archives-ouvertes

A language-independent methodology for compiling
declarations into open platform frameworks
Paul Van Der Walt

» To cite this version:

Paul Van Der Walt. A language-independent methodology for compiling declarations into open plat-
form frameworks. Programming Languages [cs.PL]. Université de Bordeaux, 2015. English. <NNT :
2015BORD0288>. <tel-01251882v2>

HAL Id: tel-01251882
https://hal.inria.fr/tel-01251882v?2
Submitted on 3 Mar 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la difusion de documents
entifc research documents, whether they are pub- scientifques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/tel-01251882v2
https://hal.archives-ouvertes.fr

" ° /
U ni \ ’ ers I te Département de formation doctorale en informatique
de ECOIQ doctorale EDMI Bordeaux
B 0 R D E A U X Numéro National : 2015BORD0288

Compilation de déclarations dans des
cadriciels : une méthodologie
indépendante du langage

THESE

soutenue le 14 décembre 2015

pour 'obtention du

Doctorat de I’'Université de Bordeaux

(spécialité Informatique)

par

Paul van der Walt

Jury
President : Philippe Lalanda,

Rapporteurs : Philippe Lalanda,
Romain Rouvoy,

Examinateurs : Charles Consel,
Nic Volanschi,

Professeur a I'Université Joseph Fourier de Grenoble

Professeur a I'Université Joseph Fourier de Grenoble
Maitre de conférences (HDR) a I'Université de Lille 1

Professeur a I'Institut Polytechnique de Bordeaux
Advanced research position a Inria Bordeaux

PAUL VAN DER WALT

A LANGUAGE-INDEPENDENT
METHODOLOGY FOR
COMPILING DECLARATIONS
INTO OPEN PLATFORM
FRAMEWORKS

INRIA BORDEAUX SUD-OUEST, FRANCE

LaBRI

Unité Mixte de Recherche CNRS (UMR 5800)
351 cours de la Libération

33405 Talence Cedex

France

Equipe PHOENIX, INRIA Bordeaux Sud-Ouest
200 avenue de la Vieille Tour

33405 Talence Cedex

France

Université de Bordeaux

Copyright © 2015 by Paul van der Walt
WWW.DENKNERD.ORG

The typographic style of this document was inspired by Edward Tufte’s book Beautiful Evidence, and
typeset using IATEX and a modified version of Kevin Godby’s tufte-book class. The main text is typeset
in TEX Gyre Pagella, which is based on Hermann Zapf’s beautiful Palatino type face. The typewriter text
is typeset in Bera Mono, originally developed by Bitstream, Inc.

@O0

This work and associated source code is licensed under a Creative Commons Attribution-ShareAlike 4.0
International License, available at https://creativecommons.org/licenses/by-sa/4.0/.

Might the fleas of a thousand camels descend upon the armpits of those who would dare to make unau-
thorised copies of this work, in whole or part, without proper attribution. Sickness and ruin upon those
who would attempt to derive financial gain from this work, even unto the seventh generation.

Please mind the trees: think before you reproduce.

Version: 14th January 2016.

https://creativecommons.org/licenses/by-sa/4.0/

Abstract

A language-independent methodology for compiling
declarations into open platform frameworks

In the domain of open platforms, it has become common to use
application programming frameworks extended with declarations
that express permissions of applications. This is a natural reaction
to ever more widespread adoption of mobile and pervasive comput-
ing devices. Their wide adoption raises privacy and safety concerns
for users, as a result of the increasing number of sensitive resources
a user is sharing with non-certified third-party application de-
velopers. However, the approach to designing these declaration
languages and the frameworks that enforce their requirements is
often ad hoc, and limited to a specific combination of application
domain and programming language. Moreover, most widely used
frameworks fail to address serious privacy leaks, and, crucially, do
not provide the user with insight into application behaviour.

This dissertation presents a generalised methodology for devel-
oping declaration-driven frameworks in a wide spectrum of host
programming languages. We show that rich declaration languages,
which express modularity, resource permissions and application
control flow, can be compiled into frameworks that provide strong
guarantees to end users. Compared to other declaration-driven
frameworks, our methodology provides guidance to the application
developer based on the specifications, and clear insight to the end
user regarding the use of their private resources.

Contrary to previous work, the methodology we propose does
not depend on a specific host language, or even on a specific
programming paradigm. We demonstrate how to implement
declaration-driven frameworks in languages with static type sys-
tems, completely dynamic languages, object-oriented languages,
or functional languages. The efficacy of our approach is shown
through prototypes in the domain of mobile computing, imple-
mented in two widely differing host programming languages,
demonstrating the generality of our approach.

Keywords: programming frameworks, domain-specific languages,
declaration languages, generative programming, privacy, sports
equipment

Résumé

Compilation de déclarations dans des cadriciels : une
méthodologie indépendante du langage

Dans le domaine des plates-formes ouvertes, I’utilisation des ca-
driciels (frameworks) enrichis par des déclarations pour exprimer les
permissions de I'application est de plus en plus répandue. Ceci est
une réaction logique au fait qu’il y a une explosion d’adoption des
appareils embarqués et mobiles. Leur omniprésence dans notre vie
quotidienne engendre des craintes liées a la sécurité et a la vie pri-
vée, car I'usager partage de plus en plus ses données et ressources
privées avec des tiers qui développent des applications auxquelles
on n’a pas de raison de faire confiance. Malheureusement, la ma-
niere dont ces langages de spécification ainsi que ces cadres d’ap-
plications sont développés est généralement assez ad hoc et repose
sur un domaine d’application et un langage de programmation
fixes. De plus, ces cadriciels ne sont pas assez restrictifs pour régler
le probléme de la fuite de données privées et ne donnent souvent
pas non plus assez d’informations a I’'usager sur le comportement
attendu de I'application.

Cette these présente une méthodologie généraliste pour dévelop-
per des cadriciels dirigés par des déclarations, qui cible un spectre
large de langages de programmation. Nous montrons comment
des langages de déclaration expressifs permettent de spécifier avec
modularité les droits d’accés aux ressources ainsi que le flux de
contrdle d’une telle application. Ces langages peuvent ensuite étre
compilés en un cadriciel garantissant & I’'usager final le respect de
ces permissions.

Par rapport aux cadriciels existants, notre méthodologie permet
de guider la personne qui développe des applications a partir des
spécifications ainsi que d’informer I'usager final sur I'usage des
ressources sensibles. Contrairement aux travaux existants, la mé-
thodologie présentée dans cette thése ne repose par sur un langage
de programmation particulier. Nous montrons comment mettre en
ceuvre de tels cadriciels dans un spectre de langages : des langages
avec typage statique ou dynamique, et suivant le paradigme objet
ou fonctionnel. L'efficacité de I'approche est montrée a travers des
prototypes dans le domaine des applications mobiles dans deux
langages trés différents, a savoir Java et Racket, ce qui montre la
généralité de notre approche.

Mots clés : cadriciels, langage dédié, langages de déclaration,
programmation générative, vie privée

Acknowledgements

In browsing the dissertations of those who have gone before me
(when il should have been writing my own manuscript), it struck
me that a constant factor across the sciences is the Acknowledge-
ments section devolving into smug yet maudlin name-dropping. |
will not disappoint in this regard—i temporarily beg your pardon,
beautiful and wise reader, for my self-indulgence. I, too, fall prey to
the twin vices of fawning and vanity.?

George Orwell could be said to have been constantly relevant to
me during my work. In his 1946 essay, Why | Write, he describes his
process in a way that resonates with me:

Writing a book is a horrible, exhausting struggle, like a long bout of
some painful illness. One would never undertake such a thing if one
were not driven on by some demon whom one can neither resist nor
understand.

Still, i can only assume that writing a book is infinitely more tire-
some than completing a dissertation. My potentially inappro-
priate feeling of appreciation for Orwell’s struggle aside, those
devices which almost everyone these days seems to have—devices
equipped with microphones, multiple cameras, geographical track-
ing as well as remote control capabilities—all bear a striking re-
semblance to the description that Orwell gives of ‘telescreens’ in
1984, his famous dystopian novel. Of course, those were merely
affixed to the salon wall; today, we carry our battery-powered
telescreens around with us wherever we go.

| jest. Obviously, my intellectual debt to Orwell pales in compar-
ison to the amount of gratitude i have for the people who actually
enabled my work in practical ways. First and foremost, i thank my
doctoral supervisors, Charles Consel and Emilie Balland. Clearly,
if it were not for the trust they placed in me by accepting me into
the programme, and the guidance they provided me along the way,
i would never be where i am today. | would also like to thank my
examiners, Philippe Lalanda and Romain Rouvoy, who went to
the trouble of reviewing this dissertation, providing constructive
criticism, and attending my defence. | extend my thanks to Denis
Barthou, who graciously accepted the invitation to serve on my
thesis committee. Many thanks also to Nic Volanschi, who replaced
him when he fell ill at the last minute! | also express my sincere
appreciation for all my friends and colleagues who provided ruth-
lessly thorough comments on draft versions of my work. These

! My uncapitalised usage of the
singular first person personal
pronoun follows that of danah
boyd, to whose philosophy

on the subject i subscribe (see
http://www._danah.org/name.html).

