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French Abstract

Les robots ont profondément transformé l’industrie manufacturière et sont suscepti-

bles de délivrer de grands bénéfices pour la société, par exemple en intervenant sur

des lieux de catastrophes naturelles, lors de secours à la personne ou dans le cadre

de la santé et des transports. Ce sont aussi des outils précieux pour la recherche

scientifique, comme pour l’exploration des planètes ou des fonds marins. L’un

des obstacles majeurs à leur utilisation en dehors des environnements parfaitement

contrôlés des usines ou des laboratoires, est leur fragilité. Alors que les animaux

peuvent rapidement s’adapter à des blessures, les robots actuels ont des difficultés

à faire preuve de créativité lorsqu’ils doivent surmonter un problème inattendu: ils

sont limités aux capteurs qu’ils embarquent et ne peuvent diagnostiquer que les

situations qui ont été anticipées par leur concepteurs.

Dans cette thèse, nous proposons une approche différente qui consiste à laisser

le robot apprendre de lui-même un comportement palliant la panne. Cependant, les

méthodes actuelles d’apprentissage sont lentes même lorsque l’espace de recherche

est petit et contraint. Pour surmonter cette limitation et permettre une adaptation

rapide et créative, nous combinons la créativité des algorithmes évolutionnistes avec

la rapidité des algorithmes de recherche de politique (policy search).

Notre première contribution montre comment les algorithmes évolutionnistes

peuvent être utilisés afin de trouver, non pas une solution, mais un large ensemble

de solutions à la fois performantes et diverses. Nous appelons ces ensembles de

solutions des répertoires comportementaux (behavioral repertoires). En découvrant

de manière autonome ces répertoires comportementaux, notre robot hexapode a été

capable d’apprendre à marcher dans toutes les directions et de trouver des milliers

de façons différentes de marcher. A notre sens, ces répertoires comportementaux

capturent la créativité des algorithmes évolutionnistes.

La seconde contribution que nous présentons dans ce manuscrit combine ces

répertoires comportementaux avec de l’optimisation Bayesienne. Le répertoire com-

portemental guide l’algorithme d’optimisation afin de permettre au robot endom-

magé de réaliser des tests intelligents pour trouver rapidement un comportement

de compensation qui fonctionne en dépit de la panne. Nos expériences démontrent

que le robot est capable de s’adapter à la situation moins de deux minutes malgré

l’utilisation d’un grand espace de recherche et l’absence de plan de secours préétab-

lis. L’algorithme a été testé sur un robot hexapode endommagé de 5 manières

différentes, comprenant des pattes cassées, déconnectées ou arrachées, ainsi que sur

un bras robotisé avec des articulations endommagées de 14 façons différentes.

Pour finir, notre dernière contribution étend cet algorithme d’adaptation afin

de pallier trois difficultés qui sont couramment rencontrées en robotique: (1) per-

mettre de transférer les connaissances acquises sur une tâche afin d’apprendre plus

rapidement à réaliser les tâches suivantes, (2) être robuste aux solutions qui ne

peuvent pas être évaluées sur le robot (pour des raisons de sécurité par exemple), et
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qui sont susceptibles de pénaliser les performances d’apprentissage et (3) adapter

les informations reçues a priori par le robot, qui peuvent être trompeuses, afin de

maximiser leur utilité. Avec ces nouvelles propriétés, notre algorithme d’adaptation

a permis à un bras robotisé endommagé d’atteindre successivement 20 cibles en

moins de 10 minutes en utilisant uniquement les images provenant d’une caméra

placée à une position arbitraire et inconnue du robot.

A travers l’ensemble de cette thèse, nous avons mis un point d’honneur à con-

cevoir des algorithmes qui fonctionnent non seulement en simulation, mais aussi en

réalité. C’est pourquoi l’ensemble des contributions présentées dans ce manuscrit

ont été testées sur au moins un robot physique, ce qui représente l’un des plus

grands défis de cette thèse. D’une manière générale, ces travaux visent à apporter

les fondations algorithmiques permettant aux robots physiques d’être plus robustes,

performants et autonomes.



English Abstract
Robots have transformed many industries, most notably manufacturing, and have

the power to deliver tremendous benefits to society, for example in search and

rescue, disaster response, health care, and transportation. They are also invaluable

tools for scientific exploration of distant planets or deep oceans. A major obstacle

to their widespread adoption in more complex environments and outside of factories

is their fragility. While animals can quickly adapt to injuries, current robots cannot

“think outside the box” to find a compensatory behavior when they are damaged:

they are limited to their pre-specified self-sensing abilities, which can diagnose only

anticipated failure modes and strongly increase the overall complexity of the robot.

In this thesis, we propose a different approach that considers having robots learn

appropriate behaviors in response to damage. However, current learning techniques

are slow even with small, constrained search spaces. To allow fast and creative

adaptation, we combine the creativity of evolutionary algorithms with the learning

speed of policy search algorithms.

In our first contribution, we show how evolutionary algorithms can be used to

find, not only one solution, but a set of both high-performing and diverse solutions.

We call these sets of solutions behavioral repertoires and we used them to allow

a legged robot to learn to walk in every direction and to find several thousands

ways to walk. In a sense, these repertoires capture a portion of the creativity of

evolutionary algorithms.

In our second contribution, we designed an algorithm that combines these be-

havioral repertoires with Bayesian Optimization, a policy search algorithm. The

repertoires guide the learning algorithm to allow damaged robots to conduct in-

telligent experiments to rapidly discover a compensatory behavior that works in

spite of the damage. Experiments reveal successful adaptation in less than two

minutes in large search spaces and without requiring self-diagnosis or pre-specified

contingency plans. The algorithm has been tested on a legged robot injured in five

different ways, including damaged, broken, and missing legs, and on a robotic arm

with joints broken in 14 different ways.

Finally, in our last contribution, we extended this algorithm to address three

common issues in robotics: (1) transferring knowledge from one task to faster learn

the following ones, (2) dealing with solutions that cannot be evaluated on the robot,

which may hurt learning algorithms and (3) adapting prior information that may

be misleading, in order to maximize their potential utility. All these additional

features allow our damaged robotic arm to reach in less than 10 minutes 20 targets

by using images provided by a camera placed at an arbitrary and unknown location.

Throughout this thesis, we made a point of designing algorithms that work not

only in simulation but also in reality. Therefore, all the contributions presented in

this manuscript have been evaluated on at least one physical robot, which represents

one of the biggest challenges addressed in this thesis. Globally, this work aims to

provide the algorithmic foundations that will allow physical robots to be more

robust, effective and autonomous.





Acknowledgement

A PhD thesis is quite an adventure and even if there is a main character, it is, in

fact, teamwork. With these few lines, I would like to warmly thank all my team-

mates for their help and their support that allowed me to enjoy this intense journey.

Like in every journey, some moments have been more difficult than others.

Fortunately, my dear Coralie was always present to cheer me on during time of

doubt. She has also been extremely patient during the long evenings and nights

that I spent to finish a paper, an experiment or simply to find a bug in my code.

She has been my highest support during all these 3 years and the manuscript that

you are currently reading would not have been the same without her.

It goes without saying that this thesis would also not have been the same

without my supervisor Jean-Baptiste Mouret. He taught me everything I know in

computer science and in scientific research in general. He believed in me and gave

me enough freedom to explore my own ideas, while keeping a close eye on my pro-

gresses to prevent me to go on bad paths. He made me face challenges that I never

expected to be able to accomplish. The current young scientist that I am today is

undoubtedly the fruit of his supervision and I am proud of being one of his students.

The quality of supervision that I had during my thesis is also highly due to

Stéphane Doncieux, who gave us the means and freedom to investigate our ideas

within a fantastic working environment that we name AMAC team. His pieces

of advice have always been extremely valuable and I really enjoyed our fruitful

discussions about dreams in robotics.

Within the AMAC team and the ISIR laboratory in general, I had the luck to

be in an excellent working environment that both stimulated and encouraged me.

In addition to the environment, I had outstanding colleagues. The researchers of

the team have always been here to share their own experience, to ask questions or

to give pieces of advice. They are the heart of this big family that allows young

PhD-students to grow up and I wish to be able, at one point, to help, support, and

to advise young students as they did with me.

In particular, I would like to thank the marvelous members of the “famous J01”

and affiliates (the list is too large, but they will recognise themselves). Several

generations of PhD-students passed, but always with a lot of laughs, jokes and

pranks. In addition to be my colleagues, most of them are today my friends.

The only regret that I have about this thesis is that, at the end, I have to leave

this exceptional team.



vi

A good preparation is required before every adventure, and for my prepa-

ration before the PhD-Thesis, I would like to thank all my teachers from

the Polytech’Paris-UPMC engineer school (who are, for most of them, also

my colleagues in the ISIR lab). In addition to teach me their knowledge, they

also exchange with me their passion about robotics and the profession of researcher.

Even if they do not fully understood what I was doing, I would like to thank

my family, who has always encouraged me to follow my desires and gave me the

means to accomplish them.

I would like to thank the members of the jury of my PhD defense for accepting

to be part of the jury. Their final judgement will validate the fruit of three intense

and fascinating years of work and symbolize the end of this fabulous adventure.

Finally, I would like also to thank the DGA and the University Pierre and

Marie Curie, who gave me the opportunity to do this fantastic journey.

Thank you for this incredible journey!



Contents

1 Introduction 1

2 Background 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Evolutionary algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Multi-objective optimization . . . . . . . . . . . . . . . . . . 15

2.2.3 Novelty Search . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Evolutionary robotics . . . . . . . . . . . . . . . . . . . . . . 20

2.2.5 The Reality Gap problem and the Transferability approach . 22

2.2.6 Partial conclusion . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Policy search algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Common principles . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Application in behavior learning in robotics . . . . . . . . . . 33

2.3.3 Partial conclusion . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Bayesian Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.2 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.3 Acquisition function . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.4 Application in behavior learning in robotics . . . . . . . . . . 44

2.4.5 Partial conclusion . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Behavioral Repertoire 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Evolving Walking Controllers . . . . . . . . . . . . . . . . . . 50

3.1.2 Evolving behavioral repertoires . . . . . . . . . . . . . . . . . 52

3.2 The TBR-Evolution algorithm . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.2 Experimental validation . . . . . . . . . . . . . . . . . . . . . 58

3.3 The MAP-Elites algorithm . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.2 Experimental validation . . . . . . . . . . . . . . . . . . . . . 80

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Damage Recovery 89

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1.1 Learning for resilience . . . . . . . . . . . . . . . . . . . . . . 91

4.1.2 Resilience with a self-model . . . . . . . . . . . . . . . . . . . 92

4.1.3 Dealing with imperfect simulators to make robots more robust 95



viii Contents

4.2 The T-Resilience algorithm . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.1 Motivations and principle . . . . . . . . . . . . . . . . . . . . 97

4.2.2 Method description . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.3 Experimental validation . . . . . . . . . . . . . . . . . . . . . 99

4.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2.5 Partial conclusion . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 The Intelligent Trial and Error algorithm . . . . . . . . . . . . . . . 109

4.3.1 Motivations and principle . . . . . . . . . . . . . . . . . . . . 109

4.3.2 Method description . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3.3 Experimental validation . . . . . . . . . . . . . . . . . . . . . 115

4.3.4 Partial conclusion . . . . . . . . . . . . . . . . . . . . . . . . 139

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5 Knowledge Transfer, Missing Data, and Misleading Priors 143

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2 Knowledge Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2.2 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2.3 Method Description . . . . . . . . . . . . . . . . . . . . . . . 148

5.2.4 Multi-Channels Regression with Bayesian Optimization . . . 151

5.2.5 Experimental Validation . . . . . . . . . . . . . . . . . . . . . 157

5.3 Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.3.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.3.2 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.3.3 Method Description . . . . . . . . . . . . . . . . . . . . . . . 167

5.3.4 Experimental Validation . . . . . . . . . . . . . . . . . . . . . 169

5.4 Misleading Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.4.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.4.2 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.4.3 Method Description . . . . . . . . . . . . . . . . . . . . . . . 173

5.4.4 Experimental Validation . . . . . . . . . . . . . . . . . . . . . 175

5.5 Evaluation on the physical robot . . . . . . . . . . . . . . . . . . . . 180

5.5.1 The whole framework . . . . . . . . . . . . . . . . . . . . . . 180

5.5.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 181

5.5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 184

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6 Discussion 187

6.1 Using simulations to learn faster . . . . . . . . . . . . . . . . . . . . 188

6.2 Gathering collections of solution into Behavioral Repertoires . . . . . 190

6.3 Exploring the information provided by Behavioral Repertoires . . . . 193

7 Conclusion 195



Contents ix

Bibliography 199

A The Hexapod Experiments 227

A.1 The Hexapod Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

A.2 The Hexapod Genotypes and Controllers . . . . . . . . . . . . . . . . 227

A.2.1 The first version (24 parameters) . . . . . . . . . . . . . . . . 227

A.2.2 The second version (36 parameters) . . . . . . . . . . . . . . 229

B The Robotic Arm experiments 231

B.1 The Robotic Arm:

First setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

B.2 The Robotic Arm:

Second setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

B.3 The Arm Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

C Parameters values used in the experiments 235

C.1 TBR-Evolution experiments . . . . . . . . . . . . . . . . . . . . . . . 235

C.2 T-Resilience experiments . . . . . . . . . . . . . . . . . . . . . . . . . 236

C.3 Intelligent Trial and Error experiments . . . . . . . . . . . . . . . . . 236

C.3.1 Experiments with the hexapod robot . . . . . . . . . . . . . . 236

C.3.2 Experiments with the robotic arm . . . . . . . . . . . . . . . 236

C.4 State-Based BO with Transfer, Priors and blacklists . . . . . . . . . 237

D Other 239

D.1 Appendix for the T-resilience experiments . . . . . . . . . . . . . . . 239

D.1.1 Implementation details for reference experiments . . . . . . . 239

D.1.2 Validation of the implementations . . . . . . . . . . . . . . . 242

D.1.3 Median durations and number of tests . . . . . . . . . . . . . 244

D.1.4 Statistical tests . . . . . . . . . . . . . . . . . . . . . . . . . . 244

D.2 Methods for the Intelligent Trial and Error algorithm and experiments245

D.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

D.2.2 Hexapod Experiment . . . . . . . . . . . . . . . . . . . . . . . 245

D.2.3 Robotic Arm Experiment . . . . . . . . . . . . . . . . . . . . 248

D.2.4 Selection of parameters . . . . . . . . . . . . . . . . . . . . . 249

D.2.5 Running time . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

D.3 Notation for the State-Based BO with Transfer, Priors and blacklists

algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253





Chapter 1

Introduction

In 1950, Alan Turing proposed to address the question “can machines think?” via

an “imitation game”, which aims to assess machines’ ability to exhibit behaviors

that are indistinguishable from those of a human (Turing, 1950). In practice, this

game involves a human (the evaluator) that has to distinguish between a human

and a machine by dialoguing with them via a keyboard and a screen interface.

The objective of Alan Turing was to substitute the initial question “can machines

think?” by “Can a machine communicate in a way that makes it indistinguishable

from a human”. This question and this reasoning had, and still has, a strong impact

in artificial intelligence (Warwick and Shah, 2015; Russell et al., 2010). However, a

robot is not only a mind in a computer, it is an agent “that has a physical body”

(Pfeifer and Bongard, 2007) and “that can be viewed as perceiving its environment

through sensors and acting upon that environment through effectors” (Russell et al.,

2010). In order to transpose Turing’s approach into robotics, his question could be

considered from a more general point of view: “Can a robot act in a way that makes

it indistinguishable from a human?”. Without directly considering humans, we can

wonder: can robots act more like animals than like current machines (Brooks,

1990)? But, what is acting like an animal? Put differently, what distinguishes a

robot from an animal? In this manuscript, we will consider that one of the most

striking differences between animals and robots is the impressive adaptation abilities

of animals (Meyer, 1996); as a result, we will propose new algorithms to reduce this

difference.

After more than 50 years of research in robotics, several breakthroughs have

been achieved. For example, a surgeon located in New York operated on a patient

in France with a transatlantic robot-assisted telesurgery (Marescaux et al., 2001).

The recent advances in 3D printing allowed researchers to automatically design and

manufacture robotic lifeforms from their structure to their neural network with an

evolutionary algorithm (Lipson and Pollack, 2000). The robots from Boston Dy-

namics, like the Bigdog (which is robust to uneven terrains, Raibert et al. (2008)),

the Cheetah (which runs at 29 mph (46 km/h)) and Atlas (which is an agile an-

thropomorphic robot) or the Asimo robot from Honda are good examples of very

sophisticated systems that show impressive abilities. These noticeable advances

suggest that robots are promising tools that can provide large benefits to the so-

ciety. For example, we can hope that robots will one day be able to substitute

humans in the most dangerous tasks they have to perform, like intervening in nu-

clear plants after a disaster (Nagatani et al., 2013) or in search and rescue missions

after earthquakes (Murphy, 2004; Murphy et al., 2008).



2 Introduction

While a few robots start to leave the well-controlled environments of factories

to get in our homes, we can observe that most of them are relatively simple robots.

More advanced robots, that is, more versatile robots, have the power to deliver

tremendous benefits to society. Nonetheless, a slight increase in versatility typ-

ically results in a large increase in the robots’ complexity, which, in turn, makes

such versatile robots much more expensive and much more damage-prone than their

simpler counterparts (Sanderson, 2010; Carlson and Murphy, 2005). This “expo-

nential complexity” is a major obstacle to the widespread adoption of robots in

complex environments and for complex missions.

In more concrete terms, the success of robotic vacuum cleaners and lawn mowers

mainly stems from the simplicity of their task, which is reflected in the simplicity of

the robots: they can perform only two types of action (moving forward/backward

or turning); they perceive only one thing (the presence of obstacles); and they react

with predefined behaviors to the encountered situations (Brooks et al., 1986; Brooks,

1990). With more complex robots, the situation is more complicated because they

involve more complex behaviors and require a deeper understanding of the context.

For example, a robot in a search and rescue mission (Murphy et al., 2008) has to

deal with uneven terrains and to locate injured people. In order to be effective,

it will have to move obstacles, to repatriate victims and to cooperate with other

robots. With all these tasks, these robots may face an almost infinite number of

situations, like different types of terrains, different types of disasters or different

types of injured people. In other words, while it is possible to foresee most of

the situations a simple robot (like a vacuum cleaner) may face, it is unfeasible

to predefine how complex robots have to react in front of the quasi infinite set

of situations they may encounter, unless having a team of engineers behind each

robot1.

In addition, the high complexity of versatile robots is bound to increase their

fragility: each additional actuator or sensor is potentially a different way for a robot

to become damaged. For example, many robots sent in search and rescue missions

have been damaged and unable to complete their mission. In 2005, two robots

were sent to search for victims after a mudslide near Los Angeles (La Conchita).

Unfortunately, they became unable to continue their missions after only two and

four minutes because of a root in the wet soil and a thick carpet in a house (Murphy

et al., 2008). Similarly, after a mine explosion in West Virginia (Sago in 2006):

the robot sent to find the victims became stuck on the mine rails after only 700

meters (Murphy et al., 2008). Five years later, the same kind of scenario repeated

several times after the nuclear accident at the Fukushima nuclear power plants

that happened in 2011. For example, one robot has been lost in 2011 because its

communication cable got snagged by the piping of the plant (Nagatani et al., 2013)

and a second robot has been lost in 2015 after a fallen object blocked its path. In all

these examples, the robots have been abandoned and the missions aborted, which

1For example, teams of engineers are involved in the control-loops (DeDonato et al., 2015) of

robots that participate to the DARPA Robotics Challenge (Pratt and Manzo, 2013) in order to

allow them to react to the situations they have to face.
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can lead to dramatic consequences when lives are at stake.

The question of fault tolerance is a classic topic in engineering, as it is a common

problem in aviation and aerospace systems. Current damage recovery in deployed

systems typically involves two phases: (1) performing self-diagnosis thanks to the

embedded sensors and then (2) plan or select the best contingency plan according

to the diagnosis (Kluger and Lovell, 2006; Visinsky et al., 1994; Koren and Krishna,

2007). The side effect of this kind of approach is that it requires anticipating all

the damage conditions that may occur during the robot’s mission. Indeed, each

type of damage that should be diagnosed requires having the proper sensor at

the right place, similarly to a doctor who uses different tools to diagnose different

diseases, electrocardiogram to detect heart diseases and MRI for cancer cells. As a

consequence, the robot’s abilities to diagnose a damage condition directly depend

on its embedded sensors. As the robots and their missions increase in complexity, it

becomes almost unfeasible to foresee all the damage conditions that may occur and

to design the corresponding diagnostic modules and contingency plans. This is the

beginning of a vicious circle that prevents us from keeping the costs reasonable, as

each of these modules can be damaged too and may thus require additional sensors.

Animals, and probably humans, respond differently when they face an unex-

pected situation or when they are injured (Jarvis et al., 2013; Fuchs et al., 2014):

they discover by trial and error a new behavior. For example, when a child has a

sprain ankle, he is able to discover, without the diagnosis of a doctor, that limping

minimizes pain and allows him to go back home.

The objective of the algorithmic foundations presented in this manuscript is to

allow robots to do the same: making robots able to learn on their own how to deal

with the different situations they may encounter. With improved learning abili-

ties, robots will become able to autonomously discover new behaviors in order to

achieve their mission or to cope with a damage. The overall goal of this promising

approach is to help develop more robust, effective, autonomous robots by removing

the requirement for engineers to anticipate all the situations that robots may en-

counter. It could, for example, enable the creation of robots that can help rescuers

without requiring their continuous attention, or making easier the creation of per-

sonal robotic assistants that can continue to be helpful even when a part is broken.

Throughout this manuscript, we will mainly consider the challenge of damage re-

covery, though adapting to other unforeseen situations that do not involve damage

would be a natural extension of this work.

In order to effectively discover new behaviors, learning processes have to be both

fast and creative. Being able to learn quickly (in terms of both time and number

of evaluations) new behaviors is critical in many situations. The first reason is

that most autonomous robots run on batteries, and as a consequence, it is likely

that a robot that spends too much time learning new behaviors will run out of

battery before achieving its mission. The second reason is that many situations

require reacting quickly, typically after a disaster. Therefore, we cannot have robots

wasting hours trying to learn new behaviors when people’s lives are in danger.

Creativity, which “ involves the production of novel, useful [solutions]” (Mumford,
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2003), is an important property for learning algorithms, as it influences the number

of situations in which systems are able to find appropriate solutions. This property

requires algorithms to explore large search spaces to discover behaviors that are

different from what they already know (Lehman and Stanley, 2011a). Transposed

to robotics, the creativity of the algorithm determines the number of unforeseen

situations that the robot can handle. For example, riding a bicycle is different

from walking or limping. To allow a robot to adapt to a large variety of situations,

a learning algorithm has to be able to find all these different types of behaviors,

regardless the initial or current behavior of the robot.

Unfortunately, speed and creativity are most of the time antagonistic properties

of learning algorithms because exploring a large search space, that is, searching for

creative solutions, requires a large amount of time. In the next chapter (chapter 2),

we review the different families of learning algorithms and compare their creativity

and learning speed. We focus our review on evolutionary algorithms (Eiben and

Smith, 2003) and Policy Search methods (Kober et al., 2013) because they are

the main families of algorithms used to learn low-level behaviors (motor skills) in

robotics.

In chapter 3, we present how the creativity of evolutionary algorithms can be

employed to discover large collections of behaviors. For example, we show how a

legged robot can autonomously discover several hundred behaviors that allow it

to walk in every direction. In other experiments, the same robot also discovered

several thousand ways of walking in a straight line. We call these large collections

of behaviors Behavioral Repertoires.

In the chapter 4, we apply learning algorithms for on-line damage recovery.

One of the main challenges is to reduce the required time to adapt while keeping

the search space as open as possible to be able to deal with a large variety of

situations. In the first part of this chapter, we show how combining simulations

and physical experiments allows the algorithm to transfer the majority of the search

space exploration in simulation. In the second part of this chapter, we highlight how

behavioral repertoires, introduced in the previous chapter, can be combined with a

policy search algorithm to guide the exploration process. With these two principles,

we propose an algorithm that couples the creativity of evolutionary algorithm and

the speed of policy search algorithms to allow damaged robots to conduct intelligent

experiments to rapidly discover compensatory behaviors that work in spite of the

damage situations. For example, our experiments show a hexapod robot and a

robotic arm that recover from many damage conditions in less than 2 minutes, that

is, much faster than the state of the art.

The last chapter (chapter 5) extends our damage recovery algorithm to deal with

3 issues that frequently impact robotic experiments: (1) transferring knowledge

from one task to learn the following ones faster, (2) dealing with solutions that

cannot be evaluated on the robot, which may hurt learning algorithms and (3)

adapting prior information that may be misleading, in order to maximize their

potential utility. With these extensions, our algorithm aims to become a generic

framework that can be used with a large variety of robots to learn and adapt in
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numerous situations.

Before the conclusion of this manuscript, we discuss the current limitations of

our methods and the different approaches that we plan to investigate in order to

circumvent them. In this last chapter (chapter 6), we also highlight the links that

may exist between our methods and observations made in neuroscience.
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2.1 Introduction

Learning algorithms aim to provide systems with the ability to acquire knowledge

and skills to solve a task without being explicitly programmed with a solution. For

example, Mitchell (1997) proposed this definition: “The field of machine learning is

concerned with the question of how to construct computer programs that automati-

cally improve with experience.” Learning algorithms are traditionally divided into

three categories of algorithms depending on the quantity of knowledge about the

solutions that is provided to the system (Haykin, 1998; Russell et al., 2010): (1) In

supervised learning, a “teacher” provides to the system a error signal that reflects

the difference between the output value and the expected value. These algorithms
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are typically applied on classification problems in which the system has a database

of inputs examples and corresponding outputs that the system should reproduce.

Based on these examples the goal of the algorithm is to learn a generalization of

these examples to deal with unknown examples. Conversely, (2) in unsupervised

learning (Hastie et al., 2009), there is no “teacher” and the system has no informa-

tion about the consequences (or outputs) of its choices. Consequently, the system

has to find hidden structures in the obtained data in order to distinguish them.

Clustering algorithms (Xu et al., 2005) are a good example of unsupervised learn-

ing algorithms. They use the spatial distribution of the data to infer clusters that

are likely to correspond to different classes. (3) Reinforcement Learning algorithms

(Kober et al., 2013) are in a way situated in between these two families of algorithms.

While the correct inputs/outputs pairs are never presented, the “teacher” provides

a qualitative feedback after the system has performed a sequence of actions. Most

of the time, this feedback is less informative than in supervised learning algorithms.

It can be for example a reward value, which does not indicate the actual solution

but rather states if the performed action is better or not than the previous ones.

More recently, several other families of learning algorithms have emerged and

do not fit well in these three categories. For example, intrinsically motivated learn-

ing (Oudeyer et al., 2007; Baldassarre and Mirolli, 2013; Delarboulas et al., 2010),

in which the system defines on his own the value of its actions, can be considered

as both an unsupervised learning algorithm because there is no teacher, and as a

reinforcement learning algorithm because the system tries to maximize the feed-

back provided by its internal motivation modules. Another example of a recent

approach that does not fit in these categories is Transfer learning (Pan and Yang,

2010; Thrun, 1996). This approach consists in transferring knowledge acquired on

previous tasks to new ones. It consequently shares similarities with both super-

vised and unsupervised learning algorithms, as the former task is most of the time

learned thanks to a “teacher”, while the links with the following tasks have to be au-

tonomously inferred by the system. Imitation learning (Billard et al., 2008; Schaal,

1999) is another family of algorithms that can be situated on the borderlines of the

traditional classifications. In this case, the system aims to reproduce a movement

showed by a “teacher”, for example via kinesthetic teaching. This technique shares

similarities with supervised learning algorithms, as there is a “teacher” showing the

solution. However, the link between the recorded data and the corresponding motor

commands is unknown and the robot has to learn to reproduce the movement by

minimizing a cost value, like in reinforcement learning, which corresponds to the

differences between the taught movement and the robot’s behavior.

Learning a behavior in an unforeseen situation, like after mechanical damage,

is typically a reinforcement learning problem, because the robot has to get back its

initial performance and no “teacher” can provide examples of good solutions. The

robot has to learn on its own how to behave in order to maximize its performance

by using its remaining abilities.

The definition of reinforcement learning (RL) from Sutton and Barto (1998a)

states that: “Reinforcement learning is learning what to do so as to maximize a
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numerical reward signal. The learner is not told which actions to take, as in most

forms of machine learning, but instead must discover which actions yield the most

reward by trying them.” In other words, a RL algorithms aims to solve a task

formulated as a cost function that has to be minimized or as a reward (also called

quality or performance) function that has to be maximized. Based on this function

(for instance named f), we can define a reinforcement learning algorithm as an

algorithm that solves this equation (considering f as a reward function):

x∗ = arg max
x

f(x) (2.1)

The goal of the algorithm is thus to find the politic or behavior x∗ that maximizes

the reward function (Sutton and Barto, 1998a; Russell et al., 2010).

We can see here that a RL problem can be formulated as a standard optimiza-

tion problem. However, when learning a behavior, the optimized function as well

as its properties and gradient are typically unknown. A typical example is a legged

robot learning to walk: it has to learn how to move its legs in order to keep balance

and to move. In this context, the reward function can be for example the walking

speed and the solutions can be parameters that define leg trajectories or synaptic

weights of neural networks that control the motors. The function that maps these

parameters to the reward value is unknown. Consequently, in order to acquire infor-

mation about this function, the system has to try potential solution and to record its

performance. This type of function is called black-box functions and makes impos-

sible to use standard optimization algorithms, like linear or quadratic programming

(Dantzig, 1998; Papadimitriou and Steiglitz, 1998) or the Newton’s optimization

method (Avriel, 2003), which require the problem to be linear/quadratic or to have

access to the derivative of the function.

