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0
O U T L I N E

The main topics to be discussed in this thesis are brie�y introduced in Chapter 1. Namely, multiple
time scale dynamical systems near non-hyperbolic points, giving rise to canard-type solutions, and
numerical continuation methods adapted for such systems both from the viewpoint of bifurcation
structures and that of (locally) invariant objects. The results presented in this manuscript correspond
to the published papers [ 3, 23, 24, 25, 27, 28, 29, 30] and to the submitted work [ 31].

Chapter 2 is dedicated to planar slow-fast systems displaying a canard explosion. We �rst investi-
gate the use of standard numerical continuation tools in order to compute canard cycles. This can be
usefully applied to theoretical problems —e.g. �nding “more limit cycles than expected” in Liénard
systems, in relation to Hilbert 16th problem— and applied problems such as the generation of action
potentials in planar neuronal models like, e.g., the FitzHugh-Nagumo (FHN) model or a reduction
of the famous Hodgkin-Huxley (HH) model. We then present results relating the geometry of in-
�ection lines of the �ow in such systems, with the presence of canard cycles and, in the neuronal
context, with the approximation of excitability thresholds.

Chapter 3 is focused on “two slow/one fast” systems displaying Mixed-Mode Oscillations (MMOs).
For systems possessing multiple time scales, MMOs have been shown to result from a local pas-
sage near a folded singularity and a global return mechanism. After recalling the main theoretical
results linking MMOs to slow-fast dynamical objects, we present a numerical approach based on
the continuation of parametrised families of two-point Boundary-Value Problems (BVPs) to com-
pute two-dimensional slow manifolds and their transversal intersection curves, which correspond
to canards in this three-dimensional context. This method is then adapted to compute branches of
canard solutions in parameter space. Finally, we present a �rst attempt to study the geometry of
in�ection lines near a folded singularity of node type.

Chapter 4 is dedicated to bursting oscillations in systems with one slow and two fast variables,
concentrating on the spike-adding mechanism by which the number of spikes per burst can change
upon parameter variation. Due to the time scale separation and to the geometry of the problem, this
spike-adding mechanism often involves canard solutions. After brie�y recalling the main slow-fast
formalism used to understand bursting oscillations since the seminal work of Rinzel in the 1980s,
we review the spike-adding canard explosion mechanism as an extension of the classical canard
explosion in planar Van der Pol type systems. We then brie�y remark that spike-adding via canards
can also occur at the level of homoclinic connections, and subsequently we introduce the concept of
torus canards which are canard solutions within fast oscillations in bursting systems and organise,
in many neuronal systems, the transition from the spiking regime to the bursting regime. We �nally
analyse an example of neuronal burster displaying torus canards solutions, namely, the Hindmarsh-
Rose model.

In Chapter 5, we present a recent work on systems with two slow variables and two fast variables,
combining canard phenomena related both to “two slow/one fast” systems (due to the presence
of a folded singularity) and to “one slow/two fast” systems (due to a spike-adding canard explo-
sion). We treat two cases: �rst, the combination of folded-node dynamics with square-wave bursting,
which produces new types of complex oscillations with multiple time scales that we term Mixed-
Mode Bursting Oscillations (MMBOs); second, the combination of folded-saddle dynamics with a
SNIC (Saddle-Node on an Invariant Circle) oscillator, which produces parabolic bursting oscilla-
tions. In the latter case, we also show that for all parabolic bursters that we could investigate, the
spike-adding mechanism is the one described above, which provides a new level of description of
this important class of bursting systems.
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1
I N T R O D U C T I O N

The geometry of multiple time scale dynamical systems is intricate. Beginning with the work of
the “Strasbourg” school [ 33] and Takens' work [ 145] on “constrained vector �elds” in the 1970's,
geometric methods have been used to study generic multiple time scale systems with two slow
variables and one fast variable. Canard pointsand folded singularitiesare a prominent phenomenon in
the present work. They lie on a fold of the critical manifold, where an attracting and a repelling sheet
meet. Furthermore, they yield equilibria of a Desingularized Reduced system (DRS)that is constructed
in the singular limit of the time scale parameter. More recently, Dumortier and Roussarie [ 41], and
Krupa, Szmolyan and Wechselberger [93, 144] introduced singular blow-up techniques for the ana-
lytical study of the dynamics near these special points. These methods give information about canard
orbits that connect attracting and repelling slow manifolds. Complementary to theoretical advances in
the analysis of slow-fast systems, numerical methods have been developed to compute and visualize
geometric structures that shape the dynamics of these systems. Slow manifolds and canard orbits
can now be computed in concrete systems; see Guckenheimer [62, 65] and Desroches, Krauskopf
and Osinga [24, 25, 26, 27]. The combination of new theory and new numerics has produced new
understanding of complex oscillations with multiple time scales, in particular Mixed-Mode Oscilla-
tions (MMOs) in systems with at least two variables and one fast variable, and bursting oscillationsin
systems with one slow and at least two fast variables. Canard phenomena are crucial to understand
the geometry of these complicated solutions and their organisation in parameter space. Beyond in-
teresting mathematical questions, these complex oscillations appear in many models, in particular
in the context of neuroscience.

1.1 slow -fast dynamical systems and canards

We consider here a slow-fast vector �eld that takes the form
8
<

:
" �x = " dx

d� = f (x, y, � , " ),

�y = dy
d� = g(x, y, � , " ),

(1)

where (x, y) 2 Rm � Rn are state space variables,� 2 Rp are system parameters, and" is a small
parameter 0 < " � 1 representing the ratio of time scales. The functions f : Rm � Rn � Rp � R !
Rm and g : Rm � Rn � Rp � R ! Rn are assumed to be suf�ciently smooth, typically C1 . The
variables x are fast and the variables y are slow. System (1) can be rescaled to

8
<

:
x0 = dx

dt = f (x, y, � , " ),

y0 = dy
dt = " g (x, y, � , " ),

(2)

by switching from the slow time scale � to the fast time scale t = �=" .

Several viewpoints have been adopted to study slow-fast systems, starting with asymptotic analy-
sis [44, 110] using techniques such as matched asymptotic expansions [83, 96]. Geometric Singular
Perturbation Theory (GSPT)takes a geometric point of view and focuses upon invariant manifolds,
normal forms for singularities and analysis of their unfoldings [ 2, 52, 79, 80, 148]. Fenichel's seminal
work [ 52] on invariant manifolds was an initial foundation of GSPT and it is also called Fenichel
theory. A third viewpoint was adopted by a group of French mathematicians in Strasbourg. Using
nonstandard analysis, they made many important discoveries [ 8, 9, 10, 11, 12, 32, 33] about slow-fast
systems. In this manuscript we will adopt the GSPT viewpoint.

2



1.1 slow -fast dynamical systems and canards 3

1.1.1 The critical manifold and the slow �ow

Solutions of a slow-fast system frequently exhibit slow and fast epochs characterized by the speed
at which the solution advances. As " tends 0, the trajectories of (1) converge during fast epochs to
solutions of the fast subsystemor layer equations

�
x0 = f (x, y, � , 0),

y0 = 0,
(3)

which is a family of dynamical systems for the fast variables x of the initial problem, parametrised
by the slow variables whose dynamics have been “frozen” in this singular limit. During slow epochs,
on the other hand, trajectories of (2) converge to solutions of

�
0 = f (x, y, � , 0),

�y = g(x, y, � , 0),
(4)

which is a Differential-Algebraic Equation (DAE)called the slow �ow or reduced system. One goal of
GSPT is to use the fast and slow subsystems, (3) and (4), to understand the dynamics of the full
system (1) or (2) for 0 < " � 1. The algebraic equation in (4) de�nes the critical manifold

S := f(x, y) 2 Rm � Rn j f (x, y, � , 0) = 0g.

We remark that S may have singularities [ 90], but we assume here that this does not happen so that
S is a smooth manifold. The points of S are equilibrium points for the layer equations ( 3).

Fenichel theory [52] guarantees the persistence ofS (or a compact subsetM � S) as a slow manifold
of (1) or (2) for " > 0 small enough if S (or M ) is normally hyperbolic. The notion of normal hyperbolic-
ity is de�ned for invariant manifolds more generally, effectively stating that the attraction to and/or
repulsion from the manifold is stronger than the dynamics on the manifold itself; see [ 49, 50, 51, 72]
for the exact de�nition. Normal hyperbolicity is often dif�cult to verify when there is only a single
time scale. However, in our slow-fast setting, S consists entirely of equilibria and the requirement
of normal hyperbolicity of M � S is satis�ed as soon as all p 2 M are hyperbolic equilibria of the
layer equations, that is, the Jacobian (Dx f )(p, � , 0) has no eigenvalues with zero real part. We call
a normally hyperbolic subset M � S attracting if all eigenvalues of (Dx f )(p, � , 0) have negative real
parts for p 2 M ; similarly M is called repelling if all eigenvalues have positive real parts. If M is
normally hyperbolic and neither attracting nor repelling we say it is of saddle type.

Hyperbolicity of the layer equations fails at points on S where its projection onto the space of
slow variables is singular. Generically, such points are folds in the sense of singularity theory [ 2].
At a fold point p� , we have f (p� , � , 0) = 0 and (Dx f )(p� , � , 0) has rank m - 1 with left and right
null vectors w and v, such that w � [(D2

xx f )(p� , � , 0) (v, v)] 6= 0 and w � [(Dy f )(p� , � , 0)] 6= 0. These
inequalities state that the tangencies of the critical manifold to the af�ne spaces of fast variables
are similar to a quadratic function. Singularity theory makes the stronger statement that there are
local coordinates in which the function f becomes y1 = x2

1 [2]. The set of fold points forms a
submanifold of codimension one in the n-dimensional critical manifold S. In particular, when m = 1
and n = 2, the fold points form smooth curves that separate attracting and repelling sheets of the
two-dimensional critical manifold S. Here we do not consider more degenerate singular points of
the projection of S onto the space of slow variables.

Away from fold points the implicit function theorem implies that S is locally the graph of a function
h(y) = x. Then the reduced system (4) can be expressed as

�y = g(h(y), y, � , 0). (5)

We can also keep the DAE structure and write ( 4) as the restriction to S of the vector �eld
�

�x = � (Dx f )- 1 (Dy f ) g,

�y = g,
(6)



1.1 slow -fast dynamical systems and canards 4

on Rm � Rn by observing that f = 0 and �y = g imply �x = � (Dx f )- 1 (Dy f ) g. The vector �eld
(6) blows up when f is singular. It can be desingularizedby scaling time by � det (Dx f ), where we
choose the sign so that the orientation of trajectories remains unchanged on the attracting sheets
of S. This desingularized reduced system (DRS) plays a prominent role in much of the analysis we
present here. If S is normally hyperbolic, not only S, but also the slow �ow on S persists for " > 0 ;
this is made precise in the following fundamental theorem.

Theorem 1.1.1 (Fenichel's Theorem [ 52]) SupposeM = M 0 is a compact normally hyperbolic submani-
fold (possibly with boundary) of the critical manifoldS of (2) and that f , g 2 Cr , r < 1 . Then for" > 0
suf�ciently small the following holds:

(F1) There exists a locally invariant manifoldM " diffeomorphic toM 0 . Local invariance means thatM " can
have boundaries through which trajectories enter or leave.

(F2) M " has a Hausdorff distance ofO(" ) from M 0 .

(F3) The �ow onM " converges to the slow �ow as" tends to0.

(F4) M " is Cr -smooth.

(F5) M " is normally hyperbolic and has the same stability properties with respect to the fast variables asM 0

(attracting, repelling or saddle type).

(F6) M " is usually not unique. In regions that remain at a �xed distance from the boundary ofM " , all
manifolds satisfying (F1)–(F5) lie at a Hausdorff distanceO(e- K=" ) from each other for someK > 0
with K = O(1).

The normally hyperbolic manifoldM 0 has associated local stable and unstable manifolds

Ws
loc(M 0) =

[

p 2 M 0

Ws
loc(p), and Wu

loc(M 0) =
[

p 2 M 0

Wu
loc(p),

whereWs
loc(p) andWu

loc(p) are the local stable and unstable manifolds ofp as a hyperbolic equilibrium of the
layer equations, respectively. These manifolds also persist for" > 0 suf�ciently small: there exist local stable
and unstable manifoldsWs

loc(M " ) and Wu
loc(M " ), respectively, for which conclusions (F1)–(F6) hold if we

replaceM " andM 0 by Ws
loc(M " ) andWs

loc(M 0) (or similarly byWu
loc(M " ) andWu

loc(M 0)).

We call M " a Fenichel manifold. Fenichel manifolds are a subclass ofslow manifolds, invariant mani-
folds on which the vector �eld has speed that tends to 0 on the fast time scale as" ! 0. We use
the convention that objects in the singular limit have subscript 0, whereas the associated perturbed
objects have subscripts " . Geometrically, the stable manifold Ws

loc(M " ) of a Fenichel manifold M "

consists of points whose trajectories approach M " in forward time; similarly, Wu
loc(M " ) consists of

points whose trajectories approach M " in backward time.

1.1.1.1 The critical manifold and the slow �ow in the Van der Pol equation

We now illustrate these general concepts of GSPT with an example. One of the simplest systems
in which the concepts are manifest, and historically perhaps also the �rst, is the Van der Pol equa-
tion [ 152, 153, 154] with constant forcing � 2 R given by

�
" �x = y - 1

3 x3 + x,

�y = � - x.
(7)

This slow-fast system has only one fast and one slow variable, but it already exhibits complicated
dynamics that were truly surprising when they were �rst discovered [ 33]. By setting " = 0 in (7), we
obtain the reduced system with an algebraic equation that de�nes the critical manifold of ( 7) as the
cubic curve

S = f(x, y) 2 R2 j y = 1
3 x3 - x =: c(x)g. (8)
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Figure 1: Phase portraits of the Van der Pol equation (7) for � = 0 (a) and for � = 1 (b). Shown are the
critical manifold S (grey solid curve) and the y-nullcline (dashed line); double arrows indicate the
direction of the fast �ow and single arrows that of the slow �ow. Panel (a) shows a candidate for a
relaxation oscillation (black) surrounding an unstable equilibrium. Panel (b) is the moment of the
singular Hopf bifurcation with a folded singularity at the local minimum p+ .

It is normally hyperbolic away from the local maximum and minimum p� = ( � 1, � 2
3 ) of the cu-

bic, where S has a fold with respect to the fast variable x. At p� normal hyperbolicity fails, since
@

@xf (x, y, � , 0) = 1 - x2 is zero at p� . Hence, p� are the fold points and they naturally decompose
the critical manifold into three branches,

S = Sa ,- [ fp- g[ Sr [ fp+ g[ Sa ,+ ,

where Sa ,- := S \ fx < - 1g, Sa ,+ := S \ fx > 1 g and Sr = S\ f- 1 < x < 1 g. From the sign of
@

@xf (x, y, � , 0) we conclude that the two branches Sa ,- and Sa ,+ are attracting, and the branch Sr

is repelling. The critical manifold S is shown as the grey cubic curve in Fig. 1; note that S and its
attracting/repelling nature does not depend on � , so it is the same both in panel (a), where � = 0,
and panel (b), where � = 1. The dynamics of any point not on S is entirely controlled by the direction
of the fast variable x, which is indicated in Fig. 1 by the horizontal double arrows; observe that the
middle branch of S is repelling and the two unbounded branches are attracting.

To obtain the slow �ow ( 5) on S in the Van der Pol equation ( 7) it is not actually necessary to solve
the cubic equation y = c(x) for x on Sa ,- , Sr and Sa ,+ . It is more convenient to write the slow
(reduced) �ow in terms of the fast variable x. To this end, we differentiate f (x, y, � , 0) = y - c(x) = 0
with respect to � and obtain

�y = �x x2 - �x = �x (x2 - 1).

Combining this result with the equation for � y we get:

(x2 - 1) �x = � - x or �x =
� - x
x2 - 1

. (9)

The direction of the slow �ow on S is indicated in Fig. 1 by the arrows on the grey curve. The slow
�ow does depend on � , because the direction of the �ow is partly determined by the location of the
equilibrium at x = � on S. The slow �ow is well de�ned on Sa ,- , Sr and Sa ,+ , but not at x = � 1
(as long as � 6= � 1). We can desingularize the slow �ow near x = � 1 by rescaling time with the
factor (x2 - 1). This gives the equation �x = � - x of the desingularized reduced �ow. Note that this
time rescaling reverses the direction of time on the repelling branch Sr , so care must be taken when
relating the phase portrait of the desingularized system to the phase portrait of the slow �ow.

Let us now focus speci�cally on the case for � = 0, shown in Fig. 1(a), because it is representative
for the range j� j < 1 . The y-nullcline of ( 7), de�ned by �y = 0, is shown as the dashed black vertical
line (the x-nullcline is S) and the origin is the only equilibrium, which is a source for this value
of � . The closed curve is a singular orbit composed of two fast trajectories starting at the two fold
points p� concatenated with segments of S. Such continuous concatenations of trajectories of the
layer equations and the slow �ow are called candidates[9, 10]. The singular orbit follows the slow
�ow on S to a fold point, then it jumps, that is, it makes a transition to a fast trajectory segment that
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Figure 2: Canard explosion at the lower fold in the van der Pol system: the slow and the fast dynamics must
be as shown and the slow nullcline (shown in black), must cross the fold transversely. Four cycles
are presented (in blue): headless canard in panel (a), maximal canard in panel (b), canard with head
in panel (c) and relaxation oscillation in panel (d). In each panel, the left plot corresponds to a
phase plane representation of the cycle together with the fast cubic nullcline S0 and the slow linear
nullcline (both in black); the right panel shows the time series of the the x variable during the cycle.

�ows to another branch of S. The same mechanism returns the singular orbit to the initial branch of
S. It can be shown [91, 110] that the singular orbit perturbs for " > 0 to a periodic orbit of the Van
der Pol equation that lies O(" ) close to this candidate. Van der Pol introduced the term relaxation
oscillationto describe periodic orbits that alternate between epochs of slow and fast motion.

1.1.2 The canard phenomenon

1.1.2.1 The classical canard explosion

When � = 1 in system (7), the DRS is such that the slow �ow goes continuously through the right
fold point of S0 from the attracting side to the repelling one: this is a singular canard; see Fig.1
(b). For this particular parameter value, the fold point is then called a canard point. When the small
parameter " is perturbed away from 0, this behaviour persists and one obtains limit cycles that
follow the repelling branch of S0 before jumping towards one of its attracting branches: these are
canard cycles. For a general planar slow-fast systems

x0 = f (x, y) (10)

y 0 = "g (x, y, � ), (11)

where 0 < " � 1 is again the small parameter measuring the separation of time scales, and � 2 R
is a parameter, the classical canard phenomenon can be described as follows. For" = 0, these
systems have a critical manifold S0 = ff (x, y) = 0g. This manifold is assumed to be S-shaped curve
with two non-degenerate quadratic fold points (xm , ym ) and (xM , yM ), where f (xi , y i ) = 0 and
@f=@x(xi , y i ) = 0 for i = m,M . In addition, we assume that for a locally unique value, � 0 , of the
parameter � , g(xm , ym , � 0) = 0 and @g

@� (xm , ym , � 0) 6= 0. Hence, the slow nullcline transversely
intersects S0 at one of the fold points, here the local minimum (xm , ym ), and the slow nullcline
passes through this fold point with non-zero speed as � changes through � 0 . Under these conditions,
system (10)–(11) exhibits a standard canard explosion[12, 15, 41, 44, 91]. We illustrate these canard
cycles in Fig. 2 with the Van der Pol example (i.e. with f (x, y) = y - ( x3=3- x) and g(x, y, � ) = � - x).
There is a Hopf bifurcation —typically referred to as a singular Hopf bifurcation[61, 62]— when the
slow nullcline crosses any of the fold points of S0 , that is, at � = � H = � 1. In Fig. 2(a), a limit cycle
canard known as a headless canard (or duck), is shown. It has long segments near the attracting
slow manifold (near the right branch of S0) and the repelling slow manifold (near the middle
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branch of S0) in alternation and a fast jump from the latter back to the former to complete the cycle.
Fig. 2(b) illustrates the maximal headless canard, which occurs for the unique parameter value,
� c = � 0 - ( 1=8)" - ( 3=32)" 2 + O(" 3), at which the attracting and repelling slow manifolds coincide.
Then, for � on the other side of � c the limit cycle canard jumps from the repelling (middle) branch to
the left attracting slow manifold, forming a canard (duck) with a head, as shown in Fig. 2(c). Finally,
for values of � at the extreme of the canard explosion interval, the periodic solution is a full-blown
relaxation oscillation, see Fig. 2(d).
The branch of limit cycles corresponding to the canard regime in the associated bifurcation diagram
is almost vertical, this is because the entire explosive transition occurs within an exponentially-small
range of the parameter, the canard cycles in Van der Pol type systems are said to be “short-lived”; see
already Fig. 10 (b). Loosely speaking, the reason for this very brutal transition in terms of parameter
variation is due to the fact that the �ow near the repelling branch Sr of S0 is exponentially expanding
away from Sr , therefore for canards to exist they have to be exponentially close to a repelling slow
manifold, coming from an attracting one. This means that the associated parameter value has to be
exponentially close to the unique value for which two such manifolds coincide, which results in a
“connection” corresponding to the maximal canard. We will therefore take the following de�nition:
A maximal canardis a connection between an attracting slow manifold and a repelling slow manifold.
The term “canard explosion” was introduced by M. Brøns in [ 15].

We observe that even a standard canard explosion in slow-fast systems with one slow variable
and one fast variable need not always be monotonic in the regular parameter ( � in the context
of this section), see e.g. [91]. In other words, for some systems, the sequence of parameter values
of � corresponding to the canards in the canard explosion is a non-monotone sequence, within
the exponentially-small interval. A very simple example of this is, for some parameter values, the
FitzHugh-Nagumo system, which we will study in Chapter 2. This feature may result in the presence
of turning points as well the coexistence of canard cycles for the same value of � , but it does not
alter the fundamental features of canard explosion, like the closeness to singular cycles and the
exponentially-narrow width of the parameter interval. Due to this complication one usually does
not think of a branch of canard cycles as parametrized by � but rather as a curve parametrized
by � and another quantity characterizing the solution, which could be amplitude, often used in
the context of Hopf bifurcations, L2 norm, the height of the corresponding singular canard [ 91],
etc. The choice often made in the case of canards, partly imposed by the continuation program
AUTO [ 38], is to use L2 norm; see Section 1.2. Keeping in mind this non-monotonicity, we will
describe the evolution of canard solutions referring as a function of their position on the branch
rather the corresponding value of the parameter, which does not need to be unique.

1.1.2.2 Folded singularities in systems with one fast and two slow variables

A canard explosion for a planar system happens in an exponentially-small parameter interval. How-
ever, as soon as there is more than one slow variable, canard orbits can exist for O(1) ranges of a
parameter. To illustrate this, we consider ( 1) for the special casem = 1 and n = 2, and write it as

8
>><

>>:

" �x = f (x, y, z, � , " ),

�y = g1(x, y, z, � , " ),

�z = g2(x, y, z, � , " ).

(12)

We assume that the critical manifold S = ff = 0gof (12) has an attracting sheet Sa and a repelling
sheetSr that meet at a fold curve F as is shown in Fig. 3. We also assume that the fold points p� 2 F
on S are generic in the sense of singularity theory, that is,

f (p� , � , 0) = 0,
@f
@x

(p� , � , 0) = 0,

@2 f
@x2

(p� , � , 0) 6= 0, D ( y ,z) f (p� , � , 0) has full rank one.
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Figure 3: The critical manifold S with attracting sheet Sa (red) and repelling sheet Sr (blue) that meet at a
fold curve F (grey). The fast �ow transverse to S is indicated by double (large) arrows and the slow
�ow on S near a folded node by single (small) arrows. The darker shaded region of Sa is the funnel,
consisting of all points that pass through the folded node.

The slow �ow is not de�ned on the fold curve before desingularization. At most fold points,
trajectories approach or depart from both the attracting and repelling sheets of S. In generic systems,
there may be isolated points, called folded singularities, where the trajectories of the slow �ow switch
from incoming to outgoing. From that perspective, canard points are folded singularities in the
context of planar slow-fast systems. Folded singularities are equilibrium points of the DRS, which
can be expressed as

8
>>><

>>>:

�x =
�

@
@yf

�
g1 +

�
@

@zf
�

g2 ,

�y = -
�

@
@xf

�
g1 ,

�z = -
�

@
@xf

�
g2 ,

(13)

restricted to S. A fold point p� 2 F is a folded singularity if � x = 0 in (13), or

g1(p� , � , 0)
@f
@y

(p� , � , 0) + g2(p� , � , 0)
@f
@z

(p� , � , 0) = 0

in terms of ( 12). Figure 3 shows an example of the slow �ow on S and the thick dot on F is the
folded singularity at which F changes from attracting to repelling (with respect to the slow �ow).

There are different possibilities for the stability of p� in (13). Let � 1 and � 2 denote the eigenvalues
of the Jacobian matrix of (13) restricted to S and evaluated at a folded singularity p� . We call p� a

8
>><

>>:

folded saddle, if � 1 � 2 < 0, � 1,2 2 R,

folded node, if � 1 � 2 > 0, � 1,2 2 R,

folded focus, if � 1 � 2 > 0, Im(� 1,2) 6= 0.

Note that the phase portrait for the slow �ow in Fig. 3 is obtained by reversing the direction of the
�ow on Sr where @

@xf > 0 , that is, by reversing the arrows in the phase portrait of the desingularized
slow �ow where x > 0 . It is an important observation that the trajectories of the slow �ow that lie
along the eigendirections of the folded node (or of the folded saddle) connect the two sheets of the
critical manifold through the folded singularity in �nite (slow) time; such a trajectory is called a
singular canard. Note that there are no singular canards for the case of a folded focus. For the case
of a folded node one generically has an inequality of the form j� 1 j > j� 2 j, and we write j� s j > j� w j,
replacing the numeric labels with s and w to emphasize the strong and weak eigendirections. Notice
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further for the case of the folded node in Fig. 3 that the strong singular canard ̃ s and the fold curve
F bound a full (shaded) sector of trajectories that cross from Sa to Sr by passing through the folded
node. This sector and the corresponding region for the full system ( 12) are called the funnel of the
folded node.

Singular canards act as candidates of maximal canards of the full system for " > 0 . This is described
in the next theorem [ 8, 11, 18, 144, 156].

Theorem 1.1.2 (Canards in R3) For the slow-fast system(12) with " > 0 suf�ciently small the following
holds:

(C1) There are no maximal canards generated by a folded focus.

(C2) For a folded saddle the two singular canards̃ 1,2 perturb to maximal canards 1,2 .

(C3.1) For a folded node let� := � w =� s < 1. The singular canard̃ s (“the strong canard”) always perturbs
to a maximal canard s . If � - 1 62N then the singular canard̃ w (“the weak canard”) also perturbs to
a maximal canard w . We call s and w primary canards.

(C3.2) For a folded node supposek > 0 is an integer such that2k + 1 < � - 1 < 2k + 3 and � - 1 6= 2(k + 1).
Then, in addition to s,w , there arek other maximal canards, which we call secondary canards.

(C3.3) The primary weak canard of a folded node undergoes a transcritical bifurcation for odd� - 1 2 N and a
pitchfork bifurcation for even� - 1 2 N .

The proof of this theorem is based upon analysis of a canonical (normal) form of a slow-fast system
near a folded singularity. Recall that a maximal canard corresponds to a (transverse) intersection of
the slow manifolds Sa

" and Sr
" near a folded singularity. After a rescaling of coordinates (a `blow-up'),

the canonical system becomes a regular perturbation problem and the variational equation along
the `blown-up' singular canards ( " = 0 problem) becomes a classicalWeber equationthat also arises
in mathematical physics. [ 117]. Properties of the Weber equation imply a transverse intersection of
Sa

" and Sr
" for � - 1 =2 N and hence existence of maximal canards (parts (C2)–(C3.1)) for suf�ciently

small perturbations 0 < " � 1. The proof of parts (C3.2)–(C3.3) is more involved and is based upon
an extension of Melnikov theory[155] to show the bifurcation of secondary canards from the primary
weak canard for � - 1 2 N .

1.2 numerical continuation methods

After introducing the main mathematical objects that we are going to study in the remaining part
of this manuscript, we now present the main numerical tool that we will use to study them, namely,
numerical continuationmethods. The term numerical continuation refers to a family of algorithms —
denoted under the very general term of path-following methods, see [1] — used to compute branches
of solutions of nonlinear equations of the form

F(x) = 0, F : Rn + 1 ! Rn . (14)

Equation (14) is underdetermined as there is one more unknown than equations. Therefore, away
from singularities one expects the solution set of ( 14) to be a one-dimensional manifold, which we
will refer to as a solution branch, embedded in (n + 1)-dimensional space. A number of problems can
be put in the form of ( 14); one important example comes from the discretisation of parametrized
families of differential equations of the form

�x = F(x, � ), (15)

where x 2 Rn correspond to the state variables and � 2 R is a given control parameter of the system.
In this framework, various solutions to ( 15) can be computed by solving a nonlinear equation of
the form eF(x, � ) = 0, where eF can be equal to F or also involve additional terms. In particular,
when looking for � -dependent families of stationary solutions of ( 15), one needs to solve exactly
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F(x, � ) = 0. Parametrized families of periodic solutions of ( 15) and, more generally, parametrized
families of orbit segments solution of ( 15), can also be computed, together with suitable boundary
and integral conditions, within the general framework of ( 14).

The main theoretical tool on which numerical continuation relies is the Implicit Function Theorem
(IFT), applied to a suitable parametrization of the solution curve that allows to compute it past
fold points, namely, the parametrization by the arclength of the solution curve. This idea is one
of the cornerstones of numerical continuation. Indeed, by parametrizing the solution curve by the
projection of the arclength onto the tangent curve to the solution branch at a given point, one can
compute this curve past fold points and, hence, in the dynamical context, trace unstable as well as
stable branches of solutions (stationary or periodic). The way the solution is actually computed is
through a predictor-correctorprocedure. The predictor is taken along the tangent to the curve already
computed at the last computed point (x0 , � 0), at a �xed distance from it. Then, the corrector is
obtained by applying a Newton type iteration, perpendicularly to the tangent to the curve at the
last computed point, to �nd the next point on the curve. This amounts to append to equation ( 14)
the pseudo-arclength equation

(� - � 0) �� 0 + ( x - x0) �x0 - �s = 0, (16)

where s is the arclength of the curve, measured along the tangent space, and �s is the continuation
step size. Equation (14) together with equation ( 16) form a square system of algebraic equations and
one can compute a unique solution of this system. In the case of periodic solutions, one needs to add
to this procedure the discretisation of the periodic orbit. This is usually done by means of orthogonal
collocation, where the orbit is approximated by piecewise-polynomials de�ned inside mesh intervals.
They interpolate the original vector �eld at certain well-chosen points (collocation points) in each
of these mesh intervals, and solve exactly the system at the boundary points of the mesh intervals.
Note that the time is rescaled so that the actual period T of the solution becomes a parameter that
can be solved for. Finally, the system is closed by adding to the algebraic equation ( 14) and the
pseudo-arclength equation (16) an integral condition that selects uniquely the periodic solution to
be computed by �xing its phase. For more informations about the implementation details of pseudo-
arclength continuation schemes for stationary, periodic and general boundary-value problems, we
refer the reader to classical articles and textbooks such as [1, 34, 36, 37, 127, 139], together with
references therein.