2 Please do not misconstrue this good-
natured fun-pokage as derision: i
understand and have utmost respect
for the circumstances and feelings

that precipitate such outpourings of
sentimentality. Indeed, i have the same
sincere desire to thank my entourage!

http://www.danah.org/name.html

people include, in no particular order, Damien C., Hamish, Ludovic,
Andreas, David R., Milan, Nic and Julien B. This dissertation would
certainly never have reached any semblance of acceptability if it
were not for your tireless reading and rereading and re-rereading.
Of course, the remaining errors are all mine.

Furthermore, to the colleagues who were there for me in my
deepest moments of doubt and despair. | cannot express how
thankful i am to all of you for being there when i needed you,
and for talking sense into me when i was hell-bent on calling it
quits. Hervé (“refugees welcome”), David S., Marc, Cédric, Isabelle,
Laetitia, Charles F., Lucile, Adrien: without your material and
moral support, i would be a very bitter and perhaps unemployed
person right now. | would also like to thank Luce, Laure, and
Catherine, for making my administrative nightmares go away.

I would also like to mention the people who, years ago, put me
on the path that led me here. My teachers at Utrecht University
instilled in me a love and fascination for functional programming
through their inspiring teaching and general coolness. Especially
Wouter, Doaitse, Andres, Johan J., Atze, Jeroen F., Jurriaan: dank
jullie wel, jullie waren allemaal een ware inspiratie voor mij! Moge
ik ooit ook zo’n goede leraar worden!

Meandering from the professional to the personal, a number of
my friends seem to have maintained a limitless tolerance for my
foibles and vices, an inexplicable appreciation of my boorish society.
You’ve managed to keep me company even when i emigrated, be-
came physically and/or emotionally distant as a result of my work;
even my incessant complaining about life, and my proclivity for
poor wit were insufficient to keep you lot at bay. Every time you’ve
welcomed me back with open arms, received me as if i’d never left.
Hamish, Koen, Floor, Barinder, Hanna, Andreas, Marleen, Ludovic,
Jorrit, Tim, Dieuwertje, Tristan, Chloé, Linde, Maja, Benjamin, Justin,
Gabe, Mai, Twan (in sort -R order). Thank you! | very much owe
all of you a multitude of beers. To those of you who came to visit
me in Bordeaux, rest assured that your geographically optimised
companionship was much appreciated. Clearly my folks, Ina and
Will, also deserve special mention. It is you who put me on this
ball of mud, and in spite of what an ungrateful sod i can be still
occasionally provide me with a place in the Netherlands to crash!
Thank you!

Finally, last but most certainly not least: Camille, merci de m’avoir
supporté, and thank you for having supported me. You showed
infinite patience when i was scared or super stressed out, provided
me with a shoulder to lean on, and you encouraged me to keep on
keeping on when things seemed unbearable. It is you who made
late-stage Bordeaux tolerable, who gave me an excuse not to give
up every day. Also, don’t feel bad that you were left till the end—it
is well-established that to be thanked last is the highest honour.3

3 Ken Hyland (2003). ‘Dissertation
Acknowledgements: The Anatomy
of a Cinderella Genre’. In: Written
Communication 20.3, pp. 242-268.

Résumé éetendu

Cette these, intitulée « Compilation de déclarations dans des cadri-
ciels : une méthodologie indépendante du langage », est située dans
le champ du génie logiciel et de I'informatique mobile. Plus précise-
ment, ce travail de thése se situe dans le domaine des applications
pour des appareils mobiles et de la gestion des droits d’accés aux
ressources. Il propose une méthodologie de développement fondée
sur les notions de plates-formes ouvertes, de déclarations et de
compilation pour la création de cadriciels (frameworks) dédiés.

Problématique. Une plate-forme ouverte est une plate-forme informa-
tigue qui propose aux applications (1) une interface de programma-
tion publique (API), (2) I’acces a des ressources partagées, (3) un
répertoire ou des développeurs d’applications tiers peuvent pro-
poser pour installation leurs applications aux utilisateurs finaux.
Les exemples dans la vie quotidienne de ce type de plates-formes
sont nombreux, notamment Android ou Apple iOS. On compte de
plus en plus d’usagers de ce type de plate-forme, leur confiant de
plus en plus des données privées a stocker, alors que I’on est inca-
pable de bien gérer les droits des applications auxquelles on ne fait
préalablement pas confiance et qui ne sont pas certifiées. Ceci rend
possible notamment des fuites de données privées ou sensibles,
comme par exemple des messages privées, courriels, images, infor-
mations sur la géolocalisation de I'utilisateur, historique des appels,
etc.

On illustre la problématique et notre approche a I'aide d’une
application mobile basée sur des applications répandus. L’'appli-
cation prétend ne faire que prendre une photo avec la caméra de
I’'appareil mobile, et la modifier ensuite avec un filtre d’image. Cette
application est gratuite et montre des publicités aux usagers, ce qui
nécessite d’accéder au réseau. Or, I’'application malveillante n’utilise
pas ces priviléges seulement a bon escient; elle arrive a exfiltrer des
données privées, qui justement ont été rendues accessibles pour le
bon fonctionnement de I'application. Ce type d’attaque contre la
vie privée a été déja frequemment signalé pour des applications
répandues, et la crainte est que la nombre croissant des appareils
mobiles va rendre de plus en plus pertinent ce probléme.

Contexte du travail, contributions. Ce travail reprend les fondements
scientifiques de I’outil DiaSuite,* précédemment développé dans

4 Plus d’informations sont dispo-
nibles sur http://phoenix.inria.fr/
research-projects/diasuite.

http://phoenix.inria.fr/research-projects/diasuite
http://phoenix.inria.fr/research-projects/diasuite

le méme groupe de recherche, afin de répondre a cette probléma-
tique. Le point fort dans ce contexte de I’'approche DiaSuite est le
découpage des applications en composants, et I’explicitation des
interactions entre eux. Ceci nous permet d’avoir une vision plus
claire du flux des données. En plus de donner a I’'usager une vision
de la structure et du comportement de I’'application, cette approche
permet de restreindre ce dernier en utilisant les déclarations comme
point d’appui pour générer des cadriciels.

Les contributions principales de ce travail de these peuvent étre
catégorisées en deux aspects : la formalisation des fondements de
I'approche DiaSuite, et le fait qu’on montre que cette méthodologie
s’applique (1) sur un vaste spectre de paradigmes de langages de
programmation (typage dynamique, typage statique, impératif,
fonctionnel) et (2) sur la problématique de la vie privée des usagers
dans les systemes mobiles. Ceci constitue une avancée par rapport a
I’état de I'art existant. En outre, les travaux sur les fondements des
cadriciels dans le contexte d’un langage fonctionnel apportent une
réflexion nouvelle. Le plus souvent, on retrouve des discussions sur
des cadriciels réalisés dans les langages types, et construits a partir
des concepts orienté-objet. Le développeur doit implémenter son
application par extension des objets fournis par le cadriciel, ce qui
assure la bonne structure de I'application. Le respect des contrats
définis est ensuite pris en compte par des systemes de typage et par
I’extension et I'implémentation des objets.

En revanche, notre travail montre que c’est également intéressant
et faisable d’étudier la problématique des cadriciels d’'un point de
Vvue syntactique, et basé sur des concepts des langages de program-
mation et, de surcroit, dans le contexte des langages fonctionnels.
Enfin, ce travail propose I'approche novatrice d’un langage dédié a
la spécification qui lui-méme, une fois évalué, constitue une langage
dédié et adapté a I'implémentation spécifique.

Structure du document. Le manuscrit est organisé de la fagon sui-
vante. Un premier chapitre introductif situe le contexte du travail.
La notion de plate-forme ouverte pour le développement et I’'exé-
cution d’applications mobiles est brievement introduite ; elle sera
détaillée dans les chapitres suivants. Les droits d’acces aux res-
sources, y compris via Internet, sont également présentés. Cette
problématique constitue un enjeu majeur pour I’acceptation des
applications mobiles et justifie le travail de thése. Enfin, ce chapitre
définit I’objectif du travail : I'identification de principes généraux
pour le développement de plates-formes ouvertes utilisant des dé-
clarations, notamment pour gérer les droits d’acces aux ressources.
Le premier chapitre définit également des exigences a propos de
ces plates-formes ouvertes. Ces exigences sont définies en regardant
les plates-formes existantes et répandues, ainsi que le travail plus
théorique qui a été fait par Consel et Balland (2010). Elles seront
ensuite utilisées pour évaluer le travail de la these.

Le deuxiéme chapitre fournit des éléments de contexte et de

positionnement. Deux points essentiels sont abordés. Tout d’abord,
il est rappelé que deux approches sont mises en place pour vérifier
le respect de la vie privée : les approches statiques ou le code est
analysé avant déploiement et exécution, et les approches dynamiques
ou le code est analysé a I’exécution. Les avantages et limites de
ces deux approches sont synthétisés. Le deuxieme point traité
par ce chapitre est la notion de plate-forme ouverte. Pour cela, la
définition de Balland et Consel (2010) est reprise et développée. I
met également en avant I'utilisation de déclarations au sein de ces
plates-formes. C’est notamment le cas de DiaSuite, fondé sur le
motif Sense/Compute/Control définit par Taylor et al. (2009).

La seconde partie de ce manuscrit se concentre sur la contribu-
tion de these. Elle est détaillée avec précision dans le chapitre 3. La
contribution se situe a deux niveaux :

1. T'utilisation du motif Sense/Compute/Control pour le dévelop-
pement d’applications mobiles, et notamment a partir de I’outil
DiaSuite. A ce jour, cet outil et I'approche afférente étaient utili-
sés pour les applications pervasives utilisant des capteurs issus
de I’environnement physique. Ici, les ressources des équipements
mobiles sont considérées et gérées comme des capteurs.

