A. , C. Et-marianne, and V. , « Exploiting naive vs expert discourse annotations : an experiment using lexical cohesion to predict Elaboration / Entity-Elaboration confusions, Proceedings of the Linguistic Annotation Workshop (cf, p.43, 2012.

A. , S. Nicholas, and A. , « Testing SDRT's Right Frontier, Proceedings of COLING (cf, p.22, 2010.

A. , S. Pascal, D. , P. Muller, and D. Laurence, « Learning Recursive Segments for Discourse Parsing, Proceedings of LREC (cf, p.56, 2010.

A. , S. Nicholas, A. Farah, and B. , « An empirical resource for discovering cognitive principles of discourse organisation : the ANNODIS corpus, Proceedings of LREC (cf. p. 1, 26, pp.42-44, 2012.

A. , S. Nicholas, A. Farah, and B. , « Developing a corpus of strategic conversation in the Settlers of Catan, Proceedings of the workshop on Games and NLP (GAMNLP) (cf, p.26, 2012.

A. , A. Katja, and M. , « The Leeds Arabic Discourse Treebank : Annotating Discourse Connectives for Arabic, Proceedings of LREC (cf, p.27, 2010.

A. , E. L. Robert, E. Schapire, and S. Yoram, « Reducing Multiclass to Binary : A Unifying Approach for Margin Classifiers, Journal of Machine Learning Research, vol.1, pp.113-141, 2000.

A. , R. K. Tong, and Z. , « A framework for learning predictive structures from multiple tasks and unlabeled data, The Journal of Machine Learning Research, vol.6, pp.1817-1853, 2005.

N. Asher, Reference to Abstract Objects in Discourse : A Philosophical Semantics for Natural Language Metaphysics, p.15, 1993.
DOI : 10.1007/978-94-011-1715-9

A. , N. Et-alex, and L. , « Bridging, Journal of Semantics, vol.151, pp.83-113, 1998.

A. , N. Laure, and V. , In : Lingua 115, pp.591-610, 2005.

A. , N. Antoine, V. Phillipe, M. Stergos, and A. , « Complex discourse units and their semantics, Proceedings of Constraints in Discourse (cf, p.16, 2011.

A. , F. Vera, and D. , « On the Information Conveyed by Discourse Markers, Proceedings of the Annual Workshop on Cognitive Modeling and Computational Linguistics (CMCL) (cf, p.113, 2013.

A. , A. Xiaodong, H. Jianfeng, and G. , « Domain Adaptation via Pseudo In-domain Data Selection, Proceedings of EMNLP (cf, p.124, 2011.

B. Shai, B. John, C. Koby, and P. Fernando, « Analysis of Representations for Domain Adaptation, Proceedings of Advances in Neural Information Processing Systems 20 (cf, p.124, 2007.

B. , F. Maite, and T. , « Mapping different rhetorical relation annotations : A proposal, Proceedings of Starsem (cf, p.26, 2015.

Y. Bengio, D. Réjean, V. Pascal, and J. Christian, Neural Probabilistic Language Models, Journal of Machine Learning Research, vol.3, pp.1137-1155, 2003.
DOI : 10.1007/3-540-33486-6_6

URL : https://hal.archives-ouvertes.fr/hal-01434258

B. , A. Peter, and K. , Constraints in Discourse, p.15, 2008.

A. L. Berger, A. Stephen, . Della, . Pietra, J. Vincent et al., « A maximum entropy approach to natural language processing, pp.39-71, 1996.

P. Bhatia, J. Yangfeng, and E. Jacob, Better Document-level Sentiment Analysis from RST Discourse Parsing, Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp.53-65, 2015.
DOI : 10.18653/v1/D15-1263

URL : http://arxiv.org/abs/1509.01599

B. , S. Tobias, and S. , « Dirichlet-enhanced spam filtering based on biased samples, Proceedings of NIPS (cf, p.126, 0197.

S. Bickel, B. Michael, and S. Tobias, Discriminative learning for differing training and test distributions, Proceedings of the 24th international conference on Machine learning, ICML '07, p.126, 0197.
DOI : 10.1145/1273496.1273507

O. Biran and M. Kathleen, « Aggregated Word Pair Features for Implicit Discourse Relation Disambiguation, Proceedings of ACL (cf. p. 68, pp.85-87, 2013.

B. , W. Mirella, and L. , « A Comparison of Vector-based Representations for Semantic Composition, Proceedings of EMNLP-CoNLL (cf, p.168, 0198.

B. Sasha, K. R. Mckeown, C. Owen, and . Rambow, « Building and refining rhetorical-semantic relation models, Proceedings of NAACL HLT (cf. p. 6, pp.89-138, 2007.

J. Blitzer, M. Ryan, and P. Fernando, Domain adaptation with structural correspondence learning, Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, EMNLP '06, p.126, 0197.
DOI : 10.3115/1610075.1610094

M. Bras, « Entre relations temporelles et relations de discours ». Habilitation à Diriger des Recherches, 2008.

B. , C. Pascal, and D. , « Combining Natural and Artificial Examples to Improve Implicit Discourse Relation Identification, Proceedings of COLING (cf, p.108, 2014.