Reinforcement learning algorithms have been designed to deal with this kind of

function and gather several sub-families of techniques, like Policy Search algorithms

(Kober et al., 2013; Deisenroth et al., 2013b) or Differential Dynamic Programming

(Bertsekas et al., 1995; Sutton et al., 1992). However, the name reinforcement

learning refers most of the time to the first family of RL algorithms that have

been proposed, making the distinction between the general RL family and these

traditional algorithms sometimes difficult and confusing. These algorithms aim to

associate to every state of the robot to a reward (it corresponds to the “value func-

tion”) and then use this information to determine the optimal policy to maximize

the reward. This family of algorithms is for example composed by the Q-learning

algorithm (Watkins, 1989; Watkins and Dayan, 1992), the State-Action-Reward-

State-Action algorithm (SARSA, Rummery and Niranjan (1994)) or the Time Dif-

ference Learning algorithm (TD-Learning, Sutton and Barto (1998b)). However,

the vast majority of these algorithms are designed to work with small state spaces

(for example 2D locations in maze experiments, Thrun (1992)) and with discretized

state and action spaces (for example discrete actions can be: move up, move down,

move right, move left, etc.).

While these traditional reinforcement algorithms are beneficial to learn discrete

high-level tasks (like in path-planning problem (Singh et al., 1994), to learn to
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play video games (Mnih et al., 2015)); learning low-level behaviors or motor skills

in robotics (like walking gaits or reaching movements) involves most of the time

using continuous and high dimensional state and action spaces. These aspects

contrast with the constraints of traditional RL algorithms and this is why most

of applications of RL in robotics use Policy Search algorithms (PS) (Kober et al.,

2013), which are known to have better scalability and to work in continuous domains

(Sutton et al., 1999; Deisenroth et al., 2013b).

Another family of algorithms widely used to learn behaviors in robotics are

the evolutionary algorithms (EAs, Eiben and Smith (2003)). These algorithms are

most of the time considered apart from the general family of reinforcement learning

algorithms, because they come from different concepts and ideas. However, we can

underline that EAs fit perfectly into the definition of RL algorithms presented above.

They are used to optimize a fitness function, which is similar to a cost or a reward

function, and they test different potential solutions (gathered in a population) to

gather information about this unknown function.

In this chapter, we will present in detail both Evolutionary algorithms and Policy

Search algorithms, as they are widely used to learn low-level behaviors in robotics.

In the last part of this chapter we provide a concise tutorial on Bayesian Optimiza-

tion, a model-based policy search algorithm that is considered as the state-of-the-art

in learning behaviors in robotics. The objective of this overview is to get a global

picture of the advantages and the limitations of each of these algorithms, which

will be useful to design a learning algorithm that will allow robots to adapt to

unforeseen situations. We will in particular focus our attention on their ability to

find creative solutions and the number of trials on the robot required to find these

solutions. The creativity of an algorithm is related to its ability to perform a global

optimization and to the size of the search space they can deal with. Such property

is important as a behavior that works in spite of a damage may be substantially

different from the robot’s initial behaviors. For example, a six-legged robot with a

damaged leg will walk differently with its 5 remaining legs than when it was intact.

The learning speed of the algorithm is also a very important aspect of learning

algorithms as it directly impacts the autonomy of the robot. A robot requiring to

test hundreds of behaviors to find a solution is likely to run out of battery or to

aggravate its condition.

2.2 Evolutionary algorithms

2.2.1 Principle

Evolutionary Algorithms (EAs) take inspiration from the synthetic theory of evo-

lution. This theory, which emerged in the 30’s, combines the Darwinian theory of

evolution (Darwin, 1859), the Mendelian theory of heredity (Mendel, 1865) and the

theory of population genetics (Haldane, 1932). It details the mechanisms that drive

the diversity of individuals among a population and those that allow some traits to

be transferred from one individual to another though heredity. The synthetic the-
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ory of evolution mainly relies on the idea that the DNA encodes the characteristics

of the individual and that each DNA sequence is different. During the reproduc-

tion process, several sequences are combined and mutated in order to create new

individual, which promote the diversity of individuals in the population.

Evolutionary computation algorithms tend to employ an abstract representation

of this theory in order to use the adaptation abilities of natural evolution to a large

set of problems. This abstraction stands on 4 principles:

• Diversity of individual: Each individual, even from the same specie, is differ-

ent.

• Struggle for life: Every individual cannot survive because the natural re-

sources are limited. Consequently, the individuals have to compete to survive.

• Natural selection: The individuals survive because they have particular char-

acteristics that make them more adapted.

• Heredity of traits: The surviving individuals share some of their characteristics

to their descendants.

EAs are used to solve a large panel of optimization, design and modeling prob-

lems (Eiben and Smith, 2015). For example, they can generate structures (of neural

networks,Stanley and Miikkulainen (2002), or of objects, Hornby et al. (2011); Lip-

son and Pollack (2000)), images (Secretan et al., 2008; Sims, 1991), weights of

neural networks (Floreano and Mondada, 1994; Whitley et al., 1990; Devert et al.,

2008), virtual creatures (Sims, 1994; Lehman and Stanley, 2011b), robotic con-

troller (Zykov et al., 2004; Godzik et al., 2003), soft robots (Cheney et al., 2013) or

chemistry reactions (Gutierrez et al., 2014; Dinh et al., 2013). It is also very inter-

esting to mention that, while the EAs come from the synthetic theory of evolution,

EAs are also promising tool to study natural evolution (Smith, 1992; Lenski et al.,

1999). For example, Clune et al. (2013) used evolutionary algorithms to investigate

the evolutionary origins of modularity in biological networks. In other examples,

EAs have also been used to explain the emergence of collaborative behaviors like

cooperation (Bernard et al., 2015), altruism (Montanier and Bredeche, 2013; Waibel

et al., 2011) or communication (Floreano et al., 2007; Mitri et al., 2009; Wischmann

et al., 2012).

These application examples, while being incomplete, show that the domain of

EAs is very large. However, it is interesting to note that most of them rely on

the same principles. In general, one iteration of EAs (called generation) involves 3

steps (Eiben and Smith, 2003). After the initialization (typically random) of the

population, (1) all the individuals of the population are evaluated on the problem

(see Fig. 2.1B) and are then ranked based on their quality (see Fig. 2.1C). (2)

the best individuals survive (see Fig. 2.1 E) while the others are likely to perish

(see Fig. 2.1 D). This selection process mimics the fact that each individual has to

compete in order to survive. (3) The surviving individuals are crossed and mutated

to create offspring individuals, which are then used to form a new population.
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A B C

D E

Figure 2.1: The main steps of evolutionary algorithms. All the population (A) is

evaluated on the task (B). Based on the recorded performance of the individuals

(fitness score), the population is sorted (C). The individuals that are in the bottom

of the ordering are removed from the population (E) while the others are mutated

and crossed in order to create a new population (D). This new population is then

used to repeat the process, which ends when a performance criterion is reached or

when a predefined number of generations has been executed.
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This 3-step process then repeats with the new population making it progressively

more adapted to the problem the algorithm is solving. The algorithm stops after

a particular amount of time (CPU time or number of evaluations) or after the

population has converged.

In the vast majority of work, EAs are employed to solve optimization problems

and they are typically well tailored to deal with black-box functions (Eiben and

Smith, 2003). The particularity of such functions is that no information about the

structure or gradient of the function is available. The algorithm can only supply a

potential solution and gets the corresponding value, making the optimization prob-

lem notably difficult. In EAs, the optimized function is called the fitness function

(Eiben and Smith, 2003):

Definition 1 (Fitness function) The fitness function represents the require-

ments the individuals have to adapt to. Mathematically, it is a function that takes

as an input a potential solution (also called an individual) and outputs a fitness

score that represents the quality of the individual on the considered problem.

The fitness score of an individual can be seen, from a biological point of view,

as its ability to survive in its environment. As describe below, this score has an

impact on the selection and reproduction processes. The potential solutions are

described thanks to a genotype that can be expanded into a phenotype.

Definition 2 (Genotype and Phenotype) The genotype encodes the informa-

tion that characterizes the individual. The phenotype is the expression of the infor-

mation contained in the genotype into an actual potential solution (that can be

applied to the problem). It corresponds to the observable and testable traits of

the individual. The conversion between the genotype and the phenotype is call the

genotype-phenotype mapping (Eiben and Smith, 2003).

For example, a genotype can be a set of numbers, while the phenotype corresponds

to an artificial neural network with synaptic weights parametrized by the values

contained in the genotype.

Each potential solution is thus defined by a genotype and its corresponding

phenotype, which can be evaluated through the fitness function. Several potential

solutions are gathered into a population, which is then evolved by the EA:

Definition 3 (Population) The population is a set of genotypes that represents

potential solutions. Over the numerous generations of the algorithm, the individuals

of the population will change and the whole population will adapt to the problem.

While most of EAs follow this general framework, they differ in the employed

genotypes and phenotypes and in the way they implement the selection, mutation

and crossover steps.

Definition 4 (Survivor selection) The Survivor selection mechanism selects

among the individuals of the population those that will survive based on their quality

(fitness score).
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Typically, some selection operators are based solely on the ranks (e.g., it selects the

10 first individuals), some others can involve random selection (e.g., tournament

selection, where two randomly selected individuals of the population compete and

only the best one is selected).

The selected individuals are then mutated and crossed in order to create the new

population that will be used for the next generation. The crossover and mutation

steps affect the information contained in the genotype in order to add variations in

the produced individuals:

Definition 5 (Crossover) The crossover operator merges information from sev-

eral parent individuals (typically two) into one or two offspring individuals.

The selection of the parent individuals often involves another selection step (called

Parent Selection operator, Eiben and Smith (2003)), which selects the potential

parents based on their quality. This mechanism aims to simulate the attractiveness

of the individuals in order to allow the better individuals to become parents of the

next generation.

Definition 6 (Mutation) The mutation operator produces variations in the off-

spring individuals by altering directly the information contained in the genotype.

These operators are typically stochastic, as the parts of the genomes that are altered

or combined and the value of the mutated genes are most of the time randomly de-

termined. We can also note that the use of the crossover operator is not mandatory,

for example we can note that most of modern EAs disable this operator and only

rely on the mutation operator (Stanley and Miikkulainen, 2002; Clune et al., 2013).

The main role of the cross-over and mutation operator is to make the popula-

tion explore the genotype space, while the role of the survivors and parents selection

operators is to promote the better individuals and to allow the population to pro-

gressively improve its quality over the generations. However, even if EAs have shown

impressive results and applications (Eiben and Smith, 2003), there is no proof of

optimality. Consequently, it is likely that the obtained solution is only a local opti-

mum, but this is a common issue with optimization algorithms (Papadimitriou and

Steiglitz, 1998).

From an historical point of view, we find behind the name “Evolutionary Al-

gorithms” or “Evolutionary Computation”, several families of algorithms that refer

to different combinations or implementations of the operators defined previously.

Some of these methods are designed for some genotype/phenotype in particular.

The most famous of these families are (De Jong, 2006):

• Genetic Algorithms: This family of algorithms is devoted to the evolution

of strings of characters or of numbers, which allows the algorithm to use

operators that are independent to the considered problem. The main source

of variation of the genotype is the crossover operator that combines parts

of individuals in order to create new ones. The usual selection operator of

this family consists in changing a constant proportion of the population (for

example 50%) with new individuals.
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• Evolutionary Strategies: This family of algorithms mainly differs from the

first one in its selection operator. In this case, the selection operator considers

both the current population and several new individuals. As a consequence,

only high performing new individuals are added to the population and the

proportion of elitism varies according to the quality of the new individuals.

The second difference with genetic algorithms is source of genotype variations,

which here mainly consists in random mutations. A famous Evolutionary

Strategy is CMA-ES (covariance matrix adaptation - evolutionary strategy,

Hansen (2006)).

• Evolutionary and genetic Programming: This family of algorithms aims to

evolve computer programs or mathematical functions to solve a predefined

task. The generated programs are most of the time finite state machines

(Fogel et al., 1966) or tree structures. The structure of the trees is also

evolved and each node is a sub-function (for example sin, cos) or an operator

(for example +,−) and each leaf is an input variable or a constant (Cramer,

1985; Koza, 1992; Schmidt and Lipson, 2009).

Nowadays, these distinctions become less and less clear and several new cat-

egories appeared like, for example, the Estimation of Distribution Algorithms

(EDA, Larranaga and Lozano (2002)), the Multi-Objective Evolutionary Algo-

rithms (MOEA, Deb (2001)) or the Ant Colony Optimization algorithms (ACO,

Dorigo and Birattari (2010)).

2.2.2 Multi-objective optimization

In some situations, a problem cannot be formalized as a single fitness function but

rather as several ones. For example, when designing a car; several features are

important like the cost, the consumption, and the maximum speed. One way to

solve this problem with EAs is to use a weighted sum of the different features and

to use it as the fitness function. Nevertheless, such strategy fixes the trade-off

between all the features of the potential produced cars. In other words, the weights

of the sum will define the position of the extremum of the fitness function. For

example, one configuration of this sum may favor the price of the car while some

other configurations may favor its speed or its cost. In such design process, it is

likely that the desired trade-off is initially unknown and may require re-launching

the optimization process each time the designers want another configuration.

One alternative is to look for all the possible trade-offs or more precisely all

the non-dominated trade-offs. This concept of dominance states that you cannot

improve one of the features of the obtained trade-offs without decreasing the others

ones. This notion comes from the definition of Pareto dominance (Pareto, 1896;

Deb, 2001):

Definition 7 (Pareto dominance) A solution (or individual) x1 is said to dom-

inate an other solution x2, if and only if both conditions 1 and 2 are true (see Fig.

2.2 A):
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• (1) The solution x1 is no worse than x2 in all the objectives.

• (2) The solution x1 is strictly better than x2 in at least one objective.

Definition 8 (Pareto front) Based on this dominance notion, we can define a

Pareto front, which is the set of all the non-dominated solutions (see Fig. 2.2 B).

One of the most used Multi-Objective Evolutionary Algorithm (MOEA) is the

Non-dominated Sorting Genetic Algorithm II (NSGA-II)1 introduced by Deb et al.

(2002). This algorithm ranks the individuals according to their position in the

Pareto front or in the subsequent fronts (see Fig. 2.2B). For example, if the selection

step requires selecting 30 individuals, it will first select all the individuals of the

Pareto front and then on the subsequent fronts. It may then happen that a front

cannot fit entirely in the selection. For example, if the two first fronts contain

in total 25 individuals and the third one contains 10 individuals, this last front

cannot fit entirely in the 30 selected individuals (see Fig. 2.2C). To deal with this

situation, the authors introduced the concept of crowding distance that estimates

the density of individuals around each of them. This distance is used as a second

selection criterion when the algorithm has to compare individuals that are on the

same front. The main insight of this distance is to favor individuals that are isolated

in the front because they represent solutions that are different from the others.

Based on this selection operator, NSGA-II optimizes its population to have as

much as possible individuals on the Pareto front, but with a selection pressure

that tends to evenly spread these individuals on the front. The individuals of the

population that are on the Pareto front at the end of the evolutionary process

represent the solutions provided by the algorithm. It consists in a set of different

trade-offs over the objectives. The designers can pick up the most suited trade-off

according to the situations.

2.2.2.1 Helper objective

In the previous section, we presented how EAs can be used to optimize several

objectives simultaneously. In the previous examples of the car, the objectives were

specific to the problem (for example the cost and the speed of a car). However,

additional objectives can be used in order to help the algorithm to find the best

solutions on one principal objective (Knowles et al., 2001; Jensen, 2005). Optimizing

a second objective may lead the population toward better solutions of the first

objective. Such objectives are called helper objectives (Doncieux and Mouret, 2014;

Jensen, 2005) and the algorithm can be written as:

maximize

{

Fitness objective

Helper objective

1NSGA-II is now outdated. However, it is a well known, robust and effective algorithm, which

is sufficient for the applications that we will consider in this manuscript.
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Figure 2.2: The Pareto dominance and the Pareto front. In these schemes, the

algorithm maximizes both objective 1 and objective 2. Each dot represents an

individual, which is for example contained in the population. Orange dots are

non-dominated individuals, while the (dark) blue ones are dominated. (A) I1 is

dominated by I2 because I2 is better than I1 on the two objectives, while I1 dom-

inates I3. I1 and I4 do not have any dominance relation because none of them

is as good as the other on all the objectives (I1 is better than I4 on the objec-

tive 1, while I4 is better than I1 on the objective 2). We can also see that I4 is

dominated by I2 because I2 is as good as I4 on objective 2 but better on objec-

tive 1. (B) The solid green line represents an approximation of the Pareto front,

which is composed by all the non-dominated individuals of the population. The

dashed green lines represent the subsequent fronts. These fronts gather solutions

that are only dominated by the solutions of the previous fronts. (C) The stochastic

multi-objective optimization algorithm NSGA-II (Deb et al., 2002). Starting with a

population of N randomly generated individuals, an offspring population of N new

candidate solutions is generated using the best candidate solutions of the current

population. The union of the offspring and the current population is then ranked

according to Pareto dominance (here represented by having solutions in different

ranks connected by lines labeled F1, F2, etc.) and the best N candidate solutions

form the next generation.
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Preventing early convergence of EAs is typically a good example where helper ob-

jectives can be useful (Knowles et al., 2001). A promising way to prevent this

problem consists in preserving the diversity of the population. Thanks to this di-

versity, some individuals are likely to get out of local optima and then to populate

more promising area of the search space. The diversity of the population can be

fostered by using an additional objective that defines a selection pressure to favor

individuals that are different from the rest of the population. The diversity of one

individual (xi) can be computed as the average distance from this individual and

the others in the population.

diversity(xi) =
1

N

j=N
∑

j=0

d(xi, xj) (2.2)

where xi denotes the i-th individual of the population and N the size of the popu-

lation. The function d(x, y) computes the distance between two individuals.

There exist several ways to compute the distance between two individuals. One

way consists in computing a Euclidean or an editing distance between the two

genotypes (mainly when they are strings of numbers or characters, Gomez (2009);

Mouret and Doncieux (2009)). Another way can be to compute the distance ac-

cording to the phenotypes (Mouret and Doncieux, 2012), but for these methods

there is no proof that two similar (or very different) genotypes or phenotypes will

lead to similar solutions (respectively, different solutions). Avoiding premature con-

vergence requires having a diversity of solutions, which is not necessarily provided

by a diversity of genotypes (or phenotype). For this reason, the most promising

way to compute the distance between two individuals is to consider the behavior of

the individual (typically in evolutionary robotics, we can consider the robot’s be-

havior, Mouret and Doncieux (2012)). We call this type of diversity the behavioral

diversity. Nonetheless, computing a distance between two behaviors is still an open

question because it requires finding a descriptor of this behavior that can then be

used in the distance computing, but there is not universal procedure to define this

descriptor. For example, with a mobile robot it can be the robot’s trajectory or its

final position.

2.2.3 Novelty Search

The Novelty Search is a concept introduced by Lehman and Stanley (2011a), which

proposes to look for novel solutions (or behaviors) instead of focusing on fitness

optimization. It goes in a sense further than the behavioral diversity because, in-

stead of only considering the current population and promoting the most different

individuals, the Novelty Search considers all the individuals encountered during the

evolutionary process (or a representative subset) and rewards the most novel ones.

To keep a trace of all these individuals, this algorithm stores the individuals (or a

descriptor of them) into an archive, which is used afterwards to compute the nov-

elty of the newly generated individuals. The results of this algorithm suggest that,
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for some problem families, looking for novel solutions is more interesting than opti-

mizing a performance objectives (Stanley and Lehman, 2015). For example, it has

been shown that the Novelty Search algorithm outperforms traditional evolutionary

algorithms on some deceptive tasks (like the deceptive maze experiment, Lehman

and Stanley (2011a)).

Lehman and Stanley then extended their algorithm to deal with a longstanding

challenge in artificial life, which is to craft an algorithm able to discover a wide

diversity of interesting artificial creatures. While evolutionary algorithms are good

candidates, they usually converge to a single species of creatures. In order to

overcome this issue, they recently proposed a method called Novelty search with

local competition (Lehman and Stanley, 2011b). This method, based on multi-

objective evolutionary algorithms, combines the exploration abilities of the Novelty

Search algorithm (Lehman and Stanley, 2011a) with a performance competition

between similar individuals.

The Novelty Search with Local Competition simultaneously optimizes two ob-

jectives for an individual: (1) the novelty objective (Novelty(x)), which measures

how novel is the individual compared to previously encountered ones, and (2) the

local competition objective (Qrank(xi)), which compares the individual’s quality

to the performance of individuals in a neighborhood, defined with a morphological

distance.

With these two objectives, the algorithm favors individuals that are new, those

that are more efficient than their neighbors and those that are optimal trade-offs

between novelty and “local quality”. Both objectives are evaluated thanks to an

archive, which records all encountered families of individuals and allows the algo-

rithm to define neighborhoods for each individual. The novelty objective is com-

puted as the average distance between the current individual and its k-nearest

neighbors, and the local competition objective is the number of neighbors that the

considered individual outperforms according to the quality criterion.

Lehman and Stanley (2011b) successfully applied this method to generate a high

number of creatures with different morphologies, all able to walk in a straight line.

The algorithm found a heterogeneous population of different creatures, from little

hoppers to imposing quadrupeds, all walking at different speeds according to their

stature.

The novelty objective fosters the exploration of the reachable space. An in-

dividual is deemed as novel when it shows a behavioral descriptor (B(xi)) that

is different from those that have been previously encountered. The novelty score

of an individual xi (Novelty(xi)) is set as the average distance between the be-

havioral descriptor of the current controller (D(xi, which can be for example the

ending point of a mobile robot) and the descriptors of the individuals contained in

its neighborhood (N (xi)):

Novelty(xi) =

∑

xj∈N (xi) d(B(xi)−B(xj))

card(N (xi))
(2.3)

To get high novelty scores, individuals have to show descriptors that are differ-
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ent from the rest of the population. Each time a controller with a novelty score

exceeds a threshold (ρ), this controller is saved in an archive. Given this archive

and the current population, a neighborhood is defined for each individual (N (xi)).

This neighborhood regroups the k nearest individual, according to the behavioral

distance. We can see that the definition of the Novelty Search objective is similar

to the behavioral diversity, but several main differences exist. The fist difference

is that the novelty search considers only the k-nearest individuals instead of the

whole population when computing the average distance. The second and main dif-

ference remains in the fact that while the behavioral diversity considers only the

individuals of the current population, the novelty search considers also individuals

that have been stored in the archive. This allows the Novelty Search algorithm to

keep a history of what it found.

The local quality rank promotes individuals that show particular properties,

like stability or accuracy. These properties are evaluated by the quality score

(quality(xi)), which depends on implementation choices and particularly on the

type of phenotype used. In other words, among several individuals that show the

same descriptor, the quality score defines which one should be promoted. For an

individual xi, the rank (Qrank(xi)) is defined as the number of controllers from its

neighborhood that outperform its quality score: minimizing this objective allows

the algorithm to find individuals with better quality than their neighbors.

Qrank(xi) = card(xj ∈ N (xi), quality(xi) < quality(xj)) (2.4)

2.2.4 Evolutionary robotics

Evolutionary algorithms have been widely used to learn behaviors in robotics during

the two last decades. In the mid 90’s, several works used EAs to find neural network

parameters to control robots. For example, Lewis et al. (1994) evolved a bit string

of 65 bits to tune the synaptic connections between 12 neurons to generate insect-

like like walking gaits with a physical six-legged robot. The evolutionary process

was divided into two steps: the first step focuses on generating oscillations between

pairs of neurons while the second step uses these oscillating bi-neurons and inter-

connects them to generate walking gaits. This division in the evolutionary process

aims to bootstrap the generation of the gait but the total process still required

between 200 and 500 physical trials.

Another example comes from Floreano and Mondada (1994) who used an EA

to generate a neural network that produces a navigation and obstacle avoidance

behavior for a physical Khepera robot (Mondada et al., 1994) (a miniature two-

wheeled robot). The main objective of this work was to reproduce “Braitenberg”

behaviors (Braitenberg, 1986) with a neural network that has its parameters tuned

by an EA. It took between 30 and 60 hours and about 8000 evaluations on the

physical robot to generate such behaviors. The neural network has about 20 pa-

rameters (the exact number of evolved parameters is not specified in the paper). It

is interesting to note that this is one of the first work using EAs on a physical robot
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for hours without external human interventions.

Similar procedures have been used to evolve behaviors for various types of robots

or various kinds of behaviors (in simulation). For example, Beer and Gallagher

(1992) evolved a dynamical neural network that allows a mobile robot to reach

predefined positions based on sensory stimulus (Chemotaxis). Similarly, Cliff et al.

(1993) evolved a neural network that maps the sensory perceptions (from the robot’s

camera, its whiskers and bumpers) to the motors. This work is particularly inter-

esting as it proposes to see the robot as a moving set of sensors regardless the way

the robot is actuated. Based on this concept, the authors attached the camera and

the other sensors on pole beneath a Cartesian gantry. The “robot” is thus actuated

by the gantry and moves through an arbitrary scene. Non-mobile robots have also

been investigated, for example Whitley et al. (1994) evolved a neural network that

control a simulated balancing pole and Moriarty and Miikkulainen (1996) applied

an EA on a simulated robotic arm to generate obstacle avoidance behaviors with a

neural network.

During the following decade, different concepts have been investigated based

on these ideas. For example, EAs have been applied on complex robots like in

Zykov et al. (2004) in which a physical nine-legged robot learns dynamic gaits. The

EA optimizes the coefficient of a matrix that defines the periodic movement of the

12 pneumatic pistons that constitute the robot (corresponding to 24 valves and a

total of 72 parameters). This work needed about 2 hours and between 500 and 750

physical trials to generate a walking gait on the physical robot.

Another research direction focused on the type of genotypes/phenotypes used

to encode the controller. For example, Yosinski et al. (2011) used HyperNEAT,

a generative encoding that creates large-scale neural networks with the ability to

change the network’s topology (Stanley et al., 2009), to control a physical quadruped

robot. The generative ability of this new type of encoding opens the possibilities

of behavior that become, theoretically, infinite. Other approaches used EAs to

optimize the parameters of predefined and parametrized leg trajectories (Chernova

and Veloso, 2004; Hornby et al., 2005) or cellular automata (Barfoot et al., 2006)

to control legged robots. It is worth noting that one of the behaviors found with

these methods has been integrated in the consumer version of the quadruped robot

named AIBO (Hornby et al., 2005). All these techniques required between 2 and

25 hours to generate walking gaits and between 500 and 4000 evaluations.

Some key concepts also emerged during the last decade and continue to influence

the current research in learning for robotics. For example, the notion of embodiment

(Pfeifer and Bongard, 2007) proposes to see the cognitive abilities of robots, not

only as consequence of the complexity of the robot’s brain, but as the combination

and the synergies of the interactions of the robot’s body and its brain. However,

such interactions are challenging to generate with engineering methods and EAs

represent a promising approach to evolve the brain and/or the body based on the

robot’s interactions with its environment.

A very good example of this principle is the Golem project (Lipson and Pollack,

2000) that uses EAs to evolve both the morphology of the robot and the neural



22 Background

network that controls the robot. Another example is the work of Bongard et al.

(2006), which uses an EA and the results (sensory perceptions) of the interactions

of the robot with the environment to automatically generate a model (in a physical

simulator) of the robot’s morphology. Such model can be used afterward to learn

new behaviors in simulation.

The domain of evolutionary robotics also provides new tools to explain the

biological evolution (Smith, 1992; Lenski et al., 1999). For example, researchers

study the principles of distributed evolution thanks to swarm of robots, where each

robot represents an individual of the population. This concept, also known as

embodied evolution (Watson et al., 2002) offers several promising properties, like

the ability to distribute the evaluation of the individual but it may also allow new

collective behaviors to emerge, like cooperation (Bernard et al., 2015) or altruism

(Montanier and Bredeche, 2013; Waibel et al., 2011).

2.2.5 The Reality Gap problem and the Transferability approach

Most of the previously described methods and EAs in general, typically require

to test several thousands of candidate solutions during the optimization process

(see Table 2.1). This high number of tests is a major problem when they are

performed on a physical robot. An alternative is to perform the learning process in

simulation and then apply the result to the robot. Nevertheless, solutions obtained

in simulation often do not work well on the real device, because simulation and

reality never match perfectly. This phenomenon is called the Reality Gap (Jakobi

et al., 1995; Koos et al., 2013b).

Several methods have been proposed to deal with this problem. For example

Jakobi et al. (1995) proposed to use a minimal simulator and to add noise to this

simulator, in order to hide the details of the simulator that the robot may use to

artificially improve its fitness. This technique has been successfully applied to a

T-maze experiment with a Khepera robot (Mondada et al., 1994) and to a visual

discrimination task on a gantry robot Jakobi et al. (1995). It has also been used to

allow an octopod robot to learn walking gaits (Jakobi, 1998). However, this method

seems to be sensitive to some parameter values, as Koos et al. (2013b) were unable

to reproduce the original results of the T-Maze experiment.

Another example of method to deal with the reality gap problem consists in

using simultaneously several simulators (Boeing and Braunl, 2012). Each candi-

date solution is evaluated on all the simulators and its fitness value is defined as

a statistical combination of the fitness values coming from each simulator. With

this method, a good candidate solution should show a good fitness value with every

simulator, which may allow solutions to cross the reality gap, as it is statistically un-

likely that the simulation details, used to artificially improve the fitness, are shared

across all the simulators. This method has been applied to a wall following exper-

iment with an autonomous underwater robot (Boeing and Braunl, 2012) and to a

locomotion task with a bipedal robot (Boeing, 2009). However, this method signif-

icantly increase the computational cost of the algorithm, as it requires evaluating
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the solutions on several simulators instead of on a single one.

In Lehman et al. (2013), the authors made the hypothesis that behaviors that

react to their environment are more likely to be able to cross the reality gap. In-

deed, if the individual avoids to over-fit its behavior according to the simulated

environment but rather reacts to the situations it is actually facing, it is likely that

such behavior is able to handle the differences between the simulation and the real-

ity. This hypothesis has been successfully tested on a maze navigation task using a

Khepera III robot. The authors also showed that their approach can be combined

with Jakobi’s noise-based technique (Jakobi et al., 1995) to further improve the

robot’s ability to cross the reality gap.

The transferability approach (Koos et al., 2013b,a; Mouret et al., 2012) aims to

cross the reality gap by finding behaviors that act similarly in simulation and in

reality. During the evolutionary process, a few candidate controllers are transferred

to the physical robot to measure the behavioral differences between the simulation

and the reality; these differences represent the transferability value of the solutions.