2. une méthodologie pour le développement de plates-formes ou-
vertes fondées sur la notion de déclaration. Cette méthodologie,
générale, se focalise surtout sur le processus de compilation qui
génere des canevas de développement adaptés aux applications
préalablement spécifiées (et fondés sur le motif Sense/Compu-
te/Control précédemment mentionné).

Le chapitre 4 apporte un support formel a la proposition. C’est le
chapitre central de cette thése. Il présente I'architecture du compi-
lateur de déclarations, définit le systéme de type utilisé, et spécifie
la sémantique de la principale phase de compilation. La motivation
pour reprendre les fondamentaux de DiaSuite est que le travail
précédent a été fait d’une facon pragmatique, et surtout que des
décisions de conception on été prises en fonction de langage d’im-
plémentation qui a été utilisé, c’est-a-dire Java. Notre travail sépare
la méthodologie du langage d’implémentation, et on montre le
spectre des possibilités pour des décisions de conception.

Le quatrieme chapitre reprend également les exigences posées
dans le chapitre introductif et positionne la proposition par rapport
a ces exigences. Un point majeur est la finesse des déclarations :
dans I'approche proposée, les droits d’acces aux ressources sont
spécifiés au niveau des composants et de leurs interactions. Cela
permet aux développeurs de spécifier les interactions entre compo-
sants et les droits associés. Le choix est ainsi de vérifier le respect
des permissions de fagon statique, mais on remarque également
que ce choix n’est pas la seule possibilité. Le chapitre comprend
une discussion des avantages et inconvénients des choix a propos
de la Vérification des permissions statique ou dynamique, et donne
des conseils aux futurs implémenteurs selon les besoins spécifiques.

Les chapitres 5 et 6 se focalisent sur I'implémentation de I'ap-
proche. Deux langages cibles ont été choisis dans un souci de vali-
dation : Java et Racket. Java est un exemple de langage typé stati-
quement et orienté objet, alors que Racket représente un langage
fonctionnel a typage dynamique. Ces deux chapitres reprennent la
méme organisation : une présentation générale de la conception du
prototype, la projection des déclarations dans le langage cible, un
exemple d’utilisation et une évaluation du prototype au regard des
exigences précédemment définies.

Le chapitre sur Racket incarne une contribution nouvelle, mon-
trant qu’il est possible d’apporter un niveau d’aide au développeur
Racket comparable a celui fourni avec Java, notamment en ce qui
concerne les restrictions d’acces aux ressources. L'implémention
des garanties statiques et méme des cadriciels en général dans un
langage dynamique était jusqu’a aujourd’hui peu étudié.

Ayant implémenté notre méthodologie dans un langage dyna-
miguement typé, on montre qu’il n’est pas obligatoire d’avoir une
systeme de typage statique pour arriver a fournir des garantis
comme prévu dans la méthodologie. Le contraire avait été supposé
auparavant dans la thése de Cassou (2011).

Les chapitres 8, 9 et 10 concluent le manuscrit. Le chapitre 8
avance le fait que I'approche proposée est également applicable au
domaine de I'informatique ubiquiste dans la maison (assisted living
en anglais). Un exemple d’une tel application est tiré des travaux
récents de Caroux (2014).

Le chapitre 9 reprend des éléments liés au positionnement des
travaux de cette thése, notamment en ce qui concerne la gestion des
acces aux ressources privées. Enfin, le chapitre 10 développe des
perspectives de ce travail. Méme si les prototypes présentés dans ce
travail ont des limitations, les perspectives sont encourageantes no-
tamment en envisageant la combinaison de cette méthodologie avec
des techniques existantes comme dans la domaine du component-
based software engineering, qui peuvent servir des composants as-
surant la fonctionnement dépendable d’une application, méme en
ajoutant des facilités pour I’'usage des bibliotheques externes.

Le code source des prototypes dévéloppés dans le cadre de cette
thése est disponible en ligne.®

Publications scientifiques. Les travaux présentés dans cette thése ont
donné lieu a un article publié dans une conférence internationale :

= Paul van der Walt (2015). ‘Constraining application behaviour by
generating languages’. In: 8th European Lisp Symposium. London,
United Kingdom.

Un autre article a été soumis dans la revue scientifique Software:;
Practice and Experience :

= Paul van der Walt, Charles Consel and Emilie Balland (2015).
‘Frameworks compiled from declarations: a language-independent
approach’. manuscrit.

5 Le code source est téléchargeable
depuis le site Web http://people.
bordeaux.inria.fr/pwalt/

http://people.bordeaux.inria.fr/pwalt/
http://people.bordeaux.inria.fr/pwalt/

Contents

I Context

Introduction 3
1.1 Requirements 4
1.2 Contributions 6
1.3 Outline 7

Context and Preliminaries 9

2.1 Program analysis as a privacy measure 10
2.2 Libraries, frameworks and their evolution 12
2.3 Open platforms 13

2.4 Previous work on DiaSuite 16
Il Presenting the Methodology

Software development with tailored frameworks 19
3.1 Sense/Compute/Control and mobile computing 19
3.2 Core DiaSpec declaration language 22

3.3 Phases of application development 24

Semantics of the declarations 31

4.1 Phases of the declaration compiler 31

4.2 Core DiaSpec: typing rules 34

4.3 The framework construction phase of the compiler 40
4.4 Static vs. dynamic checks 43

4.5 Discussion 44

10

11 Implementations

Instantiation of the methodology in Java 49
5.1 Overview of the implementation 50

5.2 Translation of the declarations 51

5.3 Implementing the example application 53

5.4 Evaluation of conformance to requirements 56

Instantiation of the methodology in Racket 59

6.1 Overview of the implementation 60

6.2 Translation of the declarations 61

6.3 Implementing the example application 64

6.4 The framework and run-time 66

6.5 Evaluation of conformance to requirements 69

Lessons learned 75
7.1 Comparison to mainstream frameworks 75
7.2 Principles 76

IV Conclusion

Generalisation of our approach 83

8.1 Application to assisted living 83
8.2 Other application domains 84

Related work 85

9.1 Frameworks enriched with declaration languages 85
9.2 Security of Android applications 86

9.3 Operating system security 87

9.4 Language-level restrictions 87

Conclusion and perspectives 91
10.1 Assessment 92
10.2 Ongoing and future work 93

Code listings 99

Bibliography 105

List of Figures

10

11

12
13

14

15
16

17

The Sense/Compute/Control paradigm. lllustration adapted from Cas-

sou, Bruneau et al. 2012. 15

The SCC model as applied to the domain of mobile computing.
Simplified schematic of the design of the example application. We
do not want the picture to be able to leak to the Internet. The ap-

plication developer provides the components indicated by the grey

ovals, the dotted grey square indicates the boundary between the
platform and the application. 21
The grammar of Core DiaSpec, our specification language. It will

serve as an example in the rest of this work. Keywords are in bold,

terminals in italic, and rules in normal font. 22

The Core DiaSpec specification for our example image filter applic-

ation. 24
The phases of development, from specification of an application
through to execution. 25

The taxonomy of devices for our mobile computing example. 26

The global phase diagram for the specification compiler. It outputs

the framework intended to be used for implementing the applic-
ation. The type checking and framework construction phases are
discussed in detail in this chapter. 32

The production rules for the type environment and its terms. 35

The typing rules for source and action terms. The side condition

unique? ensures that bindings are not shadowed in the environment

G. 35

A few representative examples of typing rules for context declar-
ations. 36

The typing rule for controller declarations. 37

The typing judgement check-spec checks a specification, which is
a list of declarations, by tail recursion. 38

Schematic design of the Java prototype. Note the derived names
in the generated abstract class, top right. 51

The implementation of the ComposeDisplay context. 54
Screenshot of the Eclipse Java IDE, showing tailored suggestions
based on declarations. 54

Excerpt of AbstractComposeDisplay, including the MakeAd proxy.

20

55

18

19

20

21

22

23

24

25

26

27
28
29
30
31

32

Excerpt of AbstractMakeAd showing the inner proxy class, which
gives access to the Internet. 56

Example of deployment and binding of implementations to names
from the specification. All but one of the instantiations have been
elided. 56

The architecture of the prototype. Provided declarations are trans-
formed into a tailored language for the implementation. The implement
macro gets cases for each declared component. The square brack-

ets indicate the result of module expansion. 60

Complete declarations of the example application, in Racket pro-
totype. 61

The implementation of the ComposeDisplay context. The developer
creates a new canvas and paints the received image pic onto it, fol-
lowed by the text adTxt. 64

Separation of components using modules. The developer’s code
(left), and its expanded form (right). The function f in C cannot ac-
cess D or g, because of lexical scoping. 65

The developer’s code snippet is encapsulated in a submodule, as

a result of evaluating Figure 22. The shaded code is simply the term
provided by the developer, which has been spliced into a new sub-
module. 65

The simplified expansion of the specifications, concentrating on ComposeDisplay
from Figure 21. 67

Unmodified screenshot of the DrRacket GUI, indicating available
binding information. Note the blue arrow in the code window, point-
ing from the binding site of the ProcessPicture term (line 10) to
where it is used (line 16). 69

Complete grammar of the Core DiaSpec specification language as
modelled in PLT Redex, extended with type environments. 99
The complete list of type judgements for Core DiaSpec specifica-
tions. 100

Definitions of the metafunctions used in the type judgements. 102
The option type, Maybe<T>. Implemented as 3 separate classes. 103
Helper macro to translate terms of the form (implement x ...) into

(implement-x ...). 104

Snippet spliced into all specification modules at expansion time.
The #%modulle-begin macro allows the specification file to be used
as a Racket language extension. 104

Part |

Context

1
Introduction

Within the last 10 years, there has been an explosion in the num-
ber of embedded and mobile computing devices pervading our
environments.! Especially smartphone applications and assisted
living are two booming open platform domains which bring new
challenges for application developers and platform owners alike.?
For example, end users routinely install applications on their mo-
bile phones from untrusted sources, possibly giving the application
access to private resources, whether these be hardware or software.
Potentially sensitive information needs to be accessible to applic-
ations for them to be able to achieve their purpose. Therefore, a
trade-off must be found between ensuring the privacy of the user
on the one hand, and allowing useful and legitimate applications to
be created on the other.