B. , C. Pascal, and D. , « Comparing Word Representations for Implicit Discourse Relation Classification, Proceedings of EMNLP (cf, p.162, 2015.

J. Burstein, K. Karen, W. Susanne, L. Chi, and C. Martin, « Enriching Automated Essay Scoring Using Discourse Marking, Proceedings of the ACL Workshop on Discourse Relations and Discourse Marking (cf, p.65, 1998.

J. Burstein, M. Daniel, and K. Kevin, Finding the WRITE stuff: automatic identification of discourse structure in student essays, IEEE Intelligent Systems : Special Issue on Advances in Natural Language Processing 18, pp.53-65, 2003.
DOI : 10.1109/MIS.2003.1179191

J. Busquets, L. Vieu, and A. Nicholas, « La SDRT : une approche de la cohérence du discours dans la tradition de la sémantique dynamique, pp.73-101, 2001.

C. , L. Daniel, and M. , Discourse Tagging Reference Manual. Rapp. tech. University of Southern California Information Sciences Institute (cf, pp.29-50, 2001.

L. Carlson, M. Daniel, M. Ellen, and O. , « Building a discourse-tagged corpus in the framework of rhetorical structure theory, Proceedings of the Second SIGdial Workshop on Discourse and Dialogue (cf, pp.15-56, 2001.

C. Bibliographie, . Bruno, Z. Sandrine, and M. Thomas, « Annotating the meaning of discourse connectives by looking at their translation : The translation-spotting technique, Dialogue & Discourse, vol.4, pp.65-86, 2013.

C. , J. Y. Et-rong, and J. , « Discourse Structure for Context Question Answering, HLT-NAACL 2004 : Workshop on Pragmatics of Question Answering (cf, pp.53-65, 2004.

C. , Y. S. Et-hwee, and T. Ng, « Word Sense Disambiguation with Distribution Estimation, Proceedings of IJCAI05 (cf, p.124, 2005.

C. , N. V. , K. W. Bowyer, L. O. Hall, W. Philip et al., « SMOTE : Synthetic Minority Over-sampling Technique, Journal of Artificial Intelligence Research, p.200, 2002.

C. , C. Et-alex, and A. , « Adaptation of maximum entropy capitalizer : Little data can help a lot, Computer Speech & Language, vol.20, issue.128, pp.382-399, 2004.

C. , Y. Bryan, P. Rami, A. Steven, and S. , « The Expressive Power of Word Embeddings, Proceedings of ICML Workshop on Deep Learning for Audio, Speech, and Language Processing, pp.7-165, 2013.

C. , M. Laurence, D. Mathilde, D. Grégoire, and W. , « Uses of the prepostion « pour » introducing an infinitival clause : description, formal criteria and corpus annotation, 4ème Congrès Mondial de Linguistique Française (cf, p.40, 2014.

C. , R. Jason, and W. , « A Unified Architecture for Natural Language Processing, Deep Neural Networks with Multitask Learning Proceedings of ICML (cf, pp.7-165, 0199.

C. , J. Stergos, A. Nicholas, A. Philippe, and M. , « Unsupervised extraction of semantic relations using discourse cues, Proceedings of Coling (cf, pp.41-188, 0199.

C. , K. Ofer, D. Joseph, K. Shai, S. Yoram et al., « Online Passive-Aggressive Algorithms, The Journal of Machine Learning Research, vol.7, pp.551-585, 2006.

C. , M. Johan, and K. , « Constructing biological knowledge bases by extracting information from text sources, Proceedings of the International Conference on Intelligent Systems for Molecular Biology, 1999.

C. , D. Nancy, I. Daniel, M. Valentin, and T. , « Discourse structure and co-reference : An empirical study, Proceedings of ACL (cf, p.65, 1999.

C. , I. Da, J. M. Torres, M. Gerardo, and S. , « On the Development of the RST Spanish Treebank, Linguistic Annotation Workshop (cf, p.25, 2011.

D. , W. Antal, V. Bosch, and Z. Jakub, « Forgetting exceptions is harmful in language learning, Machine Learning, vol.34, pp.11-43, 0197.

W. Dai, Y. Qiang, X. Gui-rong, and Y. Yong, Boosting for transfer learning, Proceedings of the 24th international conference on Machine learning, ICML '07, p.126, 0197.
DOI : 10.1145/1273496.1273521

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. , L. Charlotte, and R. , « Traduction (automatique) des connecteurs de discours, Proceedings of TALN (cf, p.65, 2011.

D. , L. Diégo, A. Chloé, B. Charlotte, and R. , « Vers le FDTB : French Discourse Tree Bank, Proceedings of TALN (cf, pp.27-47, 2012.

D. , L. Aleksandre, M. Sylvain, and P. , « Grammaires phrastiques et discursives fondées sur les TAG : une approche de D-STAG avec les ACG, Proceedings of TALN (cf, p.24, 2015.

