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Abstract

This document summarize the author's experience over six years testing large-
scale systems. We outline that experience in four points.

First, we present a methodology for testing large-scale system. The methodol-
ogy takes into account three dimensions of these systems: functionality, scal-
ability, and volatility. The methodology proposes to execute tests in di�erent
workloads, from a small-scale static system up to a large-scale dynamic system.
Experiments show that the alteration of the three dimensional aspects improves
code coverage, thus improving the con�dence on tests.

Second, we introduce a distributed test architecture that uses both, a broadcast
protocol to send messages from the test controller to testers and a converge
cast protocol to send messages from testers back to the test controller. Exper-
iments show that the architecture is more scalable than traditional centralized
architectures when testing systems with more than 1000 nodes.

Third, we present an approach for using models as dynamic oracles for test-
ing global properties of large-scale systems. This approach focuses on global,
liveness, observable and controllable properties. We propose to e�ciently keep
updating a global model of the system during its execution. This model is
then instantiated and evolved at runtime, by monitoring the corresponding dis-
tributed system, and serve as oracle for the distributed tests. We illustrate
this approach by testing the reliability of two routing algorithms under churn.
Results show common aws in both algorithms.

Finally, we present a model-driven approach for software artifacts deployment.
We consider software artifacts as a product line and use feature models to rep-
resent their con�gurations and model-based techniques to handle automatic
artifact deployment and recon�guration. Experiments show that this approach
reduces network tra�c when deploying software on cloud environment.
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Chapter 1

Introduction

1.1 Introduction

Large-scale systems are becoming commonplace with the increasing popular-
ity of peer-to-peer (P2P) or cloud computing. For instance, the Gnutella [2]
P2P system shares petabytes of data among millions of users. Data intensive
applications, based on Google's MapReduce [42], process several terabytes of
data every day, on large clusters of commodity machines, in a way that is also
resilient to machine failures.

The high popularity of these systems contrasts with the lack of integrated testing
solutions to ensure their general quality under normal and abnormal conditions.
A main reason is the complexity of reproducing a real world environment to-
gether with a non-intrusive testing environment. This is because the scale of
the system has an important e�ect on several testing components, such as: test
controllability [6], observability, fault-injection [71], test data, oracle calcula-
tion, among others. The scale, as well as the distribution, ampli�es several
small details, making the testing environment deal with values that are spread
throughout the system. This complexity highlights a need for a more abstract
level for testing these systems.

Leveraging abstract levels [100] is precisely the main goal of model-based test-
ing, i. e., the application of model-based engineering to perform software test-
ing. Model-Driven Engineering (MDE) refers to the systematic use of mod-
els as primary engineering artifacts throughout the development lifecycle. D.
Schmidt [109] summarizes it as a promising approach to address the system
complexity allowing to develop technologies that combine:

1. Domain-speci�c modeling languages that formalize the application struc-
ture, behavior, and requirements within particular domains.

2. Transformation engines and generators that analyze certain aspects of
models and then synthesize various types of artifacts, such as source code
or alternative model representations.
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In the context of software testing, the model-driven engineering can be applied
to di�erent steps, from data generation to result analysis, through deployment,
execution, evaluation, and diagnosis.

In this document, the author reects on his experience over seven years testing
large-scale dynamic distributed systems. Based on that experience, he clari-
�es the main challenges faced during his work and most importantly, presents
the main contributions of his work. He introduces the hypothesis formulated
at the start of the work, describes the prototypes that were implemented to
demonstrate them, and analyzes the results of the experiments achieved with
the prototypes, comparing them with the expected ones. It is important to
mention that all experiments presented here were conducted at real-scale.

But before presenting that experience, he motivates his work with a real-world
failure example that arrived to a very popular instant-messaging software and
that a�ected several millions of users. This example helps to clarify why large-
scale bugs are di�erent and why current techniques are not e�ective to validate
large-scale systems.

1.2 Motivating Case: The 2010 Skype Outage

On December 22nd 2010, the Skype network su�ered a critical failure that lasted
approximately 24 h from December 22nd , 16:00 GMT to December 23rd , 16:00
GMT. The failure concerned more than 23 000 000 of online users [101]. Fig-
ure 1.1 illustrates the outage. When the number of online users was almost
reaching its highest point, it suddenly started to drop. In almost 1 hour, there
were less than 1 million online users.

Skype is a successful example of combing modern distributed architectures to
implement a popular, reliable, portable, and interoperable software. Indeed,
Skype architecture is a harmonic combination of di�erent paradigms, merging
centralized, peer-to-peer, and cluster architectures. A centralized login server
handles all the network connections and a Distributed Hash Table (DHT) stores
user information. Communications between nodes are done through a point-
to-point connection, and clusters, which act as a private cloud, provide some
services such as group chat or o�ine messaging.

The outage commenced on December 22nd , when a cluster of support servers
responsible for o�ine instant messaging became overloaded. Because of this
overload, some Skype clients received delayed responses from the overloaded
servers. Clients using a speci�c version of Skype for Windows (5.0.0152) did
not process properly these delayed responses and crashed.

Users running other versions were not a�ected by this initial problem. Neverthe-
less, around 50 % of all Skype users globally were running the 5.0.0.152 version of
Skype for Windows and the crashes caused approximately 40 % of those clients
to fail. Among these clients, there were 25 % to 30 % of the publicly available
super-nodes.

Super-nodes are nodes with extra behavior: they help common nodes to join
the network and store some user information on the DHT. When users noticed
that their clients crashed, they simply relaunched their software. The problem
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Figure 1.1: The Skype Network Outage1

Figure 1.2: The Fall of the Supernodes1

is that super-nodes do not start as super-nodes, they start as common nodes
and become super-nodes, if they have enough resources and are stable for a
while. As the former super-nodes restarted as common nodes and tried to join
the system, some of the remaining super-nodes received a tra�c one hundred
times greater than normal. Since Skype super-nodes are deployed on client
machines, they have a built-in mechanism that avoids having a huge overload
in the host machine, halting the super-node when a given threshold is reached.
Thus, all super-nodes that reached the threshold left the system, surcharging
the remaining super-nodes and driving the whole system into an unavoidable
cascade of shutdowns. Figure 1.2 illustrates the fall of the super-nodes. From
December 22nd at 20:46 until December 23rd 2:16 GMT, 98 % of the Skype

1 Images by Phil Wol�. Available under Creative Commons Attribution-Share Alike 2.0
Generic License
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network super-nodes were o�ine.

To recover the network, the engineering team added hundreds of new Skype
nodes that act as dedicated super-nodes, which should have provided enough
capacity to allow the network to bootstrap. However, only a small portion of
users (15 % to 20 %) were \healing". The team introduced then several thou-
sands of super-nodes, using the resources that support the Group Video Calling.
These new super-nodes and the nightfall helped the network to heal. During the
night, the full recovery was beginning. On December 23rd at 16:00 GMT, clients
could connect normally to the network. When common nodes start becoming
super-nodes, engineering could start removing the dedicated ones.

This is the second major Skype outage; the �rst one dates back to 2007. When
analyzing the causes of this outage, we notice two distinct faults:

1. the misinterpretation of server messages that were delayed causing nodes
to crash.

2. the incapacity of super-nodes to treat a large number of join requests,
which also prevents the system to bootstrap a large number of nodes at
the same time.

A conformance testing approach could catch the �rst fault, if combined with
fault injection (to simulate message delays). A unique test driver could individ-
ually test endpoints and reproduce the fault. Nevertheless, �nding the correct
sequence of messages that can drive the node into a faulty state is a complex
task. Indeed, the Windows software that crashed was subject to extensive in-
ternal testing and months of beta testing with hundreds of thousands of users,
without revealing this fault.

The second fault is more complex, because its reproduction is more challenging.
A single test driver cannot generate su�cient load to crash a super-node. Here,
a di�erent approach is needed, either using several distributed test drivers or
reproducing a real-scale scenario. Contrary to the �rst fault, the sequence of
steps that expose this fault is rather simple, either creating a large system
instantaneously or disconnecting super-nodes from a stable system. In both
cases, a global model of the topology is necessary to identify the nodes that
should be disconnected and to verify that the system is sound.

1.3 Research Topics

The author's �rst experience with large-scale systems was during the develop-
ment of APPA [5], a data management system for large-scale Peer-to-Peer and
Grid applications. APPA was developed in Java using JXTA [115], an open-
source framework for creating Peer-to-Peer systems. Apart from all the technical
drawbacks, the development revealed several issues concerning the validation of
the system. More precisely, the main issue was to �nd a convenient approach
to validate the system that could deal with its three dimensions: functionality,
scalability and volatility.
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A similar observation was done by the Skype development team. Indeed, the
posteriori analysis of the Skype outage, done few days later, diagnosed the
sources of the outage and also revealed possible lacks in the testing process.
Skype, as any other large scale system, su�ers from thelack of a testing method-
ology.

Along with this main key issue, i. e., the lack of methodology, the author iden-
ti�ed three other key-issues. Each key-issue led to one or more challenges that
address it. The challenges engendered several hypothesis about how distributed
systems should be tested. Finally, practical experimentations veri�ed the ac-
curacy of the hypothesis. The following sections summarize the key issues,
challenges, hypothesis, and experimentations presented in this document.

1.3.1 Testing Methodology

The speci�cities of large-scale systems raise new questions when preparing a
test scenario for validating a system. These questions not only concern the kind
of properties that can or should be tested, but also the scale of the system (i. e.,
number of nodes), the amount of test data, the volatility of nodes, etc. The
absence of answers for these questions reveals a �rst issue:

Issue 1 The absence of a systematic, disciplined, and quanti�able approach to
measure the quality of large-scale systems.

This issue leads to a �rst challenge:

Challenge 1 Propose atesting methodology for large-scale systems.

The methodology must specify when and how non-functional properties should
be tested along with the functional ones. The elaboration of the methodology
was part of Eduardo Almeida's PhD thesis [35]. Together, we formulated a �rst
hypothesis to take up this challenge:

Hypothesis 1 Large-scale distributed systems are tested through an incremen-
tal methodology.

We believe that the functionality of the System Under Test (SUT) should be
tested along with its scalability and its dynamicity, but that these aspects should
be incrementally added to the testbed. We also believe that for improving diag-
nosis, the test should start with a small-scale static con�guration and evolve step
by step towards large-scale dynamic con�guration. In general, di�erent types of
defects appear while the SUT treats di�erent con�gurations, since di�erent be-
haviors are needed, making di�erent parts of the source-code to be exercised. To
validate this hypothesis, we used code-coverage tools to execute test sequences
on di�erent con�gurations, con�rming that indeed, di�erent parts of the code
were exercised.

Thus, our �rst contribution is a testing methodology that deals with these di-
mensions. The methodology aims at covering functions �rst on a small system
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and then incrementally addressing the scalability and volatility issues [38]. The
existence of a testing methodology that explicitly addresses volatility-related
properties leads to a second challenge, volatility simulation:

Challenge 2 Propose an approach to simulate the volatility of the system under
test along with functional tests.

In distributed systems, nodes are volatile by nature, they may join and leave
the system at will, either normal or abnormally. Most research e�orts and tools
propose to randomly stop the execution of nodes [8, 80] or to insert faults in the
network [59, 81]. While these approaches are useful to observe the behavior of
the whole system under network perturbations, they do not focus on detecting
and diagnosing software faults, especially those that are related to volatility. To
consider system volatility during validation, we formulated a second hypothesis:

Hypothesis 2 Volatility is simulated in a systematic way and integrated to test
sequences.

We claim that volatility simulation must be integrated to the test sequence, in
a systematic way. That is to say, the test sequence must specify when a node,
or a set of nodes, must join or leave the system. The rationale behind this
hypothesis is that some behavior is executed only on particular states, which
are hard to reach randomly. To validate this hypothesis, we used code coverage
to show that a test sequence containing speci�c volatility directives (node join,
exit, etc.) was able to reach a particular state in a small-scale con�guration.

The methodology must also specify the system nodes should be tested singly or
simultaneously, and if simultaneously, at which scale. While system nodes can
be tested singly for functionality and protocol conformance, some errors only
appear on heavy load situations, which can not be simulated by a single test
driver. This was the case, for instance, of the crash of Skype nodes due to extra
load. The same problem concerns platform simulation tools, which can build
and simulate systems with thousands of nodes in a single machine, but that
cannot simulate load situations with massive concurrence. Based on this, we
formulated a third hypothesis:

Hypothesis 3 Large-scale distributed systems are tested at real-scale.

To validate this hypothesis, we used code coverage tools to demonstrate that
for the same test sequence, the code coverage is directly proportional to the
number of involved nodes. The testing methodology, the hypothesis and their
validation are further described in Chapter 4. Testing in real-scale requires a
distributed test architecture, which is the subject of next section.

1.3.2 Distributed Test Architecture

Distributed algorithms are typically validated using simulation tools [114], such
as SimGrid [28], SimJava [60], etc. There are two reasons that explain this

6



Introduction

choice. First, experiments can be easily reproduced and results are obtained
locally, which simpli�es the evaluation of algorithms. Second, simulation tools
simplify some complex aspects of distributed software, such as asynchronous
messages handling, concurrent programming and knowledge of the middleware.

However, simulation tools are not fully adapted for some types of test, such as
scalability, load, or stress tests. For these types of test, aDistributed Test
Architecture , i. e., an integrated solution for the creation and deployment of
test harness in a large-scale environment, is needed. It is important to men-
tion that distributed test architectures and simulation tools are not concurrent,
but complementary. They often have di�erent objectives and even when these
objectives overlap, their results provide important information for testing and
diagnosis.

Along with Issue 1, the lack of a testing methodology, a second issue appears,
the lack of an adapted test architecture , i. e., a software that is able to
deploy, execute, control and observe the system under test, on a real-scale test
environment. While some ad hoc solutions exist, tailored either for the system
under test or for a speci�c goal (e. g., test harness deployment, log analysis,
fault injection, test case execution), there are few or no comprehensive testing
architecture for large scale systems. Some examples of ad hoc solutions are
Herriot [118] and MRUnit [32] for testing MapReduce jobs, and PeerUnit [38]
and P2PTester [44] for testing peer-to-peer systems.

Issue 2 The absence of a scalable test architecture that is able to execute, con-
trol, and observe a large scale system.

Distributed software testing requires an e�cient test architecture, which must
have the ability to simulate �ne-grained churn, i.e., to individually create nodes
and make them join and leave the system, according to the needs of a test case.
The test architecture should ensure the controllability during the execution,
ensuring that a test sequence is executed in the correct order. This challenge is
resumed as follows:

Challenge 3 Provide an e�cient distributed test architecture, w.r.t. test con-
trollability and observability.

By distributed, we mean that the system must be tested with distributed drivers
(one per node) that are able to control individually each node, as opposed to
centralized, where a unique test driver controls the whole system.

By e�cient , we mean that message transfer within the test architecture must
be scalable. Indeed, the controllability is ensured by the exchange of synchro-
nization messages between nodes. Considering that the system under test has a
large number of nodes and that each node may perform a di�erent set of actions,
synchronization messages may become a bottleneck. Therefore, the scalability is
required to cope with most large-scale systems, which scale up logarithmically.
To take up this challenge, we formulated another hypothesis:

Hypothesis 4 The distributed test architecture is composed of one controller
and a set of drivers (one per node under test), organized in an e�cient overlay.
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The controller uses a broadcast protocol to send messages to the drivers, which
in their turn, use a converge cast protocol to send messages to the controller.

We claim that the architecture should follow the Conformance Testing Method-
ology Framework [4] (CTMF), but using an e�cient protocol for message ex-
change. Based on this hypothesis, we designed and implemented PeerUnit [36],
an e�cient distributed test architecture, our second contribution. PeerUnit was
also part of Dr. Almeida's thesis.

Contrarily to traditional centralized testing environments, which scale up lin-
early, our environment is fully distributed and scales up logarithmically. The
environment is based on an overlay network, which organizes the testers in a
balanced tree [16]. The test controller and the testers communicate through the
overlay, reducing the load of the controller and improving e�ciency.

Each node is controlled by one test driver, which ensures the controllability and
the observability of the node. The test driver is a process or an application that
executes in the same logical node as a system node and controls its execution
and its volatility, making them leave and join the system at any time, according
to the needs of a test. Thus, testers allow the control of the volatility of the
whole system at a very precise level. The architecture is further described in
Chapter 3.

1.3.3 Oracle Automation

During test execution, the system under test generates output data, direct or in-
directly. The output data is distributed and may be structured (e. g., databases,
XML �les, etc.) or unstructured (e. g., logs, system information, etc.). Output
data is not restrained to a simple set of variables, it may also concern unstruc-
tured data, such as logs, monitoring data, energy consumption data, etc. In
order to be used as oracle data, i. e., the input of an oracle function, the output
data must be retrieved, analyzed and structured.

The oracle data is potentially a large set of values, spread across di�erent nodes
with unsynchronized clocks. Gathering all values and building a timeline in-
creases the complexity of the oracle automation. In some cases, oracle can be
calculated locally to each node and combined to form a global verdict. In these
cases, the interpretation of inconclusive local verdicts (i. e., nodes that are not
able to get a result in an acceptable delay) is an issue.

Issue 3 Lack of means to automate the test oracle.

This issue leads to another challenge:

Challenge 4 Provide means to oracle automation.

By means, we refer to e�cient languages and tools to automate data transfor-
mation and comparison. To take up this challenge, we formulated a another
hypothesis:
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Hypothesis 5 Oracle is automated through model-driven engineering.

Testing properties of large-scale systems implies accessing and manipulating
complex and distributed data. We claim that the model-driven engineering
can be used to e�ciently represent these data, to easily automate complex and
distributed oracles, as well as address the lack of languages for automating the
oracle. This, either by o�ering tool support for creating dedicated languages,
or by proposing standard tools for validating data, e. g., OCL.

Based on this hypothesis, we have applied MDE techniques to build a dynamic
model representing the oracle data and used MDE tools to validate this data.
Therefore, our third contribution is the use of Models to represent Oracle
Data . Further details are provided on Chapter 5.

1.3.4 Test Harness Deployment

Performing tests in real-scale is an expensive, time-consuming task. It consists of
reserving a set of nodes on a computer grid or cloud, deploying the test harness
on all nodes and executing a suite of tests. The deployment is particularly
complex, since the test harness depends often on third-party software, which
are not installed on the reserved nodes. This bring us to a last issue:

Issue 4 Lack of an e�cient and automated approach for test harness deploy-
ment.

More precisely, there is a need of an e�cient approach for software provisioning
in grid/cloud computing that provides an abstraction representation of the de-
ployment process. This need is even more critical for software testing in contrast
to software deployment, since tests are performed several times during develop-
ment and deployments are only performed once per release. This issue leads to
a new challenge:

Challenge 5 Handle the interdependence of software packages and automate
software deployment.

When the test harness needs a given software, the approach must know precisely
the software it depends on. Based on this information, and on the selected
deployment platform, the approach can choose the correct software variant that
should be installed and also detect possible conicts. The elaboration of this
approach was part of Tam Le Nhan PhD thesis [77]. To take up this challenge,
we make a new hypothesis:

Hypothesis 6 Model-Driven Engineering and particularly feature models can
provide an abstract representation of the deployment process.

We claim that feature models are well-adapted to represent software variants
and dependencies among them. Feature models o�er and common basis for
expressing software requirements, detecting invalid con�gurations.
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We validate this hypothesis by an example showing that, given a base model
representing all available artifacts, one can easily derive a con�guration model
(a speci�c use of a subset of artifacts) and generate all needed con�guration
scripts to generate its corresponding deployment virtual image.

Further information on model-driven deployment is provided in Chapter 6.

1.4 Structure of this Document

The rest of this document is organized as follows. Chapter 2 introduces the
main concepts and techniques for testing large-scale systems and establishes
the context of this research work.

Chapter 3 presents Macaw, a distributed test architecture and several exper-
iments that validate the usability and the performance of the architecture on
di�erent con�gurations.

Chapter 4 presents an incremental methodology for testing large-scale systems.
The methodology is applied in several experiments that validate the feasibility
and the e�ciency of the methodology when verifying two popular open-source
peer-to-peer systems.

Chapter 5 describes the use of model-driven engineering for building an oracle
for testing quality properties in large-scale distributed systems. The oracle is
used to validate a particular class of properties that must be calculated globally,
they cannot be calculated by a single node or by a portion of the system.

Chapter 6 introduces the use of model-based engineering for deploying software
artifacts. The presented approach uses feature models to represent deployment
con�gurations and model-based techniques to handle automatic artifact deploy-
ment and recon�guration.

Chapter 7 enumerates the perspectives of applying model-based techniques to
large-scale software testing, discusses the future directions of the research and
concludes this document.
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Background

2.1 Introduction

In this chapter we introduce the main concepts related to large-scale dynamic
distributed systems to explain the challenges of testing these systems. From now
on, we will use simply distributed systemsas a synonym of large-scale dynamic
distributed systems. To clarify the presented concepts, their description relies
on a simple example, a Distributed Hash Table [113], DHT.

