E. L. Allgower and K. Georg, Numerical path following, Handbook of Numerical Analysis, pp.3-207, 1997.
DOI : 10.1016/S1570-8659(97)80002-6

V. I. Arnol-d, V. S. Afrajmovich, Y. S. Il, and P. L. Shil-nikov, Dynamical Systems V: Bifurcation Theory and Catastrophe Theory. Encyclopaedia of Mathematical Sciences, 1994.

D. Avitabile, M. Desroches, and S. Rodrigues, ON THE NUMERICAL CONTINUATION OF ISOLAS OF EQUILIBRIA, International Journal of Bifurcation and Chaos, vol.22, issue.11, p.1250277, 2012.
DOI : 10.1142/S021812741250277X

URL : https://hal.archives-ouvertes.fr/hal-00765172

S. M. Baer, J. Rinzel, and H. Carrillo, Analysis of an autonomous phase model for neuronal parabolic bursting, Journal of Mathematical Biology, vol.33, issue.3, pp.309-333, 1995.

D. Barkley, Slow manifolds and mixed???mode oscillations in the Belousov???Zhabotinskii reaction, The Journal of Chemical Physics, vol.89, issue.9, pp.5547-5559, 1988.
DOI : 10.1063/1.455561

B. P. Belousov, A periodically acting reaction and its mechanism In Collection of short papers on Radiation Medicine for 1958, pp.145-147, 1959.

G. N. Benes, A. M. Barry, T. J. Kaper, M. A. Kramer, and J. Burke, An elementary model of torus canards, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.21, issue.2, p.23131, 2011.
DOI : 10.1063/1.3592798

E. Benoît, Systèmes lents-rapides dans R 3 et leurs canards, Troisième rencontre du Schnepfenried , volume 109?110 of Astérisque, pp.159-191, 1983.

E. Benoît, Enlacements de canards Comptes-Rendus de l'Académie des Sciences de Paris -Série I, pp.225-230, 1985.

E. Benoît, Canards et enlacements, Publications math??matiques de l'IH??S, vol.36, issue.4, pp.63-91, 1990.
DOI : 10.1007/BF02699131

E. Benoît and C. Lobry, Les canards de R 3 . Comptes-Rendus de l'Académie des Sciences de Paris - Série I, pp.483-488, 1982.

R. Bertram, M. J. Butte, T. Kiemel, and A. Sherman, Topological and phenomenological classification of bursting oscillations, Bulletin of Mathematical Biology, vol.45, issue.3, pp.413-439, 1995.
DOI : 10.1007/BF02460633

R. Bertram, J. Rhoads, and W. P. Cimbora, A Phantom Bursting Mechanism for Episodic Bursting, Bulletin of Mathematical Biology, vol.84, issue.7, pp.1979-1993, 2008.
DOI : 10.1007/s11538-008-9335-0

M. Brøns, Bifurcations and instabilities in the Greitzer model for compressor system surge, Mathematical Engineering in Industry, vol.2, issue.1, pp.51-63, 1988.

M. Brøns and K. Bar-eli, Canard explosion and excitation in a model of the Belousov-Zhabotinskii reaction, The Journal of Physical Chemistry, vol.95, issue.22, pp.958706-8713, 1991.
DOI : 10.1021/j100175a053

M. Brøns and K. Bar-eli, Asymptotic Analysis of Canards in the EOE Equations and the Role of the Inflection Line, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.445, issue.1924, pp.445305-322, 1924.
DOI : 10.1098/rspa.1994.0063

M. Brøns, M. Krupa, and M. Wechselberger, Mixed mode oscillations due to the generalized canard phenomenon. In Bifurcation theory and spatio-temporal pattern formation, of Fields Institute Communications, pp.39-63, 2006.