D. Iii and H. , « Frustratingly Easy Domain Adaptation, Proceedings of ACL (cf, pp.126-128, 2007.

D. Iii, H. Daniel, and M. , « Domain adaptation for statistical classifiers, Journal of Artificial Intelligence Research, vol.26, issue.128, pp.101-126, 2006.

D. Iii, H. Daniel, and M. , « A Noisy-Channel Model for Document Compression, Proceedings of ACL (cf, pp.53-65, 2009.

D. Iii, . Hal, K. Abhishek, and S. Avishek, « Frustratingly Easy Semi-supervised Domain Adaptation, Proceedings of the Workshop on Domain Adaptation for Natural Language Processing, p.124, 2010.

D. , L. Et-anne-catherine, and S. , « Minimal Discourse Units : Can we define them, and why should we ? » In : Proceedings of SEM-05. Connectors, discourse framing and discourse structure : from corpus-based and experimental analyses to discourse theories (cf, p.15, 2005.

D. , O. Joseph, K. Yoram, and S. , « Large Margin Hierarchical Classification, Proceedings of ICML (cf, p.199, 2004.

D. , P. Benoît, and S. , « Coupling an annotated corpus and a morphosyntactic lexicon for state-of-the-art POS tagging with less human effort, Proceedings of PACLIC (cf, p.129, 2009.

D. , T. G. Et-ghulum, and B. , « Solving Multiclass Learning Problems via Error-correcting Output Codes, Journal of Artificial Intelligence Research, vol.2, issue.1, pp.263-286, 1995.

E. , R. , and J. Baldridge, « Discourse Connective Argument Identification with Connective Specific Rankers, Proceedings of ICSC (cf, p.62, 2008.

F. , V. Wei, and H. Graeme, « Text-level Discourse Parsing with Rich Linguistic Features, p.58, 2012.

F. , J. Rose, and C. D. Manning, « Hierarchical Bayesian Domain Adaptation, Proceedings of ACL-HLT (cf. p. 124, p.128, 0197.

F. , S. Brian, and R. , « The utility of parse-derived features for automatic discourse segmentation, Proceedings ACL (cf, p.56, 2007.

F. , R. Hany, H. Abraham, and I. , « A statistical model for multilingual entity detection and tracking, Proceedings of NAACL/HLT (cf, p.127, 2004.

F. , K. Bonnie, and W. , « Computing discourse semantics : The predicateargument semantics of discourse connectives in D-LTAG, Journal of Semantics, vol.23, issue.24, pp.55-106, 2006.

F. , Y. , and R. E. Schapire, « A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting, Journal of Computer and System Sciences, vol.55, issue.158, pp.119-139, 1997.

G. , A. Sabrina, S. Yannick, V. Erhard, and H. , « Annotation of explicit and implicit discourse relations in the TüBa-D/Z treebank, Proceedings of GSCL (cf, pp.26-67, 2011.

G. , S. Richard, J. Giuseppe, R. Sara, and T. , « Shallow Discourse Parsing with Conditional Random Fields, Proceedings of 5th International Joint Conference on Natural Language Processing, p.62, 2011.

G. Bibliographie, . Sucheta, R. Giuseppe, and J. Richard, « Global Features for Shallow Discourse Parsing, Proceedings of SIGDIAL (cf, p.62, 2012.

G. , E. Mehrnoosh, and S. , « Experimental Support for a Categorical Compositional Distributional Model of Meaning, Proceedings of EMNLP (cf, p.168, 2011.

H. Guo, Z. Huijia, and G. Zhili, Domain adaptation with latent semantic association for named entity recognition, Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics on, NAACL '09, p.127, 2009.
DOI : 10.3115/1620754.1620795

T. Hastie, T. Robert, and F. Jerome, The Elements of Statistical Learning. Springer Series in Statistics, 2001.

H. , H. , and E. A. Garcia, « Learning from Imbalanced Data, IEEE Transactions on Knowledge and Data Engineering, vol.21, pp.1263-1284, 0200.

H. , H. Et-yunqian, and M. , Imbalanced Learning : Foundations, Algorithms, and Applications, p.73, 2013.

H. , H. Helmut, P. , D. A. Duverle, and I. Mitsuru, « HILDA : A Discourse Parser Using Support Vector Machine Classification, Dialogue and Discourse 1, pp.1-33, 2010.

H. , D. Jill, B. Daniel, M. Claudia, and G. , « Evaluating Multiple Aspects of Coherence in Student Essays, HLT-NAACL (cf, pp.53-65, 2004.

H. , S. Nyuk, K. Narayanan, and L. Jane, « Towards Structure-Based Paraphrase Detection Using Discourse Parser, Information Retrieval and Knowledge Management, vol.2, pp.96-103, 2012.

H. , J. Diane, and L. , « Now Let's Talk About Now : Identifying Cue Phrases Intonationally, Proceedings of ACL (cf, p.50, 1987.

H. , Y. Xiaopei, Z. Tingting, and C. , « Cross-argument Inference for Implicit Discourse Relation Recognition, Proceedings of the ACM International Conference on Information and Knowledge Management, pp.77-78, 2012.