2.1.1 Running Example

A distributed hash table is a distributed data structure that is used in peer-to-
peer applications to store and retrieve data e�ciently. It is composed of several
equivalent nodes (di�erent instances of the same software) distributed through
a network, where each node is able to insert and retrieve data pairshkey; valuei .
Nodes use a hash algorithm to a�ect pairs to system nodes.

Figure 2.1 depicts a UML component diagram representing a typical node of a
distributed hash table. The rectangles represent the components of the node
and the small rectangles overlapping the component borders represent the ports.
Lollypops and sockets connect ports from di�erent components. Lollipops rep-
resent the provided interfaces and sockets represent the required ones. UML
distinguishes ports from interfaces: interfaces specify the nature of the interac-
tions that occur over a port. A port can be associated to multiple interfaces.

DHT Node MiddlewareClient

Message Routing
Hash Table

Message Routing

GroupGroup

Figure 2.1: UML Component Diagram Representing the Interfaces of a DHT
Node
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insert(Key,Value)
retrieve(Key):Value

ÇinterfaceÈ

Hash Table

deliver(Message,Node)

ÇinterfaceÈ

Message Routing

join()
leave()
broadcast(Message)

ÇinterfaceÈ

Group

Figure 2.2: UML Interface Speci�cation of a DHT Node

In this diagram, the component DHT Nodehas three ports and provides two
interfaces. Clients of the node access its functionalities through theHash Table
interface. The node interacts with other nodes through theMessage Routing
interface.

Figure 2.2 depicts these two interfaces. TheHash Table interface speci�es two
methods for inserting and retrieving data pairs. TheMessage Routinginterface
speci�es a method for delivering/routing messages to other nodes.

When a node has enough resources and is stable for a certain time, it becomes a
group-node, creating a group and allowing other nodes to join and communicate
through this group. This new behavior is dynamically provided by an additional
port, summarized in the Group interface (Figure 2.2). Other nodes can use this
interface to join and leave a group, as well as send message to group members.

2.2 Large-Scale Distributed Systems

A distributed system commonly de�ned as:

\a piece of software that ensures that a collection of independent
computers appears to its users as a single coherent system [117]".

The adjective large-scaleoften relates to systems with thousands or millions of
nodes, where each node has only a partial view of the whole system. The system
interacts with its environment through a set of distinct interaction points, called
ports. The adjective dynamic concerns both, the size of the system and the
distribution of ports. The number of nodes varies along time, as well as the
ports that are available at each node. A port gives access to a functionality
of the system and groups coherent input and output messages related to that
functionality. We de�ne a distributed system as follows:

De�nition 1 A distributed system is a pair S = hN; Pi where:

� N is the set of nodesN = f n1; n2; : : : ; nn g that composes this system.

� P is a set of portsP = f p1; p2; : : : ; pm g through which the system receives
inputs and sends outputs.

De�nition 2 The topology ofS can be represented by a directed graph of out-
degreedeg+ = O(log jN j ) and diameter O(log jN j ), where each noden 2 N is
a vertex and every entry in its routing table is an edge to a neighbor.
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De�nition 3 A port gives access to a functionality of the system and groups
coherent input and output messages related to this functionality. The terms
upper and lower ports refer to the external and internal points of interaction of
the system, respectively.

The number of available ports on a node depends on the state of the system,
which decides to add more functionalities to a node, or to remove them. Nodes
can share a same port, which provides an equivalent access to the system. We
will let pj

i denote the port pi on node nj . For the purpose of testing, it is
important to distinguish the upper and the lower ports of a node, since the
architecture controls directly the upper ports, while the SUT controls the lower
ports.

The terms upper and lower ports are common vocabulary in software testing,
especially in distributed and conformance test. In our example, theHash Table
interface speci�es the upper port of the node and theMessage Routing and
the Group interfaces specify its thelower ports. The lower ports often require
a third-party middleware to communicate: CORBA, Java RMI, Rest, etc.

In our running example, nodes share their upper port. Interactions with the sys-
tem through the Hash Table interface are equivalent, independently from the
node where interactions occur. Calls to the operationsinsert() or retrieve()
produce the same functional behavior, albeit with di�erent performances. The
port speci�ed by the Group interface is dynamic and not shared. Its availabil-
ity depends on the state of the system and its functional behavior depends on
the node where the interactions occur.

2.3 Characteristics of Large-Scale Systems

Large-scale dynamic distributed systems combine the characteristics of several
systems: traditional distributed systems [33, 122], grid computing [52], ad hoc
networks [96], peer-to-peer computing [86], dynamic adaptive systems [95], and
cloud computing [10]. This section presents the main common characteristics
of these systems:

Scalability Systems are expected to connect a large number of nodes (from
thousands up to several millions), where each node only interacts with an
arbitrary small part of the system.

Autonomy Nodes are autonomous, may refuse to answer to some requests, and
even unexpectedly leave the system at any time (and rejoin afterwards).

Dynamicity Resources may be dynamically added to or removed from the
system. This concerns physical nodes, as well as software services, meaning
that nodes may change their behavior through time. Speci�c requests
may be redirected dynamically to di�erent nodes, depending on load. The
system is also self-organizing: a speci�c input data set can cause a di�erent
path to be executed because the previous path no longer exists.
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Heterogeneity of resources The nodes that compose the system are hetero-
geneous with respect to hardware and software. Therefore, the quality
and the processing power of nodes is variable. In many cases, nodes use
di�erent versions of software or communication protocols.

Diversity of purposes These systems are used on di�erent domains, from
data sharing to massive data processing applications. Consequently, they
have di�erent requirements concerning input data: size, availability, etc.

Stateless protocols Nodes may receive events de�ned in their interfaces in
any order and at any moment. In essence, communications consist of
independent pairs of requests-responses.

Volatility Nodes are volatiles, they may join and leave the system at will,
either normal or abnormally. In some systems (e. g., peer-to-peer), the
volatility is an expected behavior: the system expect them to leave at
any time. Some systems (e. g., MapReduce) are usually deployed on large
clusters of commodity hardware, where failures happen constantly.

Third-party infrastructure Systems often rely on third-party middleware:
Remote Procedure Call, Message Exchanging, Brokers, Service Oriented
Architecture, etc. Moreover, parts of the system (e. g. infrastructure, ser-
vices) may belong to other entities.

Symmetry Several nodes play identical roles, ensuring reliability (there is no
single point of failure) and load balance (load is distributed symmetrically
across nodes). Nodes may run di�erent instances of the same software and
a port may be shared by di�erent nodes.

Non-determinism The thread execution order may be a�ected by external
programs or by the network latency. Thus, it is di�cult to reproduce a
test execution and some defects do not appear on all executions.

Partial failures A failure in a particular node may prevent a part of the system
from achieving its behavior.

Timeouts Timeouts are used extensively to avoid deadlocks. When a response
is not received within a certain time, the request is aborted. This is not an
error and the system must perform correctly whether a request is answered
or not (albeit perhaps di�erently).

Elasticity The system scales out and in quickly, adapting itself to load.

2.4 Software Testing

Software testing is commonly de�ned as:

\The process of operating a system or component under speci�ed
conditions; observing or recording the results, and making an eval-
uation of some aspect of the system or component" [1].
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The process of software testing can be either dynamic or static, depending on
whether or not the software is executed [17]. Static testing is mainly applied
for checking the sanity of the code and/or generating relevant input data for
dynamic testing. In contrast, dynamic testing involves the execution of the
software and is widely applied to several types of testing: conformance, load,
stress, etc.

Figure 2.3 illustrates the main activities involved in dynamic testing. The main
goal of dynamic testing is to execute the System Under Test,SUT and vali-
date one or more properties. ATest Sequence (or Procedure) is a program
that reads Test Data and interacts with the System Under Test , through
its public interface, driving it into a given state. This execution engenders a
Result , i. e., a set of output data, generated directly (e. g., �les, logs, graphical
interfaces, etc.) or indirectly (e. g., resource usage, energy consumption, etc.)
by the SUT.

Execution

Oracle

True

SpeciÞcation

Test Sequence

Test Data

Data 
Generation

SUT

Result

Verdict

Stop Criterion Test 
Evaluation

N
ot

 V
er

iÞ
ed

DiagnosisFalse

Figure 2.3: Dynamic Test

The Oracle is a function that analyzes, total or partially, the result and veri�es
if it corresponds to the Speci�cation of the SUT. The Oracle issues aVerdict ,
which can beTrue/Pass, False/Fail , or Inconclusive, if the result is insu�cient
to assess the verdict.

If the verdict is false, i. e., a property is not validated, the Diagnostic activity
is performed. The goal of the diagnosis is to isolate the portion of source code
containing the error that causes the failure detected by the oracle. If the verdict
is true, i. e., a property was validated, another activity is performed, the Test
Evaluation . The goal of the evaluation is to estimate if the test meets the
expected quality, i. e., if the SUT was enough tested or not.

If the expected quality is not reached, the test data and script must be improved.
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There are di�erent criteria to evaluate the quality of a test: mutation analysis,
code coverage, number of errors found, time, number of test cases, size of test
data, etc. When the expected quality is met, the test stops.

2.5 Distributed Software Testing

Distributed software testing relates to a system-level functional testing, with a
notable need for validating non-functional properties: security, scalability, elas-
ticity, reliability under stress, etc. Distributed test execution follows the same
scheme as dynamic test with several particularities: distributed execution, har-
ness deployment, result retrieval, execution synchronization, failure simulation,
and scale variation.

Since the SUT has physical distributed ports, the test execution must be dis-
tributed and a test harness must be deployed on di�erent nodes. A typical
test harness contains the node's software and its dependencies (libraries), (par-
tial) test case sequences, input data, and some mechanism to retrieve and order
the output data (i. e., build the timeline). The test execution must ensure the
synchronization among the distributed test sequences and simulate node-level
failures: network connection removal, node shutdown, threads interruption, etc.
When executing in large-scale scenarios, with third party nodes, test repeata-
bility cannot be reached.

The goal of a Distributed Test Case is to interact with the distributed ports of
the system under test and to verify dynamically if a feature is correctly working
according to certain quality criteria.

De�nition 4 (Distributed Test Case) A Distributed Test Case noted� is a
tuple � = hN � ; I � ; O� ; A � ; M � ; 
 � i where:

� N � � N is a set of nodes,

� I � is a collection of inputs,

� O � is a collection of outputs,

� A � is a sequence of actions,

� M � is a set of coordination messages, and

� 
 � an Oracle.

The oracle analyzes the system outputs (O� ), compares them with the expected
outputs and provides a verdict. Since outputs may be replicated on di�erent
nodes, the oracle must deal with distributed data and, depending on the out-
put, the verdict can be calculated locally to each node and the �nal verdict is
calculated in function of all local verdicts.

The volatility and the scale of the system have a direct consequence on oracle
assessment. The system does not provide complete and correct answers, but
the best k answers (top-k) that can be calculated in a given time. In the case
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of replicated ports, some systems may accept that some ports do not �nd any
answer within the expected time and the local oracles cannot assign a verdict.
The verdict is thus not only a question of correctness but also a question of
response time and of ratio of acceptable answers (w.r.t. conformity).

The distributed test case interacts with the system under test through actions.
An action is a sequence of instructions as well as any statement in the Dis-
tributed Test programming language. An action is a point of synchronization,
it ensures that all its instructions were executed, in all concerned nodes, be-
fore allowing the execution of the next action in the test sequence. An action
contains the input data sent to a given port, a set of nodes that receive the in-
put data, and the generated output data. Actions are associated to a timeout,
avoiding deadlocks during the execution of distributed test cases.

De�nition 5 (Action) An action is a tuple ai = hi i ; p;N i ; oi ; � i where:

� i i 2 I is an input,

� p is a port,

� N i � N is the set of nodes that receive the input,

� oi 2 O is an output, and

� � is the interval of time in which the action should be executed (timeout).

Algorithm 1 presents an example of a distributed test case for testing theHash
Table interface, from the running example. This distributed test case has only
three actions. The �rst action has a message-call as input (insert(33,'France') ),
interacts with node n1 through the port Hash Table , has no output and has
no timeout. The second action also has a message-call as input (retrieve(33) ),
interacts with all nodes of the system through with port Hash Table , has a set
of values as output and has no timeout. Lastly, in the third action, it compares
all responses (R) with the inserted value. The execution must ensure that the
pair was inserted before retrieving it and that all values were retrieved before
they are compared with the inserted value.

Algorithm 1: Distributed Test Case Example: HashTable Interface
Input :
N : a set of nodesN = f n1; n2; : : : ; nn g
begin

send insert (33; " F rance") to n1 ; /* Action 1 */
R  send retrieve (33) to 8n 2 N ; /* Action 2 */
assert 8r 2 R : r = " F rance" ; /* Action 3 */

end

2.6 Distributed Test Architecture

The term Controllability de�nes the capability of the test architecture to send
input events at corresponding ports in a given order [27]. The controllability
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of the test depends on theObservability of the SUT, which is the capability
of the test architecture to determine the output events and the order in which
they have taken place at the corresponding ports [27]. The diversity of third-
party middleware, protocols, and interfaces hampers the observability of ports,
especially for lower ports. While testers control and observe directly upper
ports, the observability of lower ports is more complex and requires the use of
particular techniques such as packet capture, proxies, code instrumentation, etc.

Test architectures for distributed software typically rely on two components:
the Controller and the Tester or Test Driver . The architecture places a tester
at each node and the tester at noden only observes events of the ports of node
n. The tester of node n also allows the controller to remotely interact with
the ports of node n. The controller executes distributed test cases, sending
inputs to ports and receiving the generated outputs. The controller sends and
receives coordination messages to guarantee the controllability of Distributed
Test Cases. In some architectures, some coordination messages are sent directly
between testers, without passing through the controller.

For instance, if a distributed test case speci�es that an output !oi on port pn
i

must be observed before sending an input ?i j to port pm
j , a coordination mes-

sage must be sent, directly or indirectly (through the controller), from tester t i

to tester t j . When coming to large-scale systems, the sending of coordination
messages, input, and output data, becomes a bottleneck. This bottleneck in-
creases the cost of a test in terms of time and resource consuming and may even
prevent its execution.
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Distributed Test
Architecture

3.1 Introduction

The high popularity of large-scale systems contrasts with the unavailability of
extensive architectures to test them. A main reason is their disparateness of
purposes and architectures, which encourages the development of ad hoc archi-
tectures, tailored for the System Under Test (SUT), including: Herriot [118],
MRUnit [32], PeerUnit [38], and P2PTester [44].

The disparateness of these systems has an important e�ect on several testing
aspects, such as: observability, test data, and test oracle. While some systems,
have at least a public (i. e., observable) port at each node (e. g., distributed
hash tables), others, only have public observable ports in a master node (e. g.,
MapReduce), complicating the observability. In these systems, the behavior of
most nodes cannot be directly observed and the test architecture must resort to
log analysis, resource or network monitoring. The availability of ports spread
across several nodes raises another problem for the test architecture that is
to provide the correct input data in front of the correct port, without being
intrusive. Indeed, the transfer of huge sets of test data during the execution
may overload the network and consequently disturb the behavior of the SUT.
Furthermore, the calculation of the test oracle also depends on the particularities
of the SUT. The oracle can either be calculated locally on a single node (1 verdict
in 1 node), distributively on several nodes (n verdicts on n node), or globally
(1 verdict in n nodes), when the properties that should be validated depend on
values that are spread throughout the whole system.

To deal with this disparateness, an extensive test architecture must provide a
rich set of features for testing: e. g., system monitoring, log analysis, test data
generation, etc. However, each new feature consumes resources and since the
test architecture shares resources with the SUT, the presence of new testing fea-
tures may disturb the behavior of the SUT and reduce its testability. Under the
software architecture perspective, the test architecture should be dynamically
adaptive to test requirements: scale, input data, availability of properties, and
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observability. In short, the architecture should be able to (i) dynamically deploy
components, artifacts, and data; and (ii) modify its topology and its protocols
at runtime.

In this chapter, we present Macaw, a distributed test architecture for large-
scale dynamic distributed systems. Macaw is composed of a set of components,
allowing to control and monitor the SUT, as well as a language for deploy-
ing distributed test harnesses. Macaw was build on the top of Kevoree, an
open-source dynamic framework, which supports the dynamic adaptation of
distributed service-based systems. Kevoree provides a domain-speci�c language
to build and modify the architecture model of the system, and runtime plat-
form implementations to deploy and execute the test architecture on di�erent
devices.

The rest of the chapter is organized as follows. Section 3.2 introduces some fun-
damental concepts of large-scale dynamic distributed systems test. Section 3.3
presents our test architecture. Section 3.4 describes its implementation. Sec-
tion 3.5 presents a simple example of how the test architecture can be adapted
and used to test a distributed system. Section 3.6 concludes.

3.2 Testing Large-Scale Systems

In this section, we introduce some concepts and terms related to large-scale sys-
tems, the main di�culties for testing these systems, and the requirements for an
architecture to test these systems. To simplify the understanding, the descrip-
tion of concepts relies on the running example (Section 2.1.1), a distributed hash
table [113], which is also the subject of the experiment presented in Section 3.5.

3.2.1 Test Architecture Requirements

The main characteristics of large-scale systems (Section 2.3) have a direct impact
on the test architecture, and must be considered during its development. This
section enumerates the key technical features that should be provided by a test
architecture for large-scale systems:

Dynamicity Due to the diversity of purposesof the systems, the architecture
should adapt itself to the SUT. To tailor speci�c architectures tailored
according to the SUT, the test architecture should be able to deploy dy-
namically components and artifacts.

Scalability The performance of the test architecture and especially of the co-
ordination messages exchange may impact the behavior of the system.
Thus, in order to reduce this impact and improve testability, the architec-
ture should scale at least as well as the SUT. This concerns data transfer,
actions, and coordination messages.

Controllability Due to the heterogeneity of resources, the execution time of
test actions may vary. Thus, the architecture must provide an e�cient
mechanism to ensure the correct execution of distributed test cases, even
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across a distributed setup and upon churn. It must also avoid that the
volatility of nodes prevents the correct termination of the execution. More-
over, complex coordination problems, involving shared ports andmultiple
instances, should not lead to an overhead that a�ects the SUT.

E�ciency The test architecture shares resources with the SUT (e. g., memory,
processor, network, etc.) and may disturb its behavior. Therefore, the
architecture must be as e�cient as possible.

Observability The di�culty to observe lower ports a�ects the capability of
the test system to determine the outputs and the order in which they
have taken place at the corresponding ports. Since there is no extensive
solution, due to the diversity of the used third-party infrastructure , the
architecture must provide facilities to create ad hoc solutions to improve
the observability of ports.

Volatility simulation Partial failures are a frequent cause of system failures,
and for some systems, e. g., peer-to-peer, MapReduce, they are also a com-
mon and expected behavior. The architecture must provide an individual
control of nodes, to correctly control the joins and the departs of each
node (e. g., to simulate volatility), allowing to evaluate the tolerance of
the whole system to partial failures.

Deployment facilities The test architecture works with a high number of
nodes, which must be installed, con�gured, and cleaned. Therefore, the
architecture must provide functionalities to describe the con�guration of
the test harness for di�erent nodes, and to deploy the harnesses on a
distributed environment.

Variable sharing During a test, some properties are only known dynamically,
during the execution, and by few nodes, e. g., node ids, number of nodes,
etc. The architecture should provide a mechanism that allows testers to
share variables.

Complex data structures Due to the diversity of purposes, the oracle must
deal with large sets of complex data structures: graphs, trees, etc. The
architecture must simplify the development of oracles that manipulate this
data.

3.3 Macaw Architecture

Macaw is composed of a set of components, allowing to control and monitor
the system under test, as well as a language for deploying distributed test har-
nesses. Macaw is built with Kevoree, an open-source dynamic framework, which
supports the dynamic adaptation of distributed service-based systems. Kevoree
provides a domain-speci�c language to build and modify the architecture model
of the system, and runtime platform implementations to deploy and execute the
test architecture on di�erent devices. The test architecture is also a large-scale
system. Its architecture is based on a set of components, which can be combined
according to the requirements of a test scenario.
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This section presents the main artifacts, components and libraries of the test
architecture, their deployment and how a distributed test case is executed. The
architecture of Macaw meets most of the requirements presented previously
in Section 3.2.1: controllability, observability, volatility simulation, variables
sharing, complex data structure, and deployment facilities. The component
model, used to implement the architecture and presented in Section 3.4, ensures
the remaining requirements: dynamicity, scalability and e�ciency.

3.3.1 Architecture Artifacts

Artifacts are pieces of information used during the deployment and the opera-
tion of the test architecture (e. g., scripts, con�guration �les, documents, etc.).
Unlike components, which are generic, artifacts are speci�c to the system under
test or to the test goals. Therefore, they must be de�ned for each test scenario.

The Adapter artifact describes the interface of a node under test and adapts
its interface. The description associates an information to available methods,
explaining whether they are synchronous or asynchronous. The adapter speci�es
which actions (De�nition 5) are accepted by the nodes under test. The adapter
also translates proprietary types into standard types, which can be serialized
and transmitted through the network. Additionally, the adapter de�nes two
methods, for setting up and cleaning the environment for the node under test.
Adapters depend on the system under test: they can be reused in di�erent tests
of the same system.

