
HAL Id: tel-01264021
https://inria.hal.science/tel-01264021

Submitted on 28 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-Time Systems Compilation
Dumitru Potop-Butucaru

To cite this version:
Dumitru Potop-Butucaru. Real-Time Systems Compilation. Embedded Systems. EDITE, 2015.
�tel-01264021�

https://inria.hal.science/tel-01264021
https://hal.archives-ouvertes.fr

Université	
 Pierre	
 et	
 Marie	
 Curie	

	

	

Mémoire	
 d’habilitation	
 à	
 diriger	
 les	
 recherches	
 	

	

Spécialité	
 Informatique	

École	
 Doctorale	
 Informatique,	
 Télécommunications,	
 et	
 Électronique	

(EDITE)	

	

	

	

	

Compilation	
 de	
 systèmes	
 temps	
 réel	

(Real-­‐Time	
 Systems	
 Compilation)	

	

par	
 Dumitru	
 Potop	
 Butucaru	

	

	

	

	

	

	

	

Présenté	
 aux	
 rapporteurs	
 :	

Sanjoy	
 Baruah	
 –	
 Professeur,	
 University	
 of	
 North	
 Carolina	
 	

Nicolas	
 Halbwachs	
 –	
 Directeur	
 de	
 recherche,	
 CNRS/Vérimag	

Reinhard	
 von	
 Hanxleden	
 –	
 Professeur,	
 Université	
 de	
 Kiel	

	

afin	
 d’être	
 soutenu	
 	
 publiquement	
 le	
 10	
 novembre	
 2015	
 devant	
 la	
 commission	

d’examen	
 formée	
 de	
 :	

Albert	
 Cohen	
 –	
 Directeur	
 de	
 recherche,	
 INRIA	
 Paris-­‐Rocquencourt	

Nicolas	
 Halbwachs	
 –	
 Directeur	
 de	
 recherche,	
 CNRS/Vérimag	

Reinhard	
 von	
 Hanxleden	
 –	
 Professeur,	
 Université	
 de	
 Kiel	

François	
 Irigoin	
 –	
 Directeur	
 de	
 recherche,	
 MINES	
 ParisTech	

Alix	
 Munier-­‐Kordon	
 –	
 Professeur,	
 Université	
 Pierre	
 et	
 Marie	
 Curie	

François	
 Pêcheux	
 –	
 Professeur,	
 Université	
 Pierre	
 et	
 Marie	
 Curie	

Renaud	
 Sirdey	
 –	
 Directeur	
 de	
 recherche,	
 CEA	
 Saclay	

Contents

1 Introduction 3
1.1 When it all began... 3
1.2 Overview of previous work . 5
1.3 Research project: Real-time systems compilation 7

2 Introduction to synchronous languages 11
2.1 Synchronous languages . 15
2.2 Related formalisms . 18

3 Automatic synthesis of optimal synchronization protocols 21
3.1 Semantics of a simple example 23
3.2 Problem definition . 24

3.2.1 Previous work . 26
3.3 Contribution . 27

3.3.1 Definition of weak endochrony 27
3.3.2 Characterization of delay-insensitive synchronous

components . 28
3.3.3 Synthesis of delay-insensitive concurrent implementations 29

4 Reconciling performance and predictability on a many-core 31
4.1 Motivation . 32
4.2 MPPA/NoC architectures for the real-time 35

4.2.1 Structure of an MPPA . 35
4.2.2 Support for real-time implementation 36
4.2.3 MPPA platform for off-line scheduling 39

4.3 Software organization . 43
4.4 WCET analysis of parallel code 44
4.5 Mapping (1) - MPPA-specific aspects 45

4.5.1 Resource modeling . 45
4.5.2 Application specification 46
4.5.3 Non-functional properties 48
4.5.4 Scheduling and code generation 49

4.6 Mapping (2) - Architecture-independent optimizations 54
4.6.1 Motivation . 54

1

2 CONTENTS

4.6.2 Related work and originality 56
4.7 Conclusion . 59

5 Automatic implementation of systems with complex functional
and non-functional properties 61
5.1 Related work . 62
5.2 Time-triggered systems . 64

5.2.1 General definition . 64
5.2.2 Model restriction . 65
5.2.3 Temporal partitioning . 66

5.3 A typical case study. 67
5.3.1 Functional specification 68

5.4 Non-functional properties . 68
5.4.1 Period, release dates, and deadlines 68
5.4.2 Modeling of the case study 69
5.4.3 Architecture-dependent constraints 70
5.4.4 Worst-case durations, allocations, preemptability 71
5.4.5 Partitioning . 72

5.5 Scheduling and code generation 72
5.6 Conclusion . 73

Chapter 1

Introduction

Writing an habilitation thesis always involves a self-assessment of past research.
In my case, this retrospect across the years revealed deep roots that may explain
why, regardless of changes in research positions, all research I did fits in a well-
defined research program that I would also like to continue in the future, a
program I named “Real-Time Systems Compilation”.

This particularity of my work resulted in a particular structure for this the-
sis. To put in evidence the continuity between motivation, past research work,
and research project, I concisely described them in a single chapter (this one).
The remaining four chapters provide a more technical description of my most
important results obtained after the PhD. Of these four chapters, the first is
dedicated to an introduction to synchronous languages and formalisms, which
are the semantic basis of my research work, written from the perspective of their
use in the design of real-time embedded systems.

1.1 When it all began...

Like others of my generation, I discovered the world of computing on a home
computer, a Sinclair ZX Spectrum clone. These were affordable, simple micro-
computers1 but already complex enough to exhibit the two sides of computing
that have followed me to this day.

The rational, Apollonian side, the one I immediately liked, was that of pro-
gramming. That of algorithms that I could write on a (paper) notebook using
a clear syntax, before giving them to a computer. Of programs that during exe-
cution would either do exactly what I thought they will, or (if not) would allow
me to find my error, usually a misunderstanding of some semantic rule. Using
reason and the simple statements of BASIC I could at first create nice drawings,
some music notes, then simple games. Later came more powerful computers,
increasingly sophisticated languages and programming tools, and increasingly
complex applications. But the basics, which I liked, remained largely the same.

18-bit Z80 CPU, 64kbytes RAM.

3

4 CHAPTER 1. INTRODUCTION

But there was also a dark, Dionysian side to home computers. That of
computer games, programs of a special kind that I could not fully understand
and control. This was a world of magic spells2 transmitted from gamer to gamer
and allowing one to obtain more (or infinite) lives, to change screen features,
etc. Of gurus able to write (in assembly!) a new loader for some game in order
to permanently alter its behavior, or add features to it.

Even though I didn’t know it at the time, playing with home computer
games was my first contact with the world of embedded computing. This side
of computing fascinated me, and yet it made me uncomfortable. Attempts to
understand why its various manipulations worked seemed doomed to failure, as
they required detailed understanding of:

• The physical world with which the programs interacted. For instance,
understanding data loading from audio cassettes required at least basic
knowledge of sampling theory.

• Techniques for the efficient and real-time implementation of programs.
This included detailed knowledge of the hardware, such as the functioning
and real-time characteristics of video memory. It also included master-
ing the software development process, including low-level aspects such as
assembly coding.

Searching, guessing, and trying seemed more important here than reasoning.
And yet, over the years, I had to cope with this dark side again and again.
First, on toy projects. For instance, creating a virus-like resident program on
a PC required reprogramming the keyboard interrupt of my DOS/x86 system,
while programming a two-wheeled Lego Mindstorms robot required me to un-
derstand the basics of the inverted pendulum, PID controllers and the func-
tioning of sensor and actuator hardware. Later, through my research, I learned
that industrial embedded systems designers shared the same problems, scaled
up in complexity according to system size, embedding constraints (safety, low
consumption, etc.), and industrial process considerations.

From my research I have also learned that the description of physical pro-
cesses did not belong (any more) to the dark side. Well-defined languages,
such as Simulink/Stateflow or LabView, had been introduced to allow their
non-ambiguous description and analysis.

The implementation side also gained more detail. I was progressively able
to grasp the complexity of the infrastructure that allowed sequential programs,
written in BASIC, C, or Ada, to run correctly and efficiently. This infrastructure
includes development tools (compiler, debugger) and system software (drivers,
operating system, middleware). It also includes the standards on which these
tools are based: programming languages, instruction set architectures (ISAs)
such as x86 or ARMv5, application binary interfaces (ABIs) such as the ARM
EABI, executable formats such as ELF, or even system-level standards such as
POSIX or ARINC 653.

2Specific calls to the PEEK and POKE instructions that directly read and wrote specific
memory addresses.

1.2. OVERVIEW OF PREVIOUS WORK 5

But even with this deeper understanding, the embedded design flow falls
short of the expectations created by high-level sequential programming. Sig-
nificant manual phases remain, where ensuring correctness and efficiency relies
on the use of expert intervention (the modern equivalent of magic) to either
manually transform the code or at least to validate it. In this context, it is only
natural to ask the simple question that has guided my research: what part of the
embedded implementation process can be fully automated, in a way that ensures
both correctness and efficiency?

1.2 Overview of previous work

The question of automation in the embedded design process is general enough
that I was able to follow it for my entire research career. Another aspect of my
research work that never changed since the beginning of my PhD was the use
of a specific tool: the synchronous, multi-clock, and time-triggered languages,
presented in Chapter 2, which facilitate the formal specification and analysis
of deterministic concurrent systems. Using these formalisms, I have considered
three increasingly complex implementation problems that must be solved as
part of the embedded design process:

Compilation of synchronous programs into efficient sequential (task)
code. I started this line of work during my PhD, supervised by G. Berry
and R. de Simone. I defined a technique for the compilation of imperative
Esterel programs into fast and small sequential code. By introducing a series
of optimizations based on static analysis of Esterel programs (using their rich
structural information), I was able to produce code that still remains the fastest
in terms of speed and a close contender in terms of size. To have a clear semantic
definition of the data handling instructions of Esterel, and therefore be able to
define the correctness of my compiler, I have also introduced a new operational
semantics for the language. Main results on these topics are presented in my
book “Compiling Esterel”, co-written with S. Edwards and G. Berry [132]. The
prototype compiler I wrote was transferred to industry (the Esterel Technologies
company).

Automatic synthesis of optimal synchronization protocols for the con-
current implementation of synchronous programs. Large synchronous
specifications are often implemented as a set of components (e.g. tasks, threads)
running in an asynchronous environment. This can be done for execution or
simulation purposes in a multi-thread, multi-task, or distributed context. To
preserve the semantics of the initial synchronous specification, supplementary
inter-component synchronizations may be needed, and for efficiency purposes it
is important to keep synchronization at a minimum. As a post-doc, I started
working on this problem with A. Benveniste and B. Caillaud, which had already
defined endochrony. Endochrony is a property of synchronous components.
When executed in an asynchronous environment, an endochronous component

6 CHAPTER 1. INTRODUCTION

remains deterministic without the need of supplementary synchronization, be-
cause sufficient synchronization is provided by the message exchanges already
prescribed by the initial synchronous specification.

With my collaborators, I first determined that endochrony is a rather re-
strictive and non-compositional sufficient property. Then, we introduced the
theory of weak endochrony, which characterizes exactly the components that
need no supplementary synchronization [128, 126, 120]. Based on this theory,
I defined algorithms for determining whether a synchronous program is weakly
endochronous, and then a method for adding minimal (optimal) synchronization
ensuring weak endochrony to an existing program [134, 118]. These algorithms
use an original, compact representation of synchronization patterns of a syn-
chronous program, which I defined. These algorithms were implemented in a
prototype tool connected to the Signal/Polychrony toolset (post-doc of V. Pa-
pailiopoulou, collaboration with INRIA Espresso team) [118].

These results are presented in more detail in Chapter 3.

Efficient compilation of systems with complex functional and non-
functional properties. Working with industrial partners from the embedded
design field made me realize that my previous results addressed only particular,
albeit important, aspects of a complex system (the synthesis of sequential tasks
and the synthesis of communications). After joining the INRIA Aoste team
as a permanent researcher I started investigating the system-level synthesis of
real-time embedded systems,3 and in particular that of systems relying on static
(off-line) or time-triggered real-time scheduling. Such systems are used in safety-
critical systems (avionics, automotive, rail) and in signal processing. I developed
the conviction that building safe and efficient systems requires addressing two
fundamental problems, which are only partially solved today:

• The seamless formal integration of full implementation flows going all the
way from high-level specification (e.g. Scade, Simulink) to running imple-
mentation (code executing on the platform and platform configuration).

• Fast and efficient synthesis with full error traceability, which allows the
use of a trial-and-error design style aimed at maximizing engineer produc-
tivity.

To solve these two problems, I have designed and built, with my students and
post-docs, the LoPhT real-time systems compiler [38, 37, 73, 36, 124, 130]. By
using fast allocation and scheduling heuristics to ensure scalability, LoPhT takes
inspiration from previous work in the fields of off-line real-time scheduling, op-
timized compilation, and synchronous language analysis and implementation.
But LoPhT goes beyond previous work by carefully integrating semantically
and algorithmically aspects that were previously considered separately, such as

3A subject well-studied in the team by both Y. Sorel, author of the AAA methodology
[76], and R. De Simone, whose research interest in modeling time was materialized, among
others, in a significant contribution to the time model of the UML MARTE standard [53].

1.3. RESEARCH PROJECT: REAL-TIME SYSTEMS COMPILATION 7

the fine semantic properties of the high-level specifications [130], detailed de-
scriptions of the execution platforms (hardware, OS/libraries, execution model)
[124, 36, 38], and complex non-functional specifications covering all the model-
ing needs of realistic systems [38]. For instance, LoPhT combines in a single tool
the use of a classical real-time scheduling algorithm (deadline-driven schedul-
ing) with classical compiler optimizations (e.g. software pipelining [37, 38]),
domain-specific optimizations (safe double reservation based on predicate anal-
ysis [130]), and platform-specific optimizations (minimizing the number of tasks
and partition switches for ARINC 653 systems [38], pre-emptive communica-
tions scheduling for many-core and TTEthernet-based networks [124, 36], etc.).
Combined with precise time accounting, the integration of these optimizations
allows the generation of efficient code while providing formal correctness guar-
antees.

I have dedicated special attention to ensuring that the platform models used
by the scheduling algorithms are conservative abstractions of the actual plat-
forms. To do this, I have initiated collaborations that allowed us to explore
the design of execution platforms with support for off-line real-time scheduling.
Such platforms allow the construction of applications that are both highly effi-
cient and temporally predictable [55, 35, 124]. Together with my collaborators,
I have determined that such architectures enable precise worst-case execution
time analysis for parallel software [133] and efficient application mapping [36].
I have also initiated industrial collaborations meant to ensure that LoPhT re-
sponds to industry needs, and to promote its use [73, 38, 49].

These results are presented in more detail in Chapters 4 and 5. The first
one considers a more compilation-like point of view by focusing on fine-grain
architecture detail and by considering mapping problems where the objective
is to optimize simple metrics. While providing hard real-time guarantees, the
methods presented in this chapter do not consider real-time requirements. Sub-
jects covered in this chapter are the mapping of applications to many-cores, the
use of advanced compiler optimizations in off-line real-time scheduling, and the
worst-case execution time analysis of parallel code.

Non-functional requirements of multiple types (real-time, partitioning, pre-
emptability) are considered in Chapter 5, in conjunction with time-triggered
execution targets. This completes the definition of our real-time systems com-
pilation approach.

1.3 Research project: Real-time systems com-
pilation

The implementation of complex embedded software relies on two fundamental
and complementary engineering disciplines: real-time scheduling and compila-
tion. Real-time scheduling covers4 the upper abstraction levels of the implemen-
tation process, which determine how the functional specification is transformed

4Together with other disciplines such as systems engineering, software engineering, etc.

8 CHAPTER 1. INTRODUCTION

into a set of tasks and then determine how the tasks must be allocated and
scheduled onto the resources of the execution platform in a way that ensures
functional correctness and the respect of non-functional requirements. By com-
parison, compilation covers the low-level code generation process, where each
task (a piece of sequential code written in C, Ada, etc.) is transformed into
machine code, allowing actual execution.

In the early days of embedded systems design, both high-level and low-level
implementation activities were largely manual. However, this is no longer the
case in the low level, where manual assembly coding has been almost completely
replaced by the combined use of programming languages such as C or Ada and
compilers [60]. This shift towards high-level languages and compilation allowed
a significant productivity gain by ensuring that source code is safer and more
portable. As compiler technology improved and systems became more complex
in both hardware and software, compilation has also approached the efficiency
of manual assembly coding, and in most cases outperformed it.

The widespread adoption of compilation was only possible due to the early
adoption of standard interfaces that allowed the definition of economically-viable
compilation tools with a large-enough user base. These interfaces include not
only the programming languages (C, Ada, etc.), but also relatively stable mi-
croprocessor instruction set architectures (ISAs) or executable code formats like
ELF.

The paradigm shift towards fully automated code generation is far from be-
ing completed at the system level. Aspects such as the division of the functional
specification into tasks, the allocation of tasks to resources, or the configura-
tion of the real-time scheduler are still performed manually for most industrial
applications. Furthermore, research in real-time scheduling has largely followed
this trend, with most (but not all) effort still invested into verification-based
approaches aimed at proving the schedulability of a given system (and into the
definition of run-time mechanisms improving resource use).

This slow adoption of automatic code generation can be traced back to the
slower introduction of standard interfaces allowing the definition of economically-
viable compilers. This also explains why real-time scheduling has historically
dedicated much of its research effort to verifying the correctness of very ab-
stract and relatively standard implementation models (the task models). The
actual construction of the implementations and the abstraction of these imple-
mentations as task models drew comparatively less interest, because they were
application-dependent and non-portable.

But if standardization and automation advanced slower, they advanced nev-
ertheless. Functional specification languages such as Simulink, LabVIEW, or
SCADE have been introduced in the mid-1980s, which allowed the gradual def-
inition of techniques for the synthesis of functionally-correct sequential or even
multi-task embedded code (but without real-time guarantees). The next major
step came in the mid-1990s, when execution platforms have been standardized
in fields such as avionics (IMA/ARINC 653) and automotive (OSEK/VDO,
then AUTOSAR). This second wave of standardization already allowed the in-
dustrial introduction of automatic tools for the (separate) synthesis of processor

1.3. RESEARCH PROJECT: REAL-TIME SYSTEMS COMPILATION 9

schedules or network schedules.
The research community went even farther and proposed real-time imple-

mentation flows that automatically produced running real-time applications
[76, 37, 36, 50] where the processor and network schedules are jointly com-
puted using a global optimization approach that results in better resource use.
Of course, more work is needed to ensure the industrial applicability of such
results. For instance, the aforementioned techniques could not handle all the
complexity of IMA avionics systems, which involve functional specifications with
multiple execution modes, multi-processor architectures with complex intercon-
nect networks, and complex non-functional requirements including real-time,
partitioning, preemptability, allocation, etc.

This explains why, to this day, the design and implementation of industrial
real-time systems remains to a large extent a craft, with significant manual
phases. But a revolution is brewing, driven by two factors:

• Automation can no longer be avoided, as the complexity of systems steadily
increases in both specification size (number of tasks, processors, etc.) and
complexity of the objects involved (dependent tasks, multiple modes and
criticalities, novel processing elements and communication media...).

• Fully automated implementation is attainable for industrially significant
classes of systems, due to significant advances in the standardization of
both specification languages and of implementation platforms.

To allow the automatic implementation of complex embedded systems, I advo-
cate for a real-time systems compilation approach that combines aspects of both
real-time scheduling and (classical) compilation. Like a classical compiler such
as GCC, a real-time systems compiler should use fast and efficient scheduling
and code generation heuristics, to ensure scalability.5 Similarly, it should pro-
vide traceability support under the form of informative error messages enabling
an incremental trial-and-error design style, much like that of classical appli-
cation software. This is more difficult than in a classical compiler, given the
complexity of the transformation flow (creation of tasks, allocation, scheduling,
synthesis of communication and synchronization code, etc.), and requires a full
formal integration along the whole flow, including the crucial issue of correct
hardware abstraction.

A real-time systems compiler should perform precise, conservative timing
accounting along the whole scheduling and code generation flow, allowing it to
produce safe and tight real-time guarantees. More generally, and unlike in clas-
sical compilers, the allocation and scheduling algorithms must take into account
a variety of non-functional requirements, such as real-time constraints, critical-
ity/partitioning, preemptability, allocation constraints, etc. As the accent is
put on the respect of requirements (as opposed to optimization of a metric, like
in classical compilation), resulting scheduling problems are quite different.

Together with my students, I have defined and built such a real-time systems
compiler, called LoPhT, for statically scheduled real-time systems. While first

5Exact application mapping techniques do not scale [72].

10 CHAPTER 1. INTRODUCTION

results are already here [37, 38, 73, 36, 35], I believe that the work on real-time
systems compilation is only at its beginning. It must be extended to cover more
execution platforms, and we are currently working on porting LoPhT on the
Kalray MPPA256 many-core and on TTEthernet-based time-triggered systems.

Efficiency is also a critical issue in practical systems design, and we must
invest even more in the use of classical optimizations such as loop unrolling and
inline expansion. as well as new optimizations specific to the real-time context
and to each platform in particular. To cover these needs, we must also go beyond
fully static/offline scheduling, but while remaining fully formal, automated, and
safe.

Ensuring the safety and efficiency of the generated code cannot be done by
a single team. I am actively promoting the concept of real-time systems compi-
lation in the community, and collaborations on the subject will have to cover at
least the following subjects: the interaction between real-time scheduling and
WCET analysis, the design of predictable hardware and software architectures,
programming language support for efficient compilation, and formally proving
the correctness of the compiler. Of course, the final objective is that of pro-
moting real-time systems compilation in the industry, and to this end I actively
seek industrial case studies and disseminate our work towards industry.

From a methodological point of view, my research will continue on its cur-
rent trend of combining concepts and methods from 3 different communities:
compilation, real-time scheduling, and synchronous languages. I am fully aware
of the long-standing separation between the fields of compilation and real-time
scheduling.6 However, I believe that the original reasons of this separation7

are less and less true today.8 The convergence between these two communities
seems to me inevitable in the long run, and my work can be seen as part of the
much-needed mutualization of resources (concepts and techniques) between the
two fields. My work also shows that synchronous languages should play an im-
portant role in the convergence between real-time scheduling and compilation.
First of all, as a common ground for formal modeling. Indeed, synchronous for-
malisms are natural extensions of formalisms of both real-time scheduling (the
dependent task graphs) and compilation (static single assignment representa-
tions and the data dependency graphs). But beyond being a mere common
formal ground, previous work on synchronous languages also provides powerful
techniques for the modeling and analysis of complex control structures that are
used in embedded systems design.9

6Publishing has been quite a struggle for this reason.
7Focus on sequential code and static scheduling in the compilation community, focus on

dynamic, multi-task code in real-time scheduling.
8Compilation, for instance, considers dynamically-scheduled targets such as GPGPUs, and

some algorithms perform precise timing accounting, like in software pipelining. At the same
time, real-time scheduling is considering with renewed interest statically-scheduled targets
(due to industrial demand).

9By means of so-called clocks and delays, presented in the next chapter.

Chapter 2

Introduction to
synchronous languages

As evidenced by the publication record, all three of the originary synchronous
languages (Esterel, Lustre, and Signal) are the product of the 1980s real-time
community [21, 20, 99], where they were introduced to facilitate the high-level
specification of complex real-time embedded control systems.