H. , E. Mitchell, M. Martha, P. Lance, R. Ralph et al., « Onto- Notes : The 90% Solution, Proceedings of HLT-NAACL (cf, p.45, 0200.

J. Huang, G. Arthur, K. M. Borgwardt, S. Bernhard, and A. J. Smola, « Correcting Sample Selection Bias by Unlabeled Data, Proceedings of NIPS (cf, p.126, 2007.

H. , J. Laurence, and D. , « Because we say so, Proceedings of EACL Workshop on Computational Approaches to Causality in Language (cf, p.30, 2014.

I. Faiz, S. , and R. E. Mercer, « Identifying Explicit Discourse Connectives in Text Advances in Artificial Intelligence, Lecture Notes in Computer Science, pp.64-76, 2013.

I. , M. , M. J. Aranzabe, A. Diaz-de, and I. , « The RST Basque TreeBank : an online search interface to check rhetorical relations, Proceedings of the Workshop RST and Discourse Studies, p.26, 2013.

I. , M. , I. Da, C. Maite, and T. , « A qualitative comparison method for rhetorical structures : identifying different discourse structures in multilingual corpora, Language Resources and Evaluation 49, pp.263-309, 2015.

J. , J. Corinne, and R. , « Pragmatic connectives as predicates : the case of inferential connectives, Predicative forms in natural language and in lexical knowledge bases. Kluwer, pp.285-319, 1998.

J. , Y. Jacob, and E. , « One Vector is Not Enough : Entity-Augmented Distributional Semantics for Discourse Relations, pp.77-79, 2014.

J. , J. Chengxiang, and Z. , « Instance Weighting for Domain Adaptation in NLP, Proceedings of ACL (cf, p.124, 2007.

J. , A. Anders, and S. , « Disambiguating explicit discourse connectives without oracles, Proceedings of IJCNLP (cf. p. 2, pp.61-134, 2013.

J. , C. R. Charles, J. Fillmore, and M. R. Petruck, FrameNet : Theory and Practice (cf, p.199, 2002.

J. , A. Laura, K. Maribel, and R. , « Flexible Composition in LTAG : Quantifier Scope and Inverse Linking, Proceedings of the International Workshop on Compositional Semantics (cf, p.24, 2003.

J. , S. Et-alessandro, and M. , « Discriminative Reranking of Discourse Parses Using Tree Kernels, Proceedings of EMNLP (cf, p.58, 2014.

J. , S. Giuseppe, C. , and R. T. Ng, « CODRA : A Novel Discriminative Framework for Rhetorical Analysis, In : Computational Linguistics, vol.41, pp.3-58, 2015.

J. , S. R. Giuseppe, C. , and R. T. Ng, « A Novel Discriminative Framework for Sentence-Level Discourse Analysis, Proceedings of EMNLP (cf, p.56, 2012.

J. , S. R. Giuseppe, C. , R. T. Ng, and M. Yashar, « Combining Intra-and Multi-sentential Rhetorical Parsing for Document-level Discourse Analysis, Proceedings of ACL (cf, pp.58-59, 2013.

K. , H. Uwe, and R. , From Discourse to Logic : Introduction to Model-theoretic Semantics of Natural Language, Formal Logic and Discourse Representation Theory. T. 42, Studies in Linguistics and Philosophy. Kluwer (cf, p.19, 1993.

K. , I. Farah, B. Lamia, and H. Belguith, « Learning Explicit and Implicit Arabic Discourse Relations, Journal of King Saud University (JKSU-CIS), Special Issue on Arabic NLP : Current State and Future Challenges (cf, p.26, 2014.

K. , P. Martha, and P. , « From treebank to propbank, Proceedings of LREC (cf, p.45, 0199.

K. Kipper, H. Trang, D. Martha, and P. , « Class-based construction of a verb lexicon, Proceedings of AAAI (cf, p.200, 2000.

A. Knott, « A Data-Driven Methodology for Motivating a Set of Coherence Relations, Thèse de doct, pp.40-50, 1997.

K. , P. Josh, and S. , « Experiments in Domain Adaptation for Statistical Machine Translation, Proceedings of the Workshop on Statistical Machine Translation (cf, p.124, 2007.

F. Kong, H. Tou, N. Guodong, and Z. , A Constituent-Based Approach to Argument Labeling with Joint Inference in Discourse Parsing, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), p.62, 2014.
DOI : 10.3115/v1/D14-1008

K. , T. Xavier, C. Michael, and C. , « Simple Semi-supervised Dependency Parsing, Proceedings of ACL-HLT (cf, p.165, 2008.

K. Bibliographie, . Balaji, C. Lawrence, A. T. Mário, A. J. Figueiredo et al., « Sparse multinomial logistic regression : Fast algorithms and generalization bounds, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, pp.957-968, 2005.

L. , I. Hod, and L. , « Re-embedding words, Proceedings of ACL (cf. p. 8, 0199.

L. , M. Yu, X. Zhengyu, and N. , « Leveraging Synthetic Discourse Data via Multi-task Learning for Implicit Discourse Relation Recognition, Proceedings of ACL (cf. p. 6, pp.92-96, 2013.