The interface described by the adapter allows the interaction betweenTest Se-
quences and the system under test. A test sequence is a partial implementation
of a distributed test case (De�nition 4), it speci�es the sequence of steps of a
distrbuted test case. It is a program that speci�es a sequence of interactions
that drive the SUT to a given state, where some property (the test objective)
can be checked.

Another artifact implements the oracle part of the distributed test case: the
Oracle . The oracle is a program that retrieves the output data generated during
the execution of the test sequence, analyzes them, and provides a verdict.

The test architecture has two more artifacts: Test Data and Deployment
Plan . The test data corresponds to the input data of the distributed test case.
It is read by the test sequence and sent to the nodes under test. The deployment
plan artifact is a program that speci�es how the SUT and the test architecture
should be con�gured and deployed. It is independent from the test sequence
and adapters and meets thedeployment facilities requirement.

3.3.2 Architecture Components

The test architecture has three mandatory components: theController , the
Upper Tester and the Lower Tester . The other components are optional
and can be deployed according to the particularities of the SUT and the test
requirements.
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Node Under TestUpper Tester MiddlewareLower Tester

Figure 3.1: UML Component Diagram Representing a Node Under Test Be-
tween the Upper and the Lower Testers

The controller is the main component of the test architecture. The controller
executes test sequences, sending actions to nodes under test through the upper
testers, ensuring their controllability. More precisely, it reads test sequence
artifacts, ensures that there are enough available resources, dispatches actions
to the testers, and retrieve results. The controller interacts with upper testers,
as described below.

Upper testers are deployed on the same logical nodes as the nodes under test,
but run in independent processes. They interact with both, the controller and
the upper ports of the node under test. Upper testers control the volatility of
nodes under test, meeting thevolatility simulation requirement. Indeed, they
make nodes join and leave the system, translate test sequence's actions into
method calls, and to force nodes under test to abnormally quit.

Together, the controller, the upper and the lower testers meet thecontrollability
and the observability requirements. Indeed, the upper ports of the node under
test are usually locals and cannot be accessed from remote processes. Thus, the
goal of the upper tester is to make ports accessible, occasionally replacing future
objects [72] by a return message. Upper testers use adapters to learn how to
interact with the node under test.

Figure 3.1 illustrates the di�erence between the upper and the lower testers.
While the upper tester only interacts with the upper ports of the node under
test, the lower tester is placed between the node under test and the middleware.
Note that the upper tester provides ports to the controller and uses/requires
ports from the node under test.

The Data Provider component is deployed in the same logical node as the up-
per tester. Its goal is to store test data, i. e., input and output data, to reduce
the network tra�c during the execution of a test: input data is sent to compo-
nents before the execution and output data is returned to the controller after
the execution. The tra�c reduction meets partially the e�ciency requirement,
with respect to network usage.

The Dictionary component is also deployed in the same logical node as the
upper tester. It allows testers to share variables during the execution of a
test, meeting the variable sharing requirement. Contrarily to the data provider
component, the data stored in the dictionary are available to all nodes.

The System Monitor component may be deployed in the same logical node as
the node under test. Its goal is to periodically store monitoring data about the
system and the node under test process: memory, processor load, disk, network.
The monitoring data is stored locally and is transferred to the controller after
the test sequence execution.

At last, the Logger is composed of two components: client and server. The
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Associative Array
Grow Doubles the size of the array.
Shrink Reduces by 50% the size of the array.
Shu�e Mixes the contents (values).

Graph and Tree
Reduce Removes 20% of the nodes.
Raise Adds 20% new nodes.

Table 3.1: Data Mutation Operators for Improving Test Data

client component is deployed along the node under test, and stores their logs
locally. The server gathers all local logs and rebuilds a timeline. Both, the
monitoring data and the logs may be used for oracle purposes, meeting the
observability requirement.

3.3.3 Architecture Libraries

Since large-scale systems manipulate large sets of complex data, which must
be persisted, transferred through the network, and compared, the architecture
o�ers a complex data type library along with components and artifacts. This
library meets the complex data structurerequirement. The library contains the
following complex types: graph, tree, and associative array.

For each type, the library proposes operators for comparing, checking properties
(e. g., the diameter of a graph) and mutation operators, for modifying test data.
Table 3.1 summarizes the data mutation operators. The Associative Array type
has three mutation operators: Grow, Shrink and Shu�e. The �rst one doubles
the size of the data, creating new entries. The second one discards half of the
entries, and the last one changes the order of the data within the Array. The
Graph and the Tree types have two mutation operators: Reduce and Raise.
The �rst one randomly removes nodes, shrinking the size of the Graph (Tree)
by 20%. The latter randomly adds new nodes to the Graph (Tree), growing its
size by 20%.

3.3.4 Test Sequence Deployment and Execution

The deployment plan artifact drives the deployment of the test architecture, as
well as the deployment of the system under test. Figure 3.2 presents the mini-
mum con�guration that must be deployed to execute a test sequence. The test
sequence is executed by the test controller, which is deployed on an independent
node. The controller interacts with several upper testers, which in turn, interact
with only one node under test. Since the upper tester is able to start and stop
the node under test, it must run on a di�erent process. Conversely, the lower
tester must run in the same process as the node under test.

The data provider, the dictionary and the system monitor are deployed on the
same logical node (i. e., process) as the upper tester. However, the client part
of the logger must be deployed in the same logical node as the node under test.
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Upper
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Figure 3.2: UML Deployment Diagram Representing the Minimum Architecture
Con�guration for a Test Execution

In Macaw, the execution of a test sequence begins with the deployment and the
execution of the controller. After starting, the controller reads the deployment
plan to create the test architecture. The deployment consists of dynamically
deploying the required components and starting all components. When start-
ing, each upper tester reads its adapter, to start the node under test and to
discover the types of actions that are available in the node. It also connects
to the controller to receive an arbitrary identi�cation. The controller uses this
identi�cation to distinguish nodes during the execution of test sequences. Data
providers load the data needed for the execution. Finally, loggers connect to
their server part. However, they only transfer log data after the execution.

Once all components �nish starting, the controller reads and executes the test
sequence. Data generated during the execution (i. e., the output) is stored
locally. After the execution, upper testers stop the nodes under test and send
the output to the controller. Finally, the oracle calculates a verdict for the test.

3.4 Macaw Implementation

Macaw was implemented in Java, using the Kevoree component model, de-
scribed in the following sections. Kevoree separates the components from the
communication channels, simplifying the implementation of components. In this
section, we introduce Kevoree and describe the implementation of Macaw.

3.4.1 Kevoree

Kevoree [53, 54] is an open-source dynamic component model1, which relies on
models@runtime [23] to properly support the dynamic adaptation of distributed
systems. Kevoree was inuenced by previous work that we carried out in the
DiVA project [87]. Kevoree provides an architecture model for managing a
component-based software architecture. This model relies on concepts of the
underlying infrastructure: resources, logical nodes, and their topology. The
dynamic nature of Kevoree allows Macaw to meet thedynamicity requirement,
presented in Section 3.2.1.

Figure 3.3 presents a general overview of the models@runtime approach. The
architecture of the system is captured at runtime by a model, which works as
an o�ine reection layer. Changes to the system architecture are �rst applied

1http://kevoree.org

25

http://kevoree.org


Chapter 3

to an unsynchronized version of the runtime model, generating a new model.
Once all changes are done, Kevoree validates the new model, to ensure that
the new con�guration is well-formed. Then, Kevoree compares this new model
with the current one, generating an adaptation model, which contains the set of
recon�guration commands to migrate from the current model to the new one.
Finally, the adaptation engine executes these recon�guration commands in a
transactional way. If the execution of a command fails, the adaptation engine
rollbacks every modi�cations to ensure system consistency.

Node

Current Model

Target Model

Check
Compare

Running platform

Model@Runtime layer

Adaptation Engine

consistency

(1)

SaveModel

(2)

(2)
(3)

(4)

Figure 3.3: Models@Runtime Overview

3.4.2 Kevoree Features

The component-based approach is well-suited to adaptive system design. We
describe below the Kevoree features that support software deployment and adap-
tation.

Type/Instance pattern As the system peforms updates continuously, we need
a clear separation between the functionalities that the application must
have and the location or con�guration of these functionalities. All Kevoree
concepts (Component, Channel, Node) follow the Type Object pattern [70]
to separate deployment artifacts from running artifacts. While adaptation
on instances is done at runtime, modeling activities related to type de�-
nitions are typically performed o�ine, and synchronized with the runtime
later, after validation.

Component A component provides a set of functionalities that are exposed
to other components. It also requires functionalities from other compo-
nents. All these functionalities are identi�ed by a (required or provided)
component port. One of the most important features of a component-
based model is that all the components are substitutable, so a component
can be replaced by another one, provided this new one o�ers at least the
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same functionalities. This feature allows (at design time or at runtime)
for easy recon�guration of applications, while maintaining the required
functionalities.

Channel An application also de�nes how components are bound to exchange
data. The bindings are done with channels that encapsulate communi-
cation semantics between components. For instance, a channel semantics
can encapsulate broadcast di�usion or distributed transactions. Channels
are completely independent from components. Some examples of available
channels are Sockets, NIO, and Gossiper.

Node A distributed infrastructure is characterized by the use of multiple com-
putational nodes. Each node instance may host software (components
and channels) and other nodes. The nodes are organized hierarchically,
where the parent are responsible to start/stop child nodes. In a nutshell,
each node instance can be viewed as a container that provides an isolation
level and has the responsibility of ensuring the synchronization between
the architecture model and the runtime. This responsibility is represented
by the adaptation capabilities of the node. These adaptation capabili-
ties are provided by commands, which perform migration actions between
two con�gurations (i. e., two models). Kevoree especially targets hetero-
geneous systems through its model@runtime approach allowing to tame
adaptations on di�erent kinds of devices (e. g., JavaSE, Android, Arduino
� Controller, and cloud virtual nodes).

Group Whereas channels are used to de�ne communication between compo-
nents, groups are used to add shared communication between nodes, to
synchronize the overall system con�guration and to disseminate recon�g-
urations. More precisely, adaptation information (leading to a new archi-
tectural model of the system) are sent to nodes using a group to ensure
consistency of the overall system.

node nnode 1

Architecture model

node 1 node n

Figure 3.4: Distributed Recon�gurations

Groups can be bound to several nodes (named members), allowing them
to explicitly de�ne di�erent synchronization strategies for the overall dis-
tributed system. Figure 3.4 illustrates this architecture organization. Ad-
ditionally, a Group also de�nes a scope of synchronization, i. e., it de�nes
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which elements of the global model must be synchronized for the group's
members. This provides an access control policy.

Kevoree Script (KevScript) Kevoree also provides a domain-speci�c lan-
guage, KevScript, which allows the adaptation of software architectures
through the instantiation and manipulation of nodes, components, chan-
nels, and groups. It was inspired by other software architecture scripting
languages, such as FScript [34]. The KevScript language is used by reason-
ing engines to dynamically build new models (new system con�gurations)
from the current one. The adaptation is done by binding or unbinding
components and channels and by migrating components between nodes.

Listing 1 presents the main KevScript commands. Themerge command loads
a library, containing Kevoree types (nodes, components, etc.). For instance,
line 1 loads the JavaSE node type. Theset command changes the values of an
instance parameter, e. g., line 2 sets to 8080 the value of port forcomponent1 .
The add and remove commands adds (removes) an instances to (from) the
adaptation model, e. g., line 6 addscomponent1 of type ComponentType1
to the model, and line 12 removescomponent3 from the model. The move
command moves component or child nodes from a node to another, e. g., line
17 movescomponent1 from node1 to node2 . Finally, bind and unbind
commands binds and unbinds component ports and channels, e. g., line 9 binds
the port providedPort1 from component2 to channel channel1 , and line 11
unbinds them.

Listing 1: Main KevScript Commands
1 i n c l u d e mvn : org . kevo ree . l i b r a r y . j a v a s e . j avasenode : r e l e a s e
2 add component1 : ComponentType1
3 add channe l1 : ChannelType1
4 add node1@node2
5 add group1 : GroupType1
6 a t tach node1 group1
7 s e t component1 f po r t ="8080" g
8 s e t channe l1 f r e p l a y=" t r u e " g
9 s e t group1 f b roadcas t=" t r u e " g

10 s e t node1 f OS="Ubuntu � 10.04" g
11 bind component1 . r e q u i r e d P o r t 1 channe l1
12 bind component2 . p rov idedPor t1 channe l1
13 unbind component3 . r e q u i r e d P o r t 1 channe l1
14 unbind component2 . p rov idedPor t1 channe l2
15 remove component3
16 remove channe l2
17 move component1@node1 node2
18 remove node1@node2
19 move node1@node2 node3
20 remove node1
21 remove group1

3.4.3 Component and Artifact Implementation

Macaw components2 described in Section 3.3, except the lower tester, are im-
plemented as Kevoree components and make use of several third party compo-

2The source code is available at https://github.com/sunye/Macaw
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nents. The controller uses the Apache Camel3 integration framework to send
synchronous and asynchronous messages to upper testers and to receive their re-
sponses. For instance, when the controller invokes an action, it sends a Kevoree
message, containing a unique id, a method name, a set of parameters and a
timeout. Coordination messages are also implemented with Kevoree messages.

Three components need to store persistent data: the data provider, the system
monitor and the logger. All persistent data is stored in H24, a lightweight rela-
tional database management system written in Java. The system monitor uses
the System Information Gatherer5 (SIGAR) library from Hyperic to retrieve
monitoring data. The logger provides standard log handlers that are compati-
ble with the Java Logging framework and with Log4j. This allows the logger to
retrieve the logs of systems using one of these two frameworks.

The implementation of the upper tester has an additional behavior. Besides
controlling and routing actions to the node under test, it provides hooks for
incoming and outgoing messages. This allows components that belong to the
same node to acknowledge the arrival of actions and the departure of responses.
more precisely, the logger and the system monitor can group their records by
action, and the data provider can add and retrieve data to actions and responses.

Since the lower tester runs on the same process as the node under test, which is
not necessarily a Kevoree component, it cannot be implemented as such. The
lower tester exposes the upper interface of the node, to make it accessible to
other logical nodes or processes. It uses the adapter to discover the available
methods and to translate incoming action into method invocations. The lower
tester is also responsible for replacing method arguments with future objects by
an asynchronous message, which is sent when the response of the future object
is available. This because future objects cannot be used through di�erent nodes.

In Macaw, adapters are implemented as Java classes, containing speci�c an-
notations: @Action , @Setup and @Cleanup . The �rst annotation speci�es
that the method can be called by the test sequence. The other annotations
specify the methods that should be called before and after the execution of a
test sequence. Typically, this methods are used to con�gure a database or a
log folder, before starting the node under test, and cleaning up the generated
�les after the execution. Test sequences are also implemented in Java classes,
as Java methods. Deployment plans are implemented in KevScript.

3.5 Experiments

In this section, we present a preliminary experiment of using Macaw for setting
up an experimental validation of a popular open-source distributed hash table,
FreePastry6, an implementation of the Pastry algorithm [106] from Rice Univer-
sity. The objective of this experience is to validate the usability and e�ciency
of Macaw.

3http://camel.apache.org/
4http://www.h2database.com
5http://www.hyperic.com/products/sigar
6http://freepastry.rice.edu/FreePastry/
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3.5.1 FreePastry Test Speci�cation

A FreePastry system is composed of a set of similar nodes, which run the same
software. All nodes have a similar behavior, except for thebootstrapper node,
which also helps other nodes to join the system. A node provides the bootstrap-
ping behavior at launch, either when it does not �nd a bootstrapper node, or
when it is explicitly asked for (in the command line). The system provides the
same interface in all nodes, allowing data insertion and retrieval. This interface
is similar to the running example Hash Table interface presented in the Sec-
tion 2.1.1. Interaction through this interface yields the same behavior in any
system node.

In this section, we present a distributed test case for testing the main function-
ality of FreePastry, i. e., its ability to store and retrieve distributed data, as well
as its reliability under low churn rates. To achieve these goals, the distributed
test case creates a small FreePastry system, with ten nodes. Then, it inserts
some random-generated data (i. e., a set ofhkey; valuei pairs) in an arbitrary
node and retrieves this data (from the previously inserted keys).

In summary, the distributed test case has the following steps:

1. FreePastry system start-up.

2. Test data insertion on an arbitrary node.

3. Churn simulation.

4. Output data retrieval on all nodes.

5. Verdict assessment.

3.5.2 FreePastry Test Implementation

Four artifacts implement the distributed test case presented previously: (i) a
deployment plan script, for creating the system under test; (ii) a test data �le,
used as input data; (iii) a test sequence, for driving the system under test into
a given state; and (iv) an oracle, for validating the output data.

Listing 2 presents the deployment plan, i. e., a script that starts-up the test
architecture. The script has the following behavior: First, the script creates
a JavaSE node and deploys aTestController component on it. Second, it
creates a set of similar nodes and deploys three components on each node:
an UpperTester , a DataProvider and a SystemMonitor . Third, it binds
the UpperTester and the DataProvider using a LocalChannel . Fourth, it
binds the UpperTester and the TestController using a SocketChannel .

Phases two, three and four are repeated 10 times, for creating the whole test ar-
chitecture. It is important to mention that since the current version of KevScript
does not support loop structures, we generate automatically the Deployment
Plan.

Figure 3.5 presents the resulting deployment for only two physical nodes (or
devices). Kevoree deploys the controller on its own physical node and virtual
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Listing 2: Deployment Plan for FreePastry Test
1 add node0 : JavaSeNode
2 add c o n t r o l l e r @ no d e 0 : T e s t C o n t r o l l e r
3
4 add node1 : JavaSeNode
5 add tes te r1@node1 : UpperTester
6 add prov ider1@node1 : DataProv ider
7 add monitor1@node1 : SystemMonitor
8 add dpc1 : LocalChannel
9 add channe l1 : SocketChannel

10
11 bind t e s t e r 1 . p r o v i d e r dpc1
12 bind p r o v i d e r 1 . p r o v i d e r dpc1
13 bind t e s t e r 1 . t e s t e r channe l1
14 bind c o n t r o l l e r . t e s t e r channe l1
15
16 // ( . . . )

machine, along with the test sequence. Upper testers and FreePastry nodes
run on the same physical node, but on di�erent virtual machines. Kevoree
deploys system monitors and data providers on the same virtual machine as
upper testers.

ÇdeviceÈ
:Controller Node

ÇdeviceÈ
:Tester Node

:Kevoree JavaSE Node:Kevoree JavaSE Node

Test Sequence

:Java Virtual Machine

FreePastry 
Node Adapter

Data Provider

System 
Monitor

Test Data

Upper Tester

Lower Tester

FreePastry 
Node

Controller
Socket Channel

Oracle

Figure 3.5: UML Diagram Representing FreePastry Test Deployment

The test data contains 1,000 pairs. Keys are a sequence of integers and val-
ues are randomly-generated, using the complex data type library, presented in
Section 3.3.3. The data provider loads the data and associates it to an action
name. When the upper tester asks the data provider for the input data of a
given action, the latter returns an array of arguments. The former executes the
action as many times as the size of the array.

Listing 3 presents thePastryTestSequence class, a simpli�ed Java implemen-
tation of the test sequence. This class contains a single method,execute() ,
which receives an array ofTester as argument. TheTester class is a wrapper,
which simpli�es the interaction with upper tester components. The method is
composed of 5 main steps.

In the �rst step, the controller sends the join message to all available upper
testers. The call() method is blocking, ensuring the controllability of the test
sequence. In the second step, the controller sends theput message to the upper
tester 5, asking it to use the data provider. In the third step, the controller
asks nodes 4, 5 and 6 to leave the system. Then, it asks the remaining nodes
to retrieve all the previously-inserted data, using the keys stored in the data
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provider. In the �fth step, the controller asks nodes 4, 5 and 6 to rejoin the
system, to simulate the churn. In the last step, the controller asks all nodes to
retrieve all the previously inserted data again, also using the data provider.

Listing 3: Java Class Representing the FreePastry Test Sequence
1 publ ic c l ass Past ryTestSequence implements TestSequence f
2
3 @Override
4 publ ic void execu te ( Tes te r [ ] t e s t e r s ) f
5 Tes te r [ ] v o l a t i l e s = f t e s t e r s [ 5 ] , t e s t e r s [ 6 ] , t e s t e r s [ 7 ] g ;
6 Tes te r [ ] s t a b l e = f t e s t e r s [ 0 ] , t e s t e r s [ 1 ] , t e s t e r s [ 2 ] ,
7 t e s t e r s [ 3 ] , t e s t e r s [ 4 ] , t e s t e r s [ 8 ] , t e s t e r s [ 9 ] g ;
8
9 // Step 1

10 for ( Tes te r each : t e s t e r s ) f
11 each . c a l l ( " j o i n " ) ;
12 g
13
14 // Step 2
15 t e s t e r s [ 5 ] . ca l lW i t hP rov i de r ( " put " ) ;
16
17 // Step 3
18 for ( Tes te r each : v o l a t i l e s ) f
19 each . c a l l ( " l e a v e " ) ;
20 g
21
22 // Step 4
23 for ( Tes te r each : s t a b l e ) f
24 each . ca l lW i t hP rov i de r ( " ge t " ) ;
25 g
26
27 // Step 5
28 for ( Tes te r each : v o l a t i l e s ) f
29 each . c a l l ( " j o i n " ) ;
30 g
31
32 // Step 6
33 for ( Tes te r each : t e s t e r s ) f
34 each . ca l lW i t hP rov i de r ( " ge t " ) ;
35 g
36 g
37 g

Listing 4 presents the PastryTestOracle class, a simpli�ed Java implementa-
tion of the FreePastry oracle. This class contains a single method,execute() ,
which receives an array ofDataProvider as argument and returns a verdict.
The Provider class, used within the code, is a wrapper used to simplify the
access to the distributed data providers.