With these few transfers, a regression model is built up to map solution descriptors

to an estimated transferability value. The regression model is then used to predict

the transferability value of untested solutions. The transferability approach uses a

multi-objective optimization algorithm to find solutions that maximize both task-

efficiency (e.g. forward speed, stability) and the estimated transferability value.

This mechanism drives the optimization algorithm towards solutions that are

both efficient in simulation and transferable (i.e. that act similarly in the simu-

lation and in the reality). It allows the algorithm to exploit the simulation and

consequently to reduce the number of tests performed on the physical robot.

This approach was successfully used with an E-puck robot in a T-maze and

with a quadruped robot that evolved to walk in a straight line with a minimum of

transfers on the physical robots (Koos et al., 2013b). The reality gap phenomenon

was particularly apparent in the quadruped experiment: with a controller opti-

mized only in simulation, the virtual robot moved 1.29m (in 10s) but when the

same controller was applied on the physical robot, it only moved 0.41m. With

the transferability approach, the obtained solution walked 1.19m in simulation and

1.09m in reality. These results were found with only 11 tests on the physical robot

and 200, 000 evaluations in simulation. This approach has also been applied for

humanoid locomotion (Oliveira et al., 2013) and damage recovery on a hexapod

robot (Koos et al., 2013a).

2.2.6 Partial conclusion

The previous examples of applications of EAs in robotics and also in the other

application domains (like structures, objects, pictures, creatures generation) show

the ability of EAs to create and generate a large variety of things, a kind of creativity

ability (Nguyen et al., 2015). The creativity is a feature that is likely to be required

in learning and adaptation algorithms. For example, a behavior that allows a robot

to walk in spite of a broken leg may be significantly different from the behavior
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it used when it was intact. Adaptation algorithms thus need to find behaviors

that may be far (in the search space) from the initial starting point (global search

techniques) and for this aspect, EAs seem particularly well suited.

However one of the main drawbacks of EAs is the number of evaluations re-

quired to generate those solutions (between several hundreds to several thousands

trials, see section evolutionary algorithms in table 2.1). This is probably the di-

rect and inevitable consequence of the creativity: being creative requires testing a

large variety of things and all these tests represent a cost in term of learning time.

The balance between creativity and learning time is important for applications like

adaptation to unexpected situations. We cannot imagine a robot trying thousand

actions when it has to adapt for several reasons: first, because the power resources

are often limited on autonomous robots (battery) and second, because of safety

reasons (the robot can be damaged during intensive learning session).

2.3 Policy search algorithms

2.3.1 Common principles

Reinforcement learning (RL) is a research field that has been significantly growing

during the three last decades and that shows impressive results. A recent illustration

of these results is the work from Mnih et al. (2015), in which a reinforcement learning

algorithm coupled with a deep learning algorithm is able to learn to play a large

variety of Atari games. As mentioned previously in this chapter (see section 2.1),

traditional RL algorithms are, in the vast majority, designed to work with small

and discrete state and action spaces, while Learning in robotics involves most of

the time using continuous and high dimensional state spaces and action spaces. It

is why most of applications of RL in robotics use Policy Search algorithms (PS),

which is known to have a better scalability and to work in continuous domains

(Sutton et al., 1999; Deisenroth et al., 2013b).

Most of PS algorithms can be decomposed into one loop of three steps (depicted

in Fig: 2.3): (1) The exploration step in which the current policy is somehow per-

turbed in order to produce variations in robot’s movement; (2) the policy evaluation

step, which aims to assess the quality of the newly generated behaviors and (3) the

policy update step, which changes the policy parameters according to the acquired

data. In the following subsections, we will detail how these different steps are

achieved in some of the most common PS algorithms.

While policy search and evolutionary algorithms are two different research fields

that grew independently, it is interesting to note that they share strong similarities

in their overall structure. For instance, the exploration step of PS algorithms has

the same goal as the mutation operators in EAs and the update step is close to

the selection operators in EAs. Two of the main differences between EAs and PS

algorithms are (1) the evaluation step, which considers episodic evaluations in the

vast majority of EAs and step-based evaluations in PS algorithms, and (2) the

use of a population in EAs while only one policy is kept from one iteration to the
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Table 2.1: How long many previous robot learning algorithms take to run. While comparisons

between these algorithms are difficult because they vary substantially in their objective, the size of the search

space, and the robot they were tested on, we nonetheless can see that learning times are rarely below 20

minutes, and often take hours.

approach/article starting behavior ⋆ evaluations learning time robot DOFs† param.‡ reward

Evolutionary Algorithm

Chernova and Veloso (2004) random 4,000 5 h quadruped 12 54 external

Zykov et al. (2004) random 500 2 h hexapod 12 72 external

Hornby et al. (2005) non-falling 500 25h quadruped 19 21 internal

Barfoot et al. (2006) random 1,150 10 h hexapod 12 135 external

Yosinski et al. (2011) random 540 2 h quadruped 9 5 external

Bongard et al. (2006)1 random 16 4 h hexapod 12(18) 30 internal

Policy Gradient Methods

Kimura et al. (2001) n/a 10,000 80 min. quadruped 8 72 internal

Kohl and Stone (2004) walking 345*3 3 h quadruped 12 12 external

Tedrake et al. (2005) standing 950 20 min. biped 2 46 internal

Geng et al. (2006) walking n/a 4-5 min. bipedal 4 2 internal

Bayesian optimization

Lizotte et al. (2007) center§ 120 2h quadruped 12 15 internal

Calandra et al. (2014) random 40*3 46 min. biped 4 8 external

Tesch et al. (2011) random 25 n/a snake 16 7 external

⋆Behavior used to initialize the learning algorithm, usually found via imitation algorithms. † DOFs: number of controlled

degrees of freedom. ‡ param: number of learned control parameters.§ center: center of the search space.
1 The authors do not provide time information, reported values come from the implementation made in Koos et al. (2013a).
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next in PS algorithms. However, these differences tend to fade and the borderline

between EAs and PS algorithms becomes more and more blurry (Stulp and Sigaud,

2013). For example, some of the most recent PS algorithms use episodic evaluations

(Daniel et al., 2012; Stulp and Sigaud, 2012) and some EAs (steady state genetic

algorithms, Syswerda (1991)) generate only one or two individuals per generation.

These similarities are well illustrated by a few algorithms that are considered both

as efficient EAs and PS algorithms, like the CMA-ES algorithm (Hansen, 2006),

which is a generic optimization algorithm used in both the fields of policy search

(Stulp and Sigaud, 2013) and artificial evolution (Igel, 2003).

In the following sections we will present some of the most common concepts in

PS algorithms for robot learning and some well-known algorithms. In particular,

we will see that two approaches exist to perform the exploration of the search

space and the evaluation of the policies: (1) The first approach considers the whole

execution of the policy (episodic) while (2) the second approach considers each

time-step of the execution. It is common that algorithms that use one of these

approaches for the exploration use the same approach for the evaluation step, and

vice versa (Deisenroth et al., 2013b). We will also see that the vast majority of

PS methods update their policy by following a local estimate of the gradient of the

performance function. The more advanced methods mainly aim to mitigate some of

the limitations of this gradient based approach, for example to deal with plateaus in

the function or with the sensibility of some parameters. This common principle in

PS algorithms makes these algorithms more related to local search techniques than

to global ones. This aspect is well illustrated by the fact that the vast majority of

experiences using PS algorithms start from a policy learned via an imitation learning

algorithm and are used to improve its quality. In this section we will deliberately

focus our analysis on model-free policy search methods because the last section of

this chapter will present in detail the Bayesian Optimization algorithm (see section

2.4), which is a model-based policy search algorithm and which is known to perform

more global optimization than model-free approaches (Jones et al., 1998)

In addition to all the details presented in this chapter, we invite the interested

readers to refer to Deisenroth et al. (2013b) and Kober et al. (2013). These two

reviews cover a large part of work done in this domain and they go in very deep

details on a large number of algorithms. Most of the information presented in this

section comes from these two reviews.

2.3.1.1 Exploration

In PS algorithms, the policy is, in the majority of work, parametrized by a parameter

vector θ (Kober and Peters, 2011; Kohl and Stone, 2004; Kormushev et al., 2010).

During the exploration step, PS algorithms generate several variations of the current

policy. The whole execution of a policy is called a rollout. Two main exploration

strategies are considered in the literature: (1) exploration in the action space and

(2) exploration in the parameter space.

The exploration in the action space uses the parameters of the current policy



2.3. Policy search algorithms 27

θ

Evaluation

Update

Exploration

rollout1

rollout2

rollout3

rollout4

rolloutk

reward1

reward2

reward3

reward4

rewardk

θ =θ +δθ 

Figure 2.3: Generic Policy Search iteration. The current policy defined with the

parameter vector θ is used to generate k rollouts thanks to perturbations on the

parameters or on the motor commands. Each rollout is evaluated on the system

and is associated to a reward value or several intermediate rewards. Based on these

rewards, the current policy is updated and the process repeats.

(θ) for all the rollouts and adds a random (most of the time Gaussian) perturbation

to the commands that are sent to the motors. This perturbation is most of the time

re-sampled at every time step and the corresponding commands are recorded to be

used during the update policy step. This approach is one of the first exploration

strategies that appeared in the literature (Williams, 1992; Deisenroth et al., 2013b).

The exploration in the parameter space directly perturbs the parameter of the

current policy. Thus, the policy parameters of the kth rollout is equal to θk = θ +

N (0, Σ). Note that with this exploration strategy, the motor commands generated

by the new policies are no longer altered via a random perturbation because the

rollouts use different parameters and are thus already different. Like with the action

space exploration, these modifications of the parameters can be done only at the

beginning of the evaluation (episodic) or at every time step (Deisenroth et al.,

2013b).

In these two exploration strategies, the applied perturbations are most of the

time Gaussian using diagonal covariance matrix (Σ). However, non diagonal ma-

trices can also be used to perform correlated exploration For example, CMA-ES

uses such correlated exploration strategy: the covariance matrix used for the explo-

ration is updated (or adapted, for consistency with the algorithm’s name) according

to the previous evaluations. In Deisenroth et al. (2013b), the authors highlight that

using a full covariance matrix increases significantly the algorithm learning speed

(Stulp and Sigaud, 2012) but also that estimating this matrix can be very difficult

when the search space becomes very large as it requires a large number of samples

(Rückstiess et al., 2010).

2.3.1.2 Evaluation of the policy

The goal of the evaluation step is to assess the quality of the policy and to gather

data about its execution that will be used during the policy update step. The data

acquired during the evaluation of each policy are typically the explored states, the
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actual motor commands used and the intermediate rewards. As mentioned in the

beginning of this section, the evaluation of the policy quality can consider every

time steps of its execution or its full execution (episodic evaluation).

In most of PS algorithms using time-step evaluations, the quality of the policy

is assessed by the sum of the future rewards that the system will receive at every

time step until the end of the episode (at time step T). This quality is computed

for every time step, leading to the quality Qt that corresponds to the state-action

value function:

Qt(xt, ut) = E

[

T
∑

h=t

rh(xh, uh)

]

Such a function is in practice very difficult to compute in large state and action

spaces and it is often required using approximation methods, like Monte-Carlo

(Metropolis and Ulam, 1949), to estimate its value. However, these approximation

algorithms lead most of the time to a large variance in their results or require a

very large number of samples. Fortunately, most PS algorithms are robust enough

to deal with noisy approximation of the quality. Therefore, most PS algorithms use

directly the sum of the immediate reward (Deisenroth et al., 2013b):

Qt(xt, ut) =
T
∑

h=t

rh(xh, uh)

This quality function is used in the most common PS algorithms like REINFORCE

algorithm (Williams, 1992), the POWER algorithm (Kober and Peters, 2011) and

PI2 (Theodorou et al., 2010). A discount factor over time is often used in order to

reduce the influence of future time steps (with γ ≤ 1):

Qt(xt, ut) =
T
∑

h=t

γhrh(xh, uh)

Episodic evaluations can rely on this quality definition too by taking the quality

of the policy at the first time step (Q0), but many other reward functions can be

employed in the context of episodic evaluations. For example, the reward function

can directly consider the quality of a whole episode without the constraint of de-

composing the reward into intermediate ones. This constraint is important, as a

large number of quality functions cannot be decomposed into several intermediate

rewards. For example, learning a walking gait on a legged robot and trying to

maximize its velocity is typically a task where it is difficult to define intermediate

rewards as the robot needs to walk for a few seconds in order to assess its average

speed. In general, the episodic return of policy θ is called J(θ) instead of Qt. In

the following sections, we will mainly consider episodic evaluations and thus use

this notation when it is appropriate.

The PS approaches that have initially been designed to deal with step-based or

episode-based evaluations have, most of the time, been extended to work with the

other type of evaluations. For example the episodic Natural Actor Critic algorithm
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(eNAC) that we will present in the following sections has also a step-based variant

presented in the same paper (Peters and Schaal, 2008a). The use of one type

of evaluation rather than the other depends mainly on the problem. Step-based

evaluations are likely to provide more data (one at every time step) and thus being

more informative but such evaluation type cannot be applied to all the robotic

applications (Deisenroth et al., 2013b).

2.3.1.3 Update of the policy

The update policy step uses the evaluated rollouts and the recorded data (quality,

intermediate rewards, states trajectory) and updates the parameters of the current

policy (θ) in the direction that will most likely improve its quality. In this section

we will present some of the most common update strategies in order to illustrate

the different inspirations that are used in PS algorithms. This section does not aim

to be exhaustive as there exist a very large variety of update strategies and a deep

comparison of these methods would be off of the scope of this manuscript.

Policy Gradient One of the most common approach to update the policy pa-

rameter is the local gradient of the quality function (according to the parameters’

dimensions):

θ = θ + α∇θJ(θ)

where α is the learning rate and ∇θJ(θ) is the gradient of J(θ) according to θ.

The gradient of the quality function cannot be analytically computed as the quality

function is unknown. Consequently, the methods relying on the gradient actually

use an approximation of its value. A very simple and commonly used (Kohl and

Stone, 2004; Peters and Schaal, 2008b, 2006) way to approximate the gradient is to

use the finite difference method. This method uses a first-order Taylor-expansion

of the quality function based on the rewards obtained from the rollouts to perform

a linear regression that estimates the gradient:

∇θJ(θ) =
[

∆θ0 ∆θ1 . . . ∆θk

]+













∆J(θ0)

∆J(θ1)
...

∆J(θk)













where ∆θi is a perturbation vector applied on the original parameter vector θ (θi−
θ) and ∆J(θi) is the quality difference between the rollout i and the current policy

quality (J(θi) − J(θ)). The pseudo-inversion (symbolized by the “+” exponent)

performs a least mean square regression between the applied perturbations and the

variations of the quality. This simple approach, while being a local search technique,

is very powerful on smooth or not too noisy quality function but it is very sensitive

to its parameters like the learning rate α the number of rollouts k and the amplitude

of the perturbations (Kober et al., 2013). In order to mitigate these limitations and

to increase the convergence speed, other methods to approximate the gradient have
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been developed (Peters and Schaal, 2006), like the likelihood ratio methods (also

known as the REINFORCE trick, Williams (1992)) or the natural gradient methods

(Peters and Schaal, 2008a). We will detail these two approaches in the following

paragraphs.

The likelihood ratio methods assumes that each rollout, generated thanks to the

current stochastic policy θ, has a trajectory τ and an accumulated reward r(τ) =
∑T

k=0 αkrk(τ). The quality of the θ parameters is computed as the expectation of

this reward according to potential trajectories:

J(θ) = E[r(τ)] =

∫

p(τ |θ)r(τ)dτ

The gradient is thus equal to:

∇θJ(θ) =

∫

∇θp(τ |θ)r(τ)dτ

The probability of each trajectory given θ can be analytically computed as

(Deisenroth et al., 2013b):

p(τ |θ) = p(x0)
T
∏

t=0

p(xt+1|xt, ut)πθ(xt|ut)

The gradient of this expression is in practice very hard to compute, first because

of the transition model that defines p(xt+1|xt, ut) is most of the time unknown and

also because of the derivative of this product may lead to analytic equations that

may be not tractable.

In order to deal with this situation, the likelihood ratio can be used to simplify

the equation as it states that (Glynn, 1987):

∇θp(τ |θ) = p(τ |θ)∇θ log p(τ |θ) (2.5)

Thanks to this identity, the gradient of the quality can be reduced to:

∇θJ(θ) =
∫

p(τ |θ)∇θ log p(τ |θ)r(τ)dτ

= E
[

∇θ log p(τ |θ)r(τ)
]

= E
[
∑T

t=0 ∇θ log(πθ(xt|ut))r(τ)
]

This last expression has been obtained thanks to the log operator of the likeli-

hood ratio that transformed the probability product into a sum. Moreover, the

p(xt+1|xt, ut) term can be removed as it does not depend on θ, which is the case

as long as the policy is stochastic (Kober et al., 2013; Deisenroth et al., 2013b).

Finally, the gradient can be approximated thanks to a Monte-Carlo sampling to

assess the expectation of this last expression. Algorithms using the likelihood ratio

to approximate the gradient usually add a baseline to the reward function in order

to reduce the variance introduced by the Monte-Carlo sampling. For more details,

readers can refer to Kober et al. (2013) and to Deisenroth et al. (2013b).
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It is worth noting that this approach to approximate the gradient performs the

exploration by itself as it estimates the gradient based on the variations generated

by the stochastic policy. This approach has been proved to converge to a good

estimate of the gradient faster than the finite difference method (Glynn, 1987) (it

requires fewer samples to obtain an accurate estimate of gradient than the finite

difference method). Unfortunately this approach requires using stochastic policy

(otherwise a model of the transition function has to be used), which limits the

type of controller that can be used with this method. The REINFORCE algorithm

introduced in Williams (1992) uses the likelihood ratio and can be considered as

one of the first PS algorithm. It has, for example, been used to find the weights of

a neural network (containing stochastic units).

The natural gradient (Amari, 1998) is another improvement of the traditional

gradient optimization. It has initially been proposed to make it easier to cross

plateaus in the quality function (regions with only small variations). The main

idea of this method consists in finding the variation of the parameter vector (∆θ)

that remains as close as possible to the actual gradient (∇θJ) but at a fixed dis-

tance between the prior distribution p(τ |θ) and the next one (p(τ |θ + ∆θ)). In

natural gradient approaches, like the episodic Natural Actor Critic (eNAC, Peters

and Schaal (2008a)), this distance is computed thanks to the Kullback-Leibler di-

vergence (dKL, Kullback and Leibler (1951)) defined with the Fisher-information

matrix (Fθ) as follow:

Fθ = E

[

∇θ log p(τ |θ)∇θ log p(τ |θ)⊺
]

dKL

(

p(τ |θ), p(τ |θ + ∆θ)

)

= ∆⊺

θFθ∆θ

The perturbation of the parameter vector that is the most similar to the actual

gradient but with a predefined distance between the two distributions can be ana-

lytically defined as:

∆θ ∝ F¯1
θ ∇θJ(θ)

The distance (included in the proportional operator) is often subsumed into the

learning rate of the gradient descent:

θ = θ + αF¯1
θ ∇θJ(θ)

This approach has to be performed in addition to one of the previously presented

methods as the gradient ∇θJ(θ) still needs to be estimated (for example with

the likelihood ratio method, Williams (1992); Peters and Schaal (2008a)). The

main purpose of this method is to increase the convergence speed of the learning

algorithm, while profiting from most of the advantages of the gradient estimations

methods. However, the computational complexity of this method can prevent the

application of this method in some situations (Deisenroth et al., 2013b).
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Other approaches Several other approaches have been developed to address lim-

itations or drawbacks raised by gradient policy search methods. For example, the

learning rate of such methods is a very sensitive parameter that directly impacts

the convergence speed and the performance of the algorithms. In order to alleviate

this issue, several algorithms based on the Expectation-Maximization (EM) algo-

rithm (Dempster et al., 1977) have been developed and used to learn policies in

robotics. This method transforms the reward value of the behaviors into an im-

proper probability distribution of the “reward-event”, which is a binary observation

of success. This transformation is direct when the reward function is bounded as

it can be represented as a ratio between its minimum and maximum value. Re-

wards that are close to the minimum can be considered as a low probability of the

reward event, while high rewards can be seen as a high probability of the reward

event. For unbounded reward function, the rewards can be transformed thanks to

a soft-max function that will map each value between 0 and 1. The EM algorithm

is used to find the policy parameters that maximize the log-marginal likelihood of

the reward-event. It first evaluates the expectation of the current parameters, for

example thanks to a Monte-Carlo sampling, and then uses these samples to update

the parameters in order to maximize the likelihood. The Policy learning by Weight-

ing Exploration with Returns (PoWER) algorithm uses this approach and does not

require specifying a learning rate as the update of the policy parameters is directly

achieved by the maximization step. Unfortunately, such hidden update phases may

lead to unsafe behaviors on the physical robot and do not guarantee the avoidance

of local optima (Kober et al., 2013).

The information theory is another source of inspiration for the update policies,

for example the Relative Entropy Policy Search (REPS, Peters et al. (2010)) algo-

rithm, in which the Kullback-Leibler divergence is used to compute the distance

between the current trajectory distribution and the one obtained after the param-

eter update (similarly to the natural gradient policy search). This algorithm then

uses a weighted average of the likelihood estimate (like in EM methods described

above) to update the policy parameters without requiring a learning rate. It thus

combines the advantages of both natural gradient and EM methods. An application

example of the REPS algorithm is given in the next section.

Policy search algorithms can also take inspiration from optimal control the-

ory to design update policies. For example, in the Policy Improvement with Path

Integrals (PI2, Theodorou et al. (2010)), the problem is expressed into a Hamil-

ton–Jacobi–Bellman equation and then the Feynman-Kac lemma is used to trans-

form this equation into a path integral. Such integral can then be approximated

thanks to a Monte-Carlo sampling.

2.3.1.4 Model-based policy search algorithms

In addition to the model-free algorithms presented in this section, there also exist

several model-based approaches. The goal of such method is to build a model of

the quality function based on the samples acquired on the system and then use this
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model to improve the policy. The main challenge of this family of algorithms is to

deal with the inaccuracies of the model because the model is often called recursively

to make long-term predictions, leading to very large errors. The sources of the

inaccuracies are typically inadequate models (linear models applied on non linear

systems) and acquisition noise. Two mains approaches have been considered to build

the model: (1) Locally Weighted Bayesian Regression for example in Bagnell and

Hneider (2001); Ng et al. (2006); Kim et al. (2003) and (2) Gaussian Processes (GPs,

Rasmussen and Williams (2006)) in Ko et al. (2007); Deisenroth and Rasmussen

(2011); Deisenroth et al. (2011). In the last part of this chapter we will see in

details Bayesian Optimization, a model-based optimization algorithm using GPs,

as we will use it in the work presented in this manuscript. Consequently, we will not

elaborate much more about model-based policy search algorithms in this section.

2.3.2 Application in behavior learning in robotics

Like evolutionary algorithms, policy search algorithms have been applied on a large

variety of robotic setups. However, it is important to note that all the experiments

presented in this section, like the majority of studies using PS algorithms in robotics,

start from an initial policy that is either hand-coded, or learned via a demonstration

(imitation learning), and then use the PS algorithm to fine tune the parameters

(Deisenroth et al., 2013b).

The eNAC algorithm has been used by Peters and Schaal (2008b) to allow a

physical robot to learn how to play baseball. Starting from an initial policy learned

by imitation, the robot fine tuned the 70 parameters of its policy and successfully

hit the ball (placed on a T-stick) after between 200 and 300 rollouts. The time-

step based version of NAC (Peters and Schaal, 2008a) has also been used by Ueno

et al. (2006) to control the maintenance phase of a walking gait with a quasi-

passive dynamic bipedal robot. The experiments showed that only about 20 trials

on the physical robot were required to learn the 4 parameters allowing the robot

to walk (starting from initial phase using a hand-tuned controller). In the work of

Kormushev et al. (2010), the PoWER algorithm is used to learn to flip pancakes

with a physical robotic arm. After 50 rollouts the algorithm found a behavior able

to flip pancakes more than 90% of the time.

The ball in the cup is another experiment that has been used several times in

the literature to evaluate PS algorithms. Similarly to the previous example, the

PoWER algorithm has been used to solve this task with a physical robot after only

75 rollouts (Kober and Peters, 2011). This work has then been extended with a more

advanced controller that takes into account the position of the ball (Kober et al.,

2008). In this case, the robot needed between 500 and 600 rollouts (in simulation)

to find the 91 parameters that allow the robot to achieve the task. The authors

report that such long learning time is most probably due to the high variance in

the initial state of the ball. The same experiment has been used in Stulp et al.

(2014) to assess the performance of a variant of PI2 (called PIBB for Black-Box

functions and which is close to CMA-ES) improved with the ability to discover
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“skill options”. This algorithm required about 90 trials to discover and distinguish

two configurations of the task (two different rope lengths) and then managed to

place the ball in the cup.

In Kupcsik et al. (2014), the authors used a variant of the REPS algorithm

(named GPREPS, that combines learned probabilistic forward models via GPs and

the REPS algorithm, Peters et al. (2010)) to allow a physical robot to play hockey.

In this task the robot had to shoot a puck (by hitting it) at a target puck, in order

to displace this second puck from a predefined distance. The context of each task

is then defined by the x and y position of the target puck and the desired distance

of motion. The goal of this experiment is to show that this learning algorithm

is able to achieve the task and to generalize over the different contexts (which

change between each rollout). After about 80 rollouts, the algorithm inferred the

15 parameters that allow the robot to achieve its task regardless the current context.

Like in the previous experiment, the initial policy was obtained through imitation

learning.

PS algorithms have also been used to learn walking gaits. For example, Kohl

and Stone (2004) used a gradient-based method to optimize the 12 parameters of

predefined foot trajectories of an Aibo robot (four-legged robot). The algorithm

required 345 rollouts (each being repeated 3 times for accurate evaluations) to

perform the optimization. Similarly to the other experiments presented in this

section, the algorithm starts from a walking policy and is only used to increase its

velocity. With a similar technique, Geng et al. (2006) tuned the two parameters

of a artificial neural network, which controls the gait of a physical biped robot.

The question of walking gait learning has also been addressed with reinforcement

learning methods. For example in Kimura et al. (2001), the authors used an actor

critic with a TD learning approach to learn a walking gait for a four-legged robot.

About 10,000 robot’s steps were required to learn a working gait. A stochastic

gradient descent has also been used in Tedrake et al. (2005) to learn a walking gait

on a bipedal robot. The 46 parameters of the controller have been optimized in

about 950 steps of the bipedal robot (performed in about 20 minutes). In these

two last experiments, the difference between episodic-based (rollouts) and time-step

based evaluation is very tight as a robot’s step is both a full episode and a time-step,

making the comparison with the other approaches difficult.

2.3.3 Partial conclusion

In the beginning of this section, we highlighted the similarities between policy search

and evolutionary algorithms. We can see through the different examples of robotic

applications of PS algorithms that these two families of algorithms are used in

similar purposes. However, it is interesting to note that the number of trials required

solve the task is significantly lower in experiments using PS algorithms than in those

using EAs (see table 2.1). For instance, the previous examples required most of the

time about a few hundred rollouts, while evolutionary algorithms require more likely

about several thousands of them.
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One possible explanation is that all PS applications start from an initial policy

obtained thanks to an imitation learning algorithm. This initial policy is thus al-

ready very close to a local (potentially the global) extremum and the PS algorithms

are only used to perform a local search to fine tune the policy. This represents an

important difference between PS algorithms and EAs. In most of EAs experiments,

the initial population of solutions is randomly generated. While faster learning

speed may be very beneficial when a robot has to face unexpected situations, we

cannot suppose that it will always have access to a teacher or a useful initial policy.

For example, in the case where a six-legged robot has to adapt to a mechanical

damage (like a broken leg), it is likely that the initial walking gait (using its six

legs) will be significantly different from a walking gait that works in the damage

condition. In this case, the gait using the six legs will not represent a good initial

policy, and the local search ability of PS algorithm may not be enough to find a

working solution.

2.4 Bayesian Optimization

2.4.1 Principle

Bayesian optimization is a model-based, global, black-box optimization algorithm

that is tailored for very expensive objective functions (like reward or cost functions,

Lizotte et al. (2007); Brochu et al. (2010b); Mockus (2013); Snoek et al. (2012);

Griffiths et al. (2009); Borji and Itti (2013)). As a black-box optimization algorithm,

Bayesian optimization searches for the maximum of an unknown objective function

from which samples can be obtained (e.g., by measuring the performance of a robot).

Like all model-based optimization algorithms (e.g. surrogate-based algorithms

(Booker et al., 1999; Forrester and Keane, 2009; Jin, 2011), kriging (Simpson et al.,

1998), or DACE (Jones et al., 1998; Sacks et al., 1989)), Bayesian optimization

creates a model of the objective function with a regression method, uses this model

to select the next point to acquire, then updates the model and repeats the process.

It is called Bayesian because, in its general formulation (Mockus, 2013), this

algorithm chooses the next point by computing a posterior distribution of the

objective function (P (M | E)) using the likelihood of the data already acquired

(P (E |M)) and a prior on the type of function (P (M)).

P (M | E) ∝ P (E |M)P (M)

The name Bayesian Optimization refers to a generic framework that follows this

equation but several different implementations exist. In the rest of this section we

will present the main components of this framework and in particular those that

are the most commonly used in robotics.

2.4.2 Gaussian Processes

Using Gaussian Process regression to find a model (Rasmussen and Williams, 2006)

is a common choice for Bayesian optimization (Calandra et al., 2014; Griffiths et al.,
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2009; Brochu et al., 2010b; Lizotte et al., 2007). Gaussian processes (GPs) are par-

ticularly interesting for regression because they not only model the cost function,

but also the uncertainty associated with each prediction. For a cost function f ,

usually unknown, a GP defines the probability distribution of the possible values

f(x) for each point x. These probability distributions are Gaussian, and are there-

fore defined by a mean (µ) and a standard deviation (σ). However, µ and σ can be

different for each x; we therefore define a probability distribution over functions:

P (f(x)|x) = N (µ(x), σ2(x)) (2.6)

where N denotes the standard normal distribution.