In reaction to these challenges, platform owners have introduced
various forms of permission declaration languages. By restricting
the list of permissions that is granted to a given application, the
run-time system can ensure that invalid access to shared resources
is blocked. Nevertheless, considering the Android platform for
example, numerous studies®#® and user stories show that there
are still gaping holes in the security of these systems—user privacy
is routinely breached for purposes ranging from tracking by ad-
vertising networks through to downright malicious applications
intending to steal private information for the purpose of identity
theft.

We observe that in the very popular platforms such as Facebook®
and Android,” which are used by millions of users daily, users

are presented with a list of permissions an application requests
before it is run for the first time. On the face of it this seems like

a reasonable first step towards user privacy. However, numerous
shortcomings quickly emerge. Firstly, users do not always under-
stand the privacy implications of various permissions,® and get into
the habit of always accepting whatever the application demands.
Secondly, the permissions are coarse-grained—e.g., access to the
entire external storage (SD) card is requested, instead of a particular

L William Enck (2011). ‘Defending
Users against Smartphone Apps:
Techniques and Future Directions’.
In: Information Systems Security. Ed.
by Sushil Jajodia and Chandan Ma-
zumdar. Vol. 7093. Lecture Notes in
Computer Science. Springer Berlin
Heidelberg, pp. 49-70.

2Emilie Balland and Charles Consel
(2010). ‘Open Platforms: New Chal-
lenges for Software Engineering’. In:
Programming Support Innovations for
Emerging Distributed Applications. PSI
EtA ’10. Reno, Nevada: ACM, 3:1-3:4.

8 Quang Do, Ben Martini and Kim-
Kwang Raymond Choo (2015). ‘Ex-
filtrating data from Android devices’.
In: Computers & Security 48, pp. 74-91.

4Ryan Stevens et al. (2012). ‘Invest-
igating User Privacy in Android Ad
Libraries’. In: Workshop on Mobile
Security Technologies (MoST)

5 Xuetao Wei et al. (2012). ‘Permission
Evolution in the Android Ecosystem’.
In: Proceedings of the 28th Annual Com-
puter Security Applications Conference.
ACSAC ’12. Orlando, Florida, USA:
ACM, pp. 31-40.

6 Jesse Feiler (2008). How to Do
Everything: Facebook Applications.

1st edition. New York, NY, USA:
McGraw-Hill, Inc.

" Ed Burnette (2009). Hello, Android:
Introducing Google’s Mobile Development
Platform. 2nd edition. Pragmatic
Bookshelf.

8 Adrienne Porter Felt et al. (2012).
‘Android permissions: User attention,
comprehension, and behavior’. In:
Proceedings of the Eighth Symposium on
Usable Privacy and Security. ACM, p. 3.

4 a language-independent declaration compiler development methodology

directory—and apply to the entire application. This is especially
troublesome since by default, included advertisement libraries run
in the same process as the host application, and therefore have the
same permissions as the host application. This has lead to several
documented privacy breaches.®

Finally, permissions have to be accepted on an all-or-nothing
basis, while there is no fundamental reason for this. We note that a
recent version of Android!? includes a hidden screen to (dis)allow
access per-application and per-resource. This change highlights
that the old permission model was not meeting users’ needs. On
Apple’s iOS this problem is solved by dynamic permissions: a
user is queried per-application the first time a sensitive resource is
accessed. However, this still does not prevent a malicious applica-
tion from exfiltrating data after a legitimate request. To curb leaks
of sensitive information, we therefore consider the possibilities
provided by enriched declaration languages providing finer-grained
permission controls plus restrictions on application control flow.

We also note that most frameworks used in production envir-
onments make use of specialised techniques for ensuring non-
malicious behaviour of the application. The features provided for
this as well as the various ways they are implemented give us the
impression that their solutions are ad hoc and narrow.

Our research question is whether there are underlying prin-
ciples for designing declaration-driven frameworks which apply to
all host languages. Also, we investigate what features are indispens-
able for a host language to be able to support such a system. This
question is inspired by the suggestions for future work made by
Cassou;!! little work has yet been done in this direction.
Additionally, widespread programming frameworks used to
develop applications for open platforms lack mechanisms for sup-
porting the developer. An application developer must provide the
aforementioned permission declarations, but when implementing
the application is still faced with the same level of complexity as
with traditional frameworks. We demonstrate that the declarations
can also be used to offer implementation guidance to the applica-
tion developer, and if presented in a comprehensible fashion, can
offer end users more insight into the behaviour of the application,
thus empowering both end users and developers alike. These ad-
vantages hold in a broader context than previously assumed.

1.1 Requirements

The study of existing programming frameworks for open plat-
forms gives us a practical basis for identifying the requirements
for declaration-driven frameworks. We now examine those require-
ments.

9 Stevens et al. 2012; and Wei et al. 2012

0 Users discovered that in version 4.3
of Android, a configuration screen

is available which allows selectively
granting an application a subset of
its requested permissions—e.g., GPS
accessible but contact list forbidden.
This panel had not been made access-
ible via the normal GUI. See Hidden
Android feature allows users to fine tune
app permissions (2013). Online, http:
//www . zdnet . com/hidden-android-
feature-allows-users-to-fine-
tune-app-permissions-7000018944/.
Accessed: May 2015.

1 Damien Cassou (2011). ‘Dévelop-
pement logiciel orienté paradigme

de conception : la programmation
dirigée par la spécification’. PhD thesis.
Université Sciences et Technologies—
Bordeaux I.

http://www.zdnet.com/hidden-android-feature-allows-users-to-fine-tune-app-permissions-7000018944/
http://www.zdnet.com/hidden-android-feature-allows-users-to-fine-tune-app-permissions-7000018944/
http://www.zdnet.com/hidden-android-feature-allows-users-to-fine-tune-app-permissions-7000018944/
http://www.zdnet.com/hidden-android-feature-allows-users-to-fine-tune-app-permissions-7000018944/

Behavioural transparency. First and foremost, since our goal is to
protect the privacy of end users, we believe that users of an open
platform should be informed of what will be done with their re-
sources before running a given application. Currently, end users
are accustomed to downloading and running applications from un-
known third-party developers, which provide either no information
about their behaviour at all'?2 or merely provide a list of permis-
sions that they will use—for example, the internet connection or
file-system access—that a user has to accept or reject wholesale.®
These permission systems provide little to no insight into what an
application intends to do with the user’s private data. The clear
presentation of permissions is also an important requirement. Per-
mission declarations are of no use if the user must be an expert of
the platform to be able to understand their impact.1*

Coherence between specification and behaviour. For this methodology
to be effective, an application should be guaranteed to adhere

to the specifications provided by the developer and presented

to the user.!® In our setting, that means that if a user approves

a certain set of permissions for a given application, they should

be sure in the knowledge that the application will not be able to
circumvent the restrictions. In essence, this requirement implies a
strong semantic link between the specification, the implementation,
and the run-time environment of the application.

Development support. Developers of applications should be guided
as much as possible to reduce cognitive load as well as to reduce
the probability of unintentional bugs. This is a particular advant-
age identified in the DiaSuite approach by Cassou, Bruneau et

al. 2012,16 which we argue should be available to all application
developers. As a valuable additional benefit, if the developer ex-
perience is positive, it will mean more high-quality applications
available to the end user, which will in turn make the platform
more valuable.

Abstraction over host language. The methodology we propose
should not be dependent on a given host language. Particularly, a
platform owner who has already invested in a given programming
language cannot be expected to abandon it, even for significant be-
nefits in increased user privacy. Therefore, a methodology claiming
to solve this problem should be easily applicable to arbitrary target
languages. Notably, it should allow implementations in a wide
range of programming paradigms, e.g., object-oriented or functional,
and it should support implementation in either dynamic languages,
or languages with static type systems.

introduction 5

12 As in the case of applications on
general purpose computing platforms
such as Linux or OS X.

13 As is the case on the Android
platform, as well as numerous others
such as Facebook or Chrome plugins;
see Rogers et al. 2009, Feiler 2008 and
Chrome developers 2015 respectively.