First, the method retrieves the inserted data from the �rst data provider and
assigns it to the expected variable. Then, it retrieves all output data from the
�rst get action, from all data providers, compares the output with the expected
values, and stores the result. Then, the method repeats the comparison for the
secondget action. Finally, it returns the verdict.

3.5.3 FreePastry Node Adapter Implementation

Listing 5 presents the NodeAdapter class, which exposes the interface of
FreePastry nodes. This class is composed of three kinds of operations, iden-
ti�able by Java method annotations. Methods annotated with @Setup and
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Listing 4: Java Class Representing the FreePastry Test Oracle
1 publ ic c l ass Pas t ryTes tOrac le implements Orac le f
2
3 @Override
4 publ ic Tes tResu l t execu te ( P rov ide r [ ] p r o v i d e r s ) f
5 Tuple [ ] expec ted = p r o v i d e r s [ 0 ] . ge tArguments for ( " put " ) ;
6 Tes tResu l t v e r d i c t = new Tes tResu l t ( ) ;
7
8 for ( P rov ide r each : p r o v i d e r s ) f
9 Tuple [ ] r e s u l t s = each . r e s u l t s F o r ( " ge t " , 1 ) ;

10
11 v e r d i c t . a s s e r t E q u a l s ( expected , r e s u l t s ) ;
12 g
13
14 for ( P rov ide r each : p r o v i d e r s ) f
15 Tuple [ ] r e s u l t s = each . r e s u l t s F o r ( " ge t " , 2 ) ;
16
17 v e r d i c t . a s s e r t E q u a l s ( expected , r e s u l t s ) ;
18 g
19 return v e r d i c t ;
20 g
21 g

@Cleanup , (setup() and cleanup() ), manage the life-cycle of the node under
test. When the upper tester starts (stops) its execution, it calls the @Setup
(@Cleanup ) annotated method, which starts (stops) the node under test and
prepares (cleans up) its environment.

The third kind of operations are actions, which are annotated with @Action .
Actions have two main features: they are remotely accessible and send an ac-
knowledge message the controller, after the execution, even when no value is
returned. Operations may raise exceptions, which are treated as errors by the
controller. The NodeAdapter class has four main actions:

1. join() makes the FreePastry node join the system and creates its dis-
tributed hash table service.

2. leave() makes node leave the system.

3. put() inserts a pair hkey; valuei in the distributed hash table.

4. get() retrieves a value corresponding to a key.

The lower tester has a particular behavior for operations that have aFuture
class as a parameter, which are return values for asynchronous operations. When
calling these methods, the lower tester creates an instance ofFuture , uses it to
retrieve the return value, and sends this value to the upper tester.

3.5.4 Test Results

This experiment was executed on small networks of machines.

Figure 3.6, the experiment showed that the insert and the retrieve operations
of FreePastry behaved correctly on a small network but for a thousand of
hkey; valuei pairs.
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Listing 5: Java Method Implementing the FreePastry Node Adapter
1 @Adapter
2 publ ic c l ass NodeAdapter f
3 private Past ryPeer peer ;
4 private Ine tSocke tAdd ress add ress ;
5
6 @Setup
7 publ ic void se tup ( ) throws Except ion f
8 peer = new Past ryPeer ( add ress ) ;
9 peer . c r e a t e P a s t ( ) ;

10 g
11
12 @Cleanup
13 publ ic void c leanup ( ) throws Except ion f
14 g
15
16 @Action
17 publ ic void j o i n ( ) throws Except ion f
18 peer . j o i n ( ) ;
19 peer . c r e a t e P a s t ( ) ;
20 g
21
22 @Action
23 publ ic void l e a v e ( ) throws Except ion f
24 peer . l e a v e ( ) ;
25 g
26
27 @Action
28 publ ic void put ( S t r i n g key , S t r i n g value , Future f u t u r e )
29 throws Except ion f
30 a s s e r t peer != nu l l ;
31 peer . put ( key , va lue , f u t u r e ) ;
32 g
33
34 @Action
35 publ ic void ge t ( S t r i n g key , Future < St r i ng > f u t u r e )
36 throws Except ion f
37 a s s e r t peer != nu l l ;
38 return peer . ge t ( key , f u t u r e ) ;
39 g
40 g
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Distributed Test Architecture

The use of Macaw allows testers to create a distributed test case in a modular
way, using KevScript to manage the deployment policy, and Java as a test
sequence and oracle language. In the presented case study, we obtain a 40 lines
of code for the adapter, 37 lines of code to implement the test sequence that
drives the deployment of virtual machines and the execution of a distributed
scenario, and 21 lines of code to implement the oracle.
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Figure 3.6: Part of Inconclusive Test Conditions

The use of a dynamic component model such as Kevoree [54] does not introduce
a major performance overhead. Indeed, the measured average time to initialize
a Kevoree runtime and start the JavaSE Node is 1:512 ms, which corresponds
to 1 s for the Java Virtual Machine initialization, plus approximately 500 ms to
start the node. This is the average value measured for 100 essays on the same
machines used for the experiment.

Architectural adaptations of Kevoree nodes consist of receiving a new con�gu-
ration, comparing it with the running system con�guration, and performing the
modi�cations. In Kevoree, the architectural adaptation of a node takes between
30 ms and 300 ms according to the recon�guration complexity. This value is an
approximation obtained in doing adaptations that replace a component by an-
other one, which updates its previous bindings. This delay varies depending on
the recon�guration complexity.

3.6 Conclusion

An important issue when testing large-scale systems is their heterogeneity, which
prevents the use of a generic test architecture. The use of component-based
models, as well as architectural languages allowing the dynamic con�guration
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and deployment of components are an interesting approach to deal with this
issue.

In this chapter, we presented Macaw, a component-based architecture to test
large-scale systems. Macaw was implemented on the top of Kevoree, a frame-
work for developing dynamic distributed software. The main features of Kevoree
allows the test architecture to adapt itself in function of the speci�c requirements
of the system under test and the test objectives. These requirements are related
to monitoring, logs, data providing, etc.

While Macaw is an interesting experience of building an adaptive test architec-
ture, some more work is needed to improve it. Indeed, distributed test cases
and oracles are currently expressed as Java programs. While this approach is
pragmatic and works properly, we strongly believe that using domain-speci�c
language is a more elegant approach. Another limit of our architecture is that
it addresses experiments where tests have total control of nodes. We intend to
study the possibility of deploying test component on runtime non-stop systems.
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A Methodology for Testing
Large-Scale Systems

4.1 Introduction

Large-scale systems, such as peer-to-peer, appear as a powerful paradigm to
develop scalable distributed systems, as reected by the increasing number of
projects based on this technology ([7]). Among the many aspects of large-scale
development, producing systems that work correctly is an obvious target. This
is even more critical when large-scale systems are to be widely used. Thus, as
for any system, a large-scale system should be tested with respect to its require-
ments. As for any distributed system, the complexity of message exchanges
must be a part of the testing objectives. Testing of distributed systems typ-
ically consists of a centralized test architecture composed of a test controller,
or coordinator, which synchronizes and coordinates communication (message
calls, deadlock detection) and creates the overall verdict from the local verdicts.
Local to each node, test sequences or test automata can be executed, which run
these partial tests on demand and send their local verdicts to the coordinator.
One local tester per node or group of nodes is generated from the testing objec-
tives. Distributed systems are commonly tested using conformance testing [108].
The purpose of conformance testing is to determine to what extent the imple-
mentation of a system conforms to its speci�cation. The tester speci�es the
system using Finite State Machines ([30, 58, 29]) or Labeled Transition Systems
([65, 66, 98]) and uses this speci�cation to generate a test suite that is able to
verify (totally or partially) whether each speci�ed transition is correctly imple-
mented. The tester then observes the events sent among the di�erent system
nodes and veri�es that the sequence of events corresponds to the speci�cation.

In a large-scale system, a node plays the role of an active process with the ability
to join or leave the network at any time, either normally (e.g., disconnection)
or abnormally (e.g., failure). This ability, which we call volatility, is a major
di�erence with distributed systems. Furthermore, volatility yields the possibility
of dynamically modifying the network size and topology, which makes large-scale
testing quite di�erent. Thus, the functional behavior of a large-scale system (and

37



Chapter 4

functional aws) strongly depends on the number of nodes, which impacts the
scalability of the system, and their volatility.

As an illustration, Distributed Hash Table (DHT) ([106, 103, 113]) is a basic
large-scale system, where each node is responsible for the storage of values cor-
responding to a range of keys. A DHT has a simple local interface that only
provides three operations: value insertion, value retrieval and key look-up. The
remote interface is more complex, providing operations for data transfer and
maintenance of the routing tables, i. e., the correspondence table between keys
and nodes, used to determine which peer is responsible for a given key. Consid-
ering the simplicity of the interface, testing a DHT in a stable system is quite
simple, but does not provide any con�dence in the correctness of implementa-
tion for the speci�c distribution mechanisms. When nodes leave and join the
system, the test must check that both the routing table is correctly updated
and that requests are correctly routed.

In this chapter, we present a methodology for testing large-scale systems, in-
cluding testers and coordinator, with the ability to create peers and make them
join and leave the system. With this methodology, the test objectives can com-
bine the functional testing of the system with the volatility variations (and also
scalability). The correctness of the system can thus be checked based on these
three dimensions, i. e., functions, number of peers and volatility. We present
an incremental methodology to deal with these dimensions, which aims at cov-
ering functions �rst on a small system and then incrementally addressing the
scalability and volatility aspects. Empirical results obtained by running several
test cases illustrate the fact that satisfying a simple test criterion such as code
coverage is a hard task. Open issues, such as the generation of e�cient test
objectives are also identi�ed.

The rest of the chapter is organized as follows. The next section introduces
the basic concepts and proposes a testing methodology. Section 4.2 presents
our methodology for large-scale testing. Section 4.3 describes our validation
through implementation and experimentation on an open-source P2P system.
Section 4.4 concludes.

4.2 Testing methodology

When testing scalability of a distributed system, the functional aspects are
typically not taken into account. The same basic test scenario is simply repeated
on a large number of nodes ([45]). The same approach may be used for volatility,
but would also lead to test volatility separately from the functional aspect. For
a large-scale system, we claim that the functional aws are strongly related to
the scalability and volatility issues.

This because functionalities are specially designed to work with a variable num-
ber of nodes (from one up to more than one million) and with the arrival and
the departure of nodes. Functionalities do not perform the same in a small
system, where each node knows every other nodes, as they perform on large
systems, where each node only have a partial view of the whole system. In the
last case, the accomplishment of a functionality often leads to more complex
communications, such as message routing or node discovery.
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When nodes leave or join the system, di�erent functions are performed, other
than the update of the routing tables. For instance, in many distributed hash
tables, when a node joins the system, it becomes responsible for a range of keys.
Thus, before starting to respond to queries, it must receive from other nodes
all data associated to these keys. And when the node leaves the system, the
inverse transfer of data must be done.

Therefore, it is crucial to combine the scalability and volatility aspects with
meaningful test sequences. To take into account the three dimensional aspects
of large-scale systems, we present a methodology that combines the functional
testing of a system with the variations of the other two aspects. Indeed, we
incrementally scale up the SUT either simulating or not volatility. This simu-
lation can be executed with di�erent workloads, such as: shrinking the system,
expanding it or both at the same time. These di�erent workloads may exercise
di�erent behaviors of the SUT and possibly reveal di�erent aws.

Our incremental methodology is composed by the following steps:

1. small scale application testing without volatility;

2. small scale application testing with volatility;

3. large scale application testing without volatility;

4. large scale application testing with volatility.

Step 1 consists of conformance testing, with a minimum con�guration. The
goal is to provide a test sequence set e�cient enough to reach a prede�ned test
criteria. These test sequences must be parameterized by the number of nodes
TS(P), so that they can be extended for large scale testing. Test sequences can
also be combined to build a complex test scenario using a test language such as
Tela [97].

In our motivating example, we start a stable system with all the nodes set as
illustrated in Figure 4.1. The node p2 will insert some data into a DHT, then the
nodesp3 and p4 will retrieve them. This �rst step aims to verify pure functional
problems without interference with the size of the system and/or volatility. In
the case of a stable and small scale DHT, all the nodes probably know each
other representing minimal or even nonexistent routing table updates. Thus,
messages may be exchange directly between nodes.

Step 2 consists of reusing the initial test sequences and adding the volatility
dimension. The result is a set of test sequences including explicit volatility
(TSV). Figure 4.2(a) illustrates a DHT before volatility when data is inserted
by node p2. Then, the nodesp3 and p4 join the system and retrieve data as
illustrated in Figure 4.2(b). This second step aims to verify functional problems
related to volatility at a small scale considering that pure functional problems
were isolated at Step 1. Indeed, testing inserts and retrieves upon volatility
exercises both data forwarding and routing table update. Furthermore, a small
scale system guarantees low forwarding since data tend to be sent to nodes
within the routing table.
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Figure 4.1: Small scale application testing without volatility (Step 1)

Step 3 reuses the initial test sequences of Step 1 combining them to deal with
a large number of nodes. We thus obtain a global test scenarioGTS. A test
scenario composes test sequences. This third step aims to verify functional
problems related to scalability. To do so, we test the SUT without volatility in
a large scale. As described in Step 1, a stable system represents minimal or even
nonexistent routing table updates. Whenever we scale up the SUT, nodes are
obligated to perform some tasks like routing messages and forwarding data to
unknown peers. Indeed, these tasks could be only tested in large scale systems
since nodes are unlikely to know all the others.

Figure 4.3 illustrates a large scale and stable DHT. In our motivating example,
node p2 inserts some data into the DHT respectively at p1 and p2. Whenever
the nodes p3 and p4 try to retrieve data, they probably do not know p1 and
p2, messages are routed until reach such data. Therefore, aspects related to
scalability, such as message routing, can be veri�ed from this third step.

Step 4 reapplies the test scenarios of Step 3 with the test sequences of Step 2, and
a global test scenario with volatility ( GTSV) is built and executed. Figure 4.4
illustrates a large scale DHT upon volatility. In fact, this step aims to verify
the problems related to all three dimensions. Therefore, after the insertion of
data illustrated in Figure 4.4(a), nodes come and go depending on the type of
the volatility. For simplicity, Figure 4.4(b) illustrates the join of new nodes p3

and p4. In our example, the successors of bothp3 and p4 have to update their
routing table and route messages. Eventually, the test case can be improved to
store something atp3 or p4 in order to exercise data forwarding as well.

The advantage of this process is to focus on the generation of relevant test
sequences, from a functional point of view, and then reuse these basic test
sequences by including volatility and scalability. The test sequences of Step 1
satisfy test criteria (code coverage, interface coverage). When reused at large
scale, the test coverage is thus ensured by the way all peers are systematically
exercised with these basic test sequences.
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(a) DHT before volatility
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(b) DHT after volatility

Figure 4.2: Small scale application testing with volatility (Step 2)
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Figure 4.3: Large scale application testing without volatility (Step 3)
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(b) DHT after volatility

Figure 4.4: Large-scale application testing with volatility (Step 4)
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In terms of diagnosis, this methodology allows to determine the nature of the
detected erroneous behavior. Indeed, the problem can be linked to a purely
functional cause (Step 1), a volatility issue (Step 2), a scalability issue (Step
3) or a combination of these three aspects (Step 4). The most complex errors
are the last ones since their analysis is related to a combination of the three
aspects. Steps 2 and 4 could also be preceded by two other steps (shrinkage and
expansion), to help the diagnosis of errors due to either the unavailability of
resources or arrival of new ones. Yet, several rates of volatility can be explored
to verify how they a�ect the functionality aspect of the SUT (e.g., 10% joining,
20% leaving).

Let us illustrate these de�nitions with a simple distributed test case (see Exam-
ple 4.2). The aim of this test case is to detect errors on a DHT implementation.
More precisely, it veri�es whether new nodes are able to retrieve data inserted
before their arrival.

[Simple test case]

Action Testers Action

(a1) 0,1,2 join()
(a2) 2 Insert the string "One" at key 1;

Insert the string "Two" at key 2;
(a3) 3,4 join();
(a4) 3,4 Retrieve data at key 1;

Retrieve data at key 2;
(a5) * leave();
(v0) 0 Calculate a local verdict;
(v1) 1 Calculate a local verdict;
(v2) 2 Calculate a local verdict;

This test case involves �ve testersT � = f t0 : : : t4g that control �ve peers P =
f p0 : : : p4g and �ve actions A � = f a�

1 ; :::; a�
5g. If the data retrieved in a4 is the

same as the one inserted ina2, then the verdict is pass. If the data is not the
same, the verdict is fail . If t3 or t4 are not able to retrieve any data, then the
verdict is inconclusive (e.g., action timeout). For each tester a local verdict is
calculated and send to a test coordinator.

4.3 Experimental Validation

In this section, we present an experimental validation of a popular open-source
DHT, FreePastry1, an implementation of Pastry ([106]) from Rice University.
The objective of the experiments is to validate the feasibility of the P2P incre-
mental testing methodology, using a code coverage criteria.

We conducted four experiments, testing FreePastry in di�erent system settings:
stable, expanding, shrinking and volatile. These experiments follow steps 1 and

1http://freepastry.rice.edu/FreePastry/
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2 of our methodology. The goal of the �rst experiment is to verify that the
DHT correctly inserts and retrieves data. The goal of the second experiment
is to verify whether nodes that join the system after the insertion of data are
able to retrieve this data, i.e., if these nodes integrate correctly the system.
Verify the ability of nodes to reconstruct the system when several nodes leave
the system is the goal of the third experiment. Finally, the goal of the fourth
experiment is to verify whether stable nodes are able to reconstruct the system
(and to retrieve the inserted data), when other nodes leave and join the system.

During the experiments, we measured the code coverage to evaluate the impact
of the three dimensions (functionality, scalability and volatility) on code cover-
age, that is, measure to which extent the quantity of inserted data, the system
size and the volatility impact on the code coverage. We use a stable system
composed of 16 nodes as a reference.

It has to be noticed that the chapter does not focus on how to select the test cases
so that they would cover all the code, which is beyond the scope of the chapter.
With these four typical scenarios, we want to demonstrate that volatility has
an impact on code coverage (i.e., that volatility must be a parameter of a P2P
test selection strategy). Additionally, we focus on volatility testing and do
not test these systems on more extreme situations such as performing massive
inserts and retrieves, or using very large data. Testing di�erent aspects (e.g.,
concurrence, data transfer, etc.) would increase signi�cantly the con�dence on
both DHTs. However, these tests were out-of-scope of this chapter. They could
be performed through the interface of a single node and would not need the
framework presented in this chapter.

For our experiments we use two clusters of 64 machines2 running GNU/Linux.
In the �rst cluster, each machine has 2 Intel Xeon 2.33GHz dual-core processors.
In the second cluster, each machine has 2 AMD Opteron 248 2.2GHz processors.
Since we can have full control over these clusters during experimentation, our
experiments are reproducible. We allocate equally one node per cluster node.
In experiments with up to 64 nodes, we use only one cluster. In all experiments
reported in this chapter, each node is con�gured to run in its own Java VM. The
cost of action synchronization is negligible: the execution of an empty action
on 2048 nodes requires less than 3 seconds. The execution time and also the
synchronization time are out-of-scope of this chapter.

4.3.1 Test Cases Summary

In this section, we describe the test cases used to test the routing table and the
DHT. Initially, we describe the test sequences that the test cases are based on.
Then, we detail the test cases.

The routing table test sequence

In the routing table test case, testers must analyze the routing table of their
nodes to verify if it was correctly updated. More precisely, testers must compare

2The clusters are part of the Grid5000 experimental platform: http://www.grid5000.fr/
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the ID of nodes from a routing table with the ID of nodes that leave or join the
system. This comparison is not trivial, because each tester only knows the ID
of its node, which is dynamically assigned. To simplify the analysis of routing
tables, we use test case variables to map tester IDs to node IDs, as shown in
Section ??.

We implemented the test case as follows.

Name: Routing Table Test.

Objective: Test the update of the routing table.

Parameters:

� P: the set of nodes that form the SUT;

� Pinit : the initial set of nodes;

� Pin : the set of nodes that join the system during the execution;

� Pout : the set of nodes that leave the system during the execution.

