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Résumé en français

Introduction

Nous sommes de plus en plus demandeurs de contenus vidéos, tout en étant de plus
en plus exigeants en termes de qualité de service, notamment concernant la qualité
visuelle et la rapidité d'accès. Des services comme Youtube ou plus récemment Net�ix
sont emblématiques de cette évolution. En dépit de la loi de Moore et des puissances de
calcul ainsi que des capacités de stockage croissantes qui en découlent, la compression des
contenus vidéos reste cruciale pour assurer la qualité de service désirée. De plus, pour
répondre à la demande d'amélioration constante de qualité visuelle de la part d'un public
de plus en plus averti, de nouveaux formats voient le jour. On peut notamment citer
la vidéo à haute résolution (4K - 8K), à gamme de couleur ou dynamique étendues, ou
encore à fréquence d'images augmentée. Ces nouveaux formats représentent un volume
de données considérable, qui doit être nécessairement comprimé. Dans un livre blanc
publié en 2014, Cisco a prédit qu'en 2018 le tra�c vidéo représenterait 79 % du tra�c
sur Internet. De plus, il est estimé que 80 % à 90 % du tra�c global sera du contenu
vidéo sous formes diverses (télévision, Internet, vidéo à la demande, vidéo sur IP,peer
to peer). L'e�cacité des services de compression est donc un enjeu essentiel, et le sera
d'autant plus dans un futur proche. De ce point de vue, le standard MPEG HEVC est
aujourd'hui un des schémas de compression les plus e�caces, et remplacera au fur et à
mesure son prédécesseur H.264.

Les principes fondamentaux des standards modernes de compression vidéo sont la
réduction des redondances spatiales et temporelles du signal en utilisant des outils de
prédiction, l'utilisation d'une transformée a�n de diminuer d'avantage les corrélations
du signal, une quanti�cation a�n de réduire l'information non perceptible, et en�n un
codage entropique pour prendre en compte les redondances statistiques du signal. Dans
le cadre de la compression sans perte, la quanti�cation n'est pas e�ectuée a�n de pouvoir
reconstruire parfaitement le signal d'origine. Ce type de compression est notamment
utile dans le cadre de l'imagerie médicale, où la �délité du signal est capitale pour établir
un diagnostic. Toutefois, les travaux de cette thèse s'inscrivent dans le cadre de la
compression avec perte, qui est utilisée en particulier dans les applications grand public
mentionnées ci-dessus. Dans ce cas, les pertes viennent de l'étape de quanti�cation, et
le paramètre de quanti�cation sert alors à réguler l'équilibre entre qualité visuelle et
bande-passante.

Pour faire face aux multiples récepteurs existants (télévision, ordinateur, tablette,
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smartphone), qui requièrent de transmettre le même contenu vidéo avec di�érents
niveaux de qualité visuelle, de dé�nition spatiale, de fréquence d'images, ou de pro-
fondeur de bits, des schémas de compression dits scalables sont utilisés. Le but de ces
schémas de compression est d'optimiser les performances de compression en réduisant
les redondances entre les di�érentes versions du contenu vidéo. Ces di�érentes versions
ne sont donc pas encodées séparément : une première version du contenu est d'abord
encodée et considérée comme couche de base. Une autre version, de meilleure qualité
visuelle, et/ou dé�nition spatio-temporelle, et/ou profondeur de bit, est alors encodée
comme couche d'amélioration, en s'appuyant sur la couche de base décodée. Plusieurs
couches d'améliorations peuvent ainsi être encodées de manière récursive a�n de prendre
en compte les di�érentes versions du contenu vidéo.

Contributions et organisation du manuscrit

Le premier chapitre présente l'état de l'art en compression vidéo, notamment les stan-
dards de compression vidéo MPEG. Les chapitres suivants contiennent les contributions
de la thèse, avec en début de chapitre un état de l'art des méthodes spéci�ques étudiées
dans le chapitre.

Chapitre 1 : état de l'art en compression vidéo

Nous présentons dans ce chapitre les principes de bases utilisés en compression vidéo: la
prédiction, la transformation, la quanti�cation, et le codage entropique. Nous décrivons
ensuite l'application de ces principes dans les standards de compressions vidéo.

L'étape de prédiction a pour but de réduire les redondances spatiales et temporelles
d'un signal vidéo. Les deux types de prédiction correspondant sont nommés la prédiction
Intra et la prédiction Inter respectivement. Le procédé de prédiction consiste à estimer
un bloc de pixels à partir de pixels disponibles dans les parties déjà décodées de la
vidéo. Dans le cas de la prédiction Intra, le bloc de pixel est prédit à partir des pixels
spatialement voisins, tandis que pour la prédiction Inter, il est prédit à partir des images
précédemment décodées de la séquence. Dans les schémas de compression récents tels
que H.264 [1] ou HEVC [2], la prédiction Intra consiste à propager les valeurs des pixels
sur la gauche et au-dessus du bloc courant suivant une direction prédé�nie. Dans H.264,
8 modes directionnels sont disponible, 33 dans HEVC. Un mode DC est également dé�ni,
qui consiste à prendre la moyenne des pixels voisins comme prédicteur du bloc courant.
La prédiction Inter s'appuie sur l'estimation/compensation de mouvement, réalisée en
général avec un algorithme de typeblock matching (BM). A la suite de la prédiction,
on obtient un résidu de prédiction, qui correspond à la di�érence entre le bloc original
et le bloc prédit. Ce résidu est utilisé dans l'étape suivante de transformation.

L'étape de transformation permet de réduire les corrélations d'un signal en dis-
tribuant l'énergie de ce signal sur un nombre réduit de coe�cients, qui correspondent
à des projections sur des fonctions de base orthogonales. La transformation peut être
appliquée directement sur les pixels d'un bloc, comme dans JPEG [3], ou sur le résidu
de prédiction, comme dans H.264 et HEVC. Les principales transformées utilisées en

8



compression d'image ou de vidéo incluent la transformée en cosinus discrète (DCT)
dans les standards JPEG, H.264 et HEVC, la transformée en sinus discrète (DST) dans
HEVC, par ailleurs les transformées en ondelette discrète (DWT) sont appliquées dans
SPIHT [4] et JPEG2000 [5].

L'étape de quanti�cation consiste à réduire la précision du signal, en convertissant
l'ensemble de taillen des valeurs du signal d'entrée en un nouvel ensemble �ni de valeurs,
de taille m < n. Plusieurs types de quanti�cation existent, telles que la quanti�cation
uniforme ou non uniforme, la quanti�cation scalaire, ou la quanti�cation vectorielle.
Dans un schéma de compression, la quanti�cation est appliquée sur les coe�cients de
la transformée obtenus à l'étape précédente. La quanti�cation est irréversible, on parle
alors de compression avec perte. Le pas de quanti�cation permet de réguler le compromis
débit/qualité d'image. Une forte quanti�cation permet de grandement réduire le débit,
au détriment de la qualité. Au contraire, une quanti�cation �ne permet de maintenir
une bonne qualité d'image, avec un débit plus important.

En�n, l'étape de codage entropique exploite les statistiques du signal à coder pour
en réduire les redondances. Un codeur entropique utilise un code à longueurs variables
(VLC) pour construire des mots de code de di�érentes tailles, de telle sorte que les
mots de code les plus courts sont assignés aux symboles les plus fréquents, tandis que
les mots de code longs sont attribués aux symboles les moins fréquents. Parmi les
codeurs entropiques les plus connus, on peut citer le codage de Hu�man et le codage
arithmétique. Dans un schéma de compression, le codage entropique est appliqué aux
coe�cients de la transformée quanti�és. Les schémas de compression récents tels que
H.264 et HEVC utilisent le codeur CABAC (pour Context Adaptive Binary Arithmetic
Coding) pour encoder à la fois les coe�cient de la transformée quanti�és et des éléments
de syntaxe.

Les standards de compression s'appuient sur un découpage des images de la séquence
vidéo en blocs de pixels, et les principes décrits ci-dessus s'appliquent au niveau de ces
blocs. Dans le standard H.264, les images sont d'abord découpées enmacrobloc, de taille
16 � 16, qui peuvent être sous-divisés en blocs de tailles inférieures. Dans le standard
HEVC, un principe similaire mais optimisé est mis en place, où les images sont d'abord
découpées en CTU (coding tree unit), qui peuvent atteindre une taille de 64 � 64. La
CTU peut être récursivement divisée en CUs (coding unit) de tailles inférieures, dont le
partitionnement forme un arbre quaternaire.

Notons en�n que la sélection d'un mode de codage (Inter ou Intra, choix du meilleur
mode directionnel Intra) s'e�ectue également au niveau des blocs, habituellement sur
la base d'un critère d'optimisation débit/distorsion, noté RDO (pour Rate Distortion
Optimization ).

Chapitre 2 : prédiction inter images basée LLE

Le chapitre commence par une description des méthodes de prédiction baséestemplate
matching (TM). Ces méthodes peuvent être utilisées comme alternative au BM pour
l'estimation/compensation de mouvement. Letemplate, ou gabarit, est dé�ni comme
l'ensemble des pixels voisins reconstruits à gauche et au-dessus du bloc courant à prédire.
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On peut alors chercher un gabarit similaire parmi les zones de la vidéo déjà décodées.
Le bloc associé à ce plus proche gabarit est alors utilisé comme prédicteur du bloc
courant. Cette méthode peut être avantageusement reproduite au décodeur, ce qui sig-
ni�e qu'aucune information de mouvement n'a besoin d'être transmise entre l'encodeur
et le décodeur. La technique TM a ainsi pu être utilisée e�cacement pour la prédic-
tion Inter [6] comme Intra [7]. Les performances de la méthode TM ont également été
améliorées en cherchant plusieurs gabarits similaires au gabarit courant, et en combi-
nant les blocs adjacents pour obtenir le prédicteur. Initialement, un simple moyennage
était utilisé [8][9], mais il a été montré que l'utilisation d'un moyennage pondéré, par
exemple basé sur des représentations parcimonieuses [10][11], améliorent d'autant plus
les performances.

Dans ce chapitre, nous proposons d'utiliser un moyennage pondéré dont les poids
sont calculés en utilisant une approximation LLE (pour Locally Linear Embedding).
L'e�cacité de la technique LLE a été démontrée pour la prédiction Intra [12][13], et nous
l'étendons ici à la prédiction Inter. L'idée principale consiste dans un premier temps
à obtenir K gabarits similaire au gabarit courant. La LLE permet alors d'obtenir une
combinaison linéaire desK gabarits qui approxime au sens des moindres carrés le gabarit
courant, avec pour contrainte que la somme des poids soit égale à 1. La combinaison
linéaire obtenue peut alors être appliquée auK blocs adjacents auxK gabarits pour
obtenir le prédicteur du bloc courant.

Nous proposons plusieurs stratégies pour obtenir lesK gabarits similaires au gabarit
courant. La plus directe consiste à chercher lesK gabarits les plus proches du gabarit
courant au sens de la distance Euclidienne dans une fenêtre de recherche. Cette méth-
ode est notée TM-LLE. L'hypothèse sous-jacente est que les blocs et gabarits sont
fortement corrélés, ce qui n'est pas toujours véri�é en pratique. Toutefois cette méth-
ode à l'avantage, comme le TM, d'être reproductible au décodeur, et ne nécessite pas de
transmettre d'information sur le mouvement. Une variante de TM-LLE est présentée,
notée ITM-LLE, dont le but est de renforcer les corrélations entre blocs et gabarits, sans
avoir à communiquer d'information de mouvement. On cherche d'abordle plus proche
gabarit du gabarit courant. Le patch composé de ce gabarit et de son bloc adjacent est
alors utilisé pour trouver lesK � 1 patchs les plus proches dans la fenêtre de recherche.
CesK � 1 patchs contiennent alors lesK � 1 gabarits restants nécessaires pour calculer
l'approximation LLE.

Dans un second temps, nous proposons une stratégie, notée BM-LLE, qui cherche
également à renforcer les corrélations entre blocs et gabarits, mais cette fois en s'appuyant
sur une information de mouvement, qui est transmise au décodeur. La première étape
consiste à e�ectuer un algorithme de type BM. Dans un second temps, le patch composé
du bloc obtenu par BM et de son gabarit adjacent est alors utilisé pour trouver lesK � 1
patchs les plus proches dans la fenêtre de recherche.

En�n, une dernière stratégie est décrite, qui est une optimisation de la méthode
ITM-LLE, et est notée oITM-LLE. La méthode consiste à obtenir L prédicteurs en
répétant L fois la méthode ITM-LLE. La meilleure itération en un sens débit/distorsion
est retenue, et l'index de cette itération est transmis au décodeur.

Les di�érentes méthodes ont été implémentées dans H.264, mais restent valides dans

10



HEVC. Les résultats des di�érentes expérimentations montrent que la méthode oITM-
LLE permet d'obtenir les meilleures performances de codage, au prix d'une complexité
importante. Les méthodes TM-LLE et ITM-LLE permettent un meilleur compromis
entre performances de codage et complexité. La complexité de BM-LLE est raisonnable
mais ses performances débit/distorsion ne sont pas meilleures que l'état de l'art. Malgré
l'importante complexité de oITM-LLE, son application à la prédiction Intra, combinée
à une méthode moins complexe comme TM-LLE appliquée à la prédiction Inter permet
d'obtenir les meilleurs performances de codage pour une complexité convenable.

Nous sommes également convaincus que la complexité des méthodes pourrait être
réduite, en utilisant par exemple des méthodes de recherche des plus proches voisins
rapides [14][15][16][17], une estimation rapide des poids [18], ou encore en parallélisant
l'implémentation, par exemple sur GPU [19].

Chapitre 3 : techniques de réduction du bruit de quanti�cation basées
sur des épitomes

Le chapitre commence par une description des méthodes existantes pour la génération
d'épitome. Un épitome est dé�ni comme une représentation condensée d'une image ou
vidéo, contenant l'essence de ses propriétés de texture. Plusieurs types de représenta-
tions épitomiques existent [20][21], toutefois nous basons ce travail sur un type d'épitome
adapté au contexte de la compression [22][23]. Pour créer ce type d'épitome, la première
étape consiste à rechercher les auto-similarités de l'image, ce qui permet d'obtenir pour
chaque bloc de l'image une liste d'appariements contenant des blocs similaires, c'est à
dire dont la distance Euclidienne est inférieure à un certain seuil prédé�ni. Dans un sec-
ond temps, on peut générer de manière itérative des épitomes charts, qui contiennent
les éléments de texture les plus représentatifs, et permettent de reconstruire l'image
complète. L'ensemble des épitomes charts constituent l'épitome.

Nous présentons ensuite les méthodes de l'état de l'art en dé-bruitage, principale-
ment conçues pour le cas du bruit blanc Gaussien additif. Dans un premier temps est
décrit le �ltre optimal de Wiener, qui opère dans le domaine transformée 2D (Fourier
ou ondelettes par exemple). En admettant que le spectre du signal source est connu, le
�ltre de Wiener donne les coe�cients de réduction qui permettent de minimiser l'erreur
quadratique moyenne du signal débruité. Ce �ltre optimal n'est pas utilisable en pra-
tique, on remplace donc souvent le spectre du signal source par le spectre du signal
débruité par une autre méthode [24], quali�é ici d'oracle.

La deuxième méthode présentée est le seuillage dans le domaine transformée 2D
[25][26], connue sous le nom dehard thresholding. La technique consiste à annuler dans
le domaine transformée les coe�cients inférieurs à un certain seuil dé�ni en avance. Le
but est d'annuler les coe�cients qui ont un faible rapport signal à bruit. Cette méthode
peut par exemple être utilisée pour produire un signal débruité qui servira d'oracle pour
le �ltrage de Wiener.

Nous décrivons alors des méthodes de l'état de l'art particulièrement e�caces, qui
s'appuient sur les redondances naturelles des images ou vidéos au travers de tech-
niques multi-patchs. L'algorithme NLM (pour Non Local Mean) [27][28] commence par
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chercher lesK plus proches voisins d'un patch courant à débruiter dans une fenêtre de
recherche centrée sur ce patch. LesK plus proches voisins sont alors combinés linéaire-
ment pour obtenir une version débruitée du patch courant. Les poids de la combinaison

linéaire sont du type wi = e
�

d2
i

2� 2
NLM , où di est la distance entre le patch courant et son

i -ème voisin, et� NLM est un paramètre qui règle le degré de �ltrage.
En�n, l'algorithme BM3D est présenté [29], qui est une des méthodes les plus per-

formantes de l'état de l'art. Dans une première étape, pour chaque patch de l'image
à débruiter, sesK plus proches voisins sont trouvés et empilés en un groupe 3D. Le
groupe 3D est alors traité en utilisant le seuillage dans le domaine transformée 3D.
L'image débruitée obtenue est alors utilisée dans une seconde étape, où lesK plus
proches voisins de chaque patch sont à nouveau trouvés, ce qui permet de construire
de nouveaux groupes 3D. Les groupes 3D sont alors utilisés comme oracle du �ltre de
Wiener pour traiter les groupes 3D correspondant extraits de l'image bruitée.

La première contribution de ce chapitre est une méthode e�cace de génération
d'épitome, qui optimise la méthode décrite plus haut, présentée dans [23]. Cette méth-
ode s'appuie sur des listes d'appariements intermédiaires ou du partitionnementad hoc
des blocs de l'image a�n d'accélérer et d'alléger l'étape de recherche des auto-similarités,
qui était e�ectuée jusqu'à présent avec une recherche exacte de tous les appariements.

Nous proposons ensuite un schéma d'amélioration des codecs modernes, qui se situe
en dehors de la boucle de codage. Ce schéma consiste à générer coté encodeur des épit-
omes de la séquence source, a�n de les transmettre avec une bonne qualité au décodeur.
Ils sont alors utilisés pour débruiter la séquence complète encodée avec une qualité in-
férieure. Plusieurs cas d'application sont possibles pour ce schéma. Le premier consiste
à améliorer un schéma de compression mono-couche. Un seul épitome est alors transmis
pour un groupe d'images, a�n de limiter le surcoût en débit. La seconde application
s'intègre dans un schéma scalable, où un épitome est transmis pour chaque image de
la séquence, l'ensemble des épitomes étant considéré comme une couche d'amélioration.
Pour chaque image, les patchs contenus dans l'épitome sont alors utilisés pour débruiter
les patchs de l'image en dehors de l'épitome. Dans le cas où la couche de base est sous-
échantillonnée, les méthodes proposées réalisent conjointement la super-résolution et le
débruitage des patchs en dehors des épitomes.

Nous décrivons plusieurs méthodes de débruitage basées épitome, qui commencent
toutes par rechercherK patchs proches du patch à débruiter parmi les patchs bruités
colocalisés avec des épitomes charts. La première technique est inspirée de l'algorithme
NLM et des méthodes LLE présentées dans le chapitre précédent. Elle consiste à calculer
des poids pour chacun desK patchs, soit de manière similaire à NLM, soit en utilisant
une approximation LLE. Les K patchs de bonne qualité correspondants situés dans
les épitomes charts sont alors combinés en utilisant ces poids a�n d'obtenir le patch
débruité.

La seconde méthode est une adaptation du BM3D. Un premier groupe 3D est consti-
tué dans lequel sont empilés lesK patchs bruités, ainsi qu'un second groupe qui contient
les K patchs de bonne qualité correspondants. En s'appuyant sur ce deuxième groupe
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3D, on peut déterminer un seuil optimal pour le seuillage dans le domaine transformée
du premier groupe 3D bruité. De la même manière, des coe�cients optimaux du �ltre
de Wiener peuvent être obtenus.

En�n, un troisième procédé est décrit, qui calcule par régression une projection
linéaire entre lesK patchs bruités et leurs correspondants de bonne qualité situés dans
les épitomes charts. La projection est ensuite appliquée au patch courant pour obtenir
une version débruitée.

Les résultats montrent qu'il est di�cile d'améliorer un codec mono-couche, ici HEVC,
en utilisant le schéma proposé, car les coûts en débit des épitomes s'avèrent trop im-
portants comparés aux gains de débruitage. En revanche, les performances de codage
dans le cadre d'un schéma scalable sont meilleures que SHVC, l'extension scalable de
HEVC, dans les deux cas testés. Dans le premier cas la couche de base est de la même
résolution spatiale que la couche d'amélioration mais de qualité plus faible. Dans le
second cas la couche de base est sous-échantillonnée avec un facteur 2x2 par rapport à
la couche d'amélioration.

Chapitre 4 : techniques de réduction du bruit de quanti�cation basées
sur des clusters

Le chapitre commence par une description des méthodes existantes pour le partition-
nement de données (clustering), ce qui est dans ce chapitre le pendant de l'épitome
dans le chapitre précédent. Le schéma décrit ci-dessous s'appuie principalement sur la
méthode desK -moyennes [30]. En considérant que le nombre de partitionsK est connu,
l'algorithme des K -moyennes assigne un point de l'espace à partitionner à la partition
qui a la moyenne la plus proche. Une procédure itérative est décrite pour résoudre ce
problème. Une revue non exhaustive de l'état de l'art en classi�cation est ensuite faite.
Nous présentons notamment les machines à vecteurs supports (SVM) [31][32] et les ar-
bres de décisions [33][34]. Nous nous attachons principalement à décrire les modèles des
classi�eurs, sans rentrer dans le détail des algorithmes utilisés pour obtenir ces modèles.

Nous proposons dans ce chapitre un schéma d'amélioration en dehors de la boucle de
codage comparable à celui proposé dans le chapitre précédent. Toutefois, nous adoptons
ici un point de vue di�érent, car nous e�ectuons coté encodeur un partitionnement des
blocs de l'image, et apprenons toujours coté encodeur une projection linéaire entre
les patchs décodés et les patchs sources de chaque partition. C'est le résultat de cet
apprentissage, les matrices de projections, qui est alors transmis au décodeur. Coté
décodeur, on e�ectuera le même partitionnement qu'à l'encodeur, et on pourra alors
appliquer les projections linéaires aux patchs des partitions correspondantes pour les
débruiter. Nous espérons ainsi diminuer le surcoût en débit par rapport à la transmission
des épitomes, tout en ayant de bonnes performances de débruitage, car l'apprentissage
est réalisé par rapport au signal source.

Le partitionnement est e�ectué sur les blocs de la vidéo codée/décodée avec la
méthode desK -moyennes, de manière à produire exactement les mêmes partitions à
l'encodeur comme au décodeur. Le choix du nombre de partitionsK devient essentiel,
car il permet de réguler l'équilibre débit/distorsion du schéma d'amélioration. Nous
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proposons donc une procédure basée sur un partitionnement en arbre binaire avec un
critère de décision RDO pour trouver de manière adaptative la valeur optimale deK .
La structure de l'arbre binaire doit alors être transmise au décodeur, pour un surcoût
en débit négligeable.

Les projections linéaires apprises pour ces partitions sont obtenues sous forme de
matrices, qu'il faut alors transmettre au décodeur. Nous décrivons alors une méthode
pour encoder ces matrices, en les considérant comme les images d'une séquence vidéo.
Nous pouvons alors les compresser avec un codec tel que HEVC, en étant attentif à ne
pas trop réduire la profondeur de bits des matrices, qui contiennent originellement des
valeurs �ottantes, a�n de ne pas dégrader les performances de débruitage.

Nous proposons également une variante en deux étapes, où un premier algorithme
de débruitage �aveugle� (dans le sens ou il ne requiert pas de transmission d'information
au décodeur) est appliqué sur la vidéo, avant d'appliquer le schéma décrit ci-dessus.

Les expérimentations montrent que le schéma proposé permet d'améliorer les per-
formances de HEVC, notamment dans sa variante en deux étapes.

Nous présentons ensuite une procédure de partitionnement optimale pour notre ap-
plication de débruitage. Les résultats obtenus permettent de dé�nir une borne supérieur
pour les performances du schéma proposé, qui montrent que des progrès peuvent en-
core être accomplis. Toutefois, cette méthode de partitionnement ne peut être utilisée
directement dans le schéma d'amélioration. En e�et le partitionnement obtenu n'est
pas causale, c'est à dire qu'il ne peut être reproduit indépendamment au décodeur. Si
on envisage alors de transmettre directement pour chaque patch un index indiquant
la partition à laquelle il appartient, les performances de codage sont en dessous des
performances de HEVC.

Le schéma d'amélioration proposé est ensuite intégré dans un schéma de compres-
sion scalable. La méthode d'apprentissage par partition est appliquée pour super-
résoudre la couche de base, qui peut ensuite être utilisée pour la prédiction de la couche
d'amélioration. Les résultats obtenus avec la méthode desK -moyennes dans SHVC
montrent que si la super-résolution de la couche de base est bien plus e�cace que le
�ltre de sur-échantillonnage de SHVC, les gains obtenus ne sont pas reportés sur la
couche d'amélioration. L'utilisation de la procédure de partitionnement optimal per-
met toutefois de montrer que des progrès sont possibles, et que des gains su�sant sur
la couche de base peuvent se répercuter sur la couche d'amélioration.

En�n nous terminons ce chapitre en ouvrant sur un schéma basé classi�cation, qui
remplace alors le partitionnement. Le but est d'obtenir un compromis entre les perfor-
mances du partitionnement desK -moyennes et optimal. Dans ce schéma, le partition-
nement optimal est calculé coté encodeur. Un classi�eur est alors appris, qui permet
d'estimer la valeur de la partition optimale d'un patch à partir de la valeur de ses
pixels décodées, ou d'autres caractéristiques associées au patch, telles que son mode
de codage ou son débit associé. Le classi�eur peut alors être transmis au décodeur,
a�n de retrouver, au moins partiellement, le partitionnement optimal. Une autre al-
ternative est de transmettre au décodeur une partie des indexes du partitionnement
optimal, et d'entraîner le classi�eur coté décodeur où il peut être utilisé pour estimer le
partitionnement des patchs pour lesquels les indexes optimaux sont inconnus.
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Des expérimentations ont étés réalisées avec un schéma de codage simpli�é basé sur
le codec JPEG. Le schéma basé classi�cation n'apparaît pas e�cace appliqué dans un
schéma mono-couche, il permet en revanche d'obtenir de meilleures performances que
la méthode desK -moyennes dans un contexte scalable avec super-résolution.

Conclusion

Nous avons exploré dans cette thèse des méthodes originales ayant pour but d'améliorer
les techniques existantes de compression vidéo. Un des principes de base de la com-
pression vidéo est de réduire les redondances spatiales et temporelles du signal vidéo.
Les standards de compression exploitent ce principe à travers les outils de prédictions
Intra et Inter respectivement, qui sont décrits dans le Chapitre 1. La prédiction Inter
s'appuie sur l'estimation/compensation de mouvement, tandis que la prédiction In-
tra propage l'information des pixels voisins reconstruits. Le but des travaux proposés
dans ce manuscrit est d'améliorer les schémas de compression existants en exploitant
d'avantage les auto-similarités intrinsèques au signal, notamment en s'appuyant sur des
méthodes multi-patchs.

Dans un premier temps, nous avons cherché à améliorer les outils de prédiction
des standards, en utilisant des méthodes multi-patchs basées LLE. Ces méthodes sont
présentées dans le Chapitre 2, et nous prouvons leur e�cacité en les implémentant
dans H.264. Le principe reste toutefois valide dans HEVC. Nous montrons notamment
que la combinaison des méthodes proposées pour la prédiction Inter et Intra donne les
meilleures performances.

Nous nous sommes ensuite intéressés dans le Chapitre 3 à des méthodes de débruitage
basées sur des épitomes, pour améliorer la qualité des vidéos décodées en post-traitement.
Un épitome est une version condensée d'une image ou vidéo, contenant l'essence de ses
propriétés de texture, que nous transmettons au décodeur en plus de la séquence com-
plète, mais avec une qualité supérieure. Nous pouvons alors utiliser coté décodeur des
méthodes de débruitage multi-patchs s'appuyant sur les patchs de bonne qualité con-
tenus dans les épitomes. Nous montrons que les techniques proposées sont e�caces en
comparaison du schéma scalable SHVC.

En�n nous proposons dans le Chapitre 4 un autre schéma d'amélioration s'appuyant
sur des méthodes de débruitage basée sur le partitionnement des patchs de la séquence.
Ce partitionnement est e�ectué symétriquement à l'encodeur et au décodeur. Pour
chaque partition nous apprenons coté encodeur une projection linéaire entre les patchs
sources et les patchs codés/décodés. Ces projections sont transmises au décodeur, où
elles peuvent être appliquées pour débruiter les patchs décodés. Une méthode de parti-
tionnement optimale est également proposée, qui permet de dé�nir une limite théorique
supérieure pour les performances, et montre que des améliorations sont encore possi-
bles. Le schéma d'amélioration est également intégré dans un schéma scalable avec
super-résolution, et nous montrons une potentielle amélioration par rapport à SHVC en
utilisant le partitionnement idéale. En�n nous terminons en proposant un schéma orig-
inal basé sur des méthodes de classi�cation qui permet d'exploiter au moins de manière

15



partielle le partitionnement optimal.
Ainsi, dans cette thèse, nous nous sommes attachés à exploiter les redondances

naturelles d'un signal vidéo pour améliorer les performances de compression. Nous
nous sommes basés pour cela sur des méthodes multi-patchs, intégrées dans un premier
temps dans la boucle de codage. Nous avons ensuite proposé des schémas d'amélioration
en dehors de la boucle de codage, en se basant sur des techniques exploitant les auto-
similarités d'une séquence, tels que les épitomes, le partitionnement de données, le
débruitage, ou la super-résolution. Nous montrons l'e�cacité de ces méthodes originales
pour diverses applications, soit des schémas de compression simple couche, soit des
schémas scalables. De plus, nous pensons que nos méthodes peuvent être étendues à des
applications supplémentaires, tels que la compression de vidéos à dynamique étendue,
ou la compression dans lecloud.
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Introduction

Context

We are nowadays more and more greedy for video content, and at the same time more
and more demanding of a high quality of experience, both in terms of speed and visual
quality. Video content providers such as Youtube or Net�ix are emblematic of this
growing trend. Despite Moore's law and the subsequent increasing processing power, the
increasing stocking capacities and modern e�cient network infrastructures, transmitting
over a network or storing video content at the desired speed and quality still requires
compression. To further improve the user immersion, digital videos can now be produced
with high resolution (4K - 8K), wide color gamut, high dynamic range, or high frame
rate. These emerging formats represent a formidable volume of data, and call for very
e�cient compression. In a white paper published in 2014, Cisco predicted that by 2018,
the Internet video tra�c will be 79% of all consumer Internet tra�c. Furthermore, 80%
to 90% of the global consumer tra�c is expected to be videos of all forms (TV, Internet,
VOD, VoIP, P2P). We can see that e�cient compression services are critical, and will
still be in a close future. From this perspective, the MPEG standard HEVC is currently
one of the most e�cient video compression scheme, and is expected to gradually replace
its predecessor H.264.

The main principles of modern video compression standards reside in the reduction
of spatial and temporal redundancies, through prediction tools, the use of a transform to
further reduce the inner correlations of the signal, followed by quantization to remove
non-perceptive information, and entropy coding to remove the remaining statistical
redundancies. In lossless compression, which aims at perfectly reconstructing the input
signal, the quantization step is not performed. This type of compression is especially
useful in medical imaging, where the image quality is crucial for e�cient diagnosis. The
work presented in this thesis deals with the broader scope of lossy compression, which
is used in particular in consummer applications, such as the ones cited above. In this
case, the quantization step act as a regulation parameter to balance the bit-rate and
the visual quality.

To face the multiplicity of possible receivers (TV, computer, mobile devices), which
requires transmitting the same video content with di�erent visual qualities, spatial
resolutions, frame rates, or bit-depths, scalable video compression schemes are used. To
optimize the compression performances, the redundancies occurring across the di�erent
versions of the content should be taken into account. Thus, instead of encoding them
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separately, one version is �rst encoded as a base layer. Another version, usually of better
quality, and/or higher spatial/temporal resolution, and/or bit-depth, is then encoded
as an enhancement layer, using the base layer as prediction. Several enhancement layer
can then be recursively encoded, to account for all the di�erent versions of the video.

Motivations

The recent MPEG standard HEVC [2] is undeniably one of the most e�cient modern
codecs, and achieves a bit-rate reduction of about 50% [35] compared to its predecessor
H.264 [1]. However, the development and standardization process from H.264 to HEVC
took about 10 years. Such pace is too slow to keep up with the projections of video
tra�c mentioned above.

In addition to the MPEG standards, many actors are now developing new codecs to
address this issue. For example, Google's VP9 [36] is already competitive with HEVC,
and rely on software optimization to speed-up its development process. Next-generation
royalty-free codecs are also announced, e.g. Google's VP10, Cisco's Thor project [37], or
Daala [38] (by the Mozilla Foundation and Xiph.org foundation). Despite this renewed
interest in video compression, these codecs architectures are still close to the one of
HEVC. HEVC itself can be seen as an optimization of H.264, as it primarily relies on
the same tools.

As a matter of fact, the main principles of video compression presented above rely on
concepts designed more than 30 years ago. The temporal prediction tool, which aims
at reducing temporal redundancies, was �rst presented in 1972 in the form of frame
di�erencing [39]. The motion compensation prediction used nowadays was presented in
1981 [40]. The discrete cosinus transform used in many modern codecs was designed in
1974 [41], and the �rst entropy coders date back to 1952 for the variable length coding
[42] and 1972 for the arithmetic coding [43].

These observations call for further improvement of the existing tools mentioned
above, or proposals for disruptive techniques. For example, the PROVISION project [44]
proposed a change of paradigm in the form of perceptually optimized video compression,
based on tools such as texture analysis/synthesis.