To estimate µ(x) and σ(x), we need to fit the Gaussian process to the data. To

do so, we assume that each observation f(χ) is a sample from a normal distribution.

If we have a data set made of several observations, that is, f(χ1), f(χ2), ..., f(χt),

then the vector [f(χ1), f(χ2), ..., f(χt)] is a sample from a multivariate normal dis-

tribution, which is defined by a mean vector and a covariance matrix. A Gaussian

process is therefore a generalization of a n-variate normal distribution, where n is

the number of observations. The covariance matrix is what relates one observation

to another: two observations that correspond to nearby values of χ1 and χ2 are

likely to be correlated (this is a prior assumption based on the fact that functions

tend to be smooth, and is injected into the algorithm via a prior on the likelihood of

functions), two observations that correspond to distant values of χ1 and χ2 should

not influence each other (i.e. their distributions are not correlated). Put differently,

the covariance matrix represents that distant samples are almost uncorrelated and

nearby samples are strongly correlated. This covariance matrix is defined via a

kernel function, called k(χ1, χ2), which is usually based on the Euclidean distance

between χ1 and χ2 (see the “kernels function” sub-section below).

Given a set of observations P1:t = f(χ1:t) and a sampling noise σ2
noise (which is

a user-specified parameter), the Gaussian process is computed as follows (Brochu

et al., 2010b; Rasmussen and Williams, 2006):

P (f(x)|P1:t, x) = N (µt(x), σ2
t (x))

where :

µt(x) = µ0 + k⊺K−1(P1:t − µ0)

σ2
t (x) = k(x, x)− k⊺K−1k

K =









k(χ1, χ1) · · · k(χ1, χt)
...

. . .
...

k(χt, χ1) · · · k(χt, χt)









+ σ2
noiseI

k =
[

k(x, χ1) k(x, χ2) · · · k(x, χt)
]

P1:t =









P1
...

Pt









(2.7)

where µt is the mean function of the GP after t iterations (corresponding to t trials),
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σt is the corresponding standard deviation and x refers to an untested solution.

Implementations of BO using GP models select the next χ to test by selecting

the maximum of the acquisition function, which balances exploration – improving

the model in the less explored parts of the search space – and exploitation – favoring

parts that the model predicts as promising (see the “Acquisition Functions” section

below). Once the observation is made, the algorithm updates the GP to take the

new data into account. In traditional Bayesian optimization, the GP is initialized

with a constant mean because it is assumed that all the points of the search space

are equally likely to be good. The model is then progressively refined after each

observation (see Fig. 2.4).

2.4.2.1 Kernel Functions

The kernel function is the covariance function of the GP. It defines the influence

of a solution’s performance on the performance and confidence estimations of not-

yet-tested solutions in the search space that are nearby to the tested solution. The

covariance function is a positive semi-definite function. The Squared Exponential

covariance function and the Matérn kernel are the most common kernels for GPs

(Brochu et al., 2010b; Snoek et al., 2012; Rasmussen and Williams, 2006). Both

kernels are variants of the “bell curve”.

Squared Exponential Kernel The Squared Exponential (SE) kernel, also called

Gaussian kernel or “Exponentiated Quadratic” kernel has this form:

k(xi, xj) = exp(− 1

2l2
‖xi − xj‖2) (2.8)

Like all kernel functions, the maximum value is reached when the distance between

the two samples is null and decreases when the distance increases. The l parameter

defines the characteristic length-scale of the kernel. In other words, it defines the

distance at which effects become nearly zero.

This expression of the kernel is isotropic, meaning that the effect is invariant in

every direction of the search space. It may happen that the observations are more

correlated in particular dimensions of the space than in the others. In order to

have an anisotropic expression of the SE kernel we can use the vector l that defines

different characteristic length-scales for each dimension:

k(xi, xj) = exp(−1

2
(xi − xj)T Diag(l)−2(xi − xj)) (2.9)

The values of the hyper-parameter l are commonly obtained thanks to Auto-

matic Relevance Determination (ARD, see “hyper-parameters fitting” section be-

low). Such tuning process is also able to autonomously disregard some dimension

of the search space based on the acquired observations.

The SE kernel is infinitely differentiable, which allows the GPs that use such

kernel functions to be infinitely mean-square differentiable. The notion of mean-

square differentiation is the generalization of the notion of differentiation for ordi-

nary functions to random processes (Rasmussen and Williams, 2006). This notion
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Goal: Finding this solution
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Figure 2.4: Bayesian Optimization of a toy problem. (A) The goal of this toy prob-

lem is to find the maximum of the unknown objective function. (B) The Gaussian

process is initialized, as it is customary, with a constant mean and a constant vari-

ance. (C) The next potential solution is selected and evaluated. The model is then

updated according to the acquired data. (D) Based on the new model, another

potential solution is selected and evaluated. (E-G) This process repeats until the

maximum is reached.
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is important when using gradient descent methods to find the maximum of the in-

formation acquisition function or to automatically adapt the hyper-parameters of

the model.

Matern kernels The Squared Exponential kernel is a very smooth kernel that

may be not well suited for modeling some phenomenon like physical processes (Stein,

1999; Rasmussen and Williams, 2006). The Matern class of kernel is more general

(it includes the Squared Exponential function as a special case) and allows us to

control not only the distance at which effects become nearly zero (as a function of

parameter l), but also the rate at which distance effects decrease (as a function of

parameter ν). This last parameter allows the user to control the smoothness of the

kernel, contrary to the SE kernel.

The Matérn kernel function is computed as follows (Matérn et al., 1960; Stein,

1999):

k(xi, xj) =
1

2ν−1Γ(ν)

(

√
2ν‖xi − xj‖

l

)ν

Hν

(

√
2ν‖xi − xj‖

l

)

(2.10)

where Γ is the gamma function and Hν is a modified Bessel function (Abramowitz

et al. (1966), sec. 9.6). Like the SE kernel, the l parameter controls the characteris-

tic length-scale, while the ν parameter controls the kernel smoothness. Rasmussen

and Williams (2006) recommends to use ν = 3/2 or ν = 5/2 for machine learning

applications. For these two values, the kernel expression can be simplified as follow:

kν=3/2(xi, xj) =

(

1 +

√
3‖xi − xj‖

l

)

exp

(

−
√

3‖xi − xj‖
l

)

(2.11)

kν=5/2(xi, xj) =

(

1 +

√
5‖xi − xj‖

l
+

5‖xi − xj‖2
3l2

)

exp

(

−
√

5‖xi − xj‖
l

)

(2.12)

When ν → ∞, the Matern kernel converges to the SE kernel. In contrast to

the SE kernel, the Matern kernels are not infinitely differentiable but only k-times

differentiable while ν > k (Rasmussen and Williams, 2006) and become infinitely

differentiable when ν →∞.

Several other kernel functions exist, each with different properties and param-

eters, we encourage interested readers to refer to Rasmussen and Williams (2006)

for more details. The selection of the most appropriate kernel function is a ques-

tion that requires lot of experimentation and engineering, but can also be solved

using automatic model selection (Brochu et al., 2010a; MacKay, 1992). The experi-

ments presented in this manuscript that use Bayesian Optimization will be based on

Matern kernels or the SE kernel when the hyper-parameters will be automatically

determined as presented in the next section.
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2.4.2.2 Hyper-parameter fitting

All the proposed kernel functions have parameters that control their different prop-

erties. For example, the most common parameter is the length-scale. This parame-

ter is one of the most critical parameters as it controls the impact size of the update

after a new observation. A too small length-scale parameter will limit the model’s

ability to spread the new information over the search space and as a consequence the

algorithm will require more samples to update its model over all the search space.

Conversely a too large length-scale may propagate knowledge in regions that are

irrelevant. For example, if the modeled function is rough, the acquired information

only stands for small area and a large length-scale will be not well adapted for a

function that varies quickly.

These different examples shows that ideal parameter values that work in any

situation do not exist, conversely the parameter values often depend on the consid-

ered applications. Resulting from this observation, a promising way to deal with

this problem is to allow the algorithm to autonomously adapt these parameters

according to the acquired data. In the following sections we will present different

methods to automatically tune the hyper-parameters of the model.

2.4.2.3 Marginal log Likelihood

One of the most common methods to automatically tune the model’s hyper-

parameters is to maximize the marginal log likelihood of the model according to

the data (Rasmussen and Williams, 2006):

log p(P1:t|χ1:t, θ) = −1

2
P⊺

1:tK
−1P1:t −

1

2
log |K| − n

2
log(2π) (2.13)

This expression is composed of three terms. The first term penalizes the like-

lihood score if the model does not fit the observations (P1:t). The second term,
1

2
log |K|, limits the model’s complexity and depends only on the kernel function.

The last term is a normalization constant. We encourage interested readers to re-

fer to Rasmussen and Williams (2006) for the details about how this expression is

obtained.

A very common way to optimize the marginal log likelihood consists in using

gradient-based methods. The expression of the marginal log likelihood can be differ-

entiated according to the hyper-parameters using this expression (Rasmussen and

Williams, 2006):

∂

∂θi
log p(P1:t|χ1:t, θ) =

1

2
P⊺

1:tK
−1 ∂K

∂θi
K−1P1:t −

1

2
tr(K−1 ∂K

∂θi
)

=
1

2
tr

(

(αα⊺ −K−1)
∂K

∂θi

)

where α = K−1P1:t

(2.14)
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The term
∂K

∂θi
can be computed with the derivative of the kernel function. Using

kernel functions that are at least 1-time differentiable allows us to employ opti-

mization algorithms that use the exact expression of the gradient, like the RPROP

algorithm (Riedmiller and Braun, 1993; Blum and Riedmiller, 2013).

One may observe that the equation of the marginal log likelihood (equation 2.13)

imposes a trade-off between the model complexity and the ability of the model to fit

the data. It is also very surprising to see that this equation is not homogeneous, the

first term corresponds to the squared unit of the observation, while the other terms

do not have particular units. Consequently, the trade-off obtained by the likelihood

optimization can be completely different according to the scale of the observations.

For example if the observation are recorded in meters or in centimeters, the first

term will be in one case 10,000 more important than in the other case.

To our knowledge, no automatic normalization procedure is used in the main

Gaussian Processes library (http://www.gaussianprocess.org) and the data from

their examples are not normalized (only centered). Consequently, from our point

of view, the trade-off imposed by the likelihood expression and the data does not

always lead to the model with the best generalization abilities.

2.4.2.4 Cross-Validation

A typical way to improve the generalization abilities of the classifier or models in

general is to select the hyper-parameters thanks to cross-validation. Such approach

is very common in machine learning to prevent over-training of neural networks for

example (Kohavi et al., 1995).

The same approach can be used to select the hyper-parameters of Gaussian

Processes. For example, the application of the Leave One Out cross validation

(LOO-CV, Lachenbruch and Mickey (1968); Stone (1974)) for hyper-parameter op-

timization is discussed in Rasmussen and Williams (2006). This approach consists

in training the GP with all the acquired data but one and then computing the

log predictive probability, which represents the ability of the model to predict the

leaved out sample. This procedure is then repeated for all the samples and all

the log probability are summed to compute the LOO log predictive probability

(also called log pseudo-likelihood). This term can be considered as a performance

estimator and can then be optimized.

The most expensive part of this procedure is to compute the inverted kernel

matrix for all the leaved out samples, but several mathematical properties allow

the complexity to be reduced (like the block-wise matrix inversion theorem, Press

et al. (1996)). Moreover, the derivative of the log pseudo-likelihood can be ana-

lytically computed with respect to the model’s hyper-parameters (Rasmussen and

Williams, 2006). Consequently, gradient based optimization methods can be used

similarly to the marginal log likelihood optimization. According to Rasmussen and

Williams (2006), the computational costs of the LOO cross validation and of the

marginal log likelihood optimization are roughly identical and knowing under which

http://www.gaussianprocess.org
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circumstances each method might be preferable is still an open question (Bachoc,

2013).

2.4.3 Acquisition function

The acquisition function selects the next solution that will be evaluated on the

system. The selection is made by finding the solution that maximizes the acquisition

function. This step is another optimization problem, but does not require testing

the solution on the system. In general, for this optimization problem we can derive

the exact equation and find a solution with gradient-based optimization (Fiacco

and McCormick, 1990).

Several different acquisition functions exist, such as the probability of improve-

ment, the expected improvement, or the Upper Confidence Bound (Brochu et al.,

2010b). In the following sections, we will introduce these three acquisition functions

and present how the exploitation-exploration trade-off can be handled with their

parameters.

2.4.3.1 Probability of improvement

This acquisition function, proposed by Kushner (1964), selects potential solutions

that have a high probability of being higher-performing than the highest point

already acquired. This probability of improvement (PI) is computed according to

the normal cumulative distribution function (Φ) and the difference between the

predicted performance of the considered point (x) and the maximum performance

obtained up to now. The variance is also taken into account.

PI(x) = P (f(x) ≥ f(x+)

= Φ

(

µ(x)−f(x+)
σ(x)

)

(2.15)

With a high performance difference and a small variance, the probability will be

very high. Conversely, if the difference is low (or negative) or if the variance is

very high, the probability will be lower. However, this acquisition function is based

on pure exploitation of the predicted performance. For example, very small im-

provements with low variance will have a higher probability of improvement than

larger improvements with high variance. As a consequence, the algorithm will select

mainly solutions that are close to the best found so far.

One way to mitigate this behavior consists to add a trade-off parameter (ξ) in

the equation:

PI(x) = P (f(x) ≥ f(x+) + ξ)

= Φ

(

µ(x)−f(x+)−ξ
σ(x)

)

(2.16)

The value of this parameter is set by the user to control the exploitation/exploration

trade-off of the algorithm. A high value will foster solutions that have a significantly

better (predicted) performance that the best one found so far.
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This trade-off parameter can also be changed during the optimization process.

For example, a high value can be used in the beginning to foster the exploration

of the search space and then, near the end of the optimization, a lower value can

be set to focus the exploitation of the generated model to fine-tune the obtained

solution (Kushner, 1964).

One may notice that this information acquisition function only considers the

probability of improvement but the magnitude of the improvement may be of in-

terest too.

2.4.3.2 Expected improvement

As an alternative, Mockus et al. (1978) defined the improvement of the performance

observations:

I(x) = max(0, ft+1(x)− f(x+)) (2.17)

The authors propose to consider the expected improvement as an acquisition func-

tion. The improvement is equal to zero when the performance of the solution tested

at t+1 is lower than the high performance found so far. The improvement is positive

when the performance difference is also positive.

Based on this definition of the improvement and on the integral over the prob-

ability density provided by the GP, the expected improvement (EI) can be analyt-

ically computed (see Mockus et al. (1978); Brochu et al. (2010b) for more details):

EI(x) = E[max(0, ft+1(x)− f(x+))|P1:t, χ1:t]

=

{

(µ(x)− f(x+))Φ(Z) + σ(x)φ(Z) if σ(x) > 0

0 if σ(x) = 0

where Z = µ(x)−f(x+)
σ(x)

(2.18)

where φ is the probability density function and Φ is the cumulative distribution

function of the standard normal distribution.

In the same way as the PI function, the EI acquisition function can be extended

with a parameter (ξ > 0) that controls the exploitation-exploration trade-off:

EI(x) =

{

(µ(x)− f(x+)− ξ)Φ(Z) + σ(x)φ(Z) if σ(x) > 0

0 if σ(x) = 0

where Z = µ(x)−f(x+)−ξ
σ(x)

(2.19)

The influence of this parameter has been discussed in Lizotte (2008). In its PhD-

thesis, the author considered a progressively decreasing ξ value according to the

number of performed acquisitions, however the experimental results showed no ev-

idence of significant improvement. The author underlines that these experiments

are not a proof that such parameter adaptation cannot improve the performance

but they show that the improvement is not systematic and such procedure should

be used carefully.
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2.4.3.3 Upper Confidence Bound

Another information acquisition function that is used commonly is the Upper-

Confidence Bound function (UCB, Cox and John (1997)) defined with this equation:

UCB(x) = µ(x) + κσ(x) (2.20)

where κ is a user-defined parameter that tunes the trade-off between exploration

and exploitation like in the other acquisition functions. In the UCB function, the

emphasis on exploitation vs. exploration is explicit and easy to adjust. The UCB

function can be seen as the maximum value (argmax) across all solutions of the

weighted sum of the expected performance (mean of the Gaussian, µt(x)) and of

the uncertainty (standard deviation of the Gaussian, σt(x)) of each solution. This

sum is weighted by the κ factor. With a low κ, the algorithm will choose solutions

that are expected to be high-performing. Conversely, with a high κ, the algorithm

will focus its search on unexplored areas of the search space that may have high-

performing solutions.

Similarly to the other acquisition functions, several works studied the influence

of adapting the κ parameter according to the number of acquisitions. For example,

Srinivas et al. (2009) proposed a reduction rate of κ that has a high probability of

minimizing the regret of the acquisitions.

2.4.4 Application in behavior learning in robotics

Even if BO has been introduced recently, it has been used for a relatively large

variety of tasks in robotics. For example in path planning, BO has been used

to select next waypoints that minimize the robot uncertainty about its position

(Martinez-Cantin et al., 2007, 2009) or to minimize the vibration on the robot when

traveling on an uneven terrain (Souza et al., 2014). This approach has also been

used in grasping tasks (Veiga and Bernardino, 2013) and in object recognition tasks

(Defretin et al., 2010). This last example employs the Efficient Global Optimization

algorithm (EGO, (Jones et al., 1998)2 in order to select the next view point that

will provide the most of information.

The applications of BO to learn behaviors are also numerous. For example,

Frean and Boyle (2008) used BO to learn the parameters of a neural network that

controls a (simulated) double pole balancing. In this work, the neural network

grows in complexity when the performances stagnate by adding additional neurons

in the hidden layer. This has been done to avoid bottlenecks coming from simple

neural networks and also to bootstrap the learning process. The algorithm required

about 200 trials to generate neural networks able to balance the pole, but most

of the produced networks used a simple architecture with only one or two hidden

neurons (corresponding to 8 or 16 parameters to tune). The authors also compared

the performance of their algorithm to the NEAT algorithm on the same task. This

2EGO is very close in its application to BO and corresponds to the Kriging algorithm (Simpson

et al., 1998) coupled with a GP and the EI acquisition function
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evolutionary algorithm introduced by Stanley and Miikkulainen (1996) and designed

to augment progressively the topology of neural networks required about 3578 trials

on the same task. This is a good illustration of the speed of BO techniques compared

to evolutionary algorithms.

As another example, Kuindersma et al. (2011) used BO to optimize the 4 param-

eters of a controller that moves the arms of a small, physical, wheeled “humanoid”

robot (which can be considered as a cart-pole with two arms) that allows the robot

to recover after an external shock. The results show that after between 30 and 35

trials the algorithm found controllers that allow the robot to recover its balance

and also to reduce the total energy expenditure in this manoeuvre.

In Tesch et al. (2011), the authors used EGO to learn snake gaits that are

able to climb up slopes and to deal with obstacles in less than 30 evaluations. In

addition to dealing with these environments, the experiments showed that the gaits

learned allowed the physical robotic snake to walk faster than with a hand-tuned

controller. This work has then been extended to multi-objective optimization in

order to simultaneously control both the speed and stability of the robot (Tesch

et al., 2013). After 25 evaluations, the algorithm was able to approximate the

pareto-front and to generate several behaviors corresponding to speed and stability

trades-off.

BO has also been used to generate walking gaits on physical legged robots. For

example, Lizotte et al. (2007) employed this algorithm to optimize the 15 parameters

of a parametrized gait of the AIBO robot. It required about 120 iterations to

produce a gait that is both efficient and smooth. Their work showed that BO is

significantly higher performing than gradient-based PS approaches. In a similar

way, Calandra et al. (2014) used BO to learn the 4 parameters of the finite state

machine controlling a bipedal robot. The experiments required 40 evaluations (each

being repeated 3 times for robust observations) to find high performing gaits.

In Kober et al. (2012), the authors do not use BO exactly, but the proposed

method employs the same tools as BO and is a good illustration of the potential ap-

plications of the BO framework in a more general context. The proposed algorithm

learns a mapping between the current state of the system and the meta-parameters

that have to be used to achieve a task. This mapping is obtained thanks to mod-

ified GP that the authors named Cost-regularized Kernel Regression. The input

space of the GP is the current state of the system, the output space represents

the distribution over the optimal meta-parameters and the variance of the GP rep-

resents the cost of the best solution, found so far, for this state. This contrasts

with the standard way of using GP in BO in which the input space corresponds to

the controller parameters (sometimes extended to the current state, see Deisenroth

and Rasmussen (2011)) and the output space models the distribution of the perfor-

mance. The BO optimization process aims to find the location in the input space

that maximizes the performance of the robot, while in the proposed methods the

algorithm aims to find, for a fixed input (state), the output of the GP that min-

imizes the cost function. The mapping proposed by the authors allows the robot

to adjust its policy continuously according to its state. The approach has been
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successfully tested on a large variety of tasks (throwing darts and balls to different

targets, playing table tennis) and on several physical robots. The performances

of this algorithm cannot be directly compared with the previously presented al-

gorithms because it searches, not only for a single solution, but for one solution

per state and also because it starts with an initial behavior learned by imitation.

Nonetheless, it is worth noting that it manages to find these solutions in only 70 to

250 evaluations, depending on the task.

The PILCO framework is another approach more or less related to BO, intro-

duced by Deisenroth and Rasmussen (2011), that uses a GP to model the dynamic

function of the robot and then uses this model to “simulate” the robot’s states for

several steps ahead and updating its policy according to these predictions. The

policy is then executed for one step on the robot and the action’s consequences

are recorded to update the GP (the dynamic model) and the process repeats until

reaching the target. The authors applied this framework on several physical robots,

like a cart-pole (Deisenroth and Rasmussen, 2011) and a robotic arm (Deisenroth

et al., 2011, 2015). In both of these systems, the algorithm was able to find a

behavior solving the task in about a dozen of trials, which can be considered as

the state of the art for these relatively simple systems. However, according to the

authors (Deisenroth and Rasmussen, 2011), the framework has some limitations in

the discovered policy as there is no guarantees of global optimality and that the

obtained solutions are mainly locally optimal, but these limitations are commonly

shared with most of the policy search methods and EAs. Moreover, applying this

framework on more complex systems, like legged robots, seems not trivial. For ex-

ample, we can wonder if it is possible to build models of complex interactions, like

those between the ground and the robot’s legs, in only a dozen of trials and to use

them when the state space is very large.

2.4.5 Partial conclusion

Bayesian Optimization is a promising model-based policy search method for sev-

eral reasons: BO is able (1) to deal with noisy observations and (2) shows similar

learning speed than model-free PS algorithms (a few hundred trials). More im-

portantly, (3) BO does not require starting from a good initial policy (like those

obtained via imitation), which constitute a fundamental difference between BO and

PS algorithms. None of the BO applications presented in this section require such

initialization procedure. This shows the global optimization ability of the BO al-

gorithm, even if it depends on the initialization of the GP, which is most of the

time performed through a random sampling. Nevertheless this ability also highly

depends on the size of the search space. In large search spaces, a very large number

of random samples will be required to obtain a beneficial initial model of the per-

formance function. This limitation explains why most of the applications presented

previously use relatively small search spaces (a maximum of a dozen of parameters).

Unfortunately, this limitation on the size of the search space may also limit the

adaptation abilities of the robots, as the search space should contain solutions that
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work in spite of the damage. Small search spaces are likely to reduce the number

of behavior families that the robot may use and consequently reduce the number of

situations in which the robot is able to adapt.

2.5 Conclusion

In this chapter, we presented three families of learning algorithms: Evolutionary

algorithms (EAs), Policy Search algorithms (PS) and Bayesian Optimization (BO).

We highlighted that each of these families has its own advantages and drawbacks.

EAs are creative optimization algorithms that are able to deal with large search

spaces and to evolve a large variety of solution types (like parameter vectors, graph

or shapes). They are also less affected by local optima than the other approaches

thanks to methods like the behavioral diversity. The main downside of EAs is

undoubtedly the number of evaluations required by the optimization algorithm,

which makes very challenging all EA applications on physical robots.

PS algorithms allow robots to learn behaviors significantly faster than EAs

(about one order of magnitude faster), but this learning speed is mainly explained

by the fact PS algorithms are mainly local search approaches, needing good initial

policy. A good illustration of this aspect of PS algorithms is the fact that most

the experiences we are aware of used an initial policy obtained thanks to an imi-

tation learning algorithm and a human demonstration. This kind of initialization

procedure cannot be used in every situation. For example, if a robot on a remote

planet has to learn a new behavior to adapt to an unexpected situation, a human

demonstration is unlikely to be available.

In the last section we saw that BO finds solutions as fast as PS algorithms.

However, the fact that this algorithm does not need to be initialized with an imita-

tion algorithm proves that it is less affected by local extrema than PS algorithms.

Unfortunately, this ability is tempered by the limited size of the search spaces,

which rarely exceeds a dozen dimensions. Such small search spaces are likely to

limit the diversity of behaviors that the robot will potentially be able to use to

adapt. With large search spaces, the number of different behavior families (given

a type of controller) will be larger than with small search spaces. Consequently, to

allow robots to face a large variety of situations the search space should be as large

as possible.

Taking everything into account, we can conclude that an ideal learning algo-

rithm that might allow robots to adapt will require the creativity of EAs and the

learning speed of PS and BO algorithms. The objective of the work presented in

this manuscript is thus to combine the advantages of the three algorithm families

and alleviate all their drawbacks. The main idea consists in encapsulating the cre-

ativity of evolutionary algorithms in a container that we call a behavioral repertoire

or a behavioral map, and then use this condensed source of creativity with BO to

profit of its learning speed. The behavioral repertoires are autonomously designed

in simulation while they are used on physical robots for the adaptation. The links
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and differences between the reality and the simulation (called the reality gap prob-

lem, Koos et al. (2013b)) play an important role in this manuscript, as we will show

that using information provided by the simulation is one of the keys to make fast

adaptation possible with physical robots.

In the next chapter we will present in details the concept of behavioral reper-

toires and we will introduce two new algorithms to create these repertoires. We

will then show in the chapter 4 how these repertoires can be combined with BO

to allow fast adaptation to mechanical damages. Before the conclusion and the

discussion, we will present in the chapter 5, how these results can be extended to

deal with usual problems and questions in robotics. More precisely we will see how

it is possible to adapt a whole family of behaviors by transferring knowledge from

one task to the next ones. We will also deal with the problem of solutions that

cannot be evaluated (for safety reasons for instance) or that failed to be assessed.

Finally, we will see how to handle behavioral repertoires that contain inconsistency

according to the reality and that may be more misleading than useful.
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3.1 Introduction

As presented in the previous chapter, the creativity of evolutionary algorithms

stems from their ability to deal with large search spaces. Nevertheless, while this

creativity can allow robot to find solutions in a large number of damage situations,

the large number of evaluations often counterbalances their benefits and makes

these algorithms unemployable with physical robots. During most of evolutionary

processes, we can observe that most of the evaluations lead to degenerated behaviors

that are unlikely to work, even on the intact robot. Conversely, some solutions that

work on the intact robot can still work once the robot is damaged. For example,

behaviors that do not use the damaged part are likely to perform similarly on

the intact robot and when it is damaged. Consequently, a promising way to save

evaluations could be to avoid such degenerated behaviors and to focus on solutions

that work at least on the intact robot.

In the rest of this manuscript, we will hypothesize that such behaviors exist.

Focusing the exploration of the search space on behaviors that work on the intact

robot implies that our algorithms know how to find these behaviors in advance.

However, determining all the behaviors that work on a robot, intact or damaged,

represents a challenge that remains open.

Numerous algorithms have been proposed to allow robots to learn behaviors

(see chapter 2). However, the vast majority of these algorithms is devised to learn

a single behavior, like walking in a straight line or reaching a single goal. In this

chapter, we introduce two novel evolutionary algorithms that attempt to discover

many possible behaviors for a robot by learning simultaneously and autonomously

several hundreds or even thousands of simple behaviors in a single learning process.

Walking robots are a good illustration of systems that can perform several types of

behaviors. For example, they can walk in every direction or they can walk in very

different manners (in a static or dynamic way, by hopping or by using differently

their legs). We will use this kind of system as an application example in this

chapter and propose methods that will allow legged robots to learn a large variety

of behaviors, like walking in every direction, in only one learning process.

3.1.1 Evolving Walking Controllers

Evolving gaits for legged robots has been an important topic in evolutionary com-

putation for the last 25 years (de Garis, 1990; Lewis et al., 1992; Kodjabachian and

Meyer, 1998; Hornby et al., 2005; Clune et al., 2011; Yosinski et al., 2011; Samuelsen

and Glette, 2014). That legged robots is a classic of evolutionary robotics is not

surprising (Bongard, 2013): legged locomotion is a difficult challenge in robotics

that evolution by natural selection solved in nature; evolution-inspired algorithms

may do the same for artificial systems. As argued in many papers, evolutionary

computation could bring many benefits to legged robotics, from making it easier

to design walking controllers (e.g., Hornby et al. (2005)), to autonomous damage

recovery (e.g., Bongard et al. (2006); Koos et al. (2013a)). In addition, in an embod-

ied cognition perspective (Wilson, 2002; Pfeifer and Bongard, 2007; Pfeifer et al.,
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2007), locomotion is one of the most fundamental skills of animals, and therefore it

is one of the first skills needed for embodied agents.

It could seem more confusing that evolutionary computation has failed to be

central in legged robotics, in spite of the efforts of the evolutionary robotics com-

munity (Raibert, 1986; Siciliano and Khatib, 2008). In our opinion, this failure

stems from at least two reasons: (1) most evolved controllers are almost useless in

robotics because they are limited to walking in a straight line at constant speed (e.g.

Hornby et al. (2005); Bongard et al. (2006); Koos et al. (2013a)), whereas a robot

that only walks in a straight line is obviously unable to accomplish any mission; (2)

evolutionary algorithms typically require evaluating the fitness function thousands

of times, which is very hard to achieve with a physical robot.