Actions:

1. System creation.

2. Volatile nodes are stored in test case variables.

3. Volatility simulation.

4. Routing table veri�cation and verdict assignment.

In the �rst action, a system is created and joined by all nodes inPinit . In the
second action, the IDs ofPin and/or Pout are stored in test case variables. In
the third action, volatility is simulated: nodes from Pin join the system and/or
nodes from Pout leave the system by comparing their IDs with the test case
variables. In the fourth action, each remaining node (p 2 Pinit + Pin � Pout )
veri�es its routing table, waiting for � seconds. Then, the routing table is
analyzed whether it has references to the test case variables and a verdict is
assigned. Three di�erent test cases were written based on this test sequence:

� Recovery from node isolation: The �rst test case consists in the de-
parture of all nodes that are present in the routing table of a given node
p. Then, we test if the routing table of p is updated within a time limit.

As mentioned, FreePastry uses a lazy approach to update the routing
table. Then, we called aping method to force the update of the routing
table. We executed this test twice increasing the amount of calls to the
ping method at each time. In the �rst time, we called the method just once
and FreePastry got an inconclusive verdict. Such verdict was assigned
since we could not a�rm that the routing table was not updated due to
the laziness or to a bug. In the second time, we called the method twice
within a 1 second delay, then FreePastry got apass verdict.

� Expanding system: In the second test case, we test if the nodes that
join a stable system are taken into account by the older nodes. To do so,
we analyze the routing table of each node that belongs to a set of nodes
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Pinit to test if it is correctly updated within a time limit, after the joining
of a set of new nodesPin .

We increased the size of the system exponentially (2n ) up to 1024 nodes3

to test the update in di�erent system sizes. We set a maximum time to
limit the test execution. We also increased this time in exponential scale
(2n ), starting from 8 seconds in order to perform at least one update in
the routing table. Similar to the node isolation test, FreePastry also got a
pass verdict. This happened because when a new node joins a FreePastry
system, it needs to communicate with all its neighbors inducing the update
of their routing tables.

� Shrinking system: In this third test case, we test if the nodes that
leave a stable system are correctly removed from the routing tables of the
remaining nodes, within a time limit.

We increased exponentially the size of the system and the time limit sim-
ilarly to the expanding workload. FreePastry got a pass verdict in all
executions, however, the time to get such verdict increased dramatically
compared with the expanding system due to laziness. Di�erently from the
expanding workload, a node does not contact any neighbor when leaving
the system. Then, we had to call theping method to force the update
of the routing table, otherwise inconclusive verdicts were assigned fre-
quently.

The DHT test sequence

Name: DHT Test.

Objective: Test the insert/retrieve operations.

Parameters:

� P: the set of nodes that form the SUT;

� Pinit : the initial set of nodes;

� Pin : the set of nodes that join the system during the execution;

� Pout : the set of nodes that leave the system during the execution;

� Data the input data, corresponding to set of pairs (key, value).

Actions:

1. System creation.

2. Insertion of Data .

3. Volatility simulation.

4. Data retrieval and verdict assignment.

We describe the DHT test sequence as follows. In the �rst action, a system is
created and joined by all nodes inPinit . In the second action, a nodep 2 Pinit

inserts n pairs. In the third action, volatility is simulated: nodes from Pin join

31024 nodes correspond to 8 nodes per physical node in the clusters.
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the system and/or nodes fromPout leave the system. In the fourth action, each
remaining node (p 2 Pinit + Pin � Pout ) tries to retrieve all the inserted data,
waiting for � seconds. When the data retrieval is �nished, the retrieved data
is compared to the previously inserted data and a verdict is assigned. Four
di�erent test cases were written based on this test sequence:

� Insert/Retrieve in a Stable System: In this �rst test case, we con-
�gure the system to execute 4 times for di�erent system sizes (jP j =
(16; 32; 64; 128)). In all executions, no node leaves or joins the system
(Pin = ; , Pout = ; and Pinit = P). The same input data is used in all
executions (jData j = 1 ; 000). The results show that FreePastry takes at
least 16 seconds to get apass verdict for any size of jP j.

� Insert/Retrieve in an Expanding System: In this second test case,
we use a prede�ned number of nodes (jP j = 128) and of input data
(jData j = 1 ; 000). The test case uses di�erent con�gurations, for dif-
ferent rates of nodes joining the system. The rate is set from 10% to 50%
(jPinit j � j Pin j = [(116, 12); (103,25); (90,38); (77,51); (64,64)]). No node
leaves the system (Pout = ; ).

FreePastry takes at least 8 seconds to get apass verdict in an expanding
system for any rate of volatility. This is faster than the stable system due
to Pastry's join algorithm. Whenever a new node p joins the system it
needs to �nd and contact a successor. Then, Pastry updates the successor
list of all the impacted nodes. This update oods a large portion of the
system and assists the retrievals.

� Insert/Retrieve in a Shrinking System: In this third test case,
we also use a prede�ned number of nodes (jP j = 128) and of input data
(jData j = 1 ; 000). Initially, all nodes join the system (Pinit = P). After
data insertion, some nodes leave the system. The rate of nodes leaving
the system was set from 10% to 50% (jPout j = (12, 25, 38, 51, 64 )). No
node joins the system (Pin = ; ). Note that in Pastry, the data stored by
a node becomes unavailable when this node leaves the system and remains
unavailable until it comes back. Thus, in this test case, we do not expect to
retrieve all data, only the remaining data is retrieved to build the verdict.

The results show that FreePastry takes at least 16 seconds to get apass
verdict in a shrinking system for any rate of volatility. This is slower
than the expanding one also due to Pastry's algorithm, which is lazy. The
update of the successor list only happens when a node tries to contact a
successor, for instance, during retrieval.

� Insert/Retrieve in a Volatile System: In this fourth test case,
we use the same prede�ned number of nodes and of input data. For
this test case, we de�ne a set of stable nodesPstable ; Pstable � P and
P = Pstable [ Pin [ Pout . The rate of stable nodes was set from 90% down
to 50% (jPstable j = (116, 103, 90, 77, 64)). The initial set of nodes is
composed of the stable nodes and the nodes that will leave the system
(Pinit = Pstable [ Pout ). After the data insertion, all nodes from Pout

leave the system while all nodes fromPin join the system. FreePastry also
passes this test case, for any rate of stable nodes.
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Name Quali�ed Name Sub- Instructions Description
packages

Past rice.p2p.past 3 4,606 DHT service

Transport org.mpisws.p2p.transport 16 19,582
Transport protocol
(sockets/messages)

Pastry rice.pastry 14 26,795
Routing network
(join, routing)

Replication rice.p2p.replication 4 2,429 Object replication

Table 4.1: Main packages summary

4.3.2 Code Coverage

To analyze the impact of volatility and scalability on the di�erent test cases
presented above, we conducted several experiments, using the test case pre-
sented above, with di�erent parameters. In these experiments, we use two Java
code analysis tools for code coverage and code metrics, Emma4 and Metrics5,
respectively.

According to these tools, FreePastry has 80,897 bytecode instructions and con-
tains 130 packages. About 56 packages are directly concerned by the DHT
implementation. The remaining packages deal with behaviors that are not rel-
evant here: tutorials, NAT routing, unit testing, etc. In the code coverage
analysis presented in this section, we focus on 4 main packages and their sub-
packages, which are summarized in Table 4.1. These packages represent the 4
main services a�ected by our test cases: DHT, data transport, message routing
and object replication. In all results presented here, the code coverage rate
corresponds to a merge of the code covered by all nodes.

For the �rst two experiments, we analyze the impact on the code coverage of two
parameters, the size of the input data and the number of nodes. As Figure 4.5
shows, the Past package is the most impacted by the growth of the cardinality
of the input data, while the impact on the other packages is less signi�cant.
The reason for this is that the choice of the node responsible of storing a given
data depends on the data key. Thus, when a node stores a large number of
data, it must discover the responsible nodes, i. e., use thelookup() operation.
This operation will behave di�erently when communicating with known and
unknown nodes.

Figure 4.6 shows that the code coverage of the four packages grows when the
system scales up. The explanation for this is that in small systems (e.g., 16
nodes), nodes know each other, and messages are not routed. When the system
expands up to 128 nodes, each node only knows part of the system, making
communication more complex. However, there is a limit on the coverage gains,
while scaling up from 128 nodes to 256 nodes. Such limitation is due to some
speci�c portions of the code (e.g., exceptions) that can be covered only by
speci�c test cases.

In the other experiments, we analyze the impact of volatility on the code cov-

4http://emma.sourceforge.net
5http://metrics.sourceforge.net
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erage, using the DHT test cases. We compare these results with the coverage
of the 14 original unit tests provided with FreePastry (Figure 4.8), which are
executed locally. Figure 4.7 presents a synopsis of the di�erent code coverage
results. As expected, our test cases cover more code than the original unit tests,
especially on packages that implement the communication protocol.

At �rst glance, volatility seems to have a minor impact on code coverage, since
the stable test case with 256 nodes yields better results than some other test
cases (e.g., shrinking 128). In fact, the impact is signi�cant because the di�erent
test cases exercises di�erent parts of the code and are complementary. This
complementarity is noticeable for the Pastry and the Past packages, where the
accumulated results are better than any other result as illustrated in Figure 4.8.
The total accumulated coverage (Accum.+Original unit tests) shows that our
tests cases and the original unit tests are also complementary.
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Figure 4.7: Coverage by package (our test cases)

4.3.3 Learned Lessons

As expected, volatility increases code coverage. However, such increase has a
limit due to some speci�c portions of the code (e.g., exceptions) that can be
covered only by speci�c test cases. For instance, a test case that covers the
exception threw by a look-up performed with the address of a bogus node. This
situation only happens when a node address resides in the routing table after
its volatility.

Other DHTs, such as Chord ([113]) or CAN ([103]), have similar behavior to
FreePastry for data storage and message routing. Therefore, a similar impact
on code coverage of the size of the system and the number of data should be
expected.

In spite of the test cases simplicity, the ratio of code covered by all test cases is
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rather important. While the impact of volatility, the number of nodes and the
amount of input data on the code coverage are noticeable, the only variation of
these parameters is not su�cient to improve code coverage on some packages,
for instance, the transport package. A possible solution to improve the coverage
of these packages is to alter some execution parameters from the FreePastry
con�guration �le. Most of the parameters deal with communication timeouts
and thread delays. Yet, the number of parameters (� 186) may lead to an
unmanageable number of test cases.

4.4 Conclusion

In this chapter, we presented a testing methodology that considers the three
dimensional aspects of P2P systems: functionality, scalability and volatility. We
used this methodology to conduct an extensive experimental validation using
FreePastry, a popular open-source DHT, on di�erent test scenarios.

We coupled the experiments with an analysis of code coverage, showing that
the alteration of the three dimensional aspects improves code coverage, thus
improving the con�dence on test cases.

The next challenging issue is to propose a solution to select scenarios that guar-
antees the functional coverage of the P2P functions in combination with the
"coverage" of volatility/scalability. Such a multidimensional coverage notion
should be de�ned properly as an extension of existing classical coverage crite-
ria.
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Chapter 5

Model-Based Oracle

5.1 Introduction

As stated in Chapter 2, the scale of the system under test a�ects several test
components, such as: test controllability [6], fault-injection [71], logging facil-
ities, and oracle calculation, among others. In the precise case of the oracle,
the validation of global properties becomes a major problem, as they depend on
values that are spread throughout the system.

This problem is faced when testing, for instance, the global correctness of the
routing algorithm of a P2P system. In these systems, e�cient message routing
depends on the correct state of local routing tables, which must be maintained
frequently, according to the dynamic state of the system: arbitrary network
latencies, node failures, and churn. Hence, the actual content of a routing table
is nondeterministic and highly dynamic, making it non obvious to tell whether
it is correct at any given point in time. The global correctness of the routing
algorithm depends on the (volatile) content of the routing tables in each local
node that is very hard to aggregate into a global view in a timely and scalable
way. Furthermore, the correctness of the global view can only be veri�ed at
given states: it may be invalid right after churn, but must be valid after a
certain delay in a stable state.

A typical approach for testing such a feature in a distributed system consists of
a centralized controller and several testers, each one controlling a single port or
node interface [121]. The tester is the application that runs in the same logical
devices as system nodes, and controls their execution and their volatility, making
them leave and join the system at any time, according to the needs of a test.
The controller sends the test inputs, controls the synchronization of the test
case execution and receives the outputs (or local verdicts) from each tester [38].
However, building a global verdict from the information gathered locally can be
a very di�cult problem. For instance, in a system where each node maintains
a set of references to its physically closest neighbors (e. g., Pastry [106]), the
only way to validate the correct construction of the system would be to �rst
gather information from all nodes, then calculate the distance between them,
and �nally check if the contents of the reference set are actually the closest
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neighbors. A similar problem arises when verifying load balance on MapReduce
systems, which distribute their load burden across their nodes, including storage,
query processing, and computations. To verify their algorithm of load-balancing,
one must gather information from all nodes, which can be a large amount of
data, and check for system usage information (e. g., partitioning of datasets).

In this Chapter, we present an approach leveraging the idea of model at run-
time [87] to provide a dynamically built oracle for testing properties in large-
scale distributed systems. This approach focuses on global, liveness, observable
and controllable properties. More precisely, it focuses on a particular class of
properties that cannot be calculated by a single node or by a portion of the
system; that are eventually true; that are observable from the system interface;
and that respond to external events. We propose to e�ciently keep updating
a global model of the system during its execution. This model is then instan-
tiated and evolved at runtime, by monitoring the corresponding distributed
system, and serve as oracle for distributed tests. On the implementation side,
we show that standard Model-Driven Engineering (MDE) technology such as
Kermeta [88] can be used to easily implement the oracle part of such model-
based distributed tests. We use this approach to test topology-related properties
on two open-source, structured P2P systems. This approach extends the archi-
tecture presented in Chapter 3. The addition of a global model and an e�cient
update mechanism allows also to test global properties.

The rest of the Chapter is organized as follows. The next section presents a
real world motivation case. Section 5.2 introduces some fundamental concepts
in large-scale distributed systems and some global topology properties these
systems must satisfy. Section 5.3 presents our approach to represent and check
these properties, as well as our architecture for testing distributed systems.
Section 5, describes our validation through implementation and experimentation
on two open-source systems. Section 7 concludes.

5.2 Background

5.2.1 Routing Tables

In a large-scale distributed system, nodes have a partial view of the system,
i. e., their routing tables keep only a subset of other node addresses. The choice
to build the routing table is then crucial for the performance of the whole
system. There are as many routing algorithms as there are di�erent systems.
In some data sharing systems (e. g., Gnutella, Kazaa), the routing table is built
randomly, each node keeps a set of nodes that represent some interest. In
structured systems, the routing table is built systematically, each node keeps a
set of nodes with the speci�c ID that are needed for e�cient routing.

Currently, there are two major ways to maintain the routing table: actively
and lazily. In the former, each node periodically pings all its neighbors and
drops the unavailable nodes (e. g., Chord [113]). In the latter, extra status
information is added to messages exchanges and the unavailability of a node is
only noticed when one of its neighbors does not answer a given query. Some
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systems (e. g., Bamboo [104], Pastry [106]) use both approaches to maintain
their routing tables.

In Pastry, the routing table is divided into three parts. The �rst one, named
leaf set contains all nodes having numerically close node ID (i. e., ID that share
the same pre�x). The second one, the actualrouting table, contains nodes with
di�erent pre�xes (at least one node for each element of the pre�x domain). The
third one, the neighborhood set, contains the physically closest nodes, indepen-
dently from their ID. Pastry uses both, lazy and active approaches to update
the routing table. While the leaf and the neighborhood sets are maintained
actively, the actual routing table is only updated when a node communicates
with its neighbors.

In Chord, each node maintains a routing table with at most m entries, where 2m

is the maximum size of the system. Thei th entry in the table at node n contains
the identity of the node, s, that succeedsn by at least 2i � 1 on the identi�er
circle, i. e., s = successor(n +2 i � 1) where 1� i � m. When the ID is not taken,
the entry is the node with the following ID. Chord uses an active approach to
update its routing table, periodically running a process called \stabilization".
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Figure 5.1: Chord routing

For instance, in a Chord system with m = 3 (Figure 5.1), containing nodes n0,
n1, n3, and n6, the routing table of n0 stores the addresses nodesn1, n3 and n6.
When a new noden4 joins the system, thenn0 will update its routing table and
replace the address ofn6 with n4. The routing tables of both systems, Pastry
and Chord, are the subject of the experiments presented in Section 5.4.
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5.2.2 Properties

As any other distributed system, large-scale ones must satisfy the properties of
safety and liveness [75]. Safety properties are predicates that should always be
true, ensuring that the system never reaches an unacceptable state. For instance,
a Chord routing table must never have a null entry: in a system composed of
only one node, all entries in the routing table must point to the node itself.

Liveness properties are predicates that should eventually be true. For instance,
in Chord, the routing table of a node is valid until another node has joined the
system. At this precise state, table entries are and will remain invalid during a
stabilization time, i. e., the time necessary to detect the presence of a new node
and the consequent routing table update. In real life execution, with frequent
churn, these properties may never be established.

We list below several topology-related liveness properties, which are tested in
Section 5.4.

De�nition 6 Let S be a large-scale distributed system, NodesS the nodes com-
posing this system andN the size of the system in terms of number of nodes.

De�nition 7 The topology ofS can be represented by a directed graph, where
each noden 2 Nodes is a vertex and every entry in its routing table is an edge
to a neighbor.

The �rst property, which is common to all systems, is the connectivity of the
system.

Property 1 (Connectivity) S is a strongly connected graph.

The second property, which is common to several DHT algorithms [125] (e. g.,
Pastry, Tapestry, Chord, Kademlia), concerns the diameter of the system, which
should be O(logN). It is important to note that this property is too lazy for
O(1) DHTs [111] and should be strengthened.

Property 2 (Diameter) The maximum eccentricity over all vertices of S is
O(logN).

While these two �rst properties are rather simple to verify, if one has a central-
ized model of the topology, they are essential to test. If they are not respected,
the accuracy of the tests presented in Sections 5.4.4, 5.4.5 and 5.4.6, which ver-
ify the correct update of the routing table upon churn, would be compromised.
Functional tests, such as the correctness of message routing and of data inser-
tion, would not be reliable. The third property concerns the self-organization
of DHTs.

Property 3 (Self-organization) When a node joins (or leaves) the system,
the total cost to update the routing tables, in terms of the number of messages
exchanged, isO(( logN)2) messages.
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The fourth property is the ability to handle churn and remain working properly.
Some routing algorithms are liable to fractionate the structure upon churn pre-
venting fractions to send messages to one another. Some solutions are provided
to merge fractions [56], but not all the implementations do that.

Property 4 (Self-healing) S remains strongly connected upon churn.

The properties de�ned above are related to the topology of peer-to-peer systems.
There are two additional properties that are not related to the topology of the
system and therefore validation is left for future work, but yet need a global
view of the system to be veri�ed: load balance and elasticity. Load balancing
is the ability to distribute the workload across the nodes of the system for scal-
ability. For instance, MapReduce, distributed database management systems,
and P2P systems distribute their load burden across their nodes. In the partic-
ular case of P2P, load balance may rely on consistent hashing algorithms (for
structured systems) or on satisfaction load balance algorithms. A possible ap-
proach to verify the Load Balancing property is to gather information from all
the nodes of the system, which can be a large amount of data, and then check
the consumption of computing resources.

The elasticity property is the ability of a system to add or remove resources at a
�ne grain and with a small lead time [12]. Elasticity is ensured either manually
or automatically, through the interaction with the infrastructure provider of a
cloud system. A possible approach to verify this property is to vary the load of
the system and observe the system behavior. While the load varies, we expect
the allocation, or decommissioning of failed or surplus nodes.

Unstructured systems, which rely on gossiping protocols are also an interest-
ing class of system for testing global properties, other than the Connectivity
presented above. Some examples of these properties are [13]: the e�ciency
of message propagation, message coverage, message delay, degree distribution
(number of neighbors by node), clustering coe�cient and the reliability under
churn. However, the veri�cation of these properties is part of future work.

5.2.3 Kermeta

Kermeta is a MDE workbench for building rich development environments
around meta-models using an aspect-oriented paradigm [89, 69]. It has been de-
signed to easily extend meta-models with many di�erent concerns (such as syn-
tactic correctness including context information, execution information, model
transformations, tracing information, connection to concrete syntax, etc.) ex-
pressed in heterogeneous languages. A meta-language such as the Meta Object
Facility (MOF) standard [92] indeed already supports an object-oriented de�-
nition of meta-models in terms of packages, classes, properties, and operation
signatures. However, MOF does not include concepts for the de�nition of con-
straints or operational semantics (MOF only contains operations signatures).
Kermeta can thus be seen as an extension of MOF with a language for specify-
ing constraints and operation bodies at the meta-model level.

The action language of Kermeta is especially designed to process models. It is
imperative and includes classical control structures such as blocks, conditional
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and loops. It implements traditional object-oriented mechanisms for multi-
ple inheritance and behavior rede�nition with a late binding semantics. It is
statically typed, with generics and provides reection as well as an exception
handling mechanism.

In addition to object-oriented structures, the MOF contains model-speci�c con-
structions such as containment and associations between classes. These elements
require a speci�c semantics of the action languages in order to maintain their
integrity. For instance, the assignment of a property must handle the other
end of the association if the property is part of an association and the object
containers if the property is a composition.

Kermeta expressions are a superset of the Object Constraint Language (OCL)
ones and have a close syntax. In particular, they include operations similar
to OCL iterators on collections such as each, collect, selector detect. The
standard framework of Kermeta also includes all the operations de�ned in the
OCL standard framework. This alignment between Kermeta and OCL allows
OCL constraints to be directly imported and evaluated in Kermeta. Classes
de�ne invariants and operations de�ne pre- and post-conditions. The Kermeta
virtual machine has a speci�c execution mode, which monitors these contracts
and reports any violation.

5.2.4 Models at Runtime

Models at runtime [22] are formal representations of the system which support
computer-based processing, unlike most models commonly used in analysis and
design. As stated by Bran Selic:

`This enables formal coupling between models and the systems
they represent, similar to the relationship that exists between a pro-
gram written in a high-level programming language and its machine
code counterpart'(pp. 26).

In our case, we use models at runtime as a \live" oracle within a test architecture
to check properties during the execution of a test sequence. Since we are not
able to directly observe the current state of the distributed system, we take
snapshots of its nodes periodically, aggregate the information and update the
model. Since we focus on liveness properties, we do not need to analyze all
states of the system but only given states, after exercising the software interface
of one or more nodes.

5.3 Testing Global Liveness Properties

In this section, we present our approach for testing global liveness properties on
large-scale distributed systems. After presenting our test approach, we introduce
test cases, explain their implementation, and discuss the limits of the approach.

We consider a test case as a pairhT S; Oi , where T S is a test sequence, i. e., a
sequence of steps that drives the System Under Test (SUT) into a given state,
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and O is the oracle, which reads the output generated by the SUT and provides
a verdict.

5.3.1 Testing Approach

There are two major approaches for verifying global properties of a distributed
system. The �rst one is to keep the output data locally in each node during
the test execution and to perform a post-mortem analysis. This approach is
less intrusive since less test data is exchanged during the execution. The second
one, which we have adopted, is to perform alive analysis of the outputs. While
this approach is more intrusive, since the exchange of test data may perturb the
network performance, it is also more exible. It allows tests to adapt themselves
according to the output. This is particularly valuable when verifying liveness
properties and the duration of the veri�cation is nondeterministic.

The rationale is to gather the output data on a single node, build a centralized
model of the system and verify global liveness properties on this model. Once
a property is veri�ed the execution can be stopped. An important issue of
this approach is �nding an update frequency that is adapted to the property
veri�cation.

5.3.2 Global Model and Property Speci�cation

As stated in Section 5.2.2, several distributed hash tables share common prop-
erties. However, the diversity of routing and updating algorithms complicates
the writing of tests to verify these properties through di�erent implementations.
The complexity can be reduced if the oracle is speci�ed on a more abstract level,
allowing tests to ignore implementation details such as the nature of identi�ers,
the data structure used to store the routing table, and method signatures.

Figure 5.2 presents a model of the topology of distributed systems. The model
is simple, yet su�cient to verify the properties presented in Section 5.2.2. The
classesSystemand Nodeare connected by two disjoint associations,available
(the nodes that joined the SUT) and unavailable (the nodes that left the
SUT). Each node has a set of neighbors. The model also contains invariants
that prevent nodes from been available and unavailable at the same time and
from being part of its own neighborhood.

id
join()
leave()

Node
* 

1

neighbors
diameter() : Integer
groups() : Integer

System available*

unavailable*

Figure 5.2: UML Class Diagram Describing System Properties

The System class contains two operations,diameter() and groups() , which
calculate the diameter of a graph and the number of independent graphs, re-
spectively. This model usually must be modi�ed for testing a speci�c system or
di�erent properties. For instance, if one wants to test a load-balancing property,
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mentioned in Section 5.2.2, several new attributes (e. g., CPU load, memory us-
age, etc.) would be needed and the current associations would be useless.

Once the model and its invariants are done, the problem is to create and update a
model instance during the execution. The Oracle component, which is deployed
along with the test controller updates and validates the global model. Thus,
test sequences can directly access the global model. When a test sequence asks
a tester to create a node, it also creates a new instance ofNodeand links it to
the only instance of Systemthrough the unavailable association in the global
model.

With this model, we can use OCL to specify the strong connectivity property
in Listings 6 and 7.

context Node
def allNeighbors : Set (Node) =

self .neighbors! union (
self .neighbors.allNeighbors()) ! asSet ()

Listing 6: All Neighbors Operation

context System
inv :

self . available ! forAll (a,b : Node j
a < > b implies a.allNeighbors! includes (b))

Listing 7: Connectivity Invariant

The scalability property is speci�ed in Listings 8 and 9. The �rst speci�es an
operation that returns all possible paths between two nodes and the second
ensures that for each node of the system, there is a path to all other nodes in
at most log2(N ) steps, whereN is the size of the system.

context Node
def allPaths( visited : Sequence (Node), to : Node) :

Set (Sequence (Node)) =
if self = to
then

Set fg! including (visited ! including (self ))
else

self .neighbors! collect (each : Node j node !
allPaths( visited ! including (self ), to))

Listing 8: All Paths Operation

The model also contains operations allowing the individual control of nodes.
The goal is to allow the creation of test scenarios, besides the dynamic oracle.
These operations must beglued to the SUT through adapters.
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context System
inv :

self . available ! forAll (a,b : Node j
a < > b implies a.allPaths( Sequence fg , b) !

exists (each : Sequence (Node)! size() � self . available ! size (). log2 ()))

Listing 9: Diameter Invariant

5.3.3 Implementation

As stated in Chapter 3 the current version [36] of the test architecture is im-
plemented in Java (version 1.5), global test sequences and adapters are imple-
mented as Java methods. Meta-information about test steps (e. g., the subset
of testers that should execute a step, timeout, etc.) are described as Java an-
notations. Listings 11 and 12 present examples of a node adapter and a test
sequence, respectively.

Besides exposing nodes' interfaces, adapters also describe a method for updating
the global model. When a tester receives an update request, it queries the node
it controls, computes the di�erences with the previously sent information and
sends these di�erences to the test controller.

We use Kermeta (version 1.4) to implement the oracle part of the test, i. e., the
runtime model and the veri�cation methods: connectivity() and diameter() .
Since Kermeta is interoperable with Java (it compiles to Java bytecode), its
integration with the test controller is awless. The former is implemented using
a depth-�rst search algorithm and the latter is implemented using the Floyd-
Warshall algorithm [51] for the \all pairs shortest-path problem". Listing 10
presents the implementation of this algorithm.

aspect class System f
operation diameter() : Integer is do

var distances : Sequence < Matrix < Integer >> init Sequence < Matrix < Integer >> .new
var size : Integer init nodes.size()

from var i : Integer init 0
until i == size
loop

distances .add(Matrix < Integer > .new.initialize(size,size))
end

distances .elementAt(0). �ll ( Integer .MAX VALUE)
var index : Integer init 0

nodes.each f node j
node.index := index
index := index + 1 g

nodes.each f node j
node.neighbors.each f neighbor j

distances .elementAt(0).set (node.index, neighbor.index, 1)gg

from var k : Integer init 1
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until k == size
loop

from var i : Integer init 0
until i == size
loop

from var j : Integer init 0
until j == size
loop

distances .elementAt(k). set (i, j , distances .elementAt(k � 1).get(i,j ).min(
distances .elementAt(k � 1).get(i,k) + distances.elementAt(k � 1).get(k,j)))

j := j + 1
end
i := i + 1

end
k := k + 1

end

result := 0

from var i : Integer init 0
until i == size
loop

from var j : Integer init 0
until j == size
loop

result := result .max(distances.elementAt(size � 1).get(row, col))
j := j + 1

end
i := i + 1

end
end

g

Listing 10: Floyd-Warshall Algorithm Implementation in Kermeta

5.3.4 Discussion

When we started the development of our experiments, we intended to use OCL
to implement the oracle. Indeed, the declarative nature of OCL simpli�es the
speci�cation of global properties. However, our �rst attempts to evaluate OCL
expressions on models with several hundreds of nodes showed poor performance,
which lead us to use an imperative language instead.

In our approach, we separate the oracle, test sequences, and node adapters,
allowing these three parts to evolve independently. Adapters depend strongly
on system node interface and must be rewritten when testing di�erent systems.
Di�erent test sequences and oracles that test the same system share the same
adapters. Test sequences and oracles depend on adapters, and can be reused
for testing di�erent systems, if adapters provide the same interface. As the
global model evolves, allowing the representation of new information and hence
the veri�cation of additional properties, testers must collect more information.
This implies changes in the adapter, which performs additional queries on the
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SUT, and also in the message aggregation function. The latter is only needed
if the information can be combined and reduced.

The high level of abstraction of model-based tools eases the representation and
the validation of global properties. These tools ensure that the models repre-
senting the oracle data are sound (with respect to their meta-model) during and
after the execution of test sequences. A possible limit of this kind of tools con-
cerns the size of the models: most model-based tools are based on the Eclipse
Modeling Framework (EMF), which is not adapted to deal with large mod-
els [55].

Our approach focus on speci�c classes of properties: global, liveness, observable,
and controllable properties. It is not adapted to verify local properties, which
do not require a global view of the system. It is not adapted to verify safety
properties either, since they require an analysis of all the historical states of
the system. Since we do not instrument the SUT, we cannot verify properties
that are not observable from the public interfaces of the system and that do not
respond to external events.

In the current implementation of the architecture, testers can force nodes to
end their execution either normally or abnormally. This allows test sequence to
inject \macro-level" faults and implement scenarios that are not interested in
the origins of a failure. However, the architecture cannot inject speci�c faults,
e. g., disk, network, bugs. We intend to combine the architecture with fault-
injection tools [61] to overcome this limitation.

Another limitation of the current architecture concerns the reproducibility of
tests, i. e., it does not provide repeatable automated tests [21]. In our experi-
ments, we relied on the Grid5000 infrastructure to ensure the use of the same
environment for di�erent executions. The use of an automated staging system
with support to large-scale environments (e. g., Weevil [123] and Mulini [73]) to
deploy and execute tests can overcome this limitation.

5.4 Experimental Validation

In this section, we present an experimental validation of our approach. Our
objective is to validate the correct implementation and the robustness of two
popular open-source DHTs with respect to the properties presented in Sec-
tion 5.2.2: FreePastry1 and OpenChord2. FreePastry is a Java implementation
of the Pastry algorithm, developed by the Rice University. It has 540 classes and
89 interfaces, organized in 90 packages, for a total of 50 875 lines of code. Open-
Chord is an implementation of the Chord algorithm, developed by the Bamberg
University. It has 96 classes and 11 interfaces, organized in 13 packages, for a
total of 9245 lines of Java code.

These experiments complete those presented in Chapters 3 and 4, where we
used these same implementations to test the functionality of their DHTs (data
insertion and retrieval). These former experiments showed us that while some
properties could be veri�ed locally (at each node), some others could only be

1http://freepastry.rice.edu/FreePastry/
2http://open-chord.sourceforge.net/
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veri�ed in a centralized manner. For our experiments, we use an incremental
test methodology [38] that copes with both volatility and scalability aspects
of large-scale distributed systems. The main goal of this methodology is to
simplify diagnosis: tests sequences start with a small-scale system and increases
the number of nodes after each execution. Node volatility is also introduced
incrementally: the test sequence starts with a stable system, then with a growing
system, a shrinking system, and �nally with a complete volatile system. We
organized the experiments in the following test scenarios:

1. Bootstrapping : checks the ability of the SUT to build a connected
(Property 1) and e�cient (Property 2) system.

2. Node isolation : checks the ability of a node to �nd new neighbors, after
the departure of all its neighbors (Properties 3 and 4).

3. Expanding system : checks the ability of nodes to update their routing
tables when new nodes join the system (Properties 3 and 4).

4. Shrinking system : checks the ability of nodes to update their routing
tables when nodes leave the system (Properties 3 and 4).

During the experiments, we used two clusters of 64 nodes running GNU/Linux.3

In the �rst cluster, each node has 2 Intel Xeon 2:33 GHz dual-core processors.
In the second cluster, each node has 2 AMD Opteron 248 2:2 GHz processors.
Since we have full control over these clusters (nodes and network routers) during
experimentation, our experiments are reproducible. The implementation and
tests, produced for this paper and other P2P applications, are available on our
web page.4 We allocate the logical nodes equally through the nodes in the
clusters up to 8 logical per physical node. In experiments with up to 64 logical
nodes, we use only one cluster. In all experiments reported in this paper, each
logical node is con�gured to run in its own Java VM. Execution con�gurations,
including network, disks, DNS server, node reservation and their usage, are
ensured by the OAR2 software deployed on the Grid5000 architecture.5

5.4.1 Global Model Extension

Figure 5.3 presents an extension of the topology model introduced in Sec-
tion 5.3.2. Here, the main superclassesSystem and Nodehave both two sub-
classes, which are speci�c to Pastry and Chord. These subclasses allow the spec-
i�cation of properties that only apply to these systems. For instance, we can
specify that the Chord ring, built using the successors association, should only
have one cycle. We can also specify that the Pastry nodes, connected through
the neighborhood association are actually the physically closest nodes. This
model was used to implement the test sequence presented in Section 5.4.

3The clusters are part of the Grid5000 platform: http://www.grid5000.fr/
4Peerunit project, http://peerunit.gforge.inria.fr
5http://www.grid5000.fr/mediawiki/index.php/OAR2
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Figure 5.3: UML Class Diagram Representing Chord and Pastry Properties

5.4.2 Adapter and Test Sequence Implementation

The experiments use two adapters, one for each SUT, and three test sequences,
one for each test scenario. Listing 11 presents the implementation of the FreeP-
astry adapter. This adapter has �ve test steps, i. e., methods decorated with
the @TestStep annotation. The testers use these test steps to start the boot-
strap node, start a node, update the global model and quit the system. For
instance, when a tester receives the messagestart , it instantiates a peer and
calls successively two methods:join() and createPast() . The execution is
bounded by a time constraint to last less than 10 000 ms, otherwise the tester
aborts the execution and noti�es the controller. We developed a similar adapter
for OpenChord.

Algorithm 2 presents an example of a global test sequence. It speci�es the test
sequence presented in Section 5.4.3, which validates the bootstrapping process.
The global test sequence creates a system withN nodes, waits for system stabi-
lization and then veri�es that all nodes belong to the same system (Property 1)
and that the diameter of the system is O(log N ) (Property 2). Di�erent sce-
narios execute this test sequence, withN increasing exponentially from 16 up
to 256 nodes.

The global test sequence calls two operations, de�ned in the global model:di-
ameter() and groups(). They calculate the diameter of a graph and the
number of independent graphs, respectively. The global test sequence interacts
with the system nodes through the use of two messages,start and bootstrap ,
de�ned by adapters.

Listing 12 presents the Java implementation of the bootstrapping process test.
For the sake of simplicity, some parts of the code were omitted. Calls to the
execute() method actually calls test steps on the testers side.

5.4.3 Bootstrapping

The �rst test concerns the bootstrapping process, or how a new node joins
the system. In some implementations, e. g., FreePastry, OpenChord, Plan-X6,
when a node wants to join the system, it must �rst contact a bootstrap node
(i. e., bootstrapper), which will help it to get an ID and contact the rest of the

6http://www.thomas.ambus.dk/plan-x/routing/
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public class RoutingTableTest f
private RemoteModel remoteModel;
// Bootstrapper address:
private String HOST;
private String PORT;

@TestStep(timeout = 40000)
public void bootstrap() throws Exception f

InetSocketAddress address = new InetSocketAddress(HOST, PORT);
peer = new PastryPeer(address);
peer.bootstrap();
peer.createPast ();
//Store global variable with bootstrapper address:
this .put( "bootstrap" , address);

g
@TestStep(timeout = 10000)
public void start() throws Exception f

//Delay to avoid bootstrap error:
Thread.sleep(this .id() � 100);
//Retrieve bootstrapper address:
InetSocketAddress address = (InetSocketAddress) this .get("bootstrap" );
peer = new PastryPeer(address);
peer. join ();
peer.createPast ();

g
@TestStep(timeout = 2000)
public void updateModel() throws RemoteException f

this .push(new NodeUpdate(peer.getId(), peer.getRoutingTable());)
g
@TestStep(timeout = 3000)
public void quit() throws RemoteException, NotBoundException f

peer. leave ();
g

g

Listing 11: FreePastry Node Adapter (simpli�ed)
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Algorithm 2: Global Test Sequence: Bootstrapping Test
Input :
S: a set of nodes;
nb: the bootstrapper node;
limit : maximum number of checks;
delay: time between checks
begin

tries  � 0;
send bootstrap to nb;
send start to N ;
wait stabilization;
repeat

tries  � tries + 1;
wait delay;
log tries ; groups(N );

until groups(N ) = 1 or tries > limit ;
log diameter(N );
assert diameter(N ) � log2 jN j ;
assert groups(N ) = 1;

end

public void testcaseExecution(TesterSet testers) f
short tries = 0;
int groups;
testers .execute("bootstrap" );
testers .execute("start" );

do f
Thread.sleep(10000);
testers .execute("updateModel" );
tries ++;
groups = model.groups();

g while (!connectivity() && tries < 100);

assert connectivity ();
assert diameter() � (Math.log(testers . size ()) / Math.log(2));
testers .execute("quit" );

g

Listing 12: Test Case (simpli�ed)
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system. The bootstrapping is a delicate process [68], especially when the whole
system starts at same time. For instance, after a global outage, Skype took
almost 48 h to heal in August 2007 [9].

The �rst test sequence creates a system withN nodes, waits for system stabi-
lization and then veri�es that all nodes belong to the same system (Property 1)
and that the diameter of the system isO(logN) (Property 2). Di�erent scenar-
ios execute this test sequence, withN increasing exponentially (2n ) from 16 up
to 256 nodes.

Nodes FreePastry OpenChord
16 Pass Pass
32 Pass Pass
64 Pass Pass
128 Pass Pass
256 Fail Fail

Table 5.1: Bootstrapping Test Results

Table 5.1 presents the results of the test sequence, which reveals a fault in
the FreePastry bootstrapping process. Indeed, from some point between 128
and 255 nodes, the bootstrapper is unable to treat simultaneous requests. It
seems that when the bootstrapper is overloaded by several parallel requests,
it gives incorrect responses and induces the nodes to create several small and
independent systems. This bug is particularly annoying when setting up tests
for large systems, but has a workaround. The bootstrapper behaves correctly
when the system is built up incrementally, respecting a delay of 100 ms between
bootstrap queries.7 The result of this test helped the developers of FreePastry
to repair the bug and improve the robustness of the bootstrap process when
preparing the version 2.1.8

The results of the test sequence also reveal a fault in OpenChord, leading to the
same error found in FreePastry: the creation of several independent systems.
However, in this case, the origin of the error is di�erent. Nodes take too much
time (more than 15 min) to �nd their neighbors and create a single system.

We use the global model to analyze the bootstrapping process, presented in
Figure 5.4. After initializing all nodes and requesting them to join the system,
we take snapshots of the topology every 10 s. While FreePastry nodes take less
than 10 s to form a strongly connected graph, OpenChord nodes are unable
to do it in less than 10 000 s. After this period, there are still 4 independent
systems remaining. In both systems, once Property 1 was veri�ed, Property 2
was also veri�ed.

5.4.4 Node Isolation

Once we were sure that both systems respect Properties 1 and 2 (or at least 256
nodes in the case of OpenChord), we could run more elaborate tests. The second

7https://trac.freepastry.org/wiki/Planetlab
8https://trac.freepastry.org/changeset/4176
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Figure 5.4: Bootstrapping process (512 nodes)

test sequence consists of two parts. First, to isolate a random node from the
system. Second, to verify if such a node is able to correctly update its routing
table to reach out a living node within a time limit (Properties 3 and 4). The
test sequence has four steps:

1. The system is created and a set of nodes joins the system.

2. All nodes send the contents or their routing table to the global model.

3. All neighbors of a noden leave the system.

4. The routing table of n is periodically analyzed, until Property 4 (self-
healing) is veri�ed or a timeout is reached.

The routing table analysis happens as follows: the values from the updated
routing table are compared with the neighbors ofn before the isolation. If the
intersection of these two sets of IDs is empty, then Property 4 is veri�ed, the
system is strongly connected again.

This test sequence is executed in only one test scenario, a system of 64 nodes.
Indeed, creating a system with less than 64 nodes can lead the test to an in-
conclusive result becausen may know all the nodes which are removed in the
third step. In a larger system, the results should be similar since the size of the
routing table would be the same.

The test showed that both implementations were able to correctly update their
routing tables. OpenChord updated its routing table in about 4 seconds. This
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delay represents a unique execution of the stabilization process (whose period-
icity is set to 6 s). FreePastry needed about 30 s to update its routing table and
become strongly connected again. The time was bigger than OpenChord's due
to the manner that the routing mechanism is updated. In the �rst routing at-
tempt, FreePastry always goes through the leaf set, which is promptly updated
due to its small number of entries. Proving Properties 3 and 4 is expected to
be fast through the leaf set. However, in corner cases when the leaf set is not
enough to answer a request (e. g., due to the number of decommissioned nodes in
the isolation scenario), the other tables are used and the lazy update approach
works on (i. e., only updates any address when asked).

5.4.5 Routing Table Update on an Expanding System

The third test sequence checks the ability of a node to correctly update its
routing table when the system is in expansion. More precisely, we verify that
the nodes of a stable system take into account the new nodes that join their
system. To do so, we use the global model to analyze the routing table of each
node that belongs to a set of nodesN1 to verify if it is correctly updated within
a time limit, after the joining of a set of new nodesN2.

This test case has four steps.

1. The system is started and nodes that belong toN1 join the system.

2. Wait until the SUT reaches a stable state (Properties 1 and 2).

3. The new nodes (N2) join the system and the global model is updated.

4. The strong connectivity of the system is veri�ed: if all routing tables are
correctly updated, then Property 4 is veri�ed.

This test sequence is executed on di�erent scenarios, withjN1j + jN2j increasing
exponentially (2n ) from 64 up to 1024 nodes.9 In all executions, N1 and N2

have the same size. A maximum time is set to limit the test execution. This
time limit starts from 8 s (allowing OpenChord to do at least one stabilization
process) and increases in quadratic-logarithmic scale ((logn )2), corresponding
to Property 3.

Figure 5.5 shows the average time for a node to update its routing table and
to get a pass verdict. In this scenario, FreePastry had a similar result com-
pared with the stabilization process of OpenChord. When a new node joins a
FreePastry system, it needs to communicate with all its neighbors inducing the
update of their routing tables. In OpenChord, the update takes a little longer
due to the time to stabilize.

5.4.6 Routing Table Update on a Shrinking System

In this last test sequence, we verify that nodes that leave a stable system are
correctly removed from the routing tables of the remaining nodes within a time
limit. The test sequence is composed of four steps.

91024 nodes correspond to 8 nodes per machine in the clusters
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Figure 5.5: Routing table update (expanding system)

1. The system is created and all nodes join the system.

2. Wait until Properties 1 and 2 are veri�ed.

3. Half of the nodes leave the system and the global model is updated.

4. Wait until strong connectivity of the system is veri�ed again (Property 4).

In this scenario, the size of the system and the time limit also increase expo-
nentially as described in Section 5.4.5. Figure 5.6 shows the minimum time
necessary for a node to update its routing table and get apass verdict.

As expected, OpenChord shows a faster routing table updating process than
FreePastry due to its stabilization process. In fact, this stabilization process
showed that it can detect the departures quickly and may be a better update
approach compared with FreePastry.

5.4.7 Discussion

While Properties 1, 2 and 4 may be veri�ed using information available at the
SUT interface, the veri�cation of Property 3 is more complex. In order to mea-
sure the number of exchanged messages, one must monitor the communication
on all nodes of the SUT, �lter the messages that are not related to the self-
organization and verify that the number of messages exchanged corresponds to
O(( logN)2). In the tests presented above, we used a di�erent approach: we
measure the time needed for self-healing in di�erent scales. If the time increases
quadratic-logarithmically, we consider that the property is respected. The tests
also showed an error in the bootstrapping process of OpenChord: the time
needed to create a valid system with more than 500 nodes is unsatisfactory,
making the implementation unusable.
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Figure 5.6: Routing table update (shrinking system)

A thorough analysis of the source code, the execution log and of the resource
usage revealed a design error. Indeed, when a join request arrives at the boot-
strapper node, it creates one thread to process the request.10 Thus, when several
requests arrive at the same time, the node spends more time creating threads
(and context switching) than actually processing the requests. Applying the
Proactor design pattern [110] would �x this error.

5.5 Conclusion

In this Chapter, we presented a model-based approach for checking global live-
ness properties that must be ensured by di�erent large-scale distributed systems.
We claim that global properties should be checked at runtime, at real scale, using
non-invasive distributed testers, and that model-based testing is an expressive
and adaptable technique to specify and check the global liveness properties of a
system.

In our approach, test sequences put the system into states where such properties
may be violated or lead to a degradation of system performance and behavior,
while models provide a high abstraction level to represent a global view and the
required properties of the SUT. Models are used as live oracles, which have a
view of the current state of the system and can detect property violations.

Along with the approach, we extended the architecture presented in Chapter 5,
to implement a model-based oracle. The oracle was written in Kermeta, a
dedicated language for model transformation.

We illustrated this approach by testing the reliability of two routing algorithms
under churn. Results showed common aws in both routing strategies and clear

10 ClassesSocketEndpoint and RequestHandler .
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di�erences. For instance, OpenChord could not build a single system (i. e., a
strongly connected graph) during real-scale experiments, revealing a defect that
would not have been detected without a global view of the system.

It is important to note that the approach is not limited to reliability testing.
It can also target other distributed software testing techniques, such as system,
load, and elasticity testing. Indeed, system testing [37] and load testing [82] were
the subject of previous experiences. The approach is not limited to a speci�c
class of distributed system either, but to speci�c classes of properties. More
precisely, to properties that need a global view of the system to be checked, and
that are only observable at speci�c states of the system.

In our approach, we are only interested in the state of the system at some speci�c
points, reducing exchanged messages during a test. This choice prevents us from
checking safety properties; i. e., properties that should always be true. However,
these properties are typically local and could be checked using assertions. Since
we chose not to instrument the code of the SUT, we can access neither the
internal states of a node nor some particular attributes, such as exchanged
messages raised during a given query.
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A Model-Driven Approach
for Software Deployment

6.1 Introduction

Cloud Computing [11, 83] has been a hot topic in both of research and industry
community recently. It can be described as a new kind of computing in which
dynamically scalable and virtualized resources are provided as services over the
Internet. Cloud users can access cloud system and use the service through dif-
ferent devices and interfaces. They only have to pay what they use according
to Service Level Agreement contracts established between Cloud providers and
Cloud users [26]. One of the main features of Cloud computing is the virtualiza-
tion in which all cloud resources become transparent to the user. They do not
need any longer to control and maintain the underlying cloud infrastructure.
The virtualization in Cloud Computing combines a number of virtual machine
images (VMIs) on the top of physical machines. Each virtual image hosts a com-
plete software stack: it includes operating system, middleware, database, and
development applications. The deployment of a VMI typically involves booting
the image, as well as installation and con�guration of software packages. In
the traditional approach, the creation of a VMI to �t user's requirements and
deploying it in the Cloud environment are typically carried out by the technical
division of the Cloud service providers. They provide a platform as a service
to the user according to SLA contracts signed between the service provider and
the user. Usually, it is a pre-packaged platform with installed and con�gured
software components. The standard VMI contains many software packages,
which rarely get used and thus the image is typically larger than what would
be necessary. This can lead to several di�culties, such as wastage of storage
space, memory, operating costs, and waste of network bandwidth when cloning
an image and deploying it on the cloud nodes [3].

In the traditional approach, when a cloud user requests a new development
platform, the service provider administrators select an appropriate VMI for
cloning and deploying on cloud nodes. If there is no match found, then a new
one is created and con�gured to match the request. It can be generated by
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modifying from the closest-�t existing VMI or from scratch. Several concerns
would need to be addressed by the cloud providers, such as: (i) How to create
an optimal con�guration? (ii) Which software packages and their dependencies
should be installed? (iii) How to �nd the best-�t existing VMI and how to
obtain a new VMI by modifying this one?

Cloud service providers want to automate this process because the complex-
ity of interdependency between software packages, and the di�culty of main-
tenance [31] is time-consuming for the creation of standard VMIs. In other
words, they want to give users more exibility when choosing the appropri-
ate VMI to satisfy their requirements, while ensuring bene�ts for providers in
terms of time, operating costs, and resources. In this chapter, we present an
approach for managing VMI for Cloud Computing environments, providing a
way to adapt to the needs of auto-scaling and self-con�guring virtual machine
images. In this approach, we consider VMIs as a product line and use feature
models to represent VMI con�gurations and model-based techniques to handle
automatic VMI deployment and recon�guration. We claim that this approach
makes the management (i.e., creation, con�guration and adaption) of virtual
image faster, more exible and easier than the traditional approach. We vali-
date this approach by an example showing that, given a base model representing
all available artifacts, one can easily derive a con�guration model (a speci�c use
of a subset of artifacts) and generate all needed con�guration scripts to generate
its corresponding VMI. The chapter is organized as follows. Section 2 describes
our solution of managing virtual machine image con�gurations by using feature
models and using the model-driven approach for virtual machine image deploy-
ment in Cloud Computing environment. Section 3 introduces an example about
deploying a Java web application development platform. Section 4 shows the
experiment evaluations. Section 5 discusses the related work, and is followed by
the conclusion and future work in Section 6.

6.2 Model-Driven Approach

In this section, we present a model-based approach for image provisioning. This
approach uses an image with a minimal con�guration, containing the operat-
ing system, some monitoring tools, and anexecution model. The goal of the
execution model is to install and con�gure software packages, after booting the
deployed images.

6.2.1 Feature Modeling for VMI Con�guration Manage-
ment

Our approach uses feature modeling [74] to manage the con�guration of virtual-
machine images. In terms of con�guration derivation, a feature model describes:

� The software packages that are needed to compose a Virtual Machine
Image, represented as con�guration options.

� The rules dictating the requirements, such as dependent packages and the
libraries required by each software component.
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Figure 6.1: Feature Modeling Approach

� The constraining rules, which speci�es how the choice of a given compo-
nent restricts the choice of other components, in the same Virtual Machine
Image.

Figure 6.2: Feature Diagram Represents a Base Model

Feature models have a tree structure, with features forming the nodes of the tree
and groups of features representing feature variability. There are four types of
feature groups: Mandatory; Optional ; Alternative ; and Or. The model follows
some rules when specifying which features should be included in a variant. If a
variant contains a feature, then:

� All its mandatory child features must also be contained;

� Any number of optional child features can be included;

� Exactly one feature must be selected from analternative group;

� At least one feature must be selected from anor group.
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Feature models support two cross-tree constraints: Requires; and Excludes.
Given two features, f a and f b: if f a requires f b, then the selection of f a im-
plies the selection off b; if f a excludesf b, then the selection off a prevents the
selection off b.

Our approach deals with two models: base and resolved. The base model rep-
resents the whole product line, with all its features, their relationships, and
constraints; The resolved model is obtained after the product derivation pro-
cess, it contains selected features and their dependencies.

Base Model

The base model represents con�guration options which would be used for com-
posing a VMI. The elements of the base model are features of the con�guration
options of a VMI, they represent software packages and their dependencies.
These elements become elements of resolved models, according to the resolu-
tions of the corresponding selection models.

Figure 6.2 depicts a part of based model that represents VMI con�guration fea-
tures. In this model, features and their relationships represent software pack-
ages:

� Operating Systemis a mandatory child feature of Virtual Machine Image,
which must be selected whenVirtual Machine Image is selected.

� Operating Systemincludes alternative child features: Windows and Linux

� When the Operating Systemfeature is selected, then one ofWindows 7 or
Ubuntu 11.10must be selected.

� If the feature Ubuntu 11.10is selected, then all features that requireWin-
dows 7 cannot be selected, for instance:Visual Studio 2010, JRE 1.6
Windows, etc.

Base models are built by IT experts of cloud providers, who have knowledge
about systems and software packages used to compose Virtual Machine Images.
The correctness of the base model relies on the correctness of the feature model
that represents the base models. Many approaches and tools were proposed to
automate analysis of feature models [120, 18, 84]. They o�er to validate, check
satis�ability, detect the "dead" features and analyze feature models. In our
implementation, we use constraints to ensure that the created feature model is
valid, and that con�gurations, which are derived from this feature model, are
also consistent with the base model. For example:

� Parent and child features cannot have a mutually exclusive relationship.

� Sibling features cannot be mutually exclusive.

� For two features f 1 and f 2, if f 1 requires f 2, then f 2 cannot require f 1.
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Product Derivation

Product Derivation is a process that is responsible for the creation of the �-
nal con�guration. It supports to derive the VMI con�gurations from the base
model [126]. To create a speci�c con�guration of a VMI, the designer selects
some features from the base model and uses a mechanism to produce a suit-
able con�guration. The selection of each feature is checked and validated by
the Product Derivation process to ensure the selection is valid. When a feature
is selected, the Product Derivation process checks its relationships. Features
connected to the selected feature by a mutually exclusive relationship become
unavailable on the base model for next selections. All of the features that are
required by the selected feature are also selected.

Figure 6.3: A Resolved Model Derived by the Product Derivation Process.

Resolved Models

A resolved model stores user's feature choices of the base model and their de-
pendencies. It is derived from the Product Derivation process based on user 's
selection on the base model. A resolved model corresponds to a speci�c con�gu-
ration of a Virtual Machine Image. Figure 6.3 is an example of a resolved model
that is derived from the base model presented in Figure 6.2 with the following
user 's selections: operating system is Ubuntu 11.10, integrated development
environment is Eclipse 3.5, and Apache Tomcat 5.5 for application server. Ac-
cording to the base model, Eclipse 5.5 requires Java Runtime. Both features
have two alternative children: Windows and Linux. However, since the selected
operating system is Ubuntu 11.10, only the Windows version is available. Addi-
tion, since Monitoring is a mandatory feature of Virtual Machine Image it must
be selected.

By using feature models, cloud providers have exibility to create Base models
representing resources for VMI provisioning. Features represent software pack-
ages or hardware options, such as RAM or virtualization technology (e.g., KVM
or Xen). These feature could also be used to store other informations: time,
cost, memory usage, etc., to support �nding optimal con�gurations. The �rst
time for creating the base models might take time and need experts on software
packages and their dependencies. However, once the Base model is created, it
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helps cloud users during the selection and the creation of VMI con�gurations,
reducing time, complexity, and errors during the manipulation.

6.2.2 Model-Based Deployment Architecture

Unlike the traditional approach, where software packages are installed and con-
�gured when the VMI template is created, the model-driven deployment ap-
proach installs and con�gures software packages at runtime when a VMI tem-
plate is booted. The approach also supports synchronization of maintenance
of the deployed VMIs at runtime. This mechanism allows users to update, re-
move, and add new components to running VMIs, without image shutdown and
re-deployment. It is more exible than the traditional approach.

In our approach, we create models that drive the creation of VMIs instance on
demand. Every time a new virtual machine is created on the cloud node, the
cloud provider selects features of VMI, generates con�gurations and applies the
model to it. Figure 6.4 describes an overview architecture of our approach.

Figure 6.4: An Overall Architecture of Model-Driven Approach for VMI De-
ployment

� VMI Repository
The VMI Repository contains basic virtual machine images that are used
as the initial VMIs: e.g., Ubuntu11.10.img , fedora15.0.img . These are
standard VMIs with minimum con�guration, such as operating system
and assistance software, like monitoring tools.

� VMI Con�guration Manager
The VMI Con�guration Manager is responsible for the creation and the
management of con�gurations of virtual machine image to ful�ll requested
requirements. By using the VMI con�guration manager, users can easily
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select the required software for creating the appropriate virtual machine.
It also helps the cloud providers to manage the preparation and provision
of resources as per client requirements.

� Execution Model
The Execution Model is responsible for reserving cloud nodes, deploy-
ing virtual machines, and executing the corresponding con�guration that
resulted from the reasoning of VMI Con�guration Manager. It is an en-
capsulation of Ruby and shell script �les.

� Cloud Nodes
Cloud Nodes are reserved nodes in the cloud infrastructure for hosting
and running virtual machines.

� Software Repository
The Software Repository stores software packages used to compose a VMI.
It can be a �le server inside the cloud infrastructure or other repositories
from the Internet, such as the Debian repository.

6.2.3 Model-Based Deployment Process

Figure 6.5: Model-Driven Process

The deployment process deals with the VMI Con�guration Manager, the Exe-
cution Model, the Software Repositories, and the Cloud Nodes. It includes the
following steps:

� Create a VMI con�guration.
In this step, cloud users interact with the VMI Con�guration Manager to
select con�guration options from the base model. The VMI Con�guration
Manager analyzes the user's choices and generates a resolved model (i.e.,
a valid con�guration of a VMI).

� Generate a deployment script �le.
A resolved model is transformed into a deployment script �le for automatic
deployment and con�guration. In the current implementation, we use
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Chef1 to automatic install and con�gure software on a virtual machine.
Chef is an installation software that cloud providers use to deploy, install,
and con�gure software stacks on the cloud nodes at runtime. Chef requires
an input �le, describing the node con�guration: the required software, as
well as their role. Actually, the input �le is a Ruby or JavaScript Object
Notation 2 (JSON) source code.

� Deploy a standard VMI and apply the deployment script �le to
the cloud nodes.
The Execution Model, based on the resolved model and deployment script
�le, selects a standard VMI and launches it on the reserved nodes. After
that, it transfers the deployment script to the nodes and executes Chef.
Finally, it returns the successful nodes to the cloud user.

6.3 An example of the VMI for Java Web Ap-
plication

To illustrate our approach, we introduce an example of VMI provisioning for the
Java Web Application Development platform. The con�guration of this VMI
includes an operating system, a web application server, a database management
system, and a programming language compiler.

Cloud users select the required features on the base model by the using VMI
Con�guration Manager, for example: Ubuntu , Eclipse , Apache Tomcat ,
and Database . Figure 6.6 represents the selection of con�guration options
from the base model.

A VMI includes only one operating system, so the choice of Ubuntu feature is
mutual exclusive with other operating systems and their dependencies. For ex-
ample, the users can select neither the SQL Server nor the Eclipse for Windows
because both features require Windows, which is a mutual exclusive feature of
Linux Ubuntu. The features JRE 1.6 for Linux, Chef-Linux are auto-selected
because Apache Tomcat requires JRE 1.6 for Linux and Chef-Linux is a manda-
tory feature.

The Product Derivation process generates a resolved model from the user's se-
lections. The transformation from a resolved model into a script �le helps to
automatic install and con�gure software stacks that are selected in the resolved
model. Figure 6.6 also shows the example of a resolved model and a deployment
script �le, which are corresponding to the user's selection from the base model.
The Deployment script is a JSON �le, named deployscript.json . The Execu-
tion model uses the script �le for automatic installing and con�guring software
into the selected virtual image. Listing 13 presents a partial Ruby code for
executing the script �le on cloud nodes.

1http://wiki.opscode.com/display/chef/About
2http://www.json.org/
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Figure 6.6: Example of VMI Con�guration Manager

Net::SSH::Multi.start do j sessionj
# access servers via a gateway
session .via STRGATEWAY, CONFIG[ 'username' ]
deployment["nodes"].each do jnodej

session .use "root@#f nodeg"
end

url = 'http://public.grenoble.grid5000.fr/~tlenhan/TamlnChefScripts/'
session .exec'hostname'
session .loop
session .exec'mkdir -p /tmp/chef-solo'
session .loop
session .exec'wget ' url 'deployscript.json'
session .loop
session .exec'chef-solo -j deployscript.json -r ' url 'cookbooks.tgz'
session .loop

end

Listing 13: A Partial Code in Ruby of the Execution on the Cloud Nodes
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6.4 Experimental Validation

In this section, we present an experimental validation of our approach on the
easiness of manipulation and the performance of deployment, in terms of data
transfer and deployment duration. The experiment is executed on Grid50003,
a virtualization infrastructure for research in France. We use Grid5000 's tools
to reserve nodes and deploy VMIs to the nodes.

6.4.1 Scenario Description

Our simple scenario deployment generates a VMI that includes selected soft-
ware stacks in the previous example (Java, Tomcat, MySQL). We deploy this
VMI to the reserved nodes on Grid5000. We compare our approach to the tradi-
tional approach in terms of time for setting up the environment, amount of data
transfer through the network, and operating steps. We evaluate the traditional
approach in two cases:

� Case 1: There is no existing VMI that �ts the requirements. The cloud
provider needs to create a new VMI containing Java, Tomcat and MySQL.

� Case 2: There is an existing VMI that �ts the requirements. It is used as
a standard VMI for deploying on the cloud nodes. However, for meeting
di�erent user requirements, it also contains software that may not be used:
Java, Tomcat, MySQL, Apache2, Jetty, PHP5, Emacs, PostgreSQL, DB2-
Express C, Jetty, LibreO�ce, etc.

6.4.2 Traditional Approach vs Model-Driven Approach

Time and Operations of the Deployment

In the traditional approach most decisions are taken by experts, because they
require the knowledge of underlying systems and software dependencies. Our
approach provides a graphical interface, the VMI Con�guration Manager, which
guides cloud users in the selection of a set of con�guration options. After that,
the Con�guration Manager deploys the new VMI on cloud nodes, making easy
to update and to maintain the running VMI. Table 6.1 shows a comparison
between the traditional and the model-driven approaches, in terms of operations
and deployment duration. Experiments show that the deployment duration of
our approach is slightly better that the traditional approach, if there is an
existing VMI that �ts the requirements. However, if there is no appropriate
VMI and the cloud provider creates a new one, then our approach is faster than
the traditional approach.
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Table 6.1: The Operations of Model-Driven Approach and Traditional Approach

Figure 6.7: Data Transfer Through the Network of the VMI Deployment
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Data Transfer Through the Network

In our experiment, we use a clean imageSqueeze-x64-nsf 4 (333.587 MB),
which is available on the Grid5000 's repository. This is also the standard VMI
for the case 1 of the traditional approach. In our approach, we use minimal con-
�guration images, only containing an installation software and its dependencies
(i.e., Chef).