L. , M. Et-alex, and L. , « Inferring Sentence-internal Temporal Relations, Proceedings of HLT-NAACL (cf, p.93, 2004.

L. , A. Nicholas, and A. , « Temporal Interpretation, Discourse Relations and Commonsense Entailment, Linguistics and Philosophy, vol.16, issue.21, p.14, 1993.

L. , Q. V. Et-tomas, and M. , « Distributed Representations of Sentences and Documents, Proceedings of ICML (cf, p.168, 2014.

L. Thanh, . Huong, A. Geetha, and H. Christian, « Generating Discourse Structures for Written Text, Proceedings of Coling (cf, p.56, 2004.

L. , R. Et-ronan, and C. , « Word Emdeddings through Hellinger PCA, Proceedings of ACL (cf, pp.171-188, 0199.

L. , J. Rumeng, L. , and E. H. Hovy, « Recursive Deep Models for Discourse Parsing, Proceedings of EMNLP (cf, p.59, 2014.

L. , J. Jessy, and N. Ani, « Addressing Class Imbalance for Improved Recognition of Implicit Discourse Relations, Proceedings of SIGDIAL (cf. p. 73, pp.76-79, 2014.

L. , Y. Wenhe, F. Jing, S. Fang, K. Guodong et al., « Building Chinese Discourse Corpus with Connective-driven Dependency Tree Structure, Proceedings of EMNLP (cf, p.27, 2014.

L. , D. Nathalie, L. , and Y. Bestgen, « The impact of connectives and anaphoric expressions on expository discourse comprehension, pp.39-51, 1999.

L. , Z. Min-yen, K. , H. Tou, and N. , « Recognizing Implicit Discourse Relations in the Penn Discourse Treebank, Proceedings of EMNLP (cf. p. 2, 7, 58, pp.76-82, 2009.

L. , Z. , H. Tou, N. Min-yen, and K. , A PDTB-styled end-to-end discourse parser. Rapp. tech. National University of Singapore (cf, pp.50-61, 2010.

L. , M. Jianmin, W. Guiguang, D. Dou, S. Qiang et al., « Transfer Learning with Graph Co-Regularization, Proceedings of AAAI (cf, p.124, 2012.

L. Longo, « Vers de moteurs de recherche « intelligents » : un outil de détection automatique de thèmes, Thèse de doct, p.13, 2013.

L. , A. Aravind, J. Rashmi, P. Ani, and N. , « Using entity features to classify implicit discourse relations, Proceedings of SIGDIAL (cf, pp.7-85, 2010.

M. , A. L. , R. E. Daly, and P. T. Pham, « Learning Word Vectors for Sentiment Analysis, Proceedings of ACL-HLT (cf, p.8, 2011.

M. , W. C. Et-sandra, and A. Thompson, « Rhetorical Structure Theory : Toward a functional theory of text organization, pp.243-281, 1988.

M. , D. Abdessamad, and E. , « An Unsupervised Approach to Recognizing Discourse Relations, Proceedings of ACL (cf, pp.5-7, 0196.

M. , D. Estibaliz, A. Magdalena, and R. , « Experiments in constructing a corpus of discourse trees, Proceedings of the ACL Workshop on Standards and Tools for Discourse Tagging (cf, pp.25-55, 1999.

M. , M. P. Beatrice, S. , M. Ann, and M. , « Building a large annotated corpus of english : The Penn Treebank », In : Computational Linguistics, vol.19, issue.2, pp.313-330, 1993.

M. , S. Müller, and K. , « Input-dependent estimation of generalization error under covariate shift, Statistics & Risk Modeling (cf, p.125, 2005.

M. , D. Eugene, C. Mark, and J. , « Automatic Domain Adaptation for Parsing, Proceedings of NAACL-HLT (cf, p.124, 2010.

M. , R. Fernando, and P. , « Online learning of approximate dependency parsing algorithms, Proceedings of EACL (cf, p.60, 2006.

M. , E. Rashmi, P. Aravind, J. Bonnie, and W. , « The penn discourse treebank, Proceedings of LREC (cf. p. 26, pp.31-51, 2004.

M. Mintz, B. Steven, S. Rion, and J. Dan, Distant supervision for relation extraction without labeled data, Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2, ACL-IJCNLP '09, p.4, 2009.
DOI : 10.3115/1690219.1690287

M. , J. Mirella, and L. , « Composition in Distributional Models of Semantics, Cognitive Science, vol.348, pp.1388-1439, 0198.

M. , A. Geoffrey, and H. , « Three New Graphical Models for Statistical Language Modelling, Proceedings of ICML (cf, p.165, 2007.

M. , M. Afshin, R. Ameet, and T. , Foundations of Machine Learning, pp.72-118, 2012.

M. , J. D. Et-martha, and E. Pollack, « A Problem for RST : The Need for Multi-level Discourse Analysis, Computational Linguistic 18, pp.537-544, 1992.

M. , J. G. Troy, R. Rocío, A. Nitesh, V. Chawla et al., « A unifying view on dataset shift in classification, Pattern Recognition, vol.45, issue.120, pp.521-530, 2012.