Throughout the present manuscript, we will make use of numerical continuation to understand the
bifurcation structure of slow-fast systems, in particular, the bifurcation structure of fast subsystems
when one (or two) slow variables are considered as parameters; see Chapter4 and 5. However, we
also wish to get numerical access to canard solutions, which are de�ned as transversal intersections
between attracting and repelling two-dimensional slow manifolds, in the context of minimal systems
possessing a folded singularity. The main underlying idea of our approach is that one can compute
(a �nite part of) a two-dimensional invariant manifold of a system of ordinary differential equations
as a collection of orbit segments by numerical continuation of a one-parameter family of two-point
Boundary-Value Problems (BVPs). This approach can be applied in a wide variety of contexts [ 88].
In Chapter 3, we will explain how to use this strategy to compute attracting and repelling slow
manifolds associated with a slow-fast system of the form ( 12) with a folded node, obtain good
numerical approximation of their associated canard solutions, and then compute branches of such
canards in parameter space. This is the main numerical contribution presented in this manuscript.



2
“ O N E S L O W / O N E FA S T ” S Y S T E M S : C A N A R D E X P L O S I O N S

Elements of the material presented in this chapter have been published in [ 23, 30, 100]. Two contri-
butions are exposed, both related to canard-explosive planar systems. In the �rst section, we apply
standard numerical continuation method to suitably-chosen slow-fast Liénard systems possessing
“more limit cycles than expected” due to the time scale separation. We give numerical evidence
that continuation is an ef�cient tool to �nd these additional cycles and estimate the range in " for
which they exist as well as mechanisms for their disappearance in parameter space. In the second
section, we present different results, related to the in�ection lines of the �ow in such planar slow-
fast systems, in the canard regime. We �rst analyse the geometry of these in�ection lines by means
of singularity theory. We then use their " -dependence to propose an upper bound in " for canard
cycles to exist and, �nally, we investigate how in�ection lines approximate the excitability threshold
in both integrator and resonator neuron models.

2.1 numerical continuation techniques for planar slow -fast systems

Continuation techniques have been known to successfully describe bifurcation diagrams appearing
in slow-fast systems with more than one slow variable (see. [ 27] and Chapter 3). In this section we
investigate the usefulness of numerical continuation techniques dealing with some solved and some
open problems in the study of planar slow-fast systems. More precisely, we verify known theoretical
results, thereby showing the reliability of this numerical tool, on the appearance of multiple limit
cycles of relaxation-oscillation type. More precisely, we analyse numerically the number of limit
cycles in some families of planar slow-fast systems, mostly of Liénard type, using numerical contin-
uation. We start by recalling the main facts concerning the advantage one gains in using numerical
continuation schemes for slow-fast dynamical systems.

2.1.1 Numerical continuation as a well-suited tool for slow-fast systems

Numerical continuation is very much adapted to multiple time scale problems. The main advan-
tages of using numerical continuation in order to address the question of trajectories (in particular,
cycles) corresponding to solutions of slow-fast planar systems are of two kinds.
First, orbits are approximated using orthogonal collocation, which is well-suited for problems with
multiple time scales in terms of error handling. Indeed, the error is spread along all the orbit in-
stead of being concentrated at one end point as is the case with shooting techniques. To this extent,
collocation can be seen as an “extreme" form of multiple shooting since, to be able to compute
reliably trajectories containing canard segments, one usually needs hundreds of mesh intervals. Fur-
thermore, the time scale separation parameter " has the effect that trajectories near repelling slow
manifolds diverge exponentially from one another. As a consequence, when advancing in time with
a numerical integration algorithm, one needs a very high precision in the initial conditions to be able
to track a canard segment over a long portion of repelling slow manifold. This numerical dif�culty is
made worse by the fact that canard cycles are “short-lived" in the sense that they exist in parameter
ranges that are exponentially small in " . This clearly adds a very strong sensitivity in the parameter
precision to the already strong sensitivity to initial conditions that one faces when trying to compute
such orbit segments by integration. On the other hand, this extreme sensitivity and strong repulsion
in the normal direction to the orbit is much better handled by the boundary-value solvers used in
continuation packages such as Auto [38], which is the software that we will use for all the examples

11
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treated in this work. This advantage of continuation over integration for canard computations has
been previously investigated in [ 68]; it has also been studied and proven useful for the computation
of canard orbits in three-dimensional systems with two slow variables [ 27, 28]. Of course, we do
not wish to pretend here that numerical continuation is the ultimate tool to address the question of
computing trajectories in slow-fast systems. Standard packages like auto07p also have their limita-
tions when tackling singularly perturbed vector �eld, for instance, that of an accurate computation
of Floquet multipliers is well-known [ 66, 68]. More sophisticated techniques such as automatic differ-
entiation can be used to improve the treatment of these computational issues; see [60, 67] for more
details. More generally, the presence of multiple time scales can introduce a plethora of convergence
problems where " gets “too small”; while quantifying the critical size of the small parameter as a
function of various discretisation parameters (such as the number of mesh intervals) is still an open
question, it is inevitable that all numerical methods will fail, sooner or later, as " approaches the sin-
gular limit. For an example of error analysis and comparison between different numerical strategies
to compute limit cycles in multiple time scale systems (number of iterations in the convergence of
Newton's method, condition number of the Jacobian, domains of convergence), we refer the reader
to the book chapter [67] by Guckenheimer and Lamar. The methods compared are the collocation
algorithm implemented in A uto and multiple-shooting algorithms implemented by the authors. A
similar comparison in the context of the questions which we chose to investigate is beyond the scope
of this work; it is an important direction for future work. Instead, our point here is that we used
a standard continuation package, without modifying a single line of code, and obtained valuable
pieces of information about the number of limit cycles in planar slow-fast systems and their organi-
sation in parameter space, not easily accessible via standard integration methods. Moreover, we do
not address in general the question of the stability of these cycles and we do not investigate the
occurrence of bifurcations of canard cycles other than fold bifurcations.
The second gain in using numerical continuation relies in the fact we are interested in investigating
the presence of multiple limit cycles in certain families of planar systems, and we wish to under-
stand how additional cycles appear as the timescale parameter " decreases. It turns out that these
additional cycles are associated with fold bifurcations of limit cycles in the one-parameter bifurca-
tion diagram of the system under consideration. In this context, using a predictor-corrector scheme
is very appropriate as it allows to trace a family of limit cycles born at a Hopf bifurcation as a given
parameter is varied; typically, in this work we vary the parameter determining the position of the
slow nullcline. We can then detect fold bifurcation points along the branch and trace out their loci
as a secondary parameter is varied, in particular, the time scale parameter " . This yields important
information about the occurrence of additional cycles. In particular, we �nd that as " is decreased,
one fold bifurcation of cycles shifts towards the region where the Hopf bifurcation exists, allowing
for multiple intersections of the branch of limit cycles with a vertical line, that is, multiple cycles to
coexist in the system; see already Fig.8. By continuing in two parameters relevant to fold bifurca-
tions of cycles, we can detect the critical values of " where this phenomenon starts and then ceases.
In this way, we can estimate in a two-parameter plane (one parameter being " ) the region where the
system displays a given number of coexisting cycles; see already Fig.6 (b) and Fig. 9.

2.1.2 Limit cycles in some slow-fast Liénard systems

Here, we will exclusively focus on planar, singularly perturbed, vector �elds. More precisely, we
will consider slow-fast Liénard systems, which are of the form

�
�x = y - f (x, � )

�y = "g (x, � )
(17)

where f and g are smooth � -families of functions U � R ! R, and where " > 0 is the singular
parameter. Liénard equations are interesting for themselves, �rst because planar systems can some-
times be reduced to Liénard equations (e.g. Van der Pol and FitzHugh-Nagumo type systems, and
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see also [99]), and also because their study contributes to Smale's 13th problem [ 134] regarding
“classical" Liénard systems (that is, where g(x, � ) = - x).

Planar slow-fast systems can be used in applications to model situations where the dynamics be-
haves along two vastly different time scales. From the viewpoint of applications, one is primarily
interested in stable periodic orbits and, to a large extent, one will avoid canard orbits. Under these
conditions, planar slow-fast systems are easy to treat, both analytically and numerically. Analyti-
cally, a fairly complete treatment is given in [ 104], and numerically it is clear that if one wants to
trace stable objects, a standard forward integration technique such as the Runge-Kutta scheme will
suf�ce to capture the different behaviours of the system, that is, either globally stable stationary so-
lutions or stable large-amplitude periodic solutions usually referred to as relaxation oscillations[153].
However, the analysis becomes a true challenge when the interest is extended towards treating ca-
nard orbits: not only do canard orbits contain parts that are extremely unstable with respect to
variations of the initial conditions, but they themselves can change their shape drastically under
the in�uence of small changes in the control parameter � ; this dramatic change upon exponen-
tially small parameter variation was termed “canard explosion" [ 15], an expression that has become
customary in the slow-fast community. Besides their clear theoretical importance, the success of
canard problems over the last three decades can be explained by the vast repertoire of applications
where such dynamics has been encountered and proven to be of crucial relevance in the system,
ranging from biological [ 113], physical [ 105], to chemical [16, 133] models. For reasons that we will
now develop, standard forward integration techniques can experience important pitfalls and, hence,
can be ef�ciently complemented by path-following methods when one wants to compute reliably
parametrized families of canard orbits in the cases that we are interested in.

2.1.2.1 Main goal

Restricting our attention to planar slow-fast systems of the kind ( 17), we focus on a speci�c prob-
lem, investigated in Section 2.1.2.2, which deals with the appearance of multiple canard cycles. We
consider classical Liénard equations of the form

�
�x = y - f (x)

�y = " (b - x),
(18)

where b � 0 and where the graph y = f is of “parabolic" type, with a minimum at the origin. It is
known that for each choice of Y their exists a curve b = BY (" ) along which a canard orbit passes
through (0,Y). The family ( 18) then has at most one limit cycle (globally) when the function BY (" )
behaves monotonically with respect to Y. When it is not monotone, the graph Y 7! BY (" ), for �xed
" , has a typical shape; in Section2.1.2.2 we show how to numerically trace such graphs for speci�c
examples where one can analytically prove the existence of 1, 2, 3 or more canard cycles. The results
in that section clearly show how multiple limit cycles, proven to be present near the singular limit,
disappear when " increases. The interest in the presence of multiple limit cycles for planar systems
originates in the Hilbert 16th problem, which was restated speci�cally for classical Liénard systems
(18) by Smale in 2000 as Smale's13th problem. This problem asks for a uniform upper bound of
the number of limit cycles stated in terms of the degree of f (x), and it was expected that the bound
would be [n - 1

2 ], where n = deg f , as conjectured in 1977in [ 98]. It was only from 2007onwards that
counterexamples were produced, see [102] and [43]. Both examples deal with slow-fast systems, and
the presence of multiple limit cycles is shown in the singular limit. In [ 102], 4 limit cycles were found
in a system of degree 6, instead of the conjectured maximum 2. In that paper, an attempt is made
to trace the limit cycles using forward integration techniques, with a brute force method using high
precision computations. After long computations, 3 of the 4 limit cycles were numerically computed,
the fourth one being unreachable. Here, we trace the limit cycles using standard continuation tools,
which can then easily be reproduced and are more convincing than using an ad hoc algorithm.
Our aim is not to prove that numerical continuation is the best tool to deal with this problem,
for example when compared to stiff integrators and algorithms using automatic differentiation.
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Figure 4: Backward and forward integrating two orbits through (0,Y1 ) and (0,Y2 ), for " > 0 small. The points
(x�

i ,Yi ) are ! and � limits of the orbit through (0,Yi ) for " = 0.

However, we wish to prove, on one hand, that it is a reliable tool — a rather straightforward use of
it yielding the results — and, on the other hand, that it is to be expected that these multiple cycles
do not survive for reasonably large values of " . This will be done in Section 2.1.2.5.

2.1.2.2 More limit cycles than expected

The qualitative study of planar vector �elds is relatively easy, besides the prediction of the number
of limit cycles and their position in the plane. Two famous open problems relate to the limit cycles
of planar vector �elds: Hilbert 16th problem and Smale's 13th problem. We refer to [ 134] and [39]
for the role of slow-fast systems in these problems. Our interest lies in the study of well-chosen
systems that have a number of limit cycles; in other words, we will use slow-fast systems to give
examples of low-degree polynomial vector �elds that have many limit cycles. Theoretical results of
this nature can, for example, be found in [ 103].

In this section, we will work with ( 18). We suppose that f is of parabolic type, i.e. f (x, � ) = x2(1 +
O(x)) , and @f

@x=x is positive everywhere. We consider b � 0.

2.1.2.3 The slow divergence integral

We �rst indicate the numerical dif�culties involved in �nding the limit cycles. To that end, we
introduce the notion “slow divergence integral”, and present a rough outline of the proof of Theo-
rem 2.1.1 stated below in this section, which relates isolated zeros of this slow divergence integral
to isolate periodic orbits. A more detailed presentation of the proof can be found in [ 101].

Consider (18), and suppose we compute two orbits through (0,Y1) and (0,Y2) for some given Y > 0.
Assume that Y1 < Y2 . The orbits quickly move towards the right branch of the parabola near
points (x+

1 ,Y1) and (x+
2 ,Y2), after which they slide downwards along the parabola (since the slow

dynamics is given by y 0 = b - x, which is negative for x > 0 and b � 0). Knowing that the singular
points on the parabola are all stable, and knowing that the orbits spend an O(1=") amount of time
along this branch, it is not surprising to �nd that both orbits get exponentially close to each other.
More precisely, suppose the two orbits meet the section fx = Xg(with X < x +

1 ) after some sliding
downwards, and let (X,Y+

1 (X)) and (X,Y+
2 (X)) be the intersection points of the two orbits (see Fig. 4),

then

Y+
1 (X) - Y+

2 (X) = exp

 
1
"

ZX

x +
1

@f
@x(s)2

s - b
ds + o(1)

!

.

The integral appearing in this formula is the slow divergence integral taken between two sections
fx = x1gand fx = Xgand it is strictly negative. Observe that the distance between the two orbits
does not depend on (x+

2 ,Y2) up to �rst order. Apparently, this estimate also works when we replace
X with 0, under the assumption that b = o(

p
" ). (One needs to do some work to achieve this.) We

�nd

Y+
1 (0) - Y+

2 (0) = exp

 
1
"

Z0

x +
1

@f
@x(s)2

s
ds + o(1)

!

.
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Figure 5: The canard curve of (20), for " = 0.1. The 5 folds correspond to the 5 zeros of the slow divergence
integral.

Similarly, we can track the orbits in negative time. Let (x-
1 ,Y1) and (x-

2 ,Y2) be the points of the
parabola in fx < 0 gso that f (x-

i ) = Yi , and let (X,Y-
i (X)) be points of the orbits near the parabola,

for X 6 0 small enough. Then

Y-
1 (0) - Y-

2 (0) = exp

 
1
"

Z0

x -
1

@f
@x(s)2

s
ds + o(1)

!

.

Both formulas work under assumption that b = o(
p

" ) so write b =
p

"B and let B = o(1). It is
known that

Y-
1 (0) - Y+

1 (0) =
p

" (B + o(1))

(and similarly for Y-
2 (0) - Y+

2 (0)). Therefore, we have the following situation: when integrating in
positive time, orbits meet fX = 0g in an exponentially narrow wedge, and when integrating in
negative time, the orbits meet fX = 0gin another exponentially narrow wedge; the distance between
the two wedges is O(b). In other words, we can easily choose b = b(Y2) in terms of Y2 making the
orbit through (0,Y2) a periodic one. Similarly, for b = b(Y1), the orbit through (0,Y1) is periodic.

If one is interested in �nding multiple limit cycles, one might wonder whether along b = b(Y2) the
orbit through (0,Y1) is also a periodic one. Heuristically, we have

Y+
1 - Y-

1 = ( Y+
1 - Y+

2 ) + ( Y+
2 - Y-

2 )
| {z }

0

+( Y-
2 - Y-

1 ).

The difference is 0 if and only if the exponents appearing in the expressions for Y+
1 - Y+

2 and Y-
1 - Y-

2
are equal, or, in other words, if and only if I (Y1) + o(1) = 0, where

I (Y1) =
Zx -

1

x +
1

@f
@x(s)2

s
ds. (19)

We recall that x+
1 and x-

1 are the two solutions of f (x) = Y1 ; in that sense the above integral is an
algebraic expression depending on Y1 . Hence, it makes sense to denote itI (Y1). This expression is
called the slow divergence integralfor the slow-fast cycle at height Y1 . It is now heuristically clear that
a sign change in I (Y) as Y varies leads to a solution of the above equation near the sign change. In
other words, we have

Theorem 2.1.1 ([42]) Let the orbit through(0,Y2) be periodic for" > 0 small enough. LetI (Y) be the slow
divergence integral as de�ned above, forY 2 ]0,Y2 [. If I (Y) hasN isolated and simple zeros, then the system
hasN additional periodic orbits, crossing they-axis aty-coordinates close to the zeros ofI (Y).



2.1 numerical continuation techniques for planar slow -fast systems 16

 -0.015 0 0.015
0

0.1

0.2

0.3

b

!

1 2

3 4

5

 -6  -3 0 3 6

x 10
-3

0

50

100

150

200

b0

!

!

!

!

!

¥
¥

¥

¥

¥

b

1 2

3
4

5T

Figure 6: Left panel: The canard curve of (20), for " = 0.03. The 5 folds correspond to the 5 zeros of the slow
divergence integral. Right panel: the location of the folds in terms of " .

Numerically, computing the periodic orbits is very dif�cult, since all orbits meet fX = 0g(either in
positive or negative time) in an exponentially small wedge. To be able to distinguish whether an orbit
through (0,Y2) is periodic or not, we need a numerical precision of the order min fexp(I -

2 ="), exp(I+
2 =")g,

where I �
2 are the one-sided slow divergence integrals at height Y2 . Even for reasonable values of " ,

the required precision is often much too high for standard integration softwares.

Multiple periodic orbits can also be detected as solutions of b(Y1) = b(Y2), where b = b(Y) is in-
troduced in the previous subsection. When b is monotonous, there is only one periodic orbit. If on
the other hand, b is oscillatory, we can have limit cycles at different heights Y corresponding to the
same value of the parameter b. We then clearly have

Theorem 2.1.2 ([40]) Let b = b(Y) be the canard curve, de�ned forY 2 ]0,Ymax[. If there is ab0 for which
b(Y) = b0 hasN solutions, then the system hasN periodic orbits for this speci�c value of the parameterb.

Note that detecting the oscillations in the canard curve is also not elementary since b(Y2) and b(Y1)
are exponentially close to each other. We give examples in the next subsection; see already Fig.6 for
a typical canard curve b(Y).

Remark.The canard curve in Theorem 2.1.2 should not be confused with a curve where the parameter
b is expressed in terms of " . In [40], the traditional curve where the control parameter is expressed
in terms of " is called a canard curve, in contrast with the curve where the control parameter
is expressed in terms of the amplitude and which is called a position curve. Here, we focus on
numerical properties of these position curves (and how they evolve for increasing values of " ); one
can �nd theoretical results and an explanation of the typical shape of a position curve in [ 40].

2.1.2.4 Examples of “oscillatory” canard curves

An easy family of equations where the canard curve is oscillatory is given by

�
�x = y - ( x2 + 1

M xH(x2))

�y = " (b - x).

For M large enough, the graph y = x2 + 1
M xH(x2) is of parabolic type. We claim that each zero of the

function H leads to a zero of the slow divergence integral. Indeed, let F(x) = x2 + 1
M xH(x2). When

H(x0) = 0, then F(x0) = F(- x0), and it is an elementary exercise to verify that
R- x 0

x 0

F0( x ) 2

x dx = 0
(using symmetry properties of even and odd functions). (Note that there might be additional zeros
of the slow divergence integral). In other words, when H(x0) = 0, then I (Y0) = 0 where Y0 = F(x0).
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Figure 7: Three limit cycles were found using numerical continuation in the F#-system de�ned in [ 102] for
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near the second fold bifurcation of limit cycles.

Consider now the following system

�
�x = y - ( 0.5x2 + 0.05sin(15x)x2)

�y = " (b - x),
(20)

and restrict the phase space to the region where the critical curve is of parabolic kind. In that region,
the divergence integral has 5 simple zeros. If we �x a small value of " , then the canard curve is
shown in ( 20). It is clear that up to 6 limit cycles can be found. Let us now closely inspect the
diagram shown on the right panel of Fig. 6, where the loci of folds in the canard curve are traced in
the (b, " )-plane, using a standard two-parameter continuation algorithm, for increasing values of " .
It is remarkable to see how these curves, which all lie in an exponentially small wedge near " = 0,
tend to behave really differently for increasing values of " . Let us now focus on the curve (5), and
choose a value of " �xed, and let us add a vertical curve (b0) : b = b0 . As long as the curves (4),
(3), (2), (1) and (b0) are located respectively to the right, to the left, to the right, to the left and to
the right of the point on ( 5), the canard curve will attain a value of b nearby and to the right of
the fold ( 5) exactly 6 times (as shown with a magni�ed view in the inset of the left panel of Fig. 6).
It implies that the crossing of the curves ( 1) and (3) is not relevant, but the crossing of the curves
(5) and (1) and the crossing of (5) and (b0) are indeed relevant.Clearly, by inspecting Fig. 5, we

can choose a valueb0 for which there are 6 limit cycles, because the folds (5), (4), (3), (2), (1) are
located alternatively to the right and to the left of (b0). For a slightly different value of " however,
we cannot chooseb0 that way: in Fig. 6, there are still 5 folds corresponding to the �ve zeros of the
slow divergence integral, but they are aligned in a less favorable way, allowing up to only 5 limit
cycles to be present at the same time. We formulate these numerical observations in the following
statement:

Numerical observation . In the region where the critical curve of(20) is of parabolic shape, there can be
up to 6 limit cycles in(20), for " 2 ]0, " 1 [ [ ]" 2 , " 3 [, where" 1 � 0.01, " 2 � 0.08 and" 3 � 0.25.

2.1.2.5 Multiple limit cycles in Liénard systems of degree6

In Section 2.1.2.2, we have reviewed how one can analytically establish the presence of multiple
limit cycles, by examining the slow divergence integral, and we have also explained how numerical
continuation can be useful to actually determine the limit cycles near the singular limit " = 0, and
how the limit cycles evolve as " is increased.

In this section, we repeat the method for a very speci�c system that deserves special attention,
because it served as a counterexample to the conjecture of Lins, de Melo and Pugh on the number
of limit cycles for classical polynomial Liénard equations of degree 6 (and higher). Therefore, we
recall a theorem from [ 102]:
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Theorem 2.1.3 Given the(" , � , b)-family of polynomial Liénard equations of degree6

�
�x = y -

�
1
2 x2 + 5�x 3 - 35

46 x4 - 12�x 5 + 21
46 x6

�

�y = " (b - x),
(21)

and givenk 2 f1,2,3,4g, there exists a smooth curve

b = "B k (" , � ),

de�ned for" 2 [0, " 0 ] and � 2 [- � 0 , � 0 ] (for some suf�ciently small" 0 > 0 and � 0 > 0), along which the
vector �eld (21) has exactlyk limit cycles when� 6= 0 and " 2 ]0, " 1(� )] for some" 1 : [- � 0 , � 0 ] ! R with
" 1(� ) > 0 for � 6= 0. All these limit cycles are hyperbolic, surrounding a hyperbolic focus (attracting when
� < 0 and repelling when� > 0 ).

The proof is essentially an application of Theorem 2.1.1: the slow divergence integral I (Y, � ), depend-
ing on the parameter � here, clearly has the property I (Y,0) � 0. One shows that I (Y, � ) perturbs to
a nontrivial function when � 6= 0, having three simple zeros. We note that this theorem gives 4 limit
cycles along b = "B4(" , � ), for nonzero but small values of � and " .

Besides numerical dif�culties related to the slow-fast nature, one faces another numerical dif�culty
in tracing back the limit cycles: for � = 0 and " > 0 , system (21) is a center. This means that the
smaller � , the smaller the deviations in the �rst return map of the orbits; the larger � , the farther
one deviates from the theoretical results.

Numerical results for(21)

We have been able to use numerical continuation to �nd 3 limit cycles. The way that this coexistence
of limit cycle is seen, is by studying the canard curve b = b(Y), as explained in Theorem 2.1.2. The
appearance of 3 limit cycles is already a counterexample to the conjecture by Lins, de Melo and
Pugh. For reasons that have been explained in detail in [102], it is better for the numerics to replace
system (21) by the related system

�
�x = y - F#(x)

�y = " (b - x)
, (22)

with

F#(x) := 0.5x2 - 0.1x3 - 0.82337x4 + 0.023x5 + 0.4565x6 .
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this curve enters the half-plane b > 0 , there exist a third limit cycle coexisting in the system for the
associatedb-value.

Remark.Theorem 2.1.3 not only gives information on ( 21): the theorem remains valid when we
replace the �x-equation by an O(� )-perturbation of it. One can expect that among all those O(� )-
perturbations, there are particular choices that optimize the way the numerics is predicted by Theo-
rem 2.1.3. This is in fact the motivation of continuing with ( 22) instead of (21): having a �xed value
of � in mind, one should consider ( 22) as such an O(� )-perturbation of ( 21) and hence one can
expect similar results for this �xed value of � , provided it is taken small enough. For more details
we refer to [ 102].

In Fig. 7, we show the results for b = b(Y) for " = 0.003. Panel (a) shows a large view of the
bifurcation diagram of the system obtained when varying b, namely, the branch of limit cycles
emanating from the Hopf bifurcation at b = 0. On the vertical axis, we use the L2-norm as a measure
of the solution. One can see from this computed branch that the Hopf bifurcation is subcritical and
that the family of limit cycles undergoes a �rst fold bifurcation of limit cycles, which makes it
change direction in b and allows for two limit cycles to coexist for a range of b-values. Soon after,
the branch start increasing almost vertically. Panel (b) shows an enlargement of this region where
we can see a second fold bifurcation of limit cycles. This allows for three limit cycles to coexist over
a very small interval of b-values.

Experimenting with the value of " , we see that vertical branch showed in Fig. 7 (a) is shifted towards
the right as " is increased. As soon as this vertical branch crosses the origin, we will only �nd 2 limit
cycles instead of 3. On the other hand, as " is decreased, the numerics become more involved. It
is therefore useful to see up to which value of " one can go in order for the vertical branch to be
positive. The value of b at the vertical branch can be found by imposing a large limit cycle to exist.
From Fig. 9, we derive that the maximum value for which 3 limit cycles are found in the given system
lies around " max � 0.005. The curve of fold bifurcations in the (b, " )-plane could not be continued
numerically for " < 0 .003. Below that value, points on the curve were obtained individually, that
is, using several one-parameter continuation runs instead of continuing the fold point in (b, " ); the
points computed individually were then interpolated to complete the fold curve. Close to the origin,
it makes sense to compare the values ofb with the curve obtained from the asymptotic expansion of
the canard curve (only the �rst two terms have been computed); the curve obtained asymptotically
is labeled Asymp. in Fig. 9, and is seen to correspond quite well to the curve computed numerically
for " � 0.

To �nd the 4th limit cycle, we would need an extra enlargement of the curve in Fig. 7(b). With
standard programs using double precision numerics, this can however not be achieved. Given the
relation between the position of the folds and the zeros of the divergence integral (last zero with
computed amplitude Y = 1.91+ O(� )), it is not so hard to give an idea of the precision that is
needed to distinguish orbits starting near a cycle of �xed amplitude (and comparing them close
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to the contact point): it is exp - 7.14 + O ( � )
" , yielding about 10- 620 for (� , " ) = ( 0,0.005). From this

heuristical argument, it is clear that there is no hope to �nd the third fold (and hence the fourth
limit cycle).

2.2 canards and inflection lines

The in�ection-line method was �rst introduced by Okuda under the name of in�ector in the mid-
1970s [116] for planar excitable systems such as the Bonhoeffer-Van der Pol model. More than a
decade later, Penget al.[119] re-introduced this idea in the more general context of canard-explosive
systems [12, 113]. Later, Brøns and Bar-Eli [16, 17] further developed this idea and compared the
asymptotic expansion in " of some branches of the in�ection sets with that of other dynamical
objects used to characterise canard solutions, in particular repelling slow manifolds [ 91, 113]; see
section 2.2.1 below. They showed that, for planar slow-fast systems with an S-shaped critical mani-
fold (given by the graph of a cubic function in the simplest cases), the in�ection set and the repelling
slow manifold are O(" 2)-close to one another in between both fold points of the fast nullcline; we
will come back to this approximation in section 2.2.1.2. In the past few years, a similar approach has
been used to derive implicit equations for slow manifolds away from non-hyperbolic regions [ 57].
Finally, the in�ection line method has been very recently revisited in [ 23] from the viewpoint of
the dependence of the zero curvature region on the time scale ratio " . This dependence allows to
establish an upper bound in " for the canard solutions to be well de�ned; see Section 2.2.2. Whether
we look at limit cycles of transients, trajectories where the in�ection-line method will give insight
are those containing canard segments.

The main idea behind the in�ection-line method is to notice that some of these special periodic
solutions, once represented in the phase plane, correspond to curves that enclose convex regions,
while others enclose non-convex regions of R2 . We must stress here that these families of periodic
solutions depend on system's parameters, so they do not coexist in general (for instance in the cases
that we will be looking at in this section). However, in multiple time scale systems where the in�ec-
tion method is relevant, the passage from convex trajectories to non-convex ones, in the phase plane,
corresponds to an exponentially small parameter variation (i.e. a canard explosion), which typically
affects neither the topological shape of the in�ection set nor its location. Therefore, using an abuse
of language, one can say that virtually the same in�ection set “separates" convex closed trajectories
from non-convex ones, even though they exist for exponentially close yet different parameter values
and they are limit cycles. Such regions of in�ection can be easily computed as solutions of implicit
algebraic equations obtained from the de�nition of the local curvature of a planar curve; see sec-
tion 2.2.1. They “separate" locally the small-amplitude periodic solutions from the large-amplitude
ones. Moreover, when considering trajectories emanating from nearby initial conditions and for
�xed parameter values, one does not need to make this abuse of language anymore. The in�ection
set allows to separate trajectories that transiently do not escape the basin of attraction of a rest state
from those which escape it, make a large excursion (corresponding to a large-amplitude oscillation)
and come back to it after some time. In the neuronal context, this corresponds to separating trajecto-
ries that do not cross the excitability thresholdfrom those which do cross it and spike before coming
back to a rest state; see Section2.2.3.

2.2.1 The in�ection-line method and its formulation in terms of singularity theory

2.2.1.1 The idea of the method

In the phase plane, canards without head correspond to curves enclosing a convex region whereas
canards with head correspond to curves enclosing a non-convex region, and the transition from one
family to the other involves an exponentially small parameter variation; see Fig. 16. As explained
above, by an abuse of language, we will say that regions of zero curvature of the �ow, namely the
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Figure 10: Canard explosion in the 2D Hodgkin-Huxley model. Panel (a) shows the bifurcation diagram of the
model with respect to the applied current I and for the classical value of the Sodium conductance
ḡNa = 120. The branch of steady states is shown in black; maximum V-values along the branch
of limit cycle are shown in blue. One can observe two Hopf bifurcation points (labelled H and
marked by a black dot). Panel (b) shows an enlargement of panel (a) in the vicinity of the canard
explosion. Three solutions are highlighted on the quasi-vertical branch of the bifurcation diagram;
they correspond to a canard without head ( � h), the maximal canard (� m) and a canard with head
(� wh ), respectively. They are shown in the phase plane (V,n) in panel (c) together with the critical
manifold S0 and the repelling slow manifold S"

r . Finally, their time traces for the variable V are
displayed in panel (d).

in�ection sets, can “separate" canards without head from canards with head. Strictly speaking, we
can only �x a parameter value and say that in between a trajectory containing a “canard segment
without head" (that is, a non-closed curve) and a trajectory containing a “canard segment with
head", there must be a region of zero curvature. For a planar vector �eld, these sets of in�ection
points of the �ow can be computed by the local curvature. We recall that the local curvature of a
planar curve y = y(x) [19], is given by

� (x) =
y00(x)

(1+ y0(x)2)
3
2

. (23)

The general idea is to look at the curvature of the �ow associated with a given planar dynamical
system

X0 = f (X,Y) (24)

Y0 = g(X,Y), (25)

and to determine the regions of the phase plane where this curvature vanishes (i.e. regions referred
to as in�ection sets). Let us �rst recast system (24)–(25) as a planar slow-fast dynamical system
by introducing a splitting between the time scale of X and that of Y, that is, we use the change
of variable: (x, y) = ( X, "Y). We then obtain the following two-dimensional singularly perturbed
dynamical system

x0 = f (x, y, " ) (26)

y0 = "g (x, y, " ). (27)

The equation for the trajectories associated with system (26)–(27) is obtained by eliminating time
from the equations (26)–(27) and, hence, is given by dy=dx = "g (x, y, " )=f(x, y, " ), more conveniently
rewritten as

f (x, y, " )
dy
dx

= "g (x, y, " ). (28)

Differentiating equation ( 28) with respect to x, and plugging in the condition for the local curvature
to be 0, that is, � (x) = 0 — which reduces to y00(x) = 0 by de�nition of � (x) (see (23)) — yields, after
simpli�cation, the following equation for the in�ection sets

f (f x g - fg x ) + "g (f y g - fg y ) = 0. (29)
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See section2.2.1.2 for details of this derivation. Equation ( 29), which relates the variables y and x,
the singular parameter " in addition to other parameters, de�nes the locus of in�ection points.

2.2.1.2 Reformulation as a bifurcation problem with a distinguished parameter

We now proceed to understand the topological changes of the in�ection sets upon parameter vari-
ations. To this end, singularity theory is employed. We consider the case where the system has a
unique equilibrium. Starting from equations ( 26)–(27) and subsequently differentiating equation ( 28)
with respect to x gives

f x
dy
dx

+ f y

�
dy
dx

� 2

+ f
d2y
dx2 = "

�
gx + gy

dy
dx

�
. (30)

Recall that the in�ection set is de�ned by the condition of curvature equal to 0, which is equivalent
to the condition y00(x) = d2y=dx2 = 0. Setting y00(x) = d2y=dx2 = 0 in (30) and using (28) we obtain
the following equation

"
�

f x g
f

- gx

�
+ " 2

�
f y

g2

f 2 - gy
g
f

�
= 0,

where, to facilitate the notation we have dropped the explicit dependence on (x, y, " ). Subsequently,
multiplying by f 2=" gives

ff x g - f 2gx + " (f y g2 - fg y g) = 0. (31)

Equation (31) is a bifurcation equation de�ning the set of in�ection points. Setting " = 0 we obtain

f (f x g - fg x ) = 0, (32)

or, equivalently,

f = 0 or f x g - fg x = 0, (33)

In other words, the " = 0 in�ection set is the union of the two curves f = 0 and f x g - fg x = 0. The
intersection points of the two sets are de�ned as the points on f = 0 for which f x = 0 or g = 0, i.e.
fold points or points where both f and g are 0. A particular and a general case for the form of f and
g will be discussed in the following subsections.

2.2.1.3 Particular case forf andg

Consider f (x, y) = - y + F(x) and g(x, y) = g(x) (i.e. g does nor depend on y). Additionally assume
g0(x) > 0. Consequently, the equation for in�ection points has the form

(- y + F(x))
dy
dx

= "g (x) (34)

Repeating the procedure outlined in the previous section the following is obtained

g0(x)(- y + F(x))2 - F0(x)g(x)(- y + F(x)) + " (g(x))2 = 0. (35)

For " = 0, equation (35) reduces to g0(x)(- y + F(x)) - F0(x)g(x) = 0 or - y + F(x) = 0, compare
with equation ( 33). To simplify, introduce a new variable z = - y + F(x), divide both sides by g0(x)
and introduce new functions � (x) = F0(x)g(x)=g0(x) and � (x) = ( g(x))2=g0(x). This results in the
equation

z2 - �z + "� = 0. (36)
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Figure 11: In�ection sets I0 for " = 0 computed in the FitzHugh-Nagumo system ( 71)-(72). They are formed
by two components which correspond to ff = 0g(the critical manifold) and ff x g - fg x = 0g. Their
intersection points are fold points of the critical manifold and the equilibrium point of the system,
both labelled by dots. Panel (a) shows the regime away from a canard point. Panel (b) shows the
regime at a canard point.

For " = 0 we have z = � or z = 0, which corresponds to f x g - fg x = 0 or f = 0; compare with
equation (33). Note that equation ( 36) �ts in the framework of bifurcation problems with a distin-
guished parameter, in the sense of singularity theory, as described in Golubitsky and Schaeffer [ 58],
with z being the state variable and � the distinguished parameter. In fact z2 - �z = 0 de�nes the
bifurcation problem and the parameters, in this case, " and the parameter controlling the canard
explosion, serve to unfold it. Bifurcation points are de�ned by

z2 - �z = 0,
@(z2 - �z )

@z
= 2z- � = 0.

This gives the condition � (x) = 0. Not surprisingly, bifurcation points correspond to the places
where the two curves have a point in common. Moreover, since � (x) = 0 is equivalent to either
F0(x) = 0 or g(x) = 0 the crossing points are either fold points or equilibria (intersections of the fast
and the slow nullcline). To determine the nature of the bifurcation points we compute � 0(x) at fold
points and points of intersection of the fast and slow nullcline

� 0(x) = F0(x) if g(x) = 0 and F0(x) 6= 0

� 0(x) =
F00(x)g(x)

g0(x)
if F0(x) = 0 and g(x) 6= 0

� 0(x) = 0 if F0(x) = 0 and g(x) = 0

(37)

The �rst two equations of ( 37) correspond to a transverse crossing of the two curves. If the folds are
non-degenerate then these two situations arise and the crossings of the two curves are transverse.
Then the two components of the in�ection set must be as shown in Fig. 11-a. The third equation
in (37) corresponds to a canard point. The two in�ection lines are tangent at the canard point, see
Fig. 11-b. This is because in that case, the equilibrium is exactly at the fold in the singular limit
" = 0, which gives the condition for a canard point to occur; see [ 92] for more details.

We now consider the case of " > 0 . In the generic case (no canard point) we have three simple
bifurcations (known also as transcritical bifurcations), see [ 58] page 205. To transform to the form of
Golubitsky and Schaeffer we complete the square in (36), which yields

z̃2 -
� 2

4
+ "� = 0 (38)

where z̃ = z - �=2 . Note that case 1. of Golubitsky and Schaeffer cannot occur since "� > 0 . Indeed,
the fact that "� > 0 implies that the perturbation of the transcritical bifurcation in the canard case
gives two curves that are quadratic in x (case2. of Golubitsky and Schaeffer) and not quadratic
in y (case1.). Interestingly, there are two cases to distinguish, near the folds, corresponding to the
second equation in (37), and near the equilibrium point, corresponding to the �rst equation in ( 37).
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Figure 12: In�ection sets I " for " > 0 , computed in the FitzHugh-Nagumo system ( 71)-(72). Panel (a): away
from a canard point. Panel (b): at a canard point (case 2 of Golubitsky and Schaeffer).

At a fold point (xF, yF) we have g(xF) 6= 0, hence � = � 0 + O(x - xF), with � 0 > 0. Because of the
constraint "� > 0 not all the cases of the full unfolding can been seen, however, when " > 0 , the
transcritical bifurcation is perturbed to two saddle-node bifurcations. The in�ection lines near the
folds must then qualitatively have the form as shown in Fig. 12-a.

At an equilibrium (xe , ye) we have a g(xe) = 0. Without loss of generality we assume that xe = 0.
It follows that � 2(x) = Kx2 + O(x3), where K > 0 is a constant, and � (x) = O(x2). Equation (38)
becomes

z̃2 - ( K + O(" , x))x2 = 0. (39)

Hence, the transcritical bifurcation persists for " > 0 . The in�ection lines near the equilibrium must
then qualitatively have the form as shown in Fig. 12-a. Finally, we consider the case of a canard
point, which we assume to be located at (x, y) = ( 0,0) to simplify the analysis. However, note that
the accompanying �gures Figs. 11 and 12 will not re�ect this translation to ( 0,0). We introduce a
parameter � that moves the nullcline g(x) = 0, i.e. unfolds the canard point. Speci�cally, we de�ne
� to be the x coordinate of the equilibrium point. Hence the Taylor series of g has the following
form:

g(x) =
1X

j = 1

gj (x - � ) j .

Without loss of generality assume that g1 = 1. Hence (39) has the form

z̃2 -
Lx2(x - � )2

4
+ " (x - � )2 + R(x, � , " ) = 0, (40)

where L > 0 is a constant and

R(x, � , " ) = O(x3(x - � )2) + O(x2(x - � )3) + O(" (x - � )3).

Without loss of generality assume L = 4 (otherwise rescale the variables). We will �rst consider the
truncated normal form

z̃2 + ( " - x2)(x - � )2 = 0, (41)

and then argue that the bifurcation diagrams persist when the perturbation term R(x) is restored.
First note that with � = " = 0 (41) is the normal form 8- of [58], p. 208. This is a co-dimension three
problem with a universal unfolding as shown in [ 58], p. 208. In (41) there are only two unfolding
parameters, " and � . Moreover, a transcritical bifurcation occurs for ( 41) in a robust way (in an open
set of (� , " )) and is only present on the bifurcation variety for a versal unfolding. For completeness
a sketch of the bifurcation analysis is provided subsequently; however detailed steps of the analysis
can found in [ 58].
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Figure 13: In�ection lines I " for " > 0 just before the transition focus-node: j� j <
p

" . Panel (b) is an enlarge-
ment of panel (a) in the vicinity of the equilibrium point (dot), which lies on the repelling branch
of the critical manifold (dashed line).

Case j� j <
p

" : First determine the x intercepts. Setting z̃ = 0 we obtain x = � , x = �
p

" . Note
that (� , 0) is an isolated point of the solution set, since for x � � we have x2 - " < 0 . At the
points (-

p
" , 0) and (

p
" , 0) the solution curves have vertical tangents. For x >

p
" there are two

solution curves, z =
p

x2 - " (x - � ) and z = -
p

x2 - " (x - � ). These two curves come together
smoothly at (

p
" , 0). Similarly, for x < -

p
" there are two solution curves, z =

p
x2 - " (x - � ) and

z = -
p

x2 - " (x - � ), which come together smoothly at (-
p

" , 0), see Fig.13.

Casej� j >
p

" : The main change from the casej� j <
p

" is that the point point (� , 0) is not an isolated
point of the solution set, but lies on both of the curves z =

p
x2 - " (x - � ) and z = -

p
x2 - " (x - � ),

which intersect at a non-zero angle. Hence (� , 0) is a point of a transcritical bifurcation, see Fig. 15.

Case j� j =
p

" : We consider only � =
p

" as the case� = -
p

" is identical. There is only one x
intercept, given by x =

p
" = � . For x >

p
" there are two solution curves, z =

p
x +

p
" (x -

p
" )3=2

and z = -
p

x +
p

" (x -
p

" )3=2 . Hence (
p

" , 0) is a cusp point. The other solution branch is the same
as in the case� >

p
" . The solution set is shown in Fig. 14.

To see that the solution set of (40) is qualitatively the same as the solution set of ( 41) note that (40)
can be rewritten in the form

z̃2 + ( " (1+ O(x - � )) - x2(1+ O(x, x - � )))( x - � )2 = 0, (42)

The analysis carried out above can be applied to (42), with the same result. The only difference is
that the transition point between the two generic cases would no longer be � =

p
" but would be

the solution of an equation of the form " = � 2(1+ O(� )) .

2.2.1.4 General case forf andg

We now provide a brief explanation on how the previous analysis can be extended to more general
planar systems. We still require that the fast equation is of the form �x = - y + F(x), that is, it is
locally given as a graph over x, and to preserve the S-shape form of the critical manifold. For the
slow dynamics, the general case �y = "g (x, y) is considered. Some non-degeneracy conditions will
be provided below.
For this more general system, the in�ection equation ( 35) reads

gx z2 + ( "gg y - F0(x)g)z + "g 2 = 0, (43)

with, as before, z = - y + F(x). In the regions of interest (i.e., near folds of S0 or near equilibria), we
have z = - y + F(x) � 0. We can then expand g in powers of y with x-dependent coef�cients, which
yields

g = g0(x) + g1(x)y + g2(x)y2 + O(y3), (44)
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Figure 14: In�ection lines I " for " > 0 at the transition focus-node: j� j =
p

" . Panel (b) is an enlargement of
panel (a) in the vicinity of the equilibrium point (dot), which lies on the repelling branch of the
critical manifold (dashed line).

which can be rewritten as an expansion in z = - y + F(x), giving

g = cg0(x) + cg1(x)z + cg2(x)z2 + O(z3), (45)

where

cg0(x) = g0(x) + g1(x)F(x) + g2(x)F(x)2 + � � � = g(x,F(x)) , (46)

cg1(x) = - g1(x) - 2g2(x)F(x) - 3g3(x)F(x)2 + � � � = -
+ 1X

i = 1

ig i (x)F(x) i - 1 (47)

Then, in the singular limit " = 0, equation (43) becomes

gx (x, z)z2 - F0(x)g(x, z)z = 0. (48)

Using (45), this reduces to

gx (x, z)z2 - F0(x)cg0(x)z - F0(x)cg1(x)z2 + O(z3) = 0, (49)

that is,

- F0(x)g(x,F(x))z +
�
gx - F0(x)cg1(x)

�
z2 + O(z3) = 0. (50)

However, by ( 45) and (46),

g(x, z) = g(x,F(x)) + O(z), (51)

which implies

gx (x, z) = gx (x,F(x)) + O(z). (52)

Now incorporating ( 47) and (52) into (50) gives

- F0(x)g(x,F(x))z +

 

gx (x,F(x)) +

 
+ 1X

i = 1

ig i (x)F(x) i - 1

!

F0(x)

!

z2 + O(z3) = 0. (53)

It is easy to see that

+ 1X

i = 1

ig i (x)F(x) i - 1 = gy (x,F(x)) . (54)

So equation (53) becomes

- F0(x)g(x,F(x))z +
�
gx (x,F(x)) + gy (x,F(x))F0(x)

�
z2 + O(z3) = 0. (55)
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Figure 15: In�ection lines I " for " > 0 just after the transition focus-node: j� j >
p

" . Panel (b) is an enlargement
of panel (a) in the vicinity of the equilibrium point (dot), which lies on the repelling branch of the
critical manifold (dashed line).

Finally, the in�ection equation for " = 0 has the form

- F0(x)g(x,F(x))z +
d
dx

g(x,F(x))z2 + O(z3) = 0. (56)

Consequently, by taking the non-degeneracy condition d
dx g(x,F(x)) 6= 0 and dropping terms of

order greater than 3, the following bifurcation equation for the singular limit " = 0 is obtained

z2 - �z = 0, (57)

with

� =
F0(x)g(x,F(x))

d
dx g(x,F(x))

. (58)

Therefore, we recover a similar equation as in the simpler case treated at the beginning of this
section, that is, equation (36) for the singular limit " = 0.

For " > 0 , equation (43) has the additional term

" (ggy + g2).

Using equation (45) together with the fact that dz=dy = - 1, results in

gy = - cg1(x) - 2cg2(x)z - 3cg3(x)z2 + O(z3).

This allows to express the following

ggy z = - cg0(x)cg1(x)z - ( 2cg0(x)cg2(x) + cg1(x)2)z2 + O(z3), (59)

g2 = cg0(x)2 + 2cg0(x)cg1(x)z + ( 2cg0(x)cg2(x) + cg1(x)2)z2 + O(z3). (60)

When adding equations ( 59) and (60), the terms in z2 cancel out. Consequently, the in�ection equa-
tion (43) can be written as follows

z2 -
�

� + "b�
�

z + "� = 0, (61)

with

b� =
cg1(x)g(x,F(x))

d
dx g(x,F(x))

, (62)

� =
g(x,F(x))2

d
dx g(x,F(x))

. (63)
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Figure 16: Curvature of a large canard cycle (with head) and small canard cycle (without head) near the
repelling branch Sr of the critical manifold. A large canard cycle is characterised by the presence
of an in�ection point that makes it non-convex. Hence it crosses the in�ection line I " whereas the
small canard does not.

and � given by (58).
Completing the square in ( 61), transforms it to

z̃2 -
� 2

4
- "

� b�
2

- " 2
b� 2

4
+ "� = 0. (64)

Equation (64) can be rewritten in the Golubitsky-Schaeffer form

z̃2 -
� 2

4
+ " �̃ = 0, (65)

where

�̃ =
g(x,F(x))2

d
dx g(x,F(x))

�
1 -

1
2

F0(x)cg1(x) -
1
4

" (cg1(x))2
�

. (66)

Note that (65) has the same form as (38) and the functions � and �̃ have the same structure as the
terms � and � , respectively, in (38). The analysis then follows in the same fashion as in Section 2.2.1.3
after equation (38).

Therefore, we have fully classi�ed the geometry of in�ection lines near and away from fold points
(both jump points and canard points). We now turn to an interpretation of the dependence of
in�ection lines in " , in terms of existence of “well-de�ned” canard cycles, that is, where a transition
between convex to non-convex cycles does occur. This can be seen as an attempt to characterise
what “small enough” means for " in the context of planar slow-fast systems in the canard regime.

2.2.2 The “smallness” of"

Evidently, the appearance of canard cycles — convex when they are without head, non-convex
when they are with head — is intimately related to the �ow curvature. In two dimensions this can
be understood by studying in�ection points of the canard cycles. We now present a simple result
that uses in�ection lines to give a criterion to establish when canard cycles are possible. We can
paraphrase this criterion as:

A singularly perturbed system may contain canard cycles only if a locus of zero-curvature exists
in the neighbourhood of the repelling sheetSr of the critical manifoldS0 = Sa [ Sr .

We �rst derive this as a rigorous condition in the familiar context of the planar Van der Pol oscillator,
before applying it to general Liénard systems, and �nally to classical planar neuron models, namely,
the FitzHugh-Nagumo model (in Section 2.2.3.1) and a reduction of the Hodgkin-Huxley model (in
Section 2.2.3.2).

2.2.2.1 Convexity of canard cycles in the Van der Pol system

Consider again the canard cycles of the Van der Pol oscillator. Hitherto we have distinguished
canard types by whether, after traveling along the repelling branch Sr of the critical manifold, they
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Figure 17: Comparison of four limit cycles of the Van der Pol system for: (a) " = 1, (b) " = " 0 = 0.25, (c)
" = 0.1. Together with the orbits, the in�ection curves I " now also shown (dotted). Notice that
I " has a branch in the neighbourhood of Sr only in (c), when " is small enough, and (b) is the
marginal case where this branch vanishes.

curve away from Sr to form a small cycle (canard without head) or a large cycle (canard with
head). An alternative is to express this difference in terms of local curvature along the canard cycles,
speci�cally whether their curvature changes near the repelling branch Sr of the critical manifold,
as depicted in Fig. 16. When the canard develops a head, its orbit in the Liénard plane undergoes
a change in the sign of its curvature, which causes the canard with head to enclose a non-convex
region of the plane. This non-convexity arises from competition between the slow time scale, which
pulls the cycle along Sr , and the fast time scale, which pulls the cycle away from Sr .

Consider equation (29), which therefore corresponds to the zero set of the radius of convergence,
i.e., � (x) = 0. Because a canard with head has a change in the sign of its local curvature near the
repelling slow manifold, it should cross the set � (x) = 0. As it does so it develops an in�ection point,
so the curves � (x) = 0 can be called in�ection curves. If no in�ection curves exist then all cycles in
the plane must be convex, from which we infer that there is no signi�cant separation of time scales,
and hence there are no canards.

In the case of a slow-fast Liénard system, the in�ection equation ( 29) becomes

g0(x)h2 + f 0(x)g(x)h - "g (x)2 = 0. (67)

with h = y - f (x). This quadratic equation depending on x has, for �xed " , two solution branches
h = h � (x), which in turn give two branches y = y � (x) given by

y � (x) = f (x) -
g(x)

2g0(x)

�
f 0(x) �

q
f 0(x)2 + 4"g 0(x)

�
. (68)

The in�ection curve exists only if the solutions of ( 68) are real, hence

y � (x) 2 R ) (f 0(x))2 + 4"g 0(x) > 0. (69)

Notice that this condition depends on " . Clearly the condition is trivially satis�ed if g0(x) > 0 for all
x.

In the case of the Van der Pol oscillator with f (x) = x3=3- x and g(x) = q - x, (69) implies (x2 -
1)2 - ( 2

p
" )2 > 0. From this we �nd that for an in�ection curve to exist we must have

either f 0(x) > + 2
p

" () x2 > 1 + 2
p

" , (70a)

or f 0(x) < - 2
p

" () x2 < 1 - 2
p

" . (70b)

Condition ( 70a) always has real solutions, but gives in�ection curves in the regions jxj >
p

1+ 2
p

" .
These lie outside the folds of the critical manifold y = f (x) in the Van der Pol system (at x = � 1), and
therefore not in the neighbourhood of the repelling critical manifold Sr . We are therefore interested
only in condition ( 70b), which gives in�ection curves in the region jxj <

p
1 - 2

p
" , which does

contain the repelling slow manifold, and these have real solutions only if 1 - 2
p

" > 0 . Thus we
expect canards consisting of both large non-convex and small convex cycles in the Van der Pol
oscillator, only if

" < " 0 :=
1
4

.
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Figure 18: Comparison of the zero-curvature curves for the Van der Pol system for �ve different values of "
ranging from 0.01 to 0.25, respectively, as indicated in the legend.

We illustrate this criterion in Fig. 17, showing the in�ection curves for three different values of " :
0.1, 0.25, 1. For " > 1

4 in Fig. 17(a), limit cycles appear almost circular, and the in�ection curve exists
only for jxj > 1. For the marginal case " = 1

4 in Fig. 17(b), the in�ection curves still exist only for
jxj > 1 but are noticeably deformed, and the cycle is developing an in�ection. For " < 1

4 in Fig.
17(c), a closed in�ection curve has appeared in the region jxj < 1 close to Sr , the cycle becomes non-
convex where it crosses the curve, and is recognisably a canard. Thus the in�ection condition " < 1

4
clearly captures the characteristic canard shape, whereas the convex cycles for" > 1

4 more closely
resemble moderate distortions of circular cycles. Of course these are qualitative observations, but
the requirement that an in�ection curve exists in the neighbourhood of the repelling slow manifold
solidi�es them into a quantitative condition. The in�ection curves for several different values of "
are plotted in Fig. 18. For the singular value " = 0 the in�ection curve coincides with the critical
manifold S0 . For �nite " it splits into three branches: two open curves in the regions jxj > 1, and
a closed loop in the neighbourhood jxj < 1 of the repelling critical manifold Sr . As " increases this
closed loop shrinks, until it vanishes at " = 1

4 .

We therefore propose this upper bound in " , which is obviously system-dependent, as a test for
the existence of a well-de�ned canard explosion. If the parameter " is too large, then the sharp
change of local curvature, which is one of the most prominent characteristics of the planar canard
phenomenon, disappears.

2.2.3 Application to neuronal excitability

In the context of neuronal models, the in�ection set allows to discern between sub-threshold and
spiking electrical activity. This transition can arises through a Hopf bifurcation, via a canard explo-
sion, and this is typical for a large class of planar neuronal models (FitzHugh-Nagumo, reduced
Hodgkin-Huxley), namely, type II neurons ( resonators). This transition can also correspond to the
crossing of the stable manifold of a saddle equilibrium, in the case of type I neurons ( integrators).
We compute in�ection sets and study how well they approximate the excitability threshold of these
neuron models, that is, both in the canard and in the non-canard regime, using tools from invariant
manifold theory and singularity theory. With the latter, we investigate the topological changes that
in�ection sets undergo upon parameter variation. Finally, we show that the concept of in�ection set
gives a good approximation of the threshold in both the so-called resonatorand integrator neuronal
cases.

The concept of excitability threshold, in particular for neuronal models, is not well de�ned. This con-
cept arises in an ad hocmanner as the transition between two observable states of excitable systems.
In the case of neurons, the observed quantity is the electrical activity across the cellular membrane,
and the associated states correspond toinactive phases(rest or weakly nonlinear oscillations) and
active phases(large-amplitude oscillations denoted as spikesor action potentials). De�ning unambigu-
ously this transition is still an open problem both at the experimental and the theoretical level.
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Figure 19: In�ection curves in the classical FitzHugh-Nagumo equations. Panel (a) shows a large view of the
cubic critical manifold together with the three connected components of the solution set I " for
the in�ection equation d2V=dW2 = 0; also shown are 300 orbit segments obtained by forward
simulation from a line of initial conditions, moving from one side of the middle component of the
in�ection equation to the other. Panel(b) shows an enlarged view of panel (a) close to the middle
component of the in�ection set (dashed box).

At the experimental level, the idea is to �nd by inspection the value of the voltage V, possibly de-
pending on time, beyond which a rapid increase occurs that can be recognized as an action potential;
recent studies include [125, 126, 138]. Several techniques have been considered, for example charac-
terising the threshold in time as a solution of a differential equation [ 125]. On the theoretical side,
different approaches have been proposed, depending on the particular family of models considered.
Namely, the two main classes of neuronal models are integrators (type I neurons)and resonators (type
II neurons) [78]. In the case of integrators, the excitability threshold is appropriately de�ned as an
invariant manifold. However, it is ill-de�ned for resonators; refer to section 2.2.3.3. Alternatively, the
excitability threshold has been approximated using the differential geometry of the voltage trace as
a planar curve (local curvature, in�ection points). Such ideas have been looked at from theoretical
perspective [132] and also experimentally tested [ 138, 151, 150].

In this section, we propose to study the excitability threshold via identifying in�ection lines of the
�ow in phase plane. The novelty of this approach consists in better characterising the excitability
threshold using in�ection lines in both the integrator and the resonator model classes.

2.2.3.1 The FitzHugh-Nagumo model

This classic phenomenological model is a polynomial two-dimensional reduction of the Hodgkin-
Huxley that was independently developed by R. FitzHugh [ 54] and J. Nagumo [114]. The model
equations read

�V = V - V3=3- W + Iappl , (71)
�W = " (V + a - bW), (72)

where we choosea = 0.7, b = 0.8, " = 0.01and vary the applied current Iappl as a bifurcation param-
eter. We place ourselves in the regime where the system has a unique equilibrium (type II neurons).
The alternative where the system has more than one equilibrium (type I neurons) will be discussed
in section 2.2.3.3, in particular Fig. 21 is an equivalent (in an enlarged view) of �gures 19 and 20 for
the type I case. System (71)–(72) possesses a cubic one-dimensional critical manifold. Varying Iappl ,
results in the appearance of two Hopf bifurcation points at the vicinity of each fold point (knee) of
the critical cubic manifold f(V,W); V - V3=3- W + Iappl = 0g, seen in (V,W) variable space. The
branches of limit cycles emerging from the Hopf points, feature canard explosions. Spiking solutions
correspond to relaxation oscillations, which exist, in terms of parameter variation, once the canard
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transitions have taken place. To distinguish between sub-threshold from super-threshold dynamics,
the in�ection set ( 29) for this system is computed via the following explicit expression

W� = F(V) -
1

2(1 - bF0(V))

h
(F0(V) - "b )(V + a - bF(V)) �

p
�

i
(73)

with

� = ( V + a - bF(V))2((F0(V) + "b )2 - 4"), F(V) = V -
V3

3
+ Iappl .

We will denote the in�ection set as I " , which corresponds to the solutions of equations W� . In this
particular case, the real part of I " possesses three connected components as depicted in Fig.19(a)
(red curves). The “middle" component of I " , which lies in the region in-between the two folds of the
critical manifold, disappears when W� takes complex values, that is, as soon as(F0(V) + "b )2 - 4" <
0. With the particular cubic function Fcorresponding to the FitzHugh-Nagumo system ( 71)–(72), this
condition, together with the additional constraint that V must lie in between the two folds of the
cubic nullcline ( jVj < 1), provides an upper bound in " for the canard explosion to be well de�ned

" < " crit =
�

1 -
p

1 - b
b

� 2

. (74)

Condition ( 74) is derived by noticing from equation ( 73) that the values of V bounding the intervals
where the in�ection equation has complex conjugated solutions are given by

V1� = �
q

1+ "b + 2
p

" (75)

V2� = �
q

1+ "b - 2
p

" (76)

In fact, V2� are the abscissas of the fold point of the middle component of the in�ection set (see
Fig. 19). Now it becomes clear that the very existence of this middle component of the in�ection set
relies on the fact that V2+ 6= V2- , which reduces to V2� 6= 0. When V2� = 0, the (real part of the)
middle component of the in�ection set shrink to a point, and that corresponds to " = " crit . Further
increasing " does not give any component for the in�ection set near the repelling branch of the
critical manifold. This provides a second example (and �rst neuronal model) to the idea developed
in Section 2.2.2.

The “middle” component of I " , explicitly given by ( 73), separates trajectories of small-amplitude
from large-amplitude oscillations. Indeed, the trajectories with initial conditions taken on the left of
I " (middle component) stay there for any future time whereas the trajectories with initial conditions
taken on its right visit the three branches of the critical manifold; see Fig. 19(a). In other words, initial
conditions to the left of the in�ection curve converge to the stable equilibrium (black dot) following
a short path whereas initial conditions taken on the right of this curve converge to the equilibrium
after completing a spike. This shows that I " gives a good approximation of the threshold manifold.

2.2.3.2 Two-dimensional reduction of the Hodgkin-Huxley equations

The ground breaking work by Hodgkin and Huxley [ 73], which earned them the Nobel prize in
1963, produced the leading model for explaining the action potential generation. The Hodgkin
Huxley model is formed by four nonlinear differential equations for the voltage V, the potassium
current n, the sodium current m and the leak current h, respectively. See appendix 2.2.3.6 for a
presentation of the original model with associated parameters. A two-dimensional reduction of the
Hodgkin-Huxley model was derived in [ 113], building upon the work of [ 82, 129]. In this reduction,
the m dynamics is assumed to be faster than h and n. That is, m is assumed to be slaved toV at all
times. Moreover, the following linear equation between h and n is assumed to hold true:

n(t ) + h(t ) � 0.8.
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Figure 20: In�ection lines of the 2D Hodgkin-Huxley model together with canard cycles, for ¯ gNa = 120. Panel
(b) is an enlargement of panel (a) in the region close to the repelling branch of the critical manifold
(dashed box).

Consequently, a two-dimensional reduced model can be derived, which still reproduces the major
features of the action potential generation. The following model equations represent the reduced
dynamics of the transmembrane voltage and ionic currents:

C �V = Iappl - ḡNa m1 (V)3(0.8- n)(V- VNa )- ḡK n4(V- VK )- gL (V- VL ), (77)

�n = � n (V)(1 - n) - � n (V)n, (78)

with

m1 (V) =
� m (V)

� m (V) + � m (V)
.

Similarly to the previous example, action potentials arise via a canard explosion in the two-dimensional
reduction of the Hodgkin-Huxley model ( 77)–(78). As shown in Fig. 10, the voltage nullcline has
a cubic shape (or S shape) with a Hopf bifurcation point in the vicinity of the lower fold point
of the cubic curve. Then the action potential is generated through a canard explosion which gives
rise to large-amplitude oscillations. A continuous variation of parameter Iappl �rst induces canards
without head (sub-threshold oscillations), followed by canards with head (�rst spiking orbits). The
transition orbit passes tangentially through the upper fold of the critical manifold and is referred
to as the maximal canard. Finally, relaxation cycles are observed. Note that for system (77)–(78), the
Hopf bifurcation is subcritical, which means that there are unstable as well as stable canards without
head [44, 91]. We also determine an accurate approximation of the threshold as a subset of the in-
�ection set. In this particular case, the in�ection set corresponds to a polynomial equation of degree
9 (see Appendix 2.2.3.6), which cannot be solved by radicals; thus we resort to the software M aple
to solve it. In Fig. 20 a comparison between the in�ection sets against the limit cycles computed via
numerical continuation is performed. Observe that, as in the case of the FitzHugh-Nagumo model,
the component of the in�ection set located in between the two fold points of the critical manifold
gives a good approximation of the voltage threshold manifold, which loosely speaking represents
the curve in phase space separating initial conditions that lead to sub-threshold oscillations from
initial conditions leading to a spike. Contrary to the FitzHugh-Nagumo model, which is polynomial
and only reproduces the observed behaviour qualitatively, the Hodgkin-Huxley model contains vari-
ables and parameters of biophysical relevance. Hence, it makes sense to look at the dependence of
the in�ection set on parameter variation and to determine how it can affect the spiking activity of
the model.

2.2.3.3 Threshold approximation via in�ection set for integrators and resonators

A neuron is said to be excitable (non-spiking) when small �uctuation of the electrical activity does
not cause the cell to spike; only a “large enough” perturbation from the rest state causes the cell to
spike. This suggests that a well de�ned threshold will determine how much depolarisation the
neuron membrane can sustain without producing a spike. However, the threshold will generi-
cally depend on the type of excitability (i.e. the dynamical mechanism that triggers spiking) of
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the cell, which correspond to different bifurcation scenarios. Broadly speaking, in two-dimensional
neuronal models there are two classes of excitability, which the neuroscience literature denotes as
Integrators(or type I neurons) and Resonators(or type II neurons) [78]. In type I neurons, spiking solu-
tions arise, upon variation of the applied current, via a Saddle-Node bifurcation on Invariant Circle
(SNIC), that is, the creation of a limit cycle in place of a double connection between a saddle and a
sink that coalesce and disappear in a saddle-node bifurcation; see [78] for more details. On the other
hand, spiking solutions in type II neurons arise via a Hopf bifurcation. In the most simple case, both
classes of models can be represented by the FitzHugh-Nagumo equations (71)–(72), which we recall
here

�V = V - V3=3- W + Iappl ,
�W = " (V + a - bW).

In type I neurons, there exists a saddle type equilibrium on the middle branch of the critical mani-
fold for values of the bifurcation parameter before the SNIC bifurcation. Consequently, in the case
of models of the form ( 71)–(72) the slow nullcline must be such that it intersects the S-shaped critical
manifold three times. In contrast, in Type II neurons, the associated dynamical system has a unique
equilibrium for all parameter values. In the (simple) case of the FitzHugh-Nagumo model, one can
obtain a resonator or an integrator according to the chosen values of parameters a and b.

2.2.3.4 Type I neurons

The SNIC bifurcation gives rise to a family of periodic orbits through an in�nite period bifurcation.
Consequently, the so-called current-frequency (I-f) curve is continuous through the bifurcation. Fur-
thermore, in the context of two-dimensional integrator models, the threshold manifoldis rigorously
de�ned by the stable manifold of the saddle equilibrium. The saddle point must be on the repelling
slow manifold. This follows from the fact that the repelling slow manifold is exponentially repelling
for any initial conditions that are not on it, yet the equilibrium remains O(" ) close to it. Moreover,
note that the dynamics reduced the to the repelling slow manifold is an exponential contraction to
the equilibrium. Hence the repelling slow manifold coincides in this case with the unique stable
manifold of the saddle point and is then unique (see [ 55, 64] for basic material on stable manifolds).
The two manifolds agree, up to a vicinity of the upper or the lower fold point of the critical mani-
fold, and they can be extended beyond these points. Additionally, we show in this section that the
in�ection set, which also passes through the saddle equilibrium, is tangent at this point to both the
repelling slow manifold and the stable manifold of this equilibrium. Since the in�ection set and
the repelling slow manifold are O(" 2) close in this region (shown in section 2.2.3.5), the in�ection
set is also O(" 2) close to the stable manifold of the saddle, that is, to the threshold, outside an
" -neighbourhood of the upper fold point of the critical manifold.

We now show that a subset of the in�ection set is good approximation of the threshold. We perform
the calculations in the general framework already considered in section 2.2.1.4, that is, the frame-
work of Liénard type slow-fast systems. For simplicity, we will only assume a linear dynamics on the
slow variable; the prototype system we are considering is the FitzHugh-Nagumo system ( 71)-(72),
this is why we keep V and W for the variable names in what follows.

We then study a system of the form

�V = F(V) - W (79)
�W = " (V + a - bW). (80)

In the particular case of system (71)-(72), we have F(V) = V - V3=3+ Iappl . Let us assume that the
system (71)-(72) has an equilibrium with real eigenvalues of opposite sign, that is, a saddle equilib-
rium, on the repelling branch of the critical manifold. This equilibrium has the form (Veq, F(Veq))
where Veq is the abscissa of one intersection point between the nonlinear nullcline fW = F(V)gand
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the linear nullcline fW = V + a
b g. The in�ection equation associated with system ( 79)-(80) can be

written in the form
�

dW
dV

� 2

-
�
F0(V + "b )

� dW
dV

+ " = 0, (81)

and its solution gives the slope of the in�ection set, in particular at the equilibrium point (Veq, F(Veq)) ,
which by de�nition belongs to the in�ection set. So we have

dW
dV

�
�

� ,( Veq,F( Veq))

=
1
2

�
F0(Veq) + "b �

q
(F0(Veq) + "b )2 - 4"

�
. (82)

On the other hand, the Jacobian matrix J of system (71)-(72) at the equilibrium (Veq, F(Veq)) is given
by

J =

 
F0(Veq) - 1

" - "b

!

, (83)

so its eigenvalues � � are

� � =
1
2

�
F0(Veq) - "b �

q
(F0(Veq) + "b )2 - 4"

�
, (84)

and the associated eigenvectors v� = ( v1� , v2� ) satisfy

v1�

v2�
=

� � + "b
"

=
1
2"

�
F0(Veq) + "b �

q
(F0(Veq) + "b )2 - 4"

�
. (85)

Consequently, the expressions (82) and (85) are identical and this demonstrates that each branch
of the in�ection set, evaluated at the equilibrium point, is tangent to an invariant manifold of this
point (stable or unstable, depending on the branch). Note that from equation ( 84), we have a saddle
equilibrium provided F0(Veq) > 1

b ; this is because one can rewrite the terms under the square root as
(F0(Veq) - "b )2 + 4"(bF0(Veq) - 1). Furthermore, the right-hand side of equation ( 82) indicates that

lim
" ! 0

v2+

v1+
= 0. (86)

On the other hand, doing a Taylor expansion about " = 0 of the right-hand side of equation ( 85)
gives

v2-

v1-
= F0(Veq)(1+ O(" )) . (87)

Equations (86) and (87) tell us that the unstable manifold of the saddle equilibrium has a quasi-
horizontal tangent at the equilibrium, and the stable manifold of the saddle equilibrium has the
same slope as the critical manifold at the equilibrium, respectively. This con�rms what can be
observed in Fig. 12(a).

The above calculations prove that the threshold approximation by the in�ection set holds for inte-
grator type neurons. This shows that when the threshold is exactly given by the stable manifold of
a saddle equilibrium, one recovers this approximation by considering the in�ection line, which is
easier to compute. An illustration of this point is given in Fig. 21 (a). The computation is made for
system (71)–(72) with a = 0.7, b = 1.5 and Iappl = 0.465; in particular the repelling slow manifold is
computed by direct backward simulation using a stiff solver. It can be noticed in this �gure that the
threshold, given here by the stable manifold (blue curve) of the saddle equilibrium Eq = ( Veq,Weq)
is very well approximated by one component of the in�ection line. Note that the unstable manifold
(green curve) of Eq is tangent to the in�ection set at the equilibrium point, which comes from ( 82)
and (85) as well.
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Figure 21: Approximation of the excitability threshold by the in�ection line in both the integrator case (a) and
the resonator case (b). Panel (a) gives an illustration of the closeness between the in�ection line and
the stable manifold Ws (Eq) of the saddle equilibrium Eq in the integrator case. For the resonator
case, panel (b) provides an illustration of the distance between the upper fold point (VF,WF) of
the critical manifold S0 , the upper horizontal fold point (Vf ,Wf ) of the in�ection line I " and the
right-most point where the repelling slow manifold yU meets the in�ection line.

2.2.3.5 Type II neurons

Unlike the �rst case, Type II neuronsadmit sub-threshold oscillations. The transition from sub-
threshold to spiking solutions occurs via a Hopf bifurcation for which the emanating branch of
periodic solutions features a rapid transition through a canard explosion. This canard explosion
starts with sub-threshold oscillatory (periodic) solutions (canard without head), followed by the
�rst spiking solutions (canards with head) — which exist for a very small range of parameters —
and then relaxation oscillations (full spiking dynamics) that persists for a wide parameter range.
Note that, in this case there is no saddle equilibrium on the repelling branch of the critical manifold.
Thus the threshold is more delicate to compute, however it is well approximated by the trajectory
containing the maximal canard segment, that is, the repelling slow manifold [ 78].

It was proven in [ 17] that the upper part of the middle component of the in�ection line is O(" 2)-close
to the repelling slow manifold, for Liénard type systems of the form

�V = F(V) - W (88)
�W = " (V - c), (89)

(i.e. a = - c, and b = 0 system (71)-(72)). More speci�cally, one has the following asymptotic
expansions

WU (V) = F(V) +
c - V
F0(V)

" +
�

c - V
F0(V)3 +

(c - V)2F00(V)
F0(V)4

�
" 2 + O(" 3) (90)

Wi (V) = F(V) +
c - V
F0(V)

" +
c - V
F0(V)3 " 2 + O(" 3), (91)

where WU denotes the repelling slow manifold and Wi the upper branch of the middle component
of the in�ection set I " . The derivation of ( 90) essentially relies on formally expanding WU in powers
of " and then using the trajectory equation (F(V) - W) dW

dV = " (V - c), plugging in the expansion for
WU in and equating the terms of same degree in " ; the derivation of ( 91) is obtained by simply tak-
ing a Taylor expansion of the square-root term in the solution to the in�ection equation ( 81) about
" = 0. Both calculations are explained in detail in [ 17].
By applying equation ( 29) to such a Liénard system, one can easily solve explicitly the quadratic
in�ection equation and show that these expansions are valid as long as F0(V)2 - 4" > 0 (see equa-
tion (35) in section 2.2.1.2), that is, outside a neighbourhood of size O(" ) of the fold points of the
critical manifold. Here again, only the middle component of the in�ection set I " can serve as an
approximation of the threshold.

The above calculations prove that the repelling slow manifold — which in the case of type II neu-
rons gives the best de�nition of the threshold — is O(" 2)-close to the in�ection set, more specif-
ically to the upper solution branch in the middle component of the in�ection set, away from an
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Figure 22: Example of limit cycle of the FitzHugh-Nagumo system that crosses the in�ection line I " (see side
panels) and do not spike. Also shown is the upper fold point (VF,WF) of I " , the critical manifold
S0 and its in�ection point I c .

" -neighbourhood of the fold points; see Fig. 21(b) where the in�ection set (in red) and the repelling
slow manifold (in blue) start diverging from one another when approaching the upper fold point
(VF,WF) of the critical manifold. It is then legitimate to try to delimit the portion of the in�ection
set that truly provides the best approximation to the threshold.

In order to identify the region where the in�ection line gives a good approximation to the threshold,
one can consider the upper horizontal fold point (Vf ,Wf ) of the middle component of I " . This point
satis�es W 0

i (Vf ) = 0, where the " expansion for W 0
i is given by

W 0
i (V) = F0(V) -

1
F0(V)2

�
(c - V)F00(V)

�
1+

4
F0(V)2

��
" + (92a)

(c - V)F00(V) - F0(V)
F0(V)4 " 2 + O(" 3). (92b)

An explicit " -expansion of the abscissaVf of this point is accessible onceF is known explicitly.

The existence of this point (Vf ,Wf ) is guaranteed by the results obtained in Section 2.2.1.2 for the
case" > 0 (as a perturbation of the situation at " = 0) at a canard point; see Fig.12(b). Moreover, the
maximal canard segment corresponds to the repelling slow manifold and, hence, the best approxi-
mation to the threshold in this case; it can be represented by an expansion in " given by W = WU .
Besides, locally near (Vf ,Wf ), both the maximal canard segment and the (upper branch of the mid-
dle component of the) in�ection set are graphs of functions over V. It is then clear that the distance
between both objects increases past the intersection point between these two objects, which we con-
jecture is at an distance of order " 2 from (Vf ,Wf ). This is because the maximal canard segment goes
up to the right fold of the critical manifold and the in�ection set starts going down past its fold
point. Therefore, one can consider that the in�ection set gives a good approximation of the maximal
canard segment and, hence, of the threshold, up to (Vf ,Wf ), and we choose this point rather than
the intersection point between the maximal canard segment and the in�ection set, given that it is
easier to compute and that they both converge to the upper fold (VF,WF) of the critical manifold as
" tends to zero. An illustration of this point is depicted in Fig. 21 (b), where the computations of the
in�ection line I " and the repelling slow manifold have been made in system ( 71)–(72) for a = 0.7,
b = 0.8 and I = 0.29572.

2.2.3.6 In�ection sets as weak threshold boundaries for resonators

As discussed in the previous section, the in�ection line provides a reasonable approximation to the
excitability threshold, which can be quanti�ed as a function of " . However, in the case of resonator
models, this approximation is weaker and the de�nition of threshold has to be extended. Following
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Fig. 22, note there are trajectories that do traverse the in�ection set without spiking, precisely, ca-
nards without head, whose “height" (with respect to the y-coordinate) is higher than the in�ection
point ( I c ) of the critical manifold S0 . That is, since the critical manifold has itself an in�ection point,
then for small enough " , half of the family of canards without head do have an in�ection point. In
fact, these cycles traverseI " twice and this is illustrated in Fig. 22, in a case where one such cycle
and I " exchange their positions (observe the zoomed side panels). Consequently, the in�ection line
should not be seen as providing a hard boundary for excitability threshold. It still gives an O(" 2)
approximation to the threshold, analytically tractable and easily computable, the best approxima-
tion remaining the maximal canard segment. A few trajectories do cross the in�ection set without
crossing the threshold and spiking, but they lie in phase space within an exponentially small region.

the full hodgkin -huxley equations

We recall here the four-dimensional Hodgkin-Huxley model from [ 73] together with the original
parameter values. The equations read

�V = ( I - ḡNa m3h(V - VNa ) - ḡK n4(V - VK ) - gL (V - VL ))=C, (93)

�n = � n (V)(1 - n) - � n (V)n, (94)

�m = � m (V)(1 - m) - � m (V)m, (95)
�h = � h (V)(1 - h) - � h (V)h, (96)

where

� n (V) =
0.01(V + 55)

1 - exp(- 0.1(V + 55))
, � n (V) = 0.125exp(-( V + 65)=80),

� m (V) =
0.1(V + 40)

1 - exp(- 0.1(V + 40))
, � m (V) = 4exp(-( V + 65)=18),

� h (V) = 0.07exp(- 0.05(V + 65)) , � h (V) =
1

1+ exp(- 0.1(V + 35))
.

The original parameter values for the Hodgkin-Huxley equation are given in the table below

Ionic conductances Reversal potentials Membrane capacitance

(mmho/cm 2) (mV) (�F /cm 2)

ḡNa ḡK gL VNa VK VL C

120 36 0.3 50 - 77 - 54.4 1
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Elements of the material presented in this chapter have been published in [ 28]. Our main contribu-
tion to the work presented in this chapter concerns the numerical computation of slow manifolds
and canards near a folded-node singularity as well as the computation of branches of such canards,
in the context of both minimal folded-node systems and more general MMO slow-fast systems. We
�rst recall the main results about canards near a folded node, as well as a couple of other mech-
anisms that can generate MMO dynamics. Then, we explain the numerical method (based on the
continuation of BVPs) in detail; the method to compute folded-node canards is illustrated, in par-
ticular, on a three-dimensional reduction of the Hodgkin-Huxley model. Finally, in the last section,
we give preliminary results that aim to extend the singularity theory approach for in�ection lines
developed in Chapter 2 (Section 2.2.1.2) to the case of “two slow/one fast” systems near a folded
node.

Oscillations with clearly separated amplitudes have been observed in several application areas, no-
tably in chemical reaction dynamics [ 74, 6, 157]. Within each period, pairs of small-amplitude oscil-
lations (SAOs) alternate with pairs of large-amplitude oscillations (LAOs). The result is an example
of a mixed-mode oscillation, or MMO, displaying cycles of (at least) two distinct amplitudes. There
is no accepted criterion for this distinction between amplitudes The pattern of consecutive large
and small oscillations in an MMO is an aspect that draws immediate attention. Customarily, the
notation Ls1

1 Ls2
2 � � � . is used to label series that begin with L1 large amplitude oscillations, followed

by s1 small-amplitude oscillations, L2 large-amplitude oscillations, s2 small-amplitude oscillations,
and so on. We will call Ls1

1 Ls2
2 � � � the MMO signature; it may be periodic or aperiodic. Signatures

of periodic orbits are abbreviated by giving the signature of one period. Additionally, MMOs have
been observed in laser systems and in neurons. We present an example with a three-dimensional
reduction of the famous Hodgkin-Huxley model for Action Potential generation [ 73, 135, 136].

Mixed-mode oscillations may be periodic orbits, but we then ask questions that go beyond those
typically examined by standard/classical dynamical systems theory. Speci�cally, we seek to dissect
the MMOs into their epochs of small- and large-amplitude oscillations, identify each of these epochs
with geometric objects in the state space of the system, and determine how transitions are made
between these. When the transitions between epochs are much faster than the oscillations within
the epochs, we are led to seek models for MMOs with multiple time scales.

Early studies of MMOs in model systems typically limited their investigations to cataloging the
patterns of MMO signatures found as a parameter is varied. Barkley [ 5] is an exception: he as-
sessed the capability of multiple-time-scale models for MMOs to produce the behavior observed
by Hudson, Hart and Marinko [ 74]. He compared the MMOs from these experiments and from a
seven-dimensional model for the BZ reaction proposed by Showalter, Noyes and Bar-Eli [ 141] with
three-dimensional multiple-time-scale models. Barkley was unable to produce a three-dimensional
model with the qualitative characteristics of the MMOs in the larger model, but such models with
many of the desired properties were subsequently found. In this section, our central focus is upon
MMOs whose SAOs are a byproduct of local phenomena occurring in generic multiple-time-scale
systems. Analogous to the role of normal forms in bifurcation theory, understanding the multiple-
time-scale dynamics of MMOs in their simplest manifestations leads to insights into the properties
of MMOs in more complex systems.

39
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3.1 slow -fast mechanisms for mmos ; application to neuronal dynamics

3.1.1 Three main slow-fast scenarios

3.1.1.1 The folded node scenario

Folded nodes are only de�ned for the singular limit ( 4) of system (1) on the slow time scale. How-
ever, they are directly relevant to MMOs because for " > 0 small enough, trajectories of (1) that �ow
through a region where the reduced system has a folded node, undergo small oscillations. Benoît [ 8,
9, 10] �rst recognized these oscillations. Wechselberger and collaborators [ 18, 144, 156] gave a de-
tailed analysis of folded nodes while Guckenheimer and Haiduc [ 63] and Guckenheimer [ 61] com-
puted intersections of slow manifolds near a folded node and �ow maps along trajectories passing
through these regions. From Theorem 1.1.2 we know that the eigenvalue ratio 0 < � < 1 at the folded
node is a crucial quantity that determines the dynamics in a neighborhood of the folded node. In
particular, � controls the maximal number of oscillations. The studies mentioned above use normal
forms to describe the dynamics of oscillations near a folded node. Two equivalent versions of these
normal forms are

8
>><

>>:

" �x = y - x2 ,

�y = z - x,

�z = - � ,

(97)

and
8
>><

>>:

" �x = y - x2 ,

�y = -( � + 1)x - z,

�z = 1
2 � .

(98)

Note that � is the eigenvalue ratio of system (98) and that � 6= 0 and � 6= 0 imply that no equilibria
exist in (97) and (98). If we replace (x, y, z) in system (97) by (u, v,w) and call the time variable � 1 ,
then we obtain system (98) via the coordinate change

x = ( 1+ � )1=2 u, y = ( 1+ � ) v, z = -( 1+ � )3=2 w,

and the rescaling of time � = � 1=
p

1+ � , which gives

� =
�

2(1+ � )2 or � =
- 1+

p
1 - 8�

- 1 -
p

1 - 8�
. (99)

Therefore, in system (97) the number of secondary canards changes with the parameter � : when �
is small, � � 2� . If the “standard” scaling [ 144] x = " 1=2 x̄, y = " ȳ , z = " 1=2 z̄, and t = " 1=2 t̄ , is
applied to system (97), we obtain

8
>><

>>:

x̄0 = ȳ - x̄2 ,

ȳ0 = z̄ - x̄,

z̄0 = - � .

(100)

Hence, the phase portraits of system (97) for different values of " are topologically equivalent via
linear maps. The normal form ( 100) describes the dynamics in the neighborhood of a folded node,
which is at the origin here, with eigenvalue ratio � as given in (99). Trajectories that come from
y = 1 with x > 0 and pass through the folded-node region make a number of oscillations in the
process, before going off to y = 1 with x < 0 . There are no returns to the folded-node region in
this system.



3.1 slow -fast mechanisms for mmos ; application to neuronal dynamics 41

Figure 23: Invariant slow manifolds of system ( 100) with � = 0.025 in a neighborhood of the folded node.
Both the attracting slow manifold Sa

" (red) and the repelling slow manifold Sr
" (blue) are extensions

of Fenichel manifolds. The primary strong canard  s (black curve) and three secondary canards � 1
(orange), � 2 (magenta) and � 3 (cyan) are the �rst four intersection curves of Sa

" and Sr
" ; the inset

shows how these objects intersect a cross-section orthogonal to the fold curve fx = 0, y = 0g.

Let us �rst focus on the number of small oscillations. If 2k + 1 < � - 1 < 2k + 3, for some k 2 N ,
and � - 1 6= 2(k + 1) then the primary strong canard  s twists once and the i -th secondary canard
� i , 1 6 i 6 k, twists 2i + 1 times around the primary weak canard  w in an O(1) neighborhood
of the folded-node singularity in system ( 100), which corresponds to an O(

p
" ) neighborhood in

systems (97) and (98) [144, 156]. (A twist corresponds to a half rotation.) We illustrate this in Fig. 23
for system (100) with � = 0.025. Note that � = 0.025 corresponds to � � 0.0557. Hence, 2k + 1 <
� - 1 � 17.953 < 2k + 3 for k = 8, so Theorem 1.1.2 states that there exist eight secondary canards
� i , 1 6 i 6 8, along with the strong and weak canards  s=w . Figure 23 shows the attracting slow
manifold Sa

" and the repelling slow manifold Sr
" of (100) in a three-dimensional region bounded

by the planes fz = � � g, denoted � � and � - � , with � = 0.14; see Section3.2 for details on how
these computations were done. Even though the rescaled normal form ( 100) does not depend on
" anymore, we still indicate the " -dependence of the slow manifolds to distinguish them from the
attracting and repelling sheets of the critical manifold; furthermore, Sa

" and Sr
" can be thought of as

the slow manifolds of ( 97) or (98). Both manifolds are extensions of Fenichel manifolds and illustrate
how the slow manifolds intersect near the fold curve of the critical manifold; the fold curve is the
z-axis. Due to the symmetry

(x̄, ȳ , z̄, t̄ ) 7! (- x̄, ȳ , - z̄, - t̄ )

of the normal form ( 100), the two slow manifolds Sa
" and Sr

" are each other's image under rotation by
� about the y-axis. The intersection curves in Fig. 23(a) are the canard orbits; labeled are the primary
strong canard  s (black) and the �rst three secondary canards � 1 (orange), � 2 (magenta) and � 3

(cyan). The inset panel (b) shows the intersection curves of Sa
" and Sr

" with the plane � fn := fz = 0g
that contains the folded node at the origin. Canard orbits are identi�ed in � fn as intersection points;
only � 1–� 3 are labeled but notice that there are further canards (including the weak canard  w ) very
close together in the center of the �gure.

A trajectory entering the fold region becomes trapped in a region bounded by strips of Sa
" and Sr

"

and two of their intersection curves. The intersection curves are maximal canards, and the trajectory
is forced to follow the oscillations of these two bounding canard orbits. In order to illustrate how
many canards there are and precisely how many oscillations they make, we show in Figure 24(a)
the �ow map of ( 100) with � = 0.025. Due to the strong contraction along Sa

" , the �ow map through
the fold region is strongly contracting in one direction for trajectories that do not extend along
Sr

" . Hence, the �ow map will be almost one dimensional and can be approximated by following
trajectories starting on the critical manifold far away from the fold curve. The �ow map shown
in Figure 24(a) was obtained by integrating 500 equally-spaced initial values on the line segment
fx = 20, y = x2 = 400, - 3.25 6 z 6 - 0.75g until they reach the plane x = - 10; plotted are the
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Figure 24: Numerical study of the number of rotational sectors for system ( 100) with � = 0.025. Panel (a)
illustrates the �ow map through the folded node by plotting the z-coordinates zout of the �rst
return to a cross-section x = - 10 of 500 trajectories with equally-spaced initial values (x, y, z) =
(20,400, z in ), where - 3.25 6 z in 6 - 0.75. Panels (b1)–(b4) show four trajectories projected onto
the (x, y)-plane that correspond to the points labeled in panel (c), where z in = - 1.25 in panel (b1),
z in = - 1.5 in panel (b2), z in = - 2 in panel (b3), and z in = - 2.25 in panel (b4).

z-coordinates of the �nal values versus the initial values. One can see ten segments in this �ow
map that are separated by discontinuities. These discontinuities mark sectors on the line segment
fx = 20, y = x2 = 400, - 3.25 6 z 6 - 0.75gthat correspond to an increasing number of SAOs; in
fact, each segment corresponds to a two-dimensional sector I i , 0 6 i 6 9, on the attracting sheet
Sa

" of the slow manifold. The outer sector I0 on the right in Fig. 24(a) is bounded on the left by the
primary strong canard  s ; sector I1 is bounded by  s and the �rst maximal secondary canard � 1 ;
sectors I i , i = 2, : : : , 8, are bounded by maximal secondary canard orbits � i - 1 and � i ; and the last
(left outer) sector I9 is bounded on the right by � 8 . On one side of the primary strong canard  s

and each maximal secondary canard � i , 1 6 i 6 8, trajectories follow the repelling slow manifold
Sr

" and then jump with decreasing values of x. On the other side of  s and � i , trajectories jump
back to the attracting slow manifold and make one more oscillation through the folded-node region
before �owing toward y = 1 . The four panels (b1)–(b4) in Fig. 24 show portions of four trajectories
projected onto the (x, y)-plane; their initial values are (x, y, z) = ( 20,400, z in ) with z in as marked in
panel (a), that is, z in = - 1.25, z in = - 1.5, z in = - 2 and z in = - 2.25 for (b1)–(b4), respectively. The
trajectory in panel (b 1) was chosen from the sector I2 , bounded by � 1 and � 2 ; this trajectory makes
two oscillations. The trajectory in panel (b 2) comes from I5 and, indeed, it makes �ve oscillations.
The other two trajectories, in panel (b 3) and (b4), make seven and nine oscillations, respectively, but
some of these oscillations are too small to be visible.

The actual widths of the rotational sectors in Fig. 24are very similar due to the " -dependent rescaling
used to obtain (100). When the equations depend on " as in (97) and (98), however, the widths of the
sectors depend on" . In fact, all sectors are very small except for the sector corresponding to maximal
rotation, which is bounded by � k and the fold curve. For an asymptotic analysis of the widths of
the rotational sectors that organize the oscillations, system (98) is more convenient, because the
eigenvalues of the desingularized slow �ow are - � and - 1. Brøns, Krupa and Wechselberger [18]
found the following.

Theorem 3.1.1 Consider system(12) and assume it has a folded-node singularity. At anO(1)-distance from
the fold curve, all secondary canards are in anO(" ( 1- � ) =2 )-neighborhood of the primary strong canard.
Hence, the widths of the rotational sectorsI i , 1 6 i 6 k, is O(" ( 1- � ) =2 ) and the width of sectorI k + 1 is
O(1).
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Figure 25: Schematic diagram of the candidate periodic orbit � c that gives rise to MMOs with SAOs produced
by a folded-node singularity. The candidate � c approaches the folded node along the attracting
sheet Sa (red) of the critical manifold (red) in the sector of maximal rotation associated with the
weak singular canard ̃ w . The distance to the strong singular canard ̃ s is labeled � . When the
trajectory reaches the folded node (black dot) it jumps along a layer and proceeds to make a global
return.

Note that, as � ! 0 (the folded saddle-node limit), the number of rotational sectors increases
inde�nitely, and the upper bounds on their widths decrease to O(" 1=2 ).

folded node with a global return mechanism . A global return mechanism may re-
inject trajectories to the folded-node funnel to create an MMO. In this situation, we create a candi-
date trajectory as is illustrated in Fig. 25. Starting from the folded node we follow the fast �ow until
it returns to the funnel and then �ows back to the folded node. Let us denote by � the distance from
the singular strong canard ̃ s , measured on a cross-section at a distanceO(1) away from the fold, at
which the candidate trajectory returns to the funnel. Provided that certain technical conditions are
satis�ed, one can show that this candidate gives rise to an MMO periodic orbit with signature 1s ,
where the number s of SAOs is as predicted by Theorem 3.1.1; this theorem also implies that the
candidate is most likely to pass through the sector I k + 1 of maximal rotation, where k is determined
by the eigenvalue ratio � . Overall, we have the following result.

Theorem 3.1.2 (Generic 1k + 1 MMOs [ 18]) Consider system(12) with the following assumptions:

(A0) Assume that0 < � � 1 is suf�ciently small," 1=2 � � andk 2 N is such that2k + 1 < � - 1 < 2k + 3.

(A1) The critical manifoldS is (locally) a folded surface.

(A2) The corresponding reduced problem possesses a folded-node singularity.

(A3) There exists a candidate periodic orbit (as constructed in Fig.25), which consists of fast �bers of the
layer problem, a global return segment, and a segment onSa within the funnel that starts at distance�
from ̃ s (as measured at a distanceO(1) away from the foldF).

(A4) An appropriate transversality hypothesis is satis�ed.

Then there exists a stable MMO with signature1k + 1 .

The transversality hypothesis of (A 4) is cumbersome to formulate in a general setting. In the context
of an S-shaped manifold, it concerns the projection of the two fold curves onto the opposite sheets
of the attracting slow manifold and the �ow along these sheets; see [ 18].

Theorem 3.1.2 not only requires suf�ciently small 0 < " � 1 but also � � " 1=2 (while 0 < � < 1 ).
However, " is usually of the order O(10- 2) in applications, so that � must be close to 1 in order for
the theorem to apply. Therefore, such maximal MMO signatures are seldom seen in applications.
Furthermore, the SAOs for an MMO with signature 1k + 1 tend to be too small to be readily visible.
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Figure 24 illustrates that the amplitudes of the SAOs are much larger for trajectories that approach
the folded node close to the strong canard and lie in one of the sectors I i with i 6 k rather than I k + 1 .
We know from Theorem 3.1.1 that the maximal width of a sector I i with i 6 k is bounded from
above by O(" ( 1- � ) =2 ) with � < 1=3 . When � is O(" ( 1- � ) =2 ) one may actually �nd stable MMOs
with i 6 k SAOs, which is the following result [ 18].

Theorem 3.1.3 Suppose system(12) satis�es assumptions (A0)–(A3) of Theorem3.1.2 and additionally:

(A5) For � = 0, the global return point is on the singular strong canard̃ s and as� passes through zero the
return point crosses̃ s with nonzero speed.

Suppose now that� = O(" ( 1- � ) =2 ) > 0. Then, for suf�ciently small0 < " � 1 andk 2 N such that2k +
1 < � - 1 < 2k + 3 the following holds. For eachi , 1 6 i 6 k, there exist subsectorsĨ i � I i with corresponding
distance intervals(� -

i , � +
i ) of widthsO(" ( 1- � ) =2 ), which have the property that if� 2 (� -

i , � +
i ) then there

exists a stable MMO with signature1i .

Theorem 3.1.3 says that we should observe a succession of stable1i MMOs with increasingly more
SAOs as � increases (assuming that � remains �xed in such a parameter variation). In the transi-
tion from a 1i to a 1i + 1 MMO signature, that is, in the regions in between intervals (� -

i , � +
i ) and

(� -
i + 1 , � +

i + 1) we expect to �nd more complicated signatures, which are usually a mix of 1i and 1i + 1 .
Geometrically, different stable MMOs are selected as one moves the �ow map in Fig. 24(a) up or
down; since the rotational sector I k + 1 for general " -dependent systems has much larger width than
the other sectors, one should expect that the transitions through I i with i 6 k happen rather quickly
during a parameter-induced variation of � .

If � = O(" 1=2 ), that is, assumption (A 0) does not hold, then we may still expect stable MMO
signatures of type 1k + 1 , as soon as the global returns falls inside the funnel region and � = O(1) [93];
note that k = O(1="1=2 ) and the amplitudes of the SAOs for such an MMO will again be tiny. If
� = O(" 1=2 ) and � = O(" 1=2 ) as well, the mixed MMO signatures with larger-amplitude SAOs are
more likely to occur. Here, global returns come very close to the secondary maximal canard � 2 , �rst
slightly to the left (hence, into the rotational sector I2 with two SAOs) and then slightly to the right
(hence, into the rotational sector I3 with three SAOs), creating this MMO signature.

The theory described so far does not capture all of the possible dynamics near a folded node.
If higher-order terms are included in the normal forms ( 97)-(98), then equilibria may appear in
an O(" 1=2 ) neighborhood of the folded node as soon as � = O(" 1=2 ) or smaller. This observation
motivates the study done, in particular, in [ 62], of the singular Hopf bifurcation in three dimensions.

3.1.1.2 The singular Hopf bifurcation scenario

Equilibria of a slow-fast system ( 1) always satisfy f (x, y, � , " ) = 0; generically, they are located in
regions where the associated critical manifold S is normally hyperbolic. However, in generic one-
parameter families of slow-fast systems, the equilibrium may cross a fold of S. When this happens
the folded singularity at which the equilibrium crosses the fold curve is an actual equilibrium of the
slow-fast system. In generic vector �elds with two slow variables the folded singularity thus created
is a folded saddle-node, which exists exactly at the speci�c parameter value at which the equilibrium
crosses the fold curve; one speaks of afolded saddle-node of type II[108]. This is distinguished from
the folded saddle-node of type I[144, 93], which refers to a saddle-node bifurcation of the reduced �ow
only, meaning that it does not involve a true equilibrium of the full system. This distinction stems
from the fact that — as we have seen with the examples of the folded saddle and the folded node
— a singularity of the reduced system need not be the projection of an equilibrium of the full slow-
fast system. However, a folded saddle-node of type II is an actual equilibrium of the full system.
Importantly, this implies that, when " > 0 , the system has a singular Hopf bifurcation, which occurs
generically at a distance O(" ) in parameter space from the folded saddle-node bifurcation of type
II [ 62].
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3.1.1.3 Three-time-scale systems

When the coef�cients � , a, b and c in the normal forms of the singular Hopf bifurcation [ 61, 62] are
of order O(" ) or smaller, then z evolves slowly relative to y and the system actually has three time
scales: fast, slow and super slow. Krupa et al. [94] studied this regime with geometric methods and
asymptotic expansions for the case a = c = 0. They observed MMOs for which the amplitudes of
the SAOs remain relatively large. Their analysis is based upon rescaling the system such that it has
two fast variables and one slow variable. We will not develop further the case of three-time-scale
systems in this manuscript; see [62, 94, 28] for more details.

3.1.2 MMOs in a reduced Hodgkin–Huxley system

We now develop a case study that illustrates these different local mechanisms for MMOs in the three-
dimensional reduced Hodgkin–Huxley model, which features a folded node, but has a subcritical
singular Hopf bifurcation; see [ 82, 135] for the derivation and also [ 27], where the same example
was used. The reduced model only describes the dynamics for voltage (V), the activation of the
potassium channels (n) and the inactivation of the sodium channels ( h); the activation of the sodium
channels (m) is very fast and it reaches its equilibrium state m = m1 (V) (almost) instantaneously
which can be justi�ed mathematically by a center-manifold reduction [ 135]. The evolution of the
gates n and h is considered slow while the evolution of the voltage V is considered fast. To justify
this time-scale separation, we nondimensionalize the Hodgkin–Huxley equations by introducing a
dimensionless voltage variable v = V=kv and a dimensionless time � = t=k t where kv = 100 mV is
a reference voltage scale andkt = 1 ms is a fast reference time scale; this gives

8
>>>>>>>>>><

>>>>>>>>>>:

" �v = f (v, h, n) := Ī - m3
1 (v) h (v - ĒNa)

- ḡk n4 (v - ĒK) - ḡl (v - ĒL),

�h = g1(v, h) :=
kt

� h

(h1 (v) - h)
t h (v)

,

�n = g2(v, n) :=
kt

� n

(n1 (v) - n)
t n (v)

,

(101)

with dimensionless parameters Ēx = Ex =kv , ḡx = gx =gNa , with x 2 fm, n, hg, Ī = I=(kv gNa) and
" = C=(kt gNa) =: � v =kt . The original Hodgkin–Huxley parameter values are given at the end of
Chapter 2; we further assume: � h = � n = 1. Thus, " = 1

120 � 0.01 � 1 and system (101) represents
a singularly perturbed system with v as a fast variable and (n,h) as slow variables. The functions
x1 (v) and t x (v), with x 2 fm, n, hg, describe the (dimensionless) steady-state values and time
constants of the gating variables, respectively; they are given by

x1 (v) =
� x (v)

� x (v) + � x (v)
and t x (v) =

1
� x (v) + � x (v)

,

with

� m (v) = ( k v v+ 40 ) =10
1- exp(-( k v v+ 40 ) =10 ) , � m (v) = 4exp(-( kv v + 65)=18),

� h (v) = 0.07exp(-( kv v + 65)=20), � h (v) = 1
1+ exp(-( k v v+ 35 ) =10 ) ,

� n (v) = ( k v v+ 55 ) =100
1- exp(-( k v v+ 55 ) =10 ) , � n (v) = 0.125exp(-( kv v + 65)=80).

The original Hodgkin–Huxley equations with scaling parameters � h = � n = � m = 1 shows no
MMOs [ 73], but if � h > � h ,e > 1 or � n > � n ,e > 1 are beyond certain threshold values then MMOs
are observed [27, 135, 136]. Here, we focus on a speci�c case with � h = 6.0, � n = 1.0 and C = 1.2
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Figure 26: Maximal secondary canard orbits � 5 and � 6 of the three-dimensional reduced Hodgkin–Huxley
equations (101) with � h = 6.0, � n = 1.0, C = 1.2 and I = 12. Panel (a) shows the two canard orbits
in projection onto the (n,V)-plane; also shown are the strong singular canard ̃ s and the weak
primary canard  w . The projection of � 5 and � 6 onto the (h,V)-plane in panel (b) shows that they
make �ve and six oscillations, respectively.

(so that " = 0.01). We use the applied current I (in units of � A=cm2) of the original Hodgkin–
Huxley equations, that is, the rescaled Ī in (101), as the only free parameter. Furthermore, in order
to facilitate comparison with other studies, we represent output in terms of the non-rescaled voltage
V = 100 v, which is in units of mV.

From a mathematical point of view, the MMOs are generated due to the presence of a (subcritical)
singular Hopf bifurcation at I = IH � 8.359 and a folded node in the singular limit " = 0. The
critical manifold of ( 101) is de�ned by,

n4(v, h) =
Ī - m1 (v)3 h (v - ĒNa) - ḡL (v - Ēl )

ḡk (v - Ēk )
,

which is a cubic-shaped surface S = Sa ,- [ F- [ Sr [ F+ [ Sa ,+ for physiologically relevant values of
I . The outer sheetsSa ,� are stable, the middle sheet Sr is unstable, and F� denote fold curves [ 135].
The desingularized reduced system on this manifold is given by

8
<

:

�v =
�

@
@hf

�
g1 +

�
@

@nf
�

g2 ,

�h = -
�

@
@vf

�
g1 .

A phase-plane analysis of the desingularized reduced �ow in the physiologically relevant range
shows that there exists a folded-node singularity on F- for I > I FSN � 4.83. Furthermore, it can be
shown that the global-return mechanism projects into the funnel region for I < I r � 15.6; see [135,
136]. Hence, the folded-node theory predicts the existence of stable MMOs for a range of I -values
that converges to IFSN < I < I r in the singular limit as " ! 0.

Figure 26(a) shows the folded-node singularity for I = 12, where it lies approximately at (v, h, n) =
(- 0.593,0.298,0.407), in projection onto the (n,V)-plane. The two black curves are the strong singu-
lar canard ̃ s and the primary weak canard  w that pass through the folded node. The other two
curves are maximal secondary canards � 5 and � 6 that were found as intersections of extended slow
manifolds computed near the folded node; see also Section3.2 and [27, Fig. 6]. Their projections onto
the (h,V)-plane, which illustrate the oscillating nature of � 5 and � 6 , are shown in Fig. 26(b). Notice
that the �nal oscillations of the primary weak canard  w in Fig. 26(a) show the distinct character-
istics of saddle-focus-induced SAOs. Indeed, a saddle-focus equilibrium q � (- 0.589,0.379,0.414)
exists relatively close to the folded node, due to the singular Hopf bifurcation at IH � 8.359. De-
creasing I from I = 12 toward I = IH causesq to move closer to the folded node and the mix of
folded node induced SAOs and saddle-focus induced SAOs will be more pronounced.

The equilibrium q for I = 12 persists when I is varied. A partial bifurcation diagram is shown
in Fig. 27(a), where we plot the maximum of V versus I . Similar to the analysis in [ 27], a unique
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Figure 27: MMO periodic orbits of the three-dimensional reduced Hodgkin–Huxley equations ( 101) with
� h = 6.0, � n = 1.0 and C = 1.2. Panel (a) shows a bifurcation diagram where the maximal V-
value is plotted versus the applied current I . Isolas of MMO periodic orbits exist over a range of I
bounded by a period-doubling bifurcation PD and a saddle-node of limit cycle bifurcation SL. The
isolas are colored in alternating light and dark blue. Panel (b) shows an enlargement near the Hopf
bifurcation. All isolas shown have a fold bifurcation for ISL � 8.087. The periodic orbit � shown in
panel (c) is the stable MMO for I = 12; panel (d) shows � when it has a maximal V-value of - 20
mV.

equilibrium exists for all I and it is stable for I < I H and, approximately, I > 270.772. The (singular)
Hopf bifurcation (labeled H) at IH gives rise to a family of saddle-type periodic orbits. This family of
periodic orbits undergoes three fold bifurcations ( SL) at I � 6.839, I � 27.417 and I = ISL � 14.860,
after which both non-trivial Floquet multipliers are less than 1 in modulus and the associated stable
periodic orbits correspond to what is known in the �eld as tonic spiking. Figure 27(a) shows that
the �rst SL is quickly followed by a period-doubling bifurcation ( PD) at I � 7.651, where one of
the Floquet multipliers, which are both unstable after this �rst SL, passes through - 1. Hence, the
periodic orbits after PD are non-orientable and of saddle type. Note that a second PD (not shown
in Fig. 27(a)) must take place before the secondSL.

MMOs exist as isolated families of periodic orbits for a range of I ; Fig. 27(a) shows eleven of these
isolas colored in alternating light and dark blue. All periodic orbits on a single isola have the same
number of oscillations. Each isola contains a short plateau with large maximal V near V = 40 mV
where the associated MMOs are stable and have signatures1s . For our speci�c choice " = 0.01, we
found that the stable MMO interval appears to be bounded by IH on the left and by ISL on the
right, that is, 8.359 < I < 14 .860. Recall that the theory based on the singular limit as " ! 0 predicts
the existence of stable MMO periodic orbits with signatures 1s for 4.83 � IFSN < I < I r � 15.6;
the match is surprisingly good, even though " is relatively large. As I # IH , the number s in the
stable 1s MMO signatures approaches in�nity, since a homoclinic orbit through the Hopf singularity
is formed; see also [27]. Furthermore, there exist stable MMO signatures with more complicated
signatures 1s1 1s2 � � � ; see [136]. The MMO periodic orbits go through several bifurcations along
the isolas (mostly period-doubling and/or saddle-node of limit cycle bifurcations). The maximal
V-value indicates the amplitude of the largest of the oscillations of the respective MMO periodic
orbit. Note the folded structure of the isolas for V = VF+ � - 20 mV which is approximately the
repolarization threshold value for action potentials. This value also corresponds to the V-value of
the upper fold curve F+ , at which a trajectory jumps back. For MMOs on a plateau, the LAOs
correspond to a full action potential, while the s SAOs that follow are sub-threshold oscillations.

Figure 27(b) shows an enlargement of how the isolas of MMO periodic orbits accumulate near the
Hopf bifurcation, which is the region where theory predicts a signature 1s , that is, an MMO with
one large excursions and s SAOs. This is organized by how the global-return mechanism projects
onto the critical manifold S as I varies. If the return projects onto a secondary canard then part of
the periodic orbit follows the secondary canards onto the unstable branch Sr ," of the slow manifold.
However, only canard periodic orbits that reach the region of the upper fold curve F+ are maximal
secondary canards. Hence, the corresponding family of secondary canards can be split into two
groups: we call the secondary canards with maximum V < V F+ jump-backcanards and those with
maximum V > V F+ jump-awaycanards. This is an important distinction in this application, because
the jump-away canards will create action potentials, the jump-back canards will not.
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We illustrate the canards along one of the isolas shown in �gures 27(a) and (b). The stable MMO
periodic orbit � that exists on the plateau for I = 12 is shown in Fig. 27(c); its signature is 16 and
it lies on the isola that corresponds to periodic orbits with a total of seven oscillations. Note that
the large excursion of � is above threshold. The six SAOs of � are due to the fact that the global
return lands on the rotational sector bounded by the maximal secondary canards � 5 and � 6 for
I = 12 (not shown); compare Fig. 26(b). When the periodic orbit � is continued in the direction of
increasing I , the maximal V-value decreases and the LAO changes from an action potential to a
sub-threshold oscillation. Figure 27(d) shows � (which is now unstable) when its maximal V-value
is approximately - 20 mV. Observe that � still has a total of seven oscillations, but now two of them
have a fast segment. These fast segments are jump-back canards. More precisely, the periodic orbit
� consists of a segment of a jump-back canard of the � 6 canard family that connects to a segment
of a jump-back canard of the strong canard family, which in turn connects to the former segment,
hence, closing the loop. One could classify � in Fig. 27(d) as an MMO with signature 25 , because
only �ve of its oscillations have really small amplitude due to the passage near the folded node,
while there are two clearly distinguishable larger oscillations with fast segments due to jump-back
canards. However, none of these larger canard oscillations of � are full action potentials, meaning
that all oscillations are classi�ed as SAOs in this application context.

3.2 computing slow manifolds and canards in mmo systems

This section discusses the numerical strategy that we used to compute the two-dimensional slow
manifolds shown in many of the �gures of this chapter. The slow manifold computations use nu-
merical integration and boundary value methods to compute orbit segmentsthat lie along the slow
manifolds. An orbit segment is simply a �nite piece of a trajectory of the vector �eld; as such, it
has two endpoints and an associated integration time. In the context of computing slow manifolds,
each such orbit segment is chosen to have one endpoint on the critical manifold away from its folds,
where the critical manifold is a good approximation of the slow manifold one wishes to compute.
Indeed, Fenichel's Theorem implies that the distance between the critical manifold and the slow
manifold is O(" ), and that trajectories �ow from the critical manifold to an attracting or repelling
slow manifold at an exponential rate in the appropriate time direction; see Theorem 1.1.1. Conse-
quently, the computed orbit segments are expected to be as close to the slow manifold as the order
of the numerical method allows, except for short O(" ) segments at one end where there is a fast
transition from the critical manifold to the slow manifold in question. For stable or unstable man-
ifolds of equilibria, orbit segments are chosen to lie in the linear eigenspace associated with the
stable or unstable eigenvalues, respectively. The computational error associated with this approxi-
mation also decays quickly as one moves away from the endpoint; see [25, 87] for analysis of these
approximation errors.

A simple and effective method for computing invariant manifolds as families of orbit segments is
to use initial value solvers as the basic algorithm with initial conditions chosen on a mesh of points
transverse to the �ow in the invariant manifold; we call this the “sweeping” method. Despite its
simplicity, this sweeping method fails to produce satisfactory results in some cases. In particular,
strong convergence or divergence of trajectories toward one another makes the choice of the initial
mesh problematic and can produce very non-uniform “coverage” of the desired manifold; see [ 45,
46]. In multiple-time-scale systems, the fast exponential instability of Fenichel manifolds that are not
attracting makes initial value solvers incapable of tracking these manifolds by forward integration.
These issues prompt the use of boundary value methods combined with continuation as an alternate
strategy for computing invariant manifolds [ 88, 89]. We have used both strategies here. This section
presents more details of the techniques used to compute attracting and repelling slow manifolds of
systems with one fast and two slow variables, as well as the continuation of canard orbits when a
parameter is varied.
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3.2.1 A Boundary-Value Problem approach

3.2.1.1 Sweeping invariant manifolds

The Fenichel manifolds of systems with a single fast variable are either attracting or repelling. As
a result, forward trajectories with initial conditions on the critical manifold will converge quickly
to an attracting Fenichel manifold and backward trajectories with initial conditions on the critical
manifold will converge quickly to a repelling Fenichel manifold. Thus, one way to compute two-
dimensional attracting and repelling Fenichel manifolds of a three-dimensional �ow is to apply an
initial value solver in the appropriate time direction to a mesh of initial conditions along a curve
of the critical manifold transverse to the slow �ow. We used this sweeping method to compute
Sr

" in Fig. 23; see also [109] for an early use of this method to compute two-dimensional invariant
manifolds and Wechselberger [156] and Guckenheimer and Haiduc [ 63] for an example involving
folded nodes.

When incorporated into a continuation framework, the sweeping method can also be used if the
critical manifold is not known in closed form and the mesh of initial conditions cannot be selected
beforehand. Continuation methods [ 35] provide well-established algorithms that augment equation
solvers like Newton's method with strategies for choosing new starting points when solving under-
determined systems of equations. More precisely, suppose F : Rm + n ! Rm is a smooth function
given by m equations of m + n variables. The implicit function theorem states that the zeros of F
form a smooth n-dimensional manifold M near points where the matrix DF of partial derivatives has
full rank m. Moreover, the theorem gives a formula for the tangent space of M . Most continuation
methods treat the casen = 1 where the set of solutions is a curve; see [69] for the case n > 1 . In
general, the methods are based on a predictor-corrector procedure: given a point on M , tangent (or
higher-order) information is used to choose a new seed for the solver to �nd a new point on M . The
sweeping method described above selects the continuation step size based on equal increments of a
speci�c coordinate or direction, but more sophisticated step size adaptations can be used as well.

3.2.1.2 Continuation of orbit segments with boundary value solvers

The core algorithms of AUTO [ 38] are a boundary value problem solver and the numerical con-
tinuation of solutions of implicitly de�ned equations. The BVP solver of AUTO uses a collocation
scheme, where solution segments are represented by piecewise polynomials (of a user-speci�ed
degree, usually between 3 and 5) that are de�ned on the mesh intervals of a user-speci�ed mesh.
Solving the ODEs at the collocation points gives a large system of equations for the coef�cients of
the polynomials that is solved by Newton's method. AUTO uses what is known as pseudo-arclength
continuation to follow or continue solutions of such equations in a chosen parameter, where the
step-size is adapted automatically; see [35] for details. The combination of a BVP solver and nu-
merical continuation allows us to �nd and then continue one-parameter families of orbit segments
that form (parts of) invariant manifolds of interest. The sweeping method described in the previous
section can also be implemented in AUTO [ 38], so that the initial value problems are solved by col-
location. The techniques described in this section impose boundary conditions on both end points
of the orbit segments, which makes the method more versatile and suitable in a wider context; see
also [88]. We describe here how to formulate two-point boundary value problems (BVP) in order to
compute slow manifolds and associated canard orbits.

We consider two-point boundary value problems of the scaled form
8
>><

>>:

�u = Tg(u, � ),

u(0) 2 L,

u(1) 2 � ,

(102)

where g : Rn � Rp ! Rn is suf�ciently smooth, T 2 R, � 2 Rp are parameters and L and � are
submanifolds of Rn . The parameter T rescales time so that the orbit segments always correspond to
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trajectories in the time interval [0, 1]. Hence, the boundary conditions at the two end points always
apply to u(0) and u(1), and T is the associated (unscaled) total integration time. In order to have a
well-posed problem with isolated solutions, the number of boundary conditions should equal the
number of equations (n, because�(u) 2 Rn ) plus the number of free parameters (at most p + 1 for
the parameter � and the total integration time T). We are interested in one-parameter families of
solutions of (102), which means that we allow one fewer boundary condition (or one additional free
parameter). Note that the total integration time T is typically unknown and may be viewed as the
extra free parameter.

Let us �rst consider the computation of two-dimensional attracting and repelling slow manifolds
Sa

" and Sr
" . To simplify the explanation, we assume that we have a three-dimensional slow-fast

system with two slow variables and a folded node. In this context, the parameter � remains �xed,
and we obtain a one-parameter family of orbit segments (with unknown total integration times
T) by imposing a total of three boundary conditions. This means that the dimensions of L and �
in (102) sum up to n = 3. Our approach is to choose L as a curve (e.g., a straight line) on the critical
manifold, which requires two boundary conditions, and � as a surface (e.g., a plane), which requires
one boundary condition, such that the associated one-parameter family of orbit segments covers the
desired portion of the slow manifold. For example, in order for Sa

" to come into the folded-node
region, we let L be a curve on the attracting sheet of the critical manifold transverse to the slow
�ow and � be a surface orthogonal to the fold curve F at the folded node. The same approach
works for Sr

" , where we choose L on the repelling sheet of the critical manifold; note that T < 0 for
such a family of orbit segments. We remark that these choices can also be used with the sweeping
method and an initial value solver that detects a “stopping condition” de�ned by the level set of a
function. The slow manifolds can be extended by choosing cross-sections � orthogonal to F at points
that lie beyond the folded node. Figures 23 (a) and 28 (c) give examples of such visualizations; see
also [24, 25, 27].

As with all continuation, an important issue is to �nd a �rst solution. When continuing solutions of
a boundary value problem, explicit solutions may be known from which such a �rst solution may
be constructed; see [25] for an example. However, in general no explicit solution is known and a
�rst solution must be found in a different way. We use a homotopy method to generate an initial
orbit segment; the main idea is to continue intermediate orbit segments via two auxiliary BVPs —
the �rst to obtain an orbit segment from a point on the fold curve F to the section, and the second to
move the end point on F along the critical manifold to a suitable distance from F; see [24] for details.

We now illustrate this method with the Koper model [ 85], which is a particular version of the
Bonhoeffer-Van der Pol system. The equations of the Koper model are

8
>><

>>:

" 1 �x = k y - x3 + 3 x - � ,

�y = x - 2 y + z,

�z = " 2 (y - z),

(103)

where � and k are parameters. Koper studied this three-dimensional idealized model of chemical
reactions with MMOs. We use the parameters (" 1 , " 2 , � , k) = ( 0.1,1,7, - 10); note that � > 0 as in [85].
There is a folded node in this model, which organizes the SAOs in some of the observed MMOs; in
original coordinates it is at

pfn =
�

- 1,
2+ �

k
,
2� + 4+ k

k

�
= (- 1, - 0.9, - 0.8). (104)

We compute Sa
" 1

and Sr
" 1

as solutions to the BVPs given by (102), where g is de�ned as the right-
hand side of the Koper model. As boundary conditions, we use the same section � for both Sa

" 1
and

Sr
" 1

with respective lines L = La and L = Lr as follows

� fn := f(x, y, z) 2 R3 j z = - 0.8g, (105)

La := S\ fx = - 1.5g, (106)

Lr := S\ fx = - 0.2g. (107)



3.2 computing slow manifolds and canards in mmo systems 51

Figure 28: Computation of the slow manifolds Sa
" 1

and Sr
" 1

of the Koper model ( 103) with (" 1 , " 2 , � , k) =
(0.1,1,7, - 10). Panel (a) shows a homotopy family of red orbit segments that connect the section
� fn with the critical manifold S (grey). The �rst (upper-most) curve in the family was computed
by a separate homotopy that found an orbit segment ending along F at some suitable distance
from pfn . The second homotopy step swept out the family of red curves, terminating with the
last (lowest, darker red) orbit segment whose endpoint lies on the curve La . Panel (b) shows a
similar homotopy family of orbit segments (blue) connecting � fn with the repelling sheet of the
critical manifold. The �nal (right-most, cyan) orbit segment starts at Lr . Panel (c) shows Sa

" 1
and

Sr
" 1

together with three secondary canards � 1 , � 2 and � 3 . Panel (d) shows the intersection curves
of Sa

" 1
and Sr

" in � fn that are used to detect canard orbits.

Figure 28 shows the result of the computations. We �nd a �rst orbit segment on Sa
" 1

using two
homotopy steps; this is illustrated in Fig. 28(a). Starting from the trivial solution u = fpfn j 0 6 t 6 1g,
with total integration time T = 0, we continue the family of orbit segments that solves ( 103) subject
to u(1) 2 � fn and u(0) 2 F. We stopped the computation, detected by a user-de�ned function in
Auto , as soon as

u(0) 2 e� a := f(x, y, z) 2 R3 j z = - 0.76g.

The orbit segment with its end point on F in Fig. 28(a) is this last computed solution of the family.
The second step of the homotopy moves u(0) 2 S away from F (approximately) parallel to � , that
is, we next continue the family of orbit segments that solves ( 103) subject to u(1) 2 � fn and u(0) 2
eLa = S\ e� a . The continuation stops when La is reached, which is again detected by a user-de�ned
function in A uto . A selection of orbit segments in this family are shown in Fig. 28(a) (red curves);
only the last orbit segment ua (lowest, dark red) lies on Sa

" 1
to good approximation; it is the one

from which the manifold computation is started. A similar computation was done to obtain a �rst
orbit segment on Sr

" 1
, where we use the intermediate section e� r := fz = - 0.87g; this is illustrated in

Fig. 28(b), where the orbit segment ur (cyan) serves as a �rst solution on Sr
" 1

.

Once the �rst orbit segments ua and ur have been found we start the continuation of ( 102) with ( 105)
and (106) for the attracting slow manifold Sa

" 1
and with ( 105) and (107) for the repelling slow man-

ifold Sr
" 1

. The result is presented in Fig. 28(c), and the intersection curves of Sa
" 1

and Sr
" 1

with � fn

are shown in Fig. 28(d). The transverse intersection points of Sa
" 1

\ � fn and Sr
" 1

\ � fn in panel (d) cor-
respond to secondary canard orbits; the three-dimensional view in panel (c) shows three of these,
labeled � 1 , � 2 and � 3 .

3.2.2 Finding and following canard orbits

Maximal canards near a folded node are transverse intersection curves of the two-dimensional
attracting and repelling slow manifolds Sa

" and Sr
" . We brie�y discuss here how to detect the canard
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Figure 29: Continuation of secondary canards of the Koper model ( 103) with (" 2 , � , k) = ( 1,7, - 10) starting
from " 1 = 0.1. Panel (a) shows the canard orbit � 4 represented by the concatenation uc of two
orbit segments ua and ur that match up in � fn . Panel (b) shows the continuation of the canard
orbits � 1–� 7 in " 1 ; plotted as total integration time T versus " 1 . Panel (c) shows a two-dimensional
“waterfall diagram” of the time pro�les of the fast variable x (subject to an offset � i ) of computed
orbit segments along the branch � 4 . The bold black curve in panel (c) is the canard orbit � 4 at the
fold point of the (boldfaced) branch in panel (b).

orbits and subsequently continue them in a system parameter; see also [24, 25, 27]. To represent
a maximal canard we must compute Sa

" and Sr
" using a common cross-section � of the fold curve

at or near the folded node. The common cross-section allows us to obtain a representation of the
canard orbit as the concatenation uc of an orbit segment ua � Sa

" (with associated total integration
time Ta ) with an orbit segment ur � Sr

" (with associated total integration time Tr ), where ua and
ur are chosen such thatua \ � = ur \ � . The concatenated orbit uc located with this method can
be continued in a system parameter without the need to recompute the slow manifolds at each step.
Recall that AUTO always scales boundary value problems to the time interval [0, 1], so we rescale
time on uc appropriately and set T = Ta + Tr in (102). We can then start the continuation (in a
system parameter) subject to the boundary conditions

uc (0) 2 La , (108)

uc (1) 2 Lr , (109)

which determine uc as an isolated solution. In fact, such a continuation typically starts already
provided that ua \ � � ur \ � ; any small gap in � is forced to close by the �rst Newton step.
These two boundary conditions ( 108) and (109) force the orbit segment uc to stay very close to the
attracting sheet of the critical manifold S until near the fold curve F, and then stay close to the
repelling sheet of S up to Lr .

Figure 29 illustrates canard continuation with the Koper model ( 103), where we used " 1 as the
second free parameter (together with T) and kept (" 2 , � , k) = ( 1,7, - 10) �xed. Figure 29(a) shows
the two orbit segments ua and ur with (almost) equal end points in the section � = � fn ; they
have been detected as a good approximation of the maximal secondary canard orbit � 4 , which
is then represented by the concatenated orbit uc . We continued � 4 , along with six other maximal
secondary canards, for increasing and decreasing" 1 ; see also Fig.28. Figure 29(b) shows these seven
branches, labeled� 1–� 7 ; here, the vertical axis shows the total integration time T because it clearly
distinguishes the branches. When � 1–� 7 are continued in the direction of increasing " 1 , a fold in " 1

is detected for each branch; we have already seen this in Section3.1.2 and it has also been observed
in other systems [27]. Figure 29(c) is a “waterfall diagram” that shows how the maximal secondary
canard orbit � 4 evolves along the branch as " 1 is varied; speci�cally, the time pro�le of the fast
variable x of consecutively computed orbit segments along the branch � 4 are plotted with a suitable
off-set � i . The orbit segment that corresponds to the fold of � 4 is highlighted in bold black. Observe
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that the orbit segments to the left of the fold have four SAOs, whereas past the fold there are only
three SAOs followed by a fast segment. Hence the canard orbits past the fold are no longer maximal
canards; see also Section3.1.2.

3.3 extending the inflection -line method to folded -node systems

3.3.0.1 The minimal folded node system as a planar non-autonomous system

Here we propose a �rst attempt towards extending the in�ection-line method revisited using sin-
gularity theory (as exposed in Section 2.2.1.2), a minimal three-dimensional system displaying a
folded node. We consider the minimal folded node type system

x0 = - y + x2 - x3 (110)

y 0 = " (z + x) (111)

z0 = "� , (112)

with 0 < " , � � 1. System (110)–(112) is actually of dimension “two and a half” in the sense that it
can be written as a planar non-autonomoussystem as below

x0 = - y + x2 - x3 (113)

y 0 = " ("�t + z0) (114)

Now we can try to apply the in�ection line method to the non-autonomous planar system ( 113)–
(114). We �rst write the trajectory equation

dy
dx

=
" ("�t + z0 + x)
- y + x2 - x3 , (115)

which we can re-write in the form

(- y + x2 - x3)
dy
dx

- " ("�t + z0) - "x = 0. (116)

Equation (116) can be differentiated with respect to x with the in�ection condition y 00(x) = 0 be-
ing plugged in; the difference with the usual case is the presence of t which must then also be
differentiated with respect to x, giving

-
�

dy
dx

� 2

+ ( 2x - 3x2)
dy
dx

- " 2 �
dt
dx

- " = 0, (117)

with dy
dx = " ( "�t + z0+ x )

h and dt
dx = 1

h , and with h = - y + x2 - x3 . Therefore, equation (117) becomes

-
" 2("�t + z0 + x)2

h2 + ( 2x - 3x2)
" ("�t + z0 + x)

h
- " 2 �

1
h

- " = 0. (118)

Rearranging and simplifying gives, we �nally obtain the t -dependent quadratic in�ection equation

h2 +
�
"� - ( 2x - 3x2)( "�t + z0 + x)

�
h + " ("�t + z0 + x)2 = 0. (119)

The general solution of equation ( 119) is given by

h � (x) =
1
2

�
- "� + ( 2x - 3x2)( "�t + z0 + x) �

p
�

�
, (120)

with

� =
�
"� - ( 2x - 3x2)( "�t + z0 + x)

� 2
- 4" ("�t + z0 + x)2 . (121)
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Figure 30: Figure extracted from Golubitsky and Schaeffer [ 58], page 208.

3.3.0.2 Extracting information about" and� from the in�ection line

In Section 2.2.1.2, we could characterise their topological shapes by rewriting the in�ection equation
as a bifurcation problem with a distinguished parameterand using the classi�cation provided in [ 58].
One can use the same idea for the in�ection equation associated with folded node systems. To get
more information about the relationship between in�ection sets and the dynamics near a folded
node, it is useful to evaluate the in�ection equation close to the folded node and for a “time frame”
corresponding to it, that is, for jx - 2=3j < " and for "�t + z0 = zfn = - 2=3, where zfn is the z-
coordinate of the folded node. In these conditions, the in�ection equation ( 119) gets the following
simpli�ed form

h2 +
�
"� - ( 2x - 3x2)

�
-

2
3

+ x
��

h + "
�

-
2
3

+ x
� 2

= 0. (122)

Then, completing the square in (122) yields

h̄2 -
1
4

�
"� - ( 2x - 3x2)

�
-

2
3

+ x
�� 2

+ "
�

-
2
3

+ x
� 2

= 0, (123)

with

h̄ = h +
1
2

�
"� - ( 2x - 3x2)

�
-

2
3

+ x
��

. (124)

This can be conveniently rewritten in the following way

h̄2 -
� r

"�
2

� 4

+
��

-
2
3

+ x
�

(" -
1
4

(2x - 3x2)2)
�

+
� r

"�
2

� 2

(2x - 3x2)
�

-
2
3

+ x
�

= 0. (125)

Now equation ( 125) can be recasted as a bifurcation problem with a distinguished parameter, and
it can be written in the form of case 8- on page 208[58], that is

X2 - � 4 + � + �� + � 2 , (126)

with

X = h̄, (127)

� =

r
"�
2

, (128)
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Figure 31: Con�guration of the in�ection set for the folded node minimal system ( 110)–(112), evaluated at
the time frame that corresponds to the folded node, that is, for � > 0 . The coordinates of the fold
points f �

v ,h can be estimated using basic expansions in� .

The shape of the solution to equation (126) is shown on Fig. 30. This shows that when � > 0 , that is,
in the folded node case, an additional closed component of the in�ection line exists, contrary to the
planar case where only one point of this “bubble” exists (the equilibrium point). We can now show,
using simple asymptotic expansions in � of the solutions to the equation � = 0, where � is the
discriminant of the (quadratic) in�ection equation, that the maximal diameter of this small ellipse
is of order

p
"� .

Indeed, the fold points of the in�ection set with respect to the vertical axis correspond to zeroes of
the discriminant of the in�ection equation, that is, the solutions to equation ( 121). In the time frame
corresponding to the folded node, the equation � = 0 reduces to
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+ x
�
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3
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. (132)

Expanding the solution to �rst order in � , that is, writing x = x0 + x1 � + o(� 2), gives
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Now collecting the terms of same order in � on both sides of equation (133) provides the following
expressions for x0 and x1 in terms of "
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Equation (134) is the unperturbed equation, that is, for � = 0, and its solutions are

x0 =
2
3

, x0 =
1
3

�
1 �

q
1 � 6

p
"
�

. (136)

Evaluating equation ( 135) for these values of x0 gives

x1 = �
p

"
2

. (137)

Finally, the solutions to the equation � = 0 evaluated at the time-frame corresponding to the folded
node are

x = x0 �
p

"
2

� + o(� 2), (138)
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where x0 is given by the formulas ( 136). This gives the coordinates of the vertical fold points, f �
v , of

the small ellipse component of the in�ection set; see Fig. 31. From the above analysis we can deduce
that the x-coordinates of the vertical fold points f �

v are given by

f �
v ,x =

2
3

�
p

"
2

� + o(� 2). (139)

Furthermore, the horizontal fold points f �
h have an x-coordinate equal to 2=3and their y-coordinates

are given by 4=27+ "� and 4=27, respectively. This is easily obtained by evaluating the in�ection
equation corresponding the folded node time frame at x = 2=3, which reduces to

h2 + "�h = 0, (140)

whose solutions are h = 0 — that is, the upper fold point of the critical manifold C0 , see Fig.31
below — and h = - "� . Consequently, we have

f -
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�
2
3

,
4
27

�
, (141)

f +
h =

�
2
3

,
4
27

+ "�
�

. (142)

This analysis reveals that one can extract information about � and " by the sole knowledge of the
in�ection set; moreover, both of these key parameters can be independently. Indeed, although the
above formulas contain the factor "� as a block, one can recover" from the distance between the
fold points of the in�ection set near the lower fold of the critical manifold, which falls out of the
analysis already done in the planar (canard explosion) case.
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Elements of the material presented in this chapter have been published in [ 20, 29]. Our contribution
concerns the re-interpretation of canard-induced spike-adding transitions in square-wave bursters
in terms of classical canard explosions; this work is presented in Section 4.2, just after a brief recall of
bursting oscillations in a general context in the �rst section. The last section of this chapter is devoted
to torus canard solutions, which have been only recently discovered in “one slow/two fast” systems
and are still far from understood from a theoretical viewpoint. We have analysed numerically the
bifurcation structure of a number of neuronal models featuring bursting oscillations and given
evidence that they undergo torus canard transitions when passing, upon parameter variation, from
the bursting to the spiking regime; this work is presented in the last section, where we only focus
on one such example, namely, the Hindmarsh-Rose model.

4.1 introduction to bursting

When going from two to three dimensions in slow-fast vector �elds, one may add a second fast
variable instead of a second slow variable. In that case, the fast dynamics can now sustain peri-
odic dynamics and this can give rise, in the full three-dimensional system, to complex oscillations
referred to as bursting oscillations. They are characterised by an alternation between slow phases
referred to as silent or quiescent, and fast oscillatory phases or burst. Such systems are then called
bursters. Bursters have long been studied using a slow-fast dynamics formalism and then classi�ed
by a number of different means, including the bifurcations of the fast subsystem in which the burst
events are initiated and terminated [ 130, 76] and by an unfolding theory approach to singularities in
the fast subsystem [13, 59]. This phenomenon has been studied in particular to understand complex
electrophysiological data. Indeed, bursting is one of the most commonly observed behaviour in cel-
lular electrical and secretory activity, where bursts correspond to groups of spike; see e.g. [ 21, 86, 14].

Among the many known bursters are three main classes introduced by J. Rinzel [ 131]. First, square-
wave bursting, where the burst phase is initiated by a sadde-node bifurcation of equilibria and ends
in a homoclinic bifurcation. It is a “two fast/one slow” system for which the critical manifold is a
cubic curve. The Hindmarsh-Rose (HR) system [70, 71] is one of the simplest square-wave bursters
since it corresponds to a (smooth) polynomial vector �eld (equations ( 146)–(148) below). In this
model, bursting solutions arise through a supercritical Hopf bifurcation followed by a canard explo-
sion; then a canard-mediated spike-adding transition is responsible for bursting orbits with more
and more fast oscillations in the burst. This spike-adding phenomenon is well-known and has been
investigated, for instance, in the Morris-Lecar-Terman model [ 65, 146] and in the Hindmarsh-Rose
model [ 118]; see Section4.2 below. The main characteristic features of time series of square-wave
neuronal bursters are a low-voltage quiescent phase and the frequency of spikes decreasing at the
end of the burst.
The second class is that ofelliptic bursters, where the burst initiates through a subcritical Hopf bi-
furcation in the fast subsystem and terminates because of a saddle-node bifurcation of limit cycles.
Examples of neuronal elliptic bursters include the FitzHugh-Rinzel model; for more details, see
e.g. [75, 77]. Elliptic bursting time series are characterised by small oscillations during quiescence
and the elliptic-shaped envelop of fast oscillations (although not always observed).
Finally, parabolic burstingis the third class introduced by Rinzel. It stands alone by the necessity
of two slow processes, hence theoretically requiring (at least) two slow and two fast variables; Sec-
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tion 5.2 is dedicated to this class of burster and the role of canards in organising the number of
spikes per burst in such systems.

One of the main theoretical tools of slow-fast analysis of bursters, which will also be employed
herein, is the dissection method, introduced by Rinzel in [ 130]. The idea is to freeze the dynamics
of the slow variables y by setting " = 0 in the following “fast-time” parametrisation of a generic
slow-fast system (with explicit timescale separation):

x0 = f(x, y),

y 0 = "g(x, y),
(143)

where (x, y) 2 R2 � R for square-wave and elliptic bursters, whereas y 2 R2 in the case of parabolic
bursters. The slow variables are therefore considered as parameters entering the remaining differ-
ential equations for the fast variables x; the limiting problem is the fast subsystem. In this setting,
the bifurcation diagram of the fast subsystem with respect to the original slow variables (seen as
parameters), reveals the dynamical transitions between slow and fast phases of activity in the full
(three or four-dimensional) system. Speci�cally, these transitions are between the quiescent phase,
where the system tracks quasi-statically a branch of stable equilibria of the fast subsystem, and the
burst (or active) phase, where the system follows a family of stable limit cycles of the fast subsystem.
A very powerful graphical way to represent the slow-fast dissection method is to trace in the same
phase-space projection a solution of the full system and the various bifurcation branches of the fast
subsystem; see already Figs.33 and 34 for an example in a square-wave burster, and Fig. 42 for an
example in a parabolic burster. This technique is straightforward for bursters with only one slow
variable (for instance, square-wave or elliptic bursters) and it is used as a standard tool for the study
of such systems. However, the applicability of the method is non-trivial for parabolic bursters since
it has two slow variables. A possible strategy to deal with the two slow variables is to �rst vary
one of them (seen as a parameter), compute the associated bifurcation diagram, and then compute
curves of codimension-one bifurcation points (saddle-node, Hopf, homoclinic) of this diagram when
both variables are allowed to vary. In other words, in the case of parabolic bursters, the branches
of attractors (steady-states, limit cycles) of the fast subsystem are two-dimensional (parametrised
by the two slow variables), therefore one can compute these surfaces as one-parameter families of
curves obtained when varying only one of the two variables as a parameter; see Section 5.2.

4.2 spike-adding canard explosion in square -wave bursters

In this section, we examine the transition from a stable equilibrium (quiescence) to stable square-
wave bursting in the Hindmarsh-Rose system ( 1)-(3) for a sequence of �xed values of the parameter
I . This transition occurs via the well-known mechanism of spike-adding, see [ 65, 115, 118, 149], �rst
analyzed in the Morris-Lecar-Terman model, see [ 146]. For each N = 0,1,2 : : :, there is an exponen-
tially narrow interval of parameter values I over which the system exhibits a continuous transition
from periodic solutions with N spikes to periodic solutions with N + 1 spikes. Each periodic solution
in the transition sequence is referred to as a canard of limit cycle type, or limit cycle canard, since
each periodic orbit has alternating segments near attracting and repelling branches of �xed points
interspersed with fast jumps from the latter to the former that reinitiate the cycle. Each transition
sequence is referred to as a canard explosion, and the transitions forN = 0 and N = 1 are illustrated
in Figs. 33 and 34, respectively.

A detailed description of the transition for N = 0 from quiescence to a limit cycle with one large-
amplitude spike is as follows. At I � 1.413, there is a Hopf bifurcation of the full system ( 146)–(148).
This Hopf bifurcation induces the canard explosion, in exact analogy to that in the planar van der Pol
and FitzHugh-Nagumo equations. For I = 1.3278138093, the HR system (146)–(148) exhibits a small-
amplitude limit cycle canard without any spike, also known as a headless canard, see Fig. 33(a). As
I is decreased, see Fig.33(b), the limit cycle grows in amplitude until, at I = 1.3278138026, it reaches
the far right fold near z = 2.328, see Fig.33(c). This is the maximal headless canard, and as in the
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Figure 32: Panel (a) shows the bifurcation diagram of the fast subsystem of the Hindmarsh-Rose burster
i.e. equations (146)–(147), with z acting as a parameter. All parameter values are taken to be the
classical ones (from [71]) and I is �xed at the value corresponding to the canard explosion taking
place in the full system and displayed in Fig. 33, that is, I = 1.3278138. Panels (b1)-(b3) show
snapshots of the phase portrait of the fast system for three different values of z, namely z = 1.449
(lower homoclinic), z = 1.75 and z = 2.180 (upper homoclinic). For each value of z in between the
lower and upper homoclinics, the unstable manifold of the saddle returns to a neighbourhood of
the saddle and gives the leading-order location of the spike in the full system.

canonical planar systems with canards, such as the van der Pol and FitzHugh-Nagumo equations,
it occurs precisely when the persistent attracting and repelling slow manifolds near the branches of
equilibria coincide. Although slow manifolds are in general not unique, there are unique analytic
slow manifolds near the attracting branches of the critical manifold 1. Besides, one can choose a
repelling slow manifold that starts O(

p
" ) near the canard point and continues to O(" 1=3 ) close

to the jump point following the repelling branch; the power of " is dictated by the choice of the
blow-up transformation needed to analyse the underlying singularity: canard point or fold point.
Therefore, one can study the intersection between the attracting and the repelling slow manifolds;
see [92] for details.

Further along the branch, the limit cycle continues to have long segments near both the attracting
and the repelling branches of the critical manifold, but now at the end of the segment near the
repelling branch there is a brief segment of small oscillations, see Figs. 33(d) and 33(e), since the
orbit now jumps from the critical manifold up to the branch of attracting periodic orbits, instead of
back down to the branch of the critical manifold corresponding to attracting �xed points of the fast
system. The attracting slow manifold now lies above the repelling slow manifold so that solutions
must jump up to the branch of attracting periodic orbits. Even further along the branch, the up-jump
occurs near the homoclinic orbit near z = 2.180, and the oscillations disappear, see Fig.33(f). There
is a long segment near the branch of repelling �xed points again, so that the canard cycles in this
range have two canard segments, with the spike in between them.

The second canard segment disappears as we move yet further along the branch, see Fig.33(g).
Then, toward the end of the canard explosion, the location of the spike shifts downward in z, see Fig.
5(h), until the spike occurs near the lower homoclinic ( z = 1.449). This completes the description
of how the �rst large-amplitude spike is created in a continuous manner as the parameter I is
changed, so that continuous dependence of solutions on parameters is respected, and it completes
the description of the �rst cycle of spike-adding, for N = 0.

The continuous transition for N = 1, from a limit cycle canard with one spike to a limit cycle canard
with two spikes, occurs in a completely analogous fashion, see Fig. 34. During this second canard
explosion, the �rst spike remains near z = 1.449. The sequence in which the second spike is created
is precisely the same as that in which the �rst spike was created in Fig. 33 above. Moreover, we refer
to this as the knitting mechanism. One creates loops in knitting in a similar manner, by hooking

1 These attracting branches stretch to in�nity (while remaining strongly normally hyperbolic). This means that a typical
technique of proving the existence of an invariant manifold (e.g. graph transform) can be applied without modifying the
original vector �eld, by using test functions that stretch out to in�nity. The slow manifolds obtained in this manner are
analytic.
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Figure 33: Spike-adding phenomenon: time series and phase portraits for the sequence of limit cycle canards
observed in the transition from 0 to 1 spike in the Hindmarsh-Rose system (146)–(148). Parameter
values are those given below equations (146)–(148), with " = 5� 10- 4 and I varying by an exponen-
tially small amount around the value 1.3278138026. The top plot in each panel (a) to (i) shows the
time series of the x-variable, with the period normalised to 1. The bottom plot shows the limit cycle
canard in the phase plane (x, z). In each frame, the behaviour of the trajectory at the end of the
canard segment can be understood by looking at the phase portrait of the fast system (146)–(147)
shown in Fig. 32.

the yarn over the tip of the needle (here the far right fold point) and then pulling it back along the
needle.

It is worth observing also that, not only are the intervals of parameter values I in which each of
these canard explosions for N = 0,1,2, : : : occur exponentially small in the limit as " ! 0, but the
critical values of I , at which the maximal headless ducks with N spikes occur, also approach each
other as " ! 0. Hence, the entire sequence of canard explosions occurs in an exponentially small
interval of I values.

The dynamics of the canard limit cycles during each of these canard explosions is richer than that
observed in planar systems such as the van der Pol and the FitzHugh-Nagumo equations because
the repelling slow manifold is of saddle type here with two-dimensional stable and unstable man-
ifolds. Indeed, according to the position of the orbit with respect to these manifolds, it will either
follow the slow manifold along a canard segment or escape from it along a fast �ber; see [ 65] for
details. The transition can be understood by invoking the Exchange Lemma[81].
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Figure 34: Spike-adding phenomenon: time series and phase plane projections for limit cycles along the tran-
sition from 1 spike to 2 spikes. The �rst spike, created during the previous spike-adding transition,
remains in essentially the same place during the transition in which the second spike is generated.
Along the explosion that leads to the addition of a second spike, the parameter I varies by an
exponentially amount around the value 1.3317831217.

For parameter values of I when the spike is �rst created, see Figs. 33(f) and 34(c), the spike lies close
to the (upper) homoclinic of the fast system. Then, further along the branch, the limit cycle canard
still exhibits a spike, however there is no homoclinic orbit of the fast system nearby, see Fig. 32(b2).
Nevertheless, in the full third-order system the one-dimensional repelling slow manifold has two-
dimensional stable and unstable manifolds whose relative positions are responsible for the creation
of the spike. These positions are given to leading order by the stable and unstable manifolds of the
saddle repelling �xed point in the fast system, as shown in Fig. 32(b2).

Finally, to give further perspective on these results, we describe the classical square wave burster, as
analyzed by Terman [146]. In general position, such a solution behaves as a relaxation oscillator near
the lower fold and jumps to an attracting manifold corresponding to fast oscillations. Subsequently,
the solution follows the manifold of stable fast oscillations until it terminates near the homoclinic
orbit of the fast system, whereupon the solution jumps down to the stable branch of the slow
manifold. As explained in [ 146], the number of fast oscillations is unbounded as " ! 0. Although
we are sure that this is folklore information, we have not found an asymptotic estimate of the
number of such oscillations. We have derived such an estimate and included in the appendix of
this Section. Our calculation implies that the number of such oscillations is O(1="). It follows that
changes ofI by O(" ) may result in spike-adding transitions of the same kind as the latter part of our
spike-adding canard explosion as well as the spike-adding transitions described by Terman [ 146] or
Guckenheimer and Kuehn [ 65]. Such spike-adding transitions do not contain classical canard cycles
but they contain canard segments corresponding to passage near the middle part of the critical
manifold (see �gure 3(b) of [146]) and they occur in exponentially small intervals of I . As pointed
out by Terman [ 146] and further elaborated on by Guckenheimer and Kuehn [ 65], such transitions
do not have to be monotonic in I and may lead to chaotic dynamics. Due to the computational
complexity (a large number of spikes) we do not show an AUTO plot of such a transition.

Remark: Spike-adding canard explosions also occur at the level of homoclinic connections; see [97]
for details.



4.3 from spiking to bursting : torus canards 62

Figure 35: An example of sub-Hopf/fold cycle bursting in the HR system ( 144), with (b1 , s) = (- 0.162, - 1.95).
The other parameter values are given by (145). The bursting trajectory (blue curve) is plotted in
projection onto the (z, x) phase space, along with the bifurcation diagram of the fast system at this
value of s. The bifurcation diagram includes branches of �xed points and periodic orbits. The inset
shows the Poincaré map of the bursting trajectory near SNp, also plotted in projection onto the
(z, x) phase space. The Poincaré surface� � f(x, y, z)j0 = sax3 - sx2 - y - bzgis chosen so that the
iterates correspond to local extrema in x of the trajectory.

4.3 from spiking to bursting : torus canards

Although the dynamics of spiking and bursting have been studied in detail, the mathematical mech-
anisms that govern transitions between neuronal states are only now beginning to be understood.
The transition from spiking to bursting activity has been shown to involve different mechanisms
including the blue sky catastrophe [ 140], period doubling [ 22], chaos [107, 147], and mixed-mode
oscillations [158]. Recently, it has been proposed that the transition from spiking to bursting can
also involve torus canards [ 7, 86]. In these models, limit cycles in the fast system terminate in a fold.
However, these models exhibit unexpected behavior: the dynamics of the full system pass through
the fold of limit cycles, but the burst's active phase does not terminate. Instead, the dynamics of the
full system move through the fold of limit cycles and follow the branch of repelling limit cycles for
some time, resulting in a torus canard.

In this section, we brie�y show that torus canards arise naturally in computational neuronal models
of multiple time scale type as the HR model. We refer to [ 20] for further examples; in particular, it
is shown in [ 20] that torus canards arise in well-known neuronal models exhibiting three different
classes of bursting: sub-Hopf/fold cycle bursting, circle/fold cycle bursting, and fold/fold cycle
bursting.

torus canards in the hindmarsh -rose system . We consider the following modi�ed ver-
sion of the Hindmarsh-Rose (HR) system [71] developed in Ref. [ 149]

�x = sax3 - sx2 - y - bz, (144a)

�y = � (x2 - y), (144b)

�z = " (sa1x + b1 - kz). (144c)

The small parameter " induces a separation of time scales, so that the voltage variable x and the
gating variable y are fast and the recovery variable z is slow.

The HR model is known to exhibit rich dynamics, including square-wave bursting (a.k.a. plateau
bursting) and pseudo-plateau bursting [ 149]. Here, we show that this model also exhibits sub-
Hopf/fold cycle bursting (in which the active phase of the burst initiates in a subcritical Hopf
bifurcation and terminates in a fold of limit cycles), and that torus canards occur precisely in the
transition region from spiking to this type of bursting.

In this section, we �rst identify the parameter regimes in which the fast system of the HR model
has a saddle-node of periodic orbits (Section 4.3) and in which the full HR model has a torus
bifurcation (Section 4.3). Once these key ingredients are identi�ed, we show (Section 4.3) that the
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Figure 36: Bifurcation diagram of the HR system ( 144) at s = - 1.95, including branches of �xed points (black
curve) and periodic orbits (two red curves, indicating maximal and minimal values of x over the
orbit). Solid/dashed curves indicate stable/unstable solutions. The torus bifurcation (labelled TR)
at b1 ' - 0.1603is supercritical, leading to bursting for smaller values of b1 .

full HR model includes a torus canard explosion, and that it lies in the transition region between
spiking and bursting.

We treat b1 as the primary control parameter, meaning that we examine the transition from spiking
to bursting as b1 varies. We take s as a secondary control parameter, and examine how the transition
from spiking to bursting behaves at different values of s. Except where otherwise noted, we set the
remaining parameters to

a = 0.5, � = 1, a1 = - 0.1, k = 0.2, b = 10, " = 10- 5 , (145)

which is based on the values used in [149].

bifurcation analysis of the fast system . The fast system of (144) is obtained by setting
" = 0. It is independent of b1 , so at �xed s the slow variable z serves as the bifurcation param-
eter. Figure 35 shows a bifurcation diagram of the fast system at �xed s = - 1.95. The branch of
�xed points is stable for large negative z values. As z increases, the �xed point loses stability in a
subcritical Hopf bifurcation ( H), undergoes a saddle-node bifurcation at large z (not shown in the
�gure), then regains stability in a second saddle-node bifurcation ( SN). Fixed points between the
two saddle-node bifurcations are of saddle-type, with one stable and one unstable eigenvalue. The
branch of repelling periodic orbits created in the Hopf bifurcation undergoes a saddle-node bifurca-
tion (SNP) then terminates in a homoclinic bifurcation ( Ho) — i.e., a homoclinic connection to the
saddle �xed point. Figure 35 also includes a trajectory of the full HR system which illustrates sub-
Hopf/fold cycle bursting. With the default choice of parameters, the HR system already exhibits a
key feature required for torus canards: a saddle-node of periodic orbits in the fast system.

torus bifurcation in the full system . The second key ingredient to the emergence of
torus canards is the presence of a torus bifurcation (TR) in the full system, between the regimes
of rapid spiking and bursting. To see that this does occur in the HR system ( 144), consider the
bifurcation diagram of the full system shown in Fig. 36 at �xed s = - 1.95. As b1 increases, the
branch of stable �xed points undergoes a supercritical Hopf bifurcation at b1 ' - 0.1927, creating
a branch of stable periodic orbits. This branch of periodic orbits changes stability in two torus
bifurcations, the �rst of which occurs near the Hopf bifurcation where the periodic orbits are of
very small amplitude. Beyond the second torus bifurcation at b1 ' - 0.1603, the periodic orbits are
stable and correspond to the rapid spiking state of the system. It is this upper torus bifurcation,
which lies between the regimes of spiking and bursting, that is associated with torus canards.

torus canard explosion . The transition from spiking to bursting as b1 decreases through
the torus bifurcation at b1 ' - 0.1603occurs by way of a torus canard explosion. When b1 is above
the torus bifurcation, the periodic orbit of the full system is stable. This trajectory resembles a
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Figure 37: Poincaré map of torus canard trajectories in the HR system (144) at s = - 1.95: (a) torus canard
without head at b1 = - 0.16046985, and (b) torus canard with head at b1 = - 0.16047. The bifur-
cation diagrams of the fast system includes branches of �xed points and periodic orbits. The time
series of these torus canard orbits are shown in panels (c) and (d), respectively.

periodic orbit taken from the attracting branch of periodic orbits of the fast system at a value of z
near SNp (refer to the bifurcation diagram in Fig. 35). As b1 decreases below the torus bifurcation,
the rapid spiking begins to modulate in amplitude as the trajectory winds around the attracting
torus created near SNp. Further decrease of b1 causes the torus to grow, and eventually parts of
the torus shadow, in alternation, the attracting and repelling branches of periodic orbits of the fast
system. As b1 decreases further, this leads �rst to torus canards without heads, then torus canards
with heads. To illustrate these dynamics, Fig. 37 (a-b) shows two torus canards in projection onto
the (z, x) phase space, and panels (c-d) show the corresponding time series for thex coordinate.

This bifurcation sequence, consisting of a family of headless torus canards (Fig. 37 (a)) followed by
MMO and a family of torus canards with heads (Fig. 37 (b)), constitutes a torus canard explosion.
Moreover, the torus canard explosion marks the transition regime from spiking to sub-Hopf/fold
cycle bursting: when b1 is suf�ciently negative (i.e., suf�ciently past the torus canard explosion), the
trajectory does not follow the branch of repelling periodic orbits and instead falls directly off the
saddle-node of periodic orbits, resulting in a large amplitude bursting orbit such as the one shown
in Fig. 35 at b1 = - 0.162.
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“ T W O S L O W / T W O FA S T ” S Y S T E M S : B U R S T I N G W I T H F O L D E D
S I N G U L A R I T I E S

Elements of the material presented in this chapter have been published in [ 29] and submitted [ 31].
Our contribution concerns the �rst study of a “two slow/two fast” system possessing both a folded
node and square-wave type bursting, hence producing a new type of complex oscillations with
multiple time scales, which we termed Mixed-Mode Bursting Oscillations (MMBOs). We constructed
the �rst MMBO model as an extended of the classical HR burster, where we put a slow dynamics
on the applied current since it corresponds to the parameter organising the spike-adding canard
explosion in the original three-dimensional model (see Chapter 4). We showed the presence of
a folded and could recover classical estimates regarding the number of small oscillations in the
resulting four-dimensional system. This result is presented in the �rst section. We have a similar
recent result, presented in the second section, where we study the effect of folded-saddle dynamics
with bursting due to a Saddle-Node on Invariant Circle (SNIC) bifurcation in the fast subsystem,
and we show that many known parabolic bursters have this particular canard structure. We also
show that the spike-adding transition in such cases is due to both the presence of a folded-saddle
singularity and of a homoclinic connection in the DRS. Finally, we propose a polynomial “two
slow/two fast” system which has all these features and possesses the same behaviour as the main
conductance-based parabolic burster, that is, the Plant model.

5.1 mixed-mode bursting oscil lations (mmbos)

This section concerns the phenomenon of Mixed-Mode Bursting Oscillations (MMBOs). These are
solutions of fast-slow systems of ordinary differential equations that exhibit both small-amplitude
oscillations (SAOs) and bursts consisting of one or multiple large-amplitude oscillations (LAOs). The
name MMBO is given in analogy to Mixed-Mode Oscillations (MMOs), which consist of alternating
SAOs and LAOs, without the LAOs being organized into burst events. We show how MMBOs are
created naturally in systems that have a spike-adding bifurcation, or spike-adding mechanism, and
in which the dynamics of one (or more) of the slow variables causes the system to pass slowly
through that bifurcation. Canards are central to the dynamics of MMBOs, and their role in shaping
the MMBOs is two-fold: saddle-type canards are involved in the spike-adding mechanism of the
underlying burster and permit one to understand the number of LAOs in each burst event, and
folded-node canards arise due to the slow passage effect and control the number of SAOs. The
analysis is carried out for a prototypical fourth-order system of this type, which consists of the
third-order Hindmarsh-Rose (HR) system, known to have the spike-adding mechanism, and in
which one of the key bifurcation parameters also varies slowly. We also include a discussion of the
MMBO phenomenon for the Morris-Lecar-Terman system.

An open question involves what happens when a system exhibits slow passage through the spike-
adding bifurcation, and it is this question which we address in the present section. We show that
slow passage through a spike-adding bifurcation gives rise to complex oscillations. The solutions
exhibit complex oscillations with small-amplitude oscillations around the fold point of the fast
nullcline, interspersed with large-amplitude oscillations, but contrary to MMOs, the large-amplitude
oscillations occur in bursts. This is why we choose to name this more elaborate type of complex
oscillations Mixed-Mode Bursting Oscillations or MMBOs. A principal difference here is that the
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Figure 38: Simulation of system (146)–(149) for " = 10- 3 , k = 10- 2 and h i = 10- 2 for i = x, y, I . The orbit
shown here is clearly of MMBO type, that is, a succession of small-amplitude slow oscillations and
large-amplitude fast oscillations. The observed MMBO pattern is irregular and combines transi-
tions of the type 41 , 42 and 43 .

system has two fast variables, which allows for fast oscillations; then, the fast component of the
periodic attractors are bursts.

MMBOs are also relevant in the modeling of biological rhythms. For instance, the model of pancre-
atic � -cells proposed by Bertram et al.in [ 14] has the right structure to sustain MMBOs and the time
series shown in [14] (e.g. �g. 3) clearly displays both small-amplitude slow oscillations and bursts of
large-amplitude fast oscillations.

We investigate the presence of MMBOs in the following system:

x0 = y - ax3 + bx2 + I - z, (146)

y 0 = c - dx2 - y, (147)

z0 = " (s(x - x1) - z), (148)

I 0 = " (k - hx (x - xfold )2 - hy (y - y fold )2 - h I (I - I fold )) . (149)

System (146)–(149) is an extension of the HR burster, where the main bifurcation parameter, the
applied current I , evolves slowly. In equation ( 149), the I component of the vector �eld is an elemen-
tary model for dynamical clamping of the current, in that it accounts for the lowest order terms that
would be present in a generic dynamical clamping protocol that slowly adjusts the applied current.
In equations (146)–(148), which correspond to the HR system, we consider the classical parameter
values, as follows: a = 1, b = 3, c = 1, d = 5, " = 0.001, s = 4, x1 = - 1.618; note that the small
parameter " is usually denoted by r. The critical manifold of the HR burster is the curve

S0 = fx0 = 0g\ fy 0 = 0g= fz = - ax3 + ( b - d)x2 + I + cg. (150)

The terms xfold and y fold correspond to the lower fold point of S0 . Therefore, we have

xfold =
2(b - d)

3a
, y fold = c - dx2

fold . (151)

Furthermore, the value I fold is chosen so that the slow nullcline of the HR burster fz = s(x - x1)g
goes exactly through the fold of S0 . Thus, we have

I fold = ax3
fold - ( b - d)x2

fold + s(xfold - x1) - c. (152)

The main new result is that slow passage through I fold combined with a suitable return mechanism
leads to MMBOs. More generally, our goals are to understand the dynamics of MMBOs, in particular
to show that they result from a slow passage through a spike-adding canard explosion and to show
how the number of SAOs is controlled, via folded node theory, by the system parameter k. Along
the way, we will show that the point (I fold , 0) in the parameter space (I , " ) is the accumulation
point of the wedges corresponding to spike-adding transitions. We add that the transition we study
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results in a system that has a folded node singularity with a global return that includes bursting
dynamics of square wave type and which maps the trajectories leaving the folded node region back
to the funnel region of the folded node. This description is a generalization of the characterization
of the MMO dynamics given in [ 18]. These results may be generalized to other problems where a
spike-adding transition occurs. The principal requirement is that the parameter which unfolds this
transition evolves slowly in the full system.

The HR model has been used as a simple framework for single-cell dynamics, in relation to neuro-
logical diseases such as epilepsy [120]. We extend the HR model by putting a slow dynamics on the
applied current I . Kispersky et al. [84] created a biophysically accurate model of a stellate cell from
the enthorinal cortex and argued that the STO dynamics occurring in this model could be linked
to the presence of hyperexcitability in models of temporal lobe epilepsy [ 95]. This mechanism re-
lies on strong sensitivity of the neuronal model to parameter variation, which is a property of the
dynamics considered here. We provide a canonical description of a very sensitive parameter region
where small variation of a parameter could lead to large changes of dynamics and in particular of
the �ring rate. Morever, the use of a phenomenological model (as opposed to a biophysical model)
provides a theoretical/canonical framework to analyze dynamic properties of MMBOs observed in
both healthy and diseased neurons in a way that is independent of the details of the participating
ionic currents that are responsible for each aspect of the dynamics.

5.1.1 MMBOs as a slow passage through a spike-adding canard explosion

The full system (146)–(149), in which I is also a slow variable, exhibits a broad class of new solutions
known as MMBOs, which are periodic or aperiodic solutions that consist of two distinct phases: a
segment of small-amplitude oscillations (SAOs) in alternation with a burst event or multiple burst
events, with each burst comprising one or more large-amplitude oscillations (LAOs) or spikes. A
prototypical MMBO of the full system has been presented in Fig. 38. There, a variable number of
SAOs (ranging from one to three) occur in alternation with a burst event that consists of four LAOs.

We will now study the MMBOs in the slow passage through canard explosion regime. We show that
the LAOs occur due to slow passage through the spike-adding bifurcation, coupled with a global
return mechanism. In this regime, for moderate values of " , the MMBO patterns found are quite
complicated and can evolve dynamically in time. In contrast, in Section 5.1.2, we use the theory
of folded nodes for fast-slow systems to show that the number of SAOs in an MMBO may be
controlled by the system parameter k. The observed MMBO patterns are then much more regular
and correspond to smaller values of " . The notation for an MMBO with s SAOs and ` LAOs per
burst is `s . With this notation, MMOs are simple examples of MMBOs.

5.1.1.1 Understanding MMBOs as a slow passage through a canard explosion

We now focus on the dynamics of MMBO trajectories as a slow passage through a canard explosion.
Hence in this section we consider the case of" relatively large.

The MMBOs are characterized by the number of SAO during the �rst phase and the number of
bursts during the second phase, as well as the number of LAOs within each burst. An elementary
example is given by the MMBO shown in Fig. 39(a). It consists of one SAO followed by a single
burst event, which consists of eight LAOs, and this pattern repeats �ve times. Then, after the �fth
transition of this type, there is a burst with seven LAOs, which is not preceded by an SAO. Overall,
this 818181818170 repeats itself for time up to at least t = 100,000, and only a segment of amplitude
about 20,000 is shown.

Within the cycle of the �ve successive 81 , the SAO have increasing amplitudes. The time series for
the variable I shown in Fig. 39 reveals that the I variable repeatedly passes through the interval
(centered about I = 0.869) corresponding to the spike-adding mechanism; this value corresponds to
the I -value of the folded node, we indicate it as a dashed red curve in both panels (c) and (d) for
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Figure 39: Periodic MMBOs of system (146)–(149), for k = 0.45, " = 2.5 � 10- 4 (panel (a) for the x variable and
panel (c) for the I variable) and k = 0.35, " = 10- 3 (panels (b) and (d) for the x variable and the I
variable, respectively); in all panels hx = 5 and hy = h I = 10- 2 . In panels (c) and (d), the dashed
red curve indicates the value of I corresponding to the folded node. The unlabelled panels to the
side of panel (a) and panel (b) show zooms into one burst of the corresponding MMBO, with 8
LAOs (left panel) and 2 LAOs (right panel).

each value of k. With each passage, the value ofz at which the jump from the branch of repelling
equilibria up to the branch of attracting periodic orbits occurs decreases slightly, so that the resulting
SAO has a larger amplitude.

Next, the fact that after the �fth 81 there is no SAO preceding the LAOs may be understood as
follows. From the plots of the x and I variables, one sees that if the orbit reaches the fold of S0

after I goes above the value of the folded node then it does not complete a SAO but directly jumps
to the LAO regime; see the blue boxes in Fig. 39(a) and (c). Hence, there is no SAO preceding the
subsequent LAOs. Also, within the sequence of 81 , the amplitudes of the successive SAOs increase,
marking a dynamic approach to the �rst secondary canard.

Finally, the fact that after the �fth 81 the following burst has lost one LAO can be understood by
looking at the time evolution of I ; see Fig.39(c). Indeed, the loss of the SAO due to the slow passage
through a canard explosion induces the orbit to jump at the lower fold and start the burst earlier.
The dynamics of I is affected and as a result it changes the location of the homoclinic connection
of the fast subsystem, whose associated saddle equilibrium happens for a lower value of z. This
explains why the burst is shorter in this case.

Another prototypical MMBO is shown in Fig. 39 (b), but now the pattern is highly irregular. We see
alternations between the basic blocks 22 , 20 and 21 . Focusing on the LAOs which are not preceded
by SAOs, three of which occur in the time series shown, one near the beginning and two near the
end, we see from the times series of theI -variable that the value of I does not dip below I fold , which
explains the absence of SAOs. One may use a similar explanation by looking at the behaviour of the
I -variable during the three corresponding peaks.

What we have just seen with the two examples of MMBOs shown in Fig. 39 is valid for “moderate”
values of " , that is, such that " does not become very small relative to k. In this situation, the
slow passage through canard explosion can modify dynamically the number of SAOs within one
transition, and the I dynamics can also alter the number of LAOs within each burst due to changes
in the location of the homoclinic connection in the underlying fast subsystem. However, in order to
understand the MMBO pattern using folded node theory, one has to decrease " substantially.
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Figure 40: Periodic MMBOs of system (146)–(149), for k = 0.45 (panel (a)) and k = 0.35 (panel (b)) and for
" = 10- 5 ; in both panels hx = 5 and hy = h I = 10- 2 . Decreasing " allows to �nd MMBOs with
the correct number of SAOs as predicted by folded node theory via formula ( 159). In both cases,
the number of LAOs is very large, about 200.

The patterns gain more LAOs per burst and become more regular as the parameter " is decreased.
The MMBOs shown in Figs. 40 (a) and (b) are for the same parameter values as those shown in
Figs. 39 (a) and (b), however the values of " are much smaller. In particular, while one sees the
pattern 818181818170 for k = 0.45 and " = 0.001 in Fig. 39 (a), one sees a periodicN3 pattern with
N = 192 for the much smaller value " = 10- 5 , as shown in Fig. 40 (a). Similarly, with k = 0.35,
the pattern becomes a regular N5 pattern with N = 194 for " = 10- 5 , as shown in Fig. 7(b). The
number of spikes per burst has increased dramatically because of the chasm between the fast and
slow timescales when " = 10- 5 . Moreover, as we will show in the following subsection, the number
of SAOs has increased from 3 to 5 as k is decreased, due to the dynamics near the folded node.

5.1.2 Controlling the number of SAOs in MMBOs using folded node theory

In Section 5.1.1.1 we have discussed a series of transitions which occur upon variation of I and lead
to MMBO dynamics. As a result one obtains a system with a folded node point and a global return
passing through bursting dynamics. This is a generalization of the perspective on MMOs given
in [ 18]; consequently a prototypical context of MMBOs is a combination of folded node dynamics
with a global return including bursting dynamics and returning the trajectories which leave the
folded node region back to the funnel of the folded node, see also [ 14]. We now consider the case
when I < I Rmfold (suf�ciently close to IRmfold ). In this case, there is a folded node in the four-
dimensional extended Hindmarsh-Rose system (146)–(149). We determine the number of SAOs in
a given MMBO by using the local folded node theory from [ 144] and its extension to systems with
two fast dimensions [ 18].

Changing to the slow time � = "t gives the equivalent system

" �x = y - ax3 + bx2 + I - z,

" �y = c - dx2 - y,

�z = s(x - x1) - z,

�I = k - hx (x - xfold )2 - hy (y - y fold )2 - h I (I - I fold ),

(153)

The " = 0 limit of system ( 153) gives the reduced system, that is, differential equations for the slow
variables z and I constrained by algebraic equations de�ning the critical manifold S0 , recall (150).
This manifold is a cubic hypersurface in R4 . By projection onto the three-dimensional phase space
(x, z, I ), S0 is a cubic surface with two curves of fold points (with respect to the fast variable x) F+

and F- , given by

F+ = fx = 0g, F- =
�

x =
2(b - d)

3a


.
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Differentiating the algebraic condition ( 150) de�ning S0 with respect to time gives a differential
equation for x

x(3ax - 2(b - d)) �x = �I - �z

= - ax3 + ( b - d)x2 + I + c - s(x - x1) +

k - hx (x - xfold )2 - hy (y - y fold )2 - h I (I - I fold ).

It is customary to append to that equation one slow equation, for instance that of I . The resulting
two-dimensional system is singular along the fold set F = F+ [ F- of S0 . In order to extend that
system up to the fold set F, one typically desingularises it by performing a time rescaling, here with
a factor x(3ax - 2(b - d)) ; see for instance [18, 145] for the general theory. Therefore, one obtains a
planar non-singular system given by

�x = - ax3 + ( b - d)x2 + I + c - s(x - x1) + k - hx (x - xfold )2 - hy (y - y fold )2 - h I (I - I fold )(154)
�I = x(3ax - 2(b - d))

�
k - hx (x - xfold )2 - hy (y - y fold )2 - h I (I - I fold )

�
. (155)

System (154)–(155) is the Desingularised Reduced System (DRS). Equilibria of the DRS lying on Fare
therefore folded singularities for the original system given that they are not equilibrium solutions
there. We focus on the folded singularity satisfying xf 6= 0, that is,

xf =
2(b - d)

3a
= xfold . (156)

From the previous equality comes immediately that y f = y fold . Using the x-equation of the DRS, we
�nd that

I f =
ax3

fold - ( b - d)x2
fold - c + s(xfold - x1) - k - h I I fold

1 - h I
.

In the �rst four terms of the numerator above, we recognise the expression of I fold given in ( 169).
Therefore, we have

I f = I fold -
k

1 - h I
. (157)

Now, the Jacobian matrix of the DRS at the folded singularity (xf , I f) is given by
 

- s 1- h I

(6axf - 2(b - d)) (k - h I (I f - I fold )) 0

!

.

Using (176) and (177), we see that the lower left entry further simpli�es to

2(b - d)
k

1 - h I
.

Consequently, the two eigenvalues of the folded singularity are given by

� � = 0.5
�

- s �
q

s2 + 8k(b - d)
�

,

which gives a node provided that s2 + 8k(b - d) > 0 and b - d < 0 . Finally, we obtain the following
expression for the eigenvalue ratio � at the folded node

� =
� +

� -
=

s
�

s -
p

s2 + 8k(b - d)
�

+ 4k(b - d)

4k(d - b)
. (158)

This ratio � determines n, the number of SAOs, as follows. The general theory, see for instance [18],
states that for 0 < " � 1 small enough, there are at most n + 1 small oscillations near the folded
node, that is, n secondary canards andn + 1 sectors of rotation, where

2n + 1 <
1
�

< 2n + 3 (n 2 N ).
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Figure 41: Periodic 1923 -MMBOs of system (146)–(149), obtained for k = 0.45, that is, 1=� � 6.74, and " =
10- 5 , and projected onto the (x, z, I )-space; also shown are the critical manifold S0 and the lower
fold curve F- . Panel (b) is an enlargement of panel (a) near the folded node pf = ( xf , y f , zf , I f).

In the present case, for the �xed (classical) parameter values s = 4, b = 3 and d = 5, formula ( 158)
reduces to

� =
2(1 -

p
1 - k) - k
k

. (159)

In Fig. 40, we show a periodic MMBO pattern 1192
3 obtained by direct simulation for k = 0.45, that

is, 1=� � 6.74, and " = 10- 5 . Therefore, based on (159), one expects at most three small oscillations
and three sectors of rotation, separated by the strong canard  s and two secondary canards. We
show both the time pro�le of that solution as well as its projection onto the (x, y, z)-space. Reducing
" allows one to observe the correct number of SAOs around the folded node pf of the system, as
predicted by theory; see [18]. Indeed, in Fig. 40(a), we �nd 3 SAOs, as predicted by formula (159).
Similarly, for k = 0.35, the theory predicts 1=� � 9.32, that is, 5 SAOs and that is exactly what is
shown in Fig. 40(b), which shows the MMBO pattern of 1945 .

The number of SAOs will typically be constant and maximal only for MMBOs which are not close
to spike adding in their burst segment. As an MMBO undergoes a spike adding transition the
return point on the stable slow manifold can move quite wildly, passing between different sectors
of rotation. This can result in the presence of very complicated patterns, not just in the part of the
burst segment of the dynamics but also in the segment corresponding to SAOs.

5.2 spike-adding mechanism in parabolic bursters

We now move to another example of “two slow/two fast” system where the bursting dynamics is
organised by folded-singularity canards. Surprisingly, this new case happens to coincide with an
important class of bursters, namely, parabolic bursters. The work presented in this section therefore
sheds new mathematical insights on neuroscience models that exhibit parabolic bursting, and also
proposes a novel four-dimensional canonical and polynomial-based parabolic burster. In addition
to this new polynomial system, the set of models considered here include the four-dimensional
biophysical conductance-based model of the Aplysia R 15 neuron known as Plant's model, and
minimal models for parabolic bursting with phase equations, in particular the three-dimensional
theta model by Rinzel; for a discussion on the role of canards in the two-dimensional so-called Atoll
or thetamodel by Ermentrout and Kopell, see [ 31]. Revisiting these models from the perspective of
slow-fast dynamics reveals that the number of spikes per burst may vary upon parameter changes,
however the spike-adding process occurs in a brutal (explosive) fashion that involves canards. This
spike-adding canard explosion phenomenon is analysed by using tools from GSPT in tandem with
numerical bifurcation techniques. The same geometric bifurcation structure persists across the three-
and four-dimensional models of parabolic bursting that we consider, that is, spikes within the burst
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are incremented via the crossing of an excitability threshold given by a particular type of canard
orbit, namely the strong canard of a folded-saddle singularity.

Bursting oscillations are said to be parabolic when the burst initiates and terminates with arbitrary
low frequency, hence exhibiting a parabolic-shaped curve when measuring the interspike intervals
along a burst. In the time domain the observed oscillatory pattern consists of periodic bursts of
activity “superimposed” onto a slow wave, which can be explained by the interaction between two
oscillatory processes, one evolving on a slow timescale and the other evolving on a fast timescale.
Mathematically, this bursting type translates to dynamical-system models with at least four state
variables, two slow variables and two fast variables. The dynamics of the slow and fast variables
can be further reduced to phase variables (by using polar coordinate transformations), resulting in ei-
ther planar or three-dimensional models if the coordinate transformation is applied either to the fast
processes or to both slow and fast processes. However, it is worth mentioning that Izhikevich [ 78]
has proposed other types of parabolic bursters using hybrid models, without the underlying slow
wave; such models will not be considered in the present work.
Parabolic bursting was �rst observed in Aplysia R 15ganglion cells and the �rst biophysical (Hodgkin-
Huxley type) model was proposed by R. E. Plant and colllaborators [ 123], this model being rapidly
referred to as Plant's model. This work inspired research within the �eld of mathematical and com-
putational neuroscience to develop novel techniques based on numerical bifurcation analysis and
singular perturbation, which enabled the analysis and classi�cation of bursting cells into easily
distinguishable groups (e.g. parabolic, elliptic and square-wave). Within parabolic bursting, this
classi�cation process started with the pioneering work of R. E. Plant [ 124, 122] where a comparison
between the parabolic bursting behaviour of the full system and the behaviour of the fast system
was made. Subsequently, J. Rinzel [131, 4] studied more thoroughly a modi�ed version of Plant's
model, from the perspective of slow-fast dynamics, in particular using slow-fast dissection[130] (see
below) and averaging [ 142]. Rinzel also developed a three-dimensional phase model for parabolic
bursting, which the present work revisits using slow-fast theory in Section 5.2.1.2. In parallel to the
work of Rinzel and co-authors, throughout the 1980s, Ermentrout and Kopell [ 48] further reduced
parabolic bursting canonical models to two phase variables (so-called Ermentrout-Kopell canonical
model, thetaor Atoll model) and studied the bifurcation structure of this canonical model. In the mid-
1990s, Soto-Treviño et al. [143] revisited the Ermentrout-Kopell theorem and managed to weaken
the required assumption for the reduction.
Computational neuroscience studies have tried to explore the use of parabolic bursters to model
various aspects of neurophysiological data, for example, neurons [ 124, 122], muscle cells [123], or
cortical cells [56]. The envisaged thought is that these results will inform experimental neuroscience
and explain the importance of bursting as well as the functional properties of the type of bursting.
Presently, much is unknown, but a general consensus is that bursts are responsible for controlling
and maintaining steady rhythms, for example, breathing and locomotion (central pattern genera-
tors). Several studies have also shown that bursting neurons can encode information in the number
of spikes per bursts: as the stimulus varies, so does the length of individual bursts. More dif�cult to
explain is the functional role of the various bursts types. However, It is thought that the burst type
could be specialized to carry different type of information (i.e. stimulus features) and much work
is still being carried out to understand what features depend on the mathematical properties of the
underlying burst type [ 137]. The present study addresses one key aspect, which is explaining via
slow-fast theory how spikes are added to the burst with respect to an input. Therefore this work
contributes to the larger body of theoretical studies that hypothesize that instantaneous spike varia-
tion carries information [ 128].

As explained at the beginning of Chapter 4, slow-fast dissection is a little more delicate in the case
of parabolic bursting systems, due to the presence of two slow variables and, hence, two main
parameters in the fast subsystem. The way to obtain information from the fast subsystem is then to
compute curves of bifurcation points in two parameters (the two frozen slow variables) and trace
them, in a three-dimensional phase-space projection, together with the projection of the critical



5.2 spike-adding mechanism in parabolic bursters 73

Figure 42: Bursting solution of Plant's model ( 42) containing a canard segment, represented in three-
dimensional projection onto the (xT ,C,V)-space. The black orbit � is a limit cycle with three fully
developed spikes and one spike “almost” formed (close to longest canard). It follows both the at-
tracting sheet Sa and one repelling sheet Sr of the critical manifold S0 (green surface), whose fold
curves F� separate the external sheets (lowerSa and upper Sr ) from the central repelling sheet Sr .
The underlying folded saddle is shown by a red dot and labelled fs.

manifold, which can be parametrized by these two parameters of the fast subsystem; see Fig. 42,
which shows the result of this procedure. The periodic solution of the full four-dimensional system
(black) is superimposed onto the (green) surface S0 of equilibria of the fast subsystem. This surface
S0 := ff = 0g is of course the critical manifold of the system. It is folded along two curves, F� ,
that correspond to curves of saddle-node bifurcations of equilibria of the fast subsystem. The fold
curves are equivalently de�ned by the algebraic condition det (f x) = 0, where f x denotes the Jacobian
of (143) with respect to the fast variables. It is well-known since [ 130] that in parabolic bursters, the
fast oscillations are initiated and terminated when the orbit passes through one of the fold curves
F� , where the centre manifolds of the saddle-node equilibria of the fast subsystem form an invariant
circle, which by perturbation creates limit cycles with very large period. This bifurcation of the fast
subsystem is called a Saddle-Node on Invariant Circle (SNIC) bifurcation, also referred to as circle
bifurcation. From the classi�cation in [ 76], parabolic bursting then corresponds to a SNIC-SNIC
bursting.

The slow-fast dissection method, used in the context of parabolic bursting in [ 131, 4], allows to
decompose the system (143) into its fast and slow subsystems, typically denoted by FAST and
SLOW respectively, and to analyse them separately: in FAST, one eliminates the slow variables by
considering their dynamics frozen and, hence, assuming that they act as parameters in the equations
for the fast variables; in SLOW, one eliminates the fast variables by using a quasi-steady state
approximation, assuming that the slow dynamics is restricted to the manifold of equilibria of the fast
equations (fast nullsurface, i.e. the critical manifold S0), and by using fast averaging in the regime
where the fast variables oscillate. Then, a bifurcation analysis of the resulting �ows is performed in
both approximations, and the resulting separate dynamics are reconciled in order to inform about
the original full system; see in particular [ 131, 4, 142] for a fruitful application of this technique
to parabolic bursting systems, in particular, to Plant's model. However, one can push more the
singular perturbation analysis by desingularising the slow �ow in the vicinity of fold curves of the
critical manifold in order to investigate the possibility for canard-type solutions and analyse their
organisation in the singular phase space. In systems with two slow variables, this deginsularisation
procedure may reveal the classical phase portrait of an equilibrium (node, saddle, focus, saddle-
node) located on the fold curve of the critical manifold; one then speaks of a folded singularity
and one can prove that this point (which is not an equilibrium of the full system) can generate
canard dynamics for " > 0 small enough. This desingularisation approach is classical in canard
problems [28, 93, 144] but, to be the best of our knowledge, it has not been previously employed
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in parabolic bursters. Therefore, the present Section revisits the slow �ow of parabolic bursting
and studies its singular limit near non-hyperbolic regions of the critical manifold S0 . In the case of
the three-dimensional theta model by Rinzel and the four-dimensional model by Plant, we identify
a folded-saddle singularity that generates canard solutions for 0 < " � 1. Moreover, the folded
saddle organises the addition of new spikes. For the case of two-dimensional Atoll model, we show
that the spike adding is explained by so-called jump-on canards. The spike-adding phenomenon
appears to be a general feature of bursting oscillations and contributions towards this direction was
provided by our latest work on square-wave bursters [ 29]. This phenomenon is a consequence of
the multiple-timescale structure of most bursting models and results from the existence of canard
solutions.

This contribution also complements previous knowledge on this type of bursting by showing that, in
the case of three-dimensional and four-dimensional parabolic bursters, there must be a homoclinic
bifurcation occuring in the desingularised slow �ow, involving the folded saddle, on top of the well-
known family of SNIC bifurcations in the fast �ow. Moreover, for the parabolic bursters that we have
considered, the spike-adding transition can be continuous or discontinuous but it always involves
canard solutions. The distinction between these two cases is related to the intrinsic geometry of the
problem, more precisely, to the presence or not of a second fold curve on the critical manifold, on
top of the curve of SNIC points of the fast subsystem. For instance, Plant's model is based on the
Hodgkin-Huxley formalism and it has a cubic-shaped critical manifold; therefore the spike-adding
is continuous. However, Rinzel's model is based on the theta model of Ermentrout and Kopell [ 48]
and, therefore, contains a phase variable � which makes its associated critical manifold 2� -periodic,
each connected component having only one fold curve. Consequently, the canard-mediated spike-
adding mechanism in Rinzel's model is discontinuous. This understanding leads us to the derivation
of a novel canonical (polynomial based) four-dimensional parabolic burster. Our new polynomial
approximation of Plant's model is inspired from the Hindmarsh-Rose burster [ 71] but with an
additional slow dynamics on the applied current, very much in the �avour of the model derived
by the authors in [ 29] to introduce Mixed-Mode Bursting Oscillations (MMBOs). The added slow
dynamics creates a folded-saddle singularity on the SNIC fold curve of the critical manifold. This
is in contrast to the model studied in [ 29], where this singularity is a folded node. Instead, for our
proposed canonical model, we construct the model in such a way that it possesses a folded saddle
and features a continuous spike-adding transition via associated canards. As a consequence, the
model entirely matches the dynamics of the Plant's model. However, note that it is possible to have
a folded node (and, therefore, MMBOs) in Plant's model and in Rinzel's model, when varying a few
parameters away from the classical set of parameter values; see Section5.2.2.

The methods applied in the present work include singular perturbation theory, the dissection
method, and it also involves the use of numerical continuation algorithms for slow-fast systems [ 28].
Speci�cally, trajectory segments (such as canard orbits) are computed as solutions to two-point
boundary-value problems in conjunction with a numerical continuation strategy, which allows to
obtain a one-parameter family of such solutions. We have used the software package auto [38] to
perform these computations (both bifurcation analysis and computation of canard segments); see
the demo �les fnc included in the manual of auto for details. In addition, we use the software pack-
age mathematica [106] to perform algebraic manipulation in the singular limit of Plant's model;
see Section5.2.1.1 below.

5.2.1 Plant's model and its new polynomial approximation

5.2.1.1 Plant's biophysical model of the Aplysia R15 neuron

We begin our study of spike-adding in parabolic bursters with Richard Plant's biophysical model for
the Aplysia R 15 bursting neuron, which was introduced in 1978[121], later simpli�ed in 1981[122],



5.2 spike-adding mechanism in parabolic bursters 75

Figure 43: (a) Slow �ow of Plant's model ( 42), computed by solving the associated Differential-Algebraic
Equation (163) (DAE). (b) Flow of the Desingularized Reduced System (DRS) for Plant's model,
showing the characteristics of a saddle equilibrium s with its stable manifold Ws (s) and its unstable
manifold Wu (s). In the “true” reduced �ow, it implies that this point is a folded saddle fs and the
two special trajectories are the strong canard  s and the faux canard  f .

and ever since considered as a classical conductance-based parabolic burster. The �nal version is a
�ve-dimensional model given as follows:

�V =
�
gI s3

I (V)y I + gT xT
�

(VI - V) +
�

gK x4
K +

gp c
Kp + c

�
(VK - V) + gL (VL - V) = f (V, xT , xK , y I , c),

�xi = ( si (V) - xi )=� x i , i = T,K

�y I = ( zI (V) - y I )=� y I ,

�c = � (Kc xT (V)(VCa - V) - c) ;

(160)

see [122] for details on the sigmoid-shaped activation functions and classical parameter values.
The preliminary studies by Plant in [ 122] hinted that there is an underlying slow sub-system of
model (160). However, given that the model is based on the Hodgkin-Huxley formalism, it was
not clear how to identify an obvious time-scale separation (i.e. a small parameter " ). In addition,
Plant hinted at the spike-adding phenomenon without analysing it mathematically. In [ 131], Rinzel
revisited Plant's work by employing his then newly developed slow-fast dissection method. The
approach taken to identify the separation of time scale was by direct simulations of system ( 160),
where two slow variables, namely, xT and c, and three fast variables, V, xK and y I were identi�ed.
Rinzel understood the shape of parabolic bursting by analyzing the bifurcation structure of the fast
system. Speci�cally, it becomes clear that the fast system has a curve of SNIC when freezing the
remaining two slow variables and considering them as parameters. Following this approach, we
can formally recast system (160) as a slow-fast system, the timescale separation parameter" being
equal to min (1=� x T , � ). Moreover, by virtue of the well-established singular perturbation theory we
can now further analyze the slow-fast structure of the problem when " tends to zero. Doing so in
the (equivalent) slow-time parametrisation of system ( 160) yields the critical manifold S0 , which is
given by the following set of algebraic equations:

f (V, xT , xK , y I , c) = 0,

xK = sK (V),

y I = zI (V).

(161)

A visualisation of the corresponding surface (shown in green in Fig. 42) con�rms that it has locally
two fold curves F� . It is also straightforward to verify numerically that the outer sheets Sa of S0 are
attracting while the middle sheet Sr is repelling. Using geometric singular perturbation theory for
systems with two slow variables (see e.g. [28] for details), we can �nd a folded-saddle singularity fs
in this system, that is, a point that allows the slow dynamics to follow the lower attracting sheet Sa
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of S0 and subsequently its central repelling sheet Sr , without jumping when reaching the fold curve
F+ . Note that there is a second repelling part on S0 , on the other side of the upper fold curve F- ;
this is due to the presence of a curve of Hopf bifurcation points of the fast subsystem on the upper
sheet of S0 , which divides this sheet into an attracting part and a repelling part. This is typical of
parabolic bursting and explains the actual burst, which is due to the presence of a two-parameter
family of limit cycles in the fast subsystem. In particular, we can show that for the parameter values
corresponding to Fig. 42, which are in the range considered by Plant and Rinzel, the so-called normal
switching conditions[111] are not satis�ed; that is,

(f x T �xT + f c �c)�� fs
= 0, (162)

where f x denotes the partial derivative of f with respect to variable x. This algebraic calculation is
messy for system (42) due to its strong nonlinearities (sigmoid-type functions) and high dimension.
We have performed these calculations with the software mathematica [106], however we refrain
from showing the rather lengthy expressions that we obtained. The evaluation of formula ( 162) at
the numerically computed point, fs, indeed gives zero. To con�rm these symbolic computations, we
provide a numerical evidence of the presence of a folded saddle in system ( 42) by computing the
�ow of the reduced system

f (V, xT , xK , y I , c) = 0,

xK = sK (V),

y I = zI (V),

�xT = k(si (V) - xi ),

�y I = ( zI (V) - y I )=� y I ,

�c = Kc xT (V)(VCa - V) - c,

(163)

where we rewrite 1=� x T as�k . Fixing the ratio between � and � x T enables to consider that system (42)
has two slow variables and to derive the Differential-Algebraic Equation ( 163) (DAE) which governs
the reduced system of Plant's model. The associated slow �ow takes place on the critical manifold
S0 and approximates the slow dynamics of system ( 42) in the singular limit " = 0. System (163) can
be simulated using adequate numerical schemes for DAEs and we obtain the computed reduced
slow �ow presented in Fig. 43 panel (a); the computation was performed using the DAE solver im-
plemented within the software package xppaut [47]. This phase portrait is typical of a folded-saddle
singularity (indicated by a red dot). Indeed, by reversing the time orientation on the repelling sheet
Sr of the critical manifold we obtain the phase portrait shown in panel (b), which possess a saddle
equilibrium s with its stable manifold Ws (s) and its unstable manifold Wu (s). This corresponds
to the so-called Desingularised Reduced System (DRS) of Plant's model (see Section5.2.1.2 below).
The true reduced �ow on the critical manifold is shown in panel (a), where the singularity on the
fold curve F+ is not an equilibrium point but instead a folded singularity, which may be reached in
�nite time and crossed. This means that the �ow goes through this point, crosses it, and continues
on the other side giving rise to canard dynamics. Two singular canards exist and these correspond
to the special trajectories Ws,u (s) of the DRS: these are the strong canard s and the “faux” canard
 f (named this way because it connects the repelling side to the attracting side instead of the oppo-
site as a normal canard). We refer the reader to the next section for details about these concepts, in
the context of a simpler vector �eld where all calculations can be easily carried out by hand. The
limit cycle � shown on Fig. 42 illustrates well the effect of the folded-saddle singularity f s on the
burst part of this periodic solution. For the chosen value of parameter GI , one can compute (using
AUTO [ 38]) such a limit cycle, which contains a long segment crossing from the attracting to the
(central) repelling sheet of S0 . Such a segment may be called a canard segment, and the overall cycle
is a canard of folded-saddle type. It is clear from this �gure that the fourth spike of this bursting
cycle is different in nature from the other three, in that it corresponds to a jump from F- as opposed
to a jump from F+ for the �rst three spikes. This suggests that, in order to “add” one more spike
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Figure 44: Main dynamical elements of the slow �ow of the canonical parabolic bursting model ( 164). Panel
(a): Bifurcation structure of the DRS with respect to parameter k. Panels (b1)-(b5): phase portrait
of the DRS for a few selected values of k across the bifurcation diagram shown in panel (a).

upon parameter variation, system ( 42) must possess a family of limit cycles with canard segments
that extend from one fold curve to the other. This is related to the existence of an important maxi-
mal canard solution — maximal in the sense that it follows the repelling part of S0 from one fold
curve to the other —, termed the strong canard, and de�ned geometrically in the singular limit
as the stable manifold of the folded saddle (seen as an equilibrium of the desingularised reduced
system); see sections5.2.2 and 5.2.1.2 for details. The singular strong canard perturbs to a trajectory
of the full system for 0 < " � 1, which in this context is part of a limit cycle lying on the �rst
quasi-vertical segment of the branch shown in Fig. 48 (a). The entire process described above forms
the canard-mediated spike-adding explosion, the explosive feature being a trademark of canard phenom-
ena. The addition of a spike, upon parameter variation, therefore corresponds to the crossing of the
strong canard, which for this case corresponds to the excitability threshold. That role of excitability
threshold for the strong canard associated with a folded saddle has already been analysed in [ 112]
in a different model, and it is directly related to the role of stable manifolds of saddle equilibria
as repelling slow manifolds in planar excitable models [ 30, 78]. Moreover, this canard transition
between bursting cycles with n spikes per burst and cycles with n + 1 spikes per burst is continu-
ous, as can be observed in Fig.48 (a). This is mainly due to the geometry of the critical manifold,
which is cubic-shaped, and therefore allows the strong canard to extend all through the (central)
repelling sheet of the critical manifold and to connect to a second repelling sheet Sr along the fold
curve F- . However, the �nal spike-adding (in this case the �fth canard explosion) terminates due
to a homoclinic bifurcation of the full system. The maximum number of spikes that the model may
add upon parameter variations depends on other system parameters, in particular those affecting
the timescales.

5.2.1.2 A canonical model with two slow variables and two fast variables

Given the complexity of Plant's model, that is, its large dimension and strong nonlinearities, a natu-
ral question is then whether one can construct a canonical model of the spike-adding mechanism in
such parabolic bursters. The present section investigates this by inspiring from the polynomial spik-
ing models such as the FitzHugh-Nagumo model [ 53, 114], and polynomial bursting models such as
the Hindmarsh-Rose model [ 71]. We can now make a link to our work [ 29] presented in Section 5.1,
where we have shown how to construct a four-dimensional model with slow passage through burst-
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ing oscillations, hence creating a folded-node singularity. This then enables the generation of both
Small-Amplitude Oscillations (SAOs) and bursting oscillations, that is, MMBO. Following these
ideas, we construct a model with a slow passage through a three-dimensional burster (a variant of
the Hindmarsh-Rose burster) whose fast subsystem possesses a SNIC bifurcation in such a way to
make this slow passage create a folded-saddle singularity in the resulting four-dimensional system.
This gives rise to the following canonical model:

x0 = c
�
x - x3=3- y + z + I

�
,

y 0 =
�
x2 + dx - by + a

�
=c,

z0 = " (z - s(x - x1)) ,

I 0 = " (k - hx (x - xfold )2 - hy (y - y fold )2 - h I (I - I fold )) ,

(164)

where I is the applied current that evolves slowly. The system parameters are a, b, c and d and
xfold , y fold and I fold are constants whose meaning will be explained below. Since system (164) is
based on a variant of the Hindmarsh-Rose (HR) burster, then the resulting canonical construction
allows for the fast subsystem of (164) to display a SNIC bifurcation, an essential element in order to
obtain parabolic bursting in the extended model. The I -equation of (164) was chosen so as to have
the lowest-order terms possible while producing the adequate oscillatory behaviour for the current.
For the �rst three equations of ( 164), which correspond to the HR model, we consider the classical
parameter values, that is: a = 0.08, b = 0.71, c = 3, d = 1.8, " = 0.002, s = 4, x1 = - 1.6. Note
that the small parameter " is usually denoted by r; the parameter values of the return mechanism
(I -equation) are all chosen strictly positive. The key dynamics of the proposed model are the SNIC
bifurcation in the fast system and a homoclinic-like loop in the reduced system, which connects the
folded saddle to itself. We argue that the transition to parabolic bursting is given by the breaking
of this connection. If the connection breaks in one direction then the resulting dynamics is a slow
periodic orbit. If the connection breaks in the opposite direction then the resulting slow dynamics
is a passage through a jump point followed by a fast excursion along the SNIC orbit, which is
equivalent to the �rst parabolic burst. The transition between these two types of behavior occurs
via a folded-saddle canard. The results on the sequence of bifurcations in the slow system are more
conveniently stated in the context of the DRS. This system is derived from the reduced system
through a singular time rescaling which removes the singularity at the folded line and turns the
folded saddle point into a saddle equilibrium [ 10, 144]. In what follows we employ the standard
steps of slow-fast analysis of (164), leading up to the DRS system, which enables us to restate our
claims in this this setting.

The critical manifold of ( 164) is the two-dimensional surface S0 = fx0 = 0g\ fy 0 = 0g, that is the
manifold de�ned by the constraints:

y =
1
b

(x2 + dx + a) (165)

z =
x3

3
+

x2 + dx + a
b

- x - I . (166)

Note that S0 is parametrized by x and I and has a fold line given by the image of the line fx = xfold g,
where

x2
fold +

2
b

xfold +
d
b

- 1 = 0, (167)

In particular xfold appearing in ( 164) is the solution of ( 167) corresponding to the lower fold line of
(164) and y fold is the y value corresponding to the fold line. Solving ( 167) yields

xfold � = -
1
b

�
1 �

p
1+ b(b - d)

�
, y fold � =

x2
fold � + dx fold � + a

b
. (168)

Furthermore, the value I fold is chosen so that the slow nullcline of the mode�ed HR burster fz =
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Figure 45: Solutions of the canonical parabolic bursting system ( 164) containing canard segments during the
adding of the �rst spike in panels (a 1)-(b1), and that of the second spike in panels (a2)-(b2). In
each panel, the black orbit � is a limit cycle with one fully developed spike and one spike “almost”
formed (close to maximal canard). It follows both attracting and repelling parts of the critical
manifold (green surface). The blue curve is the singular strong canard, corresponding to the stable
manifold of the folded saddle (red dot labelled fs) seen as a saddle equilibrium of the DRS.

s(x - x1)gpasses exactly through the fold of S0 . Thus, we have

I fold � =
x3

fold

3
+

x2
fold � + dx fold � + a

b
- xfold � - s(xfold � - x1). (169)

In fact, only the lower fold will be involved in the presence of a folded saddle in the full four-
dimensional model. Rescaling time by introducing � = "t gives the equivalent system

" �x = c
�
x - x3=3- y + z + I

�
,

" �y =
�
x2 + dx - by + a

�
=c,

�z = z - s(x - x1),

�I = k - hx (x - xfold )2 - hy (y - y fold )2 - h I (I - I fold ).

(170)

Setting " = 0 in (170) results in the singular approximation of the slow dynamics. This reduced
system is composed by differential equations for the slow variables z and I constrained by algebraic
equations de�ning the fast nullsurface, that is, the critical manifold S0 , recall (165) and (166). The
resulting �ow is the so-called slow �ow, already mentioned in previous sections, and whose analysis
crucially reveals the presence of a homoclinic bifurcation through the folded saddle as a key element
to the spike-adding process. The manifold S0 is a cubic surface in R4 and its projection onto the
three-dimensional phase space(x, z, I ), is a cubic hypersurface with two curves of fold points (with
respect to the fast variable x) F+ and F- , given by

F+ = fx = xfold + g, F- = fx = xfold - g.

Note that algebraic condition ( 166) gives an expression of z as a function of x. Differentiating ( 166)
with respect to time and using ( 170) we obtain a differential equation for x

(x2 +
2
b

x +
d
b

- 1) �x = �z + �I (171)

=
x3

3
+

x2 + dx + a
b

- x - I - s(x - x1) + (172)

k - hx (x - xfold )2 - hy (y - y fold )2 - h I (I - I fold ). (173)
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We can now express the reduced system in terms of the variables x and I , using (171) and the
constraints (165) and (166). This procedure gives the following formulation of the reduced system:

�
x2 +

2
b

x +
d
b

- 1
�

�x =
x3

3
+

x2 + dx + a
b

- x - I - s(x - x1) + k - hx (x - xfold )2 - hy (y - y fold )2 - h I (I - I fold )

�I =
�
k - hx (x - xfold )2 - hy (y - y fold )2 - h I (I - I fold )

�
.

(174)

The resulting system is formulated in terms of x and I and the constraints (165) and (166) have
been eliminated. Note that ( 182) is singular along the fold set F = F+ [ F- , which re�ects that
singularity of S0 . In order to extend the domain of de�nition of ( 182) up to the fold set F, one
typically desingularises it by performing a singular time rescaling, here with a factor x(3ax - 2(b -
d)) ; see for instance [18, 28] for the general theory. Therefore, one obtains a planar non-singular
system given by

�x =
x3

3
+

x2 + dx + a
b

- x - I - s(x - x1) + k - hx (x - xfold )2 - hy (y - y fold )2 - h I (I - I fold )

�I =
�

x2 +
2
b

x +
d
b

- 1
�

�
k - hx (x - xfold )2 - hy (y - y fold )2 - h I (I - I fold )

�
.

(175)

System (175) is called the Desingularised Reduced System (DRS). Equilibria of the DRS lying on F are
called pseudo-equilibriaor folded singularitiesfor the original system given that they are not equilib-
rium solutions there. We focus on the folded singularity satisfying xf 6= 0, that is,

xf = -
1
b

�
1+

p
1+ b(b - d)

�
= xfold + . (176)

From the previous equality it follows immediately that y f = y fold + . Using the x-equation of the DRS,
we �nd that

I f =
x3

f =3+ ( x2
f + dx f + a)=b - xf - s(xf - x1) + k + h I I fold +

1+ h I
.

In the �rst four terms of the numerator above, we recognise the expression of I fold + given in ( 169).
Therefore, we have

I f = I fold + +
k

1+ h I
. (177)

Now, the Jacobian matrix of the DRS at the folded singularity (xf , I f) is given by

 
- s -( 1+ h I )

2
�
xf + 1

b

�
(k - h I (I f - I fold )) 0

!

.

Using (176) and (177), we see that the lower left entry further simpli�es to

2
�

xf +
1
b

�
k

1+ h I
.

Consequently, the condition to have a saddle (strictly negative determinant) is that xf < - 1=b (k has
been chosen strictly positive), that is,

b(b - d) > - 1.

Our further exploration of DRS system ( 175) relies on numerics, with the relevant orbits shown in
Fig. 44. Our careful numerics show that ( 175) has the following sequence of dynamics, upon the
variation of the parameter k.

1. Stable equilibrium.

2. Hopf bifurcation leading to a stable limit cycle.
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3. Homoclinic bifurcation involving the saddle which corresponds to the folded saddle point.

The corresponding dynamics of the full system ( 164) with " > 0 :

1. Stable equilibrium.

2. Hopf bifurcation leading to a stable slow limit cycle.

3. A complex sequence of bifurcations born out of the homoclinic connection when " = 0 is
replaced " > 0 and leading from a stable slow limit cycle to a solution with a parabolic burst.

It is not hard to show using classical methods that, with " > 0 , near the homoclinic connection there
exist slow stable limit cycles as well as dynamics consisting of slow passage near the homoclinic
orbit, jumps and passage near the SNIC orbit, arising as a recurrent sequence. The latter type of
orbit is a parabolic burst with one spike. These two regions of dynamics correspond to breaking
the connection via parameter k in the opposite directions. Note that by the results of [ 10, 144]
there exists a unique canard solution near the folded saddle. Numerical exploration with auto [38]
shows a homotopy transition upon variation of k from the region of slow oscillations to the region
of parabolic bursting, see Fig. 48 (in the cases of Plant and Rinzel models, respectively). As k is
increased further, additional spikes are added and each spike adding transition involves a passage
of trajectories near the folded saddle canard. We believe that the entire sequence of bifurcations is
very intricate and it would be a challenging problem to obtain its full picture. A more in-depth
study of this system will be a subject of future work. Fig. 45 shows a bursting cycle with a (close to)
maximal canard segment that clearly follows the strong canard associated with the folded saddle
fs.

5.2.2 Rinzel's three-dimensional theta model

This section focuses on Rinzel's theta model [131], which is a phenomenological version of Plant
model. We show that this model also possesses a folded-saddle singularity that organises the spike-
adding mechanism however, via a discontinuous process in parameter space. The model is three-
dimensional and given as follows:

� 0 = 1 - cos� + A(x, y),

x0 = " x (x1 (� ) - x),

y 0 = " y (y1 (� ) - y),

(178)

where A(x, y) = tanh(ax - by + I ) and s1 (� ) = sin(ps + � ) for s = x, y. The quantities a, b, I
are parameters, and " s (s = x, y) are small positive constants. The variable � is a phase variable,
therefore the phase space of system (178) is S1 � R2 . To facilitate a slow-fast analysis of system (178),
we henceforth write: " y = " and " x = k" y = k" . Thus we will study the following slow-fast system
with one fast variable and two slow variables

� 0 = 1 - cos� + A(x, y),

x0 = "k (x1 (� ) - x),

y 0 = " (y1 (� ) - y).

(179)

Changing to the fast time yields the following equivalent parametrisation of system ( 179)

" �� = 1 - cos� + A(x, y) = f (� , x, y),

�x = k(x1 (� ) - x),

�y = ( y1 (� ) - y).

(180)

The critical manifold S0 of system (180) is given by

S0 :=
�

cos� = 1+ A(x, y)
	

. (181)
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In what follows we will show that the critical manifold S0 , given by equation ( 181), posses a folded-
saddle singularity and that geometrically the repelling part of S0 extends up to in�nity thereby
inducing spike-adding via a discontinuous process. To begin with, note that S0 de�nes a 2� -periodic
surface, with fold curve F de�ned by ff � = sin � = 0g, that is, corresponding to � = 0 mod 2� ; see
Fig. 46 for a phase-space representation of the critical manifold. Indeed, for � = 0 mod � , the
equation de�ning the critical manifold is not satis�ed since jA(x, y)j < 1. Therefore, the fold curve
F is simply f� = 0 mod 2� }, which is equivalent to A(x, y) = 0 in the (x, y)-plane of slow variables,
that is, the straight line of equation: ax - by + I = 0. It follows from slow-fast theory that systems
with two slow variables and one fast variable, with a folded critical manifold, can display canard
solutions; see Chapter3. In this context, canards correspond to connection between two-dimensional
attracting and repelling slow manifolds, which are possible when folded singularities are present on
the fold curve of the critical manifold. We now show that indeed S0 posses a folded singularity of
saddle-type. Taking the singular limit ( " = 0) of system (180) results in a DAE whereby the dynamics
of the slow variables x and y are now constrained by an algebraic equation that corresponds to the
critical manifold. This gives an approximation of the slow dynamics of the original problem but now
taking place exactly on the critical manifold. In this framework, the dynamics of the fast variable � is
hidden within the algebraic constraint and its standard to differentiate the constraints with respect
to time in order to uncover the dynamics for � in the slow limit, which results in:

- f � �� = f x �x + f y �y. (182)

As long as f x �x + f y �y 6= 0, which corresponds to the normal switching condition, then equation ( 182)
is singular whenever f � = 0, that is, along the fold of S0 . In the original system, this situation gives
rise to a switch from slow to fast dynamics and the associated point on the fold near which this
switch happens is called a jump point. It marks the transition from slow dynamics near an attracting
sheet of the critical manifold S0 , to fast motion in the direction of the fast variable orthogonally to
the fold of S0 . If the normal switching condition fails, then the singularity in equation ( 182) can be
resolved due to the cancellation of a single zero. Therefore, the dynamics of the reduced system can
�ow through such a point (i.e. a folded singularity) on the fold curve. This means that there is the
possibility for trajectories of the reduced system to �ow continuously from an attracting sheet to a
repelling sheet of S0 through a folded singularity, namely the singular canards.

An alternative way to resolve the singularity is to consider the complete reduced system, that is,
equation (182) together with the differential equation for one slow variable, for instance, x; with the
system we are investigating, this gives

- f � �� = f x �x + f y �y,

�x = k(x1 (� ) - x).
(183)

Rescaling time by a factor - f � in (183) yields the DRS

� 0 = f x �x + f y �y,

x0 = - f � k(x1 (� ) - x),
(184)

where y is replaced by its expression as a function of � and x on the critical manifold. It is now clear
that the failure of the normal switching condition at a point on the fold curve of S0 corresponds
to an equilibrium point of the DRS on this fold curve. That is, folded singularities of the reduced
system are equilibria of the DRS located on the fold curve of S0 . Therefore, singular canards exist
near folded singularities, that is, in the " = 0 limit of system ( 180). They may or may not persist for
0 < " � 1 small enough, and it depends on the type of folded singularity.

Applying the aforementioned steps (for the resolution of the singularity) to the Rinzel's phase
models gives the following failure of the normal switching conditions:

Ax (x, y)k(x1 (� ) - x) + Ay (x, y)(y1 (� ) - y) = 0, (185)
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Figure 46: Solution of Rinzel's theta model ( 180) containing a canard segment. Panel (a) shows the trajectory
in the phase space together with the critical manifold S0 (attracting sheet Sa and repelling sheet
Sr , the fold curve F, the folded saddle (black dot) and its (un)stable manifolds (strong  s and faux
 f singular canards). Panel (b) shows the time pro�le of the same trajectory, the plotted output
being sin � . In each panel, the circle denotes the initial condition.

with Ax (x, y) = a(1 - A2(x, y)) and Ay (x, y) = - b(1 - A2(x, y)) . Moreover, condition ( 185) must
be ful�lled on the fold of S0 , that is, for � = 0 mod 2� , where the term A(x, y) vanishes. Hence,
equation (185) reduces to

ak(x1 (� ) - x) - b(y1 (� ) - y) = 0, (186)

with: y = ( ax + I )=b. Therefore, the coordinates of the folded singularities of system ( 180) are

� fs = 0 mod 2� ,

xfs =
ak sin px - b sin py + I

a(k - 1)
,

y fs =
ax fs + I

b
.

(187)

The Jacobian matrix at the folded singularity (� fs , xfs , y fs) has the following form

Jfs =

 
ak cospx - b cospy - ak

- k(sin px - xfs) 0

!

, (188)

Therefore, the condition for the folded equilibrium to be a saddle of the DRS is

ak2(sin px - xfs) > 0, (189)

which, according to the expression of xfs in (187), gives

k2

jk - 1j
(b sin py - a sin px - I ) > 0, (190)

that is,

I < b sin py - a sin px . (191)

It is not dif�cult to check that for parameter values typically used in system ( 178) (see for in-
stance [131]), the folded singularity fs := ( � fs , xfs , y fs) given by (187) is a folded saddle. An illus-
tration of the singular strong canard,  s , �owing along the critical manifold S0 through the folded
saddle, is shown in Fig. 46 (a). Away from the singular limit, Fig. 46 (a) also shows a trajectory � ,
solution of the full system ( 180) with initial condition indicated by a circle, which closely follows
the strong singular canard. That is, in accordance to Fenichel theory [52], the solution is attracted
and �ows ( O(" )-close) along the attracting sheet Sa of the critical manifold. Subsequently it passes
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Figure 47: Solutions of Rinzel's theta model ( 180) corresponding to case 2, projected onto the (x, � ) plane and
superimposed on top of the invariant manifolds of the two equilibria of the DRS for the same value
of I . Panel (a):I = - 0.05, the folded equilibrium (right) is a folded saddle and the true equilibrium
is a node (left), which attracts the overall dynamical of the full system. Panel (b): I = 0.05, the
situation is opposite and the oscillatory pattern of the full dynamics is shaped by the passage
through the folded node and near the true saddle.

near f s, where Fenichel theory does not apply anymore, and then continues close to the repelling
side Sr of the critical manifold. Then it jumps (back to the attracting side) and �nally �ows until it
is ejected when reaching the fold curve at a jump point. The same orbit segment of the full system
is shown in the time domain in Fig. 46 (b).

Returning back to the geometry of the ( 2� -periodic) critical manifold S0 , we note that every con-
nected component of the manifold has a single fold and consequently both the repelling and the
attracting sheet of the critical manifold extend to in�nity; see Fig. 46 (a). It turns out that the single
fold curve corresponds here as well to a curve of SNIC points of the fast subsystem; this is a clear
trademark of all parabolic bursters. Therefore the repelling segment of the strong singular canard
extends to in�nity and the spike-adding process is discontinuous in parameter space; see Fig. 48 (b)
for an illustration of this discontinuous spike-adding bifurcation scenario. Speci�cally, each branch
of limit cycles with a given number of spikes per burst terminates at a homoclinic bifurcation, and
all but the �rst one (born at a Hopf bifurcation) also stems from a homoclinic bifurcation. This is in
contrast to Plant's model, where the solution branch of limit cycles gaining more and more spikes
as a parameter is varied, is continuous; see Fig.48 (a) for an illustration of this continuous spike-
adding bifurcation scenario. This difference emerges due to the �nite length of the repelling sheet
of the critical manifold —and also of the strong singular canard—, and the fact that this repelling
sheet connects two attracting sheets.

Finally note, that the DRS of system (180) has an additional branch of equilibria, which are equilibria
of the full system. In [ 131], two cases were considered depending of the relative size of " x with
respect to " y : case1 when k = " x

" y
� 1 and case2 when k � 1. In each case, varying parameter

I allows to move the system across the bursting regime; see �gures 8 and 9 of [131]. Note that
relation (191) is independent of k, therefore in either case (1 and 2) by varying I one observes the
same bifurcations of the underlying structure of folded singularities within the system; see Fig 47
for an illustration. In particular, varying parameter I changes the type of folded singularity from
one type to the other via a so-called folded-saddle node type II (FSNII), which occurs when the
branch of folded singularities intersects the branch of true singularities of the system; see [ 93] for
more details about this scenario. The condition for FSN II in system ( 46) is given as follows:

I = b sin py - a sin px . (192)

The main difference between the two cases is the type of folded singularity that organises the
dynamics in the bursting regime. In case 1 (�gure 8 of [131]), the bursting is initiated when the limit
cycle of the slow subsystem collides with the fold curve of the critical manifold, making a homoclinic
connection with the folded saddle. The burst then terminates when I satis�es equation ( 192). An
interesting topic for future work will be to investigate more closely the transition from bursting to
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Figure 48: Comparison between two different spike-adding mechanisms : Plant's model in panel (a) vs
Rinzel's theta model in panel (b). The adding is discontinuous in the former and continuous in
the latter. Solutions branches shown are branches of equilibria (black), branches limit cycles born
at a Hopf bifurcation labelled HB (red), and branches of limit cycles whose onset and offset corre-
spond to a homoclinic bifurcation labelled Ho (red). Stable (resp. unstable) equilibrium branches
are traced in solid (resp. dashed) lines.

spiking in this case, which may be related to the torus canard phenomenon [ 20, 86]. In contrast, case
2 sees the burst initiate through the FSN II transition and terminates with the disappearance of an
unstable limit cycle of the average system studied in [ 131]. In both cases, the FSN II corresponds to
one end of the bursting regime. Note that folded nodes can also appear in Plant's model, however
the set of parameters have to be adjusted away from the typical parameters considered by Plant;
we do not present this parameter regime here. A follow-up study will analyse more closely the
transition from the folded-saddle to the folded-node regime, via the folded-saddle node bifurcation,
in link with a change of type of homoclinic bifurcation (presumably, from SNIC to saddle-homoclinic
bifurcation via saddle-node homoclinic bifurcation).
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