We call Walking Controller the software module that rhythmically drives the

motors of the legged robot. We distinguish two categories of controllers: un-driven

controllers and inputs-driven controllers. An un-driven controller always executes

the same gait, while an inputs-driven controller can change the robot’s movements

according to an input (e.g. a speed or a direction reference). Inputs-driven con-

trollers are typically combined with decision or planning algorithms (Russell et al.,

2010; Currie and Tate, 1991; Dean and Wellman, 1991; Kuffner and LaValle, 2000)

to steer the robot. These two categories contain, without distinctions, both open-

loop and closed-loop controllers, and can be designed using various controller and

genotype structures. For example, walking gait evolution or learning has been

achieved on legged robots using parametrized periodic functions (Koos et al., 2013a;

Chernova and Veloso, 2004; Hornby et al., 2005; Tarapore and Mouret, 2014a,b),

artificial neural networks with either direct or generative encoding (Clune et al.,

2011; Valsalam and Miikkulainen, 2008; Tarapore and Mouret, 2014a,b), Central

Pattern Generators (Kohl and Stone, 2004; Ijspeert et al., 2007), or graph-based

genetic programming (Filliat et al., 1999; Gruau, 1994).

When dealing with physical legged robots, the majority of studies only consid-

ers the evolution of un-driven walking controllers and, most of the time, the task

consists in finding a controller that maximizes the forward walking speed (Zykov

et al., 2004; Chernova and Veloso, 2004; Hornby et al., 2005; Berenson et al., 2005;

Yosinski et al., 2011; Mahdavi and Bentley, 2006). Papers on alternatives to evo-

lutionary algorithms, like policy gradients (Kohl and Stone, 2004; Tedrake et al.,

2005) or Bayesian optimization (Calandra et al., 2014; Lizotte et al., 2007), are also

focused on robot locomotion along a straight line.

Comparatively few articles deal with controllers able to turn or to change the

walking speed according to an input, especially with a physical robot. Inputs-driven

controllers usually need to be tested on each possible input during the learning pro-

cess or to be learned with an incremental process, which significantly increases both

the learning time and the difficulty compared to learning an un-driven controller.

Filliat et al. (1999) proposed such a method that evolves a neural network to con-

trol a hexapod robot. Their neural network is evolved in several stages: first, the

network is evolved to walk in a straight line; in a second stage, a second neural

network is evolved on top of the walking controller to be able to execute turning
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Figure 3.1: (Left) The hexapod robot. It has 18 degrees of freedom (DOF), 3 for

each leg. Each DOF is actuated by position-controlled servos (Dynamixel actua-

tors). A RGB-D camera (Asus Xtion) is screwed on the top of the robot. The

camera is used to estimate the forward displacement of the robot thanks to a RGB-

D Simultaneous Localization And Mapping (SLAM, Durrant-Whyte and Bailey

(2006); Angeli et al. (2009)) algorithm (Endres et al., 2012) from the ROS frame-

work (Quigley et al., 2009). (Right) Goal of TBR-Learning. Our algorithm allows

the hexapod robot to learn to walk in every direction with a single run of the

evolutionary algorithm.

manoeuvres. In a related task (flapping-wing flight), Mouret et al. (2006) used a

similar approach, in which an evolutionary algorithm is used to design a neural

network that pilots a simulated flapping robot; the network was evaluated by its

ability to drive the robot to 8 different targets and the reward function was the sum

of the distances to the targets.

Overall, many methods exist to evolve un-driven controllers, while methods

for learning inputs-driven controllers are very time-expensive, difficult to apply on

a physical robot, and require an extensive amount of expert knowledge. To our

knowledge, no current technique is able to make a physical robot learning to walk

in multiple directions in less than a dozen hours. In this paper, we sidestep many

of the challenges raised by input-driven controllers while being able to drive a robot

in every direction: we propose to abandon input-driven controllers, and, instead,

search for a large number of simple, un-driven controllers, one for each possible

direction.

3.1.2 Evolving behavioral repertoires

In this chapter we propose to see the question of walking in every direction as a

problem of learning how to do many different – but related – tasks. Indeed, some
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complex problems are easier to solve when they are split into several sub-problems.

Thus, instead of using a single and complex solution, it is relevant to search for

several simple solutions that solve a part of the problem. This principle is often

successfully applied in machine learning: mixtures of experts (Jacobs et al., 1991)

or boosting (Schapire, 1990) methods train several weak classifiers on different sub-

parts of a problem. Performances of the resulting set of classifiers are better than

those of a single classifier trained on the whole problem.

The aim of this chapter is to enable the application of this principle to robotics

and, particularly, to legged robots that learn to walk. In this case, an evolutionary

algorithm could search for a repertoire of simple controllers that would contain a

different controller for each possible direction. These simple controllers can then be

combined with high level algorithms (e.g. planning algorithms, or neural networks

like in (Godzik et al., 2003; ?)) that successively select controllers to drive the

robot. Nevertheless, evolving a controller repertoire typically involves as many

evolutionary processes as there are target points in the repertoire. Evolution is

consequently slowed down by a factor equal to the number of targets. With existing

evolution methods, repertoires of controllers are in effect limited to a few targets,

because 20 minutes (Koos et al., 2013a) to dozens of hours (Hornby et al., 2005)

are needed to learn how to reach a single target.

In this chapter, we present two algorithms, TBR-Evolution and MAP-Elites,

that aim to find such a repertoire of simple controllers, but in a single run. They

are based on a simple observation: with a classic evolutionary algorithm, when a

robot learns to reach a specific target, the learning process explores many different

potential solutions, with many different outcomes. Most of these potential solutions

are discarded because they are deemed poorly-performing. Nevertheless, while be-

ing useless for the considered objective, these inefficient behaviors can be useful for

other objectives. For example, a robot learning to walk in a straight line usually

encounters many turning gaits during the search process, before converging towards

straight-line locomotion.

TBR-Evolution The first algorithm presented here, named the Transferability-

based Behavioral Repertoire Evolution algorithm (TBR-Evolution), exploits this

idea by taking inspiration from the “Novelty Search” algorithm (Lehman and Stan-

ley, 2011a), and in particular its variant the “Novelty Search with Local Compe-

tition” (see section 2.2.3). Instead of rewarding candidate solutions that are the

closest to the objective, this recently introduced algorithm explicitly searches for

behaviors that are different from those previously seen. The local competition

variant adds the notion of a quality criterion, which is optimized within each indi-

vidual’s niche. As shown in the rest of this chapter, searching for many different

behaviors during a single execution of the algorithm allows the evolutionary process

to efficiently create a repertoire of high-performing walking gaits.

To further reduce the time required to obtain a behavioral repertoire for the

robot, TBR-Evolution relies on the transferability approach (see section 2.2.5),
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which combines simulations and tests on the physical robot to find solutions that

perform similarly in simulation and in reality. The advantage of the transferabil-

ity approach is that evolution occurs in simulation but the evolutionary process is

driven towards solutions that are likely to work on the physical robot. In recent

experiments, this approach led to the successful evolution of walking controllers for

quadruped (Koos et al., 2013b), hexapod (Koos et al., 2013a), and biped robots

(Oliveira et al., 2013), with no more than 25 tests on the physical robot.

We evaluate this algorithm on two sets of experiments. The first set aims to show

that learning simultaneously all the behaviors of a repertoire is faster than learning

each of them separately. We chose to perform these experiments in simulation to

gather extensive statistics. The second set of experiments evaluates our method on a

physical hexapod robot (Fig. 3.1, left) that has to walk forward, backward, and turn

in both directions, all at different speeds (Fig. 3.1, right). We compare our results

to learning independently each controller. All our experiments utilize embedded

measurements to evaluate the fitness, an aspect of autonomy only considered in a

handful of gait discovery experiments (Kimura et al., 2001; Hornby et al., 2005).

MAP-Elites The second algorithm introduced in this chapter is named Multi-

dimensional Archive of Phenotypic Elites (MAP-Elites) and has initially been cre-

ated by Mouret and Clune (2015) to generate graphics that illustrate the fitness

landscape of the retina problem (Clune et al., 2013). However, it shows itself to be

a simple but high-performing algorithm to learn simultaneously a very large variety

of behaviors. This algorithm and more specifically the Behavior-Performance Maps

(which are similar to behavioral repertoires) that it generates will be used in the

next chapter to allow our robots to adapt to a large variety of mechanical damages.

We first evaluate the ability of this algorithm to learn large collection of actions

on the same task as the TBR-Evolution algorithm, in which a hexapod robot has

to learn to walk in every direction. With this experiment, we can see how MAP-

Elites compares to our first algorithm. In a second experiment, we investigate the

ability of the algorithm to find a large number of different ways to achieve the

same task. In our case we ask our robot to learn a maximum of ways to walk in

a straight line as fast as possible. Both of these experiments are performed only

in simulation, as we will introduce in the next chapter an algorithm that uses the

behavioral-performance maps to allow physical robots to learn or to adapt quickly.

In the two following sections, we introduce the TBR-Evolution algorithm and

the MAP-Elites algorithm in details and present the experimental results.

3.2 The TBR-Evolution algorithm

3.2.1 Principle

As mentioned previously, learning independently dozens of controllers is pro-

hibitively expensive, especially with a physical robot. To avoid this issue, the
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TBR-Evolution algorithm transforms the problem of learning a repertoire of con-

trollers into a problem of evolving a heterogeneous population of controllers. This

problem can be solved with an algorithm derived from novelty search with local

competition (Lehman and Stanley, 2011b): instead of generating virtual creatures

with various morphologies that execute the same behavior, as presented in section

2.2.3, TBR-Evolution generates a repertoire of controller, each executing a differ-

ent behavior, working on the same creature. By simultaneously learning all the

controllers without the discrimination of a specified goal, the algorithm recycles

interesting controllers, which are typically wasted with classical learning methods.

This enhances its optimizing abilities compared to classic optimization methods.

Furthermore, our algorithm incorporates the transferability approach (Koos

et al., 2013b) to reduce the number of tests on the physical robot during the evolu-

tionary process. The transferability approach and novelty search with local compe-

tition can be combined because they are both based on multi-objective optimization

algorithms. By combining these two approaches, the behavioral repertoire is gen-

erated in simulation with a virtual robot and only a few controller executions are

performed on the physical robot. These trials guide the evolutionary process to

solutions that work similarly in simulation and in reality (Koos et al., 2013a,b).

The minimization of the number of tests on the physical robot and the simulta-

neous evolution of many controllers are the two assets that allow the TBR-Evolution

algorithm to require significantly less time than classical methods.

More technically, the TBR-Evolution algorithm relies on four principles, detailed

in the next sections:

• a stochastic, black box, multi-objective optimization algorithm simultaneously

optimizes 3 objectives, all evaluated in simulation: (1) the novelty of the gait,

(2) the local rank of quality and (3) the local rank of estimated transferability:

maximize











Novelty(c)

−Qrank(c)

−T̂rank(c)

• the transferability function is periodically updated with a test on the physical

robot;

• when a controller is novel enough, it is saved in the novelty archive;

• when a controller has a better quality than the one in the archive that reaches

the same endpoint, it substitutes the one in the archive.

Algorithm 1 describes the whole algorithm in pseudo-code.

3.2.1.1 Objectives

The novelty objective fosters the exploration of the reachable space. A controller

is deemed as novel when the controlled individual reaches a region where none,
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Algorithm 1 TBR-Evolution algorithm ( G generations, T transfers’ period)

procedure TBR-Evolution

pop← {c1, c2, . . . , cS} (randomly generated)

archive← ∅
for g = 1→ G do

for all controller c ∈ pop do

Execution of c in simulation

if g ≡ 0[T ] then

Transferability Update(c)

for all controller c ∈ pop do

Objective Update(c)

Archive Management(c)

Iteration of NSGA-II on pop

return archive
procedure Transferability Update(c)

Random selection of c∗∈ pop ∪ archive and transfer on the robot

Estimation of the endpoint Ereal(c
∗)

Estimation of the exact transferability value
∣

∣

∣
Esimu(c∗)− Ereal(c

∗)
∣

∣

∣

Update of the approximated transferability function T̂

procedure Objectives Update(c)

N (c)← The 15 controllers(∈ pop ∪ archive) closest to Esimu(c)

Computation of the novelty objective:

Novelty(c) =

∑

j∈N (c)
‖Esimu(c)−Esimu(j)‖

|N (c)|

Computation of the local rank objectives:

Qrank(c) = |j ∈ N (c), quality(c) < quality(j)|
T̂rank(c) = |j ∈ N (c), T̂ (des(c)) < T̂ (des(j)|

procedure Archive Management(c)

if Novelty(c) > ρ then

Add the individual to archive
cnearest ← The controller ∈ archive nearest to Esimu(c)

if T̂ (des(c)) > τ and quality(c) > quality(cnearest) then

Replace cnearest by c in the archive

else if T̂ (des(c)) > T̂ (des(c
nearest

)) then

Replace cnearest by c in the archive
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or few of the previously encountered gaits were able to go (starting from the same

point). The novelty score of a controller c (Novelty(c)) is set as the average distance

between the endpoint of the current controller (Ec) and the endpoints of controllers

contained in its neighborhood (N (c)):

Novelty(c) =

∑

j∈N (c)
‖Esimu(c)−Esimu(j)‖

card(N (c))
(3.1)

To get high novelty scores, individuals have to follow trajectories leading to end-

points far from the rest of the population. The population will thus explore all the

area reachable by the robot. Each time a controller with a novelty score exceeds

a threshold (ρ), this controller is saved in an archive. Given this archive and the

current population of candidate solutions, a neighborhood is defined for each con-

troller (N (c)). This neighborhood regroups the k controllers that arrive closest to

the controller c (the parameters’ values are detailed in appendix C.1).

The local quality rank promotes controllers that show particular properties,

like stability or accuracy. These properties are evaluated by the quality score

(quality(c)), which depends on implementation choices and particularly on the

type of controllers used (we will detail its implementation in section 3.2.2.1). In

other words, among several controllers that reach the same point, the quality score

defines which one should be promoted. For a controller c, the rank (Qrank(c))

is defined as the number of controllers from its neighborhood that outperform its

quality score: minimizing this objective allows the algorithm to find controllers with

better quality than their neighbors.

Qrank(c) = card(j ∈ N (c), quality(c) < quality(j)) (3.2)

The local transferability rank ( ̂Trank(c), equation 3.3) works as a second local

competition objective, where the estimation of the transferability score (T̂ (des(c)))

replaces the quality score. Like in (Koos et al., 2013b), this estimation is obtained

by periodically repeating three steps: (1) a controller is randomly selected in the

current population or in the archive and then downloaded and executed on the

physical robot, (2) the displacement of the robot is estimated thanks to an em-

bedded sensor, and (3) the distance between the endpoint reached in reality and

the one in simulation is used to feed a regression model (T̂ , here a support vector

machine (Chang and Lin, 2011)). This distance defines the transferability score of

the controller. This model maps a behavioral descriptor of a controller (des(c)),

which is obtained in simulation, with an approximation of the transferability score.

Thanks to this descriptor, the regression model predicts the transferability score

of each controller in the population and in the archive.

T̂rank(c) = card(j ∈ N (c), T̂ (des(c)) < T̂ (des(j))) (3.3)

3.2.1.2 Archive management

In the original novelty search with local competition (Lehman and Stanley, 2011b),

the archive aims at recording all encountered solutions, but only the first individuals
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Figure 3.2: (Left) Snapshot of the simulated robot in our ODE-based physics sim-

ulator. (Center) Kinematic scheme of the robot. The cylinders represent actuated

pivot joints. (Right) Control function γ(t, α, φ) with α = 1 and φ = 0.

that have a new morphology are added to the archive. The next individuals with

the same morphology are not saved, even if they have better performances. In the

TBR-Evolution algorithm, the novelty archive represents the resulting repertoire of

controllers, and thus has to gather only the best controllers for each region of the

reachable space.

For this purpose, the archive is differently managed than in the novelty search:

during the learning process, if a controller of the population has better scores

(quality(c) or T̂ (c)) than the closest controller in the archive, the one in the

archive is replaced by the better one. These comparisons are made with a pri-

ority among the scores to prevent circular permutations. If the transferability score

is lower than a threshold (τ), only the transferability scores are compared, other-

wise we compare the quality scores. This mechanism allows the algorithm to focus

the search on transferable controllers instead of searching efficient, but not transfer-

able, solutions. Such priority is important, as the performances of non-transferable

controllers may not be reproducible on the physical robot.

3.2.2 Experimental validation

3.2.2.1 Methods

We evaluate the TBR-Evolution algorithm on two different experiments, which both

consist in evolving a repertoire of controllers to access to the entire reachable space

of the robot. In the first experiment, the algorithm is applied on a simulated robot

(Fig. 3.2, left), consequently the transferability aspect of the algorithm is disabled.

The goal of this experiment is to show the benefits of evolving simultaneously all

the behaviors of the repertoire instead of evolving them separately. The second

experiment applies the algorithm directly on a physical robot (Fig 3.1, left). For

this experiment, the transferability aspect of the algorithm is enabled and the ex-

periment shows how the behavioral repertoire can be learned with a few trials on

the physical robot.

The pseudo-code of the algorithm is presented in Algorithm 1. The TBR-
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Evolution algorithm uses the same variant of NSGA-II (Deb et al., 2002) as the

novelty search with local competition (Lehman and Stanley, 2011b), which replaces

the diversity mechanism along the non-dominated front with a separate objective

explicitly reward the genotypic diversity. The simulation of the robot is based

on the Open Dynamic Engine (ODE) and the transferability function T̂ uses the

ν-Support Vector Regression algorithm with linear kernels implemented in the li-

brary libsvm (Chang and Lin, 2011) (learning parameters set to default values). All

the algorithms are implemented in the Sferesv2 framework (Mouret and Doncieux,

2010) (parameters and source code are detailed in appendix). The simulated parts

of the algorithms are computed on a cluster of 5 quad-core Xeon-E5520@2.27GHz

computers.

The evolved genotype and the corresponding controller used in these experi-

ment are defined in the appendix A.2.1. However, compared to classic evolutionary

algorithms, TBR-Evolution only changes the way individuals are selected. As a

result, it does not put any constraint on the type of controllers, and many other

controllers are conceivable (e.g. bio-inspired central pattern generators (Sproewitz

et al., 2008; Ijspeert, 2008), dynamic movement primitives (Schaal, 2003) or evolved

neural networks (Yosinski et al., 2011; Clune et al., 2011)).

3.2.2.2 Endpoints of a controller

The endpoint of a controller (in simulation or in reality) is the position of the center

of the robot’s body projected in the horizontal plane after running the controller

for 3 seconds:

E (c) =

{

centerx(t = 3s)− centerx(t = 0s)

centery(t = 3s)− centery(t = 0s)

}

When the controller is executed on the physical robot, the location of the robot is

assessed thanks to a SLAM algorithm (see Fig.3.1)

3.2.2.3 Quality Score

To be able to sequentially execute saved behaviors, special attention is paid to

the final orientation of the robot. Because the endpoint of a trajectory depends

on the initial orientation of the robot, we need to know how the robot ends its

previous movement when we plan the next one. To facilitate chaining controllers,

we encourage behaviors that end their movements with an orientation aligned with

their trajectory.

The robot cannot execute arbitrary trajectories with a single controller because

controllers are made of simple periodic functions. For example, it cannot begin

its movement by a turn and then go straight. With this controller, the robot can

only follow trajectories with a constant curvature, but it still can move sideways,

or even turn around itself while following an overall straight trajectory. We chose

to focus the search on circular trajectories, centered on the lateral axis, with a

variable radius (Fig. 3.3A), and for which the robot’s body is pointing towards the
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tangent of the overall trajectory. Straight, forward (or backward) trajectories are

still possible with the particular case of an infinite radius. This kind of trajectory

is suitable for motion control as many complex trajectories can be decomposed in

a succession of circle portions and lines. An illustration of this principle is pictured

on figure 3.3 (D-E-F).

To encourage the population to follow these trajectories, the quality score is

set as the angular difference between the arrival orientation and the tangent of the

circular trajectory that corresponds to the endpoint (Fig. 3.3B):

quality(c) = −|θ(c)| = −|α(c)− β(c)| (3.4)

3.2.2.4 Transferability score

The transferability score of a tested controller c∗ is computed as the distance be-

tween the controller’s endpoint reached in simulation and the one reached in reality:

transferability(c∗) = −|Esimu − Ereal| (3.5)

In order to estimate the transferability score of untested controllers, a regression

model is trained with the tested controllers and their recorded transferability score.

The regression model used is the ν-Support Vector Regression algorithm with linear

kernels implemented in the library libsvm (Chang and Lin, 2011) (learning param-

eters are set to default values), which maps a behavioral descriptor (des(c)) with

an estimated transferability score (T (des(c))). Each controller is described with a

vector of Boolean values that describe, for each time-step and each leg, whether the

leg is in contact with the ground (the descriptor is therefore a vector of size N × 6,

where N is the number of time-steps). This kind of vector is a classic way to de-

scribe gaits in legged animals and robots (Raibert, 1986). During the evolutionary

process, the algorithm performs 1 transfer every 50 iterations.

3.2.2.5 Experiments on the Virtual Robot

This first experiment involves a virtual robot that learns a behavioral repertoire to

reach every point in its vicinity. The transferability objective is disabled because

the goal of this experiment is to show the benefits of learning simultaneously all

the behaviors of the repertoire instead of learning them separately. Using only

the simulation allows us to perform more replications and to implement a higher

number of control experiments. This experiment also shows how the robot is able

to autonomously:

• discover possible movements;

• cover a high proportion of the reachable space;

• generate a behavioral repertoire.

The TBR-Evolution experiment and the control experiments (described in the

next section) are replicated 40 times to gather statistics.
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Figure 3.3: (A) Examples of trajectories following a circle centered on the lateral

axis with several radii. (B) Definition of the desired orientation. θ represents the

orientation error between α, the final orientation of the robot, and β, the tangent

of the desired trajectory. These angles are defined according to the actual endpoint

of the individual, not the desired one. (C) Reachable area of the robot viewed from

top. A region of interest (ROI) is defined to facilitate post-hoc analysis (gray zone).

The boundaries of the region are defined by two lines at 60 degrees on each side

of the robot. The curved frontier is made of all the reachable points with a curvi-

linear abscissa lower than 0.6 meters ( these values were set thanks to experimental

observations of commonly reachable points). Dots correspond to targets selected

for the control experiments. (D-E-F) Illustration of how a behavioral repertoire

can be used with a hexapod robot. First, a path-planning algorithm computes a

trajectory made of lines and portions of circles (LaValle, 2006; Siciliano and Khatib,

2008). Second, to follow this trajectory, the robot sequentially executes the most

appropriate behavior in the repertoire (here numbered on E and F). For closed-

loop control, the trajectory can be re-computed at each time-step using the actual

position of the robot.
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Control Experiments To our knowledge, no previous study directly tackles the

question of learning simultaneously all the behaviors of a repertoire, thus we cannot

compare our approach with an existing method. As a reference point, we imple-

mented a naive method where the desired endpoints are preselected. A different

controller will be optimized to reach each different wanted point individually.

We define 100 target points, spread thanks to a K-means algorithm (Seber, 1984)

over the defined region of interest (ROI) of the reachable area (see Fig. 3.3C). We

then execute several multi-objective evolutionary algorithms (NSGA-II, Deb et al.

(2002)), one for each reference point. At the end of each execution of the algorithm,

the nearest individual to the target point in the Pareto-front is saved in an archive.

This experiment is called “nearest” variant. We also save the controller with the

best orientation (quality score described previously) within a radius of 10 cm around

the target point and we call this variant “orientation”. The objectives used for the

optimization are:

minimize

{

Distance(c) = ‖Ec − EReference‖
Orientation(c) = |α(c)− β(c)|

We also investigate how the archive management added in TBR-Evolution im-

proves the quality of produced behavioral repertoires. To highlight these improve-

ments, we compared our resulting archives with archives issued from the Novelty

Search algorithm (Lehman and Stanley, 2011a) and from the Novelty Search with

Local Competition algorithm (Lehman and Stanley, 2011b), as the main difference

between these algorithms is archive management procedure. We apply these algo-

rithms on the same task and with the same parameters as in the experiment with

our method. We call these experiments “Novelty Search”(NS) and “NS with Local

Competition”. For both of these experiments we will analyze both the produced

archives and the resulting populations.

For all the experiments we will study the sparseness and the orientation error

of the behavioral repertoires generated by each approach. All these measures are

computed within the region of interest previously defined. The sparseness of the

archive is computed by discretizing the ROI with a one-centimeter grid (G ), and

for each point p of that grid the distance from the nearest individual of the archive

(A ) is recorded. The sparseness of the archive is the average of all the recorded

distances:

sparseness(A ) =

∑

p∈G mini∈A (distance(i, p))

card(G )
(3.6)

where card(G ) denotes the number of elements in G .

The quality of the archive is defined as the average orientation error for all the

individuals inside the ROI:

Orientation Error(A ) =

∑

i∈A ∈ROI θ(i)

card(A ∈ ROI)
(3.7)
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Figure 3.4: Comparison between the typical results of the TBR-Evolution algo-

rithm, the “nearest”, and the “orientation” variants. The archives are displayed

after 100,000 evaluations (left) and after 1,000,000 evaluations (right). Each dot

corresponds to the endpoint of a controller. The solid lines represent the final ori-

entation of the robot for each controller, while the gray dashed lines represent the

desired orientation. The orientation errors are the angle between solid and dashed

lines.
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Figure 3.5: Comparison between the typical results of the TBR-Evolution algo-

rithm, the Novelty Search, and the NS with Local Competition algorithm. The

archives are displayed after 100,000 evaluations and after 1,000,000 evaluations.

Each dot corresponds to the endpoint of a controller. The solid lines represent the

final orientation of the robot for each controller, while the gray dashed lines repre-

sent the desired orientation. The orientation errors are the angle between solid and

dashed lines.
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Figure 3.6: Comparison between typical results of the TBR-Evolution algorithm,

the population of Novelty Search, and the population of NS with Local Competition.

The archives/populations are displayed after 100,000 evaluations and after 1,000,000

evaluations. Each dot corresponds to the endpoint of a controller. The solid lines

represent the final orientation of the robot for each controller, while the gray dashed

lines represent the desired orientation. The orientation errors are the angle between

solid and dashed lines.
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Results Resulting behavioral repertoires from a typical run of TBR-Evolution

and the control experiments are pictured on figures 3.4, 3.5 and 3.6. The endpoints

achieved with each controller of the repertoire are spread over the reachable space

in a specific manner: they cover both the front and the back of the robot, but less

the lateral sides. These limits are not explicitly defined, but they are autonomously

discovered by the algorithm.

For the same number of evaluations, the area is less covered with the control

experiments (nearest and orientation) than with TBR-Evolution (Fig. 3.4). With

only 100,000 evaluations, this area is about twice larger with TBR-Evolution than

with both control experiments. At the end of the evolution (1,000,000 evaluations),

the reachable space is denser with our approach. With the “nearest” variant of the

control experiment, all target points are reached (see Fig. 3.3C), this is not the

case for the “orientation” variant.

The archives produced by Novelty Search and NS with Local Competition both

cover a larger space than the TBR-Evolution algorithm (Fig. 3.5). These results

are surprising because all these experiments are based on novelty search and differ

only in the way the archive is managed. These results show that TBR-Evolution

tends to slightly reduce the exploration abilities of NS and focuses more on the

quality of the solutions.

We can formulate two hypotheses to explain this difference in exploration. First,

the “local competition” objective may have a higher influence in the TBR-Evolution

algorithm than in the NS with Local Competition: in NS with local competition, the

individuals from the population are competing against those of the archive; since

this archive is not updated if an individual with a similar behavior but a higher

performance is encountered, the individuals from the population are likely to always

compete against low-performing individuals, and therefore always get a similar local

competition score; as a result, the local competition objective is likely to not be

very distinctive and most of the selective pressure can be expected to come from the

novelty objective. This different selective pressure can explain why NS with local

competition explores more than TBR-Evolution, and it echoes the observation that

the archive obtained with NS and NS with local competition are visually similar

(Fig. 3.5). The second hypothesis is that the procedure used to update the archive

may erode the borderline of the archive: if a new individual is located close to the

archive’s borderline, and if this individual has a better performance than its nearest

neighbor in the archive, then the archive management procedure of TBR-Evolution

will replace the individual from the archive with the new and higher-performing

one; as a consequence, an individual from the border can be removed in favor of a

higher-performing but less innovative individual. This process is likely to repeatedly

“erode” the border of the archive and hence discourage exploration. These two

hypotheses will be investigated in future work.

The primary purpose of Novelty Search with Local Competition is to maintain

a diverse variety of well-adapted solutions in its population, and not in its archive.

For this reason, we also plotted the distribution of the population’s individuals for

both Novelty Search and NS with Local Competition (Fig. 3.6). After 100,000
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evaluations, and at the end of the evolution, the population covers less of the

robot’s surrounding than TBR-Evolution. The density of the individuals is not

homogeneous and they are not arranged in a particular shape, contrary to the

results of TBR-Evolution. In particular, the borderline of the population seems to

be almost random.

The density of the archive is also different between the algorithms. The density

of the archives produced by TBR-Evolution is higher than the other approaches,

while the threshold of novelty (ρ) required to add individuals in the archive is the

same. This shows that the archive management of the TBR-Evolution algorithm

increases the density of the regions where solutions with a good quality are easier to

find. This characteristic allows a better resolution of the archive in specific regions.

The orientation error is qualitatively more important in the “nearest” control

experiment during all the evolution than with the other experiments. This error

is important at the beginning of the “orientation” variant too, but, at the end,

the error is negligible for the majority of controllers. The Novelty Search, NS

with local competition and the population of the Novelty Search have a larger

orientation error, the figures 3.5 and 3.6 show that the orientation of the controllers

seems almost random. With such repertoire, chaining behaviors on the robot is

more complicated than with the TBR-Evolution’s archives, where a vector field is

visible. Only the population of the NS with Local Competition seems to show lower

orientation error. This illustrates the benefits of the local competition objective on

the population’s behaviors.