Contributions and structure of the thesis

We investigate in this thesis novel methods, which further exploit the natural redundan-
cies occurring in video contents through multi-patches techniques. Note that we focus
in this work on improving the compression performances, and thus allow signi�cant
complexity increase. Because of the aforementioned increasing processing capabilities,
we expect the proposed methods to be acceptable in the future, and the core algorithms
could already bene�t from parallel implementations, e.g. on GPU.

In Chapter 1, we introduce the main principles used in video compression, and
their implementation in the MPEG standards H.264 and HEVC, as well as the scalable
extension of HEVC, SHVC.
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In Chapter 2, we �rst present state-of-the-art template matching methods for pre-
diction. The template consists in a set of known neighbor pixels on top and left of
the current block of unknown pixels to be predicted. Template matching can then
be used to perform motion compensation/estimation, similarly to the classical block
matching algorithm. We then propose extensions of the template matching methods
to multi-patches methods based on Local Linear Embedding (LLE) to improve tem-
poral prediction. Instead of considering a single block predictor as in the motion esti-
mation/compensation, we search for multiple similar patches, called neighbors, of the
current patch (which comprises the block and its template). The known pixels of the
template can then be estimated as a linear combination of its neighbors, which weights
are computed with the LLE. The same weights can then be applied on the respective
adjacent blocks to a obtain the block predictor. Several neighbor search strategies are
proposed, and integrated in H.264. However, the concepts still hold in HEVC.

In Chapter 3, state-of-the-art techniques on epitome generation and de-noising are
�rst described. The epitome is de�ned as a factorized representation of an image or
video, containing the essence of its textural properties. Although it has emerged inde-
pendently from standard compression methods, it is nevertheless closely related to the
concept of compression, as it aims at reducing the self-similarities of an image or video.
In addition, we observed that multi-patches methods were also proven e�ective for de-
noising applications, notably with the Non Local Mean (NLM) and BM3D methods.
Thus, we propose epitome-based de-noising methods, where we assume that the epito-
mes are available at a higher quality than the image or video to be de-noised. When
de-noising a patch, we can then search for multiple similar patches in the epitome, and
use the higher quality patches to perform e�cient de-noising. More speci�cally, three
epitome-based de-noising methods are proposed, �rst by combining the epitome patches
using NLM or LLE weights, second by adapting the BM3D, and �nally by computing a
linear mapping between the noisy patches and their corresponding high quality epitome
patches. The epitome-based de-noising methods are integrated in a proposed out-of-
the-loop framework, where the epitomes are sent to the decoder along with the encoded
video, but with a higher quality. The proposed de-noising methods can then be applied
at the decoder side to reduce the quantization artifacts. The proposed framework is
applied to a single layer scheme as well as scalable schemes.

In Chapter 4, we begin by presenting state-of-the-art clustering methods, which
is in this chapter the counterpart of the epitome in the previous chapter, and clas-
si�cation methods. In fact we propose in this chapter an out-of-the-loop framework,
with clustering-based de-noising, which is integrated in a compression scheme in order
to remove the quantization noise at the decoder side. The method �rst clusters the
coded/decoded patches at the encoder side. Then, linear mappings are learned for each
cluster between the coded/decoded patches and the corresponding source patches. The
linear mappings are then sent to the decoder, where the same clustering as the encoder
side is performed. Finally, the linear mappings are applied to the cluster patches in
order to reduce the quantization noise. Since, only the linear mappings are transmitted
to the decoder, the rate of the side information is reduced compared to the previous
chapter. The proposed framework is also adapted for a scalable scheme. In addition,
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we propose an optimal clustering algorithm in order to improve the de-noising perfor-
mances for a same number of cluster. However, this method only set an upper bound on
the performances, as it can not be reproduced at the decoder side. We end this chapter
by proposing a novel approach based on classi�cation, where classi�ers are learned in
order to predict the optimal cluster labels. The classi�er can for instance be trained
at the encoder side and its model sent to the decoder, where it can be used to recover
the optimal clusters. Alternatively, a subset of the true optimal clusters labels can be
transmitted to the decoder, where the classi�er can then be trained. We thus expect to
approach the upper bound set by the optimal clustering.

For Chapters 3 and 4, the experiments are performed with HEVC and SHVC, how-
ever the out-of-the-loop frameworks can be advantageously adapted to any codec cited
above.
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Chapter 1

State-of-the-art in video
compression

In this chapter, we �rst present the main principles used in video compression. We then
described more in details how these principles are introduced in the video compression
standards H.264/AVC and HEVC. Finally, we expose the motivations for the work
presented in this thesis.

1.1 Main principles in video compression

A video compression scheme converts an input digital signal into a bit-stream lighter
than the source signal. The goal of compression schemes is to remove the spatial and
temporal redundancies of the video to reduce the amount of data needed to represent
the signal. The main operations to achieve this goal are shown in Fig. 1.1 and described
in the next sections.

Figure 1.1: Main operations in a compression scheme.

1.1.1 Prediction

The prediction step aims at removing spatial and/or temporal redundancies. The two
types of corresponding prediction are named Intra prediction and Inter prediction re-
spectively. The prediction consists in estimating a block of pixels from previously de-
coded pixels. In the case of Intra prediction, the block of pixels is predicted from
spatially neighboring pixels, while in Inter prediction, it is predicted from previously
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decoded frames of the video. The prediction process of recent video compression stan-
dards will be described in details in the next sections. Once the prediction is obtained,
the prediction error, also called prediction residue, is passed on to the transform step.

1.1.2 Transform

The transform reduces the correlations in a signal and compacts the energy in a limited
number of coe�cients. In a compression scheme, it can be applied directly on pixel
blocks, such as in JPEG [3] or JPEG2000 [5], or on the prediction residue, such as in
H.264/AVC [1] or HEVC [2]. The main transformed used in image or video compression
schemes include the Discrete Cosinus Transform (DCT) in JPEG, H.264/AVC, HEVC,
the Discrete Sinus Transform (DST) in HEVC, and Discrete Wavelet Transforms (DWT)
in SPIHT [4] and JPEG2000.

1.1.3 Quantization

The quantization consists in reducing the signal precision, by mapping the set of input
values of sizen to a new �nite countable set of sizem inferior to n. There are several
types of quantization, such as uniform and non-uniform, scalar quantization and vector
quantization.

In a compression scheme, the quantization is applied on the transform coe�cients
obtained at the previous step. Compression schemes usually apply scalar quantization,
in which a quantization step q is de�ned and evaluates the level of precision of the
quantized signal. Formally, if fy 0; : : : ; ym�1 g represents the set of target values, a signal
x is quantized by a quantizerQ as follow:

Q(x) = yi if x 2 [yi �
q
2

; yi +
q
2

] (1.1)

The quantization is not a reversible step, and thus produces lossy compression. In
other words, this step is not performed in lossless compression schemes. The quan-
tization step, also called quantization parameter (QP), is used to regulate the bit-
rate/quality balance. A strong quantization will result in low bit-rates, but also a low
quality. On the contrary, little quantization will allow to maintain a high quality, at
the cost of a high bit-rate.

1.1.4 Entropy coding

Entropy coding takes advantage of the statistics of a signal to reduce the statistical
redundancy. An entropy coder uses the Variable Length Code (VLC) for code-words,
such that short binary codes represent the values with the most occurrences, while
values with the lowest occurrences are represented with long binary codes. Hu�man
coding and arithmetic coding are popular entropy coding methods.

In a compression scheme, the entropy coding is applied on the quantized transform
coe�cients. Recent compression schemes such as H.264/AVC and HEVC use the Con-
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text Adaptive Binary Arithmetic Coding (CABAC) to encode the quantized transform
coe�cients, as well as syntax elements.

1.2 Standards

We describe in this section the video compression standards H.264/AVC and HEVC.
In addition to the overall standard structures, we focus on the main features which are
necessary to understand the work of this thesis, such as the prediction process. Other
features such as transform, quantization, and additional tools like deblocking �lters, are
not described.

1.2.1 H.264/Advanced Video Coding (AVC)

The H.264/AVC standard, also known as MPEG-4 Part 10, has been introduced in
2003 as a joint project of the International Standards Organization (ISO) and the In-
ternational Telecommunications Union (ITU). An overview of the standard is given in
[1].

1.2.1.1 Hierarchical syntax

A video sequence in H.264/AVC is described by the following hierarchical levels, illus-
trated in Fig. 1.2:

ˆ The sequence, which comprises global parameters, such as the number of frames,
the frame rate, the spatial resolution of the frames, the color format, the bit-depth.
A sequence is made of several groups of pictures.

ˆ The group of pictures (GOP) , which contains several successive frames, or
pictures, and which structure de�nes the order and the types of these frames (see
section 1.2.1.2). The GOP structure is repeated to form the sequence, and de�nes
a coding period.

ˆ The frame, or picture, which is the sequence unit on the temporal axis.

ˆ The slice , which consists in a group of macroblocks, and represents either a part
of a frame of the full frame.

ˆ The Macroblock (MB) , which is a luminance pixels block of size16� 16, with
the associated chrominance pixels blocks. The chrominance blocks size depends
on the color format. For example, the chrominance blocks size is8� 8 when using
the prominent 4:2:0 format.

ˆ The block, which is a sub-partition of a marcoblock, usually consists in a pixel
block of size8 � 8 or 4 � 4. Decisions on the prediction modes of transform can
be made at this level to adapt to the local activity of the signal.
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Figure 1.2: Hierarchical levels of a sequence in H.264/AVC.

1.2.1.2 Types of frame

Three types of frame can be contained in a GOP:

ˆ The I frame (intra coded frame), which is coded independantly of all other pic-
tures. All its macroblocks and blocks are coded using Intra prediction.

ˆ The P frame (predictive coded frame), which can be temporally predicted from
a reference frame. Its macroblocks and blocks can be coded using either Intra or
Inter prediction. It can only be predicted from a past I or P frames.

ˆ The B frame (bipredictive coded frame), which can be temporally predicted from
two reference frames, usually one past and one future reference frame. This means
that the decoding order and the display order can be di�erent, as illustrated in
Fig. 1.3.

Figure 1.3: GOP structure for inter prediction in H.264/AVC. The frames are decoded
in the order I0; P4; B2; B1; B3, but displayed in the order I0; B1; B2; B3; P4.

1.2.1.3 Encoder structure

The encoding scheme of H.264/AVC is shown in Fig. 1.4. When encoding a sequence,
the frames already encoded are decoded in the loop and stored in a bu�er of reference
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frames to be used for Inter prediction. Inside a frame being encoded, the previously en-
coded macroblocks are also decoded, and then used for Intra prediction. The maroblocks
in a slice or a frame are processed in a raster scan order, from top left to bottom right.

Note that in MPEG standards, only the decoder is normative. Although H.264/AVC
encoders rely on the structure shown in Fig. 1.4, di�erent encoder designs can be
considered, which aim at improving the coding performances, generally under some
complexity constraints.

The prediction modes are described more in details in the following sections.

Figure 1.4: Basic coding structure for H.264/AVC for a macroblock. Source: [1].

1.2.1.4 Intra prediction

When using the Intra prediction modes, a block of pixels is predicted from its neigh-
boring blocks previously encoded and reconstructed. Given the raster scan order, the
neighboring blocks are on the left, on top, and diagonal top left of the current block. The
Intra prediction assumes that the neighboring blocks are highly correlated, and prop-
agates the information of the neighboring pixels in the current block. In H.264/AVC,
the Intra prediction can be used for blocks of size16� 16, 8 � 8 or 4 � 4.

For 16� 16 blocks, four modes are de�ned, as shown in Fig. 1.5: horizontal, vertical,
DC (averaging of the neighboring pixels) and plane.

For 8� 8 and 4� 4 blocks, nine modes are de�ned, as shown in Fig. 1.6 for the4� 4
blocks: height directional modes and a DC mode.

In order to signal the best Intra mode to the decoder, only its di�erence with a
mode predictor is sent. The mode predictor is obtained as the minimum between the
Intra index modes of the blocks on top and on the left of the current block.
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Figure 1.5: Intra prediction modes for16� 16 blocks.

Figure 1.6: Intra prediction modes for 8 � 8 and 4 � 4 blocks (represented for4 � 4
blocks).

1.2.1.5 Inter prediction

In H.264/AVC, Iner prediction consists in a block motion estimation/compensation
from a previously decoded frame. The motion estimation �nds the displacement of
the current block with respect to a reference frame (see Fig. 1.7). Motion estimation
is usually performed using a block matching (BM) algorithm, which searches in the
reference frame for the block which minimizes a measure of distance with regards to
the current block. The measure of distance used is usually the sum of absolute distance
(SAD) or the sum of square error (SSE). The motion estimation produces a motion
vector which is sent to the decoder, where the motion compensation can be performed.
The motion compensation produces the prediction block by copying the pixels from the
block pointed by the motion vector in the current block.

In H.264/AVC, the motion estimation can be performed at a quarter-pixel accuracy,
by up-sampling the reference frames. More precisely, a 6-tap interpolation �lter is
used to produce half-sample positions, followed by bilinear �ltering for quarter-sample
positions.

To transmit the motion vector, only its di�erence with a motion vector predictor is
sent. The motion vector predictor is obtained as the median of the motion vectors of
the neighboring blocks previously decoded.

Several block sizes are de�ned for Inter prediction, including rectangular partitions
in order to improve the motion estimation �exibility: 16� 16, 16� 8, 8 � 16 and 8 � 8.
The 8� 8 blocks can be further divided into 8� 4, 4� 8 and 4� 4 blocks (see Fig. 1.8).

For 16� 16 blocks, a Skip mode is also de�ned, for which no side information is sent
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Figure 1.7: Motion estimation with block matching. The motion vector obtained ~v is
shown in red.

to the decoded,i.e. no motion vector nor transform residue coe�cients. In this mode,
the prediction is performed by directly copying the pixels of the block pointed by the
motion vector predictor.

Figure 1.8: Block partitions for Inter prediction in H.264/AVC.

For P frames, the motion estimation is performed in past reference frames, while
B frames can perform the motion estimation in both past and future reference frames.
More formally, the past reference frames are stored in a list denoted L0, while the
future reference frames are stored in a list L1. Furthermore, a block in a B frame can
be predicted using two motion vectors, usually found in the L0 and L1 list respectively.
The block predictor is obtained by combining the two compensated blocks. In Fig. 1.9,
the blue block represents a bi-predicted block.

Thus, in addition to the 2D motion vector, the reference frame index and the list
index must be signaled to the decoder.
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Figure 1.9: Multiple reference frames for inter prediction.

1.2.1.6 Coding mode selection

In H.264/AVC, the selection of the coding modes is not normative, thus its imple-
mentation in an encoder is open. The mode selection is usually made by minimizing
a cost function. The cost function is generally based on a distortion criterion, or a
rate/distortion optimization (RDO) criterion. The latter criterion is the most popular,
as it yields the best coding performances, and was for example implemented in the test
model of H.264/AVC. In return, it usually requires an increased complexity.

In order to select the best mode among the modes available in Intra and Inter
prediction, the RDO criterion aims at minimizing the distortion under a rate constraint,
or minimizing the rate under a distortion constraint [45][46]. For an input signal X and
a mode�, the criterion is formally de�ned as:

min
�

D(X; � ); s.t. R(X; � ) � Rc (1.2)

or:

min
�

R(X; � ); s.t. D (X; � ) � Dc (1.3)

whereD refers to a distortion measure function,R refers to a rate measure function, and
Dc and Rc are the constraint on the distortion and the rate respectively. In practice,
the solution to this twofold minimization problem is found by minimizing the following
Lagrangian function:

J� (X; � ) = D(X; � ) + �R (X; � ) (1.4)

where � is a Lagrangian parameter which allows to balance the two above criteria.

1.2.2 HEVC

HEVC is the latest standard developed by the Joint Collaborative Team on Video
Coding (JCT-VC), �nalized in January 2013. HEVC is a conceptual generalization of
the design of H.264/AVC [2], introducing optimizations which allow to reduce about
50% of the bit-rate compared to H.264/AVC for a similar quality [35].
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In particular, larger prediction and transform blocks are used, which are more e�-
cient for modern high resolution sequences. A new �exible partitioning for the prediction
and transform blocks is also introduced.

1.2.2.1 Hierarchical syntax

The high level syntax elements, sequence, frame, and slice, are not modi�ed compared
to H.264/AVC (see Fig. 1.10). One of the main change of HEVC over H.264/AVC is
the replacement of the macroblock concept by the notion of coding tree unit (CTU). In
HEVC, a frame is partitioned using a recursive quadtree structure, and new hierarchical
levels are de�ned:

ˆ the Coding Tree Unit (CTU) , is the basic processing unit. A slice is thus
divided into CTUs. The size of the CTU is de�ned at the encoder and can be
either 16� 16, 32� 32 or 64� 64.

ˆ the Coding Unit (CU), is the coding element into which the CTU is divided.
The CU itself can then be recursively divided into four CUs, creating a quatree
structure, as shown in Fig. 1.11. The root of the quadtree partitioning is at the
CTU level. The size of the CU varies between64 � 64 and 8 � 8. The Intra or
Inter prediction mode decision is made at the CU level.

ˆ the Prediction Unit (PU), contains the information related to the prediction
process (e.g. directional mode for Intra prediction or motion vector for Inter
prediction). A PU can be recursively partitioned into PUs. The root of a PU
partitioning is at the CU level, and the PU size can be from64� 64 down to 4� 4.

ˆ the Transform Unit (TU) , is the basic unit for transform and quantization. A
TU can be recursively partitioned into TUs, and the root of a TU partitioning
is at the CU level. The TU size can be from32 � 32 down to 4 � 4. The TU
partitioning is independent from the PU partitioning, as illustrated in Fig. 1.11,
where the PUs are represented with blue lines while the TUs are represented with
red dotted lines.
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Figure 1.10: Hierarchical levels of a sequence in HEVC.

Figure 1.11: Recursive partitioning of a CTU based on a quadtree structure.

1.2.2.2 Types of frame

The same types of frame are de�ned in HEVC as in H.264: I, P and B frames.

1.2.2.3 Encoder structure

The encoder structure of HEVC is very similar to the one of H.264/AVC, as shown in
Fig. 1.12.
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Figure 1.12: Typical HEVC video encoder (with decoder modeling elements shaded in
light grey). Source: [2]

1.2.2.4 Intra prediction

The Intra prediction in HEVC relies on the same principle as the Intra prediction in
H.264/AVC. However, the concept is optimized, as 33 directional modes are considered
in addition to a DC (averaging of the neighboring pixels) mode and a planar mode (see
Fig. 1.13). The Intra prediction is applied on square blocks of size4 � 4 to 32� 32.

Figure 1.13: Modes and directional orientations for Intra prediction. Source: [2].

The coding of the best Intra mode in HEVC relies on the concept of most probable
mode (MPM). Three MPMs are derived from the Intra prediction modes of the above
and left PU. If the current best Intra mode is one of the three MPMs, the index of this
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MPM is sent to the decoder. Otherwise, the best Intra mode is directly coded using a
5 bits �xed length code.

1.2.2.5 Inter prediction

The Inter prediction in HEVC is based on motion estimation/compensation. As in
H.264/AVC, the motion estimation is usually performed using a BM algorithm (see
Fig. 1.7).

Motion vectors can be obtained with a quarter-pixel accuracy. In HEVC, a 8-tap
�lter is used to produce the half-sample position and a 7-tap �lter is used to produce
the quarter sample positions.

The main optimization for Inter prediction in HEVC compared to H.264/AVC relates
to the prediction of the motion vector, prior to di�erential encoding. In HEVC, several
motion vector predictors (MVP) derived from spatially/temporally neighboring PUs
are in competition, and the index of the best one is signaled to the decoder. Three
di�erent modes are considered for the derivation of the list of MVP candidates: Inter,
Merge, and Merge-Skip. For the Inter mode, the texture residual is coded along with
MVP index and the motion vector residual. For the Merge mode, the texture residual
is coded along with MVP index, and the motion data are derived from the MVP. For
the Merge-Skip mode, no texture residual is coded, only the MVP index is signaled,
and the motion data are derived from the MVP.

The Inter prediction is applied on blocks of size8 � 8 to 64 � 64. In addition to
square partitions, asymmetric rectangular partitions are also considered.

As in H.264/AVC, bi-prediction is also allowed for the B frames.

1.2.2.6 Coding mode selection

As for H.264/AVC, the coding mode selection in HEVC is not normative. However,
it is usually based on a RDO criterion, solved in practice by the minimization of the
Lagrangian function of Equation 1.4.

1.2.3 SHVC

HEVC has been further extended in a scalable version named SHVC [47]. SHVC support
di�erent scalability features such as temporal, spatial, SNR, bit-depth, color gamut, and
hybrid codec scalability.

An example of SHVC decoder is given in Fig. 1.14 for a two-layer scalable system,
but SHVC supports up to height layers. The two-layer scalable system consists in a
base layer (BL) and an enhancement layer (EL).

The EL codec is a modi�ed version of HEVC, but was designed to minimize the
changes in the codec architecture compared to a single layer HEVC. Thus, the recon-
structed BL frames are added in the EL reference frames bu�er at a speci�c index, after
appropriate inter-layer processing. The inter-layer prediction then consists in perform-
ing Inter prediction in this speci�c reference frame with a zero-motion constraint.
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Figure 1.14: SHVC decoder architecture. The modi�ed EL decoder is indicated as
HEVC � . Source: [47].

Since the inter-layer process relies on the reconstructed BL frames, the BL codec
can be considered as a black box, which allows the hybrid codec scalability. In the
case where the BL codec is HEVC, a motion �eld re-sampling is performed in order to
predict the EL motion �eld.

Other tools for inter-layer processing include notably texture re-sampling for spatial
scalability. The texture re-sampling is performed using 8-tap �lters, which support
arbitrary spatial ratios.

The spatial scalability feature refers to the case where the spatial resolution of the
EL is greater than the one of the BL. Similarly, the temporal scalability feature refers
to the case where the frame rate of the EL is greater than the one of the BL. The SNR
scalibility concerns the case where both layer share the same spatial resolution, but the
EL is transmitted with a higher quality than the BL, in practice by setting a lower
QP for the EL than the BL. The bit-depth scalability indicates that the bit-depth of
the EL is higher than the one of the BL. The color gamut scalability speci�es that the
color formats of the two layers are di�erent. Finally, the hybrid codec scalability allows
to encode the EL with SHVC, while the BL is encoded with a di�erent codec, such as
H.264.
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Chapter 2

Inter prediction methods based on
linear embedding for video
compression

Video compression schemes achieve data compression by exploiting similarities within
frames (i.e., the spatial redundancy), as well as between the target frame and one or
several reference frames (i.e., the temporal redundancy). Intra coding techniques are
used to reduce the spatial redundancy within each frame separately, whereas Inter cod-
ing techniques are used to reduce the temporal redundancy between successive frames
of a video sequence.

The block matching (BM) algorithm is a popular technique to perform the motion
estimation/compensation used in the standards for Inter prediction. However, alterna-
tive technique were introduced to perform motion estimation/compensation, based on
a template matching (TM) technique [6]. The methods exploits the correlation between
the current block and a pre-de�ned set of neighboring pixels, called the template of
the current block. Rather than looking for the most correlated block in the reference
frames, one looks for the most correlated template. The block which is adjacent to this
template is used as a predictor for the current block. The motion compensation is per-
formed using the exact same process, so no motion information needs to be transmitted
to the decoder. This technique e�ciency has also been demonstrated for Intra predic-
tion [7]. The RD performance of this method can be improved by using a weighted
combination of multiple predictors. Initially a simple averaging of the predictors was
performed [8][9], but methods using adaptive weights, e.g. using sparse approximation
[10][11], were shown to bring signi�cant improvements.

In this chapter, we consider an approximation method called Locally Linear Em-
bedding (LLE), introduced in [48] for data dimensionality reduction, which we adapt
to the problem of temporal prediction. The LLE technique has already been shown to
be very e�cient for Intra prediction in [12][13]. However, the derivation from Intra to
Inter prediction is not trivial, mainly because the proposed techniques are now in com-
petition with the motion estimation/compensation, which is a more e�cient prediction
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tool than the Intra directional modes. The idea is to �rst search for a representation
of the template as a linear combination ofK nearest neighbor templates (calledK -NN
templates) taken from a search window denoted SW. The linear combination coe�-
cients (or weights) are then applied on the blocks adjacent to theK -NN templates to
yield the current block predictor. The LLE weights are computed using a least square
formulation of the template approximation problem under the constraint that they sum
to one.

The K -NN search strategy has a strong impact on the predictor quality. In fact, the
TM technique e�ciency rely on the hypothesis that the template and its adjacent block
are well correlated. First, we proposed a direct derivation of the TM technique, where
the K -NN can be found by computing distances between the template of the current
block and those of candidate blocks in the reference frames. This method is denoted
Template Matching LLE (TM-LLE) and, as for the TM method, no side information
(i.e., no motion vector) needs to be sent to the decoder. A variant of this method is
introduced where the �rst neighbor is searched by template matching (as in TM-LLE),
but the remaining (K � 1)-NN are found by computing a distance between the complete
patch formed by the template and adjacent block of the �rst neighbor and the candidate
patches in the search window. The method is denoted Improved Template Matching
LLE (ITM-LLE).

Second, to further improve theK -NN search, we introduce a method enforcing the
correlation between the templates and their adjacent blocks, but requiring the transmis-
sion of side information to the decoder. Thus, we propose a method where theK -NN
search is initialized with a block-matching algorithm. This implies that a motion vector
is sent to the decoder. We then �nd the remaining(K � 1)-NN as in ITM-LLE. This
method is named Block-Matching LLE (BM-LLE).

Finally, we propose an improved variant of the ITM-LLE method, denoted optimized
ITM-LLE (oITM-LLE). In this method, we basically obtain L predictors by running L
times the ITM-LLE method. The best iteration in a RD sense is retained, and its index
is sent to the decoder.

The experiments and their analysis focus on RD performance evaluations of the
proposed prediction methods against the standard reference techniques: directional
and motion estimated/compensated prediction modes of H.264 and template matching
averaging (TM-A). This analysis is carried out using a legacy H.264 implementation, but
note that the proposed techniques are still applicable in HEVC, since the Inter prediction
tool in HEVC follow the same principles as those used in H.264. Simulation results show
that signi�cant RD performance improvements are achieved compared to the reference
prediction methods. The performed analysis includes elements of complexity in terms
of execution times measured at the encoder.

This chapter is organized as follows. Section 2.1 reviews background on prediction
methods based on template matching. Section 2.2 describes the proposed LLE-based
temporal prediction techniques. Section 2.3 explains how the proposed prediction meth-
ods have been used in an H.264 codec. We then give the PSNR-rate performance gains
compared to the reference H.264 codec.
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2.1 Background: Prediction based on Template Matching

In addition to the standard prediction modes presented in the previous chapter, predic-
tion methods based on Template Matching (TM) have been considered, for both Intra
[7] and Inter [6] prediction. The TM method is very close to the BM method, although
here the template pixels (on the top and to the left of the blocks) are used to �nd the
best match instead of the pixels in the current block to be predicted (see Fig. 2.1).

Figure 2.1: Template Matching for Inter prediction.

The union of the template X k and of its adjacent blockX u forms the patch X . The
underlying basic idea of the algorithm is to take advantage of a supposed correlation
between the pixels in the block and those in its template. For Inter prediction, the
�rst step of the algorithm is to look for the nearest neighbor (NN) of the template in
a search window de�ned in one or more reference frames. As for the BM algorithm,
the metric used to �nd the NN can be the sum of absolute di�erence (SAD) or the
sum of square error (SSE). Once the NNX TM

k of X k is found, the adjacent blockX TM
u

of this template is used as a predictor for the current blockX u . The bene�t of this
method is that this prediction process can be reproduced at the decoder, hence no side
information (motion vector, list index, reference frame index) needs to be sent to the
decoder anymore [49]. Although e�cient in terms of bit-rate reduction in the case of
homogeneous texture, the method yields low quality predictors in image areas where
the block and its template are not well correlated.

The technique has been extensively studied in H.264 [6][7][49], and was considered
for Intra prediction in the early stage of HEVC [50]. Even though it was not retained
for the standard, it was later shown that it can improve the RD performance of HEVC,
e.g. when used for Inter bi-prediction in combination with block matching [51].

In order to improve the predictor quality, a so-called template matching averaging
(TM-A) method has been proposed in [9]. In this method, one looks for theK nearest
neighbors (K-NN) of the current template and not only the �rst one. The predictor of
the current block X u is then obtained by averaging theK blocks adjacent to theK -NN
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of the template. This enables to smooth the predictor, which is advantageous most of
the time, and computationally reasonable.

Note that di�erent approaches relying on K -NN combination have been explored
for Intra or Inter coding, such as sparse representations [10][11][52], or Nonnegative
Matrix Factorization [12][13]. However, results in [11] show that neighbor embedding
techniques such as LLE or NMF outperform sparse representations in terms of RD
performances. In [13], results show that NMF performs slightly better than LLE in
terms of RD performance, but complexity for NMF is much higher than LLE, especially
at the encoder side. These conclusions motivate the use of the LLE in this chapter,
described in the following section. More recently, prediction methods based on weighted
template matching have been proposed to improve HEVC Intra RD performances, e.g.
in [18]. The method presented in [18] demonstrates the e�ciency of weighted template
matching against HEVC Intra mode. However, this method is optimized to reduce
complexity, e.g. by using tabulated exponential weights, while we focus on optimizing
the RD performances by using optimal weights in a least square sense.

2.2 Inter prediction based on LLE

This section describes the proposed Inter prediction techniques using LLE. LLE-based
prediction methods search for the linear combination ofK nearest neighbors which
best approximates in a least squares sense the template of the current block, under the
constraint that the weights of the linear combination sum to one. The block predictor is
computed by applying the found weights to the blocks which are adjacent to theK -NN
templates. The section below �rst presents the weights computation, assuming that the
K -NN are available. We then describe the proposedK -NN search strategies.

2.2.1 LLE-based predictor computation

The weighting coe�cients are computed by formulating the template approximation
problem as a least squares problem, under the constraint that the weights sum to one.
The found weighting coe�cients are applied in the linear combination of the adjacent
block pixels in order to compute the block predictor (see Fig. 2.2).

Let A = [ A k
A u

] denote a so-called dictionary represented by a matrix of dimension
N � K . The columns of the dictionary A are constructed by stacking theK candidate
texture patches found after theK -NN search step. The sub-matricesA k and A u contain
the pixel values of the templates and of the blocks respectively. LetX = [ X k

X u
] be the

vector composed of the known pixels of the templateX k and the unknown pixels of the
current block X u .

The LLE-based prediction problem can be re-written as:

min
V

kX k � A kVk2
2 s.t.

X

m

Vm = 1 (2.1)
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Figure 2.2: Predictor computation technique based on LLE. Assuming the dictionary
A is available, a weighting coe�cient vector V is learned using the LLE, which ap-
proximates the current template X k with the K templates in A k . The current block
predictor X̂ u is obtained by applying the learned weights to theK blocks in A u .

where V denotes the optimal weighting coe�cients vector which is computed as

V =
D �1 1

1T D �1 1
: (2.2)

The term D denotes the local covariance matrix (i.e., in reference toX k ) of the selected
K -NN templates stacked inA k , and 1 is the column vector of ones. In practice, instead
of an explicit inversion of the matrix D, the linear system of equationsDV = 1 is
solved, then the weights are rescaled so that they sum to one.

The predictor of the current block X̂ u is then obtained as:

X̂ u = A uV (2.3)

2.2.2 Template-based K-NN search for LLE-based prediction

This section �rst describes two LLE-based methods in which theK -NN search is not
based on real motion estimation but rather on template matching, and thus does not
need to send side information to the decoder.

The �rst K -NN search method simply looks for theK -NN of the current template
(see Fig. 2.3). The K patches stacked in the dictionary A thus consist in the K
templates found (Ak ), along with their adjacent blocks (A u). The current block can
then be predicted as explained in section 2.2.1. ThisK -NN strategy is as simple as
the one of the TM-A method, however it su�ers from the same limitations in the sense
that the candidate patches found may not lead to the best predictor. This method,
referred to as Template Matching LLE (TM-LLE), does not require transmitting extra
side information to the decoder which can perform the sameK -NN search.

An improved variant of the previous method is to �nd the �rst NN of the current
template in a �rst step. Then in a second step, the(K � 1)-NN of the previous �rst patch
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Figure 2.3: Search for theK -NN of the current template in the TM-LLE method.

are found in order to build the complete dictionary A. Note that these (K � 1)-NN
are now found with respect to the whole patch, which tends to reinforce the correlation
between the templates and the blocks (inner correlation of the patch). However, if the
�rst NN found is not well correlated with the current patch, the predictor quality will
decrease. This method is referred to as Improved Template Matching LLE (ITM-LLE).

2.2.3 Block-based K-NN search for LLE-based prediction

To better overcome the potential lack of correlation between the blocks and their tem-
plates, we propose to use the current block to guide theK -NN search. This implies that
additional information needs to be sent to the decoder, so that it can �nd the exact
sameK -NN. The following methods use the current block to �nd the �rst NN. The
K � 1 remaining patches are found with respect to the previous NN. To signal the NN
to the decoder, a motion vector is transmitted.

The prediction �rst proceeds by computing the motion vector using a classical block
matching algorithm. The best matching block (the �rst nearest neighbor) X BM

u of the

current block X u is found. The patch containing this blockX BM = [ X BM
k

X BM
u

] is used as the
�rst patch of the dictionary for the LLE. The second step is to search for the(K � 1)-NN
[a1; :::; aK �1 ] of the patch X BM . The union of theseK patchesA =

�
X BM ; a1; :::; aK �1

�

forms the dictionary (see Fig. 2.4) used for the LLE computation described above by
equations (2.1), (2.2) and (2.3). The motion information can then be encoded as in the
reference codec (e.g. H.264 or HEVC), which does not increase the corresponding rate
cost.
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Figure 2.4: Illustration of the �rst two steps of the BM-LLE method.