An embedded control system aims to control, in the sense of automatic con-
trol theory, a physical process in order to lead it towards a given state. The
physical process and the control system, which usually form a closed loop [56],
are in the beginning specified in continuous time in order to be analyzed and
simulated. Then, the control system is discretized in order to allow its implemen-
tation on the embedded execution platform. Fig. 2.1 describes the interactions
between the discrete control system and the physical process. The embedded
control system obtains its discrete-time inputs through sensors equipped with
analog-digital converters (ADC). The discrete outputs of the embedded sys-
tem are transformed by the digital-analog converters (DAC) of the actuators
into continous-time feedback to the physical process. Both inputs and outputs
can be implemented using event-driven or periodic sampling (time-triggered)
mechanisms.

Digital

Actuator

(DAC)

Sensor

(ADC)

process

Physical

Real−time

control system

domain
Analog

domain

Figure 2.1: Closed loop control system

11

12 CHAPTER 2. INTRODUCTION TO SYNCHRONOUS LANGUAGES

Synchronous languages were introduced in order to specify discretized con-
trol systems, which are reactive, real-time systems. In a reactive system [82, 78],
execution can be described as a set of interactions between the system and the
physical process. Each acquisition of data by the sensors is followed by a re-
action of the control system, which consists in performing some computations
and then updating the actuators. Multiple reactions may be executed at the
same time, competing for the same execution resources, a property known as
concurrency.

Real-time systems are reactive systems where reactions are subject to timing
constraints. These constraints are determined by the control engineers during
discretization of the control system. The constraints may concern the sampling
periods of the sensors and actuators and/or the latencies (end-to-end delays) of
the reactions. The sampling constraints on the sensors and actuators determine
the periods of the computation functions (tasks) that depend on or drive sensing
and actuation. The latency constraints are applied to chains of computation
functions, which may have a sensor or an actuator as extremity. A deadline is
a particular case of latency constraint that is applied to a single computation
function, for instance the code controlling a sensor or a digital filter.

Reactive and real-time control systems have particular specification needs.
To describe the reactive aspects, synchronous languages offer syntactical con-
structs allowing the specification of order (dependency, sequence), concurrency
(parallelism), conditional execution and simultaneity relations between opera-
tions of the system (data acquisitions, computation functions, data transfers
and actuator updates).

For the non-functional specification of the real-time aspects, the synchronous
languages implicitly define or allow the explicit definition of one or more discrete
time bases, called clocks. A clock describes a finite or infinite sequence of
events in the execution of the system. Thus, each clock divides the execution of
the system into a series of execution steps, which are sometimes called logical
instants, reactions, or computation instants. We can associate a clock with each
periodic event (e.g. periodic timer), sporadic event (e.g. the top dead center, or
TDC, of a piston in a combustion engine), aperiodic event (e.g. button press),
or simply with an internal event of the control system, which is built from other
internal or external events and therefore depends on other clocks.

Clocks are so-called logical time bases. This means that the synchronous
languages allow the specification of order relations between events associated
with these clocks, but do not offer support for the analysis of the relations be-
tween physical quantities they may represent (except through specific extensions
detailed below). Clocks associated with physical quantities are called physical
clocks. For instance, an engine control system may have a physical clock associ-
ated to a timer and another physical clock associated with the the TDC event.
By taking into account the maximum speed of the engine, we can determine the
maximal duration (in time) between two events of the TDC clock, thus relating
events of the two clocks. Such an analysis requires the application of physical
theories, in addition to the theory of synchronous languages.

The execution of every operation of a synchronous system has to be synchro-

13

nized with respect to at least one clock. Real-time information coming from the
control specification (periods, deadlines, latencies) cannot be directly associated
to operations. Instead, it is associated to the clocks, which in turn drive the
execution of operations.

modes)

specification
control

Functionality
(computations,
dependencies,

Non-functional specificationFunctional
specification

Real-time implementation problem

Continuous-time

Discrete-time control specification
(platform-independent)
Synchronous languages

Periods
deadlines
latencies

WCETs
allocations

Resources
Topology

...

Platform-dependent specification
Other non-functional requirements

criticalities
...

Figure 2.2: Scope of application of synchronous languages in real-time systems
specification

As shown in Fig. 2.2, the specification of a real-time implementation problem
does not only include the platform-independent discrete-time controller speci-
fication, provided under the form of a synchronous program. It also includes
non-functional requirements coming from other engineering disciplines (such as
criticalities) and the constraints related to the implementation of the control sys-
tem on an embedded execution platform. These platform-dependent constraints
include the definition of the resources of the platform, the worst-case execution
time estimations (WCETs) of computations on the CPUs, the worst-case du-
rations of communications over the buses (WCCT), the allocation constraints,
etc.

Criticalities and platform-dependent information are not part of the discrete-
time controller specification, and synchronous languages are not meant to rep-
resent them. In other terms, synchronous languages alone are not equiped to
allow the specification and analysis of all the aspects of a real-time embedded
implementation problem. Some synchronous languages allow the specification of
platform-related properties through dedicated extensions that will be discussed
later in this chapter.

Ignoring platform-related aspects is one of the key points of synchronous
languages. Ignoring execution durations means that we may assume the com-
putation of each reaction to take 0 time, so that its inputs and outputs are
simultaneous (synchronous) in the discrete time scale (clock) that governs the

14 CHAPTER 2. INTRODUCTION TO SYNCHRONOUS LANGUAGES

execution of the reaction. This synchrony hypothesis, which gives its name
to the synchronous model, is naturally inherited through discretization from
continuous-time modeling, where it is implicitly used.

Implementing a specification relying on the synchrony hypothesis amounts
to solving a scheduling problem which ensures that:

• The resources of the execution platform allow each reaction to terminate
before their outputs are needed – either as input to other reactions or to
drive the actuators.

• All period and latency requirements specified by the control engineers are
satisfied.

As part of the synchrony hypothesis, we also require that a reaction has a
bounded number of operations. This assumption ensures that, independently
of the execution platform, the computation of a reaction is always completed in
bounded time, which allows the application of real-time schedulability analysis.

Under the synchrony hypothesis, all computations of a reaction are syn-
chronous, in the sense that they are not ordered in the discrete time scale
defined by the clock of the reaction. However, their execution has to be causal:

• Two reads of the same variable/signal performed during the same reaction
must always provide the same result.

• If a variable/signal is written during a reaction, then all reads inside the
reaction will produce the same value. No variable/signal should be written
twice during a reaction, or otherwise it must be specified which of the
writes gives the variable/signal its value. This amounts to requiring that
reading a variable/signal is performed in a reaction only after all write
operations on the variable/signal have been completed.

Causality ensures functional determinism in the presence of concurrency. It en-
sures that executing the computations and communications of a reaction will
always produce the same result, for any scheduling of the operations that sat-
isfies the data and control dependencies. In a causal system a set of inputs will
always produce the same set of outputs. This property is important in practice,
since it simplifies the costly activities of verification and validation (test, formal
verification, etc.), as well as debugging.

These four ingredients – clocks, synchrony hypothesis, causality, and func-
tional determinism – define a formal base that is common to all synchronous
languages. It ensures strong semantic soundness by allowing universally recog-
nized mathematical models such as the Mealy machines and the digital circuits
to be used as supporting foundations. In turn, these models give access to a
large corpus of efficient optimization, compilation, and formal verification tech-
niques. The synchronous hypothesis also guarantees full equivalence between
various levels of representation, thereby avoiding altogether the pitfalls of non-
synthesizability of other similar formalisms.

2.1. SYNCHRONOUS LANGUAGES 15

2.1 Synchronous languages

Structured languages have been introduced for the modeling and programming
of synchronous applications. From a syntactical point of view, each one of them
provides a certain number of constructions facilitating the description of com-
plex systems: concurrency, conditional execution and/or modes of execution,
dependencies and clocks allowing to describe complex temporal relations such
as multiple periods. This allows the incremental (hierarchical) specification of
complex behaviors from elementary behaviors (computation functions without
side effects and with bounded durations). The concision and the deterministic
semantics of synchronous specifications make them a good starting point for de-
sign methodologies for safe systems, where a significant part of the time budget
is devoted to formal analysis and testing.

Language Imperative/ Base “Physical” Real-time
Data Flow clock(s) time analysis

Esterel/SSM I(+DF) Single –
Lustre/Scade DF(+I) Single –
TAXYS I Single APODW WCRT, sched

Lucy-n DF Affine –
SynDEx DF Affine PW (D=P) WCRT, sched
Giotto DF Affine P (D=P)
Prelude DF Affine PODW WCRT, sched

Signal DF(+I) Multiple –
EmbeddedCode I Multiple AD
ΨC I+DF Multiple APODW WCRT, sched

SciCos DF Multiple C
Zélus DF Multiple C

Table 2.1: Classification of synchronous languages. I = Imperative, DF = Data
flow, P = periodic activations, A = aperiodic activations, D = Deadlines, O =
Offsets, W = durations, C = continuous time.

However, beyond these aspects, each of the synchronous languages has orig-
inal points and particular uses, and therefore a classification is required. Ta-
ble 2.1 summarizes this classification along 4 criteria.

Programming paradigm. According to the programming paradigm, syn-
chronous languages are divided into two large classes: declarative data-flow
languages and imperative languages. Declarative languages, which include data-
flow languages, focus on the definition of the function to be computed. Imper-
ative languages describe the organization of the operations needed to compute
this function (computations, decisions, inputs/outputs, state changes). Among
the synchronous languages, Esterel[21], SyncCharts[7], ΨC[42, 43], and the em-
bedded code formalism [86] are classified as imperative, while the Lustre/SCADE[20],
Signal/Polychrony[99, 19], SynDEx[76, 94], Giotto[85], and Prelude[116] are

16 CHAPTER 2. INTRODUCTION TO SYNCHRONOUS LANGUAGES

classified as data-flow. The SciCos[32] and Zélus[28] languages are data-flow
languages, with the particularity of being hybrid languages, which allow the
representation of both continuous-time and discrete-time control systems.

Data-flow languages are syntactically closer to synchronous digital circuits
and to real-time dependent task models. In these languages, the concurrency
between operations is only constrained by explicit data dependencies. Data-
flow languages are used to highlight the flow of information between parts of an
application, or its structuring into tasks.

Imperative languages are syntactically closer to (hierarchical) synchronous
automata. They are generally used to represent complex control structures,
such as those of an operating system scheduler. Besides concurrency, they allow
the specification of operation sequencing and offer hierarchical constructs allow-
ing to stop or resume a behavior in response to an internal or external signal.
The data dependencies are often represented implicitly, using shared variables,
instead of explicit data dependencies.

The first synchronous languages could be easily classified as imperative (Es-
terel) or data-flow (Lustre, Signal). However, the successive evolutions of these
languages have made classification more difficult. For instance, the data-flow
language Scade/Lustre has incorporated imperative elements, such as the state
machines, whereas an imperative language such as Esterel has incorporated
declarative elements such as the sustained emit instruction. This is why, in our
table, some languages belong to both classes.

Number of time bases. A second criterion of classification of synchronous
languages is related to the number of time bases that can be defined and used in
a program. In Lustre/SCADE and Esterel, which we call single-clock, a single
logical time base exists, called global clock or base clock. All other time bases
(clocks) are explicitly derived from the base clock by sub-sampling.

The Signal and ΨC languages do not have this limitation. They allow the
definition of several logical time bases. As explained above, an automotive
engine control application may have two base clocks, one corresponding to time
and the other to the rotation of the engine (TDC), and these two clocks cannot
be defined from one another. Having two base clocks allows the operations to be
ordered with respect to events of two different discrete time bases, which may
facilitate both modeling an analysis.1 The languages allowing the definition of
multiple, independent clocks are called polychronous or multi-clock.

Between single-clock languages and multi-clock languages, we identify an
intermediate class of languages that allow the definition of several time bases,
but require that as soon as two clocks are used by a same operation, they
become linked by a relation allowing to completely order their logical instants
in a unique way. Therefore, a global clock can be built unambiguously for every
program from the time bases specified by the programmer.2 However, it is

1Buiding a single-clock model of an application is always possible[79], but analysis may be
more complicated.

2More precisely, we can build such a clock if the program cannot be divided into completely

2.1. SYNCHRONOUS LANGUAGES 17

often more interesting to not build this global clock and instead apply specific
analysis directly on the clocks specified by the programmer. For instance, the
languages Giotto, Lucy-n, Prelude and SynDEx allow the definition of clocks
linked in period and phase (offset) by affine relations. These languages allow a
more direct description of periodic real-time task systems with different periods
[116, 51, 94].

Modeling of “physical” time. The third classification criterion we use is
the presence in the language of extensions allowing the description of physical
time. This concept appears naturally in languages allowing the specification of
continuous-time systems, like in SciCos or Zélus [32, 28]. However, we are more
interested here by languages aiming directly at the specification of a real-time
implementation problem. This requires concepts such as periodic and aperiodic
activations, deadlines, offsets and execution times. These extensions allow the
application of various real-time analyses: worst-case response time analysis,
schedulability analysis, or even the synthesis of schedules or the adjustment of
parameters of the scheduler of a real-time operating system.

Enforcement of synchrony hypothesis. Our final classification criterion
concerns the enforcement of the synchrony hypothesis. The Esterel, Lustre,
Signal, and SynDEx languages require strict adherence to it. The computation
and data transfer operations are semantically infinitely fast, so that a reaction
must always terminate before the beginning of the next one. The execution of
the system can therefore be seen as the totally ordered sequence of reactions.3

In particular, every operation (computation or communication), independently
of its clock, can be and must be terminated in the clock cycle where it began,
before the beginning of the next clock cycle. If we associate real-time periods
to logical clocks, this assumption implies that an operation (computation or
communication) cannot have a duration longer than the greatest common divisor
(GCD) of the periods of the system.

However, the description of real-time systems often implies so-called long
tasks with a duration longer than the GCD of the periods. Representing such
tasks in a synchronous formalism requires constraining the synchronous compo-
sition to ensure that an operation takes more than one logical instant. One way
to do it is by systematically introducing explicit delays between the end of an
operation and the operations depending on it. These delays explicitly represent
the time (in clock cycles) reserved for the execution of the operation. Introduc-
ing such delays manually may be tedious, and some languages, such as Giotto,
Prelude, and SynDEx have proposed dedicated constructs with the same effect.
In Giotto, the convention is that the outputs of a task remain available during
the clock cycle following the one where the operation started, in the time base
given by the clock associated with the task. Prelude is more expressive. It
allows the definition of delays shorter than one clock cycle by refining the clock

independent parts.
3This is true even for multi-clock languages.

18 CHAPTER 2. INTRODUCTION TO SYNCHRONOUS LANGUAGES

of the operation and then working in this refined time base. SynDEx proposes
an intermediate solution.

2.2 Related formalisms

Of course, synchronous languages are only one of the classes of formalisms used
in embedded control system design. For instance, in traditional real-time sys-
tems design, two levels of representation are particularly important: real-time
task models [102, 14], which serve to perform the real-time scheduling analysis
(feasibility or schedulability), and the low-level implementation code, provided
in languages such as C or assembly.

Real-time task models are not designed as full-fledged programming lan-
guages, focusing only on the definition of properties that will be exploited by
classical schedulability analysis techniques. Among these properties: the orga-
nization of computations into tasks, the periods, durations, and deadlines of
tasks, and sometimes their dependencies or exclusion relations. By comparison,
synchronous languages are full-fledged programming languages that can serve
both as support for real-time scheduling analyses and as task-level and system-
level programming languages. They allow, for instance, the full specification
of a task functionality, followed by fully automatic generation of the low-level
task code. They also allow the specification of full systems including tasks, OS,
and hardware for simulation, formal analysis, or to allow the synthesis of task
sequencing and synchronization code. Thus, while remaining at a high abstrac-
tion level and focusing on the specification of platform-independent functional
and timing aspects, synchronous languages allow the automatic synthesis of an
increasing part of the low-level code, especially in critical embedded control
systems.

Like synchronous languages, the synchronous data-flow (SDF) [LEE 87] and
derived formalisms (such as CSDF [22], SigmaC[74], or StreamIt[5]) feature a
cyclic execution model. The difference is that repetitions (cycles) of the various
computations and communications are not synchronized along global time ref-
erences (clocks). Instead, the execution of each data-flow node is driven by the
arrival of input data along lossless FIFO channels (a form of local synchroniza-
tion).

The pair of formalisms Simulink/StateFlow [27, 46] is the de facto standard
for the modeling of control systems. These languages share with synchronous
languages a great deal of their basic constructs: the use of logical and physi-
cal time bases, the synchrony hypothesis, a definition of causality and even a
good part of the language constructs. However, the differences are also great:
synchronous languages aim to give unique and deterministic semantics to ev-
ery correct specification, and thus they aim to ensure the equivalence between
analysis, simulation and execution of the implemented system. The objective of
Simulink (as its name indicates) is to allow the simulation of control systems,
whether they are specified in discrete and/or continuous time. The definition
of causal dependencies is clear, but it depends on the chosen simulation mode,

2.2. RELATED FORMALISMS 19

and the number of simulation options is such that it is sometimes difficult to de-
termine which rules apply. To accelerate the simulations, there are options that
explicitly allow for non-determinism. Finally, the determinism of the simulation
is sometimes only acquired through the use of rules depending on the relative
position of the graphical objects of a specification (in addition to the classical
causality rules). By comparison, the semantics of a synchronous program only
depends on the data dependencies between operations, which allows to preserve
more concurrency and therefore give more freedom to the scheduling algorithms.

The definition of a synchronized cyclic execution on physical or logical time
bases is also shared by formalisms such as StateCharts [81] or VHDL/VERILOG
[90]. Like synchronous languages, these formalisms define a concept of (logical)
execution time and allow a complex propagation of control within these instants.
However, synchronous causality (and thus determinism) is not always required.

20 CHAPTER 2. INTRODUCTION TO SYNCHRONOUS LANGUAGES

Chapter 3

Automatic synthesis of
optimal synchronization
protocols

Synchronous programming is nowadays a widely accepted paradigm for the de-
sign of critical applications such as digital circuits or embedded real-time soft-
ware [18, 122], especially when a semantic reference is sought to ensure the
coherence between the implementation and the various analyses and simula-
tions.

But building concurrent (distributed, multi-task, multi-thread) implementa-
tions of synchronous specifications remains an open and difficult subject, due to
the need of preserving the global synchronizations specific to the model. Syn-
chronization artifacts need most of the time be preserved, at least in part, in
order to ensure functional correctness when the behavior of the whole system
depends on properties such as the arrival order of events on the various commu-
nication media or the passage of time, as measured by the presence or absence
of events in successive reactions.

Ensuring synchronization in concurrent implementations can be done in two
fundamentally different manners:

• Delay-insensitive1 synchronization protocols make no hypothesis on the
real-time duration of the various computations or communications. Un-
der this hypothesis, detecting the sending order of two events arriving of
different communication media is a priori impossible, as is determining
that a signal is absent in a reaction.2 Delay-insensitive synchronization
protocols can only rely on the ordering of events imposed by the various

1In the sense of delay-insensitive algorithms [15], sometimes also called self-timed, or
scheduling-independent.

2Because each computation or communication can take an arbitrary, unbounded time.
Another consequence of this property is the impossibility of consensus in faulty asynchronous
systems [63].

21

22 CHAPTER 3. OPTIMAL SYNCHRONIZATION PROTOCOLS

system components, such as the sequencing of message transmissions on
each bus, or the sequencing of computations on each processor.

• Delay-sensitive synchronization protocols allow the use of hypotheses on
the real-time durations of the various computations and communications.
In time-triggered systems [38], for instance, time-based synchronization
is dominant and great care must be taken to ensure that a global time
reference is available, with good-enough precision and accuracy.

Time-triggered delay-sensitive systems will be the focus of Chapter 5. In the cur-
rent chapter I consider the problem of constructing delay-insensitive implemen-
tations of deterministic synchronous specifications. Using such delay-insensitive
protocols in the construction of embedded real-time systems can be useful in
two circumstances:

• When building non-real-time or soft real-time systems where the accent
is put on computational efficiency, rather than on the respect of real-time
requirements. In such systems, tasks are often executed on a platform
whose temporal behavior cannot be precisely predicted due to reasons
such as an unknown number of cores, the use of a dynamic fair scheduler,
or the unknown cost of system software (drivers and OS).

• When building hard real-time systems where the platform provides pre-
dictability guarantees, it may be useful to enforce a separation of concerns
between functional correctness and real-time correctness issues in the de-
sign flow. A delay-insensitive functionally-correct implementation may be
first used for functional simulations, before being provided as input to the
allocation and scheduling phases that configure the execution platform.
Such an approach is taken in SynDEx [76] and OCREP [41].

In both cases, the use of delay-insensitive synchronization provides guarantees
of functional correctness independently from timing correctness.

Possibly the most popular approach of building deterministic delay-insensitive
concurrent systems is the one based on the Kahn principle, which provides
the theoretical basis for building Kahn process networks (KPN) [91, 105, 123].
The Kahn principle states that interconnecting deterministic delay-insensitive
components by means of deterministic delay-insensitive communication lines al-
ways results in a deterministic delay-insensitive system. This provides a solid
two-stage methodology for building delay-insensitive systems. The first stage
consists in building deterministic delay-insensitive components, which are then
incrementally composed together in phase two.

The work I present in this chapter has focused on applying this two-stage ap-
proach to the implementation of synchronous specifications. The problem I con-
sidered is that of building synchronous components (programs) that can function
as deterministic delay-insensitive systems when the global clock synchronization
is removed. The main difficulty here is transforming general synchronous com-
ponents into delay-insensitive ones by adding minimal synchronization to their
interfaces.

3.1. SEMANTICS OF A SIMPLE EXAMPLE 23

3.1 Semantics of a simple example

I use a small, intuitive example to present the problem, the desired result,
and the main implementation issues. The example, pictured in Fig. 3.1, is a
reconfigurable filter (in this case a simple adder, but similar reasoning can be
applied to other filters, such as the FFT). In this example, two independent
single-word adders can be used either independently, or synchronized to form
a double-word adder. The choice between synchronized and non-synchronized
mode is done using the SYNC signal. The carry between the two adders is
propagated through the Boolean wire C whenever SYNC is present. To simplify
figures and notations, we group both integer inputs of ADD1 under I1, and
both integer inputs of ADD2 under I2. This poses no problem because from the
synchronization perspective of this chapter the two integer inputs of an adder
have the same properties.

ADD2

I1

I2 O2

O1

SYNC
C

ADD1

Figure 3.1: Data-flow of a configurable adder.

Time is discrete, and executions are sequences of reactions, indexed by a
global clock. Given a synchronous program, a reaction is a valuation of its
input, output and internal (local) signals. Fig. 3.2 gives a possible execution of
our example. We shall denote with V(P) the finite set of signals of a program
P . We shall distinguish inside V(P) the disjoint sub-sets of input and output
signals, respectively denoted I(P) and O(P).

Reaction 1 2 3 4 5 6 7

I1 (1,2) ∗ (9,9) (9,9) ∗ (2,5) ∗
O1 3 ∗ 8 8 ∗ 7 ∗

SYNC ∗ ∗ • ∗ ∗ • ∗
C ∗ ∗ 1 ∗ ∗ 0 ∗
I2 ∗ ∗ (0,0) (0,0) ∗ (1,4) (2,3)

O2 ∗ ∗ 1 0 ∗ 5 5

Figure 3.2: A synchronous run of the adder

24 CHAPTER 3. OPTIMAL SYNCHRONIZATION PROTOCOLS

If we denote with EXAMPLE our configurable adder, then

V(EXAMPLE) = {I1, I2, SYNC, O1, O2, C}
I(EXAMPLE) = {I1, I2, SYNC}
O(EXAMPLE) = {O1, O2}

All signals are typed. We denote with DS the domain (set of possible values)
of a signal S. Not all signals need to have a value in a reaction, to model cases
where only parts of the program compute. We will say that a signal is present
in a reaction when it has a value in DS . Otherwise, we say that it is absent.
Absence is simply represented with a special value ∗, which is appended to all
domains D∗S = DS ∪ {∗}.