M. Bibliographie, P. Stergos, A. Pascal, D. Nicholas, and A. , « Constrained decoding for text-level discourse parsing, Proceedings of COLING (cf. p. 2, 33, pp.59-60, 2012.

P. Muller, M. Vergez-couret, and P. Laurent, Manuel d'annotation en relations de discours de projet ANNODIS. Rapp. tech. Carnets de Grammaire -Rapports internes de CLLE-ERSS (cf, pp.29-36, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00989565

O. , U. Rashmi, P. Sudheer, K. , D. Misra et al., « The Hindi Discourse Relation Bank, Proceedings of LAW (cf, p.67, 2009.

P. , D. D. Marti, and A. Hearst, « Adaptive Multilingual Sentence Boundary Disambiguation, Computational Linguistics 23, pp.241-267, 1997.

P. , S. Jialin, and Y. Qiang, « A Survey on Transfer Learning, IEEE Trans. on Knowl. and Data Eng. P, pp.1345-1359, 2010.

P. , T. A. Et-eloize, and R. M. Seno, « Rhetalho : Um corpus de referência anotado retoricamente, Proceedings of Encontro de Corpora (cf, p.26, 2005.

P. , J. Claire, and C. , « Improving Implicit Discourse Relation Recognition Through Feature Set Optimization, Proceedings of SIGDIAL Conference, pp.95-96, 0199.

P. , F. , G. Varoquaux, and A. Gramfort, « Scikit-learn : Machine Learning in Python, Journal of Machine Learning Research, vol.12, issue.101 145, pp.2825-2830, 2011.

P. Marie-paule, A. Nicholas, and E. Patrice, « ANNODIS : une approche outillée de l'annotation de structures discusives, Proceedings of TALN (cf, p.26, 2009.

P. Marie-paule, A. Stergos, H. Lydia-mai, and A. Nicholas, « La ressource ANNODIS, un corpus enrichi d'annotations discursives, Traitement Automatique des Langues, Ressources Linguistiques Libres 52.3, pp.71-101, 2011.

P. , E. Ani, and N. , « Using Syntax to Disambiguate Explicit Discourse Connectives in Text, Proceedings of the ACL-IJCNLP (cf. p. 2, pp.50-134, 2009.

P. , E. Mridhula, R. Hena, and M. , « Easily Identifiable Discourse Relations, Proceedings of COLING (Posters) (cf. p. 2, 50, pp.63-82, 2008.

P. , E. Annie, L. Ani, and N. , « Automatic sense prediction for implicit discourse relations in text, Proceedings of ACL-IJCNLP (cf. p. 6, pp.61-76, 2009.

P. , L. , J. Rí, M. Anna, and N. , « Introducing the Prague Discourse Treebank 1, Proceedings of IJCNLP (cf, p.27, 2013.

P. , L. Et-annie, Z. , J. G. Shanahan, Q. Yan et al., Computing Attitude and Affect in Text : Theory and Applications. Sous la dir The Information Retrieval Series, Contextual Valence Shifters, pp.1-10, 2006.

P. , R. Eleni, M. Aravind, J. Bonnie, and W. , « Annotation and Data Mining of the Penn Discourse TreeBank, Proceedings of the ACL Workshop on Discourse Annotation (cf, p.31, 2004.

P. , R. Aravind, J. Nikhil, and D. , « The Penn Discourse TreeBank as a resource for natural language generation, Proceedings of the Corpus Linguistics Workshop on Using Corpora for Natural Language Generation, pp.25-32, 2005.

P. , R. Eleni, M. Nikhil, D. Alan, L. Aravind et al., The Penn Discourse TreeBank 1.0. Annotation Manual. Rapp. tech. Institute for Research in Cognitive Science, p.31, 2006.

P. , R. Eleni, M. Nikhil, and D. , The Penn Discourse Treebank 2.0 Annotation Manual (cf, pp.28-46, 2007.

P. , R. Nikhil, D. Alan, and L. , « The penn discourse treebank 2, Proceedings of LREC (cf. p. 2, 3, pp.45-47, 2008.

P. , R. Samar, H. , D. Misra, S. Aravind et al., « Towards an Annotated Corpus of Discourse Relations in Hindi, Proceedings of IJCNLP (cf, p.27, 2008.

P. , R. Aravind, J. Bonnie, and W. , « Exploiting Scope for Shallow Discourse Parsing, Proceedings of LREC (cf, p.62, 2010.

P. , R. Susan, M. Nadya, F. Aravind, J. Hong et al., « The biomedical discourse relation bank, BMC bioinformatics, p.27, 2011.

P. , R. Bonnie, W. Aravind, and J. , « Reflections on the Penn Discourse TreeBank, Comparable Corpora and Complementary Annotation, Computational Linguistics (cf, pp.27-37, 2014.

P. , J. José, C. Robert, and I. , « Timeml : Robust specification of event and temporal expressions in text, Proceedings of International Workshop on Computational Semantics (IWCS-5) (cf, p.14, 2003.