2.2.4 Optimized template-based K-NN search for LLE-based predic-
tion

To further enhance the RD performance, the ITM-LLE method was optimized. First,
L nearest neighbors to the template of the current block are found. For each patchcl

found by this L-NN search, a dictionary is constructed leading to a set ofL dictionaries
A 0; :::; A L�1 . Each dictionary A l is formed by stacking the patch cl and its (K �
1) � NN (see Fig . 2.5). Since the patches are found using only the template of the
current block, the same set of dictionaries can be found by the decoder. An LLE-
based predictor is computed with each dictionary and the dictionaryA lopt giving the
best RD performances is retained, and its indexlopt is signalled to the decoder. The
number of dictionaries L is taken as a power of 2, and the index is coded with a �xed
length binary code. This method is referred to as optimized ITM-LLE (oITM-LLE).
The di�erent steps of the algorithm are detailed as pseudo-code in Algorithm 1.

2.3 Simulations and results

2.3.1 Integration in the MPEG-4 AVC/H.264 coding scheme

The reference and proposed methods presented in sections 2.1 and 2.2 respectively have
been tested in a H.264 framework. Note that only the TM-A was considered and not
TM, as TMA gives higher performances. The TM-A and the LLE-based prediction
methods have been introduced in the coding scheme in competition with the existing
H.264 inter and intra prediction modes. This solution was chosen over a simple re-
placement of the existing motion compensation prediction (MCP) method by an Inter
LLE-based method because they are complementary. In fact the MCP method is already
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Figure 2.5: Example of construction ofA0 and AL�1 dictionaries from candidate patches
c0 and cL�1 (oITM-LLE method).

quite e�cient, e.g. for smooth textures with little or no motion. A typical example is
a static background where the Skip mode can be used. Multi-patches methods such as
the proposed ones using LLE are better at predicting high frequency pseudo-periodic
textures, which are not easy to reconstruct using only one block (as shown in Fig. 2.6).

Figure 2.6: Left: close-up of a building from the City source sequence. Middle: H.264
prediction. Right: oITM-LLE prediction.
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Algorithm 1 oITM-LLE prediction method
Input: X; K; L
Output: current block predictor X̂ u

Determine the L nearest neighbors of the current template X k , i.e the templates ck 0 ; :::; ck L�1 such
that d0 � ::: � dL�1 with di = jjX k � ck i jj
Retain the L patches associated with the L templates determined in the previous step: ci = [

ck i
cu i

]; i =
0; : : : ; L � 1
for l = 0 ! l = L � 1 do

Find K � 1 neighbors close tocl , i.e., the patches
�
al

1 ; :::; al
K �1

�

Set A l =
�
cl ; al

1 ; :::; al
K �1

�

Retrieve A l
k =

h
al

k 0
; :::; al

k K �1

i
and A l

u =
h
al

u 0 ; :::; al
u K �1

i
from A l . Note that here cl = [

a l
k 0

a l
u 0

]

Solve the constrained least squares problem:
minV l


 X k � A l

k V l

 2

2
s.t.

P
m V l

m = 1
Get the predictor:
X̂ l

u = A l
u V l

Compute the corresponding RD cost RD l

end for
Select the optimum lopt = arg min l RD l

Set X̂ u = A l opt
u V l opt

The MCP method is used for block partitions going from size16 � 16 to 8 � 8.
Experiments using the H.264 reference software show that further sub-partitioning into
8 � 4, 4 � 8 and 4 � 4 blocks brings little improvement in terms of coding performance,
while increasing the complexity. In fact, the signaling cost of the motion information
usually becomes prohibitive for such small partitions. The TM-A and our LLE-based
prediction methods are applied on8 � 8 blocks.

The Skip mode is allowed for both P and B frames, as well as the additional bi-
predictive mode for the B frames. The Inter TM-A or LLE-based method to be tested
is introduced in competition with the MCP method for 8 � 8 partitions only, and for
both P and B frames. We set the template width to 3 pixels. The choice between
the classical MCP method or the additional TM-A or LLE-based method is based on
a RDO criterion. The syntax then needs to be modi�ed to send a �ag to the decoder
indicating which method is selected. The rate is therefore increased by 1 bit for each
partition that features an additional Inter prediction method (TM-A or LLE-based).
The index lopt of the selected dictionary is also transmitted using a �xed length code
when the oITM-LLE method is retained for predicting the current block. Experiments
showed that the bit-rate corresponding to the �ag for the selected method amounts in
average to about two to three percents of the full bit-rate, while the bit-rate of the
dictionary index reaches four to �ve percents. Note that this extra information bit-rate
could be further reduced using the CABAC.

The search window for the Inter TM-A or Inter LLE-based prediction methods is
de�ned in the reference frames of theL 0 list for the P frames, of the L 0 and L 1 lists for
the B frames, and in the decoded part (causal part) of the current frame for both P and
B frames. Note that if an LLE-based prediction method is applied to Intra prediction,
the search window is only de�ned in the causal window. The search window is centered
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Table 2.1: Simulations parameters

Parameter Setting
Sequence type: IBBPBBP
Number of encoded frames: 31 (Matrix: 34)
Number of reference frames:
- for BM: 4
- for K -NN: 4 (& causal part)
Search-range:
- for BM: 32 pel for CIF

64 pel for 720p
- for K -NN: 32 pel for all
Search method:
- for BM: Fast Full Search
- for K -NN: Full Search
Search accuracy:
- for BM: Quarter Pel
- for K -NN: Full Pel
Block sizes for intra: all 16x16 to 4x4
Block sizes for MCP: all 16x16 to 8x8
Block sizes for LLE: 8x8
Template size: +3 pel on width and height
Quantization parameter (I/P/B): 22/23/24, 27/28/29,

32/33/34, 37/38/39
Number L of dictionaries for oITM-LLE 32

on the position of the current block.
Note that the solution we propose to integrate our method in the H.264 codec is

still valid in HEVC. In fact, the prediction tools in HEVC follow the same principles as
those used in H.264. Detailed explanations are given in the perspectives (section 2.4).

2.3.2 Experimental conditions

The proposed schemes have been implemented in the latest release of the JM-KTA
software [53], in order to be compared with the H.264 prediction modes. Simulations
have been run using 5 test sequences presenting di�erent characteristics in terms of
motion and texture (see Fig. A.1 in annex, section A), and having di�erent resolutions
(three CIF sequences and two1280� 720sequences). The CIF sequences are respectively
made of 31 frames extracted from the Foreman sequence (frames 149-179), characterized
by fast motion and smooth natural texture, 31 frames extracted from the �Rushes�
sequence (frames 597-627) containing high frequency texture and complex motion, and
34 frames extracted from the trailer of the Matrix movie1 (frames 1810-1843). This
sequence was chosen because of its fast scene changes, occurring every 2-3 frames. The
di�erent scenes contain little motion but cover a wide range of textures. The1280� 720
sequences are made of 31 frames extracted from the �City� (frames 230-260) and the
�Spincalendar� (frames 500-530) sequences respectively. The urban scene in the �City�
sequence contains non-stochastic high frequency textures, with a slow camera motion.

1©1999-2015 Warner Bros.
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The �Spincalendar� sequence contains di�erent textures following a smooth rotation
motion. The modi�ed encoder (see section 2.3.1) has been con�gured with the Main
pro�le [1] and the parameters given in Table 2.1. The rate gains are obtained using the
Bjontegaard measures [54]. The complexity is measured trough the percentage of the
tested encoder processing time over the one of the H.264 reference encoder.

Due to di�erent experimental conditions, the given complexity values correspond
to averaged estimates with a standard deviation of about10 %. Note that the main
goal of contribution in this chapter is to assess the coding performances of the di�erent
methods, and thus we did not focus on an optimized development. For this reason,
and although we are aware that TM-based methods increase the decoder complexity,
we only give some elements of complexity at the encoder side. The main complexity
increase is due to theK -NN search, for which fast methods exist [14][15], and the LLE
weights computation. However, contrary to the encoder side, at the decoder side it only
a�ects the blocks for which the LLE-based prediction method has been selected. As an
example, in section 2.3.4 the LLE-based prediction methods account for about 20 % of
the selected modes.

In the following section, we �rst analyze the performances of the proposed methods
when used for Inter prediction. The performances are analyzed as a function of the key
parameters: the numberK of nearest neighbors, the reference frames number and the
search window size. We also give the corresponding complexity. Second, the methods
are also assessed when used for Intra prediction only or when used for both Intra and
Inter prediction.

2.3.3 RD performance analysis & elements of complexity

In this section we discuss the gains in terms of bit-rate reduction of the proposed
methods against the H.264 reference, along with the execution times measured at the
encoder. The values are averaged over the full panel of test sequences.

2.3.3.1 Impact of the parameter K

Fig. 2.7 shows how the bit-rate savings for each method vary as a function of the
parameter K . Fig. 2.8 shows the corresponding complexity for each method, except
the oITM-LLE method, which reaches signi�cantly higher levels (about 5000 to 6000
%). In terms of RD performance, the TM-LLE, ITM-LLE and oITM-LLE methods
outperform the TM-A method, which demonstrates the better adaptation of the LLE
weights compared to a simple averaging, especially whenK increases. In average, the
highest bit-rate saving is achieved with the oITM-LLE method, reaching more than8
%.

45



Figure 2.7: Coding performances obtained with the di�erent proposed prediction meth-
ods as a function of the numberK of nearest neighbors.

Figure 2.8: Encoder complexity obtained with the di�erent proposed prediction methods
as a function of the numberK of nearest neighbors.

In Table 2.2, we give, for each method, theK value tuned to obtain a satisfying
trade-o� between the execution time and the coding gain (from Fig. 2.7 and Fig. 2.8),
which are also given. We can see that the TM-LLE and ITM-LLE methods outperform
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the state-of-the-art methods in terms of RD performances. The TM-LLE method is also
competitive in terms of complexity. However, the BM-LLE is only competitive in terms
of complexity, but not in terms of coding gains. The oITM-LLE does produce the best
results in term of bit-rate reduction, but at a really high cost in terms of execution time.
For the aforementioned reasons, the detailed analysis of the BM-LLE and oITM-LLE
methods is not pushed further for Inter prediction. We will see however in section 2.3.4
that, when used for Intra prediction, the oITM-LLE method can be e�ciently combined
with less complex Inter prediction method such as TM-LLE. For the next simulations,
K is set to the values presented in Table 2.2.

Table 2.2: K values set to achieve a trade-o� between RD performances and complexity.

Method K value Execution time in % Bit-rate gain in %
TM-A 8 213 -5.30
TM-LLE 8 249 -5.89
BM-LLE 16 204 -1.80
ITM-LLE 64 362 -5.85
oITM-LLE 32 5077 -7.79

2.3.3.2 Impact of the reference frames number

Fig. 2.9 shows how the bit-rate gains for each method vary as a function of the number
of reference frames. Fig. 2.10 shows the corresponding complexity. In terms of RD
performance, we can see that the proposed methods can outperform the TM-A and the
highest bit-rate reduction is achieved with the ITM-LLE method, reaching 6:33 %.

In Table 2.3, the reference frames number is set in order to achieve a satisfying
trade-o� between complexity and RD performances (from Fig. 2.9 and Fig. 2.10).
The corresponding execution times and bit-rate reductions are given. We can see that
the TM-LLE method can perform better than the TM-A method in terms of RD per-
formances for a similar complexity. The ITM-LLE can achieve the highest bit-rate
reduction, which requires an increased complexity.

Table 2.3: Reference frames number set to achieve a trade-o� between RD performances
and complexity.

Method Reference frames Execution time in % Bit-rate gain in %
number

TM-A 3 157 -5.14
TM-LLE 3 156 -5.83
ITM-LLE 1 276 -6.33
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Figure 2.9: Coding performances obtained with the di�erent proposed Inter prediction
methods as a function of the number of reference frames.

Figure 2.10: Encoder complexity obtained with the di�erent proposed Inter prediction
methods as a function of the number of reference frames.
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2.3.3.3 Impact of the search window size

Fig. 2.11 shows how the bit-rate reductions for each method vary as a function of the
search window range. Fig. 2.12 shows the corresponding complexity. Table 2.4 gives
the coding gains and corresponding execution time when the search window range is set
to achieve a satisfying trade-o� between RD performances and complexity. The number
of reference frames is not �xed, and set depending on this range. The search window
range is �rst set to 16, with 4 reference frames, then set to32, with 4 reference frames,
and �nally set to 64, with 1 reference frame. The last con�guration was chosen with
only 1 reference frame in order to limit the complexity. However, the same amount of
patches is available for theK -NN search for the last two con�gurations.

We can see that the proposed methods can outperform the TM-A, reaching up
to 7:20 % bit-rate savings for the ITM-LLE method. As for the previous results, the
highest bit-rate reduction can be achieved by the ITM-LLE method, while the TM-LLE
method allows a better trade-o� between RD performances and complexity.

Table 2.4: Search window size set to achieve a trade-o� between RD performances and
complexity.

Method SW range Execution time in % Bit-rate gain in %
TM-A 32 213 -5.30
TM-LLE 32 249 -5.89
ITM-LLE 16 207 -4.94

Figure 2.11: Coding performances obtained with the di�erent proposed prediction meth-
ods as a function of the SW range and the number of reference frames.
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Figure 2.12: Encoder complexity obtained with the di�erent proposed prediction meth-
ods as a function of the SW range and the number of reference frames.

2.3.4 Combining Intra and Inter LLE-based prediction methods

In this section, we focus on the integration of both Intra and Inter prediction based
on LLE. As in [13], the LLE-based Intra prediction method uses both TM-LLE and
oITM-LLE prediction techniques in competition, integrated in H.264 by replacing two
of the eight directional modes. The replaced modes are the least statistically used. The
statistics are obtained by �rst running the original H.264 software without the additional
LLE-based prediction methods. The proposed Intra method is allowed for8 � 8 and
4 � 4 partitions. The method is here denoted Intra TM/oITM-LLE. Note that this
method is not only applied to I frames, but also to P and B frames. The method chosen
for LLE-based Inter prediction is TM-LLE, since it allows a good trade-o� between
complexity and coding performances, and is here denoted Inter TM-LLE. First, the
RD and complexity performances are assessed, followed by an in-depth analysis of the
encoder behavior. For the Intra TM/oITM-LLE method, K is set to 32, the search
range is set to32, and L is set to 8. For the Inter TM-LLE method, K is set to 8, the
search range is set to32, with 1 reference frame.

Table 2.5 shows the coding performances achieved with the Inter TM-LLE method
alone, the Intra TM/oITM-LLE method alone, and the combination of both methods,
against the H.264 reference. Table 2.6 shows the corresponding encoder complexity.
The results demonstrate that the LLE-based Inter and Intra prediction methods are
complementary, especially when evaluating the coding gains of the proposed methods
for each sequence separately. We can see that the combined Inter TM-LLE alone and
Intra TM/oITM-LLE methods can achieve up to 15:31% bit-rate saving.
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Table 2.5: Coding gains (in %) for the Inter TM-LLE, Intra TM/oITM-LLE and com-
bined methods for each sequence.

Sequence Inter TM-LLE Intra TM/oITM-LLE Inter TM-LLE and
Intra TM/oITM-LLE

Foreman -2.73 -1.68 -4.40
Rushes -5.15 -2.90 -7.27
Matrix -2.43 -6.53 -6.47
City -6.57 -3.60 -8.80
Spincalendar -7.95 -6.60 -15.31
Average -4.97 -4.26 -8.45

Table 2.6: Encoder complexity (in %) for the Inter TM-LLE, Intra TM/oITM-LLE and
combined methods for each sequence.

Sequence Inter TM-LLE Intra TM/oITM-LLE Inter TM-LLE and
Intra TM/oITM-LLE

Foreman 101.34 154.81 210.73
Rushes 98.89 148.47 202.59
Matrix 89.85 187.80 171.14
City 94.38 119.13 233.52
Spincalendar 93.39 167.93 426.61
Average 95.57 155.63 248.92

Note that, even with the combined methods, the percentage of extra-information
(�ag indicating if the LLE-based method is used and the index for the oITM-LLE
method) only amounts in average to two to three percents of the complete bit-rate.

Fig. 2.13 shows the coding performances, averaged over all sequences, of the com-
bined methods as a function of the frame type. For I frames, only the Intra TM/oITM-
LLE method is used, and the bit-rate saving reaches5:92 %. For the P and B frames,
the bit-rate saving reaches7:20% and9:27% respectively, which shows the gain brought
by the LLE-based Inter prediction.
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Figure 2.13: Coding performances of the combination of both Inter TM-LLE and Intra
TM/oITM-LLE as a function of the frame type.

Figure 2.14: Distribution of the selected prediction modes as a function of the frame
type.

Fig. 2.14 shows the mode distribution, averaged over all sequences, as a function
of the frame type. For I frames, the Intra TM/oITM-LLE method only accounts for
12:11% of the selected modes. Paradoxically, this little amount of selection shows the
method e�ciency, since it still brings a signi�cant bit-rate reduction. For the P frames,
the combined LLE-based methods account for25:98% of the selected modes, which is
more than the MCP mode (16:39%) and the Skip mode (25:25%). For the B frames,
the combined LLE-based methods account for19:42% of the selected modes, which is
more than the MCP mode (6:79 %), but less than the Skip mode (58:11%). Although
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it is less selected than for the P frames, the combined LLE-based methods coding gains
for the B frames are still signi�cant (as shown in Fig. 2.13), since it is accumulated
over more frames. Thus, we can see that the combined LLE-based methods amount for
a signi�cant part of the selected modes for the temporal frames.

Figure 2.15: Distribution of the selected prediction modes as a function of the quanti-
zation parameter.

Fig. 2.15 shows the mode distribution for all frames, averaged over all sequences, as
a function of the quantization parameter. The results show that the mode distribution
strongly varies depending on the bit-rate. The Inter TM-LLE method is much more
selected at high bit-rates (QP-I 22), while at low bit-rates (QP-I 37), the Skip mode
is the most selected mode. As explained in section 2.3.1, the LLE-based methods are
mainly e�ective for high-frequency pseudo-periodic textures, which are well preserved at
high bit-rates, but on the contrary over-smoothed at low bit-rates, which tends to favor
the skip mode. Moreover, we can see that the Inter TM-LLE is more selected than the
classical MCP for all bit-rates, and in proportion much more selected than the MCP at
low bit-rates. These results con�rm the better e�ciency of the proposed multi-patches
method for reconstructing high-frequency textures compared to the single block MCP.

The City sequence is a good example to illustrate this kind of behavior. The RD
curves of H.264 and the combined LLE-based methods for this sequence are displayed
in Fig. 2.16, and clearly show that the RD performances of the combined LLE-based
methods are better at high bit-rates.
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Figure 2.16: Rate-Distortion performances of the City sequence.

2.4 Conclusion and perspectives

In this chapter, we have introduced new Inter prediction methods for video compression
based on LLE. The proposed methods rely on the same multi-patches combination with
di�erent K -NN search strategies which are aided or not by motion information. It is
shown that the methods that are not aided by the motion information give the best
coding performances. This shows that our approach is an interesting alternative mode,
complementary to current video compression techniques. The di�erent methods can
signi�cantly improve the coding e�ciency compared to the H.264 reference software,
and the best methods outperform the state-of-the-art TM-A.

Through di�erent experiments, we showed that the proposed methods are not ex-
tremely sensitive to the key parameters in terms of RD performances. However, the
tuning of these parameters can be used to reduce the complexity. The oITM-LLE
method reaches the highest bit-rate reduction, which requires in return a high compu-
tation time. Nevertheless, when applying the oITM-LLE method to Intra prediction,
and combined with a less complex method such as TM-LLE for Inter prediction, we
showed that signi�cant bit-rate saving can be obtained for a reasonable complexity
cost.

Furthermore, the complexity essentially comes from theK -NN search for which
e�cient and fast methods exist [14][15], as well as hardware acceleration modules. In
particular, matching methods based on hash functions have been recently introduced to
perform e�cient NN search [16][17], and have been used to improve HEVC for screen
content coding. This process is also highly parallelizable and much reduced execution
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times can therefore be expected, e.g. using GPU implementation [19]. The study instead
focused on the assessment of the coding performances and not on the development of
an optimized paralellized implementation. Note that such optimized implementation
could also allow to re�ne the K -NN search to sub-pel level, so LLE-based methods could
potentially be combined with up-sampling �lters.

In addition, we believe that our results would still hold in HEVC. In fact, the pre-
diction tools in HEVC follow the same principle as those used in H.264: directional
propagation modes for Intra prediction and motion estimation/compensation for Inter
prediction. Our results show that the proposed methods are complementary with the
standard tools, and improve the RD performance. Template-based prediction methods
were extensively studied in H.264, and recent work shows that they can be e�ectively
used in HEVC [51][18]. We expect our methods to outperform these techniques, as they
yield a better prediction quality. The proposed methods are meant to be in competition
with the standard Intra and Inter prediction tools, which would require applying them
to di�erent PU sizes. In fact, the numerous PU sizes, and especially the larger ones, are
known to be an e�ective tool of HEVC [35]. This adaptation is conceptually straight-
forward, and can even be extended to rectangular PUs. Furthermore, additional tools
providing RD gain, such as adaptive transform sizes, de-blocking �lter [35], are directly
compatible with the proposed methods. The overhead in the bitstream corresponding
to the �ag indicating if the LLE-based method is used and the index for the oITM-LLE
method is low for H.264, and we do not expect an increase for HEVC, since applying
the proposed methods on larger PUs would reduce the number of �ags or indexes to be
transmitted.

55



56



Chapter 3

Epitome-based quantization noise
removal

In chapter 2, we studied Inter prediction methods based on Locally Linear Embed-
ding (LLE) in order to improve coding performances. Following the work presented in
[12][55][13] for Intra prediction, we showed that the proposed LLE-based multi-patches
methods were an e�cient Inter prediction tool. The coding performances are especially
improved when the proposed methods are combined for both Intra and Inter prediction,
which corroborates the interest of an in-loop implementation of such methods.

Independently from the standard video compression techniques emerged the concept
of epitome, �rst presented in [20][21], which is de�ned as a condensed representation
of an image or video containing the essence of its textural properties. An epitome
thus consists in a texture epitome, which we denoteE , containing texture patches
representative of the whole input signal, and a mapping� which links the texture
patches to their original position in the input image/video. Multiple application of the
epitomes are presented in [20][21], including segmentation, image editing, de-noising,
super-resolution and inpainting. The concept of epitome is in addition closely related to
image compression, as it relies on the reduction of similarities within an image, and was
used in [56] to improve H.264 Intra prediction. Moreover, a new epitome factorization
model was presented in [22], which presents among several applications a direct approach
for epitome-based image compression, which merely consists in compressing the texture
epitome and the transform map. However, the work of [23] showed that the coding
performances of such approach are limited, especially at high bit-rate. Based on the
work of [22], an adapted epitome generation algorithm is proposed in [23] for a novel still
image compression method, which consists in coding the texture and the transform map
along with a reconstruction residue. The method was proven e�cient compared to H.264
Intra coding. Furthermore, an improved approach is proposed in [57]1 which exploits the
concept of epitome in combination with the e�cient LLE-based multi-patches prediction
methods. More precisely, the epitome is �rst transmitted to the decoder, then the non-
epitome blocks are predicted in an inpainting manner from the epitome using LLE-based

1Co-authored publication
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multi-patches methods, with an in-loop residue coding. Results showed that the method
clearly outperforms H.264 Intra coding.

The work presented in this chapter can be seen as an extension of the work of [57]
from still image to video compression. However, the approach chosen here is an out-of-
the-loop scheme, where the epitome is transmitted to the decoder with a high quality in
addition to the whole encoded sequence, and used at the decoder side to perform multi-
patches based de-noising on the non-epitome blocks, instead of in-loop prediction. The
proposed approach thus gains in genericity, as it can be applied to any existing coding
scheme.

This chapter is organized as follow. Section 3.1 reviews background on epitomic
models and de-noising. Section 3.2 presents a method for e�cient epitome generation.
Section 3.3 describes the proposed quantization noise removal out-of-the-loop scheme
for video compression.

3.1 Background

3.1.1 Epitome generation

3.1.1.1 Generative models

N. Jojic and V. Cheung �rst introduced the notion of epitome in [20][21]. An epitome
is de�ned as the condensed representation (meaning its size is only a fraction of the
original size) of an image (or a video) signal containing the essence of the textural
properties of this image.

Figure 3.1: Epitome (right) generated from a frame of the Foreman sequence (left) and
part of the mapping (in red). Source: [58].

Given an epitome E and the input image I , a mapping � can be derived, which
links patches from the epitome to their position in the original image (see Fig. 3.1). If
the mapping and the epitome are given, the original image can thus be reconstructed.
However, the main applications of this approach have been for image analysis such as
segmentation, de-noising, recognition, indexing or texture synthesis. The epitome is
computed from an image through Maximum Likelihood Estimation (MLE) using an
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Expectation Maximization (EM) algorithm. The mapping � is then a hidden variable
in the computation process. This patch based probability model was shown to be of
high �completeness� in [59] but introduces undesired visual artifacts, which is de�ned
as a lack of �coherence�. In fact, since the model is learned by compiling patches drawn
from the input image, patches that were not in the input image can appear in the
epitome (see Fig. 3.2). These artifacts can be a drawback for some applications, e.g.
intra coding such as in [56][58][60], because they will limit the quality of the prediction.
As this chapter mostly deals with epitome dedicated to image coding, this generative
model approach will not be discussed in more details in the next sections.

This approach was also extended into a so-called Image-Signature-Dictionary (ISD)
optimized for sparse representation [61]. The ISD is generated by replacing the prob-
abilistic averaging of patches in the previous approach by their sparse representation.
Thus is obtained an image (see Fig. 3.2) that can be used as a dictionary for sparse
representations and has several important features such as shift and scale �exibility.
For the same reasons as the previous method it will not be considered in the rest of this
chapter.

Figure 3.2: Epitome (middle) and ISD (right) generated from Barbara (left). Input
image is 512x512, ISD and epitome are 75x75 (�gure is not at scale). Source: [61].

3.1.1.2 Factoring similar content within an image

Wang et al. introduced in [62] a new approach to build epitome based on self-similarity
tracking within the image. This approach has been designed with in mind (lossy)
image reconstruction (and more generally texture mapping) rather than image analysis
applications. Thus the epitome obtained by this method is composed of image patches
that are not altered.

In this approach, the input image I is factored in an epitomeE and a transform
map � (corresponding to the mapping in previous section). The input image is divided
into a regular grid of blocks and each block will be reconstructed from a transformed
epitome patch. The epitome itself is composed of disjoint texture pieces called �epitome
chart�. The transform map contains all the parameters that link the patches from the
epitome to the input image blocks. Wang et al. proposed a so called epitome atlas
which aim is to compact the di�erent epitome charts to obtain a smaller image.
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Ideally, one seek to minimize the size of the epitome and the transform map,jE j+ j�j,
as well as the image reconstruction errorjjI 0 � I jj2. Assuming that the block size is
�xed, the transform map size j�j is �xed as well. The problem can then be expressed
as:

min
E;�

jE j such that 8B 2 I; e(B ) � " (3.1)

where e(B) represents the reconstruction error of the current blockB .
This minimization is solved using a greedy construction process that iteratively

grows epitome charts copied from the input image. More precisely, the epitome con-
struction procedure has the following steps:

ˆ Find self-similarities for each blockB i in I .

ˆ Create an epitome chart EC for each repeated content, to satisfy a maximum
norm on the image reconstruction error (see Eq. 3.1).

ˆ Optimize the transform map �, to minimize the reconstruction error given the
epitome content.

ˆ Assemble all epitome chartsEC into an epitome atlas (optional).

We describe below the �rst two steps of the procedure.

Finding self-similarities. The �rst step is performed using the Kanade-Lucas-Tomasi
(KLT) feature tracker [63][64] that optimizes a�ne alignment of two windows. Thus
for each blockB i 2 I a set of matched patches (also called matchings)Match(B i ) =
fM i;0 ; M i;1 ; :::g is obtained, which is found through the di�erent transformations con-
sidered by the KLT algorithm: translation, rotation and scaling (see Fig. 3.3). In this
approach mirror re�ections were also considered. To be a viable matching the error
between the current blockB i and the candidate patch must be inferior to a threshold
"M .

Epitome chart extension. To extend an epitome chart EC one considers all the
matchings overlapping a blockB j included in EC. For the initialization all the block
of the image are considered and not only the blocks in the current epitome chart. The
region �EC encompassing said matchings is considered as a candidate for the extension
of EC (see Fig. 3.4). The actual extent is the candidate that can reconstruct the largest
region. The epitome chart growth stops when the regions reconstructed by the extent
candidates�EC are smaller than the extent candidate itself. The process stops when
the entire image is reconstructed.

Once the epitome is obtained the quality of the reconstruction image can be im-
proved by �nding potential better matching in the epitome for each block.

At this point the epitome itself is still the same size as the input image, but is
�lled with �empty� pixels outside the epitome chart. The authors proposed a method
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Figure 3.3: Find self-similarities within an image. Source: [62].

Figure 3.4: Candidate region�EC for epitome growth, formed as the union of match-
ings that overlap the block B j . Source: [62].

to compact the representation in a so-called epitome atlas, which can reduce the size of
the image (see Fig 3.5).
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Figure 3.5: Example of factor image. In the center is the epitome obtained from the
input image on the left. On the right is the epitome atlas obtained from the epitome.
Source: [62].

3.1.1.3 Epitome dedicated to image coding

In this section, we introduce an approach �rst presented in [23]. The method is inspired
by the previous one, but only relies on a translational model to �nd self-similarities,
with in mind image coding applications.

Finding self-similarities. The �rst step of the epitome construction consists in
searching, for each block in the input image, the set of patches in the image with similar
content. That is, for each blockB i , belonging to the block-grid, we determine the list of
matchings ML(B i ) = fM i;0 ; M i;1 ; :::g that reconstructs B i with a given error tolerance
"M (see Fig. 3.6). The procedure of matching is performed with a block matching
algorithm using an average Euclidian distance. Compared to previous method, the only
transformation allowed is translation. Note that an exhaustive search is performed in
the entire image. Once all the Match lists have been created for the set of image blocks
in block-grid, a new list RL(M j;k ) = fB j ; B l ; :::g will be built indicating the set of
image blocks that could be represented by a matching blockM j;k . This list is used in
the second step. Note that all the matching blocksM j;k found during the full search
step belong to the pixel grid. Furthermore the matching search can be extended to a
sub-pixel grid.

Epitome chart extension. Here, the second step that consists in building the epit-
ome charts di�ers from the previous approach. Each chartEC is initialized by the
matched patch which is the most representative in the input image and whose recon-
structed image blocks are not represented yet by the epitome. Formally the initialization
is based on a Mean Squared Error (MSE) criterion between the original imageI and
the reconstructed imageI 0, where the non reconstructed pixels ofI 0 are set to 0.

EC init = arg min
M

(

P W
i

P H
j jjI i;j � I 0

i;j jj2

W � H
) for M 2 MnE (3.2)
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Figure 3.6: For each blockB in the block-grid a list of matchings ML(B ) is found
at pixel accuracy. Note that in this example ML(B j ) and ML(B k ) have elements in
common.

where W and H are the width and the height of the image respectively,M is the set
of all available matchings and E is the set of matchings that constitute the current
epitome.

Once initialized the epitome chart EC is extended by considering a set of candidate
extension regions�EC m ; m = 0; :::; N � 1 where N is the number of candidates. The
candidates considered are the matchings overlapping with the current epitome chart.
The actual extension�EC opt should minimize the MSE betweenI and I 0. Furthermore,
in [23] is introduced an optimization taking into account so-called inferred blocks. The
inferred blocks are the potential matchings that can overlap the current chartEC and
the extension �EC m (see Fig. 3.7) and thus help reconstruct new blocks inI 0. The
criterion also takes into account the extension size so that the epitome chart growth
is limited. Formally the selection is conducting according to the minimization of the
following Lagrangian criterion:

�EC opt = arg min
�EC m

(

P W
i

P H
j jjI i;j � I 0

i;j jj2

W � H

+� �
jEC + �EC m j

W � H
)

(3.3)

wherejEC +�EC m j represents the size of the epitome chart and its extension evaluated
by the number of pixels. Note that the criterion of Eq. 3.2 is very similar but does not
need the second term because all candidates have the same size. Finally the extension
stops when no more matchings overlapping with the current epitome chart can be found.

The global process stops when the whole image is reconstructed.
Thus is obtained the epitomeE and a so-called assignation map� (corresponding

to the previous transform map), which is actually a subset of the listsRL. The epitome
charts in E are originally obtained at a pixel accuracy. In order to encode the epitome
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Figure 3.7: Epitome chart extension process. On the right, in red is presented a �nished
epitome chart, while in blue is presented the current epitome chart being extended. The
inferred blocks are in purple.

e�ciently, it has to be padded so it suits the block structure of the encoder used. Thus
in [23], E was padded to a 8x8 block grid to be later encoded with a H.264 encoder. The
padding process adds blocks and inferred blocks in the epitome that can then be used
to improve the assignation map. In [23] were also conducted experiments where the
matchings were found at sub-pixel accuracy, which lead to better coding performances
at the price of an increased complexity.