The TBR-Evolution algorithm consistently leads to very small orientation errors

(Fig. 3.4 and Fig. 3.9); only few points have a significant error. We find these points

in two regions, far from the starting point and directly on its sides. These regions are

characterized by their difficulty to be accessed, which stems from two main causes:

the large distance to the starting point or the complexity of the required trajectory

given the controller and the possible parameters (Appendix 3.2.2.1). For example

the close lateral regions require executing a trajectory with a very high curvature,

which cannot be executed with the range of parameters of the controller. Moreover,

the behaviors obtained in these regions are most of the time degenerated: they take

advantages of inaccuracies in the simulator to realize movement that would not be

possible in reality. Since accessing these points is difficult, finding better solutions is

difficult for the evolutionary algorithm. We also observe a correlation between the

density of controllers, the orientation error and the regions difficult to access (Fig.

3.9): the more a region is difficult to access, the less we find controllers, and the

less these controllers have a good orientation. For the other regions, the algorithm

produces behaviors with various lengths and curvatures, covering all the reachable

area of the robot.

In order to get a statistical point of view, we studied the median, over 40 runs,

of the sparseness and the quality of controllers inside a region of interest (ROI)

(Fig. 3.7, Top). The TBR-Evolution algorithm achieved a low sparseness value

with few evaluations. After 100,000 evaluations, it was able to generate behaviors

covering the reachable space with an interval distance of about 3 cm. At the end
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Figure 3.7: (Top) Variation of the sparseness of the controller repertoire. For

each point of a one-centimeter grid inside the ROI (Fig. 3.3), the distance from

the nearest controller is computed. The sparseness value is the average of these

distances. This graph plots the first three quartiles of the sparseness computed with

40 runs for each algorithm. (Bottom) Variation of the median of the orientation

error over all the controllers inside the region of interest. This graph also plots the

three first quartiles (25%, 50%, 75%) computed with 40 runs for each algorithm.
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of the process, the sparseness value is near 2 cm. With the “nearest” and the

“orientation” experiments, the variation is slower and reaches a significantly higher

level of sparseness (p-values = 1.4 × 10−14 with Wilcoxon rank-sum tests). The

“orientation” variant of the control experiment exhibits the worst sparseness value

(> 4cm). This result is expected because this variant favors behaviors with a good

orientation even if they are far from their reference point. This phenomenon leads

to a sample of the space less evenly distributed. The “nearest” variant achieves

every target points, thus the sparseness value is better than with the “orientation”

variant (3 cm vs. 4cm, at the end of the experiment). The Novelty Search and

the NS with Local Competition experiments follow the same progression (the two

lines are indistinguishable) and reach their final value faster ass the TBR-Evolution

algorithm. As our algorithm can increase the density of controller in particular

regions, at the end of the evolution, the final value of sparseness of TBR-Evolution

is better than all the control experiments. The sparseness of the populations of

Novelty Search and NS with Local Competition are indistinguishable too, but also

constant over all the evolution and larger than all the tested algorithms, mainly

because of the uneven distribution of their individuals (fig. 3.6)

From the orientation point of view (Fig. 3.7, bottom), our approach needs few

evaluations to reach a low error value (less than 5 degrees after 100,000 evaluations

and less than 1.7 degrees at the end of the evolutionary process). The variation

of the “orientation” control experiment is slower and needs 750,000 evaluations to

cross the curve of TBR-Evolution. At the end of the experiment this variant reaches

a significantly lower error level (p-values = 3.0 × 10−7 with Wilcoxon rank-sum

tests), but this corresponds to a difference of the medians of only 0.5 degrees. The

“nearest” variant suffers from significantly higher orientation error (greater than 15

degrees, p-values = 1.4 × 10−14 with Wilcoxon rank-sum tests). This is expected

because this variant selects behaviors taking into account only the distance from the

target point. With this selection, the orientation aspect is neglected. The Novelty

Search and the NS with Local Competition experiments lead to orientation errors

that are very high and almost constant over all the evolution. These results come

from the archive management of these algorithms that do not substitute individuals

when a better one is found. The archive of these algorithms only gathers the first

encountered behavior of each reached point. The orientation error of the NS with

Local Competition is lower than the Novelty Search because the local competition

promotes behavior with a good orientation error (compared to their local niche)

in the population, which has an indirect impact on the quality of the archive but

not enough to reach a low error level. The same conclusion can be drawn with the

population of these two algorithms: while the populations of the Novelty Search

have a similar orientation error than its archives, the populations of the NS with

Local Competition have a lower orientation error than its archives.

With the sets of reference points, we can compute the theoretical minimal sparse-

ness value of the control experiments (Fig. 3.8, Left). For example, changing the

number of targets from 100 to 200 will change the sparseness value from 3.14 cm

to 2.22 cm. Nonetheless, doubling the number of points will double the required
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Figure 3.8: (Left) Theoretical sparseness of the control experiments according to

the number of points. With more points, the sparseness value will be better (lower).

(Right) Extrapolations of the variation of the sparseness for the “nearest” variant

of the control experiment according to different number of targets. Each line is an

extrapolation of the variation of the sparseness of the “nearest variant”, which is

based on a number of points starting from 50 to 400, with a 50 points step. The

variation of TBR-Evolution is also plotted for comparison.

number of evaluations. Thanks to these values we can extrapolate the variation of

the sparseness according to the number of points. For example, with 200 targets, we

can predict that the final value of the sparseness will be 2.22 and thus we can scale

the graph of our control experiment to fit this prediction. Increasing the number of

targets will necessarily increase the number of evaluations, for example using 200

targets will double the number of evaluations. Following this constraint, we can

also scale the temporal axis of our control experiment. We can thus extrapolate the

sparseness of the archive with regard o the number of target, and compare it to the

sparseness of the archive generated with TBR-Evolution.

The extrapolations (Fig. 3.8, right) show higher sparseness values compared to

TBR-Evolution within the same execution time. Better values will be achieved with

more evaluations. For instance, with 400 targets the sparseness value reaches 1.57

cm, but only after 4 millions of evaluations. This figure shows how our approach is

faster than the control experiments regardless the number of reference points.

Figures 3.7 and 3.8 demonstrate how TBR-Evolution is better both in the sparse-

ness and in the orientation aspects compared than the control experiments. Within

few evaluations, reachable points are evenly distributed around the robot and cor-

responding behaviors are mainly well oriented.

(An illustrating video is available on: http://youtu.be/2aTIL_c-qwA)

http://youtu.be/2aTIL_c-qwA
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Figure 3.9: (Right) Variation of density of controller (number of controllers per

dm2). (Left) Variation of the orientation error (given by the nearest controller)

along a typical run in simulation.
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3.2.2.6 Experiments on the Physical Robot

In this second set of experiments, we apply the TBR-Evolution algorithm on a

physical hexapod robot (see Fig. 3.1 left). The transferability component of the

algorithm allows it to evolve the behavioral repertoire with a minimum of evalua-

tions on the physical robot. For this experiment, 3, 000 generations are performed

and we execute a transfer (evaluation of one controller on the physical robot) every

50 generations, leading to a total of 60 transfers. The TBR-Evolution experiments

and the reference experiments are replicated 5 times to gather statistics1.

Reference Experiment In order to compare the learning speed of the TBR-

Evolution algorithm, we use a reference experiment where only one controller is

learned. For this experiment, we use the NSGA-II algorithm with the transferabil-

ity approach to learn a controller that reaches a predefined target. The target is

situated 0.4m in front and 0.3m to the right: a point not as easy to be accessed as

going only straight forward, and not as hard as executing a U-turn. It represents a

good difficulty trade-off and thus allows us to extrapolate the performances of this

method to more points.

The main objective is the distance (Distance(c)) between the endpoint of the

considered controller and the target. The algorithm also optimizes the estimated

transferability value (T̂ (des(c))) and the orientation error (perf(c)) with the same

definition as in the TBR-Evolution algorithm:

minimize











Distance(c)

T̂ (des(c))

perf(c)

To update the transferability function, we use the same transfer frequency as in

TBR-Evolution experiments (every 50 generations). Among the resulting trade-offs,

we select as final controller the one that arrives closest to the target among those

with an estimated transferability T̂ (des(c)) < 0.10m. This represents a distance

between the endpoint reached in simulation and the one reached in reality lower

than 10 cm.

Results After 3,000 iterations and 60 transfers, TBR-Evolution generates a reper-

toire with a median number of 375 controllers (min = 352, max = 394). This is

achieved in approximately 2.5 hours. One of these repertoires is pictured in fig-

ure 3.10, left. The distribution of the controllers’ endpoints follows the same pat-

tern as in the virtual experiments: they cover both the front and the rear of the

robot, but not the lateral sides. Here again, these limits are not explicitly defined,

they are autonomously discovered by the algorithm.

1Performing statistical analysis with only 5 runs is difficult but it still allows us to understand the

main trends. The current set of experiments (5 runs of TBR-Evolution and the control experiment)

requires more than 30 hours with the robot and it is materially challenging to use more replications.
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Figure 3.10: Typical repertoire of controllers obtained with the TBR-Evolution

algorithm. (Left) The dots represent the endpoints of each controller. The solid

lines are the final orientations of the robot while the dashed ones are the desired

orientations. The angle between these two lines is the orientation error. (Center)

Transferability map. For each point of the reachable space, the estimated trans-

ferability of the nearest controller, within a radius of 5cm, is pictured. (Right)

Execution on the physical robot. The 30 selected controllers are pictured with

square and their actual endpoint with circles. The size and the color of the markers

are proportional to their accuracy. To select the tested controllers, the reachable

space is split into 30 regions. Their boundaries are defined by two lines at 60 degrees

on each side of the robot and by two curved frontiers that regroup all reachable

points with a curvi-linear abscissa between 0.2 and 0.6 m. These regions are then

segmented into 15 parts for both the front and the rear of the robot. All of these

values are set from experimental observations of commonly reachable points.

Similarly to the experiments on the virtual robot, the majority of the controllers

have a good final orientation and only the peripheries of the repertoire have a

distinguishable orientation error. TBR-Evolution successfully pushes the repertoire

of controllers towards controllers with a good quality score and thus following the

desired trajectories.

From these results we can draw the same conclusion as with the previous ex-

periment: the difficulty of accessing peripheral regions explains the comparatively

poor performances of controllers from these parts of archive. The large distance to

the starting point or the complexity of the required trajectory meets the limits of

the employed controllers.

The transferability map (Fig. 3.10, center) shows that the majority of the con-

trollers have an estimated value lower than 15cm (dark regions). Nevertheless, some

regions are deemed non-transferable (light regions). These regions are situated in

the peripheries too, but are also in circumscribed areas inside of the reachable

space. Their occurrence in the peripheries have the same reasons as for the orienta-
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Figure 3.11: Accuracy of the controllers. The accuracy is measured as the dis-

tance between the endpoint reached by the physical robot and the one reached in

simulation (30 points for each run, see text). The results of the TBR-Evolution

experiments are, for each run, separately pictured (Left) and also combined for an

overall point of view (Center). The performances of the reference experiments are

plotted according to the number of transfers performed (Right). In both cases, one

transfer is performed every 50 iterations of the algorithm.

tion (section 3.2.2.5), but those inside the reachable space show that the algorithm

failed to find transferable controllers in few specific regions. This happens when

the performed transfers do not allow the algorithm to infer transferable controllers.

To overcome this issue, different selection heuristics and transfer frequencies will be

considered in future work.

In order to evaluate the hundreds of behaviors contained in the repertoires on

the physical robot, we select 30 controllers in each repertoire of the 5 runs. The

selection is made by splitting the space into 30 areas (Fig. 3.10) and selecting the

controllers with the best estimated transferability in each area.

Most of these controllers have an actual transferability value lower than 15 cm

(Fig. 3.11, left), which is consistent with the observations of the transferability

map (Fig. 3.10, center) and not very large once taken into consideration the SLAM

precision, the size of the robot and the looseness in the joints. Over all the runs, the

median accuracy of the controllers is 13.5 cm (Fig. 3.11, center). Nevertheless, every

run presents outliers, i.e. controllers with a very bad actual transferability value,

which originate from regions that the transferability function does not correctly

approximate.
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Figure 3.12: Evolution of the number of controllers deemed transferable. At each

transfer (i.e. every 50 iterations), the number of controllers with an estimated

transferability lower than 15cm is pictured for all the 5 runs. The bold black line

represents the median value, the dark region the first and third quartile and the

light one the lower and upper bounds. The variability of the curve is due to the

periodic transfers, which update the transferability function and thus the estimated

transferability values.

In order to compare the efficiency of our approach to the reference experiment,

we use the “transfers-controllers ratio”, that is the number of performed transfers

divided by the number of produced controllers at the end of the evolutionary pro-

cess. For instance, if we reduce the produced behavioral repertoires to the 30 tested

controllers, this ratio is equal to 60/30 = 2 for the TBR-Evolution experiments,

since we performed 60 transfers.

The performances of the control experiments depend on the number of per-

formed transfers (Fig. 3.11, right) and thus on this ratio. For an equal ratio,

the reference experiments are 74% less accurate than TBR-Evolution (13.5 cm vs.

23.4 cm, p-value= 0.12 with the Wilcoxon ranksum test), while the accuracies of

both experiments are not statistically different (13.5 cm vs. 15.6 cm and 10.6 cm,

p-value= 0.23 and respectively 0.35) if the reference algorithm uses from 8 to 14

transfers to learn one controller (i.e. a process 4 to 7 times longer). The reference

experiment only takes advantage of its target specialisation when 20 transfers are

performed. With a transfers-controllers ratio equals to 20, the accuracy of the ref-

erence controllers outperforms the controllers generated with the TBR-Evolution

algorithm (13.5 cm vs. 4.5 cm, p-value= 0.06). Nevertheless, with such a high ratio,

the reference experiment only generates 3 controllers, while our approach generates

30 of them with the same running time (60 transfers and 3,000 generations).
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We previously only considered the 30 post evaluated controllers, whereas TBR-

Evolution generates several hundreds of them. After 60 transfers, the repertoires

contain a median number of 217 controllers that have an estimated transferability

lower than 0.15 m (Fig. 3.12). The previous results show that more than 50%

of the tested controllers have an actual transferability value lower than 0.15 m

and 75% lower than 0.20 m. We can consequently extrapolate that between 100

and 150 controllers are exploitable in a typical behavioral repertoire. Once taking

into consideration all these controllers, the transfers-controllers ratio of the TBR-

Evolution experiments falls between 0.4 and 0.6 and thus our approach is about 25

times faster than the reference experiment, for a similar accuracy.

3.3 The MAP-Elites algorithm

3.3.1 Principle

In this last part of this chapter, we explore the use of a second algorithm, called the

multi-dimensional archive of phenotypic elites (MAP-Elites) algorithm, to create

behavioral repertoires (Mouret and Clune, 2015). We call the repertoires gener-

ated with this algorithm behavior-performance maps. MAP-Elites searches for the

highest-performing solution for each point in a user-defined space. For example,

when designing controllers for legged robot, the user may be interested in seeing

the highest-performing solution at each point in a two-dimensional space where one

axis is the speed of the robot and the other axis is the direction of the movement.

Alternatively, a user may wish to see speed vs. final orientation, or see solutions

throughout a 3D space of speed vs. direction vs. orientation. Any dimension that

can vary could be chosen by the user. There is no limit on the number of dimensions

that can be chosen, although it becomes computationally more expensive to fill the

behavior-performance map and store it as the number of dimensions increases. It

also becomes more difficult to visualize the results. We refer to this user-defined

space as the “behavior space”, because usually the dimensions of variation measure

behavioral characteristics. Note that the behavioral space can refer to other aspects

of the solution, like physical properties of mechanical designs.

If the behavior descriptors and the parameters of the controller are the same

(i.e. if there is only one possible solution for each location in the behavioral space),

then creating the behavior-performance map is straightforward: one simply needs

to simulate the solution at each location in the behavior space and record the

performance. However, if it is not known a priori how to produce a controller

that will end up in a specific location in the behavior space (i.e. if the parameter

space is of higher dimension than the behavioral space: e.g., in our example, if

there are many different controllers of a specific speed, direction, and orientation,

or if it is unknown how to make a description that will produce a controller with

a specific speed, direction, and orientation), then MAP-Elites is beneficial. It will

efficiently search for the highest-performing (for example, the most stable) solution

at each point of the low-dimensional behavioral space. It is more efficient than a
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random sampling of the search space because high-performing solutions are often

similar in many ways, such that randomly altering a high-performing solution of

one type can produce a high-performing solution of a different type (as already

pointed in the previous parts of this chapter). For this reason, searching for high-

performing solutions of all types simultaneously is much quicker than separately

searching for each type. For example, to generate controllers that make the robot

quickly turn left with a high stability, it is often more effective and efficient to

modify an existing controller of a fast and stable behavior rather than randomly

generate new controllers from scratch or launch a separate search process for each

new type of controller.

MAP-Elites begins by generating a set of random candidate solutions. It then

evaluates the performance of each solution and records where that solution is located

in the behavior space (e.g. if the dimensions of the behavior space are the speed

and direction, it records the speed and the direction of each behavior in addition

to its performance). For each solution, if its performance is better than the current

solution at that location in the behavior-performance map, then it is added to

the behavior-performance map, replacing the solution in that location. In other

words, it is only kept if it is the best of that type of solution, where “type” is

defined as a location in the behavior space. There is thus only one solution kept

at each location in the behavior space (keeping more could be beneficial, but for

computational reasons we only keep one). If no solution is present in the behavior-

performance map at that location, then the newly generated candidate solution is

added at that location.

Once this initialization step is finished, MAP-Elites enters a loop that is similar

to stochastic, population-based, optimization algorithms, such as evolutionary al-

gorithms (see section 2.2): the solutions that are in the behavior-performance map

form a population that is improved by random variation and selection. In each

generation, the algorithm picks a solution at random via a uniform distribution,

meaning that each solution has an equal chance of being chosen. A copy of the se-

lected solution is then randomly mutated to change it in some way, its performance

is evaluated, its location in the behavioral space is determined, and it is kept if it

outperforms the current occupant at that point in the behavior space (note that

mutated solutions may end up in different behavior space locations than their “par-

ents”). This process is repeated until a stopping criterion is met (e.g. after a fixed

amount of time has expired). This main loop is depicted in figure 3.13. Because

MAP-Elites is a stochastic search process, each resultant behavior-performance map

can be different, both in terms of the number of locations in the behavioral space

for which a candidate is found, and in terms of the performance of the candidate

in each location.

The pseudo-code of the algorithm is defined in Algorithm 2.

MAP-Elites can be seen as an evolutionary algorithm working on multiple

niches, in which competition only occurs between individuals from the same niche.

Individuals from one niche can invade other niches only if, after being mutated, the

new individuals can survive in a new niche and that their fitness overrun the former
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Figure 3.13: The MAP-Elites main loop. After initializing the map with a few

random behaviors, MAP-Elites randomly selects, via an uniform distribution, a

behavior in the map and generates a mutated copy of this behavior. During the

evaluation of this new behavior in simulation, its performance and behavior descrip-

tor are recorded. If the cell corresponding to this new behavior descriptor is empty,

then the new behavior is added to the map, otherwise, the behavior with the highest

performance is kept in the cell. This simple loop, which can easily be performed in

parallel, is repeated several millions of time, which progressively increases both the

coverage of the map and the quality of the behaviors.

Algorithm 2 MAP-Elites Algorithm ( I evaluations, N random evaluations)

(P ← ∅, C ← ∅) ⊲ Creation of an empty behavior-performance map (empty

N-dimensional grid).

for iter = 1→ I do ⊲ Repeat during I iterations (here we choose I).

if iter < N then

c′ ← random_controller() ⊲ The first N controllers are generated randomly.

else ⊲ The next controllers are generated using the map.

c← random_selection(C ) ⊲ Randomly select a controller c in the map.

c′ ← random_variation(c) ⊲ Create a randomly modified copy of c.

x′ ←behavioral_descriptor(simu(c′)) ⊲ Simulate the controller and

record its behavioral descriptor.

p′ ←performance(simu(c′)) ⊲ Record its performance.

if P(x′) = ∅ or P(x′) < p′ then ⊲ If the cell is empty or if p′ is better than

the current stored performance.

P(x′)← p′ ⊲ Store the performance of c′ in the map according

to its behavioral descriptor x′.

C (x′)← c′ ⊲ Associate the controller with its behavioral descriptor.

return behavior-performance map (P and C )
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individuals of this niche. In MAP-Elites, each cell of the map is a different niche

and its main loop (Fig. 3.13) tends to mimic this natural process.

While MAP-Elites and TBR-Evolution (and thus Novelty Search with Local

Competition) are based on two different ideas, a few parallels can be drawn. First,

both of these algorithms do not optimize a single objective but rather search for a

set of diverse and high performing solutions. This new family of evolutionary algo-

rithms, which has been named Quality Diversity algorithms by Pugh et al. (2015),

contains currently only MAP-Elites and Novelty Search with Local Competition

(including TBR-Evolution). A second parallel is that they both use an archive or a

map that keeps a kind of history of the individuals that have been encountered dur-

ing the evolutionary process. This information is then used in the selection process

of the algorithms. In TBR-Evolution, the archive is used to maintain a population

containing only novel and locally high-performing behaviors, while in MAP-Elites

the selection is randomly performed among the whole map. The selection process

is crucial in evolutionary algorithms, as it influences the stepping stones that the

algorithms may encounter, which can lead to new types of solution. The Novelty

Search algorithm makes the hypothesis that to find these stepping stones, the algo-

rithm can focus on individuals that are novel. Nonetheless, this hypothesis actually

adds a bias in exploration strategy and stepping stones may come from individ-

ual that are neither novel nor high-performing. MAP-Elites removes this bias and

the following experimental results suggest that focusing on novel behaviors may be

counterproductive.

Pugh et al. (2015) also investigated the differences between MAP-Elites and

Novelty-based approaches. In particular, they used a variant of the novelty search

algorithm that fills maps similar to those of MAP-Elites. This variant is thus analo-

gous to the TBR-Evolution algorithm (without the Transferability objective). The

authors analyzed the quality of the maps (percentage of filled cells and their perfor-

mance) produced with the algorithms according to different behavioral descriptors.

Their experiments revealed that the algorithm that should be employed depends on

the alignment of the behavioral descriptor with the performance criteria. Indeed,

behavioral descriptor can be directly related to the performance function. For ex-

ample, one of the behavioral descriptor presented in the “QD-Maze” experiment of

Pugh et al. (2015) is the end-point of the robot’s trajectory, while the performance

is the distance to the exit of the maze. In this case, the behavioral descriptor

and the performance function are perfectly aligned because the performance can

be directly computed from the behavioral descriptor. Conversely, the final orienta-

tion of the robot is behavioral descriptor orthogonal to the performance function,

as the orientation is unrelated to the robot’s position. The conclusion of the au-

thors is that if the behavioral descriptor is aligned with the performance function

then novelty-based approaches produced the best maps, while when the behavioral

descriptor and the performance function are orthogonal then MAP-Elites is more

instrumental than the other approaches.
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3.3.2 Experimental validation

We evaluated the quality of the behavior-performance maps generated by MAP-

Elites on two tasks. The first one is similar to the experiment presented in the pre-

vious section. Our hexapod robot has to learn to walk in every direction and at var-

ious speeds. The goal of this experiment is to produce behavior-performance maps

that are similar to the behavioral repertoires generated with the TBR-Evolution

algorithms, in order to compare these two algorithms. The second experiment con-

sists in finding all the possible ways to walk on a straight line with our hexapod

robot. In order words, the robot has to discover how to walk by using only some of

its legs (for example with only 5 or 4 legs) and also many other ways like moving

forward by hopping. For each of these walking manners, the robot has to find the

fastest behaviors. For example, the fastest walking gait that uses the 6 legs, the

fastest hopping behaviors etc.

These two experiments are only conducted in simulation, as MAP-Elites requires

a large number of evaluations (like most EAs). Nonetheless, we will present in

the next chapter how to use the produced behavior-performance maps to allow a

physical robot to learn to walk and to adapt to damage situations in only a handful

of evaluations.

3.3.2.1 Learning to walk in every direction

Methods In this first experiment, in which our hexapod robot (fig 3.2 left) learns

to walk in every direction, the behavioral descriptor is defined as the end-point of

the robot’s trajectory after running the controller during 3 seconds. The behavioral

space is a 2-dimensional rectangle (2 meters by 1.4 meters). The frontal axis is

discretized in 51 chunks while the frontal axis is discretized in 35 chunks. This

leads to a total of 1785 cells in the map and each cell is a 4 x 4cm location in

the robot’s vicinity. This cell size has been chosen to produce maps with the same

density of behaviors as the behavioral repertoires from the previous experiments.

Like in the previous experiment, the performance criterion is the orientation

error (see section 3.2.2.3) and it is used to foster behaviors to follow circular tra-

jectories (see Fig. 3.3A). MAP-Elites is allowed to perform 1,000,000 evaluations

during the map generation process (like in the TBR-Evolution experiments). The

type of controller evolved in this experiment is the same as in the TBR-Evolution’s

experiments. Like TBR-Evolution, MAP-Elites can be used with any type of con-

troller. Here again, we choose to use a simple controller in order to show that the

abilities of our robot come from our learning algorithms and not from a particular

controller type. This experiment has been replicated 40 times.

Results The results show that MAP-Elites is significantly better than TBR-

Evolution in many aspects. First qualitatively, we can see that the maps produced

by MAP-Elites cover a larger space around the robot than the behavioral reper-

toire from TBR-Evolution (see Fig. 3.14). This difference appears very soon in the
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Figure 3.14: Comparison between a typical behavior-performance map obtained

with MAP-Elites and a behavioral repertoire generated with the TBR-Evolution

algorithm. The archives are displayed after 100,000 evaluations (left) and after

1,000,000 evaluations (right). Each dot corresponds to the endpoint of a controller.

The solid lines represent the final orientation of the robot for each controller, while

the gray dashed lines represent the desired orientation. The orientation error is the

angle between solid and dashed lines.
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generation process, as the map and the behavior repertoire are already different

after only 100,000 evaluations. After 1,000,000 evaluations, the maps generated

with MAP-Elites contain about 1270 controllers (median: 1271 controllers, 5th and

95th percentiles: [1159.5; 1325] controllers) corresponding to about 70% of the map

cells, while the behavioral repertoires from TBR-Evolution only contain about 470

behaviors (468.5 [429.3; 502.45] evaluations). The controllers in the map show a

good orientation error, as a clear vector field can be seen in the figure that suggest

that the behaviors follow the desired circular trajectories.

From a quantitative point of view, we can see in figure 3.15 that MAP-Elites has

always a better sparseness than TBR-Evolution during all the experiment (median:

1.74 vs. 2.10; p-value: 10−13). In particular, we can observe that TBR-Evolution

reaches a sparseness value similar to MAP-Elites only at the end of the experiment.

The same conclusion can be drawn with the orientation error. MAP-Elites becomes

rapidly better than TBR-Evolution and converges to an error close to zero (median

0.06 degrees vs. 1.83; p-values: 10−13).

While the final sparseness values are influenced by some algorithm’s parameters

(for example, the ρ value of TBR-Evolution or the discretization of the grid in

MAP-Elites), we can observe that MAP-Elites has an higher convergence speed

than TBR-Evolution. In less than 200,000 evaluations, both the sparseness and the

orientation error converged to a stable value, which is at least 5 times faster than

TBR-Evolution. The sparseness decreases rapidly and converges in less than 50,000

evaluations. Once most of the map’s cells are filled, their quality progressively

increases before converging after about 200,000 evaluations. This shows that MAP-

Elites benefits from using its whole map as a current population and not only the

current most novel individuals like in TBR-Evolution. Furthermore, it may suggest

that the random selection of MAP-Elites over its whole map is a more efficient way

to find stepping stones than focusing on novel behaviors.

With this experiment we saw that, while MAP-Elites is a very simple algorithm,

it shows results that outperform the TBR-Evolution algorithm. For this reasons,

we will use MAP-Elites to generate the maps that will be used in the following

chapters.

3.3.2.2 Discovering large number of ways to walk straight in a line

Methods In this experiment, the “mission” of the robot is to go forward as fast

as possible and also to find many different ways to do it. Each of these different

ways is a different cell of the behavioral-performance map, which has a different

behavioral descriptor, and the goal of this experiment is thus to find a behavior in

each cell of the map and to maximize their performance.

The behavioral descriptor is a 6-dimensional vector that corresponds to the

proportion of time that each leg is in contact with the ground (also called duty

factor). When a controller is simulated, the algorithm records at each time step

(every 30 ms) whether each leg is in contact with the ground (1: contact, 0: no

contact). The result is 6 Boolean time series (Ci for the ith leg). The behavioral
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Figure 3.15: (Top) Variation of the sparseness of the behavioral repertoires or maps.

For each point of a one-centimeter grid inside the ROI (Fig. 3.3), the distance from

the nearest controller is computed. The sparseness value is the average of these

distances. This graph plots the first three quartiles of the sparseness computed with

40 runs for each algorithm. (Bottom) Variation of the median of the orientation

error over all the controllers inside the region of interest. This graph also plots the

three first quartiles (25%, 50%, 75%) computed with 40 runs for each algorithm.
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descriptor is then computed with the average of each time series:

x =











∑

t
C1(t)

numTimesteps(C1)
...

∑

t
C6(t)

numTimesteps(C6)











(3.8)

During the generation of the behavior-performance map, the behaviors are

stored in the maps’s cells by discretizing each dimension of the behavioral descriptor

space with these five values: {0, 0.25, 0.5, 0.75, 1}. With this behavioral descriptor,

the robot will try to find all the ways to walk while using its six legs differently.

Some behavior will use evenly the 6 legs, some of them will use only 5 or 4. Some

other areas of the behavioral space require being more creative, for example it may

seem impossible to walk with few or no legs. We call this behavioral descriptor the

duty-factor descriptor. In the next chapter we will see that many other behavioral

descriptors can be use to generate behavior-performance maps.

The performance of a controller is defined as how far the robot moves in a pre-

specified direction in 5 seconds. The controller used in this experiment is different

from the one used in the previous experiment. This new controller, detailed in

appendix A.2.2, has additional parameters that define the duty cycle of each joint’s

periodic motion. The duty cycle is the proportion of one period in which the joint

is in its higher position. In total, this controller is defined by 36 parameters (6 per

leg).