J. W. Bruce and P. J. Giblin, Curves and Singularities: a geometrical introduction to singularity theory, 1992.
DOI : 10.1017/CBO9781139172615

J. Burke, M. Desroches, A. M. Barry, T. J. Kaper, and M. A. Kramer, A showcase of torus canards in neuronal bursters, The Journal of Mathematical Neuroscience, vol.2, issue.1, p.2012
DOI : 10.1186/2190-8567-2-3

URL : https://hal.archives-ouvertes.fr/hal-00765229

M. O. Cunningham, M. A. Whittington, A. Bibbig, A. Roopun, F. E. Lebeau et al., A role for fast rhythmic bursting neurons in cortical gamma oscillations in vitro, Proceedings of the National Academy of Sciences of the United States of America, pp.7152-7157, 2004.
DOI : 10.1073/pnas.0402060101

G. Cymbalyuk and A. Shil-nikov, Coexistence of Tonic Spiking Oscillations in a Leech Neuron Model, Journal of Computational Neuroscience, vol.62, issue.5, pp.255-263, 2005.
DOI : 10.1007/s10827-005-0354-7

M. Desroches and M. R. Jeffrey, Canards and curvature: the 'smallness of ??' in slow-fast dynamics, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.4, issue.2, pp.4672040-2021, 2011.
DOI : 10.1007/s00285-005-0347-1

M. Desroches, B. Krauskopf, and H. M. Osinga, Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.18, issue.1, p.15107, 2008.
DOI : 10.1063/1.2799471

M. Desroches, B. Krauskopf, and H. M. Osinga, The Geometry of Slow Manifolds near a Folded Node, SIAM Journal on Applied Dynamical Systems, vol.7, issue.4, pp.1131-1162, 2008.
DOI : 10.1137/070708810

M. Desroches, B. Krauskopf, and H. M. Osinga, The geometry of mixed-mode oscillations in the Olsen model for the Peroxidase-Oxidase reaction, Discrete and Continuous Dynamical Systems Series S, p.807, 2009.
DOI : 10.3934/dcdss.2009.2.807

M. Desroches, B. Krauskopf, and H. M. Osinga, Numerical continuation of canard orbits in slow???fast dynamical systems, Nonlinearity, vol.23, issue.3, p.739, 2010.
DOI : 10.1088/0951-7715/23/3/017

M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H. M. Osinga et al., Mixed-Mode Oscillations with Multiple Time Scales, SIAM Review, vol.54, issue.2, pp.211-288, 2012.
DOI : 10.1137/100791233

URL : https://hal.archives-ouvertes.fr/hal-00765216

M. Desroches, T. J. Kaper, and M. Krupa, Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.23, issue.4, p.46106, 2013.
DOI : 10.1063/1.4827026

URL : https://hal.archives-ouvertes.fr/hal-00932344

M. Desroches, M. Krupa, and S. Rodrigues, Inflection, canards and excitability threshold in neuronal models, Journal of Mathematical Biology, vol.946, issue.1, pp.989-1017, 2013.
DOI : 10.1007/s00285-012-0576-z

URL : https://hal.archives-ouvertes.fr/hal-00765148

M. Desroches, M. Krupa, and S. Rodrigues, Spike-adding mechanism in parabolic bursters: the role of folded-saddle and jump-on canards, p.2015

F. Diener and M. Diener, Nonstandard analysis in practice, 1995.
DOI : 10.1007/978-3-642-57758-1

M. Diener, The canard unchainedor how fast/slow dynamical systems bifurcate, The Mathematical Intelligencer, vol.108, issue.3, pp.38-49, 1984.
DOI : 10.1007/BF03024127

E. J. Doedel, H. B. Keller, and J. Kernévez, NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (I): BIFURCATION IN FINITE DIMENSIONS, International Journal of Bifurcation and Chaos, vol.01, issue.03, pp.493-520, 1991.
DOI : 10.1142/S0218127491000397

E. J. Doedel, H. B. Keller, and J. Kernévez, NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS, International Journal of Bifurcation and Chaos, vol.01, issue.04, pp.745-772, 1991.
DOI : 10.1142/S0218127491000555

E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. E. Oldeman et al., Auto-07p: Continuation and bifurcation software for ordinary differential equations, 2007.