In Fig. 3.8, we give an example of epitome obtained with this method on the
Calendar image, with a threshold" = 10:0.

Figure 3.8: Epitome (left) extracted from Calendar and the corresponding reconstructed
image (right). The epitome was obtained using the full search method for the self-
similarities search with the threshold " = 10:0.

3.1.2 De-noising

De-noising is the task of recovering an estimate of a source signal from a noisy version
of this signal. Image de-noising has been a very active research topic, and we present
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in this section several methods among the most popular and best performing. These
methods assume that the source image is corrupted with additive white Gaussian noise
(AWGN). We note Y the noisy version of the source imageX . For all the pixels yi and
x i in Y and X respectively, we have the following relation:

yi = x i + ni (3.4)

where ni is a zero-mean Gaussian variables with variances� 2
n .

In the remaining of this section, we will note y and x patches extracted from the
noisy image and the source image respectively.

More sophisticated noise models than AWGN have been proposed, such as the signal-
dependent noise model [65], for which the pixelsyi and x i have the following relation:

yi = x i + x 
i � ui + wi (3.5)

where  is the exponential parameter which controls the dependence on the signal, and
u and w are zero-mean Gaussian variables with variances� 2

u and � 2
w respectively.

However, the main approaches to remove such noise rely on the assumption that
the noisy image can be partitioned into segments or clusters for which the noise can
be modeled by AWGN, such as in [66][67]. The approach thus consists in segment-
ing/clustering the noisy image, estimate the noise level in each segment/cluster, and
�nally apply a known de-noising method for AWGN on each cluster. Thus, in the next
sections, we only present methods assuming AWGN.

We note that many recent successful de-noising methods relying on sparse represen-
tations have been proposed [68][69][70]. E�cient techniques relying on the local learning
of dictionaries through clustering were also proposed [71][72]. However, it was shown
that these methods are usually outperformed by the BM3D algorithm [73]. Thus, we
choose not to describe these methods in details, and focus instead on the BM3D algo-
rithm, which is later use for comparison in the contributions of this chapter.

3.1.2.1 Optimal Wiener �lter

The optimal Wiener �lter for image de-noising proceeds by shrinking coe�cients in a
transform domain. We note T the transform, e.g. a discrete Fourier transform (DFT),
a discrete cosinus transform (DCT) or a discrete wavelet transform (DWT).

The Wiener �lter coe�cients in the transform domain are expressed as follow:

W =
jT (x)j 2

jT (x)j 2 + � 2
n

(3.6)

The de-noised estimatex̂ of the patch x is obtained from the noisy patch y by
applying the �lter to the transform coe�cients of y and inverse transform the result:

x̂ = T �1 (W � T(y)) (3.7)

where � represents the element-by-element multiplication.
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The Wiener �lter is denoted optimal because its computation relies on the knowledge
of the source signal. In practice, the �lter can be used by computing a �rst de-noised
estimate of the image, and using as �oracle� in Eq. 3.6, such as in [24] or in the BM3D
algorithm described below.

3.1.2.2 Transform domain thresholding

The idea of thresholding coe�cients in a transform domain was introduced in [25], and
has been proved to be very e�cient since. The method is conceptually similar to the
Wiener �lter, but instead of applying the shrinkage coe�cients, a thresholding operator
(which does require any knowledge on the source signal) is applied. In [24], the method
is used to obtain a �rst de-noised estimate which is then used as oracle for a Wiener
�lter.

If we note � the thresholding operator, the de-noised estimatêx of the patch x is
obtained from the noisy patch y as:

x̂ = T �1 (� (T (y))) (3.8)

Two types of operators� can be used, the soft thresholding as in [25][26] or the hard
thresholding as in [24]. We give below the de�nition of soft and hard thresholding of a
coe�cient c with threshold � > 0:

� sof t (c; �) =

(
0; if jcj < �

c � sign(c)�; otherwise.
(3.9)

� hard (c; �) =

(
0; if jcj < �

c; otherwise.
(3.10)

The threshold � is usually determined depending on the noise level� n , as the ratio-
nale behind thresholding in the transform domain is to retain coe�cients with a high
signal-to-noise ratio.

3.1.2.3 Non Local Mean

Although the previous methods performing in a transform domain are very e�cient,
another type of methods chose to perform de-noising directly in the pixel domain,
such as the bilateral �ltering [74]. This method directly estimates a pixel as weighted
average of its neighboring pixels. Although a photometric distance is taken into account
to compute the weights, this method often results in over smooth estimates.

The Non Local Mean (NLM) algorithm [27][28] relies on a similar idea, but instead
searches for neighbors of the patch surrounding the pixel to be de-noised in the Eu-
clidean space, and combines the central pixels of the neighbor patches depending on the
Euclidean distance between the current patch and its neighbor. The neighbor patches
can be spatially located anywhere in the image, hence the �non local� property of the
method.
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Formally, we note yc the central pixel of the noisy patch y of sizeN � N . We note
K the number of neighbors, andyi ; i = 0 : : : K � 1 the K nearest neighbors (K -NN) of

y. The distance betweeny and its neighbor yi is noted di =
q

jjy �y i jj 2
2

N 2 . Note that y0

is the patch y itself, as it is its closest neighbor. Originally, all the patches available in
the image were considered as neighbors. To limit the complexity, only the patches in
a search window around the current patch were then considered. Alternatively, a �xed
number K de�ned by the user can be used.

The de-noised pixelx̂c is obtained as follow:

x̂c =

K �1P

i=0
wi � yc

i

K �1P

i=0
wi

(3.11)

The averaging weights are computed as:

wi = e
�

d2
i

2� 2
NLM (3.12)

where the parameter� NLM act as a degree of �ltering, and is set in the original NLM
algorithm to � NLM = 10 � � n .

A patch-wise version of the method can be derived from the pixel-wise NLM by
directly combining the K -NN patches:

x̂ =

K �1P

i=0
wi � yi

K �1P

i=0
wi

(3.13)

The averaging weights are computed exactly as before. In this case, several estimates
are obtained for each pixel, which are averaged to obtained the �nal de-noised version
of the pixel.

3.1.2.4 BM3D

The block-matching 3D (BM3D) algorithm was presented in [29], and is still to this day
one of the best performing methods in image de-noising. The method advantageously
combines the strengths of the non local approaches and transform domain de-noising,
by stacking a patch and its K -NN in a 3D group, and then applying a 3D transform on
the 3D group of patches.

In a �rst step, the 3D transformed group is processed using hard thresholding. In
a second step, the �rst de-noised image estimate obtained at the previous step is used
to compute newK -NN and the corresponding 3D transformed group is processed using
Wiener �ltering. In the Wiener �ltering step, the 3D transformed group of the �rst
estimate patches is used as oracle to �lter the 3D transform group of the corresponding
noisy patches.
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The 3D transform not only increases the sparsity of the transform compared to a
2D transform (and thus the e�ciency of the transform domain processing), but also
allows a collaborative �ltering, i.e. all the patches of a 3D group are de-noised at once.
Several estimates are thus obtained for a pixel, which are �nally aggregated to obtain
the �nal estimate.

The two steps of the method are described in detail below. Many notations are
needed to formally describe the BM3D algorithm, which are summarized in Table 3.1
for clarity. The method processes overlapping patches of sizeN � N with a step of s
pixels in both horizontal and vertical directions. For each patch, theK -NN search is
limited to a search window of sizeNSW � NSW . In the original algorithm, the distance
between the current patchy and one of its retained neighboryi must not be higher than
a pre-de�ned maximum acceptable distance"BM :

di =
jjy � yi jj2

2

N 2 � "BM (3.14)

Thus, K refers to the maximum number of neighbors. To keep the notations
tractable, we still using in the description below the term K -NN, although the ac-
tual number of neighbors could be inferior toK . Note that these parameters (denoted
common parameters in Table 3.1) may vary between the two steps in practice, but we
keep below the same notations for clarity purpose.

Table 3.1: Notations used for the BM3D

Common parameters
N � N Size of the patches
s Sliding step between the overlapping patches
NSW � NSW Size of the search window for the K -NN search
K Maximum number of neighbors
" BM Maximum acceptable distance between the current patch an its neighbors

First step: Hard Thresholding
THT 3D transform used for the Hard Thresholding step
� threshold parameter for the hard thresholding
G HT

y 3D group containing the K -NN of the current patch to be de-noised y
G HT

x̂ 3D group containing the de-noised estimates of the patches in G HT
y

Second step: Wiener �ltering
This step is performed on the de-noised frames obtained at the previous step.

TW ien 3D transform used for the Wiener �ltering step
G x̂ 3D group containing the K -NN of the �rst estimate of current patch x̂
G W ien

y 3D group containing the noisy patches corresponding to the patches in G W ien
x

G W ien
x̂ 3D group containing the de-noised estimates of the patches in G W ien

y

Hard Thresholding In this �rst step, the K -NN yi ; i = 0 : : : K � 1 of the patch y
are �rst found. Note that, as for the NLM, the patch y0 is the patch y itself. The
patches are stacked in a 3D group notedGHT

y . A 3D transform THT is applied on this
3D group, which is then processed using hard thresholding. The de-noised group noted
GHT

x̂ is obtained after applying the inverse 3D transform:
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GHT
x̂ = T �1

HT (� (THT (G HT
y ); �)) (3.15)

where � is the threshold parameter, usually determined depending on the noise level.
Note that all the patches of the group are thus de-noised at once.

At the end of this step, several estimates can be thus obtained for a pixel, which are
then aggregated to obtain the �nal estimate.

The hard thresholding step is represented in Fig. 3.9.

Figure 3.9: First step of BM3D: hard thresholding.

Wiener �ltering This second step takes advantage of the �rst de-noised image esti-
mate obtained at the previous step to perform a newK -NN search, which is expected
to be more accurate. TheK -NN of the �rst estimate of the current patch x̂, noted
x̂ i ; i = : : : K � 1 with x̂ = x̂0, are stacked in a 3D group notedG x̂ . The corresponding
patches in the input noisy imageyi ; i = : : : K � 1 are stacked in a second 3D group
noted GW ien

y . This noisy patches group can then be processed by a Wiener �lter, using
G x̂ as an oracle. The Wiener �lter is computed as:

W =
jTW ien (G x̂ )j2

jTW ien (G x̂ )j2 + � 2
n

(3.16)

The group of de-noised patches can then be obtained as follow:

GW ien
x̂ = T �1

W ien (W � TW ien (G W ien
y )) (3.17)
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As in the previous step, several estimates can be obtained can be obtained for a
pixel, and are aggregated to obtain the �nal estimate.

The Wiener �ltering step is represented in Fig. 3.10.

Figure 3.10: Second step of BM3D: Wiener �ltering.

Several extensions of the BM3D have been proposed by its authors, e.g. color images
de-noising [75], de-blurring [76], or even super-resolution [77]. Applications also include
a Video BM3D (VBM3D) algorithm [78], in which the K -nearest neighbors of a patch
are also searched in the adjacent frames. More precisely, the neighbors are searched in
the current frames, NF R past frames, andNF R future frames.
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3.2 Clustering-based methods for fast epitome generation

In this section, we propose a novel method for fast epitome generation. We build on the
approach described in section 3.1.1.3 and propose to improve the self-similarities search
step.

In fact, the self-similarities search method described in section 3.1.1.3 ensures that
the best matches are found since an exhaustive search is performed. However, this
method is known to be expensive in terms of memory consumption and processing time,
since each block in the block-grid will be associated to a list that can contain a high
number of matches. Di�erent methods have been proposed to reduce the complexity of
such nearest neighbor (NN) search. Video codecs such H.264 or HEVC usually integrate
approximate BM algorithm. Classical approach to accelerate a NN search is to consider
a hierarchical search, where the search is �rst conducted in sub-sampled version of the
input image and the result is used to initialize the next level search. Faster approximate
method for NN search based onk-dimensional tree (kd-trees) have been proposed [14].
State of the art concerning approximate NN (ANN) search optimization have been
proposed in [79] and generalized forK -NN search in [15]. However all these methods
are designed to �nd only a few best NN, i.e. use a relatively small and �xed value
for K . The problem we address here is di�erent because the number of NN,K , is
not determined in advance and can reach really high values (up to several thousands,
depending on"M ).

We propose to replace the exhaustive match search by an approximate approach
that takes advantage of the self-similarities within the blocks in the block-grid. In a
�rst step, �su�ciently similar� blocks are grouped together. In a second step a match list
is computed for each group, with respect to a representative block from the group. Note
that this self-similarities search method is still compatible with the epitome generation
step described in section 3.1.1.3, but here blocks in a same group will use the same
match list. This not only accelerates the process since less match lists are computed
but also saves memory space.

The similarity between the blocks is assessed using the average sum of absolute
di�erence (SAD). We de�ne a tolerance error "A that will be used to assign blocks to
groups. The assignation threshold"A should be smaller than the matching threshold
"M . Thus we de�ne "A via a coe�cient � A such as :

"A = � A � "M ; 0 � � A < 1 (3.18)

Two grouping methods are presented below : �rst a novel list-based method, second
a threshold-based clustering method adapted from [80]. We are here interested in a
clustering method working without any prior information on the cluster number, which
makes the use of classical methods such asK -means algorithm uneasy.

Note that the grouping is applied only for blocks in the block-grid.
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3.2.1 List-based method for self-similarities search

This method was designed to obtain a simple grouping of similar non-overlapping blocks
and follows the steps below:

ˆ For each blockB i , �nd all blocks whose distance is below the assignation threshold
"A . The association ofB i and such blocks form a potential listPL(B i ).

ˆ Find the potential list PLopt with the highest cardinal. This potential list is set
as an actual list AL. Blocks in AL are removed from the other potential lists they
may belong to. If the block B used to compute a potential listPL(B ) is removed
from this list, this potential list no longer exists and is simply not considered in
future iterations.

ˆ The previous step is iterated until all blocks belong to an actual list.

Finally for each actual list AL(B i ) we determine a match listML(B i ) = fM i;0 ; M i;1 ; : : :g
obtained through an exhaustive search in the pixel-grid. The list is computed with re-
spect to B i but is then used by all blocks in AL(B i ) for the epitome generation step.
To satisfy the constraint that all the blocks have a reconstruction error inferior to "M ,
the blocks di�erent from B i in the list AL(B i ) only use a subset ofML(B i ) de�ned as:

fM 2 ML(B i )jd(B i ; M ) � "M � "A g (3.19)

This solution avoids computing the distance between blocks and all elements of a match
list, which can be time consuming.

On one hand, this method tends to favor the creation of a few actual lists with large
sizes, which is interesting since less match lists are computed. On the other hand, the
blocks B i used to compute the match lists are not necessarily the most representative
blocks of the actual lists, which can limit the matches quality for the blocks in the
actual list di�erent from B i . The method described in the subsection 3.2.2 addresses
this issue.

In the example of Fig. 3.11, the size ofAL(B j ) is superior to the one ofAL(B i )
or AL(B k ), so B 0 = B j , and B j and its associated blocks form the clusterC0. Here
A j; 4 = Ak;0, but since it belongs to C0, it is removed from the list AL(B k ). The
next cluster C1 is thus formed by B i and its associated blocks since it has now more
associated blocks thanBk .

At the end of the process each blockB in the block-grid is linked to a list of
matchings ML that can be used to build an epitome, e.g. using the method described
in section 3.1.1.3. Contrary to the approach presented in section 3.1.1.3, we do not
need to actually compute the list of matchings for each blockB , but only for a subset
of blocks corresponding to the di�erent clusters. This process thus reduces computing
time and memory occupation.
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Figure 3.11: Example of self-similarities search using the associated lists.

3.2.2 Threshold-based clustering for self-similarities search

This method is derived from the threshold-based clustering algorithm presented in [80],
and proceeds as follow:

ˆ A block B0 is randomly selected and used to initialize the �rst clusterC0.

ˆ For every block B not assigned to a cluster, compute its distance to the centroid
of all existing clusters. If all distances are higher than the assignation threshold
"A , initialize a new cluster with B as a seed. Otherwise assignB to the closest
cluster and recompute the centroid of this cluster as the average of all blocks in
the cluster.

ˆ As a result, all blocks are assigned to a cluster. For every cluster, recompute the
distances between the cluster blocks and the centroid. If a blockB is found to
have a distance to the centroid superior to"A , it is considered as a singularity and
remove from the cluster. B is then used as a seed to initialize a new cluster.

We thus obtain clusters whose blocks are consistent with each other, and thus for
each clusterCi a match list ML(B i ) is computed through an exhaustive search in the
pixel-grid, with respect to the block B i closest to the centroid. We choose not to use the
centroid itself, as it is computed as the average of all blocks in the cluster, and as result
can contain artifacts not suited for the match search. Thus except for the blockB i , all
blocks in Ci will use approximate matches. As for the previous grouping method, we
want to ensure that all blocks have a reconstruction error inferior to"M . The blocks
di�erent from B i thus only use a subset ofML(B i ), de�ned as in Eq. 3.19.

Contrary to the method described in subsection 3.2.1, this method does not favor
groups of large sizes and thus may produce more groups. However, the blocksB i are
better representative for their groups, which improves the quality of the matches.
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3.2.3 Trade-o� between complexity and quality

The trade-o� between the complexity reduction and the matching approximations is
set using the parameter� A . When � A = 0 the self-similarities search is performed for
each block as in section 3.1.1.3 and the complexity is not reduced. When� A ! 1, on
one hand groups of higher size are built and therefore we achieve higher complexity
reduction, but on the other hand the approximation between the group blocks and the
matches can lead to lower epitome quality. Furthermore the subset of matches used for
the group blocks de�ned in Eq. 3.19 can be really small since"A ! "M , which can
degrade the e�ciency of the epitome generation step. In practice a good trade-o� is
obtained when � A = 0:5 (see section 3.2.4).

3.2.4 Simulations and results

Experiments were conducted on a set of 4 images : a frame extracted from the Foreman
sequence (CIF), Lena (512� 512), City (1280 � 720) and Calendar (1280� 720). The
size of the blocks is set to8 � 8, and the epitome is padded with blocks of the same
size. The epitomes were computed on a processor Intel core i7 @2.1 GHz.

First tests were carried out with "M = f3:0; 5:0;10:0;15:0g. The parameter� A

was here set to0:5. Results are displayed in Table 3.2. Best results between list-
based or cluster-based methods are displayed in bold font. The complexity reduction
is assessed by the percentage of the optimized memory occupation over the original
one, and the optimized method processing time over the original one. (Note that the
maximum absolute processing time for the original method to generate an epitome
ranges from a few seconds for CIF resolution, to several ten minutes for SD resolution).
Two processing times are displayed : the self-similarities search time, which is the
algorithm step actually optimized, and the complete epitome generation time. For all
images, the complexity decreases when"M increases, because higher approximations
are allowed. Thus the more interesting results are obtained when"M = 10:0 or "M =
15:0. The cluster-based method is overall faster than the list-based method for the
self-similarities search, but is overall slower for the complete epitome generation. On
average, the memory occupation reduction is better with the cluster-based method, but
the lowest memory occupation is achieved with the list-based method. The memory
occupation is prohibitive for images City and Calendar when"M = 15:00 with the
original method. This shows a very important limitation of the full search method
for high resolution images. Note that because of this, comparative results can not be
displayed, but the epitome can be still generated when using optimized methods.

The quality of the epitome produced is assessed by the reconstructed image quality.
The graphs representing the reconstructed image PSNR as a function of the epitome
size are displayed in Fig. 3.13. The epitome size approximately ranges from10% to
80% of the input image size, and is inversely proportional to the matching threshold
"M . The reconstruction PSNR approximately ranges from30 dB to 45 dB. For all
images, whatever the epitome generation method, the curves are almost identical. The
two methods presented in this section can thus reduce complexity while keeping the
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Table 3.2: Memory occupation and computation time % with respect to original method,
depending on"M , with � A = 0:5.

I " M

List-based method Cluster-based method
Memory Search Total Memory Search Total
load (%) time (%) time (%) load (%) time (%) time (%)

F
or

em
an

3:0 50.18 68.62 73.93 47.85 67.31 70.15
5:0 49.54 60.72 60.12 45.22 55.80 61.88
10:0 25.00 32.65 41.39 19.06 28.58 50.36
15:0 18.08 21.61 42.37 14.59 18.00 55.25

Le
na

3:0 98.18 75.54 78.92 96.81 69.05 70.13
5:0 63.61 61.00 65.24 48.28 56.12 66.19
10:0 29.98 37.49 51.92 23.66 31.60 55.74
15:0 19.96 23.09 59.69 21.64 23.56 64.48

C
it

y 3:0 60.54 66.75 65.27 55.85 68.62 69.25
5:0 60.71 64.165 64.160 56.47 62.48 62.80
10:0 51.47 48.07 60.07 48.18 47.06 59.75

C
al

en
da

r 3:0 84.66 68.36 66.44 80.69 70.36 68.02
5:0 48.43 54.76 58.83 42.08 53.25 59.94
10:0 28.33 32.58 52.97 53.98 42.43 57.91

same epitome quality.

Visual results are given in Fig 3.12 for the Calendar image with threshold"M = 10:0
for the full search, list-based method and threshold-based clustering respectively. For
the last two methods, we set� A = 0:5. We can see that the epitomes are di�erent,
but their sizes and corresponding reconstructed images are overall similar. Note the
exhaustive visual results for the di�erent test images, self-similarities search methods
and thresholds are given in annex, section B.1.

Despite some disparities in the complexity results presented in Table 3.2, the perfor-
mances between the two methods remain overall close. Complexity results for di�erent
values of � A are displayed in Table 3.3, with "M = 10. As expected, the complexity
decreases as� A increases. For� A = 0 :25 and � A = 0 :5, performances of the two meth-
ods remain similar, despite some disparities. However when� A = 0:75, the complexity
reduction is more important for the list-based method. This illustrates the behavior
of this method, which can reduce drastically the complexity when allowing important
approximations. However, when evaluating average reconstruction performances (see
Fig. 3.14), we can see that it has a negative impact, as it is the only point which
increases the epitome size while decreasing the reconstruction PSNR. Note that, as for
the previous experiment, the reconstruction performances are very similar for all im-
ages, but for clarity reasons we only show the average results. For the cluster-based
method, the complexity gain when� A = 0 :75 is limited compared to � A = 0:5, and the
reconstruction PSNR seems low compared to the epitome size, even though it is not as
evident as for the previous method. Therefore� A = 0 :5 seems to be, for both methods,
a good trade-o� value between complexity and epitome quality.
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Figure 3.12: Epitomes (left) extracted from Calendar and the corresponding recon-
structed images (right). The epitome was obtained using the full search method (top),
the list-based method (middle), and the threshold-based clustering (bottom) for the
self-similarities search with the threshold"M = 10:0 and the parameter � A = 0:5.
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Table 3.3: Memory occupation and computation time % with respect to original method,
depending on� A , with "M = 10:0.

I � A

List-based method Cluster-based method
Memory Search Total Memory Search Total
load (%) time (%) time (%) load (%) time (%) time (%)

F
or

em
an 0:25 70.66 53.17 61.51 67.86 51.42 58.41

0:50 25.00 32.65 41.39 19.06 28.58 50.36
0:75 9.58 21.94 24.74 7.32 19.96 46.74

Le
na

0:25 79.99 60.93 72.73 70.13 56.41 65.69
0:50 29.98 37.49 51.92 23.66 31.60 55.74
0:75 9.03 23.27 26.57 15.91 25.48 53.73

C
it

y 0:25 86.30 64.06 67.54 84.09 63.30 66.99
0:50 51.47 48.07 60.07 48.18 47.06 59.75
0:75 19.46 33.84 42.41 38.17 40.90 58.83

C
al

en
da

r 0:25 69.76 51.43 65.30 65.85 49.95 66.65
0:50 28.33 32.58 52.97 53.98 42.43 57.91
0:75 10.13 22.69 29.61 48.35 36.86 57.94

3.2.5 Conclusion

This section presents e�cient algorithms for epitome generation, based on list or cluster
methods. The grouping of non-overlapping blocks limits the number of subsequent
exhaustive searches over all overlapping blocks, and thus reduces the memory occupation
as well as the processing time. Experiments show that interesting complexity results
can be obtained without degrading the epitome quality.

In the next section, the proposed methods are implemented in an out-of-the-loop
de-noising scheme for video compression.
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Figure 3.13: Reconstruction performances for the test sequences depending on the epit-
ome size.

Figure 3.14: Reconstructed average PSNR vs epitome size.
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3.3 Epitome-based quantization noise removal

In this section, we use an epitome as a compact representation of the image/sequence.
The epitome is sent to the decoder at a high bit-rate, in order to provide high quality
patches which are used to restore the decoded sequence.

3.3.1 Overview of the proposed method

Here, we described the proposed approach in a compression context. Formally, we con-
sider the following notations: the source image/sequence is denotedX , the correspond-
ing coded/decoded image/sequence is denotedY , and X̂ the de-noised image/sequence.
We note E a texture epitome extracted from the source signalX . We will consider
patches of sizeM � N .

Figure 3.15: Proposed de-noising scheme for coding noise using epitomes.

The main idea of the proposed method is represented in Fig. 3.15 and consists in
the following steps:

ˆ At the encoder side:

� learn a set of texture epitomesfE g from the source sequenceX (see section
3.3.2)

� encode the set of epitomes at high quality (see section 3.3.3)

ˆ At the decoder side:

� decode the set of texture epitomesfE 0g

� de-noise the decoded sequenceY using the set of high quality epitomesfE 0g
(see section 3.3.4)

The speci�c epitome-based de-noising methods are described in details in the sec-
tion 3.3.4. Based on the proposed scheme, three applications are considered: �rst, we
consider our method as an improvement of the traditional single layer coding scheme
such as HEVC, and compare our performances directly against those of the single layer
coding scheme. Second, the proposed improvement is considered as an enhancement
layer for SNR scalability, and compared to a two-layer scalable coding scheme such as
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SHVC (see section 1.2.3). Finally, the proposed scheme is considered as an enhancement
layer for spatial scalability. In this last application, the base layer is a down-sampled
version of the original sequence. At the decoder side, the proposed epitome-base de-
noising methods are applied on an up-sampled version of the decoded base layer, and
thus perform joint de-noising and super-resolution. The speci�c con�gurations of the
two applications are described in the following sections.

3.3.2 Epitome generation

For the �rst application, the epitomes are generated using the method described in
section 3.2.2, with a set of three matching thresholds"M = 15:0; 10:0;7:0, and the
corresponding association thresholds"A = 0:5� "M , which generates epitomes of di�erent
sizes. The decoded sequenceY is processed by GOP, and the epitome are generated
from the �rst frame of the GOP only, called key frames (KFs), in order to limit the
additional bit-rate. In the experiments, the source sequence is encoded using HEVC
with the random access con�guration, thus a GOP consists in 8 frames. A GOP can
thus be processed using two epitomes, the one generated from the �rst frame of the
current GOP, and the one from the �rst frame of the following GOP (see Fig. 3.16).

In Table 3.4, we show the di�erent sizes of epitomes obtained for the two KFs
surrounding the �rst GOP of the test sequences. All the corresponding epitomes can
be seen in annex in section B.2.

Table 3.4: Epitomes sizes for the key frames surrounding the �rst GOP of the test
sequences. The sizes are evaluated as the percentage of pixels of each epitome over the
total number of pixels in the key frame, and then over the total number of pixels in the
GOP (GOP columns).

" M = 15 :0 " M = 10 :0 " M = 7 :0
Sequence KF 0 KF 1 GOP KF 0 KF 1 GOP KF 0 KF 1 GOP
City 21.15 24.62 5.09 36.36 40.91 8.59 53.66 59.59 12.58
Foreman 19.82 17.36 4.13 33.90 28.59 6.94 43.62 44.63 9.81
Macleans 49.31 48.17 10.83 66.29 66.10 14.71 79.29 78.85 17.57
Mobile 70.71 71.65 15.82 80.49 79.48 17.77 83.14 83.21 18.48

For the second and third applications, an epitome is generated from each frame of
the decoded sequenceY , using the method described in section 3.2.2. The matching
thresholds"M = 7:0 and "M = 3 :0 are used for the SNR scalability and spatial scalability
respectively, and the corresponding association thresholds is set to"A = 0:5 � "M . The
non-epitome blocks of a frame are then processed using using three epitome, the one
generate from the current frame and the ones from the two surrounding frames. In
Tables 3.5 and 3.6, we show the di�erent sizes of epitomes obtained for each frame of
the �rst GOP of the test sequences, with "M = 7 :0 and "M = 3:0 respectively.
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Figure 3.16: Epitomes are generated from the �rst frame of each GOP. A GOPi can
then be processed using the two surrounding epitomesE i and E i+1 . Note that the GOP
structure depends on the random access coding structure of HEVC.

Table 3.5: Epitomes sizes for the frames of the �rst GOP of the test sequences, with
"M = 7:0. The sizes are evaluated as the percentage of pixels of each epitome over the
total number of pixels in the key frame, and then over the total number of pixels in the
GOP (GOP columns).

" M = 7 :0
Frame 0 1 2 3 4 5 6 7 8 GOP
City 53.66 53.03 54.10 56.94 56.76 58.08 58.65 59.15 59.60 56.66
Foreman 43.62 44.57 42.80 44.07 42.93 46.72 45.20 44.63 44.63 44.35
Macleans 79.29 81.62 80.87 80.05 80.24 80.28 79.67 78.47 78.85 79.93
Mobile 83.14 82.01 81.76 81.94 81.50 81.31 82.20 82.89 83.21 82.22

Table 3.6: Epitomes sizes for the frames of the �rst GOP of the test sequences, with
"M = 3:0. The sizes are evaluated as the percentage of pixels of each epitome over the
total number of pixels in the key frame, and then over the total number of pixels in the
GOP (GOP columns).

" M = 3 :0
Frame 0 1 2 3 4 5 6 7 8 GOP
City 86.43 85.29 86.49 88.01 87.18 88.64 90.21 89.33 89.46 87.89
Foreman 78.60 79.48 79.61 79.36 80.62 80.56 81.00 80.49 81.06 80.09
Macleans 96.09 97.03 96.02 96.34 96.78 96.34 95.83 96.97 97.16 96.51
Mobile 90.34 90.78 89.90 89.77 90.34 90.03 90.47 90.78 90.91 90.37
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3.3.3 Epitome encoding

The texture epitomes are sent in addition to the complete sequence with a higher quality.
Much information of the epitome texture is actually contained in the lower quality
decoded frame from which it is extracted. We only need to encode the residue between
the source epitome patches and the corresponding patches in the decoded frame.

For this task, we use the scalable extension of HEVC, SHVC (see section 1.2.3).
For all applications, the encoded frames are used as base layer (BL), and the texture
epitome are considered as the enhancement layer (EL). The non-epitome blocks of the
EL are directly copied from the BL, thus their rate-cost is practically non-existent.

In Fig. 3.17, we show an example of epitomes encoding for the �rst application.

Figure 3.17: Epitomes are encoded using a scalable scheme. The encoded sequence
is used as the base layer, while the epitome is considered as the enhancement layer.
Note that the epitomes can then be predicted from the base layer as well as previously
encoded epitomes.

For the �rst application, the quantization parameter (QP) for the EL has to be se-
lected carefully, since a trade-o� must be achieved between the quality of the epitomes
received at the decoder, which will impact the de-noising performance, and the addi-
tional bit-rate associated with the epitomes. The QP value of the EL will also depend
on the QP value of the BL, in order to limit the bit-rate of the epitomes with respect
to the bit-rate of the BL (see section 3.3.5.2).

For the second and third applications, the QP value of the EL is the same as the
EL of the scalable scheme to which we compare our performances.
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3.3.4 Epitome-based de-noising

We describe here the proposed epitome-based de-noising techniques. To perform the de-
noising, the frames are divided inN � N overlapping patches. To limit the complexity,
not all the overlapping patches are processed, but instead we de�ne a steps in both
rows and columns between two processed patches. In the end, when several estimates
are obtained for a pixel, they are averaged in order to obtain the �nal estimate. The
main idea consists in the following steps:

ˆ Search for theK -NN of the current patch among the overlapping coded/decoded
patches colocated with the epitome patches

ˆ Derive a de-noising method between the noisyK -NN patches and the correspond-
ing high quality patches in the epitome

ˆ Apply the previous de-noising method on the current patch to obtain the de-noised
patch

In the case of the �rst application, the K -NN search is performed in the epitomes
from the two closest key-frames. For the second and third applications, theK -NN
search is performed in the epitome from the current frame and the closest past and
future frames. The aforementioned �de-noising method� expression is to be de�ned, as
many can be derived to solve this problem. Below, we propose several methods.

3.3.4.1 Epitome-based Local Linear Combination

Figure 3.18: Epitome-based de-noising of coded/decoded patches using Local Linear
Combination.

First, we propose a method that we denote �epitome-based Local Linear Combi-
nation� (LLC). Let y be the current patch to be de-noised. We noteyi ; i = 1 : : : K
the K -NN of y. The corresponding high quality patches from the epitome are denoted
x i ; i = 1 : : : K .
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From y and its K -NN, we compute a set of weightswi ; i = 1 : : : K . This step is
detailed below.

The de-noised estimated patcĥx is obtained as the linear combination of theK high
quality patches:

x̂ =

KP

i=1
wi � x i

KP

i=1
wi

(3.20)

The method is illustrated in Fig. 3.18.
Two variants are proposed to estimate the weights of the linear combination. First,

we adapt the well-known NLM algorithm and use exponential weights depending on
the distance betweeny and its K -NN. We note di = jjy �y i jj 2

2
N 2 , and the weights are then

computed as:

wi = e
� di

2� 2
NLM (3.21)

where � NLM is a parameter that acts as a degree of �ltering. As in the original NLM
algorithm it is set to � NLM = 10 � � n . The noise level� n is estimated as the square
root of the MSE between the epitome patches and the corresponding coded/decoded
patches.