R. , B. Julie, H. Nicholas, A. Pascal, D. et al., Reference manual for the analysis and annotation of rhetorical structure (version 1.0). Rapp. tech. Discor, p.26, 2007.

R. , R. Aldebaro, and K. , « In defense of one-vs-all classification, Journal of Machine Learning Research, vol.5, pp.101-141, 2004.

R. , C. Laurence, D. Philippe, and M. , « LEXCONN : a French Lexicon of Discourse Connectives ». In : Discours, Multidisciplinary Perspectives on Signalling Text Organisation 10 (cf, pp.38-40, 2012.

R. , A. Et-nianwen, and X. , « Discovering Implicit Discourse Relations Through Brown Cluster Pair Representation and Coreference Patterns, Proceedings of EACL (cf, pp.7-9, 0193.

K. Sagae, Analysis of discourse structure with syntactic dependencies and data-driven shift-reduce parsing, Proceedings of the 11th International Conference on Parsing Technologies, IWPT '09, pp.56-59, 2009.
DOI : 10.3115/1697236.1697253

M. Sahlgren, « The word-space model : Using distributional analysis to represent syntagmatic and paradigmatic relations between words in high-dimensional vector spaces, Thèse de doct. Stockholm University (cf, p.184, 2006.

Y. Schabes, « Mathematical and computational aspects of lexicalized grammars, Thèse de doct. University of Pennsylvania (cf, p.23, 1990.

S. Bibliographie, R. E. Et-yoram, and . Singer, « BoosTexter : A Boosting-based System for Text Categorization, Machine Learning, vol.39, pp.135-168, 2000.

H. Schauer, From elementary discourse units to complex ones, Proceedings of the 1st SIGdial workshop on Discourse and dialogue -, p.15, 2000.
DOI : 10.3115/1117736.1117742

S. , H. Udo, and H. , « Anaphoric Cues for Coherence Relations, Proceedings of RANLP (cf, p.67, 2001.

T. Scheffer, « Error Estimation and Model Selection, Thèse de doct, p.141, 1999.

L. Schourup, Discourse markers, Discourse Markers, pp.227-265, 1999.
DOI : 10.1016/S0024-3841(96)90026-1

URL : http://doi.org/10.1016/s0024-3841(96)90026-1

H. Shimodaira, Improving predictive inference under covariate shift by weighting the log-likelihood function, Journal of Statistical Planning and Inference, vol.90, issue.2, p.125, 2000.
DOI : 10.1016/S0378-3758(00)00115-4

S. , C. Giacomo, and F. , « Lexical marking of discourse relations -some experimental findings, Proceedings of the ACL Workshop on Discourse Relations and Discourse Markers (cf. p. 2, pp.66-113, 1998.

S. , R. Daniel, and M. , « Sentence level discourse parsing using syntactic and lexical information, Proceedings of NAACL (cf, pp.56-58, 2003.

C. Sporleder, « Lexical Models to Identify Unmarked Discourse Relations : Does WordNet help ?, pp.20-33, 2008.

S. , C. Mirella, and L. , « Discourse chunking and its application to sentence compression, Proceedings of HLT/EMNLP (cf, pp.53-65, 2005.

S. , C. Et-alex, and L. , « Exploiting Linguistic Cues to Classify Rhetorical Relations, Proceedings of RANLP-05 (cf, pp.87-89, 2005.

M. Stede, The Potsdam commentary corpus, Proceedings of the 2004 ACL Workshop on Discourse Annotation, DiscAnnotation '04, pp.27-67, 2004.
DOI : 10.3115/1608938.1608951

S. , M. Et-arne, and N. , « Potsdam Commentary Corpus 2.0 : Annotation for Discourse Research, Proceedings of LREC (cf, p.27, 2014.

S. , M. Carla, and U. , « DiMLex : A lexicon of discourse markers for text generation and understanding, Proceedings of COLING (cf, pp.40-67, 1998.

J. Steinlin, C. Margot, and D. Laurence, « FDTB1 : Repérage des connecteurs de discours en corpus, Proceedings of TALN (cf, pp.27-40, 0197.

P. J. Stone and K. Et-john, The General Inquirer : A Computer Approach to Content Analysis, p.81, 1966.

S. , A. J. Et-masashi, and S. , « Mixture Regression for Covariate Shift, Proceedings of NIPS (cf, p.128, 2007.

S. , R. Barbara, and D. Eugenio, « An Effective Discourse Parser That Uses Rich Linguistic Information, Proceedings of ACL-HLT (cf. p. 2, pp.58-66, 2009.

A. Søgaard, « Data point selection for cross-language adaptation of dependency parsers, Proceedings of ACL (cf, p.126, 2011.

T. , M. Debopam, and D. , « Annotation upon Annotation : Adding Signalling Information to a Corpus of Discourse Relations, Dialogue and Discourse, vol.4, issue.2, pp.249-281, 2013.