Formally, a reaction of a program P is a valuation of all the signals S of V(P)
into their extended domains D∗S . We denote with R(P) the set of all reactions
of P . Given a set of signals V, we denote with R(V) the set of all possible
valuations of the signals in V. Obviously, R(P) ⊆ R(V(P)). In a reaction r of
a program P , we distinguish the input event, which is the restriction r |I(P) of r
to input signals, and the output event, which is the restriction r |O(P) to output
signals.

In many cases we are only interested in the presence or absence of a sig-
nal, because it transmits no data, just synchronization (or because we are only
interested in synchronization aspects). To represent such signals, the Signal lan-
guage [77] uses a dedicated type named event of domain Devent = {•}. We fol-
low the same convention: In our example, SYNC has type event. The types of the
other signals in Fig. 3.2 are SYNC:event; O1,O2:integer; I1,I2:integer pair;
C:boolean.

To represent reactions, we use a set-like convention and omit signals with
value ∗. Thus, reaction 4 is denoted (I1(9,9), O18, I2(0,0), O20).

3.2 Problem definition

We consider a synchronous program, and we want to execute it in an asyn-
chronous environment where inputs arrive and outputs depart via asynchronous
FIFO channels with uncontrolled (unbounded, but finite) communication laten-
cies. To simplify, we assume that we have exactly one channel for each input
and output signal of the program. We also assume a very simple correspondence
between messages on channels and signal values: Each message on a channel
corresponds to exactly one value (not absence) of a signal in a reaction. No
message represents absence.

The execution machine driving the synchronous program in the asynchronous
environment cyclically performs the following 3 steps:

1. assembling asynchronous input messages arriving onto the input channels
into a synchronous input event acceptable by the program,

2. triggering a reaction of the program for the reconstructed input event, and

3.2. PROBLEM DEFINITION 25

... ...

(asynchronous)

Synchronous clock triggering)
(I/O control, buffering

Asynchronous FSM

clock

Synchronous
process(asynchronous)

Input FIFO channels Output FIFO channels

Figure 3.3: GALS wrapper driving the execution of a synchronous program in
an asynchronous environment

3. transforming the output event of the reaction into messages onto the out-
put asynchronous channels.

Fig. 3.3 provides the general form of such an execution machine, which is ba-
sically a wrapper transforming the synchronous program into a globally asyn-
chronous, locally synchronous (GALS) [44] component that can be used in a
larger GALS system. The actual form of the asynchronous finite state machine
(AFSM) implementing the execution machine, and the form of the code imple-
menting the synchronous program depends on a variety of factors, such as the
desired implementation (software or hardware), the asynchronous signaling used
by the input and output FIFOs, the properties of the synchronous program, etc.

In order to achieve deterministic execution,3 the main difficulty lies in step
(1) above, as it involves the potential reconstruction of signal absence, whereas
absence is meaningless in the chosen asynchronous framework. Reconstructing
reactions from asynchronous messages must be done in a way that ensures global
determinism, regardless of the message arrival order. This is not always possible.
Assume, like in Fig. 3.4, that we consider the inputs and outputs of Fig. 3.2
without synchronization information.

I1 (1,2) (9,9) (9,9) (2,5)
O1 3 8 8 7

SYNC • •
C 1 0
I2 (0,0) (0,0) (1,4) (2,3)

O2 1 0 5 5

Figure 3.4: Corresponding asynchronous run of our example. No synchroniza-
tion exists between the various signals, so that correctly reconstructing syn-
chronous inputs from the asynchronous ones is impossible

The adder ADD1 will then receive the first value (1, 2) on the input channel I1
and • on SYNC. Depending on the arrival order, which cannot be determined, any

3Like in [125], determinism can be relaxed here to predictability – the fact that the envi-
ronment is always informed of the choices made inside the program.

26 CHAPTER 3. OPTIMAL SYNCHRONIZATION PROTOCOLS

of the reactions (I1(1,2), O13, SYNC•, C0) or (I1(1,2), O13) can be executed by ADD1,
leading to divergent computations. The problem is that these two reactions
are not independent, but no value of a given channel allows to differentiate
one from the other (so one can’t deterministically choose between them in an
asynchronous environment).

Deterministic input event reconstruction is therefore impossible for some
synchronous programs. Therefore, a methodology to implement synchronous
programs on an asynchronous architecture must rely on the (implicit or ex-
plicit) identification of some class of programs for which reconstruction is pos-
sible. Then, giving a deterministic asynchronous implementation to any given
synchronous program is done in two steps:

Step 1. Transforming the initial program, through added synchronizations and/or
signals, so that it belongs to the implementable class.

Step 2. Generating an implementation for the transformed program.

The choice of the class of implementable programs is therefore essential. On one
hand, choosing a small class can highly simplify analysis and code generation
in step (2). On the other, small classes of programs result in heavier synchro-
nization added to the programs in step (1). Our choice, justified in the next
section, is the class of weakly endochronous programs.

3.2.1 Previous work

Aside from weak endochrony, the most developed notions identifying classes of
implementable programs are the latency-insensitive systems of Carloni et al.
[39] and the endochronous systems of Benveniste et al. [17, 77].

Latency-insensitive systems are those featuring no signal absence. Trans-
forming processes featuring absence, such as our example of Figures 3.1 and 3.2,
into latency-insensitive ones amounts to adding supplementary Boolean signals
that transmit at each reaction the status of every other signal. This is easy to
check and implement, but often results in an unneeded communication over-
head due to messages that need to be sent at each reaction. Several variations
and hardware implementations of the theory have been proposed, of which we
mention here only the one by Vijayaraghavan and Arvind [149].

The endochronous systems and the related hardware-centric generalized latency-
insensitive systems [145] are those where the presence and absence of all signals
can be incrementally inferred starting from the state and from signals that are
always present. For instance, Fig. 3.5 presents a run of an endochronous pro-
gram obtained by transforming the SYNC signal of our example into one that
carries values from 0 to 3: 0 for ADD1 executing alone, 1 for ADD2 executing
alone, 2 for both adders executing without communicating (C absent), and 3 for
the synchronized execution of the two adders (C present). Note that the value
of SYNC determines the presence/absence of all signals.

Checking endochrony consists in ordering the signals of the process in a tree
representing the incremental process used to infer signal presence (the signals

3.3. CONTRIBUTION 27

Clock 1 2 3 4 5

I1 (1,2) (9,9) (9,9) (2,5) ∗
O1 3 8 8 7 ∗

SYNC 0 3 2 3 1
C ∗ 1 ∗ 0 ∗
I2 ∗ (0,0) (0,0) (1,4) (2,3)

O2 ∗ 1 0 5 5

Figure 3.5: Endochronous solution

that are always read are all placed in the tree root). The compilation of the
Signal/Polychrony language is currently founded on a version of endochrony [4].

The endochronous reaction reconstruction process is fully deterministic, and
the presence of all signals is synchronized with respect to some base signal(s)
in a hierarchic fashion. This means that no concurrency remains between sub-
programs of an endochronous program. For instance, in the endochronous model
of our adder, the behavior of the two adders is synchronized at all instants by the
SYNC signal (whereas in the initial model the adders can function independently
whenever SYNC is absent). By consequence, using endochrony as the basis for
the development of systems with internal concurrency has 2 drawbacks:

• Endochrony is non-compositional (synchronization code must be added
even when composing programs sharing no signal).

• Specifications and implementations/simulations are often over-synchronized.

3.3 Contribution

3.3.1 Definition of weak endochrony

My first contribution here was the definition of weak endochrony, defined in
collaboration with B. Caillaud and A. Benveniste [128, 127]. Weak endochrony
generalizes endochrony by allowing both synchronized and non-synchronized (in-
dependent) computations to be realized by a given program. Weak endochrony
determines that compound reactions that are apparently synchronous can be
split into independent smaller reactions that are asynchronously feasible in a
confluent way, so that the first one does not discard the second.

Fig. 3.6 presents a run of a weakly endochronous system obtained by replac-
ing the SYNC signal of our example with two input signals:

• SYNC1, of Boolean type, is received at each execution of ADD1. It has value
0 to notify that no synchronization is necessary, and value 1 to notify that
synchronization is necessary and the carry signal C must be produced.

28 CHAPTER 3. OPTIMAL SYNCHRONIZATION PROTOCOLS

• SYNC2, of Boolean type, is received at each execution of ADD2. It has value
0 to notify that no synchronization is necessary, and value 1 to notify that
synchronization is necessary and the carry signal C must be read.

The two adders are synchronized when SYNC1=1 and SYNC2=1, corresponding
to the cases where SYNC=• in the original design. However, the adders function
independently elsewhere (between synchronization points).

I1 (1,2) (9,9) (9,9) (2,5)
O1 3 8 8 7

SYNC1 0 1 0 1
C 1 0

SYNC2 1 0 1 0
I2 (0,0) (0,0) (1,4) (2,3)

O2 1 0 5 5

Figure 3.6: Weakly endochronous solution.

From a practical point of view, weak endochrony supports less synchro-
nized, concurrent GALS implementations. While the implementation of latency-
insensitive and endochronous synchronous programs is strictly bound by the
scheme of Fig. 3.3, wrappers of weakly endochronous programs may exploit the
concurrency of the specification by directly and concurrently activating various
parts of a program. In the context of the example of Fig. 3.6, the GALS wrap-
per may consist of an AFSM that can independently activate the two adders,
the activations being synchronized only when SYNC1=SYNC2=1.

Weak endochrony provides an important theoretical tool in the analysis
of concurrent synchronous systems. It generalizes to a synchronous setting
[128] the theory of Mazurkiewicz traces [54]. Although it deals with the sig-
nal values4, (weak) endochrony is in essence strongly related with the notion
of conflict-freeness, first introduced in the context of Petri Nets, which simply
states that once enabled, an action cannot be disabled, and must eventually be
executed. Various conflict-free variants of data-flow declarative formalisms form
the area of process networks (such as Kahn Process Networks [91]), or various
so-called domains of the Ptolemy environment such as SDF Process Networks
[30]. Conflict-freeness is also called confluence (”diamond property”) in process
algebra theory [110], and monotony in Kahn Process Networks.

3.3.2 Characterization of delay-insensitive synchronous
components

While weak endochrony provided a sufficient property ensuring delay-insensitivity,
exactly characterizing the class of synchronous components that can function as

4Which may be used to decide which further signals are to be present next causally in the
reaction

3.3. CONTRIBUTION 29

delay-insensitive deterministic systems remained an open problem. I have char-
acterized this class [120, 129]. The characterization is given by a simple diamond
closure property, very close to weak endochrony. This simple characterization
is important because:

• It offers a good basis for the development of optimal synchronization pro-
tocols.

• It corresponds to a very general execution mechanism covering current
practice in embedded system design. Thus, it fixes theoretical limits to
what can be done in practice.

3.3.3 Synthesis of delay-insensitive concurrent implemen-
tations

In [134, 131] I proposed a method to check weak endochrony on multi-clock
synchronous programs. This method is based on the construction of so-called
generator sets. Generators are minimal synchronization patterns of a program,
and the set of all generators provides a representation of all synchronization
configurations of a synchronous program. I have proposed a compact repre-
sentation for generator sets and algorithms for their modular construction for
Signal/Polychrony [77] programs, starting from those of the language primitives.
The generator set of a program can be analyzed to determine if the specification
is weakly endochronous. In case the specification is not weakly endochronous,
the generator sets can be used to produce intuitive error messages helping the
programmer add supplementary synchronization to the program interface (or
minimal synchronization can be automatically synthesized). The algorithms
have been implemented in a tool connected to the Signal/Polychrony toolset.

In case the specification is weakly endochronous, we provided a technique
for building multi-threaded and distributed implementation code [118]. This
technique takes advantage of the structure of the generator set to limit the
number of threads, and thus reduce scheduler overhead.

30 CHAPTER 3. OPTIMAL SYNCHRONIZATION PROTOCOLS

Chapter 4

Reconciling performance
and predictability on a
many-core

The previous chapter described work on a particular aspect of the embedded
implementation flow: the synthesis of efficient synchronization protocols. I will
now take the first step towards considering the whole complexity of synthesiz-
ing full real-time embedded implementations. For this first step, I consider a
mapping and code generation approach that is very similar to that of classical
compilation. Like in classical compiler such as GCC, our scheduling routines
have as objective the optimization of simple metrics, such as reaction latency
or throughput. Furthermore, scheduling always succeeds if execution on the
platform is functionally possible, because no real-time requirements are taken
into account.

But there are also significant differences with respect to classical compilers:

• Our systems compiler performs precise and conservative timing account-
ing, which allows it to provide tight, hard real-time guarantees on the
generated code. Such guarantees can then be checked against real-time
requirements.

• The optimization metrics may be different from those used in classical
compilation.

• Architecture descriptions used by the scheduling algorithms (and by conse-
quence the architecture-dependent scheduling heuristics) are significantly
different.

These differences mean that my work had to focus on two main aspects:

• Modeling the execution platform and ensuring that the platform models
are conservative abstractions of the actual execution platform. To provide

31

32 CHAPTER 4. RECONCILE PERFORMANCE AND PREDICTABILITY

tight and hard real-time guarantees, these models must be precise and
include timing aspects.1

• The definition of the scheduling and code generation algorithms.

As a test case I use here a many-core platform, showing how its architectural
detail can be efficiently taken into account, which is an important subject per
se.

4.1 Motivation

One crucial problem in real-time scheduling is that of ensuring that the applica-
tion software and the implementation platform satisfy the hypotheses allowing
the application of specific schedulability analysis techniques [102]. Such hy-
potheses are the availability of a priority-driven scheduler or the possibility of
including scheduler-related costs in the durations of the tasks. Classical work on
real-time scheduling [52, 70, 66] has proposed formal models allowing schedu-
lability analysis in classical mono-processor and distributed settings. But the
advent of multiprocessor systems-on-chip (MPSoC) architectures imposes sig-
nificant changes to these models and to the scheduling techniques using them.

MPSoCs are becoming prevalent in both general-purpose and embedded sys-
tems. Their adoption is driven by scalable performance arguments (concerning
speed, power, etc.), but this scalability comes at the price of increased complex-
ity of both the software and the software mapping (allocation and scheduling)
process.

Part of this complexity can be attributed to the steady increase in the quan-
tity of software that is run by a single system. But there are also significant
qualitative changes concerning both the software and the hardware. In software,
more and more applications include parallel versions of classical signal or im-
age processing algorithms [150, 9, 69], which are best modeled using data-flow
models (as opposed to independent tasks). Providing functional and real-time
correctness guarantees for parallel code requires an accurate control of the in-
terferences due to concurrent use of communication resources. Depending on
the hardware and software architecture, this can be very difficult [154, 87].

Significant changes also concern the execution platforms, where the gains
predicted by Moore’s law no longer translate into improved single-processor
performance, but in a rapid increase of the number of processor cores placed
on a single chip [26]. This trend is best illustrated by the massively parallel
processor arrays (MPPAs), which are the object of the work presented in this
chapter. MPPAs are MPSoCs characterized by:

• Large numbers of processing cores, ranging in current silicon implemen-
tations from a few tens to a few hundreds [148, 113, 1, 62]. The cores are
typically chosen for their area or energy efficiency instead of raw comput-
ing power.

1These models can be seen as the equivalent of the ISAs, ABIs and APIs used in classical
compilation.

4.1. MOTIVATION 33

• A regular internal structure where processor cores are divided among a
set of identical tiles, which are connected through one or more NoCs with
regular structure (e.g. torus, mesh).

Industrial [148, 113, 1, 62] and academic [71, 23, 144] MPPA architectures tar-
geting hard real-time applications already exist, but the problem of mapping
applications on them remains largely open. There are two main reasons to this.
The first one concerns the NoCs: as the tasks are more tightly coupled and
the number of resources in the system increases, the on-chip networks become
critical resources, which need to be explicitly considered and managed during
real-time scheduling. Recent work [144, 93, 115] has determined that NoCs have
distinctive traits requiring significant changes to classical real-time scheduling
theory [70]. In particular, they have large numbers of potential contention
points, limited buffering capacities requiring synchronized resource reservation,
and network control often operates at the level of small data packets. The sec-
ond reason concerns automation: the complexity of MPPAs and of the (parallel)
applications mapped on them is such that the allocation and scheduling must
be largely automated.

Unlike previous work on the subject I have addressed these needs by relying
on static (off-line) scheduling approaches. In theory, off-line algorithms allow the
computation of scheduling tables specifying an optimal allocation and real-time
scheduling of the various computations and communications onto the resources
of the MPPA. In practice, this ability is severely limited by 3 factors:

1. The application may exhibit a high degree of dynamicity due to either en-
vironment variability or to execution time variability resulting from data-
dependent conditional control.2

2. The hardware may not allow the implementation of optimal schedul-
ing tables. For instance, most MPPA architectures provide only limited
control over the scheduling of communications inside the NoC.

3. The mapping problems I consider are NP-hard. In practice, this means
that optimality cannot be attained, and that efficient heuristics are needed.

Clearly, not all applications can benefit from off-line scheduling. But this
paradigm is well adapted to our target application class: (parallelized versions
of) periodic embedded control and signal processing applications. Our work
shows that for such applications, off-line scheduling techniques attain both high
timing predictability and high performance. But reconciling performance and
predictability (two properties often seen as antagonistic) was only possible by
considering with a unifying view all the hardware, software, and mapping as-
pects of the design flow.

My contributions concern all these aspects, which will be covered one by
one in the following sections. On the hardware side, an in-depth review of

2Implementing an optimal control scheme for such an application may require more re-
sources than the application itself, which is why dynamic/on-line scheduling techniques are
often preferred.

34 CHAPTER 4. RECONCILE PERFORMANCE AND PREDICTABILITY

MPPA/NoC architectures with support for real-time scheduling allowed us to
determine that NoCs allowing static communication scheduling offer the best
support to off-line application mapping (and I have participated in the defini-
tion of such a NoC and MPPA based on it). I have also proposed a software
organization that improves timing predictability. These hardware and software
advances allowed the definition of a technique for the WCET analysis of parallel
code.

But my main effort went into defining a new technique and tool, called
LoPhT, for automatic real-time mapping and code generation, whose global flow
is pictured in Fig. 4.1. Our tool takes as input data-flow synchronous specifica-

Platform model

Timing guarantees

Code generation

L
o

P
h

T
 t

o
o

l

Global scheduling table

Automatic mapping
(allocation+scheduling)

Functional spec. Non−functional spec.
Allocation(dataflow synchronous)

Timing (WCETs,WCCTs)
CPUs, DMAs, RAMs

NoC resources

Specification

CPUs&Interconnect

application
Real−time CPU programs + NoC programs

Figure 4.1: Global flow of the proposed mapping technique for many-cores

tions and precise hardware descriptions including all potential NoC contention
points. It uses advanced off-line scheduling techniques such as software pipelin-
ing and pre-computed preemption, and it takes into account the specificities of
the MPPA hardware to build scheduling tables that provide good latency and
throughput guarantees and ensure an efficient use of computation and com-
munication resources. Scheduling tables are then automatically converted into
sequential code ensuring the correct ordering of operations on each resource and
the respect of the real-time guarantees. Experimental evaluations show that the
off-line mapping of communications not only allows us to provide static latency
and throughput guarantees, but may also improve the speed of the application,
when compared to (simple) hand-written parallel code.

Through these results, I have shown that taking into account the fine detail
of the hardware and software architecture of a many-core is possible, and allows
off-line mapping of very good precision, even when low-complexity scheduling
heuristics are used in order to ensure the scalability of the approach. This is
similar to what compilation did to replace manual assembly coding.

4.2. MPPA/NOC ARCHITECTURES FOR THE REAL-TIME 35

4.2 MPPA/NoC architectures for the real-time

This section starts with a general introduction to MPPA platforms, and then
presents the main characteristics of existing NoCs, with a focus on flow man-
agement mechanisms supporting real-time implementation.

4.2.1 Structure of an MPPA

My work concerns hard real-time systems where timing guarantees must be de-
termined by static analysis methods before system execution. Complex memory
hierarchies involving multiple cache levels and cache coherency mechanisms are
known to complicate timing analysis [154, 80], and I assume they are not used
in the MPPA platforms I consider. Under this hypothesis, all data transfers
between tiles are performed through one or more NoCs.

A NoC can be described in terms of point-to-point communication links and
NoC routers which perform the routing and scheduling (arbitration) functions.
Fig. 4.2 provides the description of a 2-dimensional (2D) mesh NoC like the ones
used in the Adapteva Epiphany [1], Tilera TilePro[148], or DSPIN[117]. The
structure of a router in a 2D mesh NoC is described in Fig. 4.3. It has 5 connec-

Tile
(0,3)

Tile
(1,3)

Tile
(1,2)

Tile
(1,1)

Tile
(1,0)

Tile
(2,1)

Tile
(2,2)

Tile
(2,3)

Tile
(2,0)

Tile
(0,0)

Tile
(0,1)

Tile
(0,2)

Figure 4.2: An MPPA platform with 4x3 tiles connected with a 2D mesh NoC.
Black rectanges are the NoC routers. Tile coordinates are in (Y,X) order.

tions (labeled North, South, West, East, and Local) to the 4 routers next to it
and to the local tile. Each connection is formed of a routing component, which
we call demultiplexer (labeled D in Fig. 4.3), and a scheduling/arbitration com-
ponent, which we call multiplexer (labeled M). Data enters the router through
demultiplexers and exits through multiplexers.

To allow on-chip implementation at a reasonable area cost, NoCs use simple
routing algorithms. For instance, the Adapteva [1], Tilera [148], and DSPIN
NoCs [117] use an X-first routing algorithm where data first travels all the
way in the X direction, and only then in the Y direction. Furthermore, all
NoCs mentioned in this chapter use simple wormhole switching approaches [114]
requiring that all data of a communication unit (e.g. packet) follow the same
route, in order, and that the communication unit is not logically split during
transmission.

36 CHAPTER 4. RECONCILE PERFORMANCE AND PREDICTABILITY

Figure 4.3: Generic router for a 2D mesh NoC with X-first routing policy

The use of a wormhole switching approach is justified by the limited buffering
capabilities of NoCs [115] and by the possibility of decreasing transmission la-
tencies (by comparison with more classical store-and-forward approaches). But
the use of wormhole switching means that one data transmission unit (such as a
packet) is seldom stored in a single router buffer. Instead, a packet usually spans
over several routers, so that its transmission strongly synchronizes multiplexers
and demultiplexers along its path.

4.2.2 Support for real-time implementation

Given the large number of potential contention points (router multiplexers),
and the synchronizations induced by data transmissions, providing tight static
timing guarantees is only possible if some form of flow control mechanism is
used.

In NoCs based on circuit switching [88], inter-tile communications are per-
formed through dedicated communication channels formed of point-to-point
physical links. Two channels cannot share a physical link. This is achieved by
statically fixing the output direction of each demultiplexer and the data source
of each multiplexer along the channel path. Timing interferences between chan-
nels are impossible, which radically simplifies timing analysis, and the latency
of communications is low. But the absence of resource sharing is also the main
drawback of circuit switching, resulting in low numbers of possible communi-
cation channels and low utilization of the NoC resources. Reconfiguration is
usually possible, but it carries a large timing penalty.

Virtual circuit switching is an evolution of circuit switching which allows
resource sharing between circuits. But resource sharing implies the need for
arbitration mechanisms inside NoC multiplexers. Very interesting from the
point of view of timing predictability are NoCs where arbitration is based on
time division multiplexing (TDM), such as Aethereal [71], Nostrum [109], and
others [147]. In a TDM NoC, all routers share a common time base. The point-

4.2. MPPA/NOC ARCHITECTURES FOR THE REAL-TIME 37

to-point links are reserved for the use of the virtual circuits following a fixed
cyclic schedule (a scheduling table). The reservations made on the various links
ensure that communications can follow their path without waiting. TDM-based
NoCs allow the computation of precise latency and throughput guarantees. They
also ensure a strong temporal isolation between virtual circuits, so that changes
to a virtual circuit do not modify the real-time characteristics of the other.

When no global time base exists, the same type of latency and throughput
guarantees can be obtained in NoCs relying on bandwidth management mech-
anisms such as Kalray MPPA [113, 83]. The idea here is to ensure that the
throughput of each virtual circuit is limited to a fraction of the transmission
capacity of a physical point-to-point link, by either the emitting tile or by the
NoC routers. Two or more virtual circuits can share a point-to-point link if their
combined transmission needs are less than what the physical link provides.

But TDM and bandwidth management NoCs have certain limitations: One
of them is that latency and throughput are correlated [144], which may result
in a waste of resources. But the latency-throughput correlation is just one
consequence of a more profound limitation: TDM and bandwith management
NoCs largely ignore the fact that the needs of an application may change dur-
ing execution, depending on its state. For instance, when scheduling a data-flow
synchronous graph with the objective of reducing the duration of one computa-
tion cycle (also known as makespan or latency), it is often useful to allow some
communications to use 100% of the physical link, so that they complete faster,
before allowing all other communications to be performed.

One way of taking into account the application state is by using NoCs with
support for priority-based scheduling [144, 117, 62]. In these NoCs, each data
packet is assigned a priority level (a small integer), and NoC routers allow
higher-priority packets to pass before lower-priority packets. To avoid priority
inversion phenomenons, higher-priority packets have the right to preempt the
transmission of lower-priority ones. In turn, this requires the use of one separate
buffer for each priority level in each router multiplexer, a mechanism known as
virtual channels (VCs) in the NoC community[117].

The need for VCs is the main limiting factor of priority-based arbitration in
NoCs. Indeed, adding a VC is as complex as adding a whole new NoC[157, 33],
and NoC resources (especially buffers) are expensive in both power consumption
and area [112]. Among existing silicon implementations only the Intel SCC
chip offers a relatively large numbers of VCs (eight) [62], and it is targeted at
high-performance computing applications. Industrial MPPA chips targeting an
embedded market usually feature multiple, specialized NoCs [148, 1, 83] without
virtual channels. Other NoC architectures feature low numbers of VCs. Current
research on priority-based communication scheduling has already integrated this
limitation, by investigating the sharing of priority levels [144].

Significant work already exists on the mapping of real-time applications onto
priority-based NoCs [144, 138, 115, 93]. This work has shown that priority-based
NoCs support the efficient mapping of independent tasks.

But we already explained that the large number of computing cores in an
MPPA means that applications are also likely to include parallelized code which

38 CHAPTER 4. RECONCILE PERFORMANCE AND PREDICTABILITY

is best modeled by large sets of relatively small dependent tasks (data-flow
graphs) with predictable functional and temporal behavior [150, 9, 69]. Such
timing-predictable specifications are those that can a priori take advantage of
a static scheduling approach, which provides best results on architectures with
support for static communication scheduling [148, 61, 55]. Such architectures
allow the construction of an efficient (possibly optimal) global computation and
communication schedule, represented with a scheduling table and implemented
as a set of synchronized sequential computation and communication programs.
Computation programs run on processor cores to sequence task executions and
the initiation of communications. Communication programs run on specially-
designed micro-controllers that control each NoC multiplexer to fix the order
in which individual data packets are transmitted. Synchronization between the
programs is ensured by the data packet communications themselves.

Like in TDM NoCs, the use of global computation and communication
scheduling tables allows the computation of very precise latency and throughput
estimations. Unlike in TDM NoCs, NoC resource reservations can depend on the
application state. Global time synchronization is not needed, and existing NoCs
based on static communication scheduling do not use it[148, 61, 55]. Instead,
global synchronization is realized by the data transmissions (which eliminates
some of the run-time pessimism of TDM-based approaches).

The microcontrollers that drive each NoC router multiplexer are similar in
structure to those used in TDM NoCs to enforce the TDM reservation pattern.
The main difference is that the communication programs are usually longer than
the TDM configurations, because they must cover longer execution patterns.
This requires the use of larger program memory (which can be seen as part
of the tile program memory[55]). But like in TDM NoCs, buffering needs are
limited and no virtual channel mechanism is needed, which results in lower
power consumption.

From a mapping-oriented point of view, determining exact packet transmis-
sion orders cannot be separated from the larger problem of building a global
scheduling table comprising both computations and communications. By com-
parison, mapping onto MPPAs with TDM-based or bandwith reservation-based
NoCs usually separates task allocation and scheduling from the synthesis of a
NoC configuration independent from the application state [104, 9, 160].

Under static communication scheduling, there is little run-time flexibility, as
all scheduling possibilities must be considered during the off-line construction
of the global scheduling table. For very dynamic applications this can be diffi-
cult. This is why existing MPPA architectures that allow static communication
scheduling also allow communications with dynamic (Round Robin) arbitration.

In conclusion, NoCs allowing static communication scheduling offer the best
temporal precision in the off-line mapping of dependent tasks (data-flow graphs),
while priority-based NoCs are better at dealing with more dynamic applications.
As future systems will include both statically parallelized code and more dy-
namic aspects, NoCs should include mechanisms supporting both off-line and
on-line communication scheduling. Significant work already exists on the real-
time mapping for priority-based platforms, while little work has addressed the

4.2. MPPA/NOC ARCHITECTURES FOR THE REAL-TIME 39

NoCs with static communication scheduling – the subject I addressed with my
PhD students and post-docs and detailed in this chapter.

4.2.3 MPPA platform for off-line scheduling

Tiled many-cores in SoCLib

The SoCLib virtual prototyping library [101] allows the definition of tiled many-
cores following a distributed shared memory paradigm where all memory banks
and component programming interfaces are assigned unique addresses in a global
address space. All memory transfers and component programming operations
are represented with memory accesses organised as command/response transac-
tions according to the VCI/OCP protocol [151]. To avoid interferences between
commands and responses (which can lead to deadlocks), the on-chip intercon-
nect is organized in two completely disjoint sub-networks, one for transmitting
commands, and the other for responses.

There are two types of transactions: read and write. In write transactions
the command sub-network carries the data to be written and the target adress,
and the response sub-network carries a return code. In read transactions, the
command sub-network carries the address and size of the requested data, and
the response sub-network carries the data.

The tiled many-cores of SoCLib are formed of a rectangular set of tiles con-
nected through a state-of-the-art 2D synchronous mesh network-on-chip (NoC)
called DSPIN [117]. The NoC is formed of a command NoC and a response NoC
which are fully separated. Note that the representation of Fig. 4.2 is incomplete,
as it only represents one of the NoCs. However, we shall see in the following
sections that it is sufficient to allow scheduling under certain hypotheses. Each
tile has its own command and response local interconnects, linked to the NoCs
and to the IP cores of the tile (CPUs, RAMs, DMAs, etc.).

Modifications of the tile structure

To improve timing predictability and worst-case performance, we modify both
the tiles and the NoC of the SoCLib-based many-core. Of the original orga-
nization, we retain the global organization of the many-core, and in particular
its distributed shared memory model which allows programming using general-
purpose tools. Fig. 4.4 pictures the structure of the computing tile in the original
SoCLib many-core, and Fig. 4.5 its modified version.

The memory subsystem. Our objective here is to improve timing pre-
dictability by eliminating contentions. In our experiments with the original
SoCLib-based many-core, the second most important source of contentions (af-
ter the NoC) is the access to the unique RAM bank of each tile. To reduce these
contentions, we decided to follow the example of existing industrial many-core
architectures [108, 83], and replace the single RAM bank of a tile with several
memory banks that can be accessed independently.

40 CHAPTER 4. RECONCILE PERFORMANCE AND PREDICTABILITY

NICLocal Interconnect

D
M

A

R
A

M

In
te

rr
u
p
t

u
n
it

(s
in

g
le

−
b
an

k
)

Response router

Command router

I/
O

 (
o
p
ti

o
n

)

...

{CPU_n}

(MIPS32)

Prog.
cache

(PLRU,
WB)

In
te

rr
u

p
ts

Data
cache

(PLRU,
WB)

Figure 4.4: The computing tile in the original DSPIN-based many-core archi-
tecture

Local Interconnect (full crossbar) NIC

d
at

a
R

A
M

Response router

Program RAM

L
o

ck
 u

n
it

B
u
ff

er
ed

N

M
u
lt

i−
b
an

k

I/
O

 (
o
p
ti

o
n
)

D
M

A
S E W L

Command router

Router

Command

Controllers

P
ro

g
ra

m
 R

A
M

/R
O

M

...

(LRU,
cache
Data

{CPU_n}

(MIPS32)

WT)

Prog.
cache
(LRU,
WT)

Figure 4.5: Modified computing tile of our architecture

To facilitate timing analysis, we separate data (including stack) and program
memory. One RAM bank is used in each tile to store the program of all the
CPUs of the tile. Data and stack are stored on a multi-bank RAM. Each bank of
the data RAM has a separate connection to the local interconnect. RAM banks
of a tile are assigned contiguous address ranges, so that they can store data
structures larger than a single tile. Explicit allocation of data onto the memory
banks, along with the use of lock-based synchronization and the topology of the
local interconnect presented below allow the elimination of contentions due to
concurrent access to memory banks, by ensuring that no data bank is accessed
from two sources (CPUs or DMAs) at the same time.

Note that the use of a multi-bank data RAM also removes a significant per-
formance bottleneck of the original architecture. Indeed, a single RAM bank
can only serve 4 CPUs. Experimental data shows that placing more than 4

4.2. MPPA/NOC ARCHITECTURES FOR THE REAL-TIME 41

CPUs per tile results in no performance gain because the RAM access is satu-
rated. Having multiple RAM banks per tile removes this limitation. Our test
configurations use a maximum of 16 CPU cores per tile and two data RAM
banks per CPU core, for a maximum of 4Mbytes of RAM per tile.

The local interconnect is chosen in our design so that it cannot introduce
contentions due to its internal organization. Contentions can still happen, for
instance, when two CPUs access concurrently the program memory. However,
accesses from different sources to different targets never introduce contentions.
Interconnect types allowing this are the full crossbars and the multi-stage in-
terconnection network [12] such as the omega networks, the delta networks, or
the related logarithmic interconnect [92]. My experiments used a full crossbar
interconnect.

The CPU core we use is a single-issue, in-order, pipelined implementation
of the MIPS32 ISA with no speculative execution. We did not change this,
as it simplifies timing analysis and allows small-area hardware implementation.
However, significant work has been invested in designing a cycle-accurate model
of this core inside a state-of-the art WCET analysis tool [133].

The caches have been significantly modified. The original design featured
caches with a pseudo-LRU (PLRU) replacement policy and with a writing policy
that is intermediate between write-through and write-back.3 Memory accesses
from the data and instruction caches of a single CPU were multiplexed over a
single conection to the local interconnect of the tile. All these choices are known
to complicate timing analysis and/or to reduce the precision of the analysis
[137, 80], and thus we reverted to more conservative choices: We use the LRU
replacement policy, a fully write-through policy, and we let the instruction and
data caches access the local tile interconnect through separate connexions. The
use of a write-through policy reduces the processing speed of each CPU. This
is the only modification we made on the architecture that decreases processing
speed.

Synchronization. To improve temporal predictability, and also speed, our
architecture does not use interrupt-based synchronization. Interrupt signaling
by itself is fast, but handling an interrupt usually requires accesses to program
memory which take supplementary time. Furthermore, arrival date impreci-
sion and modifications of the cache state mean that interrupts are difficult to
take into account during timing analysis. To avoid these performance and pre-
dictability problems, we replace the interrupt unit present in each tile of the
original architecture with a hardware lock component. These components allow
synchronization with very low overhead (1 non-cached local RAM access) and

3Consecutive writes inside a single cache ligne were buffered.

42 CHAPTER 4. RECONCILE PERFORMANCE AND PREDICTABILITY

without modifications of the cache state. The lock unit follows a simple re-
quest/grant protocol which allows a single grant operation to unblock multiple
requests.

Buffered DMA. The traditional DMA unit used in the original architecture
requires significant software control to determine when a DMA operation is
finished so that another can start. This is either done using interrupt-based
signaling, which has the inconvenients mentioned above, or through polling of
the DMA registers, which requires significant CPU time and imposes significant
constraints on CPU scheduling.

To avoid these problems, we use DMA units allowing the buffering of trans-
mission commands. A CPU can send one or more DMA commands while the
previous DMA operation is not yet completed. Furthermore, the DMA unit can
be programmed so that it not only sends out data, but also signals the end of
the transmission to the target tile by granting a lock, as described in Section 4.3.
Thus, all inter-tile communication and synchronization can be performed by the
DMA units, in parallel with the data computations of the CPUs and without
requiring significant CPU time for control.

Modifications of the NoC

The DSPIN network-on-chip [117] is a classical 2D mesh NoC. It uses wormhole
packet switching and a static routing scheme4. Each router of the command
or response NoC has the internal structure of Fig. 4.3. Each NoC router is
connected through FIFO links with the 4 neighboring routers (denoted with
North, South, West, East) and with the local computing tile. Each of these
connections is realized through one demultiplexer and one multiplexer. The
demultiplexer ensures the routing function (X-first/Y-first). It reads the head-
ers of the incoming packets and, depending on the target address, sends them
towards one of the multiplexers of the router. The multiplexer ensures the arbi-
tration (scheduling) function. When two packets arrive at the same time (from
different demultiplexers), a fair Round Robin arbiter is used to decide which
one will be transmitted first. Once the transmission of a packet is started, it
cannot be stopped.5

The fair arbitration scheme is well-adapted to applications without real-time
requirements, where it ensures a good use of NoC resources. But when the objec-
tive is to provide real-time guarantees and to allocate NoC resources according
to application needs, it is better to use some other arbitration mechanism. In
our case, the objective is to provide the best possible support for the implemen-
tation of static computation and communication schedules. Therefore, we rely
on a programmed arbitration approach where each router multiplexer enforces
a fixed packet transmission order specified under the form of a communication
program.

4X-first routing for the command network and Y-first for the response network.
5Unless a virtual channel mechanism is used, as described in [117].

4.3. SOFTWARE ORGANIZATION 43

Figure 4.6: Programmed arbitration in a NoC router multiplexer

Enforcing fixed packet transmission orders requires the use of new hardware
components called router controllers. These components are present in the tile
description of Fig. 4.5 and their interaction with the NoC router multiplexers
is realized as pictured in Fig. 4.6. Each multiplexer of the command network
is controlled by its own controller running a separate program. The program
is loaded onto the component through the local interconnect. The interface
between router controller and the local interconnect is also used to start or stop
the router controller. When the controller is stopped, the fair arbiter of DSPIN
takes control. In Fig. 4.6, the arbitration program will cyclically accept 26
packets from the Local connection, then 26 packets from the West connection.

More details on the implementation and properties of our programmed ar-
bitration mechanism can be found in [55].

4.3 Software organization

On the hardware architecture defined above, we use non-preemptive, statically-
scheduled software with lock-based inter-processor synchronization. Each core is
allocated one sequential thread. To ensure both performance and predictability,
we require that software follows the organization rules detailed in this section.

Data locality. We require computation functions to only operate on local tile
data. If a computation needs data from another tile, this data is first transferred
to the local data RAM. Under this hypothesis, the timing (WCET/BCET)
analysis of computation functions can be performed without considering the
NoC.

Inter-tile data transfers. They are only performed using the DMA units.
The CPUs still retain the possibility of directly accessing RAM banks of other
tiles, but they only do so during the boot phase (which follows the standard
protocol of the MIPS32 ISA), or for non-real-time code running on many-core
tiles allocated to such code. Traffic generated directly by CPUs and their caches

44 CHAPTER 4. RECONCILE PERFORMANCE AND PREDICTABILITY

has very small grain (usually a single data word per memory write access), and
it is difficult to accurately predict its timing. Thus, not allowing it to traverse
the NoC largely simplifies the timing analysis of both NoC transfers and CPU
code [154].

Inter-tile data transfers and synchronizations are only performed through
write transactions performed by the DMA unit of the sending tile. Thus, the
response NoC only carries 2-flit acknowledge packets, so that contentions on
the response NoC are negligible even in the absence of programmed arbitration.
This is why router controllers are only used for the command NoC multiplexers,
leaving unchanged the fair arbiters on the response network.

Allocation of the tile memory. The memory allocation scheme we used for
automatic code generation and for the case studies makes several assumptions.
First, we assume that the programs of all CPUs in a tile are stored in the
local program memory. This amounts to either assuming that this memory is
a non-volatile one, or that program loads outside the boot phase are explicitly
scheduled as data transfers over the NoC.

Second, we allocate one of the data RAM banks for the stacks of all the CPUs
of the tile. Using only one RAM bank for all the stacks is possible because our
applications only make little use of the stack (most data is explicitly allocated
by our tool on the other memory banks).

Allocating all programs (respectively all stacks) on a single memory bank
means that the cost of a cache miss due to a program (resp. stack) memory
access can be very high, due to interference from the other CPU cores of the
tile. However, the (relatively) small size of the programs (resp. stacks) means
that misses seldom occur, so that the high cost of a miss will not result in overly
pessimistic WCET estimations. For applications with large programs or with
significant use of the stack, other memory allocation approaches can be used.

All data RAM banks except the stack-dedicated one are allocated to data
variables. To each data variable we associate a contiguous memory region with
statically-defined start address and length. The length of the region must be at
least equal to the worst-case size of the data type of the variable (which must
be computed during code generation).

4.4 WCET analysis of parallel code

Classical timing analysis techniques for parallel code isolate micro-architecture
analysis from the analysis of synchronizations between cores by performing them
in two separate analysis phases (WCET and WCRT analysis). This isolation has
its advantages, such as a reduction of the complexity of each analysis phase, and
a separation of concerns that facilitates the development of analysis tools. But
isolation also has a major drawback: a loss in precision which can be significant.
To consider only one aspect, in order to be safe the WCET analysis of each
synchronization-free sequential code region has to consider an undetermined
initial micro-architecture state (of caches and pipeline). This may result in

4.5. MAPPING (1) - MPPA-SPECIFIC ASPECTS 45

overestimated WCETs, and consequently in pessimistic execution time bounds
for the whole parallel application.

My contribution on this subject (in collaboration with I. Puaut) [133] is
an integrated WCET analysis approach that considers at the same time micro-
architectural information and the synchronizations between cores. This is achieved
by extending a state-of-the-art WCET estimation technique and tool to manage
synchronizations and communications between the sequential threads running
on the different cores. The benefits of the proposed method are twofold. On the
one hand, the micro-architectural state is not lost between synchronization-free
code regions running on the same core, which results in tighter execution time
estimates. On the other hand, only one tool is required for the temporal vali-
dation of the parallel application, which reduces the complexity of the timing
validation toolchain.

Such a holistic approach is made possible by the use of the deterministic
and composable software and hardware architectures defined in the previous
sections. Experimental results show that the integrated approach always pro-
duces better WCET estimations (21% precision gain on our test applications)
and that these estimations are close to measured execution time.

4.5 Mapping (1) - MPPA-specific aspects

4.5.1 Resource modeling

To allow off-line mapping onto our architectures, we need to identify the set of
abstract computation and communication resources that are considered during
allocation and scheduling.

We associate one communication resource to each of the multiplexers of NoC
routers and to each DMA. We name them as follows: N(i, j)(k, l) is the inter-
router wire going from Tile(i, j) to Tile(k, l); In(i, j) is the output of the router
(i, j) to the local tile; DMA(i, j) is the output of Tile(i, j) to the local router.

My work has mostly focused on NoC modeling and handling. To this end,
I considered a resource model that simplifies as much as possible the represen-
tation of the computing tiles. All the 16 processor cores of the tile are seen as
a single, very fast computing resource. This means that operations will be allo-
cated to the tile as if it were a sequential processor, but the allocated operations
are in fact parallel code running on all 16 processors.

This means that Fig. 4.2 includes all the resources of my platform model.
There are just 12 tile resources representing 192 processor cores, and the 58 arcs
represent the NoC resources (of the command network).

Communication durations

All inter-tile data transmissions are performed using the DMA units. If a
transmission is not blocked on the NoC, then its duration on the sender side
only depends on the size of the transmitted data. The exact formula is d =
s+ ds/MaxPayloade ∗PacketHeaderSize, where d is the duration in clock cycles

46 CHAPTER 4. RECONCILE PERFORMANCE AND PREDICTABILITY

of the DMA transfer from the start of the transmission to the cycle where a new
transmission can start, s is the data size in 32-bit words, MaxPayload is the
maximum payload of a NoC packet (in 32-bit words), and PacketHeaderSize is
the number of clock cycles needed to transmit the packet header. In our case,
MaxPayload=16 flits and PacketHeaderSize=4 flits.

In addition to this transmission duration, we must also account in our com-
putations for:

• The DMA transfer initiation, which consists in 3 uncached RAM accesses
plus the duration of the DMA reading the payload of the first packet from
the data RAM. This cost is over-approximated as 30 cycles.

• The latency of the NoC, which is the time needed for one flit to traverse
the path from source to destination. This latency is of 3 ∗ n, where n is
the number of NoC multiplexers on the route of the transmission.

4.5.2 Application specification

The input specification of our mapping algorithms is the single-clock data-flow
synchronous language Clocked Graphs, defined in [34, 130] (direct translation
into this language is possible from a variant of Lustre/Scade, called Heptagon
and from SynDEx). But to enable a clearer presentation of our allocation and
real-time scheduling algorithms, we use a more abstract and less expressive6

description of applications, closer in form to that of more classical task models.

Definition 1 (Non-conditioned dependent task system) A non-conditioned
dependent task system D is a directed graph with two types of arcs D = {T (D), A(D),∆(D)}.
Here, T (D) is the finite set of tasks (data-flow blocks). The finite set A(D) con-
tains dependencies of the form a = (src(a), dst(a), type(a)), where src(a), dst(a) ∈
T (D) are the source, respectively the destination task of a, and type(a) is the
type of data transmitted from src(a) to dst(a). The directed graph determined
by A(D) must be acyclic. The finite set ∆(D) contains delayed dependencies of
the form δ = (src(δ), dst(δ), type(δ), depth(δ)), where src(δ), dst(δ), type(δ) have
the same meaning as for simple dependencies and depth(δ) is a strictly positive
integer called the depth of the dependency.

Non-conditioned dependent task systems have a cyclic execution model. At
each execution cycle of the task system, each of the tasks is executed exactly
once. We denote with tn the instance of task t ∈ T (D) for cycle n. The
execution of the tasks inside a cycle is partially ordered by the dependencies of
A(D). If a ∈ A(D) then the execution of src(a)

n
must be finished before the

start of dst(a)
n
, for all n. Note that dependency types are explicitly defined,

allowing us to manipulate communication mapping.

6Expressiveness loss is related to the representation of parameters used in the computation
of clocks.

4.5. MAPPING (1) - MPPA-SPECIFIC ASPECTS 47

The dependencies of ∆(D) impose an order between tasks of successive ex-
ecution cycles. If δ ∈ ∆(D) then the execution of src(δ)

n
must complete before

the start of dst(δ)
n+depth(δ)

, for all n.
We make the assumption that a task has no state unless it is explicitly mod-

eled through a delayed arc. This assumption is a semantically sound way of
providing more flexibility to the scheduler. Indeed, assuming by default that
all tasks have an internal state (as classical task models do) implies that two
instances of a task can never be executed in parallel. Our assumption does not
imply restrictions on the way systems are modeled. Indeed, past and current
practice in synchronous language compilation already relies on separating state
from computations for each task, the latter being represented under the form
of the so-called step function [10]. Thus, existing algorithms of classical syn-
chronous compilers can be used to put high-level synchronous specifications into
the form required by our scheduling algorithms.7

Definition 1 is similar to classical definitions of dependent task systems in
the real-time scheduling field [47], and to definitions of data dependency graphs
used in software pipelining [2, 48].

But we need to extend this definition to allow the efficient manipulation of
specifications with multiple execution modes. The extension is based on the
introduction of a new exclusion relation between tasks, as follows:

Definition 2 (Dependent task system) A dependent task system is a tu-
ple D = {T (D), A(D),∆(D), EX(D)} where {T (D), A(D),∆(D)} is a non-
conditioned dependent task set and EX(D) is an exclusion relation EX(D) ⊆
T (D)× T (D)× N.

The introduction of the exclusion relation modifies the execution model de-
fined above as follows: if (τ1, τ2, k) ∈ EX(D) then τ1

n and τ2
n+k are never both

executed, for any execution of the modeled system and any cycle index n. For
instance, if the activations of τ1 and τ2 are on the two branches of a test we will
have (τ1, τ2, 0) ∈ EX(D).

The relation EX(D) is obtained by analysis of the clocks of the initial syn-
chronous specification. Various algorithms have been proposed to this intent
in sycnhronous language compilation and in previous work on LoPhT [34, 130].
The relation EX(D) needs not be computed exactly. Any sub-set of the exact
exclusion relation between tasks can safely be used during scheduling (even the
void sub-set). However, the more exclusions we take into account, the better
results the scheduling algorithms will give because tasks in an exclusion relation
can be allocated the same resources at the same dates. This is a form of safe
double allocation of resources, discussed in Section 4.6.

We exemplify our formalism with the dependent task set of Fig. 4.7, which
is a simplified version of an automotive platooning application [135]. In our
figure, each block is a task, solid arcs are simple dependencies, and the dashed
arc is a delayed dependency of depth 2. The application is run by a car to

7This has already been done for a Lustre/Scade dialect [49] and for SynDEx specifications
[34].

48 CHAPTER 4. RECONCILE PERFORMANCE AND PREDICTABILITY

Correction

sobel_H_3

sobel_V_2

sobel_H_2

sobel_V_3

sobel_H_1

sobel_V_1

sobel_H_4

sobel_V_4

sobel_H_5

sobel_V_5

sobel_H_6

sobel_V_6

histo_H_3

histo_V_2

histo_H_2

histo_V_3

histo_H_1

histo_V_1

histo_H_4

histo_V_4

histo_H_5

histo_V_5

histo_H_6

histo_V_6

DisplayCapture
Image

2

Detection

Figure 4.7: Dependent task set of a platooning application

determine the position (distance and angle) of another car moving in front of
it. It works by cyclically capturing an input image of fixed size. This image
is passed through an edge-detecting Sobel filter and then through a histogram
search to detect dominant edges (horizontal and vertical). This information is
used by the detection and correction function to determine the position of the
front car. The whole process is monitored on a display. The delayed dependency
represents a feedback from the detection and correction function that allows the
adjustment of image capture parameters.

The Sobel filter and the histogram search are parallelized. Each of the So-
bel H and Sobel V functions receives one sixth of the whole image (a horizontal
slice).

4.5.3 Non-functional properties

For each task τ ∈ T (D), we define WCET (τ) to be a safe upper bound for the
worst-case execution time (WCET) of τ on an MPPA tile, in isolation. Note
that the WCET values we require are for parallel code running on all the 16
processors of a tile. Tight WCET bounds for such code can be computed using
the analysis technique proposed in Section 4.4.

For each data type t associated with a dependency (simple or delayed), we
define the worst-case memory footprint of a value of type t. This information
allows the computation of the worst-case communication time (WCCT) for a
data of that type, using the formula of Section 4.5.1.

Allocation constraints specify on which tiles a given dataflow block can be
executed. In our example, they force the allocation of the capture and display
functions onto specific MPPA tiles. More generally, they can be used to confine
an application to part of the MPPA, leaving the other tiles free to execute other
applications.

4.5. MAPPING (1) - MPPA-SPECIFIC ASPECTS 49

4.5.4 Scheduling and code generation

The problem

The real-time mapping and code generation problem we consider in this chap-
ter is a bi-criteria optimization problem: We assume given an MPPA model of
fixed size (fixed number of tiles, processors, memory banks, etc.), an applica-
tion represented with a dependent task set and a non-functional specification.
The problem is to synthesize a real-time implementation of the application on
the MPPA that minimizes execution cycle latency (duration) and maximizes
throughput8, with priority given to latency. We chose this scheduling problem
because it is meaningful in embedded systems design and because its simple
definition allows us to focus on the handling of NoC-related issues.

Our allocation and scheduling problem being NP-complete, we do not aim
for optimality. Instead, we rely on low-complexity heuristics that allow us to
handle large numbers of resources and tasks with high temporal precision. Map-
ping and code generation is realized in 3 phases: The first one takes into account
the dependencies of A(D) in order to produce a latency-optimizing scheduling
table. The second phase takes into account the delayed dependencies of ∆(D).
It uses the software pipelining algorithms of [37] to improve throughput while
not changing latency. Finally, once a scheduling table is computed, it is im-
plemented in phase 3 in a way that preserves its real-time properties. We now
present phases 1 and 3, while the software pipelining algorithms are presented
in Section 4.6.

Phase 1: Latency-optimizing scheduling

Our scheduling routine builds a global scheduling table covering all MPPA re-
sources. It uses a non-preemptive scheduling model for the tasks, and a pre-
emptive one for the NoC communications. The reason for this is that task pre-
emptions would introduce important temporal imprecision (through the use of
interrupts), and are avoided. Data communications over the NoC are naturally
divided into packets that are individually scheduled by the NoC multiplexer
programs, allowing a form of pre-computed preemption with very small cost.

For each task, our scheduling routine reserves exactly one time interval on
one of the tiles. For every dependency between two tasks allocated on different
tiles, the scheduling routine reserves one or more time intervals on each resource
along the route between the two tiles, starting with the DMA of the source tile,
and continuing with the NoC multiplexers (recall that the route is fixed under
the X-first routing policy).

The scheduling algorithm uses a simple list scheduling heuristic. The tasks
of the dependent task system are traversed one by one in an order compatible
with the dependencies between them (only the simple dependencies, not the
delayed ones, which are considered during throughput optimization). Resource

8Throughput in this context means the number of execution cycles started per time unit.
It can be larger than the inverse of the latency because we allow one cycle to start before the
end of previous ones, provided that data-flow dependencies are satisfied.

50 CHAPTER 4. RECONCILE PERFORMANCE AND PREDICTABILITY

allocation for a task and for all communications associated with its input depen-
dencies is performed upon traversal of the task, and never changed afterwards.
Scheduling starts with an empty scheduling table which is incrementally filled
as the tasks and the associated communications are reserved time intervals on
the various resources.

For each task, scheduling is attempted on all the tiles that can execute the
block (as specified by the allocation constraints), at the earliest date possible.
Among the possible allocations, we retain the one that minimizes a cost function.
This cost function should be chosen so that the final length of the scheduling
table is minimized (this length gives the execution cycle latency). Our choice of
cost function combines the end date of the task in the schedule (with 95% weight)
and the maximum occupation of a CPU in the current scheduling table (with
5% weight). Experience showed that this function produces shorter scheduling
tables than the cost function based on task end date alone (as used in [76, 130])
because it reduces the scattering of computations over tiles.

Mapping NoC communications The most delicate architecture-related part
of our scheduling routine for many-cores is the communication mapping function
(procedure 1 in [36]). When a task is mapped on a tile, this routine is called
once for each of the input dependencies of the task, if the dependency source is
on another tile and if the associated data has not already been transmitted.

Procedure 1 MapCommunicationOnPath
Input: Path : list of resources (the communication path)

StartDate : date after which the data can be sent
DataSize : worst-case data size (in 32-bit words)

Input/Output: SchedulingTable : scheduling table
1: for i := 1 to length(Path) do
2: ShiftSize := (i− 1) ∗ SegmentBufferSize;
3: FreeIntervalList [i] :=

GetIntervalList(SchedulingTable, GetSegment(Path,i), ShiftSize)
4: ShiftedIntervalList [i] :=

ShiftLeftIntervals(FreeIntervalList [i],ShiftSize)
5: PathFreeIntervalList :=IntersectIntervals(ShiftedIntervalList);
6: (ReservedIntervals,NewIntervalList,NewScheduleLength) :=

ReserveIntervals(DataSize,PathFreeIntervalList,
length(SchedulingTable));

7: (IntervalForLock,NewIntervalList,NewScheduleLength) :=
ReserveIntervals(LockPacketLength,NewIntervalList,

NewScheduleLength);
8: ReservedIntervals := AppendList(ReservedIntervals,IntervalForLock)
9: for i := 1 to length(Path) do

10: ShiftSize := (i-1)*SegmentBufferSize;
11: FinalIntervals[i] :=ShiftRightIntervals(ReservedIntervals,ShiftSize);
12: if NewScheduleLength > length(SchedulingTable) then
13: SchedulingTable :=

IncreaseLength(SchedulingTable,NewScheduleLength);
14: SchedulingTable :=

UpdateSchedulingTable(SchedulingTable,Path,FinalIntervals);

4.5. MAPPING (1) - MPPA-SPECIFIC ASPECTS 51

Fig. 4.8 presents a (partial) scheduling table produced by our mapping rou-
tine. We shall use this example to give a better intuition on the functioning
of our algorithms. We assume here that the execution of task f produces data
x which will be used by task g. Our scheduling table shows the result of the
mapping of task g onto Tile(2, 2) (which also requires the mapping of the trans-
mission of x) under the assumption that all other tasks (f , h) and data trans-
missions (y, z, u) were already mapped as pictured (reservations made during
the mapping of g have a lighter color).

(2,2)

In

(2,2)

Tile

(2,2)

1000

1500

2000

2500

500

0

Tile DMA

ti
m

e

(1,1) (1,1)

N(1,1)

(1,2)

N(1,2)

h

y
y

x
x

x
x

u

x
x

x
x

f

g

z

Figure 4.8: Partial scheduling table covering one communication path on our
NoC. Only the 6 resources of interest are represented (out of 70). Time flows
from top to bottom.

As part of the mapping of g onto Tile(2, 2), function MapCommunica-
tionOnPath is called to perform the mapping of the communication of x from
Tile(1, 1) to Tile(2, 2). The parameters of its call are Path, StartDate, and Data-
Size. Parameter Path is the list formed of resources DMA(1, 1), N(1, 1)(1, 2),
N(1, 2)(2, 2), and In(2, 2) (the transmission route of x under the X-first routing
protocol). Parameter StartDate is given by the end date of task f (in our case
500), and DataSize is the worst-case size of the data associated with the data
dependency (in our case 500 32-bit words). Time is measured in clock cycles.

To minimize the overall time reserved for a data transmission, we shall re-
quire that it is never blocked waiting for a NoC resource. For instance, if the
communication of x starts on the N(1, 1)(1, 2) at date t, then on N(1, 2)(2, 2) it
must start at date t + SegmentBufferSize, where SegmentBufferSize is a plat-
form constant defining the time needed for a flit to traverse one NoC resource.
In our NoC this constant is 3 clock cycles (in Fig. 4.8 we use a far larger value
of 100 cycles, for clarity).

Building such synchronized reservation patterns along the communication
routes is what function MapCommunicationOnPath does. It starts by ob-
taining the lists of free time intervals of each resource along the communication
path, and realigning them by subtracting (i− 1) ∗ SegmentBufferSize from the

start dates of all the free intervals of the ith resource, for all i. Once this re-
alignment is done on each resource by function ShiftLeftIntervals, finding a

52 CHAPTER 4. RECONCILE PERFORMANCE AND PREDICTABILITY

reservation along the communication path amounts to finding time intervals
that are unused on all resources. To do this, we start by performing (in line 6 of
function MapCommunicationOnPath) an intersection operation returning
all realigned time intervals that are free on all resources. In Fig. 4.8, this inter-
section operation produces (prior to the mapping of x) the intervals [800,1100)
and [1400,2100]. The value 2100 corresponds here to the length of the scheduling
table prior to the mapping of g.

We then call function ReserveIntervals twice, to make reservations for the
data transmission and for the lock command associated with each communica-
tion. These two functions produce a list of reserved intervals, which then need
to be realigned on each resource. In Fig. 4.8, these 2 calls reserve the intervals
[800,1100), [1400,1700), and [1700,1704). The first 2 intervals are needed for
the data transmission, and the third is used for the lock command packet.

Multiple reservations Communications are reserved at the earliest possible
date, and function ReserveIntervals allows the fragmentation of a data trans-
mission to allow a better use of NoC resources. In our example, fragmentation
allows us to transmit part of x before the reservation for u. If fragmentation
were not possible, the transmission of x should be started later, thus delaying
the start of g, potentially lengthening the reservation table.

Procedure 2 ReserveIntervals
Input: DataSize : worst-case size of data to transmit

FreeIntervalList : list of free intervals before reservation
ScheduleLength : schedule length before reservation

Output: ReservedIntervalList : reserved intervals
NewIntervalList : list of free intervals after reservation
NewScheduleLength : schedule length after reservation

1: NewIntervalList := FreeIntervalList
2: ReservedIntervalList := ∅
3: while DataSize > 0 and NewIntervalList 6= ∅ do
4: ival := GetFirstInterval(NewIntervalList);
5: NewIntervalList := RemoveFirstInterval(NewIntervalList);
6: if IntervalEnd(ival)==ScheduleLength then
7: RemainingIvalLength := ∞; /*ival can be extended*/
8: else
9: RemainingIvalLength := length(ival);

10: ReservedLength := 0;
11: while RemainingIvalLength > MinPacketSize and DataSize > 0 do
12: /*Reserve a packet (clear, but suboptimal code)*/
13: PacketLength := min(DataSize + PacketHeaderSize,

RemainingIvalLength,MaxPacketSize);
14: RemainingIvalLength -= PacketLength;
15: DataSize -= PacketLength - PacketHeaderSize;
16: ReservedLength += PacketLength
17: ReservedInterval := CreateInterval(start(ival),ReservedLength);
18: ReservedIntervalList := AppendToList(ReservedIntervalList,ReservedInterval);
19: if length(ival) - ReservedLength > MinPacketLength then
20: NewIntervalList := InsertInList(NewIntervalList,

CreateInterval(start(ival)+ReservedLength,length(ival)-ReservedLength));
21: NewScheduleLength := max (ScheduleLength,end(ival));

4.5. MAPPING (1) - MPPA-SPECIFIC ASPECTS 53

Fragmentation is subject to restrictions arising from the way communications
are packetized. An interval cannot be reserved unless it has a minimal size,
allowing the transmission of at least a packet containing some payload data.

Function ReserveIntervals performs the complex translation from data
sizes to needed packets and intervals reservations. We present here an unopti-
mized version that facilitates understanding. This version reserves one packet at
a time, using a free interval as soon as it has the needed minimal size. Packets
are reserved until the required DataSize is covered. Like for tasks, reservations
are made as early as possible. For each packet reservation the cost of NoC
control (under the form of the PacketHeaderSize) must be taken into account.

When the current scheduling table does not allow the mapping of a data
communication, function ReserveIntervals will lengthen it so that mapping
is possible.

Phase 3: Code generation

Once the scheduling table has been computed, executable code is automatically
generated as follows: One sequential execution thread is generated for each tile
and for each NoC multiplexer (resources Tile(i, j), N(i, j)(k, l), and In(i, j) in
our platform model of Section 4.5.1). The code of each thread is an infinite
loop that executes the (computation or communication) operations scheduled
on the associated resource in the order prescribed by their reservations. Recall
that each tile contains 16 processor cores, but is reserved as a single sequential
resource, parallelism being hidden inside the data-flow blocks. The sequential
thread of a tile runs on the first processor core of the tile, but the code of
each task can use all 16 processor cores. The code of the NoC multiplexers is
executed on the router controllers.

No separate thread is generated for the DMA resource of a tile. Instead,
its operations are initiated by thread of the tile. This is possible because the
DMA allows the queuing of DMA commands and because mapping is performed
so that activation conditions for DMA operations can be computed by the tile
resource at the end of data-flow operations. For instance, in the example of
Fig. 4.8, if no other operations are allocated on Tile(0, 0), the two DMA opera-
tions needed to send x are queued at the end of f .

The synchronization of the threads is realized by explicit lock manipulations
by the processors and by the NoC control programs, which force message passing
order and implicitly synchronize with the flow of passing messages. The resulting
programs enforce the computed order of operations on each resource in the
scheduling table, but allow for some timing elasticity: If the execution of an
operation takes less than its WCET or WCCT, operations depending on it
may start earlier. This elasticity does not compromise the worst-case timing
guarantees computed by the mapping tool.

Memory handling. Our real-time scheduling and timing analysis use con-
servative WCET estimations for the (parallel) execution of data-flow blocks on
the computing tiles, in isolation. Uncontrolled memory accesses coming from

54 CHAPTER 4. RECONCILE PERFORMANCE AND PREDICTABILITY

other tiles during execution could introduce supplementary delays that are not
(yet) taken into account in the WCET figures or by LoPhT.

To ensure the timing correctness of our real-time scheduling technique, we
need to ensure that memory accesses coming from outside a tile do not interfere
with memory accesses due to the execution of code inside the tile. This is done
by exploiting the presence of multiple memory banks on each tile. The basic
idea is to ensure that incoming DMA transfers never use the same memory
banks as the code running at the same time on the CPUs. Of course, once a
DMA transfer is completed, the memory banks it has modified can be used by
the CPUs, the synchronization being ensured through the use of locks.

We currently ensure this property at code generation time, by explicitly
allocating variables to memory banks in such a way as to exclude contentions.
While not general, this technique worked well for our case studies. Integrating
RAM bank allocation in the mapping algorithm is ongoing work, as is separately
considering each of the computing cores of a tile (instead of considering them
as a single computing resource).

4.6 Mapping (2) - Architecture-independent op-
timizations

The previous section showed the level of architecture detail we considered in or-
der to allow an efficient use of computing resources. But in building the LoPhT
tool, I have also taken inspiration from more general, architecture-independent
optimization techniques of both classical compilation and synchronous language
compilation in order to improve the quality of the generated code. These opti-
mizations are described in references [37, 130, 121]. I will mainly discuss here
the use of software pipelining techniques to improve the computation through-
put of a scheduling table. In doing so I will also provide hints into a second
optimization: the precise analysis of clocks to allow efficient and safe double
reservation of resources in a scheduling table. the proposed algorithms are gen-
eral and scalable, which allows their application to the mapping of parallelized
code onto many-cores.

4.6.1 Motivation

Compilers such as GCC are expected to improve code speed by taking advan-
tage of micro-architectural instruction level parallelism [84]. Pipelining compil-
ers usually rely on reservation tables to represent an efficient (possibly optimal)
static allocation of the computing resources (execution units and/or registers)
with a timing precision equal to that of the hardware clock. Executable code is
then generated that enforces this allocation, possibly with some timing flexibil-
ity. But on VLIW architectures, where each instruction word may start several
operations, this flexibility is very limited, and generated code is virtually iden-
tical to the reservation table. The scheduling burden is mostly supported here
by the compilers, which include software pipelining techniques [141, 2] designed

4.6. MAPPING (2) - ARCHITECTURE-INDEPENDENTOPTIMIZATIONS55

to increase the throughput of loops by allowing one loop cycle to start before
the completion of the previous one.

My objective was to apply software pipelining techniques in the system-level
off-line scheduling of embedded control specifications. The optimal scheduling
of such specifications onto platforms with multiple, heterogenous execution and
communication resources (distributed, parallel, multi-core) is NP-hard regard-
less of the optimality criterion (throughput, makespan, etc.) [67]. Existing
scheduling techniques and tools ([40, 161, 76, 130, 59] or the Step 1 of Sec-
tion 4.5.4) heuristically solve the simpler problem of synthesizing a scheduling
table of minimal length which implements one generic cycle of the embedded
control algorithm. In a hard real-time context, minimizing table length (i.e.
the makespan) is often a good idea, because in many applications it bounds the
response time after a stimulus.

But optimizing makespan alone relies on an execution model where execu-
tion cycles cannot overlap in time (no pipelining is possible), even if resource
availability allows it. At the same time, most real-time applications have both
makespan and throughput requirements, and in some cases achieving the re-
quired throughput is only possible if a new execution cycle is started before the
previous one has completed.

This is the case in the electronic control units (ECU) of combustion engines.
Starting from the acquisition of data for a cylinder in one engine cycle, an ECU
must compute the ignition parameters before the ignition point of the same
cylinder in the next engine cycle (a makespan constraint). It must also initiate
one such computation for each cylinder in each engine cycle (a throughput con-
straint). On modern multiprocessor ECUs, meeting both constraints requires
the use of pipelining [6]. Another example is that of systems where a faster rate
of sensor data acquisition results in better precision and improved control, but
optimizing this rate must not lead to the non-respect of requirements on the
latency between sensor acquisition and actuation. To allow the scheduling of
such systems we consider here the static scheduling problem of optimizing both
makespan and throughput, with makespan being prioritary.

To (heuristically) solve this optimization problem, we use the three-phase
implementation process defined in Section 4.5.4. The first two phases of this
process, which perform allocation and scheduling and build the system-level
scheduling table, are a form of decomposed software pipelining [152, 68, 31].
The first phase of this flow consists in applying one of the previously-mentioned
makespan-optimizing tools, such as Step 1 of Section 4.5.4. The result is a
scheduling table describing the execution of one generic execution cycle of the
embedded control algorithm with no pipelining.

The second phase uses a novel software pipelining algorithm, introduced
in this section, to significantly improve the throughput without changing the
makespan and while preserving the periodic nature of the system. The ap-
proach has the advantage of simplicity and generality, allowing the use of exist-
ing makespan-optimizing tools.

The proposed software pipelining algorithm is a very specific and constrained
form of modulo scheduling [140]. Like all modulo scheduling algorithms, it de-

56 CHAPTER 4. RECONCILE PERFORMANCE AND PREDICTABILITY

termines a shorter initiation interval for the execution cycles (iterations) of the
control algorithm, subject to resource and inter-cycle data dependency con-
straints. Unlike previous modulo scheduling algorithms, however, it starts from
an already scheduled code (the non-pipelined scheduling table), and preserves
all the intra-cycle scheduling decisions made at phase 1, in order to preserve the
makespan unchanged. In other words, our algorithm computes the best initi-
ation interval for the non-pipelined scheduling table and re-organizes resource
reservations into a pipelined scheduling table, whose length is equal to the new
initiation interval, and which accounts for the changes in memory allocation.

4.6.2 Related work and originality

Decomposed software pipelining.

Closest to our work are previous results on decomposed software pipelining [152,
68, 31]. In these papers, the software pipelining of a sequential loop is realized
using two-phase heuristic approaches with good practical results. Two main
approaches are proposed in these papers.

In the first approach, used in all 3 cited papers, the first phase consists
in solving the loop scheduling problem while ignoring resource constraints. As
noted in [31], existing decomposed software pipelining approaches solve this loop
scheduling problem by using retiming algorithms. Retiming [100] can therefore
be seen as a very specialized form of pipelining targeted at cyclic (synchronous)
systems where each operation has its own execution unit. Retiming has signifi-
cant restrictions when compared with full-fledged software pipelining:

• It is oblivious of resource allocation. As a side-effect, it cannot take into
account execution conditions to improve allocation, being defined in a
purely data-flow context.

• It requires that the execution cycles of the system do not overlap in time,
so that one operation must be completely executed inside the cycle where
it was started.

Retiming can only change the execution order of the operations inside an exe-
cution cycle. A typical retiming transformation is to move one operation from
the end to the beginning of the execution cycle in order to shorten the duration
(critical path) of the execution cycle, and thus improve system throughput. The
transformation cannot decrease the makespan but may increase it.

Once retiming is done, the second transformation phase takes into account
resource constraints. To do so, it considers the acyclic code of one generic
execution cycle (after retiming). A list scheduling technique ignoring inter-cycle
dependences is used to map this acyclic code (which is actually represented with
a directed acyclic graph, or DAG) over the available resources.

The second technique for decomposed software pipelining, presented in [152],
basically switches the two phases presented above. Resource constraints are
considered here in the first phase, through the same technique used above: list

4.6. MAPPING (2) - ARCHITECTURE-INDEPENDENTOPTIMIZATIONS57

scheduling of DAGs. The DAG used as input is obtained from the cyclic loop
specification by preserving only some of the data dependences. This scheduling
phase decides the resource allocation and the operation order inside an execution
cycle. The second phase takes into account the data dependences that were dis-
carded in the first phase. It basically determines the fastest way a specification-
level execution cycle can be executed by several successive pipelined execution
cycles without changing the operation scheduling determined in phase 1 (pre-
serving the throughput unchanged). Minimizing the makespan is important
here because it results in a minimization of the memory/register use.

Originality

My student Thomas Carle defined, under my supervision, a third decomposed
software pipelining technique with two significant originality points, detailed
below.

Optimization of both makespan and throughput. Existing software pipe-
lining techniques are tailored for optimizing only one real-time performance met-
ric: the processing throughput of loops [158] (sometimes besides other criteria
such as register usage [75, 159, 89] or code size [162]). In addition to throughput,
we also seek to optimize makespan, with makespan being prioritary. Recall that
throughput and latency (makespan) are antagonistic optimization objectives
during scheduling [16], meaning that resulting schedules can be quite different.

To optimize makespan we employ in the first phase of our approach existing
scheduling techniques that were specifically designed for this purpose [40, 161,
76, 130, 59]. The second phase of our flow takes the scheduling table computed
in phase 1 and optimizes its throughput while keeping its makespan unchanged.
This is done using a new algorithm that conserves all the allocation and intra-
cycle scheduling choices made in phase 1 (thus conserving makespan guarantees),
but allowing the optimization of the throughput by increasing (if possible) the
frequency with which execution cycles are started.

Like retiming, this transformation is a very restricted form of modulo schedul-
ing software pipelining. In our case, it can only change the initiation inter-
val (changes in memory allocation and in the scheduling table are only conse-
quences). By comparison, classical software pipelining algorithms, such as the
iterative modulo scheduling of [140], perform a full mapping of the code involv-
ing both execution unit allocation and scheduling. Our choice of transformation
is motivated by three factors:

• It preserves makespan guarantees.

• It gives good practical results for throughput optimization.

• It has low complexity.

The last point (complexity) is especially important when comparing our results
with those of SCAN [24]. In SCAN, the objective is still the optimization of

58 CHAPTER 4. RECONCILE PERFORMANCE AND PREDICTABILITY

throughput, but this objectiver is attained through an exploration along two di-
mensions: throughput and time horizon (a notion closely related to makespan).
Through this bi-criteria exploration, SCAN is similar to our work. However, op-
timization does not establish the priority of time horizon over throughput and,
even more important, exploration steps of SCAN rely on exact solving of lin-
ear programming problems, which is largely more complex than the algorithms
we propose [72]. Addressing this complexity is actually the main objective of
SCAN, and the main tuning parameter of the algorithm is the timeout value at
which exploration of a particular point in the search space is abandoned.

It is important to note that our transformation is not a form of retiming.
Indeed, it allows for a given operation to span over several cycles of the pipelined
implementation, and it can take advantage of conditional execution to improve
pipelining, whereas retiming techniques work in a pure data-flow context, with-
out predication.

Predication. Embedded control specifications often include conditional con-
trol, for instance under the form of execution modes. For an efficient mapping
of such specifications, it is important to allow an independent, predicated (con-
ditional) control of the various computing resources. However, most existing
techniques for software pipelining [2, 153, 158] use execution platform models
that significantly constrain or simply prohibit predicated resource control. This
is due to limitations in the hardware targeted by classical software pipelining
(processor pipelines). One common problem is that two different operations
cannot be scheduled at the same date on a given resource (functional unit),
even if they have exclusive predicates (like the branches of a test). The only
exception we know to this rule is predicate-aware scheduling (PAS) [146].

By comparison, the computing resources of our target architectures are not
mere functional units of a CPU (as in classical predicated pipelining), but full-
fledged processors such as PowerPC, ARM, etc. The operations executed by
these computing resources are large sequential functions, and not simple CPU
instructions. Thus, each computing resource allows unrestricted predication
control by means of conditional instructions, and the timing overhead of predi-
cated control is negligible with respect to the duration of the operations. This
means that our architectures satisfy the PAS requirements. The drawback of
PAS is that sharing the same resource at the same date is only possible for op-
erations of the same cycle, due to limitations in the dependency analysis phase.
Our technique removes this limitation.

To exploit the full predicated control of our platform we rely on a new
intermediate representation, namely predicated and pipelined scheduling tables.
By comparison to the modulo reservation tables of [98, 140], our scheduling
tables allow the explicit representation of the execution conditions (predicates)
of the operations. In turn, this allows the double reservation of a given resource
by two operations with exclusive predicates.

4.7. CONCLUSION 59

Other work on pipelining for task scheduling

A significant amount of work exists on applying software pipelining or retiming
techniques for the efficient scheduling of tasks onto coarser-grain architectures,
such as multi-processors [95, 156, 45, 48, 40, 111]. To our best knowledge,
these results share the two fundamental limitations of other software pipelining
algorithms: Optimizing for only one real-time metric (throughput) and not fully
taking advantage of conditional execution to allow double allocation of resources.

4.7 Conclusion

The most important conclusion of the work presented here is that combining
techniques of both compilation and real-time scheduling is possible. Taking
into account precise architectural detail and using state-of-the-art optimizations
actually gave results beyond our expectations. For very regular applications such
as the previously-mentioned platooning application and the FFT, LoPhT was
able to generate code whose observed latency and throughput is within 1% of
the predicted values. Furthermore, the code produced by LoPhT for the FFT
ran faster than a classical NoC-based parallel implementation of the FFT [13]
running on our architecture. In other words, our tool produced code that
not only has statically-computed hard real-time bounds (which the
hand-written code has not) but is also faster.

Of course, part of these results is due to the regularity of the applications
and to the hardware architecture, which has very good support for off-line real-
time scheduling. But the results are also due to the careful definition of the
software architecture, and to the definition of the scheduling and code generation
algorithms, which take into account fine detail of the hardware while using
efficient general-purpose optimizations.

And the good news is that much more remains to be gained. With my
collaborators, I am currently investigating the mapping of more dynamic ap-
plications (e.g. h264/hevc video codecs), the definition of mapping techniques
where processor cores and memory banks are individually considered by the
mapping algorithms, the application of other classical compiler optimizations,
the definition of general architecture description languages, etc.

60 CHAPTER 4. RECONCILE PERFORMANCE AND PREDICTABILITY

Chapter 5

Automatic implementation
of systems with complex
functional and
non-functional properties

In the previous chapter I explained how a classical compilation approach was
adapted to allow precise and conservative timing accounting, and thus pro-
vide hard real-time throughput and latency guarantees for code executed on
complex platforms (many-cores). The approach combines general-purpose and
architecture-specific optimizations to produce very efficient code. Such a compi-
lation approach never fails if execution on the platform is functionally possible,
because no real-time requirements are taken into account.

But the implementation needs of complex embedded systems are not well
captured under the form of such unconstrained optimization problems. Com-
plex embedded systems have multiple non-functional requirements that must be
satisfied by the final implementation, and which need to be taken into account
by the scheduling and code generation algorithms. From this perspective, the
work presented in the previous chapter, for all its good results, is only an enabler
technology in the definition of a system-level compilation approach for complex
embedded systems.

In this chapter I explain how, together with my students and post-docs, and
starting from the results of the previous chapter, I extended the LoPhT tool
to take into account multiple non-functional requirements, thus completing its
design as a real-time systems compiler.

LoPhT considers all the modeling and code generation needs of a certain
class of embedded control systems, characterized by the use of off-line real-time
scheduling and by the use of a time-triggered interface with the physical envi-
ronment. This class of systems includes systems requiring space-time isolation,

61

62 CHAPTER 5. COMPLEX NON-FUNCTIONAL PROPERTIES

as mandated by the IMA/ARINC 653 standard [8]. The design of LoPhT has
been driven by industrial case studies requiring space-time isolation and com-
ing from the aerospace and rail industries [38, 49]. To cover the needs of these
systems, LoPhT considers the following non-functional properties:

• Preemptability1 of the operations of the application. We do not consider
here the full force of preemptive execution, like in Giotto [85] or Prelude
[116]. Instead, we consider a more temporally predictable approach, and
rely on pre-computed preemption, where all possible preemption dates are
statically computed at off-line scheduling time.

• Space-time partitioning of the application, as specified by the ARINC653
[8] standard. Time partitioning is also that of TTA [97] and FlexRay
[142] (the static segment), allowing the static allocation of CPU or bus
time slots, on a periodic basis, to various parts (known as partitions) of
the application. Also known as static time division multiplexing (TDM)
scheduling, time partitioning further enhances the temporal determinism
of a system.

• Release dates and deadlines for the tasks of the application, which allow
the modeling of constraints coming from the environment and/or the dy-
namics of the system. An important point here is that we allow the use of
deadlines that are longer than the periods in the specification. This allows
a more natural real-time specification, improved schedulability, and less
context changes between partitions (which are notoriously expensive).

All these come in addition to allocation constraints, which were already taken
into account in the previous chapter.

Work on integrating these non-functional requirements naturally raised some
optimization and code generation questions that were addressed by our work on
LoPhT: the minimization of the preemptions, the minimization of the number
of tasks, and the synthesis of inter-partition communication code.

5.1 Related work

The main originality of this work was to define a complex task model allowing
the specification of all the functional and non-functional aspects needed for
the corect and efficient implementation of our systems. Of course, prior work
already considers all these functional and non-functional aspects, but either in
isolation (one aspect at a time), or through combinations that do not cover
the modeling needs of the target systems. Our contributions are the non-trivial
combination of these aspects in a coherent formal model and the definition of
synthesis algorithms able to build a running real-time implementation.

1The use of the terms preemptability and preemptable is common in real-time when re-
ferring to tasks. The terms “interrupt” and “interruptible” refer to the machine interrupts
instead.

5.1. RELATED WORK 63

Previous work [86, 85, 116, 106, 3] on the implementation of multi-periodic
synchronous programs and the work by [25] and [47] on the scheduling of depen-
dent task systems have been important sources of inspiration. By comparison,
our work provides a general treatment of ARINC 653-like partitioning and of
conditional execution, and a novel use of deadlines longer than periods to allow
faithful real-time specification.

The work of [40] addresses the multiprocessor scheduling of synchronous pro-
grams under bus partitioning constraints. By comparison, our work takes into
account conditional execution and execution modes, allows preemptive schedul-
ing, and allows automatic allocation of computations and communications. Tak-
ing advantage of the time-triggered execution context, our approach also relies
on fixed deadlines (as opposed to relative ones), which facilitates the definition
of fast mapping heuristics.

Another line of work on the scheduling of dependent tasks is represented by
the works of [119] and [161]. In both cases, the input of the technique is a DAG,
whereas our functional specifications allow the use of delayed dependencies be-
tween successive iterations of the DAG. Other differences are that the technique
[161] does not take into account ARINC 653-like partitioning or conditional ex-
ecution, and the technique of [119] does not allow the specification of complex
end-to-end latency constraints. [65] does consider conditional control, but does
so in a mono-processor, non-partitioned, non-preemptive context.

The off-line (pipelined) scheduling of tasks with deadlines longer than the
periods has been previously considered (among others) by [66], but this work
does not consider, as we do, partitioning constraints and the use of execution
conditions to improve resource allocation. This is also our originality with re-
spect to other classical work on static scheduling of periodic systems [139].

Compared to previous work by [66] on real-time scheduling for predictable,
yet flexible real-time systems, our approach does not directly cover the issue of
sporadic tasks, but allows a more flexible treatment of periodic (time-triggered)
tasks. Based on a different representation of real-time characteristics and on
a very general handling of execution conditions, we allow for better flexibility
inside the fully predictable domain.

From an implementation-oriented perspective, Giotto [85, 86], ΨC [103], and
Prelude [116, 136] make the choice of mixing a globally time-triggered execution
mechanism with on-line priority-driven scheduling algorithms such as RM or
EDF. By comparison, we made the choice of taking all scheduling decisions off-
line. Doing this complicates the implementation process, but imposes a form
of temporal isolation between the tasks which reduces the number of possible
execution traces and increases timing precision (as the scheduling of one task no
longer depends on the run-time duration of the others). In turn, this facilitates
verification and validation. Furthermore, a fully off-line scheduling approach
such as ours has the potential of improving worst-case performance guarantees
by taking better decisions than a RM/EDF scheduler which follows an as-soon-
as-possible (ASAP) scheduling paradigm. For instance, reducing the number
of notoriously expensive partition changes (detailed in [38]) uses a scheduling
technique that is not ASAP. These partition changes are not taken into account

64 CHAPTER 5. COMPLEX NON-FUNCTIONAL PROPERTIES

in the optimality results concerning the EDF scheduling of Prelude [116].

Compared to classical work on the on-line real-time scheduling of tasks with
execution modes (cf. [14]), our off-line scheduling approach comes with precise
control of timing, causalities, and the correlation (exclusion relations) between
multiple test conditions of an application. It is therefore more interesting for us
to use a task model that explicitly represents execution conditions. We can then
use table-based scheduling algorithms that precisely determine when the same
resource can be allocated at the same time to two tasks because they are never
both executed in a given execution cycle, as expained in the previous chapter.

The use of execution conditions to allow efficient resource allocation is also
the main difference between our work and the classical results of [155]. Indeed,
the exclusion relation defined by Xu does not model conditional execution, but
resource access conflicts, thus being fundamentally different from the exclusion
relation we defined in Section 4.5.2. Our technique also allows the use of execu-
tion platforms with non-negligible communication costs and multiple processor
types, as well as the use of preemptive tasks (unlike in Xu’s paper).

The off-line scheduling on partitioned ARINC 653 platforms has been pre-
viously considered, for instance by Al Sheikh et al. [143] and by Brocal et al.
in Xoncrete [29]. The first approach only considers systems with one task per
partition, whereas our work considers the general case of multiple tasks per
partition. The second approach (Xoncrete) allows multiple tasks per partition,
but does not seem interested in having a functionally deterministic specification
and preserving its semantics during scheduling (as we do). For instance, its
input formalism specifies not periods, but ranges of acceptable periods, and the
first implementation step adjusts these periods to reduce their lowest common
multiple (thus changing the semantics). Other differences are that our approach
can take into account conditional execution and execution modes, and that we
allow scheduling onto multi-processors, whereas Xoncrete does not.

More generally, our work is related to work on the scheduling for precision-
timed architectures (e.g. [57]). Our originality is to consider complex non-
functional constraints. The work on the PharOS technology [103] also targets
dependable time-triggered system implementation, but with two main differ-
ences. First, we follow a classical ARINC 653-like approach to temporal parti-
tioning. Second, we take all scheduling decisions off-line. This constrains the
system but reduces the scheduling effort needed from the OS, and improves
predictability.

5.2 Time-triggered systems

5.2.1 General definition

By time-triggered systems we understand systems satisfying the following 3 prop-
erties:

TT1 A system-wide time reference exists, with good-enough precision and ac-

5.2. TIME-TRIGGERED SYSTEMS 65

curacy. We shall refer to this time reference as the global clock.2 All timers
in the system use the global clock as a time base.

TT2 The execution duration of code driven by interrupts other than the timers
(e.g. interrupt-driven driver code) is negligible. In other words, for timing
analysis purposes, code execution is only triggered by timers synchronized
on the global clock.

TT3 System inputs are only read/sampled at timer triggering points.

This definition places no constraints on the sequential code triggered by timers.
In particular:

• Classical sequential control flow structures such as sequence or conditional
execution are permitted, allowing the representation of modes and mode
changes.

• Timers are allowed to preempt the execution of previously-started code.

This definition of time-triggered systems is fairly general. It covers single-
processor systems that can be represented with time-triggered e-code programs,
as they are defined by Henzinger and Kirsch [86]. It also covers multiprocessor
extensions of this model, as defined by Fischmeister et al. [64] and used in [124].
In particular, our model covers time-triggered communication infrastructures
such as TTA and FlexRay (static and dynamic segments) [97, 142], the periodic
schedule tables of AUTOSAR OS [11], as well as systems following a multi-
processor periodic scheduling model without jitter and drift.3 It also covers
the execution mechanisms of the avionics ARINC 653 standard [8] provided
that interrupt-driven data acquisitions, which are confined to the ARINC 653
kernel, are presented to the application software in a time-triggered fashion
satisfying property TT3. One way of ensuring that TT3 holds is presented in
[107], and to our knowledge, this constraint is satisfied in all industrial settings.

5.2.2 Model restriction

The major advantage of time-triggered systems, as defined above, is that they
have the property of repeatable timing [58]. Repeatable timing means that for
any two input sequences that are identical in the large-grain timing scale de-
termined by the timers of a program, the behaviors of the program, including
timing aspects, are identical. This property is extremely valuable in practice
because it largely simplifies debugging and testing of real-time programs. A
time-triggered platform also insulates the developer from most problems stem-
ming from interrupt asynchrony and low-level timing aspects.

However, the applications we consider have even stronger timing require-
ments, and must satisfy a property known as timing predictability [58]. Timing

2For single-processor systems the global clock can be the CPU clock itself. For distributed
multiprocessor systems, we assume it is provided by a platform such as TTA [97] or by a clock
synchronization technique such as the one of Potop et al. [124].

3But these two notions must be accounted for in the construction of the global clock [124].

66 CHAPTER 5. COMPLEX NON-FUNCTIONAL PROPERTIES

predictability means that formal timing guarantees covering all possible execu-
tions of the system should be computed off-line by means of (static) analysis.
The general time-triggered model defined above remains too complex to allow
the analysis of real-life systems. To facilitate analysis, this model is usually
restricted and used in conjunction with WCET analysis of the sequential code
fragments.

In my work I considered a commonly-used restriction of the general definition
provided above. In this restriction, timers are triggered following a fixed pattern
which is repeated periodically in time. Following the convention of ARINC 653,
we call this period the major time frame (MTF). The timer triggering pattern is
provided under the form of a set of fixed offsets 0 ≤ t1 < t2 < . . . < tm < MTF
defined with respect to the start of each MTF period. Note that the code
triggered at each offset may still involve complex control, such as conditional
execution or preemption.

This restriction corresponds to the classical definition of time-triggered sys-
tems by Kopetz [96, 97]. It covers our target platform, TTA, FlexRay (the static
segment), and AUTOSAR OS (the periodic schedule tables). At the same time,
it does not fully cover ARINC 653. As defined by this standard, partition
scheduling is time-triggered in the sense of Kopetz. However, the scheduling
of tasks inside partitions is not, because periodic processes can be started (in
normal mode) with a release date equal to the current time (not a predefined
date). To fit inside Kopetz’s model, an ARINC 653 system should not allow the
start of periodic processes after system initialization, i.e. in normal mode.

5.2.3 Temporal partitioning

Our target architectures follow the strong temporal partitioning paradigm of
ARINC 653. In this paradigm, both system software and platform resources
are statically divided among a finite set of partitions Part = {part1, . . . , partk}.
Intuitively, a partition comprises both a software application of the system and
the execution and communication resources allocated to it. The aim of this static
partitioning is to limit the functional and temporal influence of one partition
on another. Partitions can communicate and synchronize only through a set of
explictly-specified inter-partition channels.

To eliminate timing interference between partitions running on a processor,
the static partitioning of the processor time is done using a static time divi-
sion multiplexing (TDM) mechanism. In our case, the static TDM mechanism
is built on top of the time-triggered model of the previous section. It is im-
plemented by partitioning, separately for each processor Pi, the MTF defined
above into a finite set of non-overlapping windows Wi = {w1

i , . . . , w
ki
i }. Each

window wji has a fixed start offset twji , a duration dwji , and it is either allocated

to a single partition partwji , or left unused.

Software belonging to partition parti can only be executed during windows
belonging to parti. Unfinished partition code will be preempted at window
end, to be resumed at the next window of the partition. There is an implicit

5.3. A TYPICAL CASE STUDY. 67

assumption that the scheduling of operations inside the MTF will ensure that
non-preemptive operations will not cross window end points. For our scheduling
algorithms, the partitioning of the MTF into windows can be either an input or
an output. More precisely, all, none, or part of the windows can be provided as
input.

5.3 A typical case study.

A typical case study that can be fully handled by LoPhT is a launcher (space-
craft) embedded control system model provided by Airbus DS (formerly AS-
TRIUM). Such spacecraft systems have very strict real-time requirements, as
the unavailability of the avionics system of a space launcher during a few mil-
liseconds in the atmospheric phase may lead to the destruction of the launcher.
In a launcher control system, latency real-time requirements are defined between
the acquisition of data by sensors and the sending of orders to actuators. These
requirements apply to the control algorithms (GNC, for Guidance, Navigation
and Control algorithms), which are usually implemented on a dedicated proces-
sor in a classical multi-tasking approach. In the last decade, the increase in raw
computational power of space processors allowed the distribution of the GNC
computations on the processors of the sensors and actuators, and the suppres-
sion of the processor that was, until now, dedicated to the GNC computations.
In the future, the GNC algorithms could be separated, and for example the navi-
gation algorithm could run on the processor controlling the gyroscope, while the
control algorithm would run on the processor controlling the thruster. For the
companies who manufacture the spacecraft systems (space launchers or space
transportation vehicles), this means a non-negligeable reduction in weight and
power consumption, which ultimately amounts to a reduction in costs.

But distributing GNC code onto sensor and actuator processors leads to sit-
uations where a processor is shared by pieces of software having different Design
Assurance Levels (such as gyroscope control and navigation), and consequently
requires the use of an operating system that enforces Time and Space Partition-
ing (TSP) between them. In such operating systems, scheduling is handled by a
hierarchic two-level scheduler in which the top level is of static Time-triggered
(TDM) type. This is the case, for instance, in ARINC 653-compliant systems
[8]. In some systems, such as future launchers, predictability concerns go even
farther, and the processors of the distributed implementation platform share a
common time base, allowing a globally time-triggered implementation. This is
the type of system we consider: distributed systems that are time triggered at
all scheduling levels. Such systems offer the best predictability and allow the
computation of very tight worst-case response time bounds.

In the context of this case study, the LoPhT tool solves the following real-
time implementation problem: Given a set of end-to-end latencies defined at
spacecraft system level, along with sensing and actuation operations offsets and
safe worst case execution time (WCET) estimations of the computation func-
tions, synthesize the time-triggered schedule of the system, including the activa-

68 CHAPTER 5. COMPLEX NON-FUNCTIONAL PROPERTIES

tion of each partition and each functional node, and the bus frame. Scheduling
must guarantee the respect of all non-functional requirements, and be accompa-
nied by the generation of all implementation files (executable code and system
configuration files).

5.3.1 Functional specification

The first step in handling this case study was to derive a task model in our
formalism. We use here its simplified version, the full example being presented
in [38].

During modeling, we discovered that the initial system was over-specified,
in the sense that real-time constraints were imposed in order to ensure causal
ordering of tasks instances using AADL constructs. Removing these constraints
and replacing them with (less constraining) data dependencies gave us more
freedom for scheduling, allowing for a reduction in the number of partition
changes. The resulting specification is presented in Fig. 5.1.

Thermal
GNC

Fast10Fast2 Fast3 Fast4 Fast5 Fast6 Fast7 Fast8 Fast9

1

1

Fast1

Figure 5.1: The GNCSimple example

Our model, named GNCSimple represents a system with 3 tasks Fast, GNC,
and Thermal. The periods of the 3 tasks are 10ms, 100ms, and 100ms, respec-
tively, meaning that Fast is executed 10 times for each execution of GNC and
Thermal. The hyperperiod expansion described in [38] produces a single-clock
synchronous program represented by the dependent task system of Fig. 5.1. Re-
call from Section 4.5.2 that the solid arcs connecting the tasks Fasti and GNC
represent regular (intra-cycle) data dependencies. Delayed data dependencies
of depth 1 represent the transmission of information from one MTF to the next.
In this simple model, task Thermal has no dependencies.

5.4 Non-functional properties

Our task model considers non-functional properties of 4 types: real-time, allo-
cation, partitioning, and preemptability.

5.4.1 Period, release dates, and deadlines

As explained in Chapter 2, the initial functional specification of a system is
usually provided by the control engineers, which must also provide a platform-
independent real-time specification in terms of periods, release dates, and dead-
lines. This specification is directly derived from the analysis of the control sys-

5.4. NON-FUNCTIONAL PROPERTIES 69

tem, and does not depend on architecture details such as number of processors,
speed, etc. The architecture may impose its own set of real-time characteristics
and requirements. Our model allows the specification of all these characteris-
tics and requirements in a specific form adapted to our functional specification
model and time-triggered implementation paradigm.

Period. Recall from the previous section that after hyper-period expansion
all the tasks of a dependent task system D have same period. We shall call
this period the major time frame of the dependent task system D and denote
it MTF(D). We will require it to be equal to the MTF of its time-triggered
implementation, as defined in Section 5.2.2.

Throughout this chapter, we will assume that MTF(D) is an input to our
scheduling problem. Other scheduling heuristics, such as those of Chapter 4 can
be used in the case where the MTF must be computed.

Release dates and deadlines. For each task τ ∈ T (D), we allow the defini-
tion of a release date r(τ) and a deadline d(τ). Both are positive offsets defined
with respect to the start date of the current MTF (period). To signify that a
task has no release date constraint, we set r(τ) = 0. To signify that it has no
deadline we set d(τ) =∞.

The main intended use of release dates is to represent constraints related to
input acquisition. Recall that in a time-triggered system all inputs are sampled.
We assume in our work that these sampling dates are known (a characteristic
of the execution platform), and that they are an input to our scheduling prob-
lem. This is why they can be represented with fixed time offsets. Under these
assumptions, a task using some input should have a release date equal to (or
greater than) the date at which the corresponding input is sampled.

End-to-end latency requirements are specified using a combination of both
release dates and deadlines. We require that end-to-end latencies are defined
on flows (chains of dependent task instances) starting with an input acquisition
and ending with an output. Since acquisitions have fixed offsets represented
with the release dates, the latency constraints can also be specified using fixed
offsets, namely the deadlines.

Before providing an example, it is important to recall that our real-time
implementation approach is based on off-line scheduling. The release dates and
deadlines defined here are specification objects used by the off-line scheduler
alone. These values have no direct influence on implementations, which are
exclusively based on the scheduling table produced off-line. In the implementa-
tion, release dates are always equal to the start dates computed off-line, which
can be very different from the specification-level release dates.

5.4.2 Modeling of the case study

The specification in Fig. 5.2 adds a real-time characterization to the GNCSimple
example of Fig. 5.1. Here, MTF(GNCSimple) = 100 ms. Release dates and

70 CHAPTER 5. COMPLEX NON-FUNCTIONAL PROPERTIES

Thermal
GNC

40

Fast2 Fast3 Fast4 Fast5 Fast6 Fast7 Fast8 Fast9

1

1

Fast1 Fast10

0 10 20 30 50 60 70 80 90

Figure 5.2: Real-time characterization of the GNCSimple example (MTF = 100
ms)

deadlines are respectively represented with descending and mounting dotted
arcs. The release dates specify that task Fast uses an input that is sampled
with a period of 10ms, starting at date 0, which imposes a release date of
(n− 1) ∗ 10 for Fastn. Note that the release dates on Fastn constrain the start
of GNC, because GNC can only start after Fast10. However, we do not consider
these constraints to be a part of the specification itself. Thus, we set the release
dates of tasks GNC and Thermal to 0 and do not represent them graphically.

Only task Fast4 has a deadline that is different from the default ∞. In
conjunction with the 0 release date on Fast1, this deadline represents an end-
to-end constraint of 140ms on the flow defined by the chain of dependent task
instances

Fast1
n → Fast2

n → . . .→ Fast10
n → GNCn → Fast4

n+1

for n ≥ 0. Formally, it requires that no more that 140ms separate the start of
the nth instance of task Fast1 from the end of the (n + 1)th instance of task
Fast4. Since the release date of task instance Fast1

n in the MTF of index n is
0, this flow constraint translates into the requirement that Fast4

n+1 terminates
140ms after the beginning of the MTF of index n. This is the same as 40ms
after the beginning of MTF of index n+ 1 (because the length of one MTF is
100ms). The deadline of Fast4 is therefore set to 40ms.

5.4.3 Architecture-dependent constraints

The period, release dates and deadlines of Fig. 5.2 represent architecture-independent
real-time requirements that must be provided by the control engineer. But ar-
chitecture details may impose constraints of their own. For instance, assume
that the samples used by task Fast are stored in a 3-place circular buffer. At
each given time, Fast uses one place for input, while the hardware uses another
to store the next sample. Then, to avoid buffer overrun, the computation of
Fastn must be completed before date (n+ 1) ∗ 10, as required by the new dead-
lines of Fig. 5.3. Note that these deadlines can be both larger than the period
of task Fast, and larger than the MTF (for Fast10). By comparison, the specifi-
cation of Fig. 5.2 corresponds to the assumption that input buffers are infinite,
so that the architecture imposes no deadline constraint. Also note in Fig. 5.3
that the deadline constraint on Fast3 is redundant, given the deadline of Fast4

5.4. NON-FUNCTIONAL PROPERTIES 71

and the data dependency between Fast3 and Fast4. Such situations can easily
arise when constraints from multiple sources are put together, and do not affect
the correctness of the scheduling approach.

Thermal
GNC

110

Fast2 Fast3 Fast4 Fast5 Fast6 Fast7 Fast8 Fast9

1

1

Fast1 Fast10

0 10 30 50 60 70 80 904020 100

Figure 5.3: Adding 3-place circular buffer constraints to our example

5.4.4 Worst-case durations, allocations, preemptability

We also need to describe the processing capabilities of the various processors
and the bus:

For each data type t associated with a dependency (simple or delayed), we
define the worst-case memory footprint of a value of type t. This information
allows the computation of the worst-case communication time (WCCT) for a
data of that type, using the formula of Section 4.5.1.

• For each task τ ∈ T (D) and each processor P ∈ Procs(Arch) we pro-
vide the capacity, or duration of τ on P . We assume this value is ob-
tained through a worst-case execution time (WCET) analysis, and denote
it WCET(τ, P).4 This value is set to ∞ when execution of τ on P is not
possible.

• Like in Section 4.5.3, for each data type type(a) used in the specification,
we provide WCCT(type(a)) as an upper bound on the transmission time
of a value of type type(a) over the bus.5 We assume this value is always
finite.

Note that the WCET information may implicitly define absolute allocation con-
straints, as WCET(t, P) = ∞ prevents t from being allocated on P . Such
allocation constraints are meant to represent hardware platform constraints,
such as the positioning of sensors and actuators, or designer-imposed placement
constraints. Relative allocation constraints can also be defined, under the form
of task groups which are subsets of T (D). The tasks of a task group must be
allocated on the same processor.

Our task model allows the representation of both preemptive and non-
preemptive tasks. The preemptability information is represented for each task
τ by the flag is preemptive(τ).

4Note the difference with respect to the notations of Section 4.5.3, justified by the fact
that multiprocessor architectures are here heterogenous, as opposed to homogenous for the
MPPAs considered in the previous chapter.

5We make the simplifying assumption that the architecture uses a single broadcast bus.

72 CHAPTER 5. COMPLEX NON-FUNCTIONAL PROPERTIES

5.4.5 Partitioning

Recall from Section 5.2.3 that there are two aspects to partitioning: the parti-
tioning of the application and that of the resources (in our case, CPU time). On
the application part, we assume that every task τ belongs to a partition partτ
of a fixed partition set Part = {part1, . . . , partk}.

Also recall from Section 5.2.3 that CPU time partitioning, i.e the time win-
dows on processors and their allocation to partitions can be either provided as
part of the specification or computed by our algorithms. Thus, our specification
may include window definitions which cover none, part, or all of CPU time of the
processors. LoPhT does not currently allow the specification of a partitioning
of the shared bus (this is ongoing work described in [73]).

5.5 Scheduling and code generation

The definition of our task model is now completed. It allows the specification of
all the functional and non-functional aspects needed for the corect and efficient
implementation of our target class of systems. It also allows the application
of algorithms allowing the fully automatic synthesis of implementations. By
implementations we mean here the full code of tasks, plus the configuration of
the ARINC 653 OSs running on processors, and the schedule of the bus.

The mapping technique is developed on top of the principles and algorithms
described in the previous chapter. One important point is that proving the
correctness of our algorithms requires significant investment in proving that the
platform model used by the scheduling algorithms is a conservative abstraction
of the actual execution platform including hardware, ARINC 653 operating
system, and drivers. For instance, we assume in our work that the impact of
the OS/scheduler and driver (I/O) code on the WCETs can be bounded.

single−clock
Acyclic

dependent
task system

Scheduling
table

(conditional,
pipelined)

Scheduling
table

(conditional,
pipelined)

Offline
multiprocessor

scheduling
real−time

Optimization
of partition

switches

Synthesis of
inter−partition
communication

code

APEX−compliant
synchronous

program synchronous
program

Removal of
delayed

dependencies

Code generation
APEX task code

ARINC 653 config

Single−clock

Figure 5.4: LoPhT transformation flow

I will not provide here details of individual scheduling and code generation
algorithms (more information can be found in [38, 34]). Instead, I will focus
on presenting the global flow of transformations, which is more complex than
than of the previous chapter. As Fig. 5.4 shows, it starts from a single-clock
synchronous program. Non-functional requirements specify the partition of each
data-flow block. Based on them, the initial program is transformed to ensure
that every communication that crosses the boundary of a partition is performed

5.6. CONCLUSION 73

using the operations prescribed by the APEX API of ARINC 653 [8]. This
transformation can be quite complex in the presence of conditional computations
and communications.

The second step transforms the APEX-compliant synchronous program into
a into an acyclic dependent task system. Doing this will allow in the next section
the use of simpler scheduling algorithms that work on acyclic task graphs. The
main element of complexity of this transformation is the replacement of delayed
dependencies (which may cause cycles) with real-time constraints. Clearly, do-
ing this may introduce real-time requirements (deadlines) that were not part of
the original specification, which in turn implies that the method is non-optimal
(it is a heuristic).

The next step performs off-line real-time multiprocessor scheduling. The
algorithm we designed for this purpose includes the platform-independent op-
timizations introduced in the previous chapter: software pipelining and safe
double reservation. However, scheduling is overall driven by a deadline-driven
routine specifically designed to take into account our non-functional require-
ments: real-time, partitioning, preemptability and allocation. The result is
a scheduling heuristic of low-complexity (which ensures scalability) but which
gives good practical results. Scalability is an important factor in the design
of our heuristics, because the complexity of applications in both hardware and
software is rapidly increasing. For instance, taking into account TTEthernet-
based architectures (work in progress [73])requires taking into account complex
network descriptions, similar to those of the networks-on-chips of the previous
chapter.

The scheduling algorithm follows a classical ASAP (as-soon-as-possible) deadline-
driven scheduling policy, which is good for ensuring schedulability. However,
resulting schedules may have a lot of unneeded preemptions and, most im-
portantly, partition switches which are notoriously expensive. To reduce the
number of partition switches, we perform a heuristic post-scheduling optimiza-
tion of our scheduling tables. The optimized scheduling tables are then used to
generate implementation code and system configuration files.

5.6 Conclusion

The conclusion is brief: I believe that my work of the past years (presented in
this thesis) shows that real-time systems compilation is an attainable goal for
industrially-significant classes of embedded systems. Of course, my work, and
that of my collaborators, is just a first step in this direction, and a lot of work
remains to be done. There are scientific and technical challenges, many of them
already mentioned in this thesis, or in the papers I published. Among these, I
will only mention here one: moving to larger, more dynamic classes of specifi-
cations and implementations, but without losing too much of the predictability
and/or efficiency. However, the most important challenge of all is not technical,
nor scientific. It is that of ensuring community and industrial acceptance. I can
only hope is that my work will pass, in time, this test.

74 CHAPTER 5. COMPLEX NON-FUNCTIONAL PROPERTIES

Bibliography

[1] The Epiphany many-core architecture. www.adapteva.com, 2012.

[2] V. Allan, R. Jones, R. Lee, and S. Allan. Software pipelining. ACM
Comput. Surv., 27(3), September 1995.

[3] M. Alras, P. Caspi, A. Girault, and P. Raymond. Model-based design of
embedded control systems by means of a synchronous intermediate model.
In Proceedings ICESS, pages 3–10, Zhejiang, China, May 2009.

[4] P. Amagbégnon, L. Besnard, and P. Le Guernic. Implementation of the
data-flow synchronous language signal. In Proceedings PLDI’95, La Jolla,
CA, USA, June 1995.

[5] S. Amarasinghe, M. I. Gordon, M. Karczmarek, J. Lin, D. Maze, R.M.
Rabbah, and W. Thies. Language and compiler design for streaming
applications. Int. J. Parallel Program., 33(2), June 2005.

[6] C. André, F. Mallet, and M.-A. Peraldi-Frati. A multiform time approach
to real-time system modeling; application to an automotive system. In
Proceedings SIES, Lisbon, Portugal, July 2007.

[7] Charles André. Computing synccharts reactions. Electron. Notes Theor.
Comput. Sci., 88, October 2004.

[8] ARINC 653: Avionics application software standard interface. www.

arinc.org, 2005.

[9] P. Aubry, P.-E. Beaucamps, F. Blanc, B. Bodin, S. Carpov, L. Cuden-
nec, V. David, P. Dore, P. Dubrulle, B. Dupont de Dinechin, F. Galea,
T. Goubier, M. Harrand, S. Jones, J.-D. Lesage, S. Louise, N. Morey
Chaisemartin, Thanh Hai Nguyen, X. Raynaud, and R. Sirdey. Extended
cyclostatic dataflow program compilation and execution for an integrated
manycore processor. In Proceedings ALCHEMY 2013, Barcelona, Spain,
June 2013.

[10] C. Auger. Compilation certifiée de SCADE/LUSTRE. PhD thesis, Uni-
versit Paris Sud, 2013. In French.

75

www.adapteva.com
www.arinc.org
www.arinc.org

76 BIBLIOGRAPHY

[11] Autosar (automotive open system architecture), release 4. http://www.

autosar.org/, 2009.

[12] Y. Aydi, M. Baklouti, M. Abid, and J.-L. Dekeyser. A multi-level design
methodology of multistage interconnection network for mpsocs. IJCAT,
42(2/3):191–203, 2011.

[13] Jun Ho Bahn, Jungsook Yang, and N. Bagherzadeh. Parallel FFT algo-
rithms on network-on-chips. In Proceedings ITNG 2008, april 2008.

[14] Sanjoy K. Baruah. Dynamic- and static-priority scheduling of recurring
real-time tasks. Real-Time Systems, 24(1):93–128, 2003.

[15] H. Bekker and E.J. Dijkstra. Delay-insensitive synchronization on a mes-
sage passing architecture with an open collector bus. In Parallel and Dis-
tributed Processing, 1996. PDP ’96. Proceedings of the Fourth Euromicro
Workshop on, pages 75–79, Jan 1996.

[16] A. Benôıt, V. Rehn-Sonigo, and Y. Robert. Multi-criteria scheduling of
pipeline workflows. In Proceedings of the International Conference on
Cluster Computing, Austin, TX, USA, Sep 2007.

[17] A. Benveniste, B. Caillaud, and P. Le Guernic. Compositionality in
dataflow synchronous languages: Specification and distributed code gen-
eration. Information and Computation, 163:125 – 171, 2000.

[18] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic,
and R. De Simone. The synchronous languages twelve years later. In
Proceedings of the IEEE, pages 64–83, 2003.

[19] A. Benveniste and P. Le Guernic. Hybrid dynamical systems and the signal
programming language. IEEE Trans. Automat. Control, 35:535–546, May
1990.

[20] J.L. Bergerand, P. Caspi, D. Pilaud, N. Halbwachs, and E. Pilaud. Outline
of a real time data flow language. In Proceedings RTSS, San Diego, CA,
USA, December 1985.

[21] G. Berry, S. Moisan, and J.-P. Rigault. Esterel: Towards a synchronous
and semantically sound high-level language for real-time applications. In
Proceedings RTSS, Arlington, VA, USA, 1983. IEEE Catalog 83CH1941-4.

[22] G. Bilsen, M. Engels, R. Lauwereins, and J.A. Peperstraete. Cyclo-static
data flow. IEEE Transactions on Signal Processing, 44:397–408, Feb. 1996.

[23] T. Bjerregaard and J. Sparso. Implementation of guaranteed services in
the mango clockless network-on-chip. Computers and Digital Techniques,
153(4), 2006.

http://www.autosar.org/
http://www.autosar.org/

BIBLIOGRAPHY 77

[24] F. Blachot, Benoit Dupont de Dinechin, and Guillaume Huard. Scan:
A heuristic for near-optimal software pipelining. In WolfgangE. Nagel,
WolfgangV. Walter, and Wolfgang Lehner, editors, Euro-Par 2006 Parallel
Processing, volume 4128 of Lecture Notes in Computer Science, pages 289–
298. Springer Berlin Heidelberg, 2006.

[25] J. Blazewicz. Scheduling dependent tasks with different arrival times to
meet deadlines. In Proceedings of the International Workshop Organized
by the Commision of the European Communities on Modelling and Per-
formance Evaluation of Computer Systems, pages 57–65, Amsterdam, The
Netherlands, The Netherlands, 1977. North-Holland Publishing Co.

[26] S. Borkar. Thousand core chips – a technology perspective. In Proceedings
DAC, San Diego, CA, USA, 2007.

[27] O. Bouissou and A. Chapoutot. An operational semantics for simulink’s
simulation engine. In Proceedings LCTES, pages 129–138, 2012.

[28] T. Bourke and M. Pouzet. Zelus: A synchronous language with ODEs.
In 16th International Conference on Hybrid Systems: Computation and
Control (HSCC’13), pages 113–118, Philadelphia, USA, March 2013.

[29] V. Brocal, M. Masmano, I. Ripoll, A. Crespo, and P. Balbastre. Xoncrete:
a scheduling tool for partitioned real-time systems. In Proceedings ERTS,
Toulouse, France, 2010.

[30] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A frame-
work for simulating and prototyping heterogenous systems. International
Journal in Computer Simulation, 4(2), 1994.

[31] P.-Y. Calland, A. Darte, and Y. Robert. Circuit retiming applied to
decomposed software pipelining. Parallel and Distributed Systems, IEEE
Transactions on, 9(1):24–35, 1998.

[32] S.L. Campbell, J.-P. Chancelier, and R. Nikoukhah. Modeling and Simu-
lation in Scilab/Scicos with ScicosLab 4.4. Springer, 2010. Second edition.

[33] E. Carara, N. Calazans, and F. Moraes. Router architecture for high-
performance nocs. In Proceedings SBCCI, Rio de Janeio, Brazil, 2007.

[34] T. Carle. Efficient compilation of embedded control specifications with
complex functional and non-functional properties. PhD thesis, EDITE,
Paris, France, 2014.

[35] Thomas Carle, Manel Djemal, Daniela Genius, François Pêcheux, Du-
mitru Potop-Butucaru, Robert de Simone, Franck Wajsbürt, and Zhen
Zhang. Reconciling performance and predictability on a many-core
through off-line mapping. In Proceedings of the 9th International Sym-
posium on Reconfigurable and Communication-Centric Systems-on-Chip,
ReCoSoC 2014, Montpellier, France, May 26-28, 2014, 2014.

78 BIBLIOGRAPHY

[36] Thomas Carle, Manel Djemal, Dumitru Potop-Butucaru, Robert de Si-
mone, and Zhen Zhang. Static mapping of real-time applications onto
massively parallel processor arrays. In Proceedings of the 14th Interna-
tional Conference on Application of Concurrency to System Design, ACSD
2014, Tunis La Marsa, Tunisia, June 23-27, 2014, 2014.

[37] Thomas Carle and Dumitru Potop-Butucaru. Predicate-aware, makespan-
preserving software pipelining of scheduling tables. TACO, 11(1):12, 2014.

[38] Thomas Carle, Dumitru Potop-Butucaru, Yves Sorel, and David Lesens.
From dataflow specification to multiprocessor partitioned time-triggered
real-time implementation. LITES, 2015. to appear.

[39] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli. Theory of
latency-insensitive design. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 20(9):18, Sep 2001.

[40] P. Caspi, A. Curic, A. Magnan, C. Sofronis, S. Tripakis, and P. Niebert.
From Simulink to SCADE/Lustre to TTA: a layered approach for dis-
tributed embedded applications. In Proceedings LCTES, San Diego, CA,
USA, June 2003.

[41] P. Caspi, A. Girault, and D. Pilaud. Automatic distribution of reactive
systems for asynchronous networks of processors. IEEE Transactions on
Software Engineering, 25(3):416–427, May/June 1999.

[42] Damien Chabrol, Vincent David, Christophe Aussaguès, Stéphane Louise,
and Frédéric Daumas. Deterministic distributed safety-critical real-time
systems within the oasis approach. In Proceedings IASTED PDCS, pages
260–268, 2005.

[43] Damien Chabrol, Didier Roux, Vincent David, Mathieu Jan, Moha Ait
Hmid, Patrice Oudin, and Gilles Zeppa. Time- and angle-triggered real-
time kernel. In Proceedings DATE, pages 1060–1062, 2013.

[44] D. Chapiro. Globally-Asynchronous Locally- Synchronous Systems. PhD
thesis, Stanford University, 1984. Report No. STAN-CS-84-1026.

[45] K. Chatha and R. Vemuri. Hardware-software partitioning and pipelined
scheduling of transformative applications. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 10(3):193–208, 2002.

[46] Chunqing Chen, Jun Sun, Yang Liu, Jin Song Dong, and Manchun Zheng.
Formal modeling and validation of stateflow diagrams. STTT, 14(6):653–
671, 2012.

[47] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling of real-time
tasks under precedence constraints. Real-Time Systems, 2(3):181–194,
1990.

BIBLIOGRAPHY 79

[48] Yi-Sheng Chiu, Chi-Sheng Shih, and Shih-Hao Hung. Pipeline schedule
synthesis for real-time streaming tasks with inter/intra-instance prece-
dence constraints. In DATE, Grenoble, France, 2011.

[49] A. Cohen, V. Perrelle, D. Potop-Butucaru, E. Soubiran, and Zhen Zhang.
Mixed-criticality in railway systems: A case study on signaling applica-
tion. In Proceedings WMCIS 2015, Paris, France, 2015.

[50] S. S. Craciunas and R. Serna Oliver. Smt-based task- and network-level
static schedule generation for time-triggered networked systems. In Pro-
ceedings RTNS, Versailles, France, October 2014.

[51] A. Curic. Implementing Lustre programs on distributed platforms with
real-time constraints. PhD thesis, Universite Joseph Fourier, Grenoble,
2005.

[52] R.I. Davis and A. Burns. A survey of hard real-time scheduling for mul-
tiprocessor systems. ACM Comput. Surv., 43(4), October 2011.

[53] Robert de Simone and Charles André. Time modeling in MARTE. In
Proceedings FDL 2007, September 18-20, 2007, Barcelona, Spain, Pro-
ceedings, pages 268–273, 2007.

[54] V. Diekert and G. Rozenberg, editors. The book of traces. World Scientific,
1995.

[55] Manel Djemal, Robert de Simone, François Pêcheux, Franck Wajsbürt,
Dumitru Potop-Butucaru, and Zhen Zhang. Programmable routers for
efficient mapping of applications onto noc-based mpsocs. In Proceedings
of the 2012 Conference on Design and Architectures for Signal and Im-
age Processing, DASIP 2012, Karlsruhe, Germany, October 23-25, 2012,
2012.

[56] J. Doyle, B. Francis, and A. Tannenbaum. Feedback Control Theory.
Macmillan Publishing Co., 1990.

[57] S. A. Edwards and E. A. Lee. The case for the precision timed (pret) ma-
chine. In Proceedings of the 44th annual conference on Design automation.
SESSION: Wild and crazy ideas (WACI), June 2007.

[58] S.A. Edwards, S. Kim, E.A. Lee, I. Liu, H.D. Patel, and M. Schoeberl.
A disruptive computer design idea: Architectures with repeatable timing.
In Proceedings ICCD. IEEE, October 2009. Lake Tahoe, CA.

[59] P. Eles, A. Doboli, P. Pop, and Z. Peng. Scheduling with bus access
optimization for distributed embedded systems. IEEE Transactions on
VLSI Systems, 8(5):472–491, Oct 2000.

[60] Embedded.com. 2009 embedded market study. Online,
Jan 2009. http://www.embedded.com/electronics-blogs/

embedded-market-surveys/4405221/2009-Embedded-Market-Survey.

http://www.embedded.com/electronics-blogs/embedded-market-surveys/4405221/2009-Embedded-Market-Survey
http://www.embedded.com/electronics-blogs/embedded-market-surveys/4405221/2009-Embedded-Market-Survey

80 BIBLIOGRAPHY

[61] E. Waingold et al. Baring it all to software: The raw machine. IEEE
Computer, 30(9):86 –93, sep 1997.

[62] J. Howard et al. A 48-core ia-32 processor in 45nm cmos using on-die
message-passing and dvfs for performance and power scaling. IEEE Jour-
nal of Solid-State Circuits, 46(1), Jan 2011.

[63] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossi-
bility of distributed consensus with one faulty process. J. ACM, 32(2),
April 1985.

[64] Sebastian Fischmeister, Oleg Sokolsky, and Insup Lee. Network-code ma-
chine: Programmable real-time communication schedules. In Proceedings
RTAS, pages 311–324, 2006.

[65] G. Fohler. Changing operational modes in the context of pre run-time
scheduling, 1993.

[66] G. Fohler and K. Ramamritham. Static scheduling of pipelined periodic
tasks in distributed real-time systems. In In Procs. of EUROMICRO-
RTS97, pages 128–135, 1995.

[67] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[68] F. Gasperoni and Uwe Schwiegelshohn. Generating close to optimum loop
schedules on parallel processors. Parallel Processing Letters, 4(4):391–404,
December 1994.

[69] M. Gerdes, F. Kluge, T. Ungerer, C. Rochange, and P. Sainrat. Time
analysable synchronisation techniques for parallelised hard real-time ap-
plications. In Proceedings DATE’12, Dresden, Germany, 2012.

[70] J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling of periodic
task systems on multiprocessors. Real-Time Systems, 25(2-3), Sep 2003.

[71] K. Goossens, J. Dielissen, and A. Radulescu. Æthereal network on chip:
Concepts, architectures, and implementations. IEEE Design & Test of
Computers, 22(5), 2005.

[72] R. Gorcitz, E. Kofman, T. Carle, D. Potop-Butucaru, and R. de Simone.
On the scalability of constraint solving for static/off-line real-time schedul-
ing. In Proceedings FORMATS 2015, Madrid, Spain, 2015.

[73] R.A. Gorcitz, D. Monchaux, T. Carle, D. Potop-Butucaru, Y. Sorel, and
D. Lesens. Automatic implementation of ttethernet-based time-triggered
avionics applications. In Proceedings DASIA 2015, Barcelona, Spain, 2015.

[74] T. Goubier, R. Sirdey, S. Louise, and V. David. σc: A programming
model and language for embedded manycores. In Proceedings ICA3PP’11
(LNCS 7016), Melbourne, Australia, Oct 2011.

BIBLIOGRAPHY 81

[75] R. Govindarajan, E. Altman, and G. Gao. Minimizing register require-
ments under resource-constrained rate-optimal software pipelining. In
Proceedings of the 27th annual international symposium on Microarchi-
tecture, MICRO 27, 1994.

[76] T. Grandpierre and Y. Sorel. From algorithm and architecture speci-
fication to automatic generation of distributed real-time executives: a
seamless flow of graphs transformations. In Proceedings of First ACM
and IEEE International Conference on Formal Methods and Models for
Codesign, MEMOCODE’03, Mont Saint-Michel, France, June 2003.

[77] Paul Le Guernic, Jean pierre Talpin, and Jean christophe Le Lann. Poly-
chrony for system design. Journal for Circuits, Systems and Computers,
12:261–304, 2002.

[78] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer,
1993.

[79] N. Halbwachs and L. Mandel. Simulation and verification of asynchronous
systems by means of a synchronous model. In Proceedings ACSD, pages
3–14, 2006.

[80] D. Hardy and I. Puaut. Wcet analysis of multi-level non-inclusive set-
associative instruction caches. In RTSS, 2008.

[81] D. Harel. Statecharts: A visual formalism for complex systems. Sci.
Comput. Program., 8(3):231–274, June 1987.

[82] D. Harel and A. Pnueli. On the development of reactive systems. In
Krzysztof R. Apt, editor, Logics and Models of Concurrent Systems, pages
477–498, New York, NY, USA, 1985. Springer-Verlag New York, Inc.

[83] M. Harrand and Y. Durand. Network on chip with quality of service.
United States patent application publication US 2011/026400A1, Feb.
2011.

[84] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantita-
tive Approach. Morgan Kaufmann, 4th edition, 2007.

[85] T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: A time-triggered
language for embedded programming. Proceedings of the IEEE, 91:84–99,
2003.

[86] T.A. Henzinger and C. Kirsch. The embedded machine: Predictable,
portable real-time code. ACM Transactions on Programming Languages
and Systems, 29(6), Oct 2007.

[87] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Mor-
gan Kaufmann, 2008.

82 BIBLIOGRAPHY

[88] C. Hilton and B. Nelson. PNoC: a flexible circuit-switched noc for fpga-
based systems. IEE Proceedings on Computers and Digital Techniques,
153(3), 2006.

[89] R.A. Huff. Lifetime-sensitive modulo scheduling. In In Proc. of the ACM
SIGPLAN ’93 Conf. on Programming Language Design and Implementa-
tion, pages 258–267, 1993.

[90] IEEE. IEEE Standard 1364-2005 for Verilog Hardware Description Lan-
guage, 2005.

[91] G. Kahn. The semantics of a simple language for parallel programming. In
J. L. Rosenfeld, editor, Information processing, pages 471–475, Stockholm,
Sweden, Aug 1974. North Holland, Amsterdam.

[92] Mohammad Reza Kakoee. Reliable and Variation-tolerant Interconnection
Network for Low Power MPSoCs. PhD thesis, Universitá di Bologna,
2012. Online at http://amsdottorato.unibo.it/4407/1/phdthesis.

pdf.

[93] H. Kashif, S. Gholamian, R. Pellizzoni, H.D. Patel, and S. Fischmeister.
Ortap: An offset-based response time analysis for a pipelined communi-
cation resource model. In Proceedings RTAS, 2013.

[94] O. Kermia and Y. Sorel. A rapid heuristic for scheduling non-preemptive
dependent periodic tasks onto multiprocessor. In Proceedings of ISCA 20th
International Conference on Parallel and Distributed Computing Systems,
PDCS’07, Las Vegas, Nevada, USA, September 2007.

[95] Wonsub Kim, Donghoon Yoo, Haewoo Park, and Minwook Ahn. Scc
based modulo scheduling for coarse-grained reconfigurable processors. In
Field-Programmable Technology (FPT), 2012 International Conference
on, Seoul, Korea, 2012.

[96] H. Kopetz. Event-triggered versus time-triggered real-time systems. In
LNCS 563, volume 563 of Lecture Notes in Computer Science, pages 87–
101, 1991.

[97] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of
the IEEE, 91(1):112–126, 2003.

[98] M. Lam. Software pipelining : An effective scheduling technique for vliw
machines. In Proceedings of the SIGPLAN 88 Conference on Programming
Language Design and Implementation, pages 318–328, 1988.

[99] P. Le Guernic and A. Benveniste. Real-time, synchronous, data-flow pro-
gramming: the language signal and its mathematical semantics. Research
Report RR-620, INRIA, 1987.

http://amsdottorato.unibo.it/4407/1/phdthesis.pdf
http://amsdottorato.unibo.it/4407/1/phdthesis.pdf

BIBLIOGRAPHY 83

[100] C. Leiserson and J. Saxe. Retiming synchronous circuitry. Algorithmica,
6:5–35, 1991.

[101] LIP6. SoClib: an open platform for virtual prototyping of multi-processors
system on chip, 2011. Online at: http://www.soclib.fr.

[102] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming
in a hard real-time environment. Journal of ACM, 14, No. 2:46–61, january
1973.

[103] S. Louise, M. Lemerre, C. Aussagues, and V. David. The OASIS kernel:
A framework for high dependability real-time systems. In Proceedings of
the 13th international symposium on High-Assurance Systems Engineering
(HASE), Boca Raton, FL, USA, Nov 2011.

[104] Zhonghai Lu and A. Jantsch. Tdm virtual-circuit configuration for
network-on-chip. IEEE Trans. VLSI, 2007.

[105] Nancy Lynch and Eugene Stark. A proof of the kahn principle for in-
put/output automata. Information and Computation, 82(1):81–92, 1989.

[106] M. Marouf, L. George, and Y. Sorel. Schedulability analysis for a com-
bination of non-preemptive strict periodic tasks and preemptive sporadic
tasks. In Proceedings ETFA’12, Kraków, Poland, September 2012.

[107] J.F. Mason, K. R. Luecke, and J.A. Luke. Device drivers in time and
space partitioned operating systems. In 25th Digital Avionics Systems
Conference, IEEE/AIAA, Portland, OR, USA, Oct. 2006.

[108] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Haugou,
F. Clermidy, and D. Dutoit. Platform 2012, a many-core computing ac-
celerator for embedded SoCs: performance evaluation of visual analytics
applications. In Proceedings DAC’12, San Francisco, CA, USA, June 2012.

[109] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. Guaranteed band-
width using looped containers in temporally disjoint networks within the
Nostrum network-on-chip. In Proceedings DATE, 2004.

[110] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[111] L. Morel. Exploitation des structures régulières et des spécifications locales
pour le developpement correct de systèmes réactifs de grande taille. PhD
thesis, Institut National Polytechnique de Grenoble, 2005.

[112] T. Moscibroda and O. Mutlu. A case for bufferless routing in on-chip
networks. In Proceedings ISCA-36, 2009.

[113] The MPPA256 many-core architecture. www.kalray.eu, 2012.

[114] L.M. Ni and P.K. McKinley. A survey of wormhole routing techniques in
direct networks. Computer, 26(2), 1993.

www.kalray.eu

84 BIBLIOGRAPHY

[115] B. Nikolic, H. Ali, S.M. Petters, and L.M. Pinho. Are virtual channels the
bottleneck of priority-aware wormhole-switched noc-based many-cores? In
Proceedings RTNS, 2013, October 2013.

[116] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens. Multi-task
implementation of multi-periodic synchronous programs. Discrete Event
Dynamic Systems, 21(3):307–338, 2011.

[117] I. Miro Panades, A. Greiner, and A. Sheibanyrad. A low cost network-
on-chip with guaranteed service well suited to the GALS approach. In
Proceedings NanoNet’06, Lausanne, Switzerland, Sep 2006.

[118] V. Papailiopoulou, D. Potop-Butucaru, Y. Sorel, R. De Simone,
L. Besnard, and J.-P. Talpin. From design-time concurrency to effective
implemen- tation parallelism: The multi-clock reactive case. In Proceed-
ings ESLsyn 2011, San Diego, CA, USA, 2011.

[119] P. Pop, P. Eles, and Z. Peng. Scheduling with optimized communication
for time-triggered embedded systems. In Proceedings CODES’99, 1999.

[120] D. Potop-Butucaru, R. de Simone, and Y. Sorel. Deterministic execu-
tion of synchronous programs in an asynchronous environment. a com-
positional necessary and sufficient condition. Research Report RR-6656,
INRIA, September 2008. https://hal.inria.fr/inria-00322563.

[121] D. Potop-Butucaru, R. De Simone, and Y. Sorel. From synchronous spec-
ifications to statically-scheduled hard real-time implementations. In S.
Shukla, J.-P. Talpin (eds.), Synthesis of Embedded Software. Springer,
2010. ISBN: 978-1-4419-6399-4.

[122] D. Potop-Butucaru and Y. Sorel. Synchronous approach and scheduling.
In Wiley-ISTE, editor, M. Chetto (ed.) Real-Time Systems Scheduling,
vol. 2 Focuses., 2014.

[123] Dumitru Potop-Butucaru. The Kahn principle for networks of syn-
chronous endochronous programs. In Proceedings FMGALS 2003, Pisa,
Italy, Sep. 2003.

[124] Dumitru Potop-Butucaru, Akramul Azim, and Sebastian Fischmeister.
Semantics-preserving implementation of synchronous specifications over
dynamic TDMA distributed architectures. In Proceedings of the 10th In-
ternational conference on Embedded software, EMSOFT 2010, Scottsdale,
Arizona, USA, October 24-29, 2010, 2010.

[125] Dumitru Potop-Butucaru and Benôıt Caillaud. Correct-by-construction
asynchronous implementation of modular synchronous specifications. In
Proceedings of the Fifth International Conference on Application of Con-
currency to System Design (ACSD 2005), 6-9 June 2005, St. Malo,
France, 2005.

BIBLIOGRAPHY 85

[126] Dumitru Potop-Butucaru and Benôıt Caillaud. Correct-by-construction
asynchronous implementation of modular synchronous specifications. Fun-
dam. Inform., 78(1):131–159, 2007.

[127] Dumitru Potop-Butucaru, Benôıt Caillaud, and Albert Benveniste. Con-
currency in synchronous systems. In Proccedings of the 4th International
Conference on Application of Concurrency to System Design (ACSD
2004), 16-18 June 2004, Hamilton, Canada, 2004.

[128] Dumitru Potop-Butucaru, Benôıt Caillaud, and Albert Benveniste. Con-
currency in synchronous systems. Formal Methods in System Design,
28(2):111–130, 2006.

[129] Dumitru Potop-Butucaru, Robert de Simone, and Yves Sorel. Necessary
and sufficient conditions for deterministic desynchronization. In Proceed-
ings of the 7th ACM & IEEE International conference on Embedded soft-
ware, EMSOFT 2007, September 30 - October 3, 2007, Salzburg, Austria,
2007.

[130] Dumitru Potop-Butucaru, Robert de Simone, Yves Sorel, and Jean-
Pierre Talpin. Clock-driven distributed real-time implementation of en-
dochronous synchronous programs. In Proceedings of the 9th ACM &
IEEE International conference on Embedded software, EMSOFT 2009,
Grenoble, France, October 12-16, 2009, 2009.

[131] Dumitru Potop-Butucaru, Robert de Simone, Yves Sorel, and Jean-Pierre
Talpin. From concurrent multi-clock programs to deterministic asyn-
chronous implementations. In Proceedings of the Ninth International Con-
ference on Application of Concurrency to System Design, ACSD 2009,
Augsburg, Germany, 1-3 July 2009, 2009.

[132] Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry. Com-
piling Esterel. Springer, 2007.

[133] Dumitru Potop-Butucaru and Isabelle Puaut. Integrated worst-case ex-
ecution time estimation of multicore applications. In Proceedings of the
13th International Workshop on Worst-Case Execution Time Analysis,
WCET 2013, July 9, 2013, Paris, France, 2013.

[134] Dumitru Potop-Butucaru, Yves Sorel, Robert de Simone, and Jean-Pierre
Talpin. From concurrent multi-clock programs to deterministic asyn-
chronous implementations. Fundam. Inform., 108(1-2):91–118, 2011.

[135] C. Pradalier, J. Hermosillo, C. Koike, C. Braillon, P. Bessière, and
C. Laugier. The CyCab: a car-like robot navigating autonomously and
safely among pedestrians. Robotics and Autonomous Systems, 50(1), 2005.

[136] W. Puffitsch, E. Noulard, and C. Pagetti. Mapping a multi-rate syn-
chronous language to a many-core processor. In Proceedings RTAS, 2013.

86 BIBLIOGRAPHY

[137] R. Wilhelm et al. The worst-case execution-time problem overview of
methods and survey of tools. ACM TECS, 7(3), May 2008.

[138] A. Racu and L.S. Indrusiak. Using genetic algorithms to map hard real-
time on noc-based systems. In Proceedings ReCoSoC, July 2012.

[139] K. Ramamritham, G. Fohler, and J. M. Adan. Issues in the static allo-
cation and scheduling of complex periodic tasks. In In Proc. 10th IEEE
Workshop on Real-Time Operating Systems and Software, 1993.

[140] B.R. Rau. Iterative modulo scheduling. International Journal of Parallel
Programming, 24(1):3–64, 1996.

[141] B.R. Rau and C.D. Glaeser. Some scheduling techniques and an easily
schedulable horizontal architecture for high performance scientific com-
puting. In Proceedings of the 14th annual workshop on Microprogramming,
IEEE, 1981.

[142] J. Rushby. Bus architectures for safety-critical embedded systems. In
Proceedings EMSOFT’01, volume 2211 of LNCS, Tahoe City, CA, USA,
2001.

[143] A. Al Sheikh, O. Brun, P.-E. Hladik, and B.J. Prabhu. Strictly periodic
scheduling in ima-based architectures. Real-Time Systems, 48(4):359–386,
2012.

[144] Z. Shi and A. Burns. Schedulability analysis and task mapping for real-
time on-chip communication. Real-Time Systems, 46(3):360–385, 2010.

[145] M. Singh and M. Theobald. Generalized latency-insensitive systems for
single-clock and multi-clock architectures. In Proceedings DATE’04, Paris,
France, 2004.

[146] M. Smelyanskyi, S. Mahlke, E. Davidson, and H.-H. Lee. Predicate-aware
scheduling: A technique for reducing resource constraints. In Proceedings
CGO, San Francisco, CA, USA, March 2003.

[147] R.B. Sorensen, M. Schoeberl, and J. Sparso. A light-weight statically
scheduled network-on-chip. In Proceedings NORCHIP, 2012.

[148] The TilePro64 many-core architecture. www.tilera.com, 2008.

[149] M. Vijayaraghavan and Arvind. Bounded dataflow networks and latency-
insensitive circuits. In Proceedings Memocode’09, pages 171–180, Nice,
France, 2009.

[150] C.Y. Villalpando, A.E. Johnson, R. Some, J. Oberlin, and S. Goldberg.
Investigation of the tilera processor for real time hazard detection and
avoidance on the altair lunar lander. In Proceedings of the IEEE Aerospace
Conference, 2010.

www.tilera.com

BIBLIOGRAPHY 87

[151] VSI Alliance. VCI: Virtual Component Interface Standard (OCB 2 2.0).
Online at: http://www.vsi.org.

[152] J. Wang and Christine Eisenbeis. Decomposed software pipelining. http:
//hal.inria.fr/inria-00074834, 1993.

[153] N.J. Warter, D. M. Lavery, and W.W. Hwu. The benefit of predicated
execution for software pipelining. In HICSS-26 Conference Proceedings,
Houston, Texas, USA, 1993.

[154] R. Wilhelm and J. Reineke. Embedded systems: Many cores – many
problems (invited paper). In Proceedings SIES’12, Karlsruhe, Germany,
June 2012.

[155] Jia Xu. Multiprocessor scheduling of processes with release times, dead-
lines, precedence, and exclusion relations. Software Engineering, IEEE
Transactions on, 19(2):139–154, 1993.

[156] Hoeseok Yang and Soonhoi Ha. Pipelined data parallel task map-
ping/scheduling technique for mpsoc. In Design, Automation Test in
Europe Conference Exhibition (DATE), Nice, France, 2009.

[157] Y.J. Yoon, N. Concer, M. Petracca, and L. Carloni. Virtual channels vs.
multiple physical networks: a comparative analysis. In Proceedings DAC,
Anaheim, CA, USA, 2010.

[158] H.-S. Yun, J. Kim, and S.-M. Moon. Time optimal software pipelining of
loops with control flows. International Journal of Parallel Programming,
31(5):339–391, October 2003.

[159] J. Zalamea, J. Llosa, E. Ayguade, and M. Valero. Register constrained
modulo scheduling. Parallel and Distributed Systems, IEEE Transactions
on, 15(5):417–430, 2004.

[160] J. T. Zhai, M. Bamakhrama, and T. Stefanov. Exploiting just-enough par-
allelism when mapping streaming applications in hard real-time systems.
In Proceedings DAC, 2013.

[161] W. Zheng, J. Chong, C. Pinello, S. Kanajan, and A. Sangiovanni-
Vincentelli. Extensible and scalable time-triggered scheduling. In Pro-
ceedings ACSD, St. Malo, France, June 2005.

[162] Q. Zhuge, Z. Shao, and E.H. Sha. Optimal code size reduction for software-
pipelined loops on dsp applications. In Proceedings of the International
Conference on Parallel Processing, 2002.

http://hal.inria.fr/inria-00074834
http://hal.inria.fr/inria-00074834

	Introduction
	When it all began...
	Overview of previous work
	Research project: Real-time systems compilation

	Introduction to synchronous languages
	Synchronous languages
	Related formalisms

	Automatic synthesis of optimal synchronization protocols
	Semantics of a simple example
	Problem definition
	Previous work

	Contribution
	Definition of weak endochrony
	Characterization of delay-insensitive synchronous components
	Synthesis of delay-insensitive concurrent implementations

	Reconciling performance and predictability on a many-core
	Motivation
	MPPA/NoC architectures for the real-time
	Structure of an MPPA
	Support for real-time implementation
	MPPA platform for off-line scheduling

	Software organization
	WCET analysis of parallel code
	Mapping (1) - MPPA-specific aspects
	Resource modeling
	Application specification
	Non-functional properties
	Scheduling and code generation

	Mapping (2) - Architecture-independent optimizations
	Motivation
	Related work and originality

	Conclusion

	Automatic implementation of systems with complex functional and non-functional properties
	Related work
	Time-triggered systems
	General definition
	Model restriction
	Temporal partitioning

	A typical case study.
	Functional specification

	Non-functional properties
	Period, release dates, and deadlines
	Modeling of the case study
	Architecture-dependent constraints
	Worst-case durations, allocations, preemptability
	Partitioning

	Scheduling and code generation
	Conclusion