This method is named �Epitome-based NLM�.
In a second variant, the weights are computed using Locally Linear Embedding

(LLE), which was presented in the previous chapter for in-loop prediction. Here, the
assumption is that the noise preserves the local geometry of the manifold. Thus, for
each noisy patch, we can learn its embedding into the noisy patches colocated with the
epitome patches, and then apply the weights of the embedding on the corresponding
high quality patches from the epitome to obtain the de-noised patch.

The LLE �nds the best estimate of y, in a least square sense, from a weighted
combination of its K -NN, under the constraints that the weights sum to one. LetM y

be a matrix whose columns contain the vectorizedK -NN of y, yi ; i = 1 : : : K . Let W
be a vector containing the weightswi ; i = 1 : : : K . The LLE weights are obtained by
solving the following equation:

min
W

jj � � M yW jj2
2 s.t.

KX

i=1

wi = 1 (3.22)

where � is the vectorized version ofy. The weights vector W is computed as

W =
D �1 1

1T D �1 1
: (3.23)

The term D denotes the local covariance matrix (i.e., in reference to� ) of the K -NN
stacked in M y , and 1 is the column vector of ones. In practice, instead of an explicit
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inversion of the matrix D, the linear system of equationsDW = 1 is solved, then the
weights are rescaled so that they sum to one.

This method is named �Epitome-based LLE�.

3.3.4.2 Epitome-based BM3D

We propose here an adaptation of the very popular BM3D algorithm. Note that the
proposed technique can be generalized to any de-noising technique based on the thresh-
olding/shrinkage of transformed coe�cients. We explain below how the two steps of the
BM3D algorithm, hard thresholding and Wiener �ltering, can be adapted for epitome-
based de-noising.

For clarity purpose, we group in Table 3.7 the numerous notations necessary to
describe this method.

Table 3.7: Notations used for the epitome-based BM3D

First step: Hard Thresholding
THT 3D transform used for the Hard Thresholding step
G y 3D group containing the K -NN of the current patch to be de-noised y
G HT

x 3D group containing the K high quality patches corresponding to the noisy K -NN contained in G y

G 0
y 3D group containing the same patches asG y ,

except for the closest NN of y which is replaces by y itself
G HT

x̂ 3D group containing the de-noised estimates of the patches in G 0
y

x̂HT estimate of y at the end of the Hard Thresholding step
Second step: Wiener �ltering

This step is performed on the de-noised frames obtained at the previous step.
TW ien 3D transform used for the Wiener �ltering step
G x̂ 3D group containing the K -NN of the current patch x̂
G W ien

x 3D group containing the K high quality patches corresponding to the K -NN contained in G x̂

G n 3D group containing the noise patches G W ien
x � G x̂

G 0
x̂ 3D group containing the same patches asG x̂ ,

except for the closest NN of x̂ which is replaces by x̂ itself
G W ien

x̂ 3D group containing the de-noised estimates of the patches in G 0
x̂

x̂W ien �nal de-noise estimate of y at the end of the Wiener �ltering step

First step: Hard Thresholding. One of the key and challenging point of such tech-
niques is to choose the value of the threshold, that we note here� . In the case of AWGN
de-noising, the value of� is usually set depending on the noise level. For example, the
threshold in [29] is set to � = 2:7 � � n . However, an optimal de-noising rule for the
thresholding is proposed in [81]. In general, this rule can not be applied as it requires
the knowledge of the source signal, but it gives an upper bound on the performances of
such transform-thresholding techniques. According to this rule, if we notecx a coe�-
cient from the transformed source signal andcy the corresponding transform coe�cient
from the noisy signal, the corresponding de-noised transform coe�cientcx̂ is obtained
as follow:
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Figure 3.19: Epitome-based de-noising - �rst step of the adapted BM3D.

cx̂ =

(
0; if jcx � cy j > jcx j

cy ; otherwise.
(3.24)

In other words, the coe�cients with a SNR lower than a 1:1 ratio are canceled.
Here, we propose to use this rule in a epitome-based BM3D method, as the high

quality patches from the epitome can be used to implement the above rule. More
precisely, the K -NN patches and their corresponding high quality patches from the
epitome are stacked in 3D groups that we noteG y and GHT

x respectively. We then
apply a 3D transform THT on both groups. From the two transformed groups and
using the rule of Eq. 3.24, we can obtain a de-noising rule in the form of a binary 3D
mask M � which contains 0 where the coe�cients are put to 0 and 1 otherwise:

M � (� ) =

(
0; jTHT (G HT

x )(� ) � THT (G y)(� )j > jTHT (G HT
x )(� )j

1; otherwise.
(3.25)

To de-noise the current patchy, we replace inG y the closest NN ofy by the patch
y itself, to obtain a 3D group noted G0

y . We can then apply the transform THT to G0
y

followed by the thresholding rule M � , and �nally the inverse transform to obtain the
de-noised groupGHT

x̂ :

GHT
x̂ = T �1

HT (M � � THT (G 0
y)) (3.26)
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where � represents an element-by-element multiplication.
The �rst step de-noised patch x̂HT is then extracted from GHT

x̂ at the same position
as the one ofy in G0

y . This step is illustrated in Fig. 3.19.

Figure 3.20: Epitome-based de-noising - second step of the adapted BM3D.

Second step: Wiener �ltering. The second step of the original BM3D algorithm
consists in a Wiener �ltering of the 3D transform group where the �rst de-noised esti-
mate obtained at the previous step is used as oracle. Here, we propose to adapt this step
by using the high quality patches from the epitome as oracle for the Wiener �ltering.
Note that this step is performed on the de-noised estimate obtained at the previous step
and not directly on the noisy frames.

We �rst search for the K -NN of the current patch x̂ among the �rst estimate patches
colocated with the epitome patches from the two closest key-frames. TheK -NN patches
and their corresponding high quality patches from the epitome are stacked in 3D groups
that we note G x̂ and GW ien

x . Note that these groups are di�erent from the previous
step groupsGHT

x̂ and GHT
x respectively because theK -NN patches are di�erent. We

also compute a third 3D group containing the corresponding noise patches:

Gn = GW ien
x � G x̂ (3.27)

We then apply a 3D transform TW ien on both groups. We can then compute the
Wiener �lter coe�cients:
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M W ien =
jTW ien (G W ien

x )j2

jTW ien (G W ien
x )j2 + jTW ien (G n )j2

(3.28)

To de-noise the current patchx̂, we replace inG x̂ the closest NN ofx̂ by the patch
x̂ itself, to obtain a 3D group noted G0

x̂ . We can then apply the transformTW ien to G0
x̂

followed by the Wiener �ltering, and �nally apply the inverse transform to obtain the
de-noised groupGW ien

x̂ :

GW ien
x̂ = T �1

W ien (M W ien � TW ien (G 0
x̂ )) (3.29)

The �nal de-noised patch x̂W ien is then extracted from GW ien
x̂ at the same position

as the one ofx̂ in G0
x̂ . This step is illustrated in Fig. 3.20.

3.3.4.3 Epitome-based Local Linear Mapping

Figure 3.21: Epitome based de-noising of coded/decoded patches using Local Linear
Mapping.

In this section, we proposed a novel method based on linear mappings that we
call �epitome-based Local Linear Mapping (LLM)�. Let y be the current patch to be
de-noised. We noteyi ; i = 1 : : : K the K -NN of y. The corresponding high quality
patches from the epitome are denotedx i ; i = 1 : : : K . Let M y and M x be the matrices
containing in their columns the vectorizedyi and x i respectively. We can then learn a
function, more precisely here a linear mapping, estimatingM x from M y .
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Considering multivariate linear regression, the problem is of searching for the func-
tion P minimizing:

E = jjM T
x � M T

y PT jj2 (3.30)

which is of the form jjY � XBjj 2 (corresponding to the linear regression model
Y = XB + E). The minimization of Eq. (3.30) gives the least squares estimator

P = M xM T
y (M yM T

y ) �1 (3.31)

We �nally obtain the de-noised patch by applying the learned mapping to the current
patch:

x̂ = Py (3.32)

The method is illustrated in Fig. 3.21.

3.3.5 Simulation and results

In this section, the epitome-based methods described in the previous section are applied
in the proposed schemes described in section 3.3.1.

Four test sequences of resolution352� 288 are used: City, Foreman, Macleans, and
Mobile. For each sequence, one GOP of 8 frames is processed. In the case of the �rst
application in a single layer scheme, the epitome of the �rst key frame of the following
GOP is also used. The sequences are encoded with the HEVC test model HM (ver
15.0) [82] using the Main pro�le in Random Access, with 4 values for the Quantization
Parameter, QP = 22; 27;32;37.

For the second and third applications, SNR and spatial scalablity, we compare our
performance with the SHVC scalable scheme. For SNR scalability, the sequences en-
coded with HEVC as described above are used as base layer, and the enhancement layer
is encoded with the SHVC test model SHM (ver. 9.0) [83], withQP = 18; 23;28;33.
For spatial scalability, the base layer is down-sampled with a factor 2, and encoded with
the HEVC test model HM (ver 15.0) using the Main pro�le in Random Access, with 4
values for the Quantization Parameter,QP = 22; 27;32;37. The enhancement layer is
encoded with the SHVC test model SHM (ver. 9.0), withQP = 22; 27;32;37.

3.3.5.1 De-noising with source epitome

In this section we evaluate the epitome-based de-noising performances for the �rst ap-
plication. In order to obtain the full potential of the method, the epitome is considered
known without any loss. In practice, this means the epitome would be encoded using
lossless coding.

Average results for the GOP of the test sequences are given in Table 3.8. Overall,
the proposed methods are more e�cient at low bit-rates, i.e. for stronger quantization
noise. The proposed methods also bene�t from bigger epitomes (lower"M ), since more
information on the source signal is available. We can see that the epitome-based BM3D
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and LLM methods perform in general better than the epitome-based NLM and LLE
methods. In facts, for the former, the de-noising rule learning is directly made between
the source and the noisy patches, while for the latter, it is only learned on the noisy
patches, andthen applied to the source patches.

Table 3.8: De-noising performances (PSNR in dB) of epitome-based methods for coding
noise averaged over the test sequences. The bold values indicate a PSNR above the
corresponding PSNR of the decoded sequence.

Original Epitome-based methods
Coded / methods " M = 15 :0

QP Decoded NLM BM3D NLM LLE BM3D LLM
22 40.354 36.390 40.328 32.460 32.351 39.669 34.422
27 36.920 34.348 36.941 32.064 32.049 36.575 33.375
32 33.788 32.425 33.859 31.460 31.479 33.802 32.078
37 30.793 30.226 30.875 30.489 30.528 31.126 30.929

Epitome-based methods
" M = 10 :0 " M = 7 :0

QP NLM LLE BM3D LLM NLM LLE BM3D LLM
22 33.532 33.394 40.110 36.345 34.041 33.897 40.331 36.915
27 33.075 33.045 36.981 35.281 33.553 33.525 37.200 35.804
32 32.405 32.426 34.185 33.951 32.863 32.894 34.378 34.453
37 31.378 31.418 31.440 31.951 31.809 31.869 31.587 32.886

The previous results are averaged for the frames of the GOP, but do not necessarily
re�ect the temporal performances. Results indicate that the de-noising performances are
not homogeneous for all the frames of the GOP. In facts, the PSNR gain is much more
important for the key frames, where the high quality epitomes are known. An example
of such behavior is given in the graph of Fig. 3.22, which corresponds to the de-noising
performances for the City sequence encoded atQP = 27, with an epitome obtained
with "M = 7:0 We can see that the epitome-based BM3D and LLM yield an important
PSNR gain for the key frames (indexes 279 and 287). However, for the intermediates
frames, the epitome-based BM3D has similar performances to the original BM3D, and
the epitome-based LLM PSNR is sometimes below the PSNR of the decoded frames.

Tests were also performed using �random epitomes�, which are constructed by ran-
domly selecting patches in the KFs, with the same number of patches as in the actual
epitome. Results showed that the �random epitomes� perform poorly compared to the
actual epitomes, which demonstrates the interest of the concept of epitome to obtain
representative textures for a GOP, and their use in the proposed methods. An exam-
ple of such result is given in Table 3.9. An example of �random epitomes� is given in
comparison with the actual epitomes for the key frames of the City sequence in Fig.
3.23.
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Figure 3.22: De-noising performances on the �rst GOP of the City sequence encoded
with HEVC with QP = 27.

Table 3.9: Comparison of de-noising performances (PSNR in dB) between the epitome
and a �random epitome� ("M = 7:0) averaged over the test sequences encoded atQP =
37

Epitome Random epitome
NLM 31.809 29.045
LLE 31.869 28.836
BM3D 31.587 31.204
LLM 32.886 29.856
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Figure 3.23: Epitomes (left) extracted from the �rst (top) and last (bottom) frames of
the City (crop) GOP. The epitome was obtained with the threshold "M = 7:0, and the
epitomes account for 53.6616 % and 59.596 % of the original frames size respectively.
On the right are shown �random epitomes� of the same size.
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3.3.5.2 RD performances in a single layer coding scheme

The results given in Table 3.8 correspond to the case where the epitomes are lossless
encoded, which allows to evaluate the de-noising performances. However, in terms of
RD performances, the lossless encoding of the epitomes might no be suitable, as the bit-
rate associated to the epitomes becomes prohibitive. Thus in this section, in addition to
the lossless case, we consider epitomes encoded as described in section 3.3.3. Di�erent
QP values are used depending on the QP used to encode the GOP, summarized in Table
3.10.

Table 3.10: Choice of the quantization parameter to encode the epitome.

QP BL
22 27 32 37

Q
P

E
L

lossless
6 8 9 11
12 16 18 22
18 23 28 33

An example of RD curves is given for the City sequence in Fig. 3.24. Results
in Table 3.8 show that the epitome-based NLM and LLE methods reach very similar
performances. Thus in this section, we only give the results for the epitome-based LLE
method. Due to the numerous parameters, many points corresponding to our methods
are obtained, and represented as scatter plots in Fig. 3.24. To limit the number of
points, we only kept the one whose PSNR values are above the corresponding PSNR
values of the decoded sequence (similar to the bold numbers in Table 3.8. The best RD
performances obtained with the epitome-based de-noising methods (purple curve in the
�gure) are obtained with the biggest epitomes ("M = 7:0) encoded with the highest of
the proposed QP values. However, we can see that even the best RD performances are
outperformed by HEVC.

The RD performances shown in the �gures above are not as good as expected, as
the de-noising improvement of the proposed methods are not su�cient to justify the
additional rate cost. This limited average PSNR improvement is partly due to the
fact that the proposed methods are mainly e�cient for the key frames from which the
epitomes are extracted, but have little to no de-noising e�ect on the intermediate frames.
A typical example of such phenomenon is shown in Fig. 3.25 for the Macleans sequence,
encoded atQP = 22, de-noised with the epitome-based BM3D ("M = 7:0). This can be
explained by the GOP structure used in the common test conditions of HEVC, which
de�nes di�erent QP values for the frames of the GOP. This can be seen in Fig. 3.25,
where the PSNR varies depending on the frame index, which also means that the noise
properties vary as well. Consequently, the texture information contain in the epitome
of the key frames might not be adapted to e�ciently de-noised the intermediate frames.
In addition, quantization artifacts removal is a very challenging problem, as many of
the assumptions usually made for additive white Gaussian noise (AWGN) are violated.

In fact, we show in Fig. 3.26 the performances of the epitome-based de-noising
methods (� M = 7:0) for the City sequence corrupted with AWGN with � n = 10. We
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Figure 3.24: RD performances for City when encoding epitomes of several sizes using
di�erent QP values in a single layer scheme.

can see that, even if the de-noising is more e�ective on the key frames, the intermediate
are e�ciently de-noised as well.
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Figure 3.25: De-noising performances on the �rst GOP of the Macleans sequence en-
coded with HEVC with QP = 22.

Figure 3.26: City sequence corrupted with AWGN (�n = 10), de-noised with the
epitome-based methods. The information contained in the KF epitomes was su�cient
to de-noise the remaining frames of the GOP.
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3.3.5.3 RD performances in a SNR scalable coding scheme

For this application, we compare our results to the enhancement layer (EL) of SHVC,
encoded withQP = 18; 23;28;33. The epitomes are encoded with the same QP values.
As for the �rst applications, the epitome-based de-noising methods used are LLE, BM3D
and LLM.

The RD curves for the four sequences are given in Fig. 3.27. Here, since an epitome
is transmitted for each frame, the limitations of the �rst application in terms of de-
noising are overcome.

We can see that our methods, notably the epitome-based BM3D, can outperform
SHVC.

Figure 3.27: RD performances of the proposed methods in a SNR scalable scheme.

3.3.5.4 RD performances in a spatial scalable coding scheme

For this application, we compare our results to the enhancement layer (EL) of SHVC,
encoded withQP = 22; 27;32;37, with a base layer down-sampled with a factor2 � 2.
The epitomes are encoded with the same QP values.

The RD curves for the four sequences are given in Fig. 3.28.
Here, the proposed methods jointly perform de-noising and super-resolution, and

we can see that they can still outperform SHVC. However, contrary to the previous
application, the best performing method is not necessarily the epitome-based BM3D,
but rather the epitome-based LLM.
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Figure 3.28: RD performances of the proposed methods in a spatial scalable scheme.

3.4 Conclusions and perspectives

In this chapter, we �rst presented e�cient epitome generation methods, based on list or
cluster approaches. By grouping non-overlapping blocks before performing exhaustive
matching searches among overlapping blocks, the memory occupation and the processing
time are reduced.

Second, the epitome generation method was used in an epitome-based quantization
noise removal scheme. The proposed out-of-the-loop framework aims at improving the
performances of a video compression scheme by sending high-quality epitomes to the
decoder, where the they are used to de-noise the non-epitome patches of the video
sequence.

The epitome patches being representative of the textural content of the video se-
quence, the non-epitome patches can be de-noised using similar patches from the epit-
ome. In the proposed epitome-based de-noising methods, a patch is thus de-noised by
�rst looking for its K -NN among the coded/decoded patches colocated with the epitome.
We then propose three method to exploit the pairs of coded/decodedK -NN patches
and their corresponding high quality patches from the epitome. The epitome-based local
linear combination (LLC) computes weights for each nearest neighbor, and then linearly
combines the corresponding high quality patches using the previous weights to obtain
the de-noised patch. The weights can be obtained similarly to the NLM algorithm, or
using an LLE-based approach. The epitome-based BM3D adapts the original BM3D
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algorithm by inferring the thresholds for the hard thresholding and Wiener �lter coef-
�cients from the high quality patches. Finally, the epitome-based local linear mapping
(LLM) method learns a linear mapping projection between theK -NN coded/decoded
patches and their corresponding high quality patches, and then apply the projection on
the patch being de-noised.

Three applications of the scheme were considered. We �rst evaluated the perfor-
mances when epitomes are sent only for key frames of the video sequence, in order to
improve a single layer scheme. By limiting the number of epitomes transmitted to the
decoder, we want to limit the associated bit-rate while improving the overall quality
of the decoded sequence, and thus the encoding performances. However, the results
showed that, except for the key frames, the de-noising performances were limited, and
consequently the RD performances as well.

In a second application, the epitomes are considered as an enhancement layer in a
SNR scalable scheme, and an epitome is generated for each frame of the video sequence.
Finally, the proposed methods are used as an enhancement layer for spatial scalabil-
ity. The results show that for both scalable applications, the proposed methods could
outperform the standard SHVC.

We believe that several approaches can be considered to further improve the perfor-
mances of the proposed scheme.

First, we could consider applying a �rst pass �blind� de-noising algorithm to the
decoded sequence. The term �blind� is used to characterize a method for which no side
information needs to be transmitted to the decoder. Any state-of-the-art method, such
as the one presented in section 3.1.2, is eligible. The �rst pass de-noising is likely to
improve the K -NN search precision for our epitome-based de-noising method, which is
expected to further improve the de-noising performances of our methods.

A second aspect would be to optimize the epitome generation algorithm. First, by
taking into account the temporal redundancies, the epitome could be further compacted,
which is expected to reduce the bit-rate associated with the epitome while maintain-
ing similar de-noising performances. A direct implementation from existing algorithms
would be to generate an epitome of the frame epitomes. In another approach, a sprite
[84][85] of the GOP would be created, and an epitome of the sprite would be then
generated. Such improvement would be especially interesting for the second applica-
tion, where epitomes are currently generated independently for each frame. Second,
the epitome model used here is generic, and has been used for di�erent applications.
However, an application-driven epitomic model could improve the performances of said
application. In particular, an optimized epitome generation technique was presented
in [86]2 for a LLE-based multi-patches super-resolution application. The results show
that the epitomes obtained are more compact than the ones used here for a similar
reconstruction quality.

Finally, the scheme could be extended to other scalable applications. In the exper-
iments, we showed that the spatial and SNR scalability were e�cient, but extensions

2Co-authored publication
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to color gamut scalability, or compression of hygh dynamic range (HDR) videos from a
low dynamic range base layer, are straightforward.
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Chapter 4

Clustering-based quantization noise
removal

In chapter 3, we proposed an epitome-based quantization noise removal method to
improve coding performances of existing compression schemes. The out-of-the-loop
proposed scheme was proven e�cient for a scalable application, however, the single
layer application was outperformed by the standard compression scheme because the
PSNR gains could not compensate the cost of the epitomes in terms of bit-rate.

In this chapter, we propose a comparable out-of-the-loop quantization noise removal
scheme for video compression. However, we adopt here a di�erent perspective: instead
of deriving a de-noising method between the noisy patches and their corresponding high
quality patches in the epitome at the decoder side, we derive the parameters of the de-
noising method at the encoder side between the noisy patches and their corresponding
source signal. The derived parameters are then sent to the decoder to perform the de-
noising. To take into account the redundancies of the signal, we perform clustering on
the patches, and learn parameters for each cluster. The Local Linear Mapping (LLM)
based multi-patches technique presented in the previous chapter is especially suited for
the scheme presented in this chapter. In fact, a linear mapping can be learned for each
cluster, and transmitted in a matrix form.

In comparison, the Local Linear Combination presented in the previous chapter
could not be adapted here. The BM3D may be adapted to the new scheme, but would
require the transmission of many parameters, namely all the 3D transform thresholds
and Wiener �lter coe�cients.

Thus, on one hand, we expect the additional bit-rate to be limited, in particular
compared to the bit-rate associated to the epitomes. On the other hand, the linear
mappings are learned between noisy patches and the correspondingsource patches,
which we expect to be e�cient in terms of de-noising. This idea is also corroborated by
the proven e�ciency of de-noising methods based on clustering [71][72][67].

This chapter is organized as follow. Section 4.1 reviews background on clustering and
classi�cation methods. Section 4.2 describes the proposed scheme based on clustering
for quantization noise removal. Section 4.3 introduces an optimal clustering algorithm
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for the clustering-based linear mapping de-noising. Section 4.4 presents an adaptation of
the proposed scheme for super-resolution in a scalable compression scheme. Finally, we
propose in section 4.5 a classi�cation-based scheme which aims at reaching a compromise
between the clustering approach described in section 4.2 and the optimal clustering
presented in 4.3.

4.1 Background

Note that the contributions of this chapter also rely on the de-noising background,
described in section 3.1.2. In this section, we present two machine learning tasks, un-
supervised and supervised learning.

4.1.1 Un-supervised learning

Un-supervised learning, also called clustering, aims at partitioning a set of points of a
p-dimensional space into several subsets, called clusters, so that points in a same cluster
are similar according to a pre-de�ned criterion, while points belonging to di�erent cluster
are dissimilar.

In this section, we considern data points to be clustered, notedx i ; i = 1 : : : n. The
number K of clusters is a pre-de�ned parameter.

Below, we present several popular clustering algorithms.

4.1.1.1 K-means algorithm

The K -means algorithm is among the most known clustering algorithm and was �rst
described in [30]. This algorithm assigns a data point to the cluster with the nearest
mean. Formally, the K -means algorithm solves the following equation:

min
C

KX

i=1

X

x2C i

jjx � � i jj2 (4.1)

where � i is the mean of the clusterCi and C = fC i gi=1:::K .
The standard algorithm to solve this problem is given in Algorithm 2, where the

initial set of centroids � (1)
1 : : : � (1)

K is considered known. This initial set can be obtained
by di�erent methods. A popular method randomly select K vectors from the data set
and used them as initial centroids. Another method perform theK -means algorithm
on a small subset of the data with a random initialization. The outcome is then used
to initialize the centroids to cluster the full data set.

This two steps algorithm can be seen as a variant of the Expectation-Maximization
algorithm, presented in the following section.

4.1.1.2 Gaussian Mixture Model (GMM)

The Gaussian Mixture Model (GMM) assumes that the data points are drawn from a
mixture of K Gaussian distributions, which form the latent clusters.
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Algorithm 2 K -means algorithm
Input: clusters number K , p � n data matrix X = fx i gi =1:::n

Output: cluster set C = fC i ji = 1 : : : K g
Repeat the two following steps until convergence:
Assignment step:

8i = 1 : : : K; C ( t)
i = fx : jjx � � ( t)

i jj 2 � jj x � � ( t)
j jj 2 8j; 1 � j � K g

Update step:

8i = 1 : : : K; � ( t+1)
i =

1

jC ( t)
i j

X

x j 2C (t)
i

x j

Let us �rst formally de�ne the problem. The underlying density p(x) can be formally
expressed as:

p(xj�) =
KX

k=1

� kpk (xjz k ; � k ) (4.2)

where pk (xjz k ; � k ) is a mixture component, with z = (z 1; : : : ; zK ) is a vector of binary
indicator, with only one component equal to 1, and the others are 0. For each pointx i ,
zi is a random variable which represents the mixture component which generatedx i .
Each component is a multivariate Gaussian density, expressed as:

pk (xj� k ) =
1

(2� )p=2j� k j1=2
e� 1

2 (x�� k )T � �1
k (x�� k ) (4.3)

and � k = f� k ; � kg.
The mixture weights � k = p(zk ) represent the probability that a random point x

was generated by the componentk, and
KP

k=1
� k = 1.

The complete set of parameters for the mixture model is� = f� 1; : : : ; � K ; � 1; : : : ; � K g.
Given the set of pointsX = fx i gi=1:::n , the problem in hand is to estimate then � K

latent variables matrix Z = fz i gi=1:::n and the model parameters�. The estimates are
obtained using the Expectation - Maximization (EM) algorithm [87], a generic iterative
method to �nd maximum likelihood estimates of the latent variables and parameters
of a model. The EM algorithm to estimate the GMM is given in Algorithm 3, where
the initial parameters � (0) are considered known. The initial parameters are usually
obtained by randomly selectingK points from the data set to initialize the means, and
set the covariance of the whole data set for each of theK covariance matrices. The
mixture weight � k are set homogeneously with the value1

K .
Note that the EM algorithm does not produce directly the latent variables matrix

Z, but instead a n � K �membership probability� matrix W. The latent variable zi can
be obtained from W by taking the i -th row and set the maximum value to 1 and the
other values to 0.
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Algorithm 3 EM algorithm for GMM
Input: clusters number K , p � n data matrix X = fx i gi=1:::n

Output: n � K �membership probability� matrix W, parameters �
Repeat the two following steps until convergence:
Expectation step:
For each point x i , compute its membership probability with respect to each cluster k, given the
parameters � ( t) :

W i;k = p(zik = 1 jx i ; � ( t) ) =
pk (x i jzk ; � ( t)

k ) � � ( t)
k

KP

l=1
pl (x i jzl ; � ( t)

l ) � � ( t)
l

Maximization step:

Let nk =
nP

i=1
W i;k . Update the parameters � ( t+1) :

� ( t+1)
k =

nk

n
; k = 1 ; : : : ; K

� ( t+1)
k =

1
nk

nX

i=1

W i;k � x i ; k = 1 ; : : : ; K

� ( t+1)
k =

1
nk

nX

i =1

W i;k � (x i � � ( t+1)
k )(x i � � (t+1)

k )T ; k = 1; : : : ; K

4.1.1.3 Spectral clustering

Spectral clustering is one of the most popular modern clustering algorithms [88], and
usually outperforms the K -means algorithm. The main idea of spectral clustering is
to de�nes a similarity graph, in which each vertex represents a data point, and each
edge between two vertices is weighted with the similarity between these two vertices.
The clusters are obtained by grouping the vertices of the graph which have strong
connections,i.e. strong weights on their edges.

Formally, the spectrum (eigenvalues) of the similarity matrix is used to perform
dimensionality reduction, to �nally perform clustering (e.g. K -means) in the reduced-
dimensions space. A detailed algorithm is given in Algorithm 4.

4.1.2 Supervised learning

Supervised learning is a �eld of machine learning which aims at learning a predictive
model linking input data to a target signal. Here we are interested in the speci�c task
of classi�cation, where the signal to be learned consists in class labels, contrary to
regression which consists in learning a continuous signal. In this case, the predictive
model is also called a classi�er.

The usual work�ow of supervised learning consists in a �rst training phase, where
the model is learned, followed by a prediction phase, where new data points will be
assigned to a class using the predictive model.

We consider that the data points, notedx, belong to a p dimensional space. Their
corresponding class labels will be notedy. The corresponding class labels belong to a
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Algorithm 4 Spectral clustering
Input: clusters number K , p � n data matrix X = fx i gi =1:::n

Output: cluster set C = fC i ji = 1 : : : K g
Compute the n � n a�nity matrix A such that:

A i;j = e
�jjx i �x j jj 2

2� 2 for i 6=j; and A i;i = 0

De�ne the diagonal matrix D, such that D i;i =
P

j A i;j , and compute the graph Laplacian matrix:

L = D �1=2 AD �1=2

Compute the K �rst eigenvectors of L, u1 ; : : : ; uK and form the n � K matrix U whose columns are
the eigenvectors u1 ; : : : ; uK

Form the matrix V from U by re-normalizing its rows:

V i;j =
U i;jP

j (U 2
i;j )1=2

Considering each row of V as a point in a K -dimensional space, cluster them into K clusters C 0 =
fC 0

i ji = 1 : : : K g using the K -means algorithm
Assign a point x i to a cluster Cj if and only the i-th row of V was assigned to the clusterC0

j

limited set of integer valuesSc. A training set DT contains n pair of input point / label:

DT = f(x i ; yi ) s.t. x i 2 Rp; yi 2 Sc; i = 1 : : : ng (4.4)

In this section, we present two popular methods for supervised learning: Support
Vector Machine (SVM) and decision trees. Note that we are only interested in presenting
the classi�er models associated with these two methods, and the algorithm using these
models to predict the class of new data points. However, we will not explore the
algorithms used to learn these classi�ers.

4.1.2.1 Support Vector Machine

The Support Vector Machine (SVM) was introduced in [31] for binary classi�cation.

Linear SVM Considering that the training data are labeled into two classes,Sc =
f�1; 1g, the SVM aims at constructing an hyperplane which will separate the two classes
with a maximum margin (see Fig. 4.1).

An hyperplane is formally described by the set of pointsx satisfying the following
equation:

w � x � b = 0 (4.5)

where w is a vector orthogonal to the hyperplane andb is a scalar.
The SVM searches for the maximum-margin hyperplane described by(w; b), which

satis�es the following binary classi�cation constraints:
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Figure 4.1: Binary labeled data points in a 2D space separated by hyperplanes. The
hyperplane H1 can not separate the two classes. BothH2 and H3 can separate the
classes, butH3 separates them with the maximum margin.

w � x i � b � 1 if yi = 1; 8(x i ; yi ) 2 DT

w � x i � b � � 1 if yi = �1; 8(x i ; yi ) 2 DT
(4.6)

which can be summarized as:

yi (w � x i � b) � 1;8(x i ; yi ) 2 DT (4.7)

Figure 4.2: Example of linear SVM.

This condition was modi�ed into the so-called soft margin method, which allows for
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mislabeled data. The method introduces non-negative slack variables� i which measures
the degree of misclassi�cation of a pointx i :

yi (w � x i � b) � 1 � � i ; 8(x i ; yi ) 2 DT (4.8)

The solutions for this optimization problem are well-known and will not be discussed
here. Eventually, the vectorw can be expressed as a combination of its support vectors:

w =
nX

i=1

� i yi x i (4.9)

where thex i corresponding to non-zero� i are the support vector. The support vectors
lie on the margin and satisfyyi (w � x i � b) = 1. The scalarb can then be obtained from
a support vector as:

b = w � x i � yi (4.10)

Once such hyperplane has been found, a new data pointx0 is assigned a labely0

using the following rule:
(

y0 = 1 if w � x0� b � 1

y0 = �1 if w � x0� b � � 1
(4.11)

Alternatively, the computation of the dot product w � x0 can be expressed using the
support vectors:

w � x0 =
nX

i=1

� i yi x i � x0 (4.12)

Non-linear SVM For many problems, the classes are not necessarily linearly separa-
ble in the input space. In [32], the authors propose a non-linear version of SVM based
on the kernel trick.

Figure 4.3: Example of non-linear SVM.

Conceptually, the �nite-dimensional input space is mapped into a higher-dimensional
feature space using a transform'. In the feature space, the classes are expected to be
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linearly separable, and thus the SVM can be applied e�ciently (see Fig. 4.3). Using the
kernel trick, no computation is explicitly performed in the feature space. The kernelk
is related to the transform ' by the following equation:

k(x i ; x j ) = '(x i ) � '(x j ) (4.13)

In other words, every dot product in the feature space is replace by a non-linear
kernel function. Widely used kernels include the polynomial kernel,k(x i ; x j ) = (x i �x j )d,
sigmoid functions k(x i ; x j ) = tanh(�x i � x j + c), or Gaussian radial basis functions

k(x i ; x j ) = exp( � jjx i �x j jj 2

2� 2 ).
The vector w describing the hyperplane in the feature space is expressed as:

w =
nX

i=1

� i yi '(x i ) (4.14)

corresponding to equation 4.9. However,w is never computed explicitly, thanks to the
kernel trick. In fact, a new point x0 is classi�ed by computing w � '(x 0), which can be
expressed as follow:

w � '(x 0) =
nX

i=1

� i yi '(x i ) � '(x 0) =
nX

i=1

� i yi k(x i ; x0) (4.15)

Similarly, the scalar b can be computed as:

b =
nX

i=1

� i yi k(x i ; x j ) � yj (4.16)

Extension to multiclass Although SVM was initially designed for binary classi-
�cation, it can be extended to the multiclass problem. The main approach consist
in reducing the multiclass problem in multiple binary classi�cation problems. In the
�one-vs-all' approach, binary SVM classi�ers are built between one class and the all
the remaining classes. In the �one-vs-one' approach, a binary SVM classi�er is built
between every pair of classes.

4.1.2.2 Decision Tree

Decision trees are methods which build prediction models from data [33]. The models
are obtained by recursively partitioning the training data space and �tting a simple
prediction model within each partition [89]. This partitioning can be represented as a
tree, called a decision tree. In this section, we focus on describing the use of decision
trees for classi�cation problems, however, we will not discuss the well known algorithm
for obtaining such trees.

Here, we will only consider binary tree for classi�cation, i.e. for each node of the
tree, a binary condition is evaluated on a component of the input vector. More precisely,
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at a node i, the component ci of the input vector is compared to some threshold value
t i , and we can express the condition as:

xci < t i (4.17)

Each leaf of the tree represents a label.
To classify a new input point x0, the conditions at the nodes are recursively evalu-

ated, going from a node to its left child if the condition is validated, to the right one
otherwise. The recursive process is repeated until a path is de�ned from the root to a
leaf. The label associated with the leaf is then assigned to the input point.

In the example of Fig. 4.4, the training points are partitioned into two classes,
labeled 1 and �1. Although this classi�cation example can not be solved with a linear
SVM, it can be simply modeled by the classi�cation tree shown in Fig. 4.5. The new
un-labeled point shown as a red question mark in Fig. 4.4 de�nes the path shown in
red in Fig. 4.5, and is assigned the label�1.

Figure 4.4: Binary labeled training data points in a 2D space, which can not be separated
by an hyperplane.

Figure 4.5: Classi�cation tree corresponding to the training data shown in Fig. 4.4.
The branches shown in red represent the path used to classify the points(x 0

1; x0
2) shown

in Fig. 4.4.
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Bagging. Bagging is the contraction of Bootstrap Aggregating, an ensemble method
designed to improve the performances of machine learning algorithms [34]. This meta
algorithm is mainly used to reduce the over�tting issue of decision trees, but can be
applied to any classi�cation method.

The main idea of ensemble methods is to create several training subset from the
training data. Formally, m training subsets D i

T of size n0 are generated by sampling
uniformly and with replacement (bootstrap sample) from the main training set DT . It
is then possible to learn a classi�er model from each training subset. When classifying
a new test point, m predicted labels are thus obtain. The label which is the more
represented among thesem labels is assigned to the test point.
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4.2 Clustering-based linear mapping learning for quantiza-
tion noise removal

In this section, we propose a quantization noise removal method using multiple linear
mappings, learned at the encoder side between the decoded sequence and the source
sequence. As in the previous chapter, we rely on the grouping of the coded/decoded
patches. Here we choose to perform clustering, and a linear mapping is then learned
for each cluster.

4.2.1 Main idea and preliminary results with additive noise

To demonstrate the potential of the proposed approach in terms of de-noising, we �rst
tested it on images corrupted with Additive White Gaussian Noise (AWGN) or Signal
Dependent Noise (SDN) (see section 3.1.2).

We brie�y describe our method below, which will be more formally explained in the
following section. The noisy image is divided into non-overlapping blocks of sizeM � N .
In a �rst step, the blocks are clustered into K partitions using the K -means algorithm
(see section 4.1.1.1). For each cluster, a linear mapping is learned between the noisy
blocks and the corresponding source blocks (see Eqs. 3.30 and 3.31 in section 3.3.4.3).
The linear mapping is then applied on all the noisy blocks of the cluster to obtain the
de-noised ones.

The tests were performed on single images (�rst frame of the test sequences described
in Table 4.5), using 4 � 4 non-overlapping blocks andK = 10 clusters. For the AWGN,
four values of the standard deviation were used,� = 10; 20;30;40. For the SDN, four
sets of noise parameters were also used, = 0:5; � u = 1:5; � w = 10,  = 0:5; � u =
3; � w = 10,  = 0:6; � u = 1:5; � w = 5,  = 0:7; � u = 0:5; � w = 5. The proposed method
is compared to the NLM and BM3D algorithms.

Table 4.1: De-noising performances ofK -means (K = 10) clustering-based linear map-
ping learning compared to NLM and BM3D for AWGN

PSNR (dB)
� Noisy K -means LM NLM BM3D
10 28.1393 33.5882 34.1586 36.3768
20 22.2159 29.8034 30.0121 33.2105
30 18.8622 27.6393 27.0592 31.2358
40 16.5635 26.0502 24.8694 29.5960

In Tables 4.1 and 4.2, we give the results for the AWGN and the SDN respectively,
averaged over all the test images. The complete results are given in Tables C.1 and
C.2, in annex (section C.1.1). We can see that our method is competitive with the
NLM, even though it can not reach the performances of BM3D. Especially for high
noise level of AWGN or SDN, our methods clearly outperforms NLM. To the best of
our knowledge, methods using linear mapping have not been studied for de-noising.
Given these promising preliminary results, we propose in the next section a scheme to
address the more challenging task of quantization noise removal using this technique. In
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Table 4.2: De-noising performances ofK -means (K = 10) clustering-based linear map-
ping learning compared to NLM and BM3D for SDN

PSNR (dB)
 � u � w Noisy K -means LM NLM BM3D

0.5 1.5 10 23.1242 30.3219 25.7377 33.2564
0.5 3 10 18.4487 27.3471 22.6082 30.0192
0.6 1.5 5 20.5998 28.7132 27.8899 30.9156
0.57 0.5 5 25.1191 31.5671 32.5274 33.7646

addition, the proposed following application needs to take into account the transmission
of the linear mappings to the decoder, which was not considered here.

4.2.2 Proposed scheme for quantization noise removal

Figure 4.6: Proposed de-noising scheme for coding noise based on clustering and linear
mappings.

In this section we describe the proposed compression scheme improvement using
clustering-based linear mapping learning for de-noising. We noteM d and M s the ma-
trices containing in their columns the vectorizedM � N patches extracted from the
coded/decoded sequenceY and the source sequenceX respectively.

The main idea of the proposed method is represented in Fig. 4.6, and consists in
the following steps:

ˆ At the encoder side:

� cluster the coded/decoded patchesM d (see section 4.2)

� for each cluster c, learn a linear mapping P c between the coded/decoded
sequence patchesM c

d and the source patchesM c
s:

P c = M c
sM c

d
T (M c

dM c
d

T ) �1 (4.18)
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� encode the corresponding linear mappings (in matrix form) and transmit
them to the decoder (see section 4.2.4)

ˆ At the decoder side:

� decode the linear mappings

� cluster the coded/decoded sequenceM d, as it is performed at the encoder
side

� for each clusterc, apply the corresponding linear mappingP c to the decoded
sequence patchesM c

d to obtain the de-noised patchesM c
r :

M c
r = P cM c

d (4.19)

In the following sections, we �rst analyze the clustering process in section 4.2.3. We
then detail the linear mappings encoding in section 4.2.4. In section 4.2.5 we propose
improvements for the algorithm. Finally we present the results in section 4.2.6.

4.2.3 Clustering

To perform the clustering, we divide the frames inM � N non-overlapping patches.
Empirical results show that the de-noising performances are better for small patches.
Thus, 4 � 4 patches perform better than 8 � 8 patches, as their local structures are
better estimated. However, the patches should be big enough to contain structures. For
example, 2 � 2 patches performances are worst than4 � 4 patches. In practice,4 � 4
patches were used to obtain our results.

4.2.3.1 Choice of a clustering algorithm

Any clustering algorithm is eligible for the proposed method, as long as it can be
performed similarly at the encoder and the decoder side. We choose the popularK -
means algorithm, described in section 4.1.1.1. In order to obtain the same clustering
at the encoder and the decoder sides, the same initialization should be used on both
sides (which excludes the widely used random initialization). The choice of a number
of cluster K is discussed in details in section 4.2.3.2.

Note that other clustering methods can be used, such as Gaussian Mixture Models
(GMM), described in section 4.1.1.2, or the more recent spectral clustering, described
in 4.1.1.3. However, tests showed that even if the clusters obtained are not exactly the
same, the �nal de-noising performances are similar. In fact, all these clustering methods
tend to regroup in each cluster patches which are close in terms of Euclidean distance.

To illustrate this behavior, the three clustering methods were performed on a200�
200 crop of the �rst frame of the Kimono sequence encoded with HEVC atQP = 37.
The image was divided in4 � 4 patches, andK was set to10. The source image and
the compressed version along with the di�erent clusters obtained are shown in Fig. 4.7.
The clustering results obtained areoverall similar, with obvious di�erences. However,
the de-noising performances are in the end very similar, as the de-noised PSNR are
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38:4586dB, 38:3860dB and 38:4297dB for the K -means, GMM and spectral clustering
respectively. TheK -means algorithm was thus preferred for its simplicity and reduced
complexity compared to GMM or spectral clustering.

Source Compressed with HEVC at QP = 37
PSNR = 37:7105dB

K -means GMM Spectral clustering
De-noised PSNR = 38:4586dB De-noised PSNR = 38:3860dB De-noised PSNR = 38:4297dB

Figure 4.7: 200� 200 crop of the �rst frame of Kimono, and the comparison between
the di�erent clustering methods with K = 10. (Each color corresponds to a cluster
label.)

4.2.3.2 Choice of a number of clusters K

Generally speaking, the parameters should not only be tuned according to the de-noising
performance, but the overall RD performance. Concerning the patch size, no compro-
mise needs to be made, as small patches both improve the de-noising performances while
reducing the linear mapping rate cost (see section 4.2.4). On the contrary, the number
of clustersK should be chosen carefully. In fact, increasingK improves the de-noising
performances, but also the number of linear mappings to send to the decoder, and their
associated rate cost. Ultimately, learning one mapping per patch can produce almost
perfect de-noising, but then aM 2 � N 2 linear mapping should be sent to the decoder
for each M � N patch. This is obviously not acceptable in terms of RD performance.
Experimental results show that 10 is a good order of magnitude forK . Such value also
limits the complexity of the clustering.

The RD performances presented in section 4.2.6.1 were obtained with a �xedK set

114



to 10. The corresponding results presented in Table 4.11 show that this value might
be too high at low bit-rates, as it increases the bit-rate for a small increase in PSNR.
For example, the bit-rate allocated to the linear mappings for the Kimono and Tennis
sequences atQP = 37 accounts for about7% of the whole bit-rate. On the contrary,
at high bit-rates, the cost of the linear mappings can become negligible, e.g. for the
Terrace and Ducks sequence, where it only accounts for less than0:1% of the whole
bit-rate. In this case, K could be increased to improve the de-noising performances.

Manually tuning the parameter K for each sequence and eachQP to obtain the
best performance is a tedious task. To address this problem, we present in this section
an adaptive method for selectingK based on an RDO criterion.

Instead of explicitly partitioning the data into K clusters, we use a recursive binary
partitioning. The procedure is detailed below:

ˆ At initialization, the full data set is considered as a cluster.

ˆ Each cluster is then recursively split in 2 clusters if the RDO criterion (explained
below) is satis�ed, creating a binary tree structure.

ˆ The procedure stops when no RDO criterion is satis�ed, or a certain maximum
tree depth is reached.

The RDO criterion used to decide to further split or not a cluster is designed to
balance the de-noising performances and the linear mappings rate cost. Given a cluster
Cn and its corresponding mappingPn , we can allocate a RD cost to it computed as:

RD n = Dn + �R n (4.20)

The distortion Dn is computed as the Sum of Squared Error (SSE) between the patches
of Cn de-noised withPn and the corresponding source patches. The rateRn is estimated
as the number of bits of the encoded mappingPn (see section 4.2.4). The lagrangian
parameter is computed as in the test model of HEVC:

� = QPfactor � 2((QP �12)=3) (4.21)

whereQP is the quantization parameter andQPfactor is an adjustment factor, set to 1
in our experiments. Thus, to decide ifCn is further divided in two clusters Cn+1 and
Cn+2 , we just verify the condition RD n+1 + RD n+2 < RD n . Note that this method is
independent from the clustering algorithm, and could be performed with any clustering
algorithm presented in section 4.2.3. An example of binary tree structure obtained after
the recursive partitioning is given in Fig. 4.8.

To perform the exact same partitioning at the decoder, we then need to transmit the
binary tree structure. If we note the maximum binary tree depth d, then the maximum
number of bits needed to describe the tree structure is:

RBT
max =

d�1X

i=0

2i (4.22)
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In our experiments we setd = 4, so the maximum number of clusters isK max = 16 and
RBT

max = 15 bits. Thus, the bit-rate allocated to the binary tree structure is negligible
compared to the bit-rate of a full GOP.

Figure 4.8: Example of a cluster partition based on a binary tree structure and an RDO
criterion. The clusters are recursively split to reach 4 clusters. The tree structure is
described by only 5 bits.

The full results obtained with the adaptive RDO selection of K are detailed in
section 4.2.6.2, and show its e�ciency in terms of RD performance.

4.2.4 Linear mappings encoding

Once the clustering and linear mapping learning steps are performed, the linear map-
pings need to be encoded and sent to the decoder.

For M � N patches, the size of a linear mapping matrixP is (M � N )� (M � N ). Thus,
in order to limit the rate cost of the linear mappings encoding, the size of the patches
should be small, which is also pro�table for the de-noising performances. Typically,
in section 4.2.6,4 � 4 patches are used. As explained in section 4.2.3.2, the number
of clusters K should be carefully selected, as increasingK improves the de-noising
performances but also increases the rate associated to the linear mappings. When using
the method described in section 4.2.3.2, theK value ranges from2 to 16.

For such values, the linear mapping matrices usually exhibit strong redundancies,
both inside each matrix and between the di�erent matrices (e.g. in Figs. 4.9 and 4.10).
Therefore we choose to stack the linear mapping matrices in a 3-dimensional group, and
encode them as an image sequence using a video codec.

The linear mappings matrices consist originally in �oating points values, thus they
need to be quantized to integer values before encoding. To avoid a loss in terms of
de-noising performance due to the quantization, the matrices are quantized on 16 bits
integer values (e.g. in Table 4.3). To illustrate this claim, we performed the method on
the �rst frame of the Kimono sequence encoded atQP = 22 and QP = 37 and using the
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Table 4.3: Impact of the quantization of the linear mapping matrices on the de-noising
performances. The de-noising is performed on the �rst frame of the Kimono sequence,
clustered with the K -means algorithm,K = 10.

coded/ de-noised PSNR (dB) Linear mappings
QP decoded no quantized quantized quantized rate (in bits)

PSNR (dB) quantization on 8 bits on 12 bits on 16 bits for quantization on 16 bits
22 43.2763 43.3768 43.1790 43.3761 43.3768 37824
37 37.9512 38.0677 38.0173 38.0674 38.0677 40136

K -means algorithm (K = 10). In Table 4.3, we show the PSNR values of the de-noised
frame with or without quantization of the linear mappings. We can see that when the
matrices are quantized on 16 bits, there are no e�ects on the de-noising performances.

The encoding of the matrices is then performed with the Range Extension (RExt)
of HEVC [90][91], which supports 16 bits input. The quantization parameter of HEVC
was chosen very low (QP = �30) to limit the loss on the de-noising performances.
Finally, in order to recover the �oating point matrices, the minimum and maximum
values of the original �oating points matrices need to be sent to the decoder without
loss. In Table 4.3 we show the rate obtained after encoding of the matrices.

The rate of the linear mappings is slightly higher when the frame is encoded at
QP = 37 because the matrices are less correlated than atQP = 22, as it can be seen
in Figs. 4.9 and 4.10.

Figure 4.9: Linear mapping matrices obtained on the �rst frame of the Kimono sequence
encoded with HEVC at QP=22. The clusters were obtained with theK -means algo-
rithm, with K = 10. With this con�guration, the source and coded/decoded patches
are similar, thus the energy of the mappings is mainly concentrated on the diagonal.
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Figure 4.10: Linear mapping matrices obtained on the �rst frame of the Kimono se-
quence encoded with HEVC at QP=37. The clusters were obtained with theK -means
algorithm, with K = 10. With this con�guration, the coded/decoded patches are more
degraded than in Fig. 4.9, thus the mappings are less structured.

4.2.5 Two steps scheme with �rst pass blind de-noising

Several methods in de-noising use a �rst de-noising pass in order to improve their
performances. First, the BM3D algorithm itself is a two steps algorithm [29], where the
�rst de-noising output, obtained from the sparse 3D transform spectrum shrinkage, is
used as input for a Wiener �lter. More recently, [92] proposed a two steps algorithm,
where the noisy input is �rst de-noised with the NL-Bayes algorithm [93]. This �rst
pass de-noised image is used as a clean guide for a dual-domain de-noising algorithm
[94]. In [67], the authors tackle the less studied Signal Dependent Noise (SDN) removal
problem. Their clustering-based method estimates the noise level for each cluster (which
is supposed constant). Each cluster is then de-noised by applying an AWGN de-noising
algorithm with its corresponding noise level. The performance is improved by �rst
applying a BM3D algorithm using the average noise level.

In this section, we propose a similar improvement of our method by �rst applying
a �blind� de-noising algorithm. Our method is then applied on this �rst de-noised
sequence. This idea is represented in Fig. 4.11. At the encoder side the linear mapping
learning is made between the source and this �rst estimate. Thus, at the decoder side,
the same de-noising has to be performed. We qualify this �rst pass de-noising as �blind�
because no parameters should be transmitted between the encoder and the decoder side,
so that there is no bit-rate increase. In practice, some parameters that have a negligible
rate cost are send.
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Figure 4.11: Proposed de-noising scheme for coding noise based on clustering and linear
mappings with �rst pass �blind� de-noising.

The �rst pass de-noising is performed using the Video BM3D (VBM3D) algorithm
[78]. The noise standard deviation� n is estimated as the square root of the MSE
computed on a GOP. This parameter can only be computed at the encoder side and has
to be sent to the decoder. However, its rate cost is negligible compare to the bit-rate
of the whole GOP. The other VBM3D parameters, shown in Table 4.4, are �xed and
considered known at both encoder and decoder side. On top of this �rst de-noising pass,
we apply our method usingK -means clustering, with the adaptiveK selection method
described in section 4.2.3.2.

The results given in section 4.2.6.3 show that a signi�cant improvement is brought
by the �rst pass de-noising compared to the proposed clustering-based method. This
also proves that our de-noising method relying on linear mapping can be complementary
to the de-noising method relying on shrinkage in a transform domain.
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Table 4.4: Fixed parameters for the BM3D algorithm. See section 3.1.2.4 for details on
the parameters.

Parameters THT 2D-Bior 1.5 + 1D-Haar
for � 2.7� n

Step 1
(HT ) " HT

BM 3000

Parameters TW ien 2D-DCT + 1D-Haar
for
Step 2 " W ien

BM 1500
(W ien )

Common K 8
parameters N 8

NSW 7
s 8

NF R 4

4.2.6 Simulations and results

The sequences used in the experiment are presented in Table 4.5. The test sequences
are processed per Group Of Pictures (GOP), and a GOP contains a number of frames
equal to the frame rate (i.e., we have one GOP per second).

Table 4.5: Test sequences

Sequence Resolution Frames count Frame rate
W � H T

City 1280� 720 600 60
Park Scene 1920� 1080 240 24
Tennis 1920� 1080 240 24
Kimono 1920� 1080 240 24
Cactus 1920� 1080 500 50
Terrace 1920� 1080 600 60
Basket 1920� 1080 500 50
Ducks 1920� 1080 500 50
People On Street 2560� 1600 150 30
Tra�c 2560� 1600 150 30

The sequences are encoded with the HEVC test model HM (ver 15.0) [82] using
the Main pro�le in Random Access, with 4 values for the Quantization Parameter,
QP = 22; 27;32;37. For all the experiments, the linear mappings are encoded for each
GOP as described in section 4.2.4 using the range extension of HEVC (HM 15.0 RExt
8.1) [91] with a �xed QP = �30.

4.2.6.1 RD performances using the K-means clustering

In this experiment, the GOPs are divided in non-overlapping patches of size4 � 4,
which are clustered using theK -means algorithm with K = 10 clusters. Rate-distortion
performances for each GOP are presented in Table 4.6, computed using the Bjontegaard
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metric [54] with respect to the sequences encoded with HEVC.
In average over all the sequences and all the GOPs, the bit-rate is reduced by 1.662

%. We can see that except for 3 sequences (ParkScene, Tennis, Kimono), we obtain a
bit-rate saving of about 1-2 %, and we reach about 8 % for the Terrace sequence. For
the �fth GOP of this sequence, we even reach about 12 % bit-rate reduction.

Table 4.6: RD performances per GOP ofK -means clustering withK = 10 (Bjontegaard
bit-rate gain with respect to HEVC)

GOP C
it

y

P
ar

k
S

ce
ne

T
en

ni
s

K
im

on
o

C
ac

tu
s

T
er

ra
ce

B
as

ke
t

D
uc

ks

P
eo

pl
e

O
n

S
tr

ee
t

T
ra

�c

A
ve

ra
ge

1 -2.309 0.123 -0.060 -0.130 -1.157 -5.377 -0.828 -2.319 -2.544 -1.293 -1.589
2 -1.755 0.155 0.092 -0.132 -1.224 -7.143 -0.429 -1.810 -2.554 -1.231 -1.603
3 -1.958 0.091 0.182 -0.196 -0.882 -8.617 -0.870 -1.016 -2.540 -1.221 -1.703
4 -1.742 0.184 0.102 -0.243 -0.807 -11.690 -0.744 -1.164 -2.601 -1.177 -1.988
5 -0.961 0.301 0.104 -0.191 -1.055 -12.155 -0.649 -1.197 -2.584 -1.309 -1.97
6 -1.900 0.473 1.598 0.352 -1.198 -10.051 -0.433 -1.613 -1.597
7 -1.589 0.481 1.451 1.216 -1.111 -8.493 -0.505 -2.010 -1.320
8 -1.976 0.502 1.054 1.422 -1.343 -7.534 -0.709 -2.364 -1.368
9 -1.844 0.589 0.839 1.898 -1.028 -6.734 -0.742 -2.490 -1.189
10 -1.922 0.972 0.773 2.541 -0.914 -6.788 -0.486 -2.757 -1.073
Average -1.806 0.381 0.080 0.426 -1.079 -8.282 -0.652 -1.877 -2.558 -1.257 -1.662

4.2.6.2 RD performances using binary tree RDO for K selection

In this section, the number of clustersK is adaptive and selected using the binary
tree RDO method described in section 4.2.3.2. Experiments were performed using the
K -means clustering and the same sequences and parameters as in section 4.2.6.1. RD
performances are shown in Table 4.7. Comparison with performances using a �xed
K = 10 presented in Table 4.6 show that we now obtain better performance for most
of the sequences. We report in Table 4.8 the selected values ofK , averaged over all the
GOPs. We can see that theK values adapt to the sequence, reaching higher values for
sequences with a higher resolution and/or frame rate. TheK values depend onQP,
and lower values are selected at low bit-rate (highQP value).

121



Table 4.7: RD performances per GOP ofK -means clustering with RDO adaptive K
selection (Bjontegaard bit-rate gain with respect to HEVC)
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1 -2.763 -0.692 -0.900 -1.317 -1.125 -5.253 -1.104 -2.393 -2.570 -1.439 -1.956
2 -2.309 -0.672 -0.720 -1.348 -1.285 -6.830 -0.405 -1.819 -2.576 -1.387 -1.935
3 -2.447 -0.632 -0.775 -1.358 -0.892 -8.855 -0.977 -1.078 -2.589 -1.352 -2.096
4 -1.657 -0.536 -0.824 -1.308 -0.979 -11.579 -0.622 -1.245 -2.612 -1.351 -2.271
5 -1.844 -0.517 -0.717 -0.888 -1.112 -11.947 -0.761 -1.266 -2.631 -1.528 -2.321
6 -2.217 -0.476 -1.077 -0.853 -1.370 -9.900 -0.766 -1.707 -2.296
7 -1.898 -0.479 -1.907 -0.585 -1.248 -8.203 -0.679 -2.130 -2.141
8 -1.861 -0.396 -2.389 -0.582 -1.295 -7.233 -1.089 -2.469 -2.164
9 -2.515 -0.309 -1.773 -0.428 -1.188 -6.354 -0.880 -2.577 -2.003
10 -2.743 0.017 -2.518 0.286 -0.999 -6.471 -0.691 -2.836 -1.994
Average -2.236 -0.472 -1.415 -0.938 -1.153 -8.083 -0.795 -1.957 -2.600 -1.425 -2.107

Table 4.8: K values for K -means with RDO adaptive K selection (Averaged over all
GOPs)
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22 10.8 8.5 7.6 8.2 14.9 15.4 12.0 15.9 16.0 14.0 12.33
27 11.3 6.8 5.7 6.4 11.7 15.0 9.7 15.8 16.0 12.6 11.10
32 7.4 4.0 3.4 4.5 9.0 14.1 7.8 15.8 16.0 7.6 8.96
37 5.9 4.0 2.8 4.0 7.1 13.1 5.8 15.5 15.8 5.8 7.98

4.2.6.3 RD performances with �rst pass blind de-noising

Here the video is �rst de-noised with the VBM3D algorithm, with the parameters de-
scribed in section 4.2.5. Results are given for 1 GOP. In Table 4.9, we see that substantial
bit-rate reduction are achieved when combining the proposed method with the BM3D.

From Tables 4.8 and 4.10 we can see that the number of clusters selected is higher
when using the �rst pass de-noising. In fact, in the RDO decision, the improvement
brought by the �rst pass de-noising reduces the distortion, and thus allows for a higher
bit-rate cost, i.e. more linear mappings can be sent to the decoder.
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Table 4.9: RD performances ofK -means clustering with RDO adaptiveK selection and
VBM3D de-noising (Bjontegaard bit-rate gain with respect to HEVC)

K -means VBM3D VBM3D and
clustering K -means clustering

City -2.763 -1.498 -3.237
Park Scene -0.692 -0.882 -1.072
Tennis -0.900 -7.837 -7.766
Kimono -1.317 -4.266 -4.317
Cactus -1.125 -4.037 -6.188
Terrace -5.253 -1.145 -7.240
Basket -1.104 -2.977 -3.803
Ducks -2.393 -1.602 -4.127
People On Street -2.570 -7.881 -9.627
Tra�c -1.439 -4.326 -5.428
Average -1.956 -3.645 -5.281

Table 4.10: K values for K -means with RDO adaptive K selection and VBM3D de-
noising
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22 15.0 12.0 9.0 7.0 16.0 16.0 11.0 16.0 16.0 15.0 13.30
27 15.0 8.0 7.0 6.0 13.0 16.0 11.0 16.0 16.0 12.0 12.00
32 10.0 6.0 6.0 6.0 12.0 16.0 9.0 16.0 15.0 13.0 10.90
37 9.0 4.0 5.0 4.0 11.0 15.0 5.0 16.0 15.0 6.0 9.00
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4.3 Optimal clustering for de-noising based on linear map-
pings

Results from the previous section show that the proposed method usingK -means clus-
tering achieves convincing bit-rate reduction compared to HEVC. We give in Table 4.11
the de-noising performances corresponding to the results usingK -means clustering with
K = 10 (see section 4.2.6.1). We can see that the PSNR improvement is unexpectedly
limited. In this section, we �rst analyze the limitations of the K -means clustering for
de-noising using linear mappings. Second, we propose a new clustering algorithm that
optimizes the de-noising performances. Note that with the proposed clustering algo-
rithm, we de�ne an upper theoretical bound on the de-noising performances. However,
its application as such in the proposed compression scheme is not straightforward, as it
relies on the knowledge of the source patches.

Table 4.11: De-noising performances ofK -means clustering withK = 10 (�PNSR)
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22 0.125 0.044 0.104 0.089 0.042 0.088 0.028 0.028 0.170 0.077 0.080
27 0.118 0.047 0.092 0.081 0.048 0.141 0.034 0.048 0.136 0.083 0.083
32 0.099 0.048 0.080 0.071 0.052 0.158 0.042 0.076 0.119 0.080 0.083
37 0.083 0.047 0.078 0.069 0.058 0.188 0.049 0.110 0.115 0.076 0.087

4.3.1 K-means limitations for linear mappings learning

First, we notice that the linear mapping used to de-noise a patch implicitly estimates
the residue. Let xs be a source patch,xd the corresponding decoded patch andq the
patch residue, we have the following relation:

xs = xd + q (4.23)

We call P the linear mapping used to estimate the source patch:

x̂s = Px d (4.24)

The residue can then be directly estimated using the linear mappingP' = P � I,
where I is the identity matrix with the same size as P:

P'x d = Px d � xd = x̂s � xd = q̂ (4.25)

This (trivial) observation suggests that the use of linear mappings for de-noising
will perform better for clusters which contain similar patches residue. When using the
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K -means algorithm, an implicit assumption is made that the similar decoded patches
(belonging to the same cluster) correspond to similar source patches, and thus similar
patches residue. However, this hypothesis does not hold for quantization noise, where
similar decoded patches can correspond to di�erent patches residue, and vice versa.
For example, in Table 4.12, the two noisy patches on the left are similar, but their
corresponding source patches (hence the patches residue) are di�erent. On the contrary,
the two dissimilar noisy patches on the right would be e�ciently de-noised using the
same linear mapping, because they correspond to similar patches residue.

Table 4.12: Left: Comparison of patches in the same cluster (usingK -means). Although
the decoded patches are similar, di�erent linear mapping should be used to e�ciently
approximate their corresponding source patches. Right: Comparison of patches in
the di�erent clusters. Although the decoded patches are dissimilar, an unique linear
mapping would e�ciently de-noise the patches.

Patch 1, cluster 1 Patch 2, cluster 1 Patch 1, cluster 1 Patch 2, cluster 2

D
ec

od
ed

S
ou

rc
e

Another way to represent the clusters is to visualize the patches as points in the
Euclidean space. For this purpose we work on the �rst full frame of the Kimono se-
quence, encoded with HEVC atQP = 37. Fig. 4.12 shows the coded/decoded frame,
which PSNR is 37.95 dB. The proposed de-noising method using theK -means algo-
rithm ( K = 10) performed on the 4 � 4 decoded patches reaches a PSNR of 38.07 dB,
which corresponds to a PSNR gain of 0.12 dB. The patches are points in a 16 dimen-
sions Euclidean space. In order to obtain a visual representation, we project the patches
on 2 dimensions using the Linear Discriminant Analysis (LDA). The LDA was chosen
over the popular Principal Component Analysis (PCA) because of its better ability to
discriminate between the di�erent classes [95].

In Table 4.13, we show di�erent visual representations of the clusters obtained with
the K -means algorithm performed in the decoded patches. In the �rst row, each patch
of the �rst frame of Kimono is colored depending on its cluster label. In the second
row, we show the 2D representation of the patch Euclidean space. On the left, each
point represents a decoded patch projected with the LDA and colored depending on
its cluster label. On the right, the same representation is shown, butapplied on the
patches residue. From these representations, we can verify that theK -means groups
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similar patches (close in the Euclidean space) together. However, we can see that
the clusters completely overlap in the residue space, which means that similar patches
residue belong to di�erent clusters, while di�erent patches residue belong to the same
cluster, as exhibited in Table 4.12.

Figure 4.12: First frame of the Kimono sequence encoded with HEVC at QP=37. PSNR
= 37.95 dB.

To further explore this idea, we perform the K -means clustering (with K = 10)
directly on the patches residue of the same previous decoded frame of Kimono. The
proposed de-noising methods applied with these clusters reaches a PSNR of 40.68 dB,
which corresponds to a PSNR gain of 2.73 dB. This result supports the idea that the
linear mapping learning is much more e�cient for clusters with homogeneous residue
patches. In Table 4.14, we show the di�erent visual representations of the clusters,
as in Table 4.13. We can see that in the Euclidean spaces, we obtain the inverse
representations of Table 4.13. The clusters are well separated in the residue space,
but completely overlap in the decoded patches space. Thus, contrary to theK -means
performed on the decoded patches, similar decoded patches belong to di�erent clusters,
while dissimilar decoded patches belong to the same cluster. This observation appears
clearly in the representation of the �rst row of Table 4.14.

We can see that, in terms of de-noising, signi�cant improvement can be reached
compared to theK -means clustering of the decoded patches. Thus, in the next section,
we propose a clustering algorithm designed to maximize the de-noising gains.

4.3.2 Optimal clustering for linear mapping learning

We proposed here a new clustering method denoted optimal clustering. For each cluster,
we learn a linear mapping, and minimize the overall reconstruction error between the
source patches and the coded/decoded patches de-noised with the linear mappings.

Formally, the problem corresponding to the optimal clustering is formulated as fol-
lows:
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Table 4.13: Visual representations of theK -means clustering performed on the decoded
patches,K = 10. (Each color corresponds to a cluster label.)

K -means clustering on decoded patches. De-noised PSNR = 38.07 dB.
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Table 4.14: Visual representations of theK -means clustering performed on the residue
patches,K = 10. (Each color corresponds to a cluster label.)

K -means clustering on residue patches. De-noised PSNR = 40.68 dB.
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min
C

X

i=1:::K

X

xd ;x s 2C i

jj xs � P i xdjj2 (4.26)

with C = fC i gi=1:::K . As for the K -means clustering, the problem of Eq. (4.26) can be
solved using a greedy algorithm, described in Algorithm 5.

The initial set of linear mappings P (1)
1 : : : P (1)

K is supposed known, e.g. obtained by
�rst performing the K -means clustering on the coded/decoded patches and learning a
linear mapping for each cluster.

Algorithm 5 Optimal clustering for linear mapping learning
Input: cluster number K , d � n coded/decoded patches matrix M d = fx dg, corresponding source
patches matrix M s = fx sg
Output: cluster set C = fC i ; 1 � i � K g, corresponding mapping matrices P = fP i ; 1 � i � K g
Repeat the two following steps until convergence:
Assignment step:

8i = 1 : : : K; C ( t)
i = fx d ; xs : jjx s � P ( t)

i xd jj 2 � jj xs � P ( t)
j xd jj 28j; 1 � j � K g

Update step:

8i = 1 : : : K; P ( t+1)
i = M i

sM i
d

T
(M i

dM i
d

T
) �1

In order to estimate the potential of the optimal clustering in terms of de-noising,
preliminary experiments were performed on AWGN and SDN, with the same parameters
as in 4.2.1. Here, the results are averaged over all test images. The complete results are
given in Tables C.3 and C.4, in annex (section C.1.1). The results given in Tables 4.15
and 4.16 for AWGN and SDN respectively show a dramatic increase of the PSNR for
the images de-noised with optimal clustering-based linear mapping learning compared
to the K -means clustering (see corresponding Tables 4.1 and 4.2). We can see that the
new clustering method is now competitive with BM3D for AWGN and even outperforms
BM3D for SDN.

Table 4.15: De-noising performances of optimal clustering-based linear mapping learn-
ing and BM3D for AWGN

PSNR (dB)
� Noisy Optimal clustering LM BM3D
10 28.1393 36.2814 36.3768
20 22.2159 33.3756 33.2105
30 18.8622 31.8393 31.2358
40 16.5635 30.8744 29.5960

When performed on the �rst frame of the Kimono sequence encoded with HEVC at
QP = 37, the de-noised frame PSNR reaches 41.26 dB, which corresponds to a PSNR
gain of 3.31 dB. We can see that the optimal cluster does outperform the clustering
of the residue patches in terms of de-noising performance. In Table 4.17, we show the
di�erent visual representations of the clusters, as in Tables 4.13 and 4.14. Although it
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Table 4.16: De-noising performances of optimal clustering-based linear mapping learn-
ing and BM3D for SDN

PSNR (dB)
 � u � w Noisy Optimal clustering LM BM3D

0.5 1.5 10 23.1242 33.8326 33.2564
0.5 3 10 18.4487 31.7479 30.0192
0.6 1.5 5 20.5998 32.7183 30.9156
0.57 0.5 5 25.1191 34.9877 33.7646

does not appear as clearly as in Table 4.14, the same conclusions can be drawn from the
visual representations: the clusters are well separated in the residue space, but overlap
in the decoded patches space. Once again, it means that similar decoded patches will
belong to di�erent clusters, while dissimilar decoded patches will belong to the same
cluster. This observation also appears clearly in the representation of the �rst row of
Table 4.17, which is very similar to the one of Table 4.14.

Although very e�cient in terms of de-noising, the optimal clustering and its ap-
proximation by clustering the patches residue can not be used as such in the proposed
scheme (described in Fig. 4.6). In fact, this method relies on the knowledge of the source
patches, which is only available at the encoder side. Furthermore, from the previous
observation, it seems di�cult to approach the optimal clustering by directly performing
clustering on the coded/decoded patches (whatever clustering algorithm is used). Even
if information is sent about the clusters shape (such as the centroid and the covariance
matrix), it is clear that there is too much overlap between the optimal clusters in the
decoded patches space to e�ectively separate them. Thus, to bene�t from the optimal
clustering at the decoder side, one should signal to the decoder the cluster label for each
patch. The signaling of the cluster labels is studied in the next section.
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Table 4.17: Visual representations of the optimal clustering,K = 10. (Each color
corresponds to a cluster label.)

Optimal clustering. De-noised PSNR = 41.26 dB.
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4.3.3 Potential RD performances using optimal clustering

In this section, we present the potential RD performances obtained when using the
optimal clustering described in section 4.3. We also give the actual performances when
taking into account the raw cost of the direct transmission cluster indexes. This cost is
estimated using the following equation:

Rindexes =
W
M

�
H
N

� T � log2(K ) (4.27)

where W � H is the spatial resolution of the sequence,T is the number of frames,
M � N is the patch size, andK is the number of clusters. The only way to decrease
this cost is to increase the patch sizeM � N and/or decrease the number of clusters
K , which is known to disadvantage the de-noising performances. Thus, we adapted
these parameters depending on theQP used to encode the sequence. In Table 4.18, we
give these parameters along with the de-noising performances. Compared to the results
using the K -means algorithm given in Table 4.11, the PSNR gains show the e�ciency
of the optimal clustering for the removal of quantization noise.

In order to visualize the RD performances, we show the RD curves for the �City� and
�Ducks� sequences, which are representative of the worst and best cases respectively, in
Fig. 4.13. The curves for the remaining test sequences can be seen in annex in section
C.1.2. The gray dash lines represent the cluster indexes bit-rates depending on the
di�erent patch sizes and cluster numbers (which are function of theQP). Note that
the rate cost of the linear mappings also depends on these parameters, and thus varies
as a function ofQP. This sometimes results in unexpected RD curve shapes when the
cluster indexes bit-rate is not taken into account (green curves). For the same reason,
the Bjontegaard measures can not be computed.

The results show that potential huge improvement can be achieved using the optimal
clustering in terms of RD performance. However, we can see that the direct transmission
(without coding) of the cluster indexes is obviously unrealistic, and yields far worst
performances than the standard HEVC. Note that, the indexes exhibit no correlation,
neither spatially nor temporally, which excludes compression using predictive model,
such as di�erential pulse-code modulation (DPCM). A statistical analysis of the indexes
shows that the histogram is �at, which excludes the use of arithmetic or entropy coding
(e.g. Hu�man coding).
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Table 4.18: De-noising performances of optimal clustering (�PNSR)
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22 16 4 � 4 1.36 1.08 1.49 1.28 0.79 0.85 0.91 0.79 1.58 1.35 1.15
27 8 4 � 4 1.20 1.04 1.76 1.55 0.74 0.80 0.90 0.85 1.45 1.28 1.16
32 16 8 � 8 0.76 0.67 1.63 1.38 0.62 0.59 0.80 0.62 1.08 0.88 0.90
37 4 8 � 8 0.49 0.46 1.34 1.09 0.48 0.49 0.66 0.51 0.76 0.62 0.69

Figure 4.13: RD performances using the optimal clustering, with and without the cluster
indexes rate-cost. The performance upper bound of the optimal clustering (green curve)
are clearly above the performance of HEVC, especially at high bit-rate. However, when
taking into account the cluster indexes raw bit-rate, the performance drop below the
HEVC performances.

4.3.4 Conclusion

It is well known in de-noising that exploiting the self-similarities of an image, by group-
ing or clustering patches, is an e�cient tool. The underlying assumption, for white
Gaussian noise as well as signal-dependent noise, is that grouped patches will promote
sparsity and share a similar noise level. Therefore, a pruning of the coe�cients of a
sparse representation below this noise level provides signi�cant de-noising performance.
We showed in this section that the proposed linear mapping based method also reaches
high PSNR gains on clusters which gather patches with similar noise properties. How-
ever, we showed experimentally that the assumption that similar noisy patches will
share a similar noise level does not hold in the case of compression noise.

The study of the optimal clustering shows that, even if the K -means algorithm
yields some interesting results in terms of RD performances, signi�cant improvements
can be expected. Even though its use is not mature in the proposed compression scheme
(see Fig. 4.6), it sets an upper bound on the RD performances. We show in section
4.5 a new perspective based on classi�cation which could allow to reach a compromise
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between theK -means and the optimal clustering on the RD performances.

4.4 Application to super-resolution for scalable video com-
pression

In this section we described a clustering-based linear mapping learning method for the
super-resolution that we introduce in a scalable compression scheme. The method is
adapted from the de-noising method described in the previous chapter. Here, after clus-
tering, the linear mappings are learned between the low-resolution and high-resolution
patches, and then applied to perform super-resolution. If the low-resolution sequence is
also corrupted with noise, our method jointly performs super-resolution and de-noising,
which makes it suitable for the up-sampling of a decoded base layer sequence in a
scalable compression scheme such as SHVC.

4.4.1 Preliminary super-resolution results

We �rst evaluate the potential of the method purely in terms of super-resolution per-
formances, without encoding the sequences.

Below, we brie�y explain how the method can be adapted for super-resolution.
More details will be given in the next section. Here, the clustering is performed on
the low-resolution (LR) sequence up-sampled to the size of the HR sequence using a
simple up-sampling �lter. The linear mappings are then learned between the up-sampled
LR patches and the corresponding high-resolution (HR) patches for each cluster. The
process is thus very similar to the de-noising method proposed in section 4.2, except
that here the linear mapping only performs high frequencies reconstruction.

The tests were performed on single images (�rst frame of the test sequences described
in Table 4.5), the LR images were obtained from the source images by down-sampling
with a factor 2 using the SHVC �lter [47]. The LR image was up-sampled using the
SHVC up-sampling �lter, so that LR and HR patches share the same4 � 4 size. The
number of clusters was �xed toK = 10.

As for the de-noising application, the optimal clustering formulation (see section 4.3)
can be used to de�ne an upper bound on the performances. The tests were performed
with K -means and the optimal clustering methods for comparison, and results are
given in Table 4.19. We can see that the proposed method improves the performances
compared to the SHVC up-sampling �lter, especially using the optimal clustering.

Given these promising preliminary results, we propose in the next section a scheme
integrating this method in a scalable compression framework. The results shown in
section 4.4.5 also take into account the transmission of the linear mappings to the
decoder, which was not considered here.

4.4.2 Proposed scheme for salable compression

In this section, we describe the proposed compression scheme improvement using clustering-
based linear mapping learning for super-resolution. The method is applied in a scalable

134



Table 4.19: Super-resolution performances of clustering-based linear mapping on non-
encoded low resolutions images

Sequence SHVC Filter K -means Optimal clustering
City 30.9836 32.3000 35.3865
Park Scene 36.3585 36.9171 38.8824
Tennis 40.9845 41.3829 43.0397
Kimono 44.4866 44.6471 45.7041
Cactus 34.1444 34.7399 36.9079
Terrace 28.7704 29.6783 32.3759
Basket 34.9184 35.6637 39.2549
Ducks 33.4748 34.0972 35.9034
People On Street 38.0490 39.1701 41.6081
Tra�c 38.4106 39.1342 41.7834
Average 36.0581 36.7731 39.0847

scheme such as SHVC, in which the LR sequence is encoded as a base layer (BL), and
the coded/decoded BL is then used to predict the HR sequence, also denoted enhance-
ment layer (EL). Note that SHVC scalable features also include temporal resolution,
SNR, bit depth and color gamut [47]. Here, we only focus on the scalability of the
spatial resolution. Below, we �rst describe the proposed method to super-resolve the
BL. Then, we explain how the method can be introduced in a scalable coding scheme.

4.4.2.1 Super-resolution of the base layer

The di�erent steps of the proposed super-resolution method are the same as for the
de-noising, with an additional step to up-sample the coded/decoded LR sequence. We
use here the same formalism as in section 4.2.2. The matricesM d and M s contain in
their columns the vectorizedM � N patches from the up-sampled LR coded/decoded
sequenceYHR and the HR source sequenceX respectively.

The main idea of the proposed method is represented in Fig. 4.14, and consists in
the following steps:

ˆ At the encoder side:

� cluster the up-sampled coded/decoded patchesM d (see section 4.4.3)

� for each clusterc, learn a linear mappingP c between the up-sampled coded/decoded
sequence patchesM c

d and the source patchesM c
s:

P c = M c
sM c

d
T (M c

dM c
d

T ) �1 (4.28)

� encode the corresponding linear mappings (in matrix form) and transmit
them to the decoder (see section 4.4.4)

ˆ At the decoder side:

� decode the linear mappings
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� cluster the up-sampled coded/decoded sequenceM d, as it is performed at
the encoder side

� for each clusterc, apply the corresponding linear mappingP c to the decoded
sequence patchesM c

d to obtain the super-resolved patchesM c
r :

M c
r = P cM c

d (4.29)

Figure 4.14: Proposed super-resolution scheme for low resolution coded/decoded se-
quences based on clustering and linear mappings.

Note that here, applying the linear mappings does not only super-resolve the up-
sampled coded/decoded patches, but also jointly de-noises them.

4.4.2.2 Super-resolution in a scalable scheme

Traditional scalable coding schemes, such as SHVC, �rst encode the BL, which is then
used to encode the EL. More precisely, the coded/decoded BL is �rst processed during a
so-called inter-layer processing step. The outcome of the inter-layer process can then be
used for the prediction during the EL coding. Note that the inter-layer prediction comes
in addition to the standard prediction modes. Here, the inter-layer processing only
consists in up-sampling the coded/decoded BL (see section 1.2.3). A simple example of
such scheme is presented in Fig. 4.15.

To improve the compression performances of the scalable scheme, we propose to
replace the up-sampling �lter by our super-resolution method, as presented in Fig.
4.16.
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Figure 4.15: Traditional scalable scheme for video compression (e.g. SHVC).

Figure 4.16: Proposed improvement of the scalable compression scheme with super-
resolution.
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4.4.3 Clustering

The clustering is performed either with the K -means algorithm or the optimal clus-
tering, as preliminary results from section 4.4.1 showed their e�ciency. Note that the
optimal clustering represents an upper bound on the performances, but as in the pre-
vious chapter, would require the transmission of the cluster indexes to be used at the
decoder side. The results in section 4.4.5 are obtained with a �xedK = 10 clusters,
but the method described in section 4.2.3.2 to adaptively selectK is still valid.

4.4.4 Linear mappings encoding

The proposed method for super-resolution does not imply any changes to encode the
linear mappings compared to the de-noising method. Therefore, the linear mappings
are encoded as described in section 4.2.4.

4.4.5 Simulations and results

The test sequences are presented in Table 4.5. Here, only the �rst GOP of the sequences
was processed.

The BL sequences are obtained by down-sampling the source sequences by a factor
2 using the SHVC �lter. The BL sequences are then encoded with the HEVC test
model HM (ver 15.0) [82] using the Main pro�le in Random Access, with 4 values for
the Quantization Parameter, QP = 22; 27;32;37. The decoded BL sequences are up-
sampled with the SHVC �lter or with our super-resolution method. The up-sampled
versions (SHVC �lter or super-resolution) of the BL encoded atQP = 22 is then used
to encode the EL with the SHVC test model SHM (ver. 9.0), with QP = 24; 29;34;39.
Note that the two up-sampled BL sequences are used as external base layer thanks to
the hybrid codec scalability feature of SHVC.

For all the experiments, the linear mappings are encoded as described in section
4.2.4 using the range extension of HEVC [90][91] (HM 15.0 RExt 8.1) with a �xed
QP = �30.

First, the super-resolution was performed using theK -means clustering. The RD
performances of both the BL and the EL are given in Table 4.20, evaluated with the
Bjontegaard measures compared to the SHVC �lter. We can see that even if signi�cant
bit-rate reduction can be achieved with the super-resolved BL compared to the SHVC
�lter (up to 40% for the Terrace sequence), these gains are not reported on the EL. In
fact, the inter-layer reference frames used for the prediction of the EL are in competition
with the other reference frames previously decoded from the EL. The latter are usually
of better quality than the former, and the gains obtained with the super-resolution are
not enough to make a di�erence when encoding the EL.

In the second experiment, the super-resolution was performed with the optimal
clustering. Note that here the cost of the cluster indexes was not taken into account,
thus the results we give are an upper bound. The RD performances of both the BL and
the EL are given in Table 4.21. Here, we can see that the gains brought by the optimal
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Table 4.20: RD performances computed on the BL and EL usingK -means clustering
with K = 10 for super-resolution (Bjontegaard measures with respect to the up-sampled
BL with SHVC �lter and corresponding SHVC EL respectively)

BL gain EL gain
bit-rate % gain PSNR gain bit-rate % gain PSNR gain

City -20.36 0.501 -0.50 0.004
Park Scene 0.91 -0.007 -0.40 -0.093
Tennis 2.03 -0.059 0.92 -0.049
Kimono 2.87 -0.088 -0.02 0.062
Cactus -7.74 0.174 0.56 -0.050
Terrace -39.24 0.560 -0.20 0.090
Basket -18.53 0.374 2.34 -0.114
Ducks -8.66 0.194 -0.59 -0.016
Average -11.09 0.206 0.26 -0.021

clustering on the BL are huge, and therefore have an impact on the coding of the EL,
which also reaches signi�cant bit-rate reduction compared to the SHVC �lter.

This shows that the proposed scheme (Fig. 4.16) is valid, and as for the de-noising,
the upper bound on the performances set by the optimal clustering is substantial. How-
ever, the K -means clustering could only improve the performance of the BL.

Table 4.21: RD performances computed on the BL and EL using optimal clustering with
K = 10 for super-resolution (Bjontegaard measures with respect to the up-sampled BL
with SHVC �lter and corresponding SHVC EL respectively)

BL gain EL gain
bit-rate % gain PSNR gain bit-rate % gain PSNR gain

City -80.66 2.864 -15.70 0.307
Park Scene -64.29 2.025 -23.87 0.102
Tennis -62.52 2.584 -19.90 0.934
Kimono -73.98 3.638 -18.08 1.291
Cactus -68.02 2.135 -16.99 0.520
Terrace -96.03 2.887 -11.50 0.470
Basket -90.49 3.338 -16.64 0.564
Ducks -73.94 2.318 -16.88 1.682
Average -76.24 2.724 -17.45 0.734

Below, in order to better visualize the above conclusions, we show in Fig 4.17 the
RD curves for the City sequence, with theK -means and the optimal clustering. We
can see that when using theK -means, the gain obtained on the BL is slightly reported
on the EL at low bit-rates. However at high bit-rates, the quality of the BL is not
su�cient (PSNR below 32) to provide an inter-layer prediction competitive with the
inter-frame prediction (PSNR above 38). Thus, no di�erence is visible between the EL
encoded with the BL up-sampled with the SHVC �lter and the EL encoded with the
BL up-sampled with the super-resolution.

The RD curves of the remaining sequences can be seen in annex (section C.2), in
Fig. C.2
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Figure 4.17: RD performance of the City sequence using theK -means and the optimal
clustering for super-resolution. The obvious improvement in the performance on the
BL are not reported on the EL for the K -means.

4.5 From clustering to classi�cation

The optimal clustering algorithm described in section 4.3 sets an upper bound on the
de-noising and corresponding RD performances, which shows that the results using the
K -means clustering presented in section 4.2.6 can be further improved. Unfortunately,
in practice, this upper bound is not reached, because the optimal clustering algorithm
relies on the knowledge of the source patches, which are not available at the decoder side.
Experiments showed that the direct transmission of the cluster indexes to the decoder
is not worthwhile in a RD sense, especially since this information is very di�cult to
compress.

The analysis of section 4.3.1 indicates that recovering the optimal clusters using
only clustering (un-supervised learning) of the coded/decoded patches is not worth
considering. One could consider introducing in the clustering process priors relative
to a quantization noise model, which would provide an explicit relation between the
decoded signal and the source one. To the best of our knowledge, the quantization
noise in modern video codecs, such as HEVC, is too complex to be modeled.

However, the problem can be formulated as a supervised learning (classi�cation)
problem. Such machine learning techniques are known to be e�cient to obtain a model
which links input and output data for which an explicit mathematical equation is un-
known. In our context, we can use the labels of the optimal clustering to train a classi�er
on data which are available at the decoder side. Such classi�er can then be used at the
decoder side to recover the optimal clusters labels.

Two solutions can be considered to train the classi�er:

ˆ The classi�er is trained at the encoder side, where all the optimal clusters labels
are known, using only training data which are also available at the decoder side.
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The classi�er model has then to be sent to the decoder.

ˆ A subset of the optimal clusters labels is sent to the decoder. The classi�er is
then directly trained at the decoder side on this subset of data. It is then used on
the full data set to predict the optimal clusters labels.

These two schemes are represented in Figs. 4.18 and 4.19 respectively.

Figure 4.18: Classi�cation-based scheme to recover the optimal cluster labels at the
decoder, with transmission of the classi�er model.

Figure 4.19: Classi�cation-based scheme to recover the optimal cluster labels at the
decoder, with transmission of a subset of the training data.

The feature vectors on which we perform the classi�cation can obviously contain
the (vectorized) coded/decoded patch. However, additional information available at
the decoder can help to improve the classi�er performance, by adding new dimensions
in order to maximize inter-class separability. Among others, the feature vector could
for example contain:

ˆ The coded/decoded patch

ˆ The prediction patch
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ˆ The transform

ˆ The quantized transform coe�cients

ˆ The prediction mode: intra or inter

ˆ In case the prediction is intra: the directional mode

ˆ In case the prediction is inter: the motion vector

ˆ The frame type (I-P-B)

ˆ The quantization parameter

ˆ The bit-rate associated to the patch

The choice of the features for classi�cation is usually critical, and one should be
careful when selecting them. For example, selecting the �rst three features in the above
list might be redundant, as the decoded patches are reconstructed from the prediction
and the inverse transformed quantized coe�cients. Instead, one could select only the
coded/decoded patches and their corresponding prediction.

Note that there is no guarantee that we can recover perfectly all the cluster labels
without knowledge of the source patches. In the next section, we evaluate several
classi�cation algorithms performances, notably depending on the features choice.

4.5.1 Preliminary results: classi�cation performances

In this section, we aim to evaluate the ability of several classi�cation algorithms to
recover the optimal clusters labels.

We consider the scheme shown in Fig. 4.18, where the classi�er is learned on the
full data set. Even with this con�guration, the optimal clusters labels might not be
completely recovered. Thus, after the classi�cation step, the linear mappings are re-
evaluated.

The optimal cluster labels are obtained using the optimal clustering algorithm with
K = 10. The test images are coded with a modi�ed version of a JPEG encoder in which
a prediction is performed using the intra coding modes of H.264. Three quality factor
(QF ) values are used: 75 (high quality), 50, and 25 (low quality). The block size in the
codec is modi�ed to use4� 4 blocks. This simple codec architecture was preferred over
more complex H.264 or HEVC codecs to have easier access to the decoder data.

Thus, the following features can be used in the classi�cation algorithm:

ˆ The coded/decoded block

ˆ The prediction block

ˆ The H.264 intra directional mode

ˆ The bit-rate associated to the block
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When all the features are combined, the feature vector has a dimension of 34:4 � 4
vectorized coded/decoded block,4� 4 vectorized prediction block, one directional mode
(scalar) and one bit-rate (scalar).

In order to reduce the complexity, the tests are performed on nine images of res-
olution 200� 200, cropped from the �rst frame of the following test sequences: City,
Park Scene, Kimono, Cactus, Terrace, Basketball, Ducks, People On Street, and Traf-
�c (shown in Fig. C.3 in annex, section C.3.1). Although the resolution is small, the
images cover a wide range of textures. Nevertheless, the results are consistent over the
di�erent images, so we only give the average results.

Below, we give the average classi�cation results over all the test images, using 4
popular classi�cation algorithms: linear SVM, non-linear Gaussian SVM, decision tree
and bagged decision tree, described in section 4.1.2. Note that in this section we are
only concerned with the classi�cation and following de-noising performances of the
algorithms, and do not take into account the cost of the models in terms of bit-rate.

4.5.1.1 Choice of the features

We �rst evaluate the classi�cation performances depending on the selected features
and the corresponding de-noising performances evaluated as the PSNR gain over the
coded/decoded image withQF = 50. The results are shown in Fig. 4.20. The de-
noising performances obtained with theK -means algorithm are indicated by a red line,
the performances of the optimal clustering with a green line (upper bound).

Not surprisingly, the H.264 intra modes and the block bit-rates alone do not pro-
vide enough information to discriminate the classes, and perform poorly with all the
algorithms (always under 20 % of the right labels recovered). However, when using the
prediction or the coded/decoded blocks, a signi�cant amount of the right labels can
be recovered. The performance can be even improved when combining the di�erent
features.

The de-noising performance corresponds directly to the classi�cation performance.
The best performing algorithms are the Gaussian SVM, which get close to the optimal
performances, and the bagged trees, which clearly outperform theK -means perfor-
mances. We can see that a PSNR gain is always obtained. However, these gains are not
always better than the gain of the K -means algorithm. These results should be con-
sidered carefully, since the de-noising gains do not directly translate into RD gains. In
fact, the best de-noising performances usually correspond to complex classi�er models,
as shown in the next section.

The corresponding results forQF = 25 and QF = 75 are very similar and given in
annex, in section C.3.2.
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Figure 4.20: Average classi�cation (top) and de-noising (bottom) performances with
di�erent features and combination of features, with images encoded atQF = 50.
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4.5.1.2 Dimensionality reduction using PCA

In Fig. 4.21, we show the classi�cation performances obtained before and after perform-
ing a PCA on the combined features and the corresponding de-noising performances,
with QF = 50. The PCA dimension is gradually reduced.

In general, compared to the raw features, the PCA (with all 34 dimensions) can
slightly improve the performances, both in terms of classi�cation and de-noising. More
interestingly, the dimension of the PCA can be reduced from 34 to 10 with very little loss
in the performances. Reducing the dimension can be advantageous because it can reduce
the complexity as well as the rate-cost of the classi�cation model (see section 4.5.2).
When the dimension is reduced to 3, there can be a slight loss in the performances,
acceptable for most classi�cation algorithms. However, when reduced to 1, we notice a
dramatic loss in the performances which is not acceptable.

The best performing algorithms are still the Gaussian SVM and the bagged trees.
The corresponding results forQF = 25 and QF = 75 are very similar and given in

annex, in section C.3.2.
From these results, we can conclude that:

ˆ Non negligible proportion of the optimal clusters labels can be retrieved using
only data available at the decoder side (i.e. without any knowledge of the source
signal). Signi�cant de-noising gains can thus be obtained, leading to a compromise
between theK -means clustering performances and the upper bound of the optimal
clustering.

ˆ Combining the di�erent features available results in better performances.

ˆ Reducing the dimension of the combined features, e.g. using PCA, results in very
little loss in the performances. This can be interesting in order to obtain compact
classi�er models, as explained in the following section.
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Figure 4.21: Average classi�cation (top) and de-noising (bottom) performances with
di�erent dimensions of a PCA performed on the combination of features, with images
encoded atQF = 50.
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4.5.2 Application in the compression context

4.5.2.1 Transmission of a classi�er model

The results above demonstrate that the proposed scheme based on classi�cation can
be useful to recover the optimal cluster labels. These results correspond to the scheme
of Fig. 4.18, where the classi�er modelC has to be sent to the decoder. Here, we
analyze the di�erent classi�er models, given their description in section 4.1.2, and give an
estimation of their rate cost. Results assessing the de-noising performances depending
on the models complexity are also given. These results are obtained withK = 2 classes.

Support Vector Machine (SVM) The results from the previous section show that
the classi�cation performances of the linear SVM are limited. Thus, in this section, we
only consider the case of the non-linear Gaussian SVM.

The classi�er model for the SVM consists in a set of hyperplanes, which have to
be sent to the decoder in our context. However, in the case of the non-linear SVM,
the hyperplanes can not be computed explicitly. Instead, the classi�cation relies on the
knowledge of the support vectors and their labels (see Eq. 4.15 in section 4.1.2.1). The
support vectors belong to the training set, and are in our case feature vectors, which
will have in practice to be signaled to the decoder, along with their class labels. To
estimate the corresponding rate, we can consider that the value 0 is associated with the
non-support vectors, while the class label is associated with the support vectors. The
distribution of these values is not expected to be homogeneous, we can thus consider
compressing this additional information using entropy or arithmetic coding.

As shown in Fig. 4.22, increasing the number of support vectors increases the de-
noising performances, but will require a larger cost in terms of bit-rate. The number
next to each point of the curves indicates the percentage of the right optimal labels
recovered. The results forQF = 25 and QF = 75 are similar to the one below, and
given in annex in section C.3.3.
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Figure 4.22: Average performances of the Gaussian SVM depending on the percentage
of support vectors,QF = 50.

Decision Tree Here, the classi�er model to be sent to the decoder is the decision tree
itself. In the case bagging is performed, several trees are transmitted.

As for the Gaussian SVM, increasing the complexity of the model increases the
de-noising performances as well as the bit-rate. Here, the complexity of the model is
de�ned by the number of nodes in the tree. For each node, we need to send the index
of the component being evaluated, as well as the threshold value against which the
component is compared (see Eq. 4.17 in section 4.1.2.2).

If we note d the dimension of the feature space, we can roughly evaluate the rate
of a node asRN = log 2(d) + 16, where the left side of the addition represents the rate
of the component and the right side the rate of the threshold, estimated as a 16 bits
�oating point value. In addition, the values of the class labels for each leaf need to
be transmitted. If we note NL the number of leaves, this rate can be evaluated as
RL = NL � log2(K ). This particular rate could be even compressed using entropy or
arithmetic coding. If we note NN the number of nodes in a tree, andNT the number of
trees to be transmitted, the total rate associated to this classi�er model can be evaluated
as:

RDT = NT � (N N � RN + RL ) (4.30)

In Fig. 4.23, we compare the performances of di�erent decision trees models. For
all models, a PCA is performed on the features vectors. For the decision tree, we �rst
consider using all the dimensions,d = 34, and then reduce the dimension to 1. We then
vary the number of nodes,NN = 1; 5;20;50;100;200;1000, which gives the di�erent
points of the curves. For the bagged decision trees, the dimension is reduced to 1, and
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we consider di�erent number of nodes,NN = 1 ; 200;1000. We then vary the number of
trees to obtain the points of the curvesNT = 1; 5;20;50;100;200. The number next to
each points of the curves indicate the percentage of the right optimal labels recovered.

We can see that it is more advantageous in a RD sense to send one complex tree
rather than several (bagged) simpler trees.

Figure 4.23: Average RD performances of the decision trees,QF = 50.

The results for QF = 25 and QF = 75 are similar to the one above, and given in
annex in section C.3.3.

4.5.2.2 Learning on a subset of data

In the second scheme of Fig. 4.19, we propose to send only a subset of the optimal class
labels, so that the classi�er is learned at the decoder side.

The subset of blocks for which the optimal class labels are transmitted can be
selected by computing epitomes of each frame. At the decoder side, the classi�er is
learned on the feature vectors corresponding to the blocks of the epitomes, and then
used to obtain the labels of the non-epitome blocks. The scheme is very similar to the
Gaussian SVM described above, where the feature vectors corresponding to the epitome
blocks act as support vectors.

To estimate the corresponding rate, we can consider that the value 0 is a associ-
ated with the non-epitome blocks, while the class label is associated with the epitome
blocks. The distribution of these values is not expected to be homogeneous, we can
thus compress this additional information using entropy or arithmetic coding.

In Fig. 4.24, we show the performances when transmitting the class labels of epito-
mes of di�erent sizes. The epitomes are obtained using the method described in section
3.2, with "M = 2 :0;3:0;5:0;7:0;10:0;15:0, and "A = 0:5. We used a bagged decision
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trees classi�er, with a PCA performed on the feature vectors,d = 34, NN = 100 and
NT = 1000. The number next to each points of the curves indicate the percentage of
the right optimal labels recovered. For comparison, we show the corresponding results
using �random epitomes� of the same size. We can see that the choice of the epitome
is more relevant that the random epitome. As expected, bigger epitomes allow better
de-noising performances, but will require a larger cost in terms of bit-rate.

Figure 4.24: Average performances of the bagged decision tree depending on the size of
the epitome, QF = 50.

The results for QF = 25 and QF = 75 are similar to the one above, and given in
annex in section C.3.3.

4.5.2.3 RD performances

De-noising of a single layer scheme. Preliminary tests to evaluate the RD perfor-
mances were performed using the same test conditions as in section 4.5.1, but using here
sequences of 10 frames. Here, the scheme described in section 4.5.2.2 is used, where a
subset of the optimal class labels is transmitted for blocks of the frames epitomes. The
epitomes are obtained using the method described in section 3.2, with"M = 2:0, and
"A = 0:5. The classi�er model, learned at the decoder side, is a bagged decision trees
classi�er, with a PCA performed on the feature vectors, with d = 34, NN = 100 and
NT = 1000.

Results are shown for the Ducks sequence in Fig. 4.25. We can see that the even
though the classi�cation allows to recover a PSNR close to the optimal clustering, the
cost of the subset of labels transmitted to the decoder is still too high to outperform
the K -means clustering in terms of RD performances.

Additional results for the other test sequences are given in annex in section C.3.4.1.
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Figure 4.25: RD performances for the Ducks sequence with recovering of the optimal
class labels using classi�cation.

Super-resolution in a scalable scheme. We evaluate here the RD performance in
a spatial scalable scheme, using the same sequence as in the previous section. The base
layer is �rst down-sampled with a factor 2, and encoded using the same modi�ed JPEG
encoder as in section 4.5.1, usingQF = 80; 60;40;20. The enhancement layer is encoded
using a modi�ed JPEG encoder where the up-sampled of super-resolved decoded base
layer is used as prediction, with the sameQF values as the base layer. A subset of
the optimal class labels is transmitted as described in section 4.5.2.2. The epitomes are
obtained using the method described in section 3.2, with"M = 2:0, and "A = 0:5. The
classi�er model, learned at the decoder side, is a bagged decision trees classi�er, with a
PCA performed on the feature vectors, withd = 34, NN = 100 and NT = 1000.

Results are shown for the Basketball and Tra�c sequence in Fig. 4.26. We can
see that in this case the proposed classi�cation-based scheme can bene�t both the base
layer and the enhancement layer in terms of RD performances. However, these results
do not necessarily hold for the other sequences, which are given in annex in section
C.3.4.2.
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Figure 4.26: RD performances with recovering of the optimal class labels using classi-
�cation for super-resolution in a scalable scheme

4.5.3 Conclusion

We propose in this section a strategy to obtain a compromise between the performances
of the K -means and the optimal clustering algorithms. The preliminary classi�cation
results show an interesting potential, and the RD results showed that it is possible to
outperform the performances of theK -means clustering in a scalable scheme. Nev-
ertheless, we believe that several means could be considered to further improve the
approach.

Indeed, only two types of classi�cation algorithms were considered, SVM and de-
cision trees. However, many classi�cation models could be investigated, such as naive
Bayes [96], discriminant analysis [97][98][99], nearest neighbors [100] or deep neural
networks [101] classi�ers. In our context, we could investigate classi�ers with compact
models which could perform similarly to the studied models while reducing the rate cost
of the model if it is transmitted to the decoder.

Alternatively, we could also investigate classi�ers with higher classi�cation perfor-
mances for a given subset of optimal class labels. The RD performances could thus be
improved by a better de-noising e�ciency for a similar bit-rate.

4.6 Conclusion and perspectives

In this chapter, we proposed a clustering-based scheme with linear mappings learning
for quantization noise removal. The proposed out-of-the-loop framework aims at im-
proving the performances of a video compression scheme by sending to the decoder
linear mappings learned at the encoder between the clustered coded/decoded patches
and the corresponding source patches. At the decoded side, the same clustering as the
encoder side is performed, and the corresponding linear mappings received are used to
de-noise the decoded video sequence.

First, the K -means algorithm is used to partition the video sequence. A binary tree
partitioning technique based on a RDO criterion is also proposed to adaptively select
the number of clusters.
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Results show that the proposed scheme can improve the coding e�ciency of HEVC,
and is especially e�cient when combined with a �rst pass de-noising algorithm.

We also proposed an optimal clustering algorithm which sets an upper bound on
the performances, and show that further improvement can be reached.

The clustering-based scheme is then used for super-resolution in a scalable video
compression context. When using theK -means algorithm, we observed that the gains
brought to the base layer are not reported on the enhancement layer. Experiments
performed with the optimal clustering showed that the proposed scalable scheme could
outperform SHVC, but requires an important improvement of the base layer.

Finally, a classi�cation-based scheme is presented which aims at reaching a compro-
mise between theK -means and the optimal clustering in terms of RD performances.
Some promising preliminary results are obtained, and the experiments showed that it
is possible to outperform theK -means in terms of RD performances in a simple JPEG-
based spatial scalable scheme.

Several approaches can be considered to further extend the proposed scheme.
First, all the experiments were performed on the luminance channel, nevertheless,

the proposed scheme could be applied to color sequences as well. The proposed method
can be adapted to color sequences simply by stacking all the color components of the
vectorized patches in the matricesM d and M s. In addition to the extension of the
method to color components, the proposed method could be applied in a scalable scheme
to color gamut scalability, e.g. to predict a 4:4:4 or RGB enhancement layer from a
4:2:0 base layer. The adaptation of the proposed scalable scheme to the encoding of
a high dynamic range enhancement layer from a low dynamic range base layer is also
straightforward.

Second, we observed that the optimal clustering approach was not e�cient in terms
of RD performances when taking into account the bit-rate of the cluster indexes. A
promising alternative scheme based on classi�cation is proposed in order to reach a
compromise between theK -means performances and the optimal performances. The
technique could be further improved by considering more e�cient or more compact
classi�ers, notably in order to be applied in modern scalable coding schemes.

Finally, we believe that our method would be particularly suited for cloud-based
compression. Cloud-based compression has gained interest recently [102], as well as
applications such as de-noising based on external images [103][104], or super-resolution
[105][106]. By introducing our method in such framework, e.g. using the scheme of
Fig. 4.27, we can assume that the linear mapping matrices are available in an external
database, which means that no bit-rate overhead is needed. Thus, we could purely
bene�t from the de-noising improvement without any additional cost in terms of bit-
rate.

The learning of the linear mappings, performed in an o�-line training phase, thus
becomes critical. During the on-line processing phase, the decoded patch being pro-
cessed would query the database to retrieve an appropriate linear mapping, with which
it could then be de-noised.

For example, if the linear mappings are learned on clusters found with theK -means
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algorithm, the centroids of the clusters would be stored in the database along with the
corresponding linear mappings. When a patch is processed, one would search for the
closest centroid in the database, and use the associated linear mapping to de-noise the
current patch. Such scheme has been for example considered for super-resolution in
[107].

The scheme of Fig. 4.27 is also especially suitable to be combined with the proposed
classi�cation-based approach, where the classi�ers would be learned during the o�-line
training phase and then stored in the database to be later used on-line.

Figure 4.27: O�-line linear mappings learning for quantization noise removal.
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Conclusion

In this thesis, we explored novel approaches in order to improve existing video com-
pression schemes. One of the main principle of video compression is to reduce the
temporal and spatial redundancies occurring in natural images/videos. Video compres-
sion standards exploit this principle through Inter and Intra prediction tools respec-
tively, which we described in details in Chapter 1. Inter prediction thus rely on motion
estimation/compensation while Intra prediction propagate the information from the
spatially neighboring pixels previously decoded. The goal of the work presented in
this manuscript was to improve the existing compression schemes by further exploiting
the intrinsic redundancies in natural images and videos, notably through the use of
multi-patches methods.

This �rst lead us to improve the current standard prediction tools, using multi-
patches methods based on Locally Linear Embedding (LLE). In Chapter 2, we presented
methods which consist in a �rst step in approximating the current template, by linearly
combining K templates found in the previously decoded part of the video. The linear
weights are obtained with the LLE, and then applied on the blocks adjacent to the
templates in order to obtain the predictor of the current block. Di�erent strategies
are proposed to �nd the K patches necessary to perform the prediction. First, we
proposed to search for theK nearest neighbors (K-NN) of the template only. This
technique can be reproduced at the decoder side, and thus we spare the syntax usually
associated with motion estimation (list index, reference frame index, motion vector).
Then, we proposed to search for theK -NN of the full patch comprising the current
block and template, which enforces the correlation between the templates and their
adjacent blocks, which in return improves the quality of the predictor. Such methods
were already proven e�cient for the reduction of spatial redundancies through Intra
prediction, and we showed that they can be valuable to improve Inter prediction as
well. Moreover, we demonstrated that combining the proposed methods for both Intra
and Inter prediction greatly bene�ts the coding performances.

Independently from the standard video compression techniques emerged the con-
cept of epitome, which is de�ned as a condensed representation of an image or video
containing the essence of its textural properties. Due to its proximity to the compres-
sion principle of reducing the self-similarities within an image or video signal, several
in-loop approaches exploiting epitomes have been proposed. In particular, one method
combined the epitomic concept and the LLE-based multi-patches methods discussed
above. At the same time, we observed that many applications such as de-noising and
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super-resolution exploit redundancies in natural images and videos. We thus decided to
propose an epitome-based methods for compression with an out-of-the-loop perspective,
where the epitome containing high quality patches is used at the decoder to improve
the decoded video, using multi-patches image restoration methods such as de-noising
or super-resolution. This work is presented in Chapter 3, where we �rst described an
e�cient method for epitome generation, based on list or cluster approaches. We then
implemented this epitome generation method in an epitome-based quantization noise
removal scheme, where high-quality epitomes are sent to the decoder and used to de-
noise the non-epitome patches of the video sequence. Three epitome-based de-noising
methods are proposed, which �rst consists in looking for theK -NN of the patch being
processed among the coded/decoded patches colocated with the epitome. The pairs of
coded/decodedK -NN patches and their corresponding high quality patches from the
epitome are then exploited to perform the de-noising. A local linear combination (LLC)
method is proposed, which linearly combines theK high quality patches with weights
computed from the corresponding noisy patches using the Non Local Mean (NLM) or
LLE approach. An epitome-based method adapted from the BM3D algorithm is also
introduced, which infer the thresholds for the hard thresholding and Wiener �lter coef-
�cients from the high quality patches. Finally, an epitome-based local linear mapping
(LLM) method is described, where a linear mapping projection is learned between the
K -NN coded/decoded patches and their corresponding high quality patches, and then
applied on the patch being de-noised. The scheme was shown e�cient to improve the
performances of the scalable video compression scheme SHVC.

However, the scheme described above was not able to outperform the performances
of the single layer codec HEVC. We thus proposed in Chapter 4 an out-of-the-loop
scheme based on a di�erent paradigm: instead of transmitting an additional layer con-
taining high quality patches, we learn at the encoder side linear mappings between the
coded/decoded patches and their corresponding source patches, and send the projection
matrices to the decoder. In order to take into account the self-similarities of the signal,
the patches are clustered, and a linear mapping is learned for each cluster. The same
clustering is then performed at the decoder side, and the corresponding linear mappings
are then applied on the patches of the cluster to obtain a de-noised version. The results
show that the proposed scheme outperforms HEVC. In addition, we proposed an op-
timal clustering formulation, which de�nes an upper bound on the performances, and
demonstrates that potential further improvement could be reached. We also proposed
to adapt the scheme for scalable video compression, notably using super-resolution for
spatial scalability. However, if the improvement on the base layer are indubitable com-
pared to SHVC, they are not reported on the enhancement layer. We observed that
potential improvement can be obtained on the enhancement layer when using the opti-
mal clustering. Finally, a novel classi�cation-based scheme is presented which aims at
reaching a compromise between theK -means and the optimal clustering in terms of RD
performances. The results obtained are promising, and show that theK -means can be
outperformed in terms of RD performances in a JPEG-based spatial scalable scheme.

Thus, in this thesis, we focused on exploiting the natural self-similarities of an
image or video signal to improve compression performances. First, we improved the
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existing prediction tools which already exploit the texture redundancies of a video.
Then, we introduced in an out-of-the-loop compression framework di�erent methods
exploiting texturing redundancies, originally designed for epitome generation, cluster-
ing, de-noising or super-resolution. We proposed novel and disruptive approaches, and
we demonstrated their e�ciency for di�erent applications, either single layer or scal-
able compression schemes. Furthermore, we believe that this work can be extended
to additional applications such as high dynamic range (HDR) image compression, or
cloud-based compression, as discussed below.

Future work

Several approaches can be considered to further extend the work of this thesis.
First, we have considered this work as an upstream investigation, with a focus on the

improvement of the RD performances, which in return requires a high processing com-
plexity. For all the contributions, the complexity mainly comes from the self-similarities
search, such as the nearest neighbors search, for which e�cient and fast methods exist
[14][15]. This process is also highly parallelizable, and could be for example implemented
on GPU [19]. Similarly, fast clustering methods could be considered [108]. Finally, the
LLE or NLM weights computations could be fasten with approximate methods [18].

Second, although we proposed in Chapter 3 an epitome generation method optimized
in terms of complexity, the performances of the compression scheme proposed in this
chapter could be improved by adapting the epitomic model so that it takes into account
the temporal redundancies. A direct approach would be to create an epitome of the
frame epitomes. Alternatively, a sprite of the GOP could be generated [84][85], and the
epitome would be extracted from the sprite. Furthermore, the epitomic model used in
this work are optimized to reconstruct the original image. We could therefore adapt the
model so that it takes into account the �nal application, which is here multi-patches
de-noising or super-resolution. Such method has been proposed in [86] for a LLE-based
multi-patches super-resolution application.

Third, the optimal clustering algorithm proposed in Chapter 4 remains at the time
of writing a theoretical upper bound on the performances. Indeed, we observed that
the optimal clustering could not be used directly in the proposed scheme, as it requires
the transmission of the cluster indexes to the decoder, which is not e�cient in terms of
RD performances. However, given this upper bound, it is clear that the results that we
obtained with K -means clustering can be improved. We postulate that a compromise
could be reached between theK -means and the optimal clustering performances by
using an alternative scheme based on classi�cation. In this scheme, only a subset of
the optimal cluster indexes would be signaled to the decoder, where a classi�er model
could be learned and then used to derive the unknown cluster indexes. Alternatively,
the classi�er could be learned at the encoder side and transmitted to the decoder.

Finally, the proposed schemes could be adapted for other applications. For example,
the methods were only tested on the luminance channel, but could be adapted to color
videos as well. Notably in scalable schemes, the proposed methods could be extended to
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color gamut scalablity, and bit-depth scalability, in particular for the encoding of a high
dynamic range enhancement layer from a low dynamic range base layer. In addition
to HDR compression, the proposed scheme could be adapted to other trending topics
such as cloud-based compression [102], or plenoptic imaging compression [109][110][111],
which contain many redundancies.
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Appendix A

Appendix of chapter 2

Figure A.1: Frames extracted from the test sequences. From top to bottom, left to
right: Foreman, Rushes, Matrix, City and Spincalendar
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Appendix B

Appendix of chapter 3

B.1 Comparison of the epitomes obtained with the di�er-
ent self-similarities search methods

Figure B.1: Epitomes extracted from Foreman. The epitome was obtained using the full
search method (top), the list-based method (middle) and the threshold-based clustering
(bottom) for the self-similarities search with, from left to right, the thresholds "M =
3:0;5:0;10:0;15:0 and the parameter � A = 0 :5.
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Figure B.2: Reconstructed images corresponding to the epitomes from the previous
Figure.

Figure B.3: Epitomes extracted from Lena. The epitome was obtained using the full
search method (top), the list-based method (middle) and the threshold-based clustering
(bottom) for the self-similarities search with, from left to right, the thresholds "M =
3:0;5:0;10:0;15:0 and the parameter � A = 0:5.
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Figure B.4: Reconstructed images corresponding to the epitomes from the previous
Figure.

Figure B.5: Epitomes extracted from City. The epitome was obtained using the full
search method (top), the list-based method (middle) and the threshold-based clustering
(bottom) for the self-similarities search with, from left to right, the thresholds "M =
3:0;5:0;10:0;15:0 and the parameter � A = 0:5. (Full search with "M = 15:0 could not
be produced).
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Figure B.6: Reconstructed images corresponding to the epitomes from the previous
Figure.

Figure B.7: Epitomes extracted from Calendar. The epitome was obtained using the full
search method (top), the list-based method (middle) and the threshold-based clustering
(bottom) for the self-similarities search with, from left to right, the thresholds "M =
3:0;5:0;10:0;15:0 and the parameter � A = 0:5. (Full search with "M = 15:0 could not
be produced).
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Figure B.8: Reconstructed images corresponding to the epitomes from the previous
Figure.
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B.2 Epitomes for epitome-based de-noising

Figure B.9: Epitomes extracted from the �rst frame (top) of the City �rst GOP, and
�rst frame (bottom) of the following GOP. The epitomes were obtained, from left to
right, with the thresholds "M = 7:0; 10:0;15:0.

Figure B.10: Epitomes extracted from the �rst frame (top) of the Foreman �rst GOP,
and �rst frame (bottom) of the following GOP. The epitomes were obtained, from left
to right, with the thresholds "M = 7 :0;10:0;15:0.
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Figure B.11: Epitomes extracted from the �rst frame (top) of the Macleans �rst GOP,
and �rst frame (bottom) of the following GOP. The epitomes were obtained, from left
to right, with the thresholds "M = 7:0; 10:0;15:0.

Figure B.12: Epitomes extracted from the �rst frame (top) of the Mobile �rst GOP,
and �rst frame (bottom) of the following GOP. The epitomes were obtained, from left
to right, with the thresholds "M = 7:0; 10:0;15:0.
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Appendix C

Appendix of chapter 4

C.1 De-noising

C.1.1 Results on AWGN and SDN

Table C.1: De-noising performances ofK -means (K = 10) clustering-based linear map-
ping learning and BM3D for AWGN

PSNR (dB) PSNR (dB)
Image Noisy K -means LM NLM BM3D Noisy K -means LM NLM BM3D

� = 10 � = 20
City 28.1328 32.2293 32.4902 34.5002 22.1142 28.3608 29.0843 30.7206
Park Scene 28.1322 33.8874 33.6864 35.6443 22.2235 30.2797 29.7379 32.4186
Tennis 28.1395 35.5153 36.0364 38.7244 22.3378 31.7996 30.8613 35.8702
Kimono 28.1327 36.1916 36.3595 39.3243 22.1961 32.2559 30.7709 36.0030
Cactus 28.1585 32.5164 33.7374 35.6019 22.2537 29.0135 29.9194 32.6742
Terrace 28.1504 31.5588 30.9521 34.3474 22.3295 27.7119 28.5340 30.9289
Basket 28.1327 34.2790 35.7667 37.9416 22.1257 30.3038 30.6961 35.3918
Ducks 28.1313 32.5807 33.1584 34.0325 22.1235 28.9979 29.7445 31.2881
People
On Street 28.1428 33.5672 34.5368 36.6175 22.2364 29.6242 30.4280 33.3369
Tra�c 28.1397 33.5563 34.8621 37.0335 22.2184 29.6867 30.3450 33.4725
Average 28.1393 33.5882 34.1586 36.3768 22.2159 29.8034 30.0121 33.2105

� = 30 � = 40
City 18.6097 26.2537 26.2798 28.6892 16.1778 24.8783 24.1381 27.2337
Park Scene 18.9712 28.1970 26.9487 30.6751 16.7723 26.6645 24.9175 29.3104
Tennis 19.1523 29.4058 27.7421 33.8289 16.9662 27.7177 25.5186 31.8626
Kimono 18.8934 29.7764 27.5097 33.8796 16.6812 27.9399 25.2814 32.1755
Cactus 18.8952 27.0749 27.0251 30.7290 16.5915 25.6119 24.8450 29.0974
Terrace 19.0742 25.6968 26.2739 28.7810 16.8372 24.2602 24.3995 26.9201
Basket 18.6307 28.2614 27.3983 33.6251 16.1918 26.6241 25.0040 32.2124
Ducks 18.6614 26.8607 26.8084 29.5300 16.2970 25.2968 24.5493 28.1159
People
On Street 18.8775 27.3763 27.3785 31.2774 16.5746 25.6033 25.0892 29.4196
Tra�c 18.8560 27.4904 27.2278 31.3427 16.5451 25.9054 24.9518 29.6122
Average 18.8622 27.6393 27.0592 31.2358 16.5635 26.0502 24.8694 29.5960
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Table C.2: De-noising performances ofK -means (K = 10) clustering-based linear map-
ping learning and BM3D for SDN

PSNR (dB) PSNR (dB)
Image Noisy K -means LM NLM BM3D Noisy K -means LM NLM BM3D

 = 0:5; � u = 1 :5; � w = 10  = 0 :5; � u = 3 ; � w = 10
City 22.6268 28.6189 24.5089 30.9236 17.6666 25.7233 21.2923 27.9811
Park Scene 24.1703 31.2408 27.5703 33.0157 19.7954 28.6291 24.8378 30.0556
Tennis 24.3593 32.8574 28.3005 35.6816 20.1024 30.0329 25.3632 31.6169
Kimono 24.0531 33.4449 28.0428 36.1713 19.6640 30.3713 25.1521 32.5319
Cactus 22.8072 29.3197 25.0625 32.5979 18.0620 26.5843 21.8379 29.4978
Terrace 22.1833 27.6801 23.6599 30.6325 17.5481 24.6939 20.8275 27.1673
Basket 22.3065 30.5848 24.7466 35.3905 17.2799 27.4412 21.0410 32.7217
Ducks 22.5534 29.2010 24.2460 31.2006 17.6747 26.1324 20.9908 28.4948
People
On Street 22.8686 29.9248 25.1835 33.2473 18.0969 26.5102 21.9365 29.7624
Tra�c 23.3136 30.3467 26.0561 33.7029 18.5966 27.3527 22.8029 30.3626
Average 23.1242 30.3219 25.7377 33.2564 18.4487 27.3471 22.6082 30.0192

 = 0:6; � u = 1 :5; � w = 5  = 0 :7; � u = 0 :5; � w = 5
City 19.7707 26.8971 26.6070 29.1116 24.7772 29.9194 30.8604 32.0709
Park Scene 22.3302 30.0600 29.3638 30.9035 27.3272 32.9692 33.2040 33.9047
Tennis 22.6288 31.6209 30.4743 32.1414 27.5478 34.6473 35.4521 35.5719
Kimono 22.1677 32.1307 30.0747 32.9185 27.1288 35.3970 35.3214 36.0787
Cactus 20.0310 27.7356 27.1652 30.4155 24.7616 30.5537 31.7316 32.9300
Terrace 19.2221 25.8385 25.6659 28.3450 23.5627 28.7434 29.2466 31.2265
Basket 19.2660 28.6660 26.9527 33.6864 24.2184 31.9881 32.4408 36.0480
Ducks 19.6658 27.4106 26.7592 29.3765 24.5538 30.4115 31.4003 31.7627
People
On Street 20.1125 28.0206 27.5219 30.8932 21.5625 29.1066 32.3965 33.6299
Tra�c 20.8035 28.7525 28.3148 31.3647 25.7511 31.9347 33.2198 34.4228
Average 20.5998 28.7132 27.8899 30.9156 25.1191 31.5671 32.5274 33.7646
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Table C.3: De-noising performances of optimal clustering-based linear mapping learning
and BM3D for AWGN

PSNR (dB) PSNR (dB)
Image Noisy Optimal clustering LM BM3D Noisy Optimal clustering LM BM3D

� = 10 � = 20
City 28.1328 34.4698 34.5002 22.1142 31.1448 30.7206
Park Scene 28.1322 36.0456 35.6443 22.2235 33.2929 32.4186
Tennis 28.1395 38.2799 38.7244 22.3378 35.8716 35.8702
Kimono 28.1327 39.4760 39.3243 22.1961 37.0670 36.0030
Cactus 28.1585 35.4238 35.6019 22.2537 32.5053 32.6742
Terrace 28.1504 33.8943 34.3474 22.3295 30.3751 30.9289
Basket 28.1327 37.8205 37.9416 22.1257 35.3943 35.3918
Ducks 28.1313 34.3445 34.0325 22.1235 31.6280 31.2881
People
On Street 28.1428 36.3971 36.6175 22.2364 33.0578 33.3369
Tra�c 28.1397 36.6627 37.0335 22.2184 33.4188 33.4725
Average 28.1393 36.2814 36.3768 22.2159 33.3756 33.2105

� = 30 � = 40
City 18.6097 29.4775 28.6892 16.1778 28.4646 27.2337
Park Scene 18.9712 31.9506 30.6751 16.7723 31.2015 29.3104
Tennis 19.1523 34.5894 33.8289 16.9662 33.8045 31.8626
Kimono 18.8934 35.7702 33.8796 16.6812 35.0216 32.1755
Cactus 18.8952 30.9864 30.7290 16.5915 29.9341 29.0974
Terrace 19.0742 28.5569 28.7810 16.8372 27.4634 26.9201
Basket 18.6307 33.9598 33.6251 16.1918 32.9549 32.2124
Ducks 18.6614 30.1503 29.5300 16.2970 29.2063 28.1159
People
On Street 18.8775 31.1907 31.2774 16.5746 30.0579 29.4196
Tra�c 18.8560 31.7608 31.3427 16.5451 30.6347 29.6122
Average 18.8622 31.8393 31.2358 16.5635 30.8744 29.5960
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Table C.4: De-noising performances of optimal clustering-based linear mapping learning
and BM3D for SDN

PSNR (dB) PSNR (dB)
Image Noisy Optimal clustering LM BM3D Noisy Optimal clustering LM BM3D

 = 0 :5; � u = 1:5; � w = 10  = 0 :5; � u = 3 ; � w = 10
City 22.6268 31.3827 30.9236 17.6666 29.1100 27.9811
Park Scene 24.1703 34.0137 33.0157 19.7954 32.2189 30.0556
Tennis 24.3593 36.5447 35.6816 20.1024 34.8505 31.6169
Kimono 24.0531 37.8658 36.1713 19.6640 36.1711 32.5319
Cactus 22.8072 32.9804 32.5979 18.0620 30.8396 29.4978
Terrace 22.1833 30.4575 30.6325 17.5481 27.9752 27.1673
Basket 22.3065 35.6551 35.3905 17.2799 33.6653 32.7217
Ducks 22.5534 31.8332 31.2006 17.6747 29.8164 28.4948
People
On Street 22.8686 33.4185 33.2473 18.0969 30.9121 29.7624
Tra�c 23.3136 34.1739 33.7029 18.5966 31.9198 30.3626
Average 23.1242 33.8326 33.2564 18.4487 31.7479 30.0192

 = 0 :6; � u = 1 :5; � w = 5  = 0 :7; � u = 0 :5; � w = 5
City 19.7707 30.0145 29.1116 24.7772 32.5389 32.0709
Park Scene 22.3302 33.1917 30.9035 27.3272 35.3929 33.9047
Tennis 22.6288 35.8497 32.1414 27.5478 37.8144 35.5719
Kimono 22.1677 37.1747 32.9185 27.1288 39.1840 36.0787
Cactus 20.0310 31.7938 30.4155 24.7616 34.0870 32.9300
Terrace 19.2221 28.9016 28.3450 23.5627 31.4077 31.2265
Basket 19.2660 34.5423 33.6864 24.2184 36.4812 36.0480
Ducks 19.6658 30.6962 29.3765 24.5538 32.7761 31.7627
People
On Street 20.1125 31.9777 30.8932 21.5625 34.5815 33.6299
Tra�c 20.8035 33.0412 31.3647 25.7511 35.6138 34.4228
Average 20.5998 32.7183 30.9156 25.1191 34.9877 33.7646
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C.1.2 RD curves for optimal clustering

Figure C.1: RD performance of the test sequences using the optimal clustering, with
and without the cluster indexes rate-cost
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C.2 Super-resolution

Figure C.2: RD performance of the test sequences using theK -means and optimal
clustering for super-resolution
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C.3 Classi�cation

C.3.1 Test images

Figure C.3: 200� 200 test images used to evaluate the classi�cation approach perfor-
mance. From left to right, top to bottom: City, Basketball, Park Scene, Ducks, Kimono,
People on street, Cactus, Tra�c, Terrace.
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C.3.2 Classi�cation performances

Figure C.4: Average classi�cation (left) and de-noising (right) performances with di�er-
ent features and combination of features, with images encoded atQF = 75 (top) and
QF = 25 (bottom).
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Figure C.5: Average classi�cation (left) and de-noising (right) performances with dif-
ferent dimensions of a PCA performed on the combination of features, with images
encoded atQF = 75 (top) and QF = 25 (bottom).
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C.3.3 Classi�cations performances in a compression context

Figure C.6: Average performances of the Gaussian SVM depending on the percentage
of support vectors, with QF = 75 (left) and QF = 25 (right).

Figure C.7: Average performances of the decision trees, withQF = 75 (left) and QF =
25 (right).

Figure C.8: Average performances of the bagged decision trees depending on the size of
the epitome, with QF = 75 (left) and QF = 25 (right).
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C.3.4 RD performances

C.3.4.1 De-noising

Figure C.9: RD performances with recovering of the optimal class labels using classi�-
cation.
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C.3.4.2 Super-resolution

Figure C.10: RD performances with recovering of the optimal class labels using classi-
�cation.
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Glossary

AVC : Advanced Video Coding
(A)WGN : (Additive) White Gaussian Noise
BL: Base Layer
BM: Block Matching
CABAC: Context Adaptive Binary Arithmetic Coding
CU: Coding Unit
CTU: Coding Tree Unit
DCT: Discrete Cosinus Transform
DST: Discrete Sinus Transform
DWT : Discrete Wavelet Transform
EL: Enhancement Layer
GOP: Group Of Pictures
HEVC: High E�ciency Video Coding
HR: High Resolution
i.i.d: Independent and Identically Distributed
ITU: International Telecommunications Union
JCT-VC: Joint Collaborative Team on Video Coding
JPEG: Joint Photographic Experts Group
KF: Key Frame
LDA: Linear Discriminant Analysis
LLE: Locally Linear Embedding
LLM: Local Linear Mappings
LR : Low Resolution
MB: Macroblock
MCP: Motion Compensation Prediction
MPM: Most Probable Mode
MSE: Mean Square Error
MV : Motion Vector
MVP: Motion Vector Predictor
NLM: Non-Local Mean
NMF: Non-negative Matrix Factorization
PCA: Principal Component Analysis
(P)SNR: (Peak) Signal-to-Noise Ratio
PU: Prediction Unit
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RD(O): Rate Distortion (Optimization)
SAD: Sum of Absolute Distance
SAE: Sum of Absolute Error
SPIHT: Set Partitioning In Hierarchical Trees
SSE: Sum of Square Error
TM(A): Template Matching (Averaging)
TU: Transform Unit
VLC: Variable Length Code
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Abstract
E�cient video compression is nowadays a critical issue, and is expected to be more and more crucial
in the future, with the ever increasing video tra�c and the production of new digital video formats
with high resolution, wide color gamut, high dynamic range, or high frame rate. The MPEG standard
HEVC is currently one of the most e�cient video compression scheme, however, addressing the future
needs calls for novel and disruptive methods.

In fact, the main principles of modern video compression standards rely on concepts designed more
than 30 years ago: the reduction of spatial and temporal redundancies, through prediction tools, the
use of a transform to further reduce the inner correlations of the signal, followed by quantization to
remove non-perceptive information, and entropy coding to remove the remaining statistical redundan-
cies. In this thesis, we explore novel methods which aims at further exploiting the natural redundancies
occurring in video signals, notably through the use of multi-patches techniques. First, we introduce
LLE-based multi-patches methods in order to improve Inter prediction, which are then combined for
both Intra and Inter predictions, and are proven e�cient over H.264. We then propose epitome-based
de-noising methods to improve the performances of existing codecs in a out-of-the-loop scheme. High
quality epitomes are transmitted to the decoder in addition to the coded sequence, and we can then
use at the decoder side multi-patches de-noising methods relying on the high quality patches from the
epitomes, in order to improve the quality of the decoded sequence. This scheme is shown e�cient com-
pared to SHVC. Finally, we proposed another out-of-the-loop scheme relying on a symmetric clustering
of the patches performed at both encoder and decoder sides. At the encoder side, linear mappings are
learned for each cluster between the coded/decoded patches and the corresponding source patches. The
linear mappings are then sent to the decoder and applied to the decoded patches in order to improve
the quality of the decoded sequence. The proposed scheme improves the performances of HEVC, and
is shown promising for scalable schemes such as SHVC.

Résumé
L'e�cacité des services de compression vidéo est de nos jours un enjeu essentiel, et est appelé à le devenir
d'autant plus dans le futur, comme l'indique la croissance constante du tra�c vidéo et la production
de nouveaux formats tels que la vidéo à haute résolution, à gamme de couleur ou dynamique étendues,
ou encore à fréquence d'images augmentée. Le standard MPEG HEVC est aujourd'hui un des schémas
de compression les plus e�caces, toutefois, il devient nécessaire de proposer de nouvelles méthodes
originales pour faire face aux nouveaux besoins de compression.

En e�et, les principes de bases des codecs modernes ont été conçus il y a plus de 30 ans : la réduc-
tion des redondances spatiales et temporelles du signal en utilisant des outils de prédiction, l'utilisation
d'une transformée a�n de diminuer d'avantage les corrélations du signal, une quanti�cation a�n de
réduire l'information non perceptible, et en�n un codage entropique pour prendre en compte les re-
dondances statistiques du signal. Dans cette thèse, nous explorons de nouvelles méthodes ayant pour
but d'exploiter d'avantage les redondances du signal vidéo, notamment à travers des techniques multi-
patchs. Dans un premier temps, nous présentons des méthodes multi-patchs basées LLE pour améliorer
la prédiction Inter, qui sont ensuite combinées pour les prédiction Intra et Inter. Nous montrons leur
e�cacité comparée à H.264. La seconde contribution de cette thèse est un schéma d'amélioration en
dehors de la boucle de codage, basé sur des méthodes de débruitage avec épitome. Des épitomes de
bonne qualité sont transmis au décodeur en plus de la vidéo encodée, et nous pouvons alors utiliser
coté décodeur des méthodes de débruitage multi-patchs qui s'appuient sur les patchs de bonne qual-
ité contenus dans les épitomes, a�n d'améliorer la qualité de la vidéo décodée. Nous montrons que le
schéma est e�cace en comparaison de SHVC. En�n, nous proposons un autre schéma d'amélioration en
dehors de la boucle de codage, qui s'appuie sur un partitionnement des patchs symétrique à l'encodeur
et au décodeur. Coté encodeur, on peut alors apprendre des projections linéaires pour chaque partition
entre les patchs codés/décodés et les patchs sources. Les projections linéaires sont alors envoyées au
décodeur et appliquées aux patchs décodés a�n d'en améliorer la qualité. Le schéma proposé est e�cace
comparé à HEVC, et prometteur pour des schémas scalables comme SHVC.
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