Control Experiment The MAP-Elites algorithm is a stochastic search algorithm

that attempts to fill a discretized map with the highest-performing solution at

each point in the map. As explained previously, each cell of the map represents a

different type of behavior, as defined by the behavioral dimension of the map. MAP-

Elites generates new candidate points by randomly selecting a location in the map,

changing the parameters of the controller that is stored there, and then saving that

controller in the appropriate map location if it is better than the current occupant

at that location. Intuitively, generating new candidate solutions from the best

solutions found so far should be better than generating a multitude of controllers

randomly and then keeping the best one found for each location in the map. In this

section we report on experiments that confirm that intuition.

To understand the advantages of MAP-Elites over random sampling, we com-

pared the two algorithms by generating data with the simulated hexapod. The

experiments have the same virtual robot, environment, controller, performance

function, and behavioral descriptors as in the main experiments. We analyzed

the number of cells for which a solution is found (an indication of the diversity of

behavior types the algorithms generate), the average performance of behaviors in

the map, and the maximum performance discovered.

We replicated each experiment 8 times, each of which included 20 million eval-

uations on the simulated robot. Note that the 8 replications of MAP-Elites are
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Figure 3.16: An example behavior-performance map. This map stores high-

performing behaviors at each point in a six-dimensional behavior space. Each di-

mension is the portion of time that each leg is in contact with the ground. The

behavioral space is discretized at five values for each dimension (0; 0.25; 0.5; 0.75;

1). Each colored pixel represents the highest-performing behavior discovered dur-

ing map creation at that point in the behavior space. The matrices visualize the

six-dimensional behavioral space in two dimensions according to the legend in the

top-left. The behavior-performance map is created with a simulated robot (bottom

left) in the Open Dynamics Engine physics simulator (http://www.ode.org). The

matrix is a map produced by the MAP-Elites algorithm.

then allowed to continue for a total of 40 millions of evaluations to ensure a com-

plete convergence of the algorithm, while only 20 million evaluations are enough to

compare MAP-Elites and a random sampling.

Results One of the eight maps produced with MAP-Elites after 40 million evalu-

ations can be seen in figure 3.16. We can see that a very large portion of the map is

filled, as only a few cells remain in white. The maps contain about 13,000 different

behaviors. A video that illustrates some of the different types of behavior that can

be found in the map can be seen here: https://youtu.be/IHQgnpSphEI Moreover,

some regions of the map are filled while they are supposed to be impossible or very

challenging. For example, the most extreme bottom left cell represents the behav-

ioral descriptor with all its values set to zero, meaning that the robot has to find

a way to walk without touching the ground. The results show that the algorithm

was able to find a solution even in this seemingly impossible case. After looking

to the corresponding behaviors, it appears that the robot found a way to flip over

and to walk on its knees. As the contact with the ground, used to compute the

https://youtu.be/IHQgnpSphEI
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Figure 3.17: Comparing MAP-Elites and random sampling for generating

behavior-performance maps. (a) The number of points in the map for

which a behavior is discovered. (b) The mean performance of the behav-

iors in the map. (c) The maximum performance of the behaviors in the

map. For all these figures, the middle lines represent medians over 8 independently

generated maps and the shaded regions extend to the 25th and 75th percentiles, even

for (a) and (b), where the variance of the distribution is so small that it is difficult

to see. See Supplementary Experiment S4 for methods and analysis.

behavioral descriptor, are only recorded on the tips of each leg, walking on its knees

is considered by the algorithm as not touching the ground. This type of behavior

typically illustrates the creativity of MAP-Elites and how it is able to find solutions

to various problems. This behavior can be seen in the previous video.

When comparing MAP-Elites with a random sampling, the results show that

the MAP-Elites algorithm outperforms random sampling on each of the proposed

measures (Fig. 3.17). After 20 million evaluations, about 13,000 cells (median:

12968, 5th & 95th percentiles: [12892; 13018]) are filled by MAP-Elites (about 83%

percent of the map), whereas random sampling only filled approximately 8600 (8624

[8566; 8641]) cells (about 55% percent of the map) (Fig. 3.17a). The difference

between the two algorithms is large and appears early (Fig. 3.17a); after only 1

million evaluations, MAP-Elites filled 10670 [10511; 10775] cells (68% of the map),

whereas random sampling filled 5928 [5882; 5966] cells (38% of the map).

The solutions discovered by MAP-Elites are not only more numerous, but also

outperform those found by random sampling (Supplementary Fig. 3.17b): with

MAP-Elites, after 20 million evaluations the average performance of filled cells is

0.22 [0.22; 0.23] m/s, whereas it is 0.06 [0.06; 0.06] m/s with random sampling,

which is similar to the performance obtained with the reference controller on a
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damaged robot (Fig. 3). These two results demonstrate that MAP-Elites is a

much better algorithm than random sampling to find a map of the diverse, “elite”

performers in a search space.

In addition, MAP-Elites is a better optimization algorithm, as measured by the

performance of the best single solution produced. The performance of the best

solution in the map after 20 million evaluations is 0.40 [0.39;0.41] m/s with MAP-

Elites, compared to 0.21 [0.20; 0.22] m/s with random sampling.

With this second experiment, we showed that MAP-Elites can be used not only

to learn to achieve several tasks (like walking in every directions) but also to learn

many different ways to solve the same task (here moving forward as fast as possible).

Our experiments demonstrated that MAP-Elites is higher performing than TBR-

Evolution and consequently than other algorithms of quality-diversity search (like

Novelty Search or Novelty Search with Local Competition). They also proved that

one of the main advantage of MAP-Elites comes from the fact that MAP-Elites can

rely on its whole map as a sort of population, while TBR-Evolution (and Novelty

Search) only uses the current most novel behaviors.

3.4 Conclusion

In this chapter, we introduced two algorithms to generate behavioral repertoires or

maps: TBR-Evolution and MAP-Elites. These algorithms generate a large num-

ber of efficient behaviors without requiring to learn each of them separately (with

independent learning processes), or to test complex controllers for each condition.

Behavioral repertoires or behavior-performance maps are an interesting way to en-

capsulate the creativity of evolutionary algorithms (EAs), as they project the large

search spaces of EAs into small behavioral spaces containing only high performing

solutions. If the behavioral descriptors are well chosen, the diversity of solution

contained in these containers can be enough to deal with a large variety of tasks or

situations. In the footsteps of Novelty Search, these new algorithms thus highlight

that evolutionary robotics can be more than black-box optimization (Doncieux and

Mouret, 2014): evolution can simultaneously optimize in many niches, each of them

corresponding to a different, but high-performing, behavior.

We first investigated how TBR-Evolution can be used to allow a physical robot

to learn to walk in every direction. With this experiment, we showed that, thanks

to its ability to recycle solutions usually wasted by standard evolutionary algorithm,

TBR-Evolution generates behavioral repertoires faster than by evolving each solu-

tion separately. We also showed that its archive management allows it to generate

behavioral repertoires with a significantly higher quality than the Novelty Search

algorithm (Lehman and Stanley, 2011a). With the TBR-Evolution algorithm, our

physical hexapod robot was able to learn several hundreds of controllers with only

60 transfers of 3 seconds on the robot, which was achieved in 2.5 hours (including

computation time for evolution and the SLAM algorithm). The repartition of these

controllers over all the reachable space has been autonomously inferred by the al-
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Figure 3.18: Illustration of the results obtained with TBR-Evolution. These 5 typi-

cal trajectories correspond to controllers obtained with TBR-Evolution as recorded

by the SLAM algorithm. The supplementary video shows a few other examples of

controllers.

gorithm according to the abilities of the robot. Our experiments also showed that

our method is about 25 times faster than learning each controller separately. These

experiments show that the TBR-Evolution algorithm is a powerful method for learn-

ing multiple tasks with only several dozens of tests on the physical robot by taking

advantage of the transferability approach. Figure 3.18 and the supplementary video

illustrate the resulting ability of the robot to walk in every direction.

In the second part of this chapter, we introduced MAP-Elites. We compared its

performance to those of TBR-Evolution and random sampling. The results showed

that this simple algorithm provides impressive results. On the same task, MAP-

Elites generates a map 5 times faster than TBR-Evolution and with a quality, in

terms of orientation error, 30 times better. We tested MAP-Elites in a second ex-

periment in which the robot has to find different ways for walking straight in a line

as fast as possible. This experiment highlighted the creativity of this algorithm, as

some of the produced behaviors showed non-trivial strategies that solved seemingly

impossible tasks. We will show in the next chapter how these maps, and the cre-

ativity they contain, can be used to allow our physical robots to learn and adapt

in less than a dozen trials.
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4.1 Introduction

Autonomous robots are inherently complex machines that have to cope with a

dynamic and often hostile environment. They face an even more demanding context

when they operate for a long time without any assistance, whether when exploring

remote places (Bellingham and Rajan, 2007) or, more prosaically, in a house without

any robotics expert (Prassler and Kosuge, 2008). As famously pointed out by

Corbato (2007), when designing such complex systems, “[we should not] wonder if

some mishap may happen, but rather ask what one will do about it when it occurs”.

In autonomous robotics, this remark means that robots must be able to pursue their

mission in situations that have not been anticipated by their designers. Legged

robots clearly illustrate this need to handle the unexpected: to be as versatile as

possible, they involve many moving parts, many actuators and many sensors (Kajita

and Espiau, 2008); but they may be damaged in numerous different ways. These

robots would therefore greatly benefit from being able to autonomously find a new

behavior if some legs are ripped off, if a leg is broken or if one motor is inadvertently

disconnected.

Fault tolerance and resilience are classic topics in robotics and engineering. Cur-

rent damage recovery methods in deployed robots typically involves two phases: (1)

performing a self-diagnosis thanks to the embedded sensors and then (2) selecting

the best, pre-designed contingency plan available (Verma et al., 2004; Blanke and

Schröder, 2006; Bongard et al., 2006; Kluger and Lovell, 2006; Visinsky et al., 1994;

Koren and Krishna, 2007; Görner and Hirzinger, 2010; Jakimovski and Maehle,

2010; Mostafa et al., 2010; Schleyer and Russell, 2010). For instance, if a hexapod

robot diagnoses that one of its legs is not reacting as expected, it can drop it and

adapt the position of the other legs accordingly (Jakimovski and Maehle, 2010;

Mostafa et al., 2010).

These methods undoubtedly proved their usefulness in space, aeronautics and

numerous complex systems. However, such self-diagnosing robots are expensive,

because self-monitoring sensors are expensive, and are difficult to design, because

robot engineers cannot foresee every possible situation. Moreover, this approach

often fails either because the diagnosis is incorrect (Bongard et al., 2006; Verma
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Figure 4.1: With learning algorithms, robots, like animals, can quickly

adapt to recover from damage. After damage occurs, in this case making

the robot unable to walk straight, damage recovery via Intelligent Trial and Error

begins. The robot tests different types of behaviors from an automatically generated

map of the behavior-performance space. After each test, the robot updates its

predictions of which behaviors will perform well despite the damage. This way, the

robot rapidly discovers an effective compensatory behavior.

et al., 2004) or because an appropriate contingency plan is not provided (Kluger

and Lovell, 2006).

Another classic approach to fault tolerance is to employ robust controllers that

can work in spite of damaged sensors or hardware inefficiencies (Goldberg and

Chen, 2001; Caccavale and Villani, 2002; Qu et al., 2003; Lin and Chen, 2007).

Such controllers usually do not require diagnosing the damage, but this advantage

is tempered by the need to integrate the reaction to all faults in a single controller.

4.1.1 Learning for resilience

Injured animals respond differently: they learn by trial and error how to compensate

for damage (e.g. learning which limp minimizes pain, Jarvis et al. (2013); Fuchs

et al. (2014)). Based on this observation, an alternative to traditional recovery

methods and a promising line of thought is to let the robot learn on its own the

best behavior for the current situation (see figure 4.1). If the learning process is

open enough, then the robot should be able to creatively discover compensatory

behaviors without being limited to their designers’ assumptions about how damage

may occur and how to compensate for each damage type.

As presented previously in this manuscript, numerous learning algorithms,

like policy search or evolutionary algorithms, have been experimented in robotics

(see chapter 2), with different levels of openness and various a priori constraints.

Nonetheless, only a few of these learning methods have been explicitly tested in

situations in which a robot needs to adapt itself to unexpected situations (see table

4.1). One of the reasons that explain this lack of interest is that current state-of-

the-art learning algorithms are impractical because of the “curse of dimensionality”

(Kober et al., 2013): the fastest algorithms constrain the search to a few behaviors

(e.g. tuning only 2 parameters, requiring 10-25 minutes) or require human demon-
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strations. Algorithms without these limitations take several hours (see tables 2.1

and 4.1). Damage recovery would be much more practical and effective if robots

adapted as creatively and quickly as animals (e.g. in minutes) in larger search

spaces and without expensive, self-diagnosing sensors.

It is interesting to note that all policy gradient and evolutionary algorithms

spend most of their running time in evaluating the quality of controllers by testing

them on the target robot. Since, contrary to simulation, reality cannot be sped

up, their running time can only be improved by finding strategies to evaluate fewer

candidate solutions on the physical robot. In their “starfish robot” project, Bongard

et al. (2006) designed a general approach for resilience that makes an important step

in this direction. The authors highlighted how an internal simulation and physical

tests can be combined to allow the algorithms to reduce the number of evaluations

on the physical robot. The simulation of the robot is called a self-model1 (Metzinger,

2004, 2007; Vogeley et al., 1999; Bongard et al., 2006; Holland and Goodman, 2003;

Hoffmann et al., 2010). In effect, this algorithm transfers most of the learning time

to a computer simulation, which makes it increasingly faster when computers are

improved (Moore, 1975).

4.1.2 Resilience with a self-model

Taking advantage of a self-model while learning behaviors is a promising way to

reduce the number of evaluation on the physical robot. However, simulations are

never perfect and most of behaviors learned in simulation do not work as expected

in reality. This well known problem, called reality gap (Koos et al., 2013b), is even

worse when considering resilient robotics because the simulation do not model the

undergone damage. In this situation, a first idea consists in updating the self-model

to include the damage, which corresponds to performing a diagnosis. As mentioned

previously, such diagnosis is expensive and may fail, as the number of situation

that can be correctly diagnosed depends on the sensors embedded on the robot.

Updating the model via a diagnosis leads consequently to the same shortcomings

as traditional damage recovery algorithms.

As an alternative to the traditional ways of performing a diagnosis, Bongard

et al. (2006) propose to infer the damage and to update the self-model by choos-

ing motor actions and measuring their consequences on the behavior of the robot.

The algorithm then relies on the updated model of the robot to learn a new be-

havior in simulation. This approach has been successfully tested on a starfish-like

quadrupedal robot, which managed to update its self-model and to discover a new

walking gait after the loss of one of its legs (Bongard et al., 2006; Zykov, 2008).

In Bongard’s algorithm, the identification of the self-model is based on an active

1 Following the literature in psychology (Metzinger, 2004, 2007; Vogeley et al., 1999) and ar-

tificial intelligence (Bongard et al., 2006; Holland and Goodman, 2003), we define a self-model as

a forward, internal model of the whole body that is accessible to introspection and instantiated in

a model of the environment. In the present manuscript, we only consider a minimal model of the

environment (a horizontal plane).
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Table 4.1: How long many previous robot damage recovery algorithms take to run. While comparisons between these

algorithms are difficult because they vary substantially in their objective, the size of the search space, and the robot they were

tested on, we nonetheless can see that damage recovery times are rarely below 20 minutes, and often take hours.

approach/article starting behavior ⋆ evaluations learning time robot DOFs† param.‡ reward

Policy Gradient Methods

Christensen et al. (2013) n/a 180 10 min quadruped 8 8 external

Evolutionary Algorithm

Berenson et al. (2005) random 200 2 h quadruped 8 36 external

Mahdavi and Bentley (2006) random 600 10 h snake 12 1152 external

Bongard et al. (2006)1 random 15 4 h hexapod 12(18) 30 internal

Reinforcement learning

Erden and Leblebicioğlu (2008) 2 standing 150 15-25min. hexapod 18 n/a internal

Our approaches

Koos et al. (2013a)
random 25 20 min. hexapod 12(18) 24 internal

T-Resilience

Cully et al. (2015)
random 8 1 min. hexapod 12 (18) 36 internal

Intelligent Trial and Error
⋆Behavior used to initialize the learning algorithm.
† DOFs: number of controlled degrees of freedom.
‡ param: number of learned control parameters.
1 The original authors do not provide time information, reported values come from the implementation of Koos et al. (2013)Koos et al. (2013a).
2 Free-State generation with reinforcement learning.
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learning loop that is itself divided into an action selection loop and a model selection

loop. The action selection loop aims at selecting the action that will best distinguish

the models of a population of candidate models, while the model selection loop looks

for the models that best predict the outcomes of the actions as measured on the

robot. In the “starfish” experiment (Bongard et al., 2006), the following steps are

repeated:

1.1. action selection (exploration): Each of 36 possible actions is tested on each of

the 16 candidate models to observe the orientation of robot’s body predicted

by the model. The action for which models of the population disagree at most

is selected. This action is tested on the robot and the corresponding exact

orientation of robot’s body is recorded by an external camera;

1.2. model selection loop (estimation): An evolutionary algorithm is used to op-

timize the population of models so that they accurately predict what was

measured with the robot, for each tested action;

Once this loop has been repeated 15 times, the best model found so far is used

to learn a new behavior using an EA:

2. controller optimization (exploitation): An evolutionary algorithm is used to

optimize a population of controllers so that they maximize forward displace-

ment within the simulation of the self-model. The best controller found in

the simulation is transferred to the robot, making it the new controller.

With these two loops, only 15 tests on the physical robot are required to up-

date the self-model in their experiments, as most of the evaluation are executed in

simulation. The speed of this algorithm directly depends on the performance of the

employed computers. Nonetheless, significant computing times are still required for

the optimization of the population of models.

In the results reported by Bongard et al. (2006), only half of the runs led to

correct self-models. As Bongard’s. approach implies identifying a full model of the

robot, it would arguably require many more tests to be reasonably certain to find

the correct self-model. For comparison, results obtained by the same authors but in

a simulated experiment required from 600 to 1500 tests to consistently identify the

model (Bongard and Lipson, 2005). It should also be noted that these authors did

not measure the orientation of robot’s body with internal sensors, whereas noisy

internal measurements could significantly impair the identification of the model.

Other authors experimented with self-modeling process similar to the one of Bon-

gard et al., but with a humanoid robot (Zagal et al., 2009). Preliminary results

suggest that thousands of evaluations on the robot would be necessary to correctly

identify 8 parameters of the global self-model. Alternative methods have been pro-

posed to build self-models for robots and all of them require numerous tests, e.g.

on a manipulator arm with about 400 real tests (Sturm et al., 2008) or on a hexa-

pod robot with about 240 real tests (Parker, 2009). Overall, experimental costs
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for building self-models appear expensive in the context of resilience applications

in both the number of tests on the real robot and in computing time.

Moreover, the approach has a few important shortcomings. First, actions and

models are undirected: the algorithm can “waste” a lot of time to improve parts

of the self-model that are irrelevant for the task. Second, it is computationally

expensive because it includes a full learning algorithm (the second stage, in simu-

lation) and an expensive process to select each action that is tested on the robot.

Third, there is often a “reality gap” between a behavior learned in simulation and

the same behavior on the target robot (Jakobi et al., 1995; Zagal et al., 2004; Koos

et al., 2013b), but nothing is included in Bongard’s algorithm to prevent such gap

to happen: the controller learned in the simulation stage may not work well on the

real robot, even if the self-model is accurate.

4.1.3 Dealing with imperfect simulators to make robots more ro-
bust

Instead of updating or improving the simulation, we propose in this chapter that

a damaged robot discovers new original behaviors using the initial, hand-designed

self-model. The model of the undamaged robot is obviously not accurate because it

does not model the damage. Nonetheless, since damage cannot radically change the

overall morphology of the robot, this “undamaged” self-model can still be viewed as

a reasonably accurate model of the damaged robot. Most of the degrees of freedom

are indeed correctly positioned, the mass of components should not change much

and the body plan is most probably not radically altered.

Based on this observation, we hypothesis that there exist some behaviors in

the search space that work similarly both with the virtual, intact robot and with

the physical, damaged robot. For instance, if a hexapod robot breaks a leg, then

gaits that do not critically rely on this leg should lead to similar trajectories in the

self-model and on the damaged robot. Such gaits are numerous: those that make

the simulated robot lift the broken leg so that it never hits the ground; those that

make the robot walk on its “knees”; those that are robust to leg damage because

they are closer to crawling than walking. Similar ideas can be found for most robots

and for most mechanical and electrical damage, provided that there are different

ways to achieve the mission. For example, any redundant robotic manipulator with

a blocked joint should be able to follow a less efficient but working trajectory that

does not use this joint.

The algorithms proposed in this chapter aim to find behaviors that work sim-

ilarly in simulation and in reality, in spite of the damage. However, finding such

behaviors is not a question restricted to damage recovery: it is a well known and

an unavoidable issue when robotic controllers are first optimized in simulation then

transferred to a real robot, even when the robot is intact. Evolutionary robotics

is probably one of the most affected fields, because of his emphasis on opening the

search space as much as possible and as a consequence, behaviors found within the

simulation are often not anticipated by the designer of the simulator. Therefore, it’s
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not surprising that they are often wrongly simulated. Researchers in evolutionary

robotics explored three main ideas to cross this “reality gap”: (1) automatically im-

proving simulators (Bongard et al., 2006; Pretorius et al., 2012; Klaus et al., 2012),

(2) trying to prevent optimized controllers from relying on the unreliable parts of

the simulation (in particular, by adding noise) (Jakobi et al., 1995), and (3) model

the difference between simulation and reality (Hartland and Bredeche, 2006; Koos

et al., 2013b).

Translated to resilient robotics, the first idea is equivalent to improving or adapt-

ing the self-model, with the aforementioned shortcomings. The second idea corre-

sponds to encouraging the robustness of controllers so that they can deal with an

imperfect simulation. It could lead to improvements in resilient robotics but it re-

quires that the designer anticipates most of the potential damage situations. The

third idea is more interesting for resilient robotics because it acknowledges that sim-

ulations are never perfect and mixes reality and simulation during the optimization.

Among the algorithms of this family, the recently-proposed transferability approach

(see chapter 2.2.5 or Koos et al. (2013b)) explicitly searches for high-performing

controllers that work similarly in both simulation and reality. It led to successful

solutions for quadruped robot (2 parameters to optimize) and for a Khepera-like

robot in a T-maze (weights of a feed-forward neural networks to optimize) (Koos

et al., 2013b; Koos and Mouret, 2011).

In this chapter, we present two algorithms that follow this idea of modeling the

difference between the simulation and reality to allow robots to adapt to unantici-

pated situations. The first algorithm, named T-Resilience, is based on the transfer-

ability approach, which uses a machine-learning algorithm (regression algorithm)

to guide an evolutionary algorithm towards solutions that are transferable. In our

second algorithm, named the Intelligent Trial and Error algorithm, we do the oppo-

site: a behavioral repertoire (see chapter 3) generated by an evolutionary algorithm

is used to guide a machine learning algorithm (policy search algorithm) toward

solutions that are both high-performing and diverse.

In both of these algorithms, the vast majority of controller evaluations is per-

formed in simulation and only a few physical trials are required to allow our robots

to adapt to the damage situations. We evaluate both of the algorithms on our

hexapod robot injured in several ways, including damaged, broken, and missing

legs. Results show that only 25 trials and 20 minutes are required for the robot to

adapt with the T-Resilience algorithm while less than 2 minutes are enough with the

Intelligent Trial and Error algorithms. For all these experiments, the performance

of the behaviors are assessed on-board thanks to a RGB-D sensor coupled with

state-of-the-art Simultaneous Localization And Mapping (SLAM, Durrant-Whyte

and Bailey (2006); Angeli et al. (2009)) algorithms (Endres et al., 2012; Dryanovski

et al., 2013). These two algorithms can work with many different types of robot,

provided that they have several ways to achieve their tasks. To highlight this prop-

erty, we also tested the Intelligent Trial and Error algorithm on a robotic arm with

joints broken in 14 different ways.
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4.2 The T-Resilience algorithm

4.2.1 Motivations and principle

As mentioned in section 2.2.5, the transferability approach captures the differences

between the self-model and reality through the transferability function (Mouret

et al., 2012; Koos et al., 2013b):

Definition 9 (transferability function) A transferability function T is a func-

tion that maps a vector b ∈ Rm of m solution descriptors (e.g. control parameters

or behavior descriptors) to a transferability score T (b) that represents how well

the simulation matches the reality for this solution (e.g. performance variation):

T : Rm 7→ R

b 7→ T (b)

This function is usually not accessible because this would require testing every

solution both in reality and in simulation (see Mouret et al. (2012) and Koos et al.

(2013b) for an example of exhaustive mapping). The transferability function can,

however, be approximated with a regression algorithm (neural networks, support

vector machines, etc.) by recording the behavior of a few controllers in reality an

in simulation.

To cross the reality gap, the transferability approach essentially proposes op-

timizing both the approximated transferability and the performance of controllers

with a stochastic multi-objective optimization algorithm. This approach can be

adapted to make a robot resilient by seeing the original, “un-damaged” self-model

as an inaccurate simulation of the damaged robot, and if the robot only uses internal

measurements to evaluate the discrepancies between predictions of the self-model

and measures on the real robot. Resilient robotics is thus a related, yet new appli-

cation of the transferability concept. We call this new approach to resilient robotics

“T-Resilience” (for Transferability-based Resilience).

4.2.2 Method description

The T-Resilience algorithm relies on three main principles (Fig. 4.3 and Algorithm

3):

• the self-model of the robot is not updated;

• the approximated transferability function is learned “on the fly” thanks to a

few periodic tests conducted on the robot and a regression algorithm;

• three objectives are optimized simultaneously:

maximize











Fself (c)

T̂ (bself (c))

diversity(c)
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where Fself (c) denotes the performance of the candidate solution c that is predicted

by the self-model (e.g. the forward displacement in the simulation); bself (c) denotes

the behavior descriptor of c, extracted by recording the behavior of c in the self-

model; T̂ (bself (c)) denotes the approximated transferability function between the

self-model and the damaged robot, which is separately learned using a regression

algorithm; and diversity(c) is a application-dependent helper-objective that helps

the optimization algorithm to mitigate premature convergence (see chapter 2.2.2.1

or Toffolo and Benini (2003); Mouret and Doncieux (2012)).

Evaluating these three objectives for a particular controller does not require

any real test: the behavior of each controller and the corresponding performance

are predicted by the self-model; the approximated transferability value is computed

thanks to the regression model of the transferability function. The update of the

approximated transferability function is therefore the only step of the algorithm that

requires a real test on the robot. Since this update is only performed every N

iterations of the optimization algorithm, only a handful of tests on the real robot

have to be done.

At a given iteration, the T-Resilience algorithm does not need to predict the

transferability of the whole search space, it only needs these values for the candi-

date solutions of the current population. Since the population, on average, moves

towards better solutions, the algorithm has to periodically update the approxima-

tion of the transferability function. To make this update simple and unbiased, we

chose to select the solution to be tested on the robot by picking a random individual

from the population. We experimented with other selection schemes in preliminary

experiments, but we did not observe any significant improvement.

The three objectives are simultaneously optimized thank to the NSGA-II algo-

rithm (Deb et al., 2002; Deb, 2001), one of the most widely used multi-objective op-

timization algorithm (see section 2.2.2); however, any Pareto-based multi-objective

algorithm can replace this specific EA in the T-Resilience algorithm.

At the end of the optimization algorithm, the MOEA discards diversity values

and returns a set of non-dominated solutions based on performance and transfer-

ability. We then need to choose the final controller. Let us define the “transferable

non-dominated set” as the set of non-dominated solutions whose transferability val-

ues are greater than a user-defined threshold. To determine the best solution of a

run, the solution of the transferable non-dominated set with the highest perfor-

mance in simulation is transferred onto the robot and its performance in reality is

assessed. The final solution of the run is the controller that leads to the highest

performance on the robot among all the transferred controllers (Fig. 4.2).

Three choices depend on the application:

• the performance measure Fself (i.e. the reward function);

• the diversity measure;

• the regression technique used to learn the transferability function and, in

particular, the inputs and outputs of this function.
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Figure 4.2: Choice of the final solution at the end of the T-Resilience algorithm.

We will discuss and describe each of these choices for our resilient hexapod robot

in the next section.

Algorithm 3 T-Resilience (T real tests)

pop← {c1, c2, . . . , cS} (randomly generated)

data← ∅

for i = 1→ T do

random selection of c∗ in pop

computation of bself (c∗), vector of m values describing c∗ in the self-model

transfer of c∗ on the robot

estimation of performance Freal(c
∗) using internal measurements (B)

estimation of transferability score T (bself (c∗)) = ||Fself (c∗)−Freal(c
∗)||

data← data ∪ {[bself (c∗), T (bself (c∗))]}

learning of new approximated transferability function T̂ , based on data

N iterations of MOEA on pop by maximizing Fself (c), T̂ (bself (c)), diversity(c) (A)

selection of the new controller

4.2.3 Experimental validation

We evaluate the performance of our algorithm on the same hexapod robot and the

same type of controller as in the previous chapter. Like in the previous experiments,

the performance of the robot is assessed thanks to an embedded SLAM algorithm,

which autonomously infers the walking speed of the robot. The self-model of the

robot is also identical to the simulation used in the previous chapter. The details
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population
(control parameters)

MOEA

(A) Discovery loop, each iteration
(B) Update of transferability,
every N iterations

approximated
transferability function

robot
self-model

(dynamic simulation)
behavior description
of the self-model
(e.g. contacts)

distance covered
in the self-model

distance covered
on the robot

(internal measures)
update of approx.
transferability
by regression

approximated transferability
corresponding to controller

transfer of
onto the robot

randomly selected in
the population

for each controller
in the population

exact transferability value
for the controller

Figure 4.3: Schematic view of the T-Resilience algorithm (see algorithm 3 for an

algorithmic view). (A) Discovery loop: each controller of the population is eval-

uated with the self-model. Its transferability score is approximated according to

the current model T̂ of the exact transferability function T . (B) Transferability

update: every N iterations, a controller of the population is randomly selected and

transferred onto the real robot. The model of the transferability function is next

updated with the data generated during the transfer.

about the robots and the employed encoding for the controller and the self-model

can be found in the appendix A.1 and A.2.1.