4 Felt et al. 2012

%5 Richard N. Taylor, Nenad Med-
vidovic and Eric M. Dashofy (2009).
Software architecture: foundations, theory,
and practice. Wiley Publishing

16 Damien Cassou, Julien Bruneau et al.
(2012). ‘Toward a Tool-Based Devel-
opment Methodology for Pervasive
Computing Applications’. In: IEEE
Trans. Software Eng. 38.6, pp. 1445-1463

6 a language-independent declaration compiler development methodology

1.2 Contributions

This dissertation proposes an approach that covers the design and
development of application-tailored declaration-driven frameworks in
a wide spectrum of host programming languages, addressing the
requirements identified above. The main contributions of this thesis
are:

A declaration-driven development approach for open platforms. This
work starts with a study of other declaration-driven frameworks.
As stated, examples include the Android SDK, Apple’s iOS, Chrome
SDK, Facebook SDK, DiaSuite, but also more niche frameworks

such as Yesod,!’ the statically-checked web framework in Haskell. 7 Michael Snoyman (2012). Developing
We compare the approach taken by each of these, and their relative ‘é)",eé’e/_*lfp"ca“o”s with Haskell and Yesod.
illy.

advantages and disadvantages. Also, we go further than previous
work, such as Cassou 2011, with regards to the formalisation of
the methodology. We detail the compiler architecture involved in a
system which generates application-tailored programming frameworks
from specifications, and formalise key phases. Notably, we provide
a type system for our declaration language, and a more systematic
specification for the declaration compiler, plus justification why
the guarantees provided by our methodology are stronger than
mainstream declaration-driven frameworks.

A language-independent methodology. The main contribution of this
work is showing that our methodology is to a great extent language-
agnostic. That is, we provide a systematic way of implementing
declaration-driven framework compilers targeting a wide spectrum
of programming languages, which fulfil the requirements outlined
above. We discuss the design space of compilers generating such
frameworks, with regard to the trade-offs between static vs. dy-
namic treatment of declarations, and the minimum requirements
for a target programming language to support the methodology.

Case study implementing declaration compilers in Java and Racket. \We
demonstrate the systematic implementation of framework com-
pilers for our declarative method, targeting two very different lan-
guages. We provide compilers targeting Java, an object-oriented and
statically typed language, and Racket, a dynamic functional lan-
guage. We compare the application-tailored frameworks which res-
ult from the two compilers, and show that the guarantees provided
by both of them are stronger than in widespread declaration-driven
frameworks such as Android.

Validation of the methodology. To illustrate and validate our method-
ology for varying target languages, we implement a simple mobile
application in the two presented frameworks. We show that the
support and guarantees they offer are equivalent.

introduction

1.3 Outline
The remainder of this dissertation is organised as follows:

= Chapter 2 presents the previous work on frameworks and declar-
ation languages as well as all other work which is required to
understand what is presented in this dissertation, and on which
we will be building. The study of both static and dynamic ana-
lysis has a long history, detailing the trade-offs between various
approaches which are relevant for our work. More recent work
specifically targeting the domain of mobile applications is also
discussed here. The Sense/Compute/Control paradigm is also
recalled and explained.

= In Chapter 3, the Sense/Compute/Control methodology is in-
stantiated for the domain of mobile computing. We introduce
our running example from that domain: a social media applic-
ation, which is a simplified model of a photo-manipulation ap-
plication. We introduce our prototype specification language. It
is this language which we will use to illustrate our specification-
to-framework compiler development methodology. Chapter 4
provides a detailed architecture of the declaration compiler, intro-
duces the type system, and specifies the semantics of the main
compilation phase.

« Chapter 5 and Chapter 6 present the implementation of the
example application, from the developer’s point of view, in the
two instances of the framework, respectively Java and Racket.
We thoroughly discuss the more pragmatic implementation
decisions. Also, we show that both the developer guidance and
restriction provided are equivalent, and in accordance with
the requirements enumerated above. Chapter 7 concludes the
implementation part of this dissertation, and compares our
approach with mainstream approaches. We present principles
for development of declaration-driven frameworks applicable to
other target languages, guided by our experience implementing
the prototypes.

= Chapter 8 contains a discussion on the broader applicability of
this methodology to other application domains. Not only the
domain of mobile computing, but also assisted living, is a prime
candidate for application of our methodology.

Furthermore, we detail an as-yet unfinished experiment towards
developing a simulator based on log file replay to augment the
development cycle, which we believe will aid the developer to
write more dependable applications prior to deployment.

= Finally, Chapter 9 lists other work which is related to ours, and
Chapter 10 details the conclusions of this dissertation. Avenues
for further work are discussed, such as how to present potential
information flow to the end user, so that it is most meaningful to

8 a language-independent declaration compiler development methodology

a non-expert audience. The aim is to help users make informed
decisions regarding privacy trade-offs.

2
Context and Preliminaries

This chapter aims to present some history, as well as the context
within which this work has been performed. We present all the
definitions necessary to understand the rest of this dissertation.

We give a brief overview of the study of both static and dynamic
program analysis in Section 2.1. This field has a long history of
investigating the trade-offs between various approaches, which
remain relevant to our work. However, we concentrate on more
recent work specifically relating to privacy and security on mo-
bile platforms. Since it is closely related to the work presented in
this dissertation, it deserves a more thorough presentation than
program analysis in general.

Apart from static analysis, another approach to user privacy
and application safety is to develop more restrictive programming
frameworks. We therefore dedicate Section 2.2 to presenting the
evolution of software engineering practice from libraries to pro-
gramming frameworks. Also, we present the recently popular idea
of declaration-driven frameworks. Our methodology draws heavily
on the ideas underpinning widely deployed declaration-driven
frameworks.

Section 2.3 gives a definition for the concept of open platforms.
Furthermore, we go into more detail on declaration languages, and
the challenges and requirements motivating their development,
their evolution, as well as the current state of the art. We also intro-
duce the Sense/Compute/Control paradigm, which is the software
architecture on which our methodology is based.

Finally, Section 2.4 presents existing work towards enriching
declaration languages, using DiaSuite as an experimental vehicle.
DiaSuite is a declaration-driven open platform developed in the
past by the research group. A later section is devoted to explaining
the elements from DiaSuite that we build on. We make reference
to specific extensions to DiaSuite, including application specifica-
tions which declare Quality of Service and exception handling con-
straints. The methodology presented in this dissertation attempts to
take a step back and generalise what have been ad hoc approaches
to solving highly specific problems. Our experiments suggest what
the minimum requirements are for a programming language, to be

10 a language-independent declaration compiler development methodology

able to host instantiations of declaration-driven frameworks using
our methodology.

2.1 Program analysis as a privacy measure

Since the motivation of our work focuses mainly on privacy and
safety concerns, the vast field of program analysis should be ex-
amined for inspiration and comparison. For many years, program
analysis, whether static or dynamic, has attempted to reliably and
tractably answer questions for given application software, such

as, ‘are the permission restrictions respected’, or ‘does sensitive
information leak to unauthorised sinks’. There exist a number of
well-known trade-offs when doing program analysis, for example
the fact that static analysis allows catching errors earlier, whereas
dynamic analysis is more accurate.! For example, static analysis
of a mobile application might indicate that it requires permission
to send an SMS, but dynamic analysis might reveal that the com-
ponent which sends an SMS is never activated. These issues are
considered general knowledge, and will therefore not be addressed
at length in this section. We restrict our literature review to work
specifically aimed at static analysis of Android permissions, since
this comes closest to the domain of our work. However, in the rest
of this thesis we consider the implications of various combinations
of static and dynamic checking on our specific application domain.
Indeed, we remark that one need not decide to use exclusively
dynamic or static analysis: a combination is most often the best
approach. Choosing the phase in which to perform a given check,
however, is where the true subtlety lies.

Static analysis for Android

Much specialised work exists studying the possibilities of static
analysis specifically of Android applications. This work aims at
doing analysis of existing source code with the constraint that the
run-time library remains unchanged. This is motivated by the large
body of existing deployed applications that cannot realistically be
reengineered (see Elish et al. 2013; C. Mann and Starostin 2012;
Fritz et al. 2013; Gibler et al. 2011; Mirzaei et al. 2012).2 This work
is motivated by user privacy and safety concerns. This type of ap-
proach has the disadvantage of requiring invasive inspection of the
developer’s code, and providing no guidance to the developer at
implementation time. Unfortunately, application developers are
unlikely to want to submit their source code for analysis because of
intellectual property concerns. Static analysis approaches that do
not inspect developer source code also exist. They convert compiled
object code into Java bytecode, for which analysis tools exist.® How-
ever, this too poses difficulties, since such a decompilation-based
approach is frequently impossible or at best inaccurate. Analysis of
a program written in a general-purpose language is a very subtle

! Flemming Nielson, Hanne R. Nielson
and Chris Hankin (1999). Principles of
Program Analysis. Secaucus, NJ, USA:
Springer-Verlag New York, Inc.

2Karim O. Elish et al. (2013). ‘A

static assurance analysis of Android
applications’. In: Virginia Polytechnic
Institute and State University, Tech.

Rep; Christopher Mann and Artem
Starostin (2012). ‘A framework for
static detection of privacy leaks in
Android applications’. In: Proceedings
of the 27th Annual ACM Symposium on
Applied Computing. ACM, pp. 1457—
1462; Christian Fritz et al. (2013).
Highly Precise Taint Analysis for Android
Applications. Tech. rep. TUD-CS-2013-
0113. EC SPRIDE; Clint Gibler et al.
(2011). AndroidLeaks: Detecting Privacy
Leaks in Android Applications. Tech.
rep. UC Davis; and Nariman Mirzaei
et al. (2012). ‘Testing Android Apps
Through Symbolic Execution’. In:
SIGSOFT Softw. Eng. Notes 37.6, pp. 1-
5.

3. Holavanalli et al. (2013). ‘Flow
Permissions for Android’. In: 2013
IEEE/ACM 28th International Conference
on Automated Software Engineering
(ASE), pp. 652-657.

problem, since there are many ways in which information flow
may be obscured—for example, file-system access, variable aliasing,
etc. Static analyses are therefore necessarily conservative in these
situations.

TouchDevelop: a simplified application creation DSL. We expand our
search of related work to include methods which do not necessarily
analyse compiled application binaries. Xiao et al. present an ap-
plication creation environment which aims to restrict sensitive data
usage by construction.* The main aim of their approach is to give
users more insight into data flow, without requiring a full static
analysis of a standard Android binary application. This is achieved
by providing a domain-specific programming language (DSL) based
on TouchDevelop. TouchDevelop is an application creation envir-
onment allowing developers to write scripts for mobile devices and
publish them in an application store for users to install.® It offers an
imperative, statically-typed language, but which is not as expressive
as normal Java as used with the Android SDK. The authors have
developed a static information flow analysis of this DSL, as well

as a modified run-time which allows individual resources, such

as the contact list, to be replaced by mock components providing
anonymised values. The fact that the DSL has limited expressive-
ness compared to general-purpose Java facilitates static analysis.
Furthermore, the advantage is that the user is empowered by per-
resource permissions, and comprehensible display of the potential
flow of information (e.g., camera ¥ WWW, meaning that data from
the camera might be transmitted to the Internet). However, it re-
quires using a separate, specialised application store. Also, regular
Android applications are incompatible with the TouchDevelop
run-time library. Developers need to learn a new programming
language and development environment.

Dynamic analysis: TaintDroid, remote parallel execution

The authors of TaintDroid® and Paranoid Android’ propose an-
other novel approach: real-time, dynamic, taint analysis of applic-
ations on a mobile phone, run in parallel on a remote server. This
approach is the most accurate of those we compared, but incurs
non-negligible costs for platform owners: effectively having to emu-
late all running user sessions. It illustrates the great accuracy of
dynamic analysis, and presents a very interesting experiment. How-
ever, a static analysis is more appropriate in settings where CPU
power and bandwidth are limited, as is the case in the mobile com-
puting domain. Also, this approach would not scale on the server
side, if billions of users’ sessions needed to be duplicated remotely.
Privacy concerns also arise from the fact that all user actions can be
exhaustively tracked and analysed by the platform owner, which
merely displaces the trust requirement from the developer to the
platform owner. Ideally, the user would have full control over their

context and preliminaries 11

4 Xusheng Xiao et al. (2012). ‘User-
aware privacy control via extended
static information-flow analysis’. In:
ASE. ed. by Michael Goedicke, Tim
Menzies and Motoshi Saeki. ACM,
pp. 80-89.

5R. Nigel Horspool and Nikolai
Tillmann (2013). TouchDevelop: Pro-
gramming on the Go. 3rd edition. The
Expert’s Voice. available at https :
//www . touchdevelop . com/docs/book.
Apress.

5 William Enck et al. (2014). ‘Taint-
Droid: an information flow tracking
system for real-time privacy monitor-
ing on smartphones’. In: Communica-
tions of the ACM 57.3, pp. 99-106

" Georgios Portokalidis et al. (2010).
‘Paranoid Android: Versatile Protection
for Smartphones’. In: Proceedings of

the 26th Annual Computer Security
Applications Conference. ACSAC '10.
Austin, Texas, USA: ACM, pp. 347-356.

https://www.touchdevelop.com/docs/book
https://www.touchdevelop.com/docs/book

12 a language-independent declaration compiler development methodology

sensitive data, and this data should never leave their device unless
this is explicitly the intention of the user—e.g., sharing a photo
with a friend. In practice, this means that the vast majority of data
present on the device should never have to leave it.

2.2 Libraries, frameworks and their evolution

Taking a step back from program analysis, we investigate other
approaches to user privacy that have been proposed. This section
deals with the role that frameworks play in achieving this objective.

Software reuse is agreed to be a goal in itself, for keeping ap-
plications maintainable, facilitating the development process, and
avoiding repetition.8 To this end, software libraries have long met a
need in software engineering. Going beyond this, the popularity of
programming frameworks has been driven by advantages like ease
of development, alleviating the burden for developers by managing
the execution life cycle of the application, and preventing deviation
from the architectural style,? while still providing access to shared

subroutines. Frameworks are like libraries which exercise authority:

instead of a developer writing a whole application from scratch
and calling routines provided by a library, a framework takes over
and manages the control flow, calling the snippets a developer has
provided.10

Their advantages typically include (1) reducing development effort
by guiding the developer, (2) restricting to a particular architectural
style, and (3) fulfilling the needs previously met by libraries regarding
code reuse, in other words, providing easy access to common or
shared software artefacts.

One definition for software frameworks found in the literature is
‘a collection of several fully or partially implemented components
with largely predefined cooperation patterns between them. A
framework implements a software architecture for a family of
applications with similar characteristics, which are derived by
specialisation through application-specific code’.11

Pragmatically, programming frameworks are defined by Fayad
et al. as a software engineering technique employing inversion of
control,12 for creating applications through extension.13 Contrary
to libraries, they can therefore be seen as a technique to turn full
application development into a hole-filling activity: the framework
provides a skeleton application, with placeholders which may be
filled in with the desired behaviour. This removes the need for
developers to manually manage the application execution life-cycle
(including setup, starting, stopping, recovering from various forms
of interruptions), since that is defined and handled once and for all
by the framework.

8 Ruben Prieto-Diaz and Peter Freeman
(1987). ‘Classifying software for
reusability’. In: Software, IEEE 4.1,

pp. 6-16

9 Taylor, Medvidovic and Dashofy 2009

10 Mohamed Fayad and Douglas C.
Schmidt (1997). ‘Object-oriented
application frameworks’. In: Commun.
ACM 40.10, pp. 32-38.

1 Marcus Fontoura et al. (2000). ‘Using
domain specific languages to instan-
tiate object-oriented frameworks’. In:
IEE Proceedings—Software 147.4, pp. 109—
116

2 Inversion of control is sometimes fa-
cetiously referred to as the Hollywood
Principle: ‘don’t call us, we’ll call you’.
In software engineering, this refers to
the situation where the life cycle of the
application is not the responsibility of
the application developer—they just
provide various components which are
then called as required by the run-time
system.

18 Fayad and D. C. Schmidt 1997

The addition of declarations

Frameworks are found everywhere: in the domain of mobile applic-
ations, Web programming, to gaming platforms.14 Lately, a trend
has been emerging, where frameworks make use of domain-specific
declarations as input.!® These declarations are intended to dictate
the structure, resource permissions, and behaviour of applications.
For example, the Manifest file required by Android applications
declares which resources of the mobile phone the application is
authorised to use.’® Resources are any potentially sensitive sources
or sinks, whether real devices—e.g., camera, microphone—or vir-
tual ones—e.g., address book, the Internet. Such declarations not
only allow the framework to better answer emerging challenges
such as privacy concerns, but also increase the potential to provide
support to the developer, and give a user insight into how their
sensitive information is used. This dissertation is focused on these
declaration-driven frameworks as a way to answer privacy challenges.
Increasing user insight does, however, assume that the declarations
are presented to the user in a comprehensible format. This is an
area on which little work has yet been done.

2.3 Open platforms

Recently, we are seeing an explosion of new application domains,
such as mobile devices, using declaration-driven frameworks to
support the open platform model as defined by Balland, et al.1’
When we refer to open platforms, we mean platforms with
(1) public programming interfaces, which give access to (2) shared
resources for applications. They include (3) a run-time environment
for applications, and contribution of applications is (4) open to non-
certified, third-party developers. Examples include Android and
Apple’s iOS, but also the Facebook platform, among many others.18
Because it is an attractive business model to offer a platform for
which third-party developers can easily write applications for end
users to install, the open platform model is being widely adopted.
When we refer to the platform owner, we mean the entity responsible
for providing developers with a programming interface and end
users with access to an application repository where the third-
party developers make their applications available. In the case of
Android, the platform owner is Google.

Challenges and requirements

These novel application domains pose new challenges. For example,
mobile computing platforms expose sensitive shared resources,
such as the camera or contact list, to third-party, potentially untrust-
worthy developers. It has been shown that in Android, routine ab-
use of these resources is widespread.’® Among declaration-driven
frameworks, we identify a spectrum of approaches to dealing with
restrictions of resource usage. Examples range from fully dynamic,

context and preliminaries 13

14 Mike McShaffry and David Graham
(2012). Game Coding Complete. 4th
edition. Independence, KY, USA:
Cengage Learning PTR.

15 Rick Rogers et al. (2009). Android
Application Development: Programming
with the Google SDK. Beijing, China:
O’Reilly.; Snoyman 2012; and Cassou,
Bruneau et al. 2012

16 Rogers et al. 2009

7 Balland and Consel 2010

® Dave Mark and Jeff LaMarche
(2009). Beginning iPhone Development:
Exploring the iPhone SDK. Apress;
Feiler 2008; Chrome developers (2015).
Developing Chrome Extensions: Declare
Permissions. https : 7/ developer .
chrome . com/extensions/declare_
permissions. Accessed: February 2015;
and Matthias Kalle Dalheimer (2010).
Programming with QT: Writing portable
GUI applications on Unix and Win32.
O’Reilly Media

1%Wei et al. 2012; and Alexandre
Bartel et al. (2012). ‘Automatically
Securing Permission-based Software
by Reducing the Attack Surface:

An Application to Android’. In:
Proceedings of the 27th IEEE/ACM
International Conference on Automated
Software Engineering. ASE 2012. Essen,
Germany: ACM, pp. 274-277.

https://developer.chrome.com/extensions/declare_permissions
https://developer.chrome.com/extensions/declare_permissions
https://developer.chrome.com/extensions/declare_permissions

14 a language-independent declaration compiler development methodology

as in Android, to static, as in DiaSuite,?? an existing declaration-
driven approach. Finally, to encourage adoption, platform owners
want to facilitate the development process as much as possible.

Unfortunately, these stakeholders are not without conflicts of
interest. For example, the platform that can offer the most novel or
reasonably-priced applications to the user will be most attractive,
so platform owners are interested in attracting as many developers
as possible. One of the ways to do this is to offer developers a way
to earn revenue from the users of their applications. Apart from
directly charging a fee to be allowed to download them, what fre-
quently happens is that developers embed advertising into their ap-
plications.?! However, advertising is most lucrative when as much
private data as possible can be scraped from the users’ devices, to
the extent that users can be uniquely identified. This is at odds
with the principle of respecting users’ privacy, but poses a difficult
choice to platform owners.

On the one hand, the platform owner could allow developers
to gather as much data as possible from users, allowing them to
earn as much as possible from advertisers. This way they would
stimulate the creation of a rich selection of low-cost applications to
the user. On the other hand, they could protect the users’ privacy,
at the risk of driving away advertisers, and as a result developers.
This threatens to leave the ecosystem less attractive to the end user,
because of a lack of applications.

When considering declaration-driven frameworks in open plat-
forms, we therefore observe that the different stakeholders have
various concerns, summarised here:

= The end user would like clear insight into resource usage by
third-party applications: not just which resources—e.g., camera,
address book—are requested, also how they are used—e.g., read-
ing one address book entry and sending it to a friend by SMS.

= The platform owner wants to facilitate the development process
as much as possible, to encourage adoption of the platform.
Restricting malicious behaviour is also beneficial, since this
would increase user confidence in the platform.

= The third-party developer is interested in high-level program-
ming support and abstraction from platform details, leading to
greater portability—e.g., hardware-agnostic implementations.

Following from these concerns, we propose more precise require-
ments for frameworks supporting open platforms. They are not ar-
bitrary: by comparing them to prevalent and successful frameworks,
we validate that these are emergent requirements of real-world
stakeholders.

[Reql: transparency] The user would like clarity on which shared
resources will be used. Resource declarations should therefore specify
the sources and sinks of potentially sensitive data a given applic-
ation uses, as well as possible side-effects. On mobile computing

20 Cassou, Bruneau et al. 2012

2L Stevens et al. 2012

platforms, examples include camera or Internet access. This would
allow a user to make an informed decision on whether they trust
the application enough to execute it.

[Req2: containment] The data reachability should be constrained

to avoid privacy leaks.?? Potential leaks can be predicted, by de-
termining whether a control flow path exists between the different
components constituting an application, which may have access

to various sensitive resources. In Android, for example, allowing
an application to access both the Internet and photos, implies that
photos can potentially be exfiltrated to an arbitrary server. The
same applies to Apple’s iOS: if the user gives permission to access a
given resource, no information is provided regarding what the data
will be used for.

[Req3: support] Tailored programming support for the developer can
and should be derived from the declarations, since these provide
hints towards the desired structure and behaviour of the applic-
ation. For example, if the declarations do not allow a certain re-
source to be used, its APl need not be available to the developer.
This also avoids confusion and clutter during implementation.

[Req4: conformance] Conformance checking, whether static or dy-
namic, should be performed between the specifications and the
implementation. This way a user can trust the declarations to be
meaningful for the application.

These are the criteria according to which we judge our methodo-
logy in the following part.

The Sense/Compute/Control model

Our development methodology and toolkit closely follows the
Sense/Compute/Control (SCC) architectural style described by
Taylor et al.23 We therefore present the most important concepts
here. The next chapter explains how we adapt the SCC model to
our work.

The SCC pattern ideally fits applications that interact with an
external environment. SCC applications are typical of domains
such as building automation, robotics, avionics and automotive
applications, but this architectural style is also a good fit for open
platforms such as those found in the domain of mobile computing.

orders

Controllers act on
>

Actions -------

context
data

Entities

Sources <~ -----L

context and preliminaries 15

2 Damien Cassou, Emilie Balland

et al. (2011). ‘Leveraging software
architectures to guide and verify the
development of Sense/Compute/-
Control applications’. In: Proceedings
of the 33rd International Conference on
Software Engineering. ICSE "11. Waikiki,
Honolulu, HI, USA: ACM, pp. 431-
440.

2 Taylor, Medvidovic and Dashofy
2009

Figure 1: The Sense/Compute/Control
paradigm. lllustration adapted from
Cassou, Bruneau et al. 2012.

16 a language-independent declaration compiler development methodology

As depicted in Figure 1, this architectural pattern consists of
three types of components: (1) entities correspond to managed?*
resources, whether hardware or virtual, supplying data; (2) context
components process data; (3) controller components use this inform-
ation to control the environment by triggering actions on entities.
Furthermore, all components are reactive. That is, sources are the
only components that may decide to publish at any time—e.g., as a
result of a changed environmental factor, such as the temperature
reported by a sensor increasing in value. Contexts and controllers,
on the other hand, may only be activated as a result of a value
being published by a component they are subscribed to. This de-
composition of applications into processing blocks on the one hand,
and control flow on the other, makes data reachability explicit, and
isolation more natural, which gives the potential to answer Reql
and Req?2 effectively. This makes SCC a suitable model for our
approach.

When targeting a specific domain such as building automation or
mobile phones, the platform owner defines a taxonomy of resources
for applications in this domain. On mobile devices, for example,
this includes the camera, contact list, Internet, etc., whereas in
home automation the taxonomy might include temperature and
atmospheric pressure sensors, and actuators to open windows or
turn on the lighting.?

2.4 Previous work on DiaSuite

Before the work on this thesis commenced, a number of other
projects looked at solving various specific problems by making con-
tributions to the DiaSuite methodology, mostly by adding specific
features to the specification language. In the category of extensions
to the declaration language, especially the work by Enard?6 and
Gatti?’ are good examples. Enard’s work added facilities to the
design language for specifying how applications should handle
exceptions, by means of rules which would be enforced at imple-
mentation time. Gatti’s work concentrated on Quality of Service
(QoS) concerns such as maximum response times of function calls,
which are relevant to domains such as aeronautics, where high-
assurance software is required. These examples illustrate that rich
and expressive declaration languages can be used to enforce guar-
antees for a wide range of application properties.

Even more relevant to this work is Cassou’s dissertation,2® which
provided much inspiration for the direction taken in the present
work. Notably, initial steps were taken to formalise the methodo-
logy involving a compiler which produces a tailored programming
framework from a specification written by an application archi-
tect. This work aims to continue in that spirit, as well as answer
the main question posed there, namely: what are the general re-
quirements of a target programming language to be able to host an
implemented instance of our methodology?

2 Managed resources refer to those
which are not available to arbitrary
parts of the application, in contrast to
basic system calls such as querying the
current date.

% Wwilliam C. Mann (2005). Smart
Technology for Aging, Disability, and
Independence: The State of the Science. 1st
edition. Hoboken, NJ, USA: John Wiley
and Sons.

% Quentin Enard (2013). ‘Develop-
ment of dependable applications: a
design-driven approach’. PhD thesis.
Université Sciences et Technologies—
Bordeaux I.

27 Stéphanie Gatti (2014). ‘A step-
wise approach for integrating QoS
throughout software development
process’. PhD thesis. Université de
Bordeaux.

2 Cassou 2011

Part 11

Presenting the
Methodology

3
Software development with tailored frameworks

This part presents the theoretical results of our work. It summar-
ises the definitions that are needed to understand the practical
component of this dissertation. It is split into two chapters: this
chapter presents the overview of our methodology, and the second,
Chapter 4, gives the semantics for the compiler at the heart of our
approach.

In Section 3.1, we refine the Sense/Compute/Control model that
was introduced previously, by instantiating it with concepts from
the mobile computing domain. Concepts from the SCC model such
as resources are relevant to our problem domain, and we argue
that the Sense/Compute/Control paradigm is a suitable model for
mobile applications.

Next, Section 3.2 introduces the Core DiaSpec specification lan-
guage. It is used as a vehicle for experimentation in the rest of this
work. The grammar is given, along with the informal specification
for a mobile application, which will be our running example. Here,
the relationship between resources, contexts, and controllers is ex-
plained, as well as the restrictions on their interaction—e.g., strict
reactivity. These restrictions notably include that the application
should not be able to leak private user data to unauthorised sinks,
such as the Internet.

The development phases associated with creating an applic-
ation using our methodology are presented in Section 3.3. An
overview of the process is given, starting from the specification of
the application, through compiling the specification into a tailored
programming framework, to implementing the application.

Essential to our methodology is the Core DiaSpec specification
language and the accompanying semantics. After having dealt with
the overview of the methodology, the semantics are introduced in
the next chapter.

3.1 Sense/Compute/Control and mobile computing

Our running example comes from the domain of mobile comput-
ing, so we specialise the SCC model, introduced in Chapter 2, in
terms of concepts relevant to our problem environment. Figure 2
illustrates the relationship between resources and the application in

20 a language-independent declaration compiler development methodology

Application: provided by developer Platform: mobile computing device

trigger actions

Sinks / Actions

ublish .
5a|ues Hardware: WiFi, screen,
camera, vibration, etc.

Virtual: contact list,
text messages, etc.

W / Sources

provide values Shared
Resources

i.e., application
components

more detail, as well as who is responsible for each aspect. The phys-
ical environment is where our application gets stimuli from, which
includes wireless network activity and interaction by the user, such
as pressing buttons on the touchscreen. The application then acts
on the environment by printing output to the screen, vibrating, or
sending a text message.

Note that both hardware and virtual devices are considered re-
sources in our model: virtual devices represent data that belongs to
the user—e.g., contact list or text messages—and hardware devices
refer to elements such as the vibration motor, geolocation device
(GPS), or screen. The resources thus provided by a mobile com-
puting device, such as the integrated camera or wireless network
interface, are shared by all the installed applications. We assume
that this is mediated by the operating system: applications are
provided with a programming interface (API) to receive input and
manipulate the environment. All these sources and sinks, whether
hardware or virtual, are presented to the application via a consist-
ent API; that is, the method for accessing one resource or another
should not require the application developer to undertake vastly
different actions.

Together, the shared resources plus the run-time environment
that manages access to them, make up the platform that applic-
ations run on. We refer to this as an open platform, because third-
party developers can provide applications to end users via an ap-
plication store, which is managed by the platform owner, as defined
in Section 2.3.

Crucial to the success of our approach is that the underlying ar-
chitecture makes a clear separation between components belonging
to the platform (the resources), and application-specific compon-
ents. Therefore, these applications are composed of contexts and
controllers as defined by Taylor, et al.l Contexts are the application
components that may subscribe to events published by sources—
e.g., an incoming call or a change of network interface status. These
contexts in turn may publish new values, to which other contexts
and controllers may be subscribed. Controllers are granted per-

_ dutput
User interaction,
network activity,
etc.
input

Physical
Environment

Figure 2: The SCC model as applied to
the domain of mobile computing.

! Taylor, Medvidovic and Dashofy 2009

software development with tailored frameworks 21

mission to trigger actions, which is how the application returns
information to the user after having performed its task.

Running example of mobile application

We now introduce the application that serves as the running ex-
ample throughout this dissertation. We base our example on a
well-known application, that allows a user to take a picture, which
is then instantly processed using a visual filter. For our example,
the application should be allowed to show the picture to the user;
we want to prevent any other flow, such as sending the picture over
the Internet. Since the hypothetical application is distributed free of
charge, supported by advertisement revenue, it relies on an advert-
isement component. Our threat model is that this component tries
to exfiltrate the picture to a third-party server.

| I Figure 3: Simplified schematic of the
b design of the example application.

We do not want the picture to be
Screen able to leak to the Internet. The
Picture application developer provides the

Compose components indicated by the grey
Display

ovals, the dotted grey square indicates
Picture

the boundary between the platform
and the application.
Process
@ MakeAd :
|Picture x String :

String

Camera IP

In terms of the Sense/Compute/Control model, it makes sense
to decompose our example application as informally illustrated in
Figure 3. Note that the arrows signal subscription relations, and
that they are annotated by the type of values that may be trans-
mitted via each channel. The component which applies the visual
filter (called Process Picture in the diagram) is triggered when the
Camera device indicates that it has a new picture available. After
applying the filter, the Process Picture component publishes the
new image, to which the Compose Display component is sub-
scribed. Before passing the picture along to the hardware device
Screen, it requests (pulls) the advertisement text from the MakeAd
component. In our example, MakeAd is explicitly given access to
the Internet in the specification. Note that when Compose Display
makes a request to MakeAd, our model does not allow for an ar-
gument to be passed along with the request. Therefore, the image
cannot be communicated to MakeAd. In turn, MakeAd makes a
request to the IP resource, again without a parameter. This is a
simplification compared to a real-world application, since a specific
URL should be queried. Our model supposes that the IP device

22 a language-independent declaration compiler development methodology

has already been configured with the correct URL to download the
advertisement text. This is a valid simplification: in a real imple-
mentation the specification would allow for two types of requests:
with and without a parameter. Compose Display would make a
request without parameter to MakeAd to prevent the picture leak-
ing, and MakeAd would be given permission to make a request
to IP with a parameter, hence being able to download an advert-
isement from the correct URL. This simplification is made to keep
our specification language grammar as uncluttered as possible—it
would be easy to add such an extension in practice. Disabling cov-
ert channels of communication such as shared memory or SRFI 39
parameter objects? is dealt with in the implementations, and are
discussed in the following chapters.

This decomposition of the application into components allows
us to show that the image cannot be communicated to the Internet,
whether intentionally by the application developer, or by using a
malicious advertisement provider. From the specification it follows
that it should be impossible for the picture to leak to the Web, since
the bitmap processing component is separate from the advertise-
ment component.

3.2 Core DiaSpec declaration language

This section introduces Core DiaSpec, the domain-specific lan-
guage® we define for specifying applications. The grammar of the
declaration language is presented in Figure 4, and is adapted from
Cassou, Bruneau et al. 2012, keeping only essential constructs. An
application specification consists of a list of Declarations.

1 Specification -> Declaration=

> Declaration -> Resource | Context | Controller

3 Resource -> Source | Action

4

5 Source -> source sourceName as Type

6 Action -> action actionName as Type

8 Type -> Bool | Int | String | Picture | ...

10 Context -> context contextName as Type

1 { Contextlnteraction }

12 ContextInteraction -> when (required GetData?

13 | provided (sourceName | contextName)
14 GetData? PublishSpec)
15 GetData -> get (sourceName | contextName)

16 PublishSpec -> (always | maybe) publish

18 Controller -> controller controllerName

19 { Controllerlinteraction }
20 ControllerInteraction -> when provided contextName
21 do actionName
Resources. Both hardware and virtual resources (such as camera,

GPS, contact list, etc.) are defined and implemented by the platform,

2 Marc Feeley (2003). ‘SRFI 39: Para-
meter objects’. In: Scheme Requests for
Implementation. Ed. by Arthur A. Gleck-
ler. http://srfi.schemers.org/srfi-
39/srfi-39.html. Accessed: Septem-
ber 2015. Published online

3 Martin Fowler (2010). Domain-specific
languages. Pearson Education

Figure 4; The grammar of Core Dia-
Spec, our specification language. It
will serve as an example in the rest

of this work. Keywords are in bold,
terminals in italic, and rules in normal
font.

http://srfi.schemers.org/srfi-39/srfi-39.html
http://srfi.schemers.org/srfi-39/srfi-39.html

software development with tailored frameworks

and are inherent to the application domain. Sources and actions

respectively return or accept values of a fixed type. Context and

controller declarations each contain one interaction contract (the

ContextlInteraction and Controllerinteraction rules),4 which 4 Cassou, Balland et al. 2011
prescribe how they interact. Specifically, they declare the conditions

under which a component must be activated. This might be the

publication of a new value by some other component. They also

declare which, if any, data sources they may consult while they

are activated. We explain the two types of interaction contracts as

follows.

Context interaction contracts. A context can be activated by either
(1) another component requesting its value (a when required inter-
action contract) or (2) a publication of a value by another compon-
ent (awhen provided component interaction contract). When activ-
ated, a context component may be allowed to pull data (denoted by
the optional GetData rule, for example get Camera, meaning that a
context may query the camera resource) from a source or another
context.

Contexts which may be pulled from, must have a corresponding
when required contract. That is, one may not put an arbitrary
context Y in the interaction contract when provided X get Y, unless
the Y context is defined as when required.

Finally, a publication-activated context might optionally be
required to publish when triggered (defined by PublishSpec). Note
that when required contexts have no publication specification, since
they are only activated by pulling, and hence by definition return
their values directly to the component which polled them. If a
context is defined to maybe publish, it has no constraints, but if it
must always publish, an error should be raised if the context does
not publish a new value when it is activated.

Controller interaction contracts. When activated, controller compon-
ents can send orders, using the actuating interfaces of components
they have access to (declared using do actionName), for example
displaying an image to the screen or sending email. As defined

in the grammar, controllers may only subscribe to contexts, not
directly to sources.

Example specification. Figure 5 shows a possible specification of
the example application in Figure 3. The terms between the curly
braces are interaction contracts, which determine the subscription
relations between components. When the user presses a hardware
button, it publishes a new value, which triggers the context that
processes the picture, ProcessPicture. This context queries the
camera, and after applying a filter to the image, ProcessPicture
must publish (in accordance with always publish, line 4). As a
result, ComposeDisplay is activated. Before displaying the picture to
the screen, ComposeDisplay overlays an advertisement. It is down-

23

o

P

24 a language-independent declaration compiler development methodology

context ProcessPicture as Picture {
when provided Button
get Camera
always publish

5}

7 context MakeAd as String {

when required
get IP

¥

2 context ComposeDisplay as Picture {

when provided ProcessPicture
get MakeAd
maybe publish

s}

s controller Display {

when provided ComposeDisplay
do Screen

2}

loaded from the Internet by MakeAd and returned as a string. Since
something might go wrong with the download, ComposeDisplay is
not obliged to publish, hence the maybe publish. The application
architect could have decided to force ComposeDisplay to always
publish, even if the advertisement coul