F. Dumortier, Compactification and desingularization of spaces of polynomial Li??nard equations, Journal of Differential Equations, vol.224, issue.2, pp.296-313, 2006.
DOI : 10.1016/j.jde.2005.08.011

F. Dumortier, Canard Explosion and Position Curves, Recent Trends in Dynamical Systems, pp.51-78, 2013.
DOI : 10.1007/978-3-0348-0451-6_4

F. Dumortier and R. Roussarie, Canard cycles and center manifolds. Memoirs of the, 1996.

F. Dumortier and R. Roussarie, Bifurcation of relaxation oscillations in dimension two. Discrete and Continuous Dynamical Systems -Series A, pp.631-674, 2007.

F. Dumortier, D. Panazzolo, and R. Roussarie, More limit cycles than expected in Liénard equations, Proceedings of the, pp.1895-1904, 2007.

W. Eckhaus, Relaxation oscillations including a standard chase on French ducks, Asymptotic Analysis II, pp.449-494, 1983.
DOI : 10.1016/0022-247X(75)90200-0

J. P. England, B. Krauskopf, and H. M. Osinga, Computing One-Dimensional Global Manifolds of Poincar?? Maps by Continuation, SIAM Journal on Applied Dynamical Systems, vol.4, issue.4, pp.1008-1041, 2005.
DOI : 10.1137/05062408X

J. P. England, B. Krauskopf, and H. M. Osinga, COMPUTING TWO-DIMENSIONAL GLOBAL INVARIANT MANIFOLDS IN SLOW???FAST SYSTEMS, International Journal of Bifurcation and Chaos, vol.17, issue.03, pp.805-822, 2007.
DOI : 10.1142/S0218127407017562

G. B. Ermentrout, Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students, 2002.
DOI : 10.1137/1.9780898718195

G. B. Ermentrout and N. J. , Parabolic Bursting in an Excitable System Coupled with a Slow Oscillation, SIAM Journal on Applied Mathematics, vol.46, issue.2, pp.233-253, 1986.
DOI : 10.1137/0146017

R. Fitzhugh, Mathematical models of threshold phenomena in the nerve membrane. The bulletin of mathematical biophysics, pp.257-278, 1955.

R. Fitzhugh, Impulses and Physiological States in Theoretical Models of Nerve Membrane, Biophysical Journal, vol.1, issue.6, p.445, 1961.
DOI : 10.1016/S0006-3495(61)86902-6

J. Françoise, Oscillations en biologie: analyse qualitative et modèles, 2005.
DOI : 10.1007/3-540-37670-4

A. Ghosh, D. Roy, and V. K. Jirsa, Simple model for bursting dynamics of neurons, Physical Review E, vol.80, issue.4, p.41930, 2009.
DOI : 10.1103/PhysRevE.80.041930

J. Ginoux and B. Rossetto, DIFFERENTIAL GEOMETRY AND MECHANICS: APPLICATIONS TO CHAOTIC DYNAMICAL SYSTEMS, International Journal of Bifurcation and Chaos, vol.16, issue.04, pp.887-910, 2006.
DOI : 10.1142/S0218127406015192

URL : https://hal.archives-ouvertes.fr/hal-01054308

M. Golubitsky and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, 1988.

M. Golubitsky, K. Josiç, and T. J. Kaper, An unfolding theory approach to bursting in fastslow systems Global analysis of dynamical systems: Festschrift dedicated to Floris Takens on the occasion of his 60th birthday, pp.277-308, 2001.

J. Guckenheimer, Computing Periodic Orbits, Fluid Mechanics and the Environment: Dynamical Approaches, pp.117-119, 2001.
DOI : 10.1007/3-540-44512-9_6

J. Guckenheimer, Return maps of folded nodes and folded saddle-nodes, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.18, issue.1, p.15108, 2008.
DOI : 10.1063/1.2790372

J. Guckenheimer, Singular Hopf Bifurcation in Systems with Two Slow Variables, SIAM Journal on Applied Dynamical Systems, vol.7, issue.4, pp.1355-1377, 2008.
DOI : 10.1137/080718528

J. Guckenheimer and R. Haiduc, Canards at folded nodes, Moscow Mathematical Journal, vol.5, issue.1, pp.91-103, 2005.

J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, 1983.