A classic tripod gait (Wilson, 1966; Saranli et al., 2001; Schmitz et al., 2001;

Ding et al., 2010; Steingrube et al., 2010), designed by using the same controller,

is used as a reference point to compare the performance of the proposed algorithm

compared to hand-coded behaviors. The description and the parameters of this

behavior are available in appendix A.2.1.

4.2.3.1 Implementation choices for T-Resilience

Performance function. The mission of our hexapod robot in this experiment is

to go forward as fast as possible, regardless of its current state and of the undergoing

damage. The performance function to be optimized is the forward displacement of

the robot predicted by its self-model. Such a high-level function does not constrain

the features of the optimized behaviors, so that the search remains as open as

possible, possibly leading to original gaits (Nelson et al., 2009):

Fself (c) = pt=E,SELF
x (c)− pt=0,SELF

x (c) (4.1)
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where pt=0,SELF
x (c) denotes the x-position of the robot’s center at the beginning of

the simulation when the parameters c are used and pt=E,SELF
x (c) its x-position at

the end of the simulation.

Because each trial lasts only a few seconds, this performance function does

not strongly penalize gaits that do not lead to straight trajectories. Using longer

experiments would penalize these trajectories more, but it would increase the total

experimental time too much to perform comparisons between approaches. Other

performance functions are possible and will be tested in future work.

Diversity function. The diversity score of each individual is the average Eu-

clidean distance to all the other candidate solutions of the current population.

Such a parameter-based diversity objective enhances the exploration of the control

space by the population (Toffolo and Benini, 2003; Mouret and Doncieux, 2012)

and allows the algorithm to avoid many local optima. This diversity objective is

straightforward to implement and does not depend on the task.

diversity(c) =
1

N

∑

y∈Pn

√

√

√

√

24
∑

j=1

(cj − yj)2 (4.2)

where Pn is the population at generation n, N the size of P and cj the jth parameter

of the candidate solution c. Other diversity measures (e.g. behavioral measures, like

in (Mouret and Doncieux, 2012)) led to similar results in preliminary experiments.

Regression model. When a controller c is tested on the real robot, the cor-

responding exact transferability score T is computed as the absolute difference

between the forward performance predicted by the self-model and the performance

estimated on the robot based on the SLAM algorithm.

T (c) =
∣

∣

∣pSELF
t=E (c)− pREAL

t=0 (c)
∣

∣

∣ (4.3)

The transferability function is approximated by training a SVM model T̂ using

the ν-Support Vector Regression algorithm with linear kernels implemented in the

library libsvm2 (Chang and Lin, 2011) (learning parameters are set to default val-

ues).

T̂ (bself (c)) = SVM(b
(1)
t=0, · · · , b

(1)
t=E , · · · , b

(6)
t=0, · · · , b

(6)
t=E) (4.4)

where E is the number of time-steps of the control function (equation A.1) and:

b
(n)
t =

{

1 if leg n touches the ground at that time-step

0 otherwise
(4.5)

2http://www.csie.ntu.edu.tw/~cjlin/libsvm

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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We chose to describe gaits using contacts3, because it is a classic representation

of robotic and animal gaits (e.g. Delcomyn (1971)).

We chose SVMs to approximate the transferability score because of the high

number of inputs of the model and because there are many available implementa-

tions. Contrary to other classic regression models (neural networks, Kriging, ...),

SVMs are indeed not critically dependent on the size of the input space (Smola and

Vapnik, 1997; Smola and Schölkopf, 2004). They also provide fast learning and fast

prediction when large input spaces are used.

4.2.3.2 Test cases and compared algorithms

To assess the ability of T-Resilience to cope with many different failures, we consider

the six following test cases (Fig. 4.4):

• A. the hexapod robot is not damaged;

• B. the left middle leg is no longer powered;

• C. the terminal part of the front right leg is shortened by half;

• D. the right hind leg is lost;

• E. the middle right leg is lost;

• F. both the middle right leg and the front left leg are lost.

We compare the T-Resilience algorithm to three representative algorithms from

the literature (see appendix D.1.1 for the exact implementations of each algorithm

and appendix D.1.2 for the validation of the implementations):

• a stochastic local search (Hoos and Stützle, 2005), because of its simplicity;

• a policy gradient method inspired from Kohl and Stone (2004), because this

algorithm has been successfully applied to learn quadruped locomotion;

• a self-modeling process inspired from Bongard et al. (2006).

To make the comparisons as fair as possible, we designed our experiments to

compare algorithms after the same amount of running time or after the same num-

ber of real tests (see appendix D.1.3 for their median durations and their median

numbers of real tests). In all the test cases, the T-Resilience algorithm required

about 19 minutes and 25 tests on the robot (1000 generations of 100 individuals).

Consequently, two key values are recorded for each algorithm (see Appendix D.1.1

for exact procedures):

3When choosing the input of a predictor, there is a large difference between using the control

parameters and using high-level descriptors of the behavior (Mouret and Doncieux, 2012). Intu-

itively, most humans can predict that a behavior will work on a real robot by watching a simulation,

but their task is much harder if they can only see the parameters. More technically, predicting

features of a complex dynamical system usually requires simulating it. By starting with the output

of a simulator, the predictor avoids the need to re-invent physical simulation and can focus on

discrimination.
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A B CB C

D E F

Figure 4.4: Test cases considered in our experiments. (A) The hexapod robot is

not damaged. (B) The left middle leg is no longer powered. (C) The terminal part

of the front right leg is shortened by half. (D) The right hind leg is lost. (E) The

middle right leg is lost. (F) Both the middle right leg and the front left leg are lost.

• the performance of the best controller obtained after about 25 real tests4;

• the performance of the best controller obtained after about 19 minutes.

The experiments for the four first cases (A, B, C and D) showed that only the

stochastic local search is competitive with the T-Resilience. To keep experimental

time reasonable, we therefore chose to only compare T-Resilience with the local

search algorithm for the two last failures (E and F).

Preliminary experiments with each algorithm showed that initializing them with

the parameters of the reference controller did not improve their performance. We

interpret these preliminary experiments as indicating that the robot needs to use

a qualitatively different gait, which requires substantial changes in the parameters.

This observation is consistent with the gaits we tried to design for the damaged

robot. As a consequence, we chose to initialize each of the compared algorithms

with random parameters instead of initializing them with the parameters of the

reference controller. By thus starting with random parameters, we do not rely on

any a priori about the gaits for the damaged robot: we start with the assumption

that anything could have happened.

We replicate each experiment 5 times to obtain statistics. Overall, this compari-

son requires the evaluation of about 4000 different controllers on the real robot. The

4Depending on the algorithm, it is sometimes impossible to perform exactly 25 tests (for in-

stance, if two tests are performed for each iteration).
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Test cases A B C D E F

Perf. (CODA) 0.78 0.26 0.25 0.00 0.15 0.10

Perf. (SLAM) 0.75 0.17 0.26 0.00 0.04 0.16

Table 4.2: Performances in meters obtained on the robot with the reference gait in

all the considered test cases. Each test lasts 3 seconds. The CODA line corresponds

to the distance covered by the robot according to the external motion capture

system. The SLAM line corresponds to the performance of the same behaviors

but reported by the SLAM algorithm. When internal measures are used (SLAM

line), the robot can easily detects that a damage occurred because the difference in

performance is very significant (column A versus the other columns).

different values of parameters used in these experiments are defined in appendix C.2

We use 4 Intel(R) Xeon(R) CPU E31230 3.20GHz, each of them including

4 cores. Each algorithm is programmed in the Sferesv2 framework (Mouret and

Doncieux, 2010). The MOEA used in Bongard’s algorithm and in the T-Resilience

algorithm is distributed on 16 cores using MPI.

Final performance values are recorded with a CODA cx1 motion capture sys-

tem (Charnwood Dynamics Ltd, UK) so that reported results do not depend on

inaccuracies of the internal measurements. However, all the tested algorithms have

only access to the internal measurements.

4.2.4 Results

4.2.4.1 Reference controller

Table 4.2 reports the performances of the reference controller for each tested failure,

measured with both the CODA scanner and the on-board SLAM algorithm. At

best, the damaged robot covered 35% of the distance covered by the undamaged

robot (0.78 m with the undamaged robot, at best 0.26 m after a failure). In cases

B, C and E, the robot also performs about a quarter turn; in case D, it falls over;

in case F, it alternates forward locomotion and backward locomotion.

This performance loss of the reference controller clearly shows that an adap-

tation algorithm is required to allow the robot to pursue its mission. Although

not perfect, the distances reported by the on-board RGB-D SLAM are sufficiently

accurate to easily detect when the adaptation algorithm must be launched.

4.2.4.2 Comparison of performances

Fig. 4.5 shows the performance obtained for all test cases and all the investi-

gated algorithms. Table 4.3 reports the improvements between median perfor-

mance values. P-values are computed with the Wilcoxon rank-sum tests (ap-

pendix D.1.4). The horizontal lines in Figure 4.5 show the efficiency of the ref-

erence gait in each case. Videos of the typical behaviors obtained with the T-

Resilience on every test case are available here: https://youtu.be/MSwdmC0dZ74

https://youtu.be/MSwdmC0dZ74
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(a) Undamaged hexapod robot.
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(b) Middle left leg not powered.
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(c) Front right leg shortened by half.
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(d) Hind right leg lost.
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(e) Middle right leg lost.
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(f) Middle right leg and front left leg lost.

Figure 4.5: Performances obtained in each test case (distance covered in 3 seconds).

On each box, the central mark is the median; the edges of the box are the lower

hinge (defined as the 25th percentile) and the upper hinge (the 75th percentile).

The whiskers extend to the most extreme data point, which is no more than 1.5

times the length of the box away from the box. Each algorithm has been run

5 times and distances are measured using the external motion capture system.

Except for the T-Resilience, the performance of the controllers found after about

25 transfers (tests) and after about 20 minutes (time) are depicted (all T-Resilience

experiments last about 20 minutes and use 25 transfers). The horizontal lines denote

the performances of the reference gait, according to the CODA scanner (dashed line)

and according to the SLAM algorithm (solid line).
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Local search Policy search Self-modeling
reference gait

tests time tests time time tests

A 4.5 2.5 3.3 4.5 6.3 19.0 1.0

B 2.3 2.2 2.3 2.3 +++ 3.2 2.3

C 2.8 1.7 2.8 2.8 +++ +++ 1.8

D 1.4 1.1 2.1 3.0 +++ +++ +++

E 3.4 2.8 4.3

F 1.7 1.3 4.5

global median 2.8 2.0 2.6 2.9 +++ +++ 3.3

(a) Ratios between median performance values.

Local search Policy search Self-modeling
reference gait

tests time tests time time tests

A +59 +45 +53 +59 +64 +72 - 2

B +34 +33 +34 +34 +63 +42 +35

C +29 +18 +29 +29 +63 +74 +20

D + 9 + 2 +16 +20 +38 +30 +30

E +46 +42 +50

F +18 +10 +35

global median +32 +26 +32 +32 +63 +57 +33

(b) Differences between median performance values (cm).

Table 4.3: Performance improvements of the T-Resilience compared to other algo-

rithms. For ratios, the symbol +++ indicates that the compared algorithm led to

a negative or null median value.

and https://youtu.be/dncuBUnfkA4

Performance with the undamaged robot (case A). When the robot is not

damaged, the T-Resilience algorithm discovered controllers with the same level of

performance as the reference hexapod gait (p-value = 1). The obtained controllers

are from 2.5 to 19 times more efficient than controllers obtained with other algo-

rithms (Table 4.3).

The poor performance of the other algorithms may appear surprising at first

sight. Local search is mostly impaired by the very low number of tests that are

allowed on the robot, as suggested by the better performance of the “time” variant

(20 minutes / 50 tests) versus the “tests” variant (10 minutes / 25 tests). Surpris-

ingly, we did not observe any significant difference when we initialized the control

parameters with those of the reference controller (data not shown). The policy

gradient method suffers even more than local search from the low number of tests

because a lot of tests are required to estimate the gradient. As a consequence, we

were able to perform only 2 to 4 iterations of the algorithm. Overall, these results

are consistent with those of the literature because previous experiments used longer

experiments and often simpler systems. Similar observations have been reported

previously by other authors (Yosinski et al., 2011).

Bongard’s algorithm mostly fails because of the reality gap between the self-

model and the real robot. Optimizing the behavior only in simulation leads – as

https://youtu.be/dncuBUnfkA4
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expected – to controllers that perform well with the self-model but that do not work

on the real robot. This performance loss is sometimes high because the controllers

make the robot flip over or go backward.

Resilience performance (cases B to F). When the robot is damaged, gaits

found with the T-Resilience algorithm are always faster than the reference gait

(p-value = 0.0625, one-sample Wilcoxon signed rank test).

After the same number of tests (variant tests of each algorithm), gaits obtained

with T-Resilience are at least 1.4 times faster than those obtained with the other

algorithms (median of 3.0 times) with median performance values from 30 to 65 cm

in 3 seconds. These improvements are all stastically significant (p-values ≤ 0.016)

except for the local search in the case D (loss of a hind leg; p-value = 0.1508).

After the same running time (variant time of each algorithm), gaits obtained

with T-Resilience are also significantly faster (at least 1.3 times; median of 2.8 times;

p-values ≤ 0.016) than those obtained with the other algorithms in cases B, E and F.

In cases C (shortened leg) and D (loss of a hind leg), T-Resilience is not statistically

different from local search (shortened leg: p-value = 0.1508; loss of a hind leg: p-

value = 0.5476). Nevertheless, these high p-values may stem from the low number

of replications (only 5 replications for each algorithm). Moreover, as section 4.2.4.3

will show, the execution time of the T-Resilience can be compressed because a large

part of the running time is spent in computer simulations. Consequently, depending

on the hardware, better performances could be achieved in smaller amounts of time.

For all the tested cases, Bongard’s self-modeling algorithm doesn’t find any

working controllers. We observed that it suffers from two difficulties: the optimized

models do not always capture the actual morphology of the robot, and reality gaps

between the self-model and the reality (see the comments about the undamaged

robot). In the first case, more time and more actions could improve the result.

In the second time, a better simulation model could make things better but it is

unlikely to fully remove the effect of the reality gap.

Loss of a leg (case D and E). When the hind leg is lost (case D), the T-

Resilience yields controllers that perform much better than the reference controller.

Nevertheless, the performances of the controllers obtained with the T-Resilience are

not statistically different from those obtained with the local search. This unexpected

result stems from the fact that many of the transfers made the robot tilt down

(fast six-legged behaviors optimized on the self-model of the undamaged robot are

often unstable without one of the hind legs): in this case, the SLAM algorithm

is unreliable (the algorithm often crashed) and we have to discard the distance

measurements. In effect, only a dozen of transfers are usable in case D, making the

estimation of the transferability function especially difficult. Using more transfers

could accentuate the difference between T-Resilience and local search.

If the robot loses a less critical leg (middle leg in case E), it is more stable and

the algorithm can conduct informative tests on the robot. The T-Resilience is then
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(b) Experimental time (experiments with the

robot).

Figure 4.6: Distribution of duration and experimental time for each algorithm (me-

dian values on 5 runs of test cases A, B, C, D). All the differences between ex-

perimental times are statistically significant (p-values < 2.5× 10−4 with Wilcoxon

rank-sum tests).

able to find fast gaits (about 3 times faster than with the local search).

4.2.4.3 Comparison of durations and experimental time

The running time of each algorithm is divided into experimental time (actual ex-

periments on the robot), sensor processing time (computing the robot’s trajectory

using RGB-D slam) and optimization time (generating new potential solutions to

test on the robot). The median proportion of time allocated to each of this part of

the algorithms is pictured for each algorithm on figure 4.65.

The durations of the SLAM algorithm and of the optimization processes both

only depend on the hardware specifications and can therefore be substantially re-

duced by using faster computers or by parallelizing computation. Only experimental

time cannot easily be reduced. The median proportion of experimental time is 29%

for the T-Resilience, whereas both the policy search and the local search leads to

median proportions higher than 40% for a similar median duration by run (about

20 minutes). The proportion of experimental time for the self-modeling process is

much lower (median value equals to 1%) because it requires much more time for

each run (about 250 minutes for each run, in our experiments).

The median experimental time of T-Resilience (6.3 minutes) is significantly lower

than those of local search and of policy search (resp. 8.5 and 10.8 minutes, p-

values < 2.5 × 10−4). With the expected increases of computational power, this

difference will increase each year. The self-modeling process requires significantly

lower experimental time (median at 3.6 minutes, p-values < 1.5 × 10−11) because

5Only test cases A, B, C and D are considered to compute these proportions (5 runs for each

algorithm) because the policy search and the self-modeling process are not tested in test cases E

and F
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it only tests actions that involve a single leg, which is faster than testing a full gait

(3 seconds).

4.2.5 Partial conclusion

All our experiments show that T-Resilience is a fast and efficient learning approach

to discover new behaviors after mechanical and electrical damage (less than 20

minutes with only 6 minutes of irreducible experimental time). Most of the time, T-

Resilience leads to gaits that are several times faster than those obtained with direct

policy search, local search and Bongard’s algorithm; T-Resilience never obtained

worse results. Overall, T-Resilience appears to be a versatile algorithm for damage

recovery, as demonstrated by the successful experiments with many different types

of damage. These results validate the combination of the principles that underlie

our algorithm: (1) using a self-model to transform experimental time with the

robot into computational time inside a simulation, (2) learning a transferability

function that predicts performance differences between reality and the self-model

(instead of learning a new self-model) and, (3) optimizing both the transferability

and performance to learn behaviors in simulation that will work well on the real

robot, even if the robot is damaged. These principles can be implemented with

alternative learning algorithms and alternative regression models.

During our experiments, we observed that the T-Resilience algorithm was less

sensitive to the quality of the SLAM than the other investigated learning algorithms

(policy gradient and local search). Our preliminary analysis shows that the sen-

sitivity of these classic learning algorithms mostly stems from the fact that they

optimize the SLAM measurements and not the real performance. For instance, in

several of our experiments, the local search algorithm found gaits that make the

SLAM algorithm greatly over-estimate the forward displacement of the robot. The

T-Resilience algorithm relies only on internal sensors as well. However, these mea-

sures are not used to estimate the performance but to compute the transferability

values. Gaits that lead to over-estimations of the covered distance have low trans-

ferability scores because the measurement greatly differs from the value predicted

by the self-model. As a consequence, they are avoided like all the behaviors for

which the prediction of the self-model does not match the measurement. In other

words, the self-model acts as a “credibility check” of the SLAM measurements,

which makes T-Resilience especially robust to sensor inaccuracies. If sensors were

redundant, this credibility check could also be used by the robot to continue its

mission when a sensor is unavailable.

4.3 The Intelligent Trial and Error algorithm

4.3.1 Motivations and principle

In the previous section, our experiments demonstrated that using a simulation of the

intact robot allows the physical robot to quickly adapt to unforeseen situations. In
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Figure 4.7: (A & B). Creating the behavior-performance map: A user re-

duces a high-dimensional search space to a low-dimensional behavior space by defin-

ing dimensions along which behaviors vary. In simulation, the high-dimensional

space is then automatically searched to find a high-performing behavior at each

point in the low-dimensional behavior space, creating a “behavior-performance”

map of the performance potential of each location in the low-dimensional space.

In our hexapod robot experiments, the behavior space is six-dimensional: the por-

tion of time that each leg is in contact with the ground. The confidence regard-

ing the accuracy of the predicted performance for each behavior in the behavior-

performance map is initially low because no tests on the physical robot have been

conducted. (C & D) Adaptation Step: After damage, the robot selects a promis-

ing behavior, tests it, updates the predicted performance of that behavior in the

behavior-performance map, and sets a high confidence on this performance pre-

diction. The predicted performances of nearby behaviors–and confidence in those

predictions–are likely to be similar to the tested behavior and are thus updated

accordingly. This select/test/update loop is repeated until a tested behavior on the

physical robot performs better than 90% of the best predicted performance in the

behavior-performance map, a value that can decrease with each test (Fig. 4.8). The

algorithm that selects which behavior to test next balances between choosing the

behavior with the highest predicted performance and behaviors that are different

from those tested so far. Overall, the Intelligent Trial and Error approach presented

here rapidly locates which types of behaviors are least affected by the damage to

find an effective, compensatory behavior.
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the T-Resilience algorithm, this speed improvement requires to be able to perform a

significant amount of simulations between each trial, which significantly slows down

the learning process. In the previous experiments, the robot was actually moving

only 6 or 7 minutes over the 20 minutes taken by the learning process. A common

way to reduce the time spent in simulation is to reduce the number of iterations in

simulation. However, such approach often results in a decrease of the quality in the

obtained solutions.

In this section, we introduce a second algorithm, based on the same principles as

the T-Resilience algorithm, but in which all the learning time is spent in testing be-

haviors on the physical robot. With this algorithm, we show that rapid adaptation

can be achieved by guiding a learning algorithm with an automatically generated,

pre-computed, behavioral repertoire that predicts the performance of thousands of

different behaviors. We call this behavioral repertoire a behavior-performance map.

By pre-computing the behavior-performance map, the algorithm is no longer lim-

ited by the trade-off between time spent in simulation and quality of the solutions

like with the T-Resilience algorithm, and can spend as much time as needed to

improve the behaviors in simulation.

As mentioned previously, current learning algorithms either start with no knowl-

edge of the search space (Kober et al., 2013) or with minimal knowledge from a few

human demonstrations (Kober et al., 2013; Argall et al., 2009). Our intuition is

that animals understand the space of possible behaviors and their value from pre-

vious experience (Wolpert et al., 2001), which they use to adapt by intelligently

selecting tests that validate or invalidate whole families of promising compensatory

behaviors. The key insight of our approach is that robots could do the same.

We propose to have robots that store knowledge from previous experience in

the form of a map of the behavior-performance space. Guided by this map, a

damaged robot tries different types of behaviors that are predicted to perform well

and, as tests are conducted, updates its estimates of the performance of those types

of behaviors. The process ends when the robot predicts that the most effective

behavior has already been tested. We call this algorithm “Intelligent Trial and

Error”. This approach relies on the same hypothesis than the rest of this chapter:

information about many different behaviors on the undamaged robot will still be

useful after damage, because some of these behaviors will still be functional despite

the damage. In addition to the results from the previous section, the results of

the experiments presented here support this assumption for all types of damage we

tested, revealing that a robot can quickly discover a way to compensate for damage

without a detailed mechanistic understanding of its cause, as occurs with animals.

The behavior-performance map is created with the MAP-Elites algorithm pre-

sented in chapter 3.3 and a self-model of the robot, which either can be a standard

physics simulator or can be automatically discovered (Bongard et al., 2006). The

robot’s designers only have to describe the dimensions of the space of possible be-

haviors and a performance measure. For instance, walking gaits could be described

by how much each leg touches the ground (a behavioral measure) and speed (a

performance measure). An alternate gait behavioral measure could be the percent
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of time a robot’s torso has positive pitch, roll, and yaw angles. For grasping, perfor-

mance could be the amount of surface contact, and it has been demonstrated that

90% of effective poses for the 21-degree-of-freedom human hand can be captured by

a 3-dimensional behavioral space describing the principle components of ways that

hand-poses commonly vary (Santello, 1998). To fill in the behavior-performance

map, the MAP-Elites algorithm simultaneously searches for a high-performing so-

lution at each point in the behavioral space (Fig. 4.7a,b and Fig. 4.8). This step

requires simulating millions of behaviors, but needs to be performed only once per

robot design before deployment.

A low confidence is assigned to the predicted performance of behaviors stored in

this behavior-performance map because they have not been tried in reality (Fig. 4.7b

and Fig. 4.8). During the robot’s mission, if performance drops below a user-defined

threshold (either due to damage or a different environment), the robot selects the

most promising behavior from the behavior-performance map, tests it, and measures

its performance. The robot subsequently updates its prediction for that behavior

and nearby behaviors, assigns high confidence to these predictions (Fig. 4.7c and

Fig. 4.8), and continues the select-test-update process until it finds a satisfactory

compensatory behavior (Fig. 4.7d and Fig. 4.8).

All of these ideas are technically captured via a Gaussian process model (Ras-

mussen and Williams, 2006), which approximates the performance function with

already acquired data, and a Bayesian optimization procedure (Mockus, 2013; Borji

and Itti, 2013), which exploits this model to search for the maximum of the per-

formance function (see chapter 2.4). The robot selects which behaviors to test

by maximizing the acquisition function that balances exploration (selecting points

whose performance is uncertain) and exploitation (selecting points whose perfor-

mance is expected to be high). The selected behavior is tested on the physical robot

and the actual performance is recorded. The algorithm updates the expected per-

formance of the tested behavior and lowers the uncertainty about it. These updates

are propagated to neighboring solutions in the behavioral space by updating the

Gaussian process. These updated performance and confidence distributions affect

which behavior is tested next. This select-test-update loop repeats until the robot

finds a behavior whose measured performance is greater than some user-defined

percentage (here, 90%) of the best performance predicted for any behavior in the

behavior-performance map (see appendix D.2.2).

4.3.2 Method description

The Intelligent Trial and Error Algorithm consists of two major steps (Fig. 4.8):

the behavior-performance map creation step and the adaptation step (while here

we focus on damage recovery, Intelligent Trial and Error can search for any type

of required adaptation, such as learning an initial gait for an undamaged robot,

adapting to new environments, etc.). The behavior-performance map creation step

is accomplished via the MAP-Elites algorithm, while the adaptation step is accom-

plished via a new algorithm called the map-based Bayesian optimization algorithm
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Figure 4.8: An overview of the Intelligent Trial and Error Algorithm.

(A) Behavior-performance map creation. After being initialized with ran-

dom controllers, the behavioral map (A2), which stores the highest-performing

controller found so far of each behavior type, is improved by repeating the pro-

cess depicted in (A1) until newly generated controllers are rarely good enough to

be added to the map (here, after 40 million evaluations). This step, which occurs

in simulation, is computationally expensive, but only needs to be performed once

per robot (or robot design) prior to deployment. In our experiments, creating one

map involved 40 million iterations of (A1), which lasted roughly two weeks on one

multi-core computer (see appendix D.2.5). (B) Adaptation. (B1) Each behav-

ior from the behavior-performance map has an expected performance based on its

performance in simulation (dark green line) and an estimate of uncertainty regard-

ing this predicted performance (light green band). The actual performance on the

now-damaged robot (black dashed line) is unknown to the algorithm. A behav-

ior is selected to try on the damaged robot. This selection is made by balancing

exploitation—trying behaviors expected to perform well—and exploration—trying

behaviors whose performance is uncertain (see section 2.4.3). Because all points

initially have equal, maximal uncertainty, the first point chosen is that with the

highest expected performance. Once this behavior is tested on the physical robot

(B4), the performance predicted for that behavior is set to its actual performance,

the uncertainty regarding that prediction is lowered, and the predictions for, and

uncertainties about, nearby controllers are also updated (according to a Gaussian

process model, see section 2.4.2.1, section “kernel function”), the results of which

can be seen in (B2). The process is then repeated until performance on the dam-

aged robot is 90% or greater of the maximum expected performance for any behavior

(B3). This performance threshold (orange dashed line) lowers as the maximum ex-

pected performance (the highest point on the dark green line) is lowered, which

occurs when physical tests on the robot underperform expectations, as occurred in

(B2).
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(M-BOA).

The key concept of M-BOA is to use the output of MAP-Elites as a prior for

the Bayesian Optimization algorithm: thanks to the simulations, we expect some

behaviors to perform better than others on the robot. In our implementation of

BO, we use Gaussian Process (GP) regression (Rasmussen and Williams, 2006) to

model the unknown function, which is a common choice for Bayesian optimization

(Calandra et al., 2014; Griffiths et al., 2009; Brochu et al., 2010b; Lizotte et al.,

2007). Here is a reminder of the traditional formulation of a GP (see chapter 2.4):

P (f(x)|P1:t, x) = N (µt(x), σ2
t (x))

where :

µt(x) = µ0 + k⊺K−1(P1:t − µ0)

σ2
t (x) = k(x, x)− k⊺K−1k

K =









k(χ1, χ1) · · · k(χ1, χt)
...

. . .
...

k(χt, χ1) · · · k(χt, χt)









+ σ2
noiseI

k =
[

k(x, χ1) k(x, χ2) · · · k(x, χt)
]

P1:t =









P1
...

Pt









(4.6)

To incorporate the information provided by the behavior-performance map into

the Bayesian optimization, M-BOA models the difference between the prediction of

the map and the actual performance on the real robot, instead of directly modeling

the objective function. This idea is incorporated into the Gaussian process by

modifying the update equation for the mean function (µt(x), equation 4.6):

µt(x) = P(x) + k⊺K−1(P1:t −P(χ1:t)) (4.7)

where P(x) is the performance of x according to the simulation and P(χ1:t) is

the performance of all the previous observations, also according to the simulation.

Replacing P1:t (eq. 4.6) by P1:t−P(χ1:t) (eq. 4.7) means that the Gaussian process

models the difference between the actual performance P1:t and the performance

from the behavior-performance map P(χ1:t). The term P(x) is the prediction of

the behavior-performance map. M-BOA therefore starts with the prediction from

the behavior-performance map and corrects it with the Gaussian process.

In our implementation, we decided to use the Matérn kernel function for the

GP (with ν = 5/2, see section 2.4.2.1) because it allows us to control not only

the distance at which effects become nearly zero (as a function of parameter ρ, see

appendix figure D.3a), but also the rate at which distance effects decrease (as a

function of parameter ν). Because the model update step directly depends on ρ, it

is one of the most critical parameters of the Intelligent Trial and Error Algorithm.

We selected its value after extensive experiments in simulation detailed in appendix

D.2.4.
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For the acquisition function of the BO algorithm, we chose the Upper Confidence

Bound because it provided the best results in several previous studies (Brochu

et al., 2010b; Calandra et al., 2014). To perform the “inner-optimization” of this

function, instead of using a gradient descent or another optimization algorithm,

we exhaustively compute the acