, Version 1.0, 2003.

D. Ollis, . Cheah, . Cygler, . Dijkstra, S. Frolow et al., hydrolase fold, "Protein Engineering, Design and Selection", vol.5, issue.3, pp.197-211, 1992.
DOI : 10.1093/protein/5.3.197

G. Martin, S. Hutchinson, D. T. Jones, .. D. Jones, M. B. Michie et al., Classifying a Protein in the CATH Database of Domain Structures, Acta Crystallographica Section D Biological Crystallography, issue.6, pp.541155-1167, 1998.

C. A. Orengo, A. M. Martin, G. Hutchinson, S. Jones, D. T. Jones et al., Classifying a Protein in the CATH Database of Domain Structures, Acta Crystallographica Section D Biological Crystallography, vol.54, issue.6, pp.1155-1167, 1998.
DOI : 10.1107/S0907444998007501

C. Orengo, A. Michie, D. Jones, M. Jones, J. Swindells et al., CATH ??? a hierarchic classification of protein domain structures, Structure, vol.5, issue.8, pp.1093-1108, 1993.
DOI : 10.1016/S0969-2126(97)00260-8

C. Orengo, F. Pearl, . Bray, . Todd, . Martin et al., The CATH Database provides insights into protein structure/function relationships, Nucleic Acids Research, vol.27, issue.1, pp.275-284, 1999.
DOI : 10.1093/nar/27.1.275

A. Christine, J. M. Orengo, and . Thornton, Protein families and their evolution-a structural perspective Annual review of biochemistry, pp.867-900, 2005.

R. Angel, C. E. Ortiz, O. Strauss, and . Olmea, MAMMOTH (Matching molecular models obtained from theory) : An automated method for model comparison, pp.2606-2621, 2002.

S. Bhushan, P. , and J. Skolnick, Fr-TM-align : a new protein structural alignment method based on fragment alignments and the TM-score, BMC bioinformatics, vol.9, p.531, 2008.

R. Parra, R. Espada, E. Ignacio, . Sánchez, J. Manfred et al., Detecting Repetitions and Periodicities in Proteins by Tiling the Structural Space, The Journal of Physical Chemistry B, vol.117, issue.42, pp.12887-97, 2013.
DOI : 10.1021/jp402105j

F. Pearl, A. Todd, I. Sillitoe, M. Dibley, O. Redfern et al., Christine Orengo. The CATH domain structure database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis, Nucleic Acids ResearchDATABASE ISS, vol.33, 2005.

A. Gregory, D. Petsko, and . Ringe, Protein Structure and Function, 2004.

F. Eric, . Pettersen, D. Thomas, . Goddard, C. Conrad et al., UCSF Chimera?a visualization system for exploratory research and analysis, Journal of computational chemistry, issue.13, pp.251605-251617, 2004.

C. Oliver, A. Redfern, T. Harrison, F. M. Dallman, C. A. Pearl et al., CATHEDRAL : a fast and effective algorithm to predict folds and domain boundaries from multidomain protein structures, PLoS computational biology, vol.3, issue.11, p.232, 2007.

S. Salem, M. J. Zaki, and C. Bystroff, FlexSnap : Flexible nonsequential protein structure alignment, In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, vol.5724, pp.273-285, 2009.
DOI : 10.1186/1748-7188-5-12

URL : http://doi.org/10.1186/1748-7188-5-12

S. Salem, J. Mohammed, C. Zaki, and . Bystroff, FlexSnap : flexible nonsequential protein structure alignment. Algorithms for molecular biology, p.12, 2010.

C. Sander and R. Schneider, Database of homology-derived protein structures and the structural meaning of sequence alignment, Proteins: Structure, Function, and Genetics, vol.4, issue.1, pp.56-68, 1991.
DOI : 10.1002/prot.340090107

T. Schmidt-goenner, A. Guerler, B. Kolbeck, and E. W. Knapp, Circular permuted proteins in the universe of protein folds, Proteins: Structure, Function, and Bioinformatics, vol.25, issue.Part 12, Part 1, pp.1618-1630, 2010.
DOI : 10.1002/prot.22678

S. Schmitt, D. Kuhn, and G. Klebe, A New Method to Detect Related Function Among Proteins Independent of Sequence and Fold Homology, Journal of Molecular Biology, vol.323, issue.2, pp.387-406, 2002.
DOI : 10.1016/S0022-2836(02)00811-2

M. Shatsky, R. Nussinov, J. Haim, and . Wolfson, FlexProt: Alignment of Flexible Protein Structures Without a Predefinition of Hinge Regions, Journal of Computational Biology, vol.11, issue.1, pp.83-106, 2004.
DOI : 10.1089/106652704773416902

I. Shindyalov and P. Bourne, Protein structure alignment by incremental combinatorial extension (CE) of the optimal path, Protein Engineering Design and Selection, vol.11, issue.9, pp.739-786, 1998.
DOI : 10.1093/protein/11.9.739

L. Michael, . Sierk, J. Gerard, and . Kleywegt, Déjà vu all over again : finding and analyzing protein structure similarities, Structure, vol.12, issue.12, pp.2103-2114, 1993.

J. Manfred, M. Sippl, and . Wiederstein, Detection of spatial correlations in protein structures and molecular complexes, Structure, vol.20, issue.4, pp.718-746, 1993.

W. Alex, J. I. Slater, M. J. Castellanos, F. Sippl, and . Melo, Towards the development of standardized methods for comparison, ranking and evaluation of structure alignments, Bioinformatics, vol.29, issue.1, pp.47-53, 2013.

D. States and W. Gish, Combined use of sequence similarity and codon bias for coding region identification, Journal of computational biology : a journal of computational molecular cell biology, vol.1, issue.1, pp.39-50, 1994.

L. Wang, L. Wu, Y. Wang, X. Zhang, and L. Chen, SANA: an algorithm for sequential and non-sequential protein structure alignment, Amino Acids, vol.19, issue.2, pp.417-442, 2010.
DOI : 10.1007/s00726-009-0457-y

S. Wang, J. Ma, J. Peng, and J. Xu, Protein structure alignment beyond spatial proximity. Scientific reports, p.1448, 2013.

J. Weiner and E. Bornberg-bauer, Evolution of Circular Permutations in Multidomain Proteins, Molecular Biology and Evolution, vol.23, issue.4, pp.734-777, 2006.
DOI : 10.1093/molbev/msj091

I. Wohlers, M. L. Boudic-jamin, H. Djidjev, . Gunnarw, R. Klau et al., Exact Protein Structure Classification Using the Maximum Contact Map Overlap Metric, Algorithms for Computational Biology, pp.262-273, 2014.
DOI : 10.1007/978-3-319-07953-0_21

URL : https://hal.archives-ouvertes.fr/hal-01093776

I. Wohlers, N. Malod-dognin, R. Andonov, W. Gunnar, and . Klau, CSA: comprehensive comparison of pairwise protein structure alignments, Nucleic Acids Research, vol.40, issue.W1, pp.303-312, 2012.
DOI : 10.1093/nar/gks362

URL : https://hal.archives-ouvertes.fr/hal-00667920

W. Wriggers and K. Schulten, RESEARCH ARTICLES Protein Domain Movements : Detection of Rigid Domains and Visualization of Hinges in Comparisons of Atomic Coordinates, pp.1-14, 1996.

J. Xu and Y. Zhang, How significant is a protein structure similarity with TM-score = 0.5?, Bioinformatics, vol.26, issue.7, pp.889-95, 2010.
DOI : 10.1093/bioinformatics/btq066

Y. Ye and A. Godzik, Database searching by flexible protein structure alignment Protein science : a publication of the, pp.1841-1850, 2004.

Y. Ye and A. Godzik, FATCAT: a web server for flexible structure comparison and structure similarity searching, Nucleic Acids Research, vol.32, issue.Web Server, pp.582-587, 2004.
DOI : 10.1093/nar/gkh430

J. Yon-kahn, Histoire de la science des protéines, 2006.

Z. Yuan, L. Timothy, . Bailey, D. Rohan, and . Teasdale, Prediction of protein B-factor profiles, Proteins: Structure, Function, and Bioinformatics, vol.50, issue.4, pp.905-917, 2005.
DOI : 10.1002/prot.20375

A. Zemla, B. Geisbrecht, J. Smith, M. Lam, B. Kirkpatrick et al., STRALCP structure alignment-based clustering of proteins, Nucleic Acids Research, vol.35, issue.22, p.150, 2007.
DOI : 10.1093/nar/gkm1049

Y. Zhang and J. Skolnick, Scoring function for automated assessment of protein structure template quality, Proteins: Structure, Function, and Bioinformatics, vol.101, issue.4, pp.702-712, 2004.
DOI : 10.1002/prot.20264

Y. Zhang and J. Skolnick, TM-align: a protein structure alignment algorithm based on the TM-score, Nucleic Acids Research, vol.33, issue.7, pp.2302-2309, 2005.
DOI : 10.1093/nar/gki524

R. Zwanzig, A. Szabo, and B. Bagchi, Levinthal's paradox., Proceedings of the National Academy of Sciences, pp.20-22, 1992.
DOI : 10.1073/pnas.89.1.20

A. Définition, 1 (Atome lourd) Dans le cas des protéines, atome lourd désigne tout atome (majoritairement C, N, O, S) qui ne soit pas un hydrogène (H)

A. Définition, 2 (Electronegativité) Capacité d'un atome à attirer les électrons, plus un atome est électronégatif

A. Définition, 3 (Polarité) Capacité à créer des liaisons électrostatiques avec des molécules d'eau (H 2 O)

A. Définition, Capacité d'un atome à repousser l'eau, un composé hydrophobe ne contient pas de groupe chargé ou d'atome capable de former des liaisons hydrogène

A. Définition, 6 (Liaison ionique) Liaison entre deux atomes avec une trop forte différence d'électronégativité

A. Définition, Liaison Hydrogène) Attraction entre un atome d'hydrogène et un atome électronégatif. Lorsqu'un atome d'hydrogène déjà lié à un atome subit l'attraction d'un second atome électronégatif (souvent N ou O)

A. Définition, 11 (Groupe hydroxyle) Atome d'hydrogène (H) lié à un atome d'oxygène (O)

A. Définition, Groupe carbonyle) Est caractérisé par une double liaison entre un atome d'oxygène (O) et de carbone, ce dernier étant autrement lié à des atomes de carbone (C) ou d'hydrogène (H) exclusivement

A. Définition, Groupe carboxyle) Atome d'oxygène (O) uni par une double liaison à un carbone (C) lié à un groupement hydroxyle. Le groupement carboxyle a également des propriétés d'acide car il a tendance à s'ioniser en perdant un proton (H + ) Ce groupement est un

A. Définition, 14 (Groupe amine) Comprend un atome d'azote (N) lié ou non à un ou plusieurs atomes d'hydrogène (H)

A. Définition, 15 (Groupe thiol) Atome de soufre (S) lié à une hydrogène et attaché à un radical

A. Définition, 16 (Cycles aromatiques) Structure plane et stable, les atomes peuvent s'associer et former des cycles, partageant ainsi des électrons qui, délocalisés

A. Définition, 17 (Groupement aliphatique) Du grec alipheir (graisse) : hydrocarbure non-aromatique. Pour les protéines, le groupement aliphatique est restreint aux portions de chaîne latérale hydrocarbures saturées

. Biologie, définitions générales Définition A.18 (Acide aminé) Acide carboxylique possédant entre autre un groupement amine

A. Définition, 20 (Enzyme) Protéines qui catalyse (favorise) une ou plusieurs réactions chimiques