J. Guckenheimer and C. Kuehn, Computing Slow Manifolds of Saddle Type, SIAM Journal on Applied Dynamical Systems, vol.8, issue.3, pp.854-879, 2009.
DOI : 10.1137/080741999

J. Guckenheimer and M. D. Lamar, Periodic Orbit Continuation in Multiple Time Scale Systems, Numerical Continuation Methods for Dynamical Systems, pp.253-267, 2007.
DOI : 10.1007/978-1-4020-6356-5_8

J. Guckenheimer and B. Meloon, Computing Periodic Orbits and their Bifurcations with Automatic Differentiation, SIAM Journal on Scientific Computing, vol.22, issue.3, pp.951-985, 2001.
DOI : 10.1137/S1064827599359278

J. Guckenheimer, K. Hoffman, and W. Weckesser, NUMERICAL COMPUTATION OF CANARDS, International Journal of Bifurcation and Chaos, vol.10, issue.12, pp.2669-2688, 2000.
DOI : 10.1142/S0218127400001742

M. E. Henderson, MULTIPLE PARAMETER CONTINUATION: COMPUTING IMPLICITLY DEFINED k-MANIFOLDS, International Journal of Bifurcation and Chaos, vol.12, issue.03, pp.451-476, 2002.
DOI : 10.1142/S0218127402004498

J. L. Hindmarsh and R. M. Rose, A model of the nerve impulse using two first-order differential equations, Nature, vol.6, issue.5853, pp.163-164, 1982.
DOI : 10.1038/296162a0

J. L. Hindmarsh and R. M. Rose, A Model of Neuronal Bursting Using Three Coupled First Order Differential Equations, Proceedings of the Royal society of London. Series B: Biological sciences, pp.87-102, 1222.
DOI : 10.1098/rspb.1984.0024

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, vol.117, issue.4, pp.500-544, 1952.
DOI : 10.1113/jphysiol.1952.sp004764

J. L. Hudson, M. Hart, and D. Marinko, An experimental study of multiple peak periodic and nonperiodic oscillations in the Belousov???Zhabotinskii reaction, The Journal of Chemical Physics, vol.71, issue.4, pp.1601-1606, 1979.
DOI : 10.1063/1.438487

E. M. Izhikevich, Subcritical Elliptic Bursting of Bautin Type, SIAM Journal on Applied Mathematics, vol.60, issue.2, pp.503-535, 2000.
DOI : 10.1137/S003613999833263X

E. M. Izhikevich, NEURAL EXCITABILITY, SPIKING AND BURSTING, International Journal of Bifurcation and Chaos, vol.10, issue.06, pp.1171-1266, 2000.
DOI : 10.1142/S0218127400000840

E. M. Izhikevich, Synchronization of Elliptic Bursters, SIAM Review, vol.43, issue.2, pp.315-344, 2001.
DOI : 10.1137/S0036144500382064

E. M. Izhikevich, Dynamical systems in neuroscience, 2007.

C. K. Jones, Geometric singular perturbation theory, C.I.M.E Lectures Lecture Notes in Mathematics, vol.44, pp.44-120, 1994.
DOI : 10.1007/978-1-4612-4312-0

T. J. Kaper, An introduction to geometric methods and dynamical systems theory for singular perturbation problems, Proceedings of Symposia in Applied Mathematics, pp.85-132, 1999.
DOI : 10.1090/psapm/056/1718893

T. J. Kaper and C. K. Jones, A Primer on the Exchange Lemma for Fast-Slow Systems, Multiple-time-scale dynamical systems Mathematics and its Applications, pp.65-87, 2001.
DOI : 10.1007/978-1-4613-0117-2_3

J. Keener and J. Sneyd, Mathematical Physiology, 1998.
DOI : 10.1007/978-0-387-75847-3

J. K. Kevorkian and D. Cole, Multiple scale and singular perturbation methods, 1996.
DOI : 10.1007/978-1-4612-3968-0

T. Kispersky, J. A. White, and H. G. Rotstein, The Mechanism of Abrupt Transition between Theta and Hyper-Excitable Spiking Activity in Medial Entorhinal Cortex Layer II Stellate Cells, PLoS ONE, vol.3, issue.2, p.13697, 2010.
DOI : 10.1371/journal.pone.0013697.s012

M. T. Koper, Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram, Physica D: Nonlinear Phenomena, vol.80, issue.1-2, pp.72-94, 1995.
DOI : 10.1016/0167-2789(95)90061-6

M. A. Kramer, R. D. Traub, and N. J. , New Dynamics in Cerebellar Purkinje Cells: Torus Canards, Physical Review Letters, vol.101, issue.6, p.68103, 2008.
DOI : 10.1103/PhysRevLett.101.068103

B. Krauskopf and H. M. Osinga, Computing Geodesic Level Sets on Global (Un)stable Manifolds of Vector Fields, SIAM Journal on Applied Dynamical Systems, vol.2, issue.4, pp.546-569, 2003.
DOI : 10.1137/030600180

B. Krauskopf and H. M. Osinga, Computing Invariant Manifolds via the Continuation of Orbit Segments, Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems, pp.117-154, 2007.
DOI : 10.1007/978-1-4020-6356-5_4

B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Henderson, J. Guckenheimer et al., A survey of methods for computing (un)stable manifolds of vector fields, International Journal of Bifurcation and Chaos, issue.03, pp.15763-791, 2005.

M. Krupa and P. Szmolyan, Extending slow manifolds near transcritical and pitchfork singularities, Nonlinearity, vol.14, issue.6, pp.1473-1491, 2001.
DOI : 10.1088/0951-7715/14/6/304

M. Krupa and P. Szmolyan, Relaxation Oscillation and Canard Explosion, Journal of Differential Equations, vol.174, issue.2, pp.312-368, 2001.
DOI : 10.1006/jdeq.2000.3929

M. Krupa and P. Szmolyan, Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points---Fold and Canard Points in Two Dimensions, SIAM Journal on Mathematical Analysis, vol.33, issue.2, pp.286-314, 2001.
DOI : 10.1137/S0036141099360919

M. Krupa and M. Wechselberger, Local analysis near a folded saddle-node singularity, Journal of Differential Equations, vol.248, issue.12, pp.2841-2888, 2010.
DOI : 10.1016/j.jde.2010.02.006

URL : https://hal.archives-ouvertes.fr/hal-00845979

M. Krupa, N. Popovi´cpopovi´c, and N. Kopell, Mixed-Mode Oscillations in Three Time-Scale Systems: A Prototypical Example, SIAM Journal on Applied Dynamical Systems, vol.7, issue.2, pp.361-420, 2008.
DOI : 10.1137/070688912

S. S. Kumar and P. S. Buckmaster, Hyperexcitability, Interneurons, and Loss of GABAergic Synapses in Entorhinal Cortex in a Model of Temporal Lobe Epilepsy, Journal of Neuroscience, vol.26, issue.17, pp.4613-4623, 2006.
DOI : 10.1523/JNEUROSCI.0064-06.2006

D. Linaro, A. R. Champneys, M. Desroches, and M. Storace, Codimension-Two Homoclinic Bifurcations Underlying Spike Adding in the Hindmarsh--Rose Burster, SIAM Journal on Applied Dynamical Systems, vol.11, issue.3, pp.939-962, 2012.
DOI : 10.1137/110848931

URL : https://hal.archives-ouvertes.fr/hal-00765189

A. Lins, W. De-melo, and C. C. Pugh, On Li??nard's equation, Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq Lecture Notes in Mathematics, vol.43, issue.6, pp.335-357, 1976.
DOI : 10.1016/0022-0396(77)90136-X

P. and D. Maesschalck, Gevrey normal form for nilpotent contact points of order two. Discrete and Continuous Dynamical Systems Series A, pp.677-688, 2014.

D. Maesschalck and M. Desroches, Numerical Continuation Techniques for Planar Slow-Fast Systems, SIAM Journal on Applied Dynamical Systems, vol.12, issue.3, pp.1159-1180, 2013.
DOI : 10.1137/120877386

URL : https://hal.archives-ouvertes.fr/hal-00844785

P. , D. Maesschalck, and F. Dumortier, Time analysis and entry-exit relation near planar turning points, J. Differential Equations, vol.215, issue.2, pp.225-267, 2005.

D. Maesschalck and F. Dumortier, Classical Li??nard equations of degree <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>n</mml:mi><mml:mo>???</mml:mo><mml:mn>6</mml:mn></mml:math> can have <mml:math altimg="si2.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mo stretchy="false">[</mml:mo><mml:mfrac><mml:mrow><mml:mi>n</mml:mi><mml:mo>???</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mn>2</mml:mn></mml:mfrac><mml:mo stretchy="false">]</mml:mo><mml:mo>+</mml:mo><mml:mn>2</mml:mn></mml:math> limit cycles, Journal of Differential Equations, vol.250, issue.4, pp.2162-2176, 2011.
DOI : 10.1016/j.jde.2010.12.003

P. , D. Maesschalck, and F. Dumortier, Bifurcations of multiple relaxation oscillations in polynomial Liénard equations, Proceedings of the, pp.2073-2085, 2011.

P. De-maesschalck, F. Dumortier, and R. Roussarie, Cyclicity of common slow???fast cycles, Indagationes Mathematicae, vol.22, issue.3-4, pp.165-206, 2011.
DOI : 10.1016/j.indag.2011.09.008

F. Marino, G. Catalán, P. Sánchez, S. Balle, and O. Piro, Thermo-Optical ???Canard Orbits??? and Excitable Limit Cycles, Physical Review Letters, vol.92, issue.7, p.73901, 2004.
DOI : 10.1103/PhysRevLett.92.073901

G. S. Medvedev, Transition to Bursting via Deterministic Chaos, Physical Review Letters, vol.97, issue.4, p.48102, 2006.
DOI : 10.1103/PhysRevLett.97.048102

A. Milik and P. Szmolyan, Multiple Time Scales and Canards in a Chemical Oscillator, Multiple time scale dynamical systems Mathematics and its Applications, pp.117-140, 2001.
DOI : 10.1007/978-1-4613-0117-2_5

A. Milik, P. Szmolyan, H. Löffelmann, and E. Gröller, Geometry of Mixed-Mode Oscillations in the 3-D Autocatalator, International Journal of Bifurcation and Chaos, vol.08, issue.03, pp.505-519, 1998.
DOI : 10.1142/S0218127498000322

E. F. Mishchenko, N. Kh, and . Rozov, Differential equations with small parameters and relaxation oscillations (translated from Russian), 1980.

E. F. Mishchenko, Y. S. Kolesov, A. Yu, N. Kolesov, . Kh et al., Asymptotic Methods in Singularly Perturbed Systems, Monographs in Contemporary Mathematics. Consultants Bureau, 1994.
DOI : 10.1007/978-1-4615-2377-2

J. Mitry, M. Mccarthy, N. J. Kopell, and M. Wechselberger, Excitable Neurons, Firing Threshold Manifolds and Canards, The Journal of Mathematical Neuroscience, vol.3, issue.1, 2013.
DOI : 10.1098/rspa.2010.0485

J. Moehlis, Canards for a reduction of the Hodgkin-Huxley equations, Journal of Mathematical Biology, vol.52, issue.2, pp.141-153, 2006.
DOI : 10.1007/s00285-005-0347-1

J. S. Nagumo, S. Arimoto, and S. Yoshizawa, An Active Pulse Transmission Line Simulating Nerve Axon, Proceedings of the IRE, pp.2061-2070, 1962.
DOI : 10.1109/JRPROC.1962.288235

J. Nowacki, H. M. Osinga, and K. Tsaneva-atanasova, Dynamical systems analysis of spikeadding mechanisms in transient bursts, The Journal of Mathematical Neuroscience (JMN), vol.2, issue.1, p.2012

M. Okuda, A New Method of Nonlinear Analysis for Shaping and Threshold Actions, Journal of the Physical Society of Japan, vol.41, issue.5, pp.1815-1816, 1976.
DOI : 10.1143/JPSJ.41.1815

F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST handbook of mathematical functions, 2010.

H. M. Osinga and K. Tsaneva-atanasova, Dynamics of Plateau Bursting Depending on the Location of its Equilibrium, Journal of Neuroendocrinology, vol.101, issue.12, pp.1301-1314, 2010.
DOI : 10.1111/j.1365-2826.2010.02083.x

B. Peng, V. Gaspar, and K. Showalter, False Bifurcations in Chemical Systems: Canards, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.337, issue.1646, pp.275-289, 1646.
DOI : 10.1098/rsta.1991.0123

]. B. Percha, R. Dzakpasu, M. Zochowski, and J. Parent, Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy, Physical Review E, vol.72, issue.3, p.31909, 2005.
DOI : 10.1103/PhysRevE.72.031909

R. E. Plant, The effects of calcium++ on bursting neurons. A modeling study, Biophysical Journal, vol.21, issue.3, p.217, 1978.
DOI : 10.1016/S0006-3495(78)85521-0

R. E. Plant, Bifurcation and resonance in a model for bursting nerve cells, Journal of Mathematical Biology, vol.50, issue.1, pp.15-32, 1981.
DOI : 10.1007/BF00275821

R. E. Plant and M. Kim, On the mechanism underlying bursting in the Aplysia abdominal ganglion R15 cell, Mathematical Biosciences, vol.26, issue.3-4, pp.357-375, 1975.
DOI : 10.1016/0025-5564(75)90022-X

R. E. Plant and M. Kim, Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxley equations, Biophysical Journal, vol.16, issue.3, p.227, 1976.
DOI : 10.1016/S0006-3495(76)85683-4

J. Platkiewicz and R. Brette, A Threshold Equation for Action Potential Initiation, PLoS Computational Biology, vol.59, issue.3, p.1000850, 2010.
DOI : 10.1371/journal.pcbi.1000850.s001

S. A. Prescott, Y. De-koninck, and T. J. Sejnowski, Biophysical Basis for Three Distinct Dynamical Mechanisms of Action Potential Initiation, PLoS Computational Biology, vol.237, issue.10, p.1000198, 2008.
DOI : 10.1371/journal.pcbi.1000198.g011

W. C. Rheinboldt, Numerical analysis of parametrized nonlinear equations, 1986.

F. Rieke, D. Warland, R. De-ruyter-van-steveninck, and W. Bialek, Spikes: exploring the neural code, 1999.

J. Rinzel and Y. S. Lee, Dissection of a model for neuronal parabolic bursting, Journal of Mathematical Biology, vol.37, issue.6, pp.653-675, 1987.
DOI : 10.1007/BF00275501

A. Rossokhin and Y. Saakyan, Study of the dependence of the generation threshold of the nerve impulse on the mode of formation of the input signal on the basis of the hodgkinhuxley model, Biophysics, vol.37, issue.6, pp.969-973, 1992.

H. G. Rotstein, N. N. Kopell, A. M. Zhabotinsky, and I. R. Epstein, Canard phenomenon and localization of oscillations in the Belousov???Zhabotinsky reaction with global feedback, The Journal of Chemical Physics, vol.119, issue.17, pp.8824-8831, 2003.
DOI : 10.1063/1.1614752

R. Roussarie, Putting a boundary to the space of Liénard equations. Discrete and Continuous Dynamical Systems. Series A, pp.441-448, 2007.

J. E. Rubin and M. Wechselberger, Giant squid-hidden canard: the 3D geometry of the Hodgkin???Huxley model, Biological Cybernetics, vol.4, issue.110, pp.5-32, 2007.
DOI : 10.1007/s00422-007-0153-5

J. E. Rubin and M. Wechselberger, The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.18, issue.1, p.15105, 2008.
DOI : 10.1063/1.2789564

I. Samengo, G. Mato, D. H. Elijah, S. Schreiber, and M. A. Montemurro, Linking dynamical and functional properties of intrinsically bursting neurons, Journal of Computational Neuroscience, vol.17, issue.1, pp.213-230, 2013.
DOI : 10.1007/s10827-013-0449-5

M. Sekerli, C. A. Del-negro, R. H. Lee, and R. J. Butera, Estimating Action Potential Thresholds From Neuronal Time-Series: New Metrics and Evaluation of Methodologies, IEEE Transactions on Biomedical Engineering, vol.51, issue.9, pp.1665-1672, 2004.
DOI : 10.1109/TBME.2004.827531

R. Seydel, Practical bifurcation and stability analysis, 2010.
DOI : 10.1007/978-1-4419-1740-9

A. Shil-nikov and G. Cymbalyuk, Transition between Tonic Spiking and Bursting in a Neuron Model via the Blue-Sky Catastrophe, Physical Review Letters, vol.94, issue.4, p.48101, 2005.
DOI : 10.1103/PhysRevLett.94.048101

K. Showalter, R. M. Noyes, and K. Bar-eli, A modified Oregonator model exhibiting complicated limit cycle behavior in a flow system, The Journal of Chemical Physics, vol.69, issue.6, pp.2514-2524, 1978.
DOI : 10.1063/1.436894

P. Smolen, D. Terman, and J. , Properties of a Bursting Model with Two Slow Inhibitory Variables, SIAM Journal on Applied Mathematics, vol.53, issue.3, pp.861-892, 1993.
DOI : 10.1137/0153042

C. Soto-treviño, N. J. Kopell, and D. Watson, Parabolic bursting revisited, Journal of Mathematical Biology, vol.35, issue.1, pp.114-128, 1996.
DOI : 10.1007/s002850050046

P. Szmolyan and M. Wechselberger, Canards in R3, Journal of Differential Equations, vol.177, issue.2, pp.419-453, 2001.
DOI : 10.1006/jdeq.2001.4001

F. Takens, Constrained equations; a study of implicit differential equations and their discontinuous solutions, Structural Stability, the Theory of Catastrophes and Applications in the Sciences, pp.143-234, 1976.
DOI : 10.1090/S0002-9904-1969-12138-5

D. Terman, Chaotic Spikes Arising from a Model of Bursting in Excitable Membranes, SIAM Journal on Applied Mathematics, vol.51, issue.5, pp.1418-1450, 1991.
DOI : 10.1137/0151071

D. Terman, The transition from bursting to continuous spiking in excitable membrane models, Journal of Nonlinear Science, vol.51, issue.2, pp.135-182, 1992.
DOI : 10.1007/BF02429854

K. Tsaneva-atanasova, H. M. Osinga, T. Rieß, and A. Sherman, Full system bifurcation analysis of endocrine bursting models, Journal of Theoretical Biology, vol.264, issue.4, pp.1133-1146, 2010.
DOI : 10.1016/j.jtbi.2010.03.030

URL : https://hal.archives-ouvertes.fr/hal-00594147

L. E. Tsitolovsky and N. V. Babkina, Neurons evaluate both the amplitude and the meaning of signals, Brain Research, vol.946, issue.1, pp.104-118, 2002.
DOI : 10.1016/S0006-8993(02)02868-8

L. E. Tsitolovsky and A. Shvedov, Instrumental conditioning of the activity of putative command neurons in the mollusk Helix, Brain Research, vol.745, issue.1-2, pp.271-282, 1997.
DOI : 10.1016/S0006-8993(96)01184-5

B. Van, A theory of the amplitude of free and forced triode vibrations, Radio Review, vol.1, pp.701-710, 1920.

B. Van, On " Relaxation Oscillations " I, Philosophical Magazine Series, vol.7, issue.211, pp.978-992, 1926.

B. Van, The nonlinear theory of electric oscillations, Proceedings of the Institute of Radio Engineers, pp.1051-1086, 1934.

M. Wechselberger, Extending Melnikov theory to invariant manifolds on non-compact domains, Dynamical Systems: An International Journal, pp.215-233, 2002.
DOI : 10.1007/978-1-4612-1042-9

M. Wechselberger, Existence and Bifurcation of Canards in $\mathbbR^3$ in the Case of a Folded Node, SIAM Journal on Applied Dynamical Systems, vol.4, issue.1, pp.101-139, 2005.
DOI : 10.1137/030601995

A. T. Winfree, Spiral Waves of Chemical Activity, Science, vol.175, issue.4022, pp.634-636, 1972.
DOI : 10.1126/science.175.4022.634

J. Wojcik and A. Shilnikov, Voltage interval mappings for activity transitions in neuron models for elliptic bursters, Physica D: Nonlinear Phenomena, vol.240, issue.14-15, pp.1164-1180, 2011.
DOI : 10.1016/j.physd.2011.04.003