After the installation of the minimal software, the image size is 339.955 MB. In
the case 2, unused software is installed for adapting di�erent requirements from
users. This makes the size of a standard VMI is much bigger, 803.60 MB.

Figure 6.7 shows that in both cases, the model-driven approach transfers less
data than the traditional approach. Especially when the pre-packaged VMI
contains more software installed, and deploy to a large number of cloud nodes.
In this example, when we deploy 100 cloud nodes, the traditional approach
transfers 40.49GB of data for case 1, and 78.48GB of data for case 2, while
the model-driven approach only transfers 32.59GB of data. The traditional
approach reduces the amount of data in 19.5% and 58.47%, comparing to cases
1 and 2, respectively.

6.5 Conclusion

In this chapter, we presented a model-driven approach to manage and create
con�gurations, as well as deploy images for virtual machine image provisioning
in Cloud Computing. We consider virtual images as product lines, use feature
models to capture their con�gurations, and use model-based techniques for au-
tomatic deployment of virtual images. This approach makes the management of
virtual image more exible and easier to use than the traditional approach. On
the implementation side, we developed a prototype for validating the approach.
It helps cloud users to select con�guration options, to create virtual images
and to deploy them on cloud nodes. We used Grid5000 as a Cloud Computing
environment testbed for deploying virtual images.

The framework includes two major parts: the VMI Con�guration Manager and
the Execution Model. The VMI Con�guration Manager helps cloud users to
select con�guration options, create a valid con�guration of a VMI through a
graphical user interface. It also generates deployment script �les. The Execution
Model uses these �les to automatically deploy and con�gure software into cloud
nodes at runtime without any manual intervention.

We compared our approach to the traditional cloud deployment approach in
two di�erent scenarios, using an existing compatible VMI and creating a new
one. Experiments showed that the model-driven approach helps cloud users to
create the con�gurations and deploy VMIs on demand easily. It minimizes error-
prone manual operations. Additionally, our approach reduces the network data
transfer, comparing to the traditional approach. Especially, if a pre-packed VMI
contains unwanted software. In this case, experiments showed that our approach

3https://www.grid5000.fr/mediawiki/index.php
4https://www.grid5000.fr/mediawiki/index.php/Squeeze-x64-nfs-1.1

86



A Model-Driven Approach for Software Deployment

reduces the data transfer up to 58.47%. It saves network resources during VMIs
provisioning in Cloud Computing.

Our framework could be extended to support cloud users for estimating the
deployment time and operational costs as needed. Therefore, it could improve
the performance of virtual machine image provisioning. However, the reasoning
engine of our Product Derivation process is still limited with simple constraints
of the con�guration. It is a challenge to deal with more elaborated con�gu-
rations that have optimal requirements on the complex constraints of multiple
parameters. In the future, we plan to improve the reasoning engine of the Prod-
uct Derivation process, to deal with more complex con�guration options and
constraints. We believe that a reasoning engine could enhance the performance
of the Product Derivation process in the VMI con�guration management.

Currently, our current prototype only works in the Grid5000 environment. We
are improving the prototype to have the ability to work with some open-source
cloud platforms, such as OpenNebula, Nimbus, etc.
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Conclusion and
Perspectives

7.1 Conclusion

Large-scale adaptive distributed systems are becoming more and more popular,
meeting the society's needs for faster and wider information exchange, while
ensuring reliability, security, privacy, performance, as well as several other qual-
ity factors. However, the popularity of those systems contrasts with the lack of
veri�cation techniques and tools to detect the presence of errors and to ensure
their overall quality. This because the diversity of purposes and implementation
paradigms prevents the creation of a generic veri�cation technique, while spe-
ci�c veri�cation techniques and tools are often expensive and not reusable. One
could argue that simulation techniques are more adapted to those systems, since
more generic and less expensive. Our claim is that large-scale systems must be
veri�ed at large-scale; we believe that the most important errors only manifest
themselves during speci�c load conditions created when the system scales. We
also believe that model-based testing techniques allows the creation of reusable
generic tools that can be tailored to the particularities of each system.

In this document, we presented our experience over seven years testing large-
scale systems. Our work focuses on the veri�cation through testing of large-
scale distributed systems. During these years, we adopted a four steps research
methodology that consists of: (i) problem and challenge identi�cation; (ii) the-
ory elaboration; (iii) prototype development; and (iv) real-scale experimentation
and observation. This e�orts led to the following contributions:

A Distributed test architecture An important issue when testing large-scale
systems is their heterogeneity, which prevents the use of a generic test
architecture. The use of component-based models, as well as architec-
tural languages allowing the dynamic con�guration and deployment of
components are an interesting approach to deal with this issue. We pre-
sented Macaw, a component-based architecture to test large-scale sys-
tems [41, 6, 36]. Macaw was implemented on the top of Kevoree, a frame-
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work for developing dynamic distributed software. The main features of
Kevoree allows the testing architecture to adapt itself in function of the
speci�c requirements of the system under test and the test objectives.
These requirements are related to monitoring, logs, data providing, etc.

An incremental methodology for testing large-scale systems To take into
account the di�erent dimensional aspects of large-scale systems, we pre-
sented a methodology that combines the functional testing of an applica-
tion with the variations of the other two aspects [40, 39, 38, 35, 6, 82].
Indeed, we incrementally scale up the SUT either simulating or not volatil-
ity. Our incremental methodology is composed by the following steps:

1. small scale system testing without volatility;

2. small scale system testing with volatility;

3. large scale system testing without volatility;

4. large scale system testing with volatility.

In terms of diagnosis, this methodology allows to determine the nature of
the detected erroneous behavior. Indeed, the problem can be linked to a
purely functional cause (Step 1), a volatility issue (Step 2), a scalability
issue (Step 3) or a combination of these three aspects (Step 4). The
most complex errors are the last ones since their analysis is related to
a combination of the three aspects. Steps 2 and 4 can be composed of
two other steps (shrinkage and expansion), to help the diagnosis of errors
due to either the unavailability of resources or arrival of new ones. Several
rates of volatility can be explored to verify how they a�ect the functionality
aspect of the SUT (e. g., 10 % joining, 20 % leaving).

A model-based approach for oracle implementation We presented a model-
based approach for checking global liveness properties that must be en-
sured by di�erent large-scale distributed systems [49, 50, 116]. We claim
that global properties should be checked at runtime, at real scale, using
non-invasive distributed testers, and that model-based testing is an ex-
pressive and adaptable technique to specify and check the global liveness
properties of a system. In our approach, test sequences put the system
into situations where such properties may be violated or lead to a degra-
dation of system performance and behavior, while models provide a high-
abstraction level to represent a global view and the required properties of
the system under test. Models are used as live oracles, which have a view
of the current state of the system and can detect property violations.

A model-based software deployment approach We presented a model-driven
approach to manage and create software con�gurations, as well as deploy
images for virtual machine image provisioning in distributed systems. We
considered virtual images as product lines [77, 91, 119]. We used feature
models to capture their con�gurations and model-based techniques for au-
tomatic deployment of virtual images. This approach makes the manage-
ment of virtual image more exible and easier to use than the traditional
approach. On the implementation side, we developed a prototype for val-
idating the approach. It helps cloud users to select con�guration options,
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to create virtual images and to deploy them on nodes. We used Grid5000
as a distributed environment testbed for deploying virtual images.

The framework includes two major parts: the VMI Con�guration Man-
ager and the Execution Model. The VMI Con�guration Manager helps
cloud users to select con�guration options, create a valid con�guration of
a VMI through a graphical user interface. It also generates deployment
script �les. The Execution Model uses these �les to automatically deploy
and con�gure software into cloud nodes at runtime without any manual
intervention.

In future work, the author will continue to investigate the application of model-
based techniques to the veri�cation of large-scale systems. The next section
details this future work.

7.2 Perspectives

In 2020, with more than 50 billions of connected devices exchanging more than
1 zettabyte/year of data1, will distributed software testing be a matter for soft-
ware engineering or for data analytics2? Clearly, there is a limit for testing
software in real scale: systems composed of millions of heterogeneous connected
nodes, processing terabytes of data, would require a prohibitive investment to
be completely tested. Therefore, software testing will be preceded by a compre-
hensive analysis of the software ecosystem, to select meaningful patterns and to
drive the test campaign.

Data analytics requires a high-abstraction level for querying and manipulating
data. In this context, testers will need powerful tools to overcome the complex-
ity of distributed systems testing. We believe that Model-Based Engineering can
o�er a common base for data analytics, provided that current tools evolve to be
able to scale up and process larges models, i. e., models with several thousands
of elements. Then, these tools could establish a common base for structured
and unstructured test data process, transformation, query, validation, and com-
parison.

The emergence of cloud infrastructures has a double impact on software testing.
In one side, it provides an e�cient and economical way to conduct large-scale
tests. In the other side, the usage of more exible infrastructure introduces
new software quality factors that must be tested, the elasticity, or the ability
of a software to ensure an adequate response time, according to the workload
using the minimal con�guration; the variability, or its ability to be changed,
customized, or con�gured according to variable functional and non-functional
requirements; and the volatility, or its ability to remain reliable during churn.

The introduction of these new factors emphasizes the need for non-functional
testing. In our work, we claimed that non-functional properties should be veri-
�ed along with functional properties. Henceforth, we intend to explore another
path: verify non-functional properties independently from the functional ones.

1according to CISCO's predictions
2Analytics is the discovery of meaningful patterns in data and infrastructure.
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The main idea is to ensure that the same test sequence produces the same out-
put (functional equivalence) and look for non-functional anomalies on di�erent
con�gurations, versions, workloads, etc. By anomalies, we mean tangible di�er-
ences during test sequence execution: di�erent response time, resource usage,
etc.

Detecting anomalies requires the generation of e�cient test sequences. We in-
tend to use evolutionary [15] and novelty search [78] algorithms to modify an
initial test sequence and an evaluation function to select (discard) the best
(worse) test cases.

After analyzing this approach for test generation, a question arose as how to
evaluate the quality of distributed test cases? Indeed, current approaches for
test evaluation (e. g., coverage, mutation analysis) are not fully adapted to multi-
instances software, i. e., software where nodes share the same replicated code,
and new criteria for distributed test case evaluation is needed.

The next sections provide detailed research perspectives in large-scale model-
driven testing. Section 7.2.1 proposes new criteria for evaluating distributed test
cases. Section 7.2.2 describes the challenges for testing the elasticity of cloud
applications and draws a solution for generating test workloads. Section 7.2.3
proposes the application of search-based algorithms for generating test data.
Section 7.2.4 describes a new approach for large model persistence. Finally,
Section 7.2.5 proposes a domain speci�c language for deploying software on
distributed environments.

7.2.1 Distributed Test Evaluation

Two approaches are widely used to measure the quality of tests: mutation
analysis [43] and code coverage [85]. Mutation analysis consists of inserting
small errors into the source code, generating erroneous software instances, called
mutants. The quality of test sequences is then associated to its ability to �nd
the mutants (i. e., produce fail verdicts). Code coverage associates the quality
of a test with the amount of code that is covered during its execution. More the
code is covered, better is the quality of the tests. While both approaches are
perfectly adapted to single-instance software, they can not be directly applied to
large-scale distributed software, where the same software is potentially deployed
on several nodes. Applying mutation analysis in this case is di�cult because
on one hand, if the same mutant is replicated all over the system, the inserted
error may become less subtle and could be easily detected by any test case. On
the other hand, deploying a mutant on a single node at a time, may lead to a
combinational problem, which is already a common issue in mutation analysis.

Similarly, code coverage criteria are not adapted to multi-instances software.
Indeed, since system nodes often share (total or partially) the same implemen-
tation, i. e., the same source code and play di�erent roles in the system, they
exercise di�erent parts of the code. Thus, testing evaluation methods based
on code coverage must be adapted. For instance, the criterium \the minimum
acceptable code coverage" may be interpreted as the percentage of code that
should be reached by a single node, by all nodes or by the union of code coverage
of all nodes.
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We believe that code coverage is more adapted for evaluating test case and data.
However, evaluating the results of code coverage on multiple-instances software
is still an issue. Since each software instance may have a di�erent role on the
whole system and executes di�erent parts of the code, code coverage may be
di�erent on each node. For instance, a simple criterium, the minimum code
coverage, may have di�erent interpretations:

1. The minimum code coverage that must be observed in at least one node.

2. The minimum code coverage that must be observed in all nodes.

3. The minimum common code coverage that must be observed in all nodes.

In future work, we intend to propose new criteria for distributed software, which
consider the multiplicity of software instances. This new criteria distinguish the
code covered by a single software instance from the global accumulated code
coverage.

Let us denote by T a Distributed Test Sequence, by� a Distributed Test Case,
� 2 T, f 1; : : : ; ng denote the set of instances of softwareS, we name individual
code coveragecc�

i the code covered by test case� in instance i , accumulated code
coverageACC � = f cc1 [ cc2 [ : : : ccn g, the union of all individual code cover-
age, and common code coverageCCC� = f cc1 \ cc2 \ : : : ccn g, the intersection
of all individual code coverage. Thanks to this distinction, we can introduce
new criteria for de�ning test objectives:

Minimum Global Coverage The minimum coverage rate that should be ver-
i�ed in all nodes. This criterium is expressed as:
8cc 2 ACC : cc > min .

Minimum Individual Coverage The minimum coverage rate that should be
veri�ed in at least one node. This criterium is expressed as:
9cc 2 ACC : cc > min .

Minimum Common Coverage The minimum common code coverage rate
that should be veri�ed in all nodes. This criterium is expressed as:
8cc 2 CCC : cc > min .

We intend to perform several experiments, using mutation operator to insert
errors in the SUT, in order to answer to di�erent empirical questions:

1. What extent of coverage rates (ACC and CCC) should be expected for a
multi-instances software?

2. Is it easier to detect simple errors present on a single node than errors
present in several nodes?

3. What is the impact of test data and workload on the code coverage?
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7.2.2 Elasticity Testing

The unpredictability of web application and services workloads, often created by
prompt events (e. g., tragic news, ash sales, instant popularity, etc.), has moti-
vated the adoption of Cloud technologies. Indeed, Cloud Computing infrastruc-
tures provide a exible environment that adds and removes resources from/to
running applications, according to the workload, ensuring their elasticity. This
elasticity exposes applications to new workload-related states (Scaling Up and
Scaling Down), in which the infrastructure is adding or removing resources.
These two new states complete other common web application workload-related
states, such as Stress, Under-Loading, Pressure, etc.

We believe that these new states may reveal new workload-related errors and
that the application should be tested under these states. Testing application
in these states leads to two di�culties. First, the states are limited in time,
the addition (removal) of resources only takes a few seconds during which the
tests should be executed. Second, it is di�cult to de�ne an adequate workload
variation for reaching these states. In one hand, if the variation is too low, a
state transition may last too long to be triggered. In the other hand, if the
variation is too high, the application may be directly lead to a Stress or even a
Thrash state [82].

In future work, we intend to propose a load generation approach. The rationale
of the approach is to divide the generation in two di�erent steps. The �rst step
exercises the web application with gradual workload increasing (or decreasing)
until it reaches the desired states. The second step drives the web application
through a list of desirable states, based on the levels of workload variation
gathered previously. During the second phase di�erent kinds of test may be
applied to verify if the application behaves correctly in these elasticity-related
states.

To validate our approach, we intend to conduct several experiments on the
OpenShift cloud platform. The main idea is to demonstrate the feasibility of
generating a workload set that drives the application into the di�erent states
and of creating di�erent test scenarios from a given sequence of transitions.

7.2.3 Automatic Test Data Generation

In general, manually creating test cases for testing software systems is time
consuming and error-prone, making necessary the automation of this process.
In fact, meta-heuristic search techniques such as Genetic Algorithms (GAs) are
frequently used in order to automate the test data generation process and gather
relevant test cases through the wide search space [105, 124]. These techniques
are especially applied for structural white-box testing. For coverage-oriented
approaches, applying Evolutionary Algorithms (EAs) to test data generation
has been focused on �nding input data for a speci�c path of the program in
accordance with a coverage criterion (e. g., longest path executed). The prob-
lem with coverage-oriented approaches is that search-based techniques cannot
exploit the huge space of possible test data. In fact, some structures of the
system cannot be reached since they are executed only by a small portion of the
input domain. Applying GAs for test data generation consists in searching for
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relevant test data according to an objective function that tries for example to
maximize the number of statements or branches covered. The use of a �tness
function as a coverage criterion to guide the search to detect relevant test data
usually create many local optima to which search may converge. Thus, if the
relevant test data, that could coverage the longest path of the program, lie far
from the search space de�ned by the gradient of the �tness function, then some
promising search areas may not be reached. The issue of premature conver-
gence to local optima has been a common problem in GAs. Many methods are
proposed to avoid this problem [14, 57]. However, all these alternatives use a
�tness-based selection to guide the search.

In future work, we intend to introduce the use of Novelty Search algorithm to
the test data generation problem. In this approach, we intend to explore the
search space of possible test input values without regarding to any objectives
(there is no �tness function). In fact, instead of having a �tness-based selection,
we rather select test cases based on a novelty score showing how di�erent they
are compared to all other test data evaluated so far. So during the evolutionary
process, we use to select test data that remain in sparse regions of the search
space in order to guide the search through novelty. We intend to use the state-
ment coverage metric as a coverage criterion to our Novelty Search-based test
data generation.

7.2.4 Model Scalability

Part of the software industry is embracing the main concepts of Model-Driven
Engineering, by putting models and code generation at the center of their
software-engineering processes. Recent studies [107], as well as the prolifera-
tion of tools related to MDE, testify the increase in popularity of these con-
cepts, which are applied to di�erent contexts and scales. Some examples of
contexts, besides software testing, are reverse engineering [24, 25], model trans-
formation [93, 64], and code generation [20, 90]. The scale varies from manual
modeling activities with hundred of elements to very large models, VLM, i. e.,
with millions of elements. Very large models are found in some speci�c domains,
such as the automotive industry [19], civil engineering [112], or software product
lines [99], or are automatically generated during software modernization of large
code bases.

Among the model-based frameworks currently available, the Eclipse Modeling
Framework [47] (EMF) has become ade facto standard for building modeling
tools, providing a common basis for di�erent contexts: The Eclipse marketplace3

attests the popularity of EMF: it currently counts more than two hundred EMF-
based tools [46] coming from both, industry and academia. However, the tech-
nologies at the core of EMF were designed in the �rst place to support simple
modeling activities and exhibit clear limits when applied to very large mod-
els. Problems in accessing and persisting models of this size are under-studied
and the current standard solution is to use a model/relational persistence layer,
e. g., CDO for EMF [48], that translates runtime model-handling operations into
relational database queries.

3http://marketplace.eclipse.org
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Chapter 7

As future work, we intend to propose an alternative framework for persisting
models using two di�erent persistence backends: a graph database and a raw
database engine. The main idea is allow users to choose between query-ability
or performance.

The �rst solution will be build on top of the popular graph database Neo4j,
providing users the ability to query models using a dedicated query language
as well as several interestinf features: online backups, horizontal scalability and
advanced monitoring.

The second solution does not interface the modeling framework with a full-
edged database, but is built around a raw database engine and directly accesses
its low-level data structures. We show that working at this level gives more
exibility in selecting the data structures that optimize each model-handling
operation. No translation into a database query language is performed, thus
reducing overhead.

We intend to evaluate both solutions performing a set of queries in the do-
main of software modernization, and we compare the execution performance of
these queries with thede facto standard persistence layers for EMF: XMI and
CDO[48].

7.2.5 A Domain Speci�c Language for test deployment in
the Cloud

The recent maturation of Cloud computing technologies is leading companies
to develop new applications in the Cloud, or to migrate existing on-premises
applications to the Cloud. Cloud computing is primarily used for simplicity
and �nancial reasons. Indeed, customers have a 24/7 access to computing facil-
ities, in the form of servers, on a Pay-As-You-Go (PAYG) pricing model. Cloud
providers propose a wide range of resources in terms of machine characteristics,
operating systems, locations, etc. Customers, that have di�erent needs, appre-
ciate this variability, but it is important for them not to be dependent on one
single provider: They must be able to migrate from one to another if the prices,
policies, quality of service, or requirements change.

In order to ensure provider-independence, applications must be deployed and
tested on di�erent providers. It is then the responsibility of the Software-Testing
Engineer (STE) to write scripts to deploy the application and run the tests.
As each provider o�ers its own Application Programming Interface (API) to
interact with the services, the STE has to duplicate and adapt the deployment
scripts. For instance, if the STE has to test an application on Google Compute
Engine [63], Amazon EC2 [62] and Rackspace [102], three versions of the same
script must be written. This way of considering variability is obviously time-
consuming, error prone, and counterproductive. The problem considered in this
paper can be formulated as follows: How to provide STEs with an automated
and provider-independent method to deploy and test Cloud applications?

Several solutions have been proposed to manage the automatic deployment of
software and the entire life-cycle of running software [67, 76, 79, 94]. Unfor-
tunately, while they are complete, they are also complex in terms of learning
process and architectures, and they are often low-level. Their goal is to make
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