T. , M. William, and C. Mann, « Applications of Rhetorical Structure Theory, Discourse Studies 8, pp.567-588, 2006.

H. Telljohann, E. W. Hinrichs, K. Sandra, Z. Heike, and B. Kathrin, Stylebook for the Tübingen Treebank of Written German, p.27, 2009.

T. , G. Lorenzo, M. Van-den, B. Livia, P. Chris et al., « Hybrid Text Summarization : Combining External Relevance Measures with Structural Analysis, Proceedings of the ACL Workshop Text Summarization Branches Out (cf, pp.53-65, 2004.

J. Turian, R. Lev-arie, and B. Yoshua, « Word Representations : A Simple and General Method for Semi-Supervised Learning, Proceedings of ACL (cf. p. 7, pp.165-171, 2010.

T. , P. D. Patrick, and P. , « From frequency to meaning : Vector space models of semantics, Journal of Artificial Intelligence Research, vol.186, pp.141-188, 2010.

V. Asch and V. , « Macro-and micro-averaged evaluation measures » (cf, p.71, 2013.

V. , S. Richard, and S. , « Bias in error estimation when using cross-validation for model selection, BMC bioinformatics, vol.7, issue.1, pp.91-141, 2006.

A. Venant, A. Nicholas, M. Philippe, D. Pascal, and A. Stergos, « Expressivity and comparison of models of discourse structure ». In : Special Interest Group on Discourse and Dialogue, p.26, 0200.

S. Verberne, « Discourse-based answering of why-questions ». In : Traitement Automatique des Langues, special issue on " Discours et document : traitements automatiques, pp.21-41, 2007.

Y. Versley, « Discovery of Ambiguous and Unambiguous Discourse Connectives via Annotation Projection, Proceedings of the Workshop on the Annotation and Exploitation of Parallel Corpora (cf, pp.40-65, 0198.

V. , N. Van-der, and R. Gisela, « Complex Sentences as Leaky Units in Discourse Parsing, Proceedings of Constraints in Discourse (cf, p.58, 2011.

V. , K. Et-maite, and T. , « Not All Words Are Created Equal : Extracting Semantic Orientation as a Function of Adjective Relevance Advances in Artificial Intelligence, Lecture Notes in Computer Science, pp.337-346, 2007.

W. , W. Jian, S. , C. Lim, and T. , « Kernel Based Discourse Relation Recognition with Temporal Ordering Information, Proceedings of ACL (cf. p. 63, pp.79-85, 2010.

W. Bibliographie, . Xun, L. Sujian, L. Jiwei, and L. Wenjie, « Implicit Discourse Relation Recognition by Selecting Typical Training Examples, Proceedings of COLING 2012, pp.90-96, 0197.

B. Webber, D-LTAG: extending lexicalized TAG to discourse, Cognitive Science, vol.29, issue.4, pp.751-779, 2004.
DOI : 10.1207/s15516709cog2805_6

W. , B. James, and P. , « Automatically Identifying the Arguments of Discourse Connectives, Proceedings of EMNLP-CoNLL (cf, p.61, 2007.

W. , A. Et-yann, and M. , « La plate-forme Glozz : environnement d'annotation et d'exploration de corpus, Proceedings of TALN (cf, p.26, 2009.

W. , D. Dan, and S. , « Forme linguistique et pertinence, Cahiers de Linguistique Française, pp.345-359, 1990.

W. , T. , J. Wiebe, and H. Paul, « Recognizing Contextual Polarity in Phrase-level Sentiment Analysis, Proceedings of HLT-EMNLP (cf, p.81, 2005.

W. and J. De, « Using the Student's t-test with extremely small sample sizes, Practical Assessment, p.141, 2013.

W. , F. Edward, and G. , « Representing Discourse Coherence : A Corpus-Based Study, Computational Linguistics, vol.31, issue.2, pp.249-288, 2005.

X. , G. Wenyuan, D. Qiang, Y. Yong, and Y. , « Topic-bridged PLSA for Cross-domain Text Classification, Proceedings of SIGIR (cf, p.127, 2008.

X. , N. , H. Tou, N. Sameer, and P. , « The CoNLL-2015 shared task on shallow discourse parsing, Proceedings of CoNLL (cf, 2015.

Y. Hsiang-fu, H. Fang-lan, and L. Chih-jen, « Dual Coordinate Descent Methods for Logistic Regression and Maximum Entropy Models, Machine Learning (cf, p.100, 2011.

Z. , D. Bonnie, and W. , « A Discourse Resource for Turkish : Annotating Discourse Connectives in the METU Corpus, Proceedings of IJCNLP (cf, p.27, 2008.

Z. , D. , D. Umit, T. Cem, and B. , « Annotating Subordinators in the Turkish Discourse Bank, Proceedings of LAW (cf, p.27, 2009.

Z. Zhi-min, X. Yu, and N. Zheng-yu, « Predicting Discourse Connectives for Implicit Discourse Relation Recognition, Proceedings of the International Conference on Computational Linguistics (cf, pp.79-93, 2010.

Z. , X. Et-zoubin, and G. , Learning from Labeled and Unlabeled Data with Label Propagation. Rapp. tech. Carnegie Mellon University (cf, p.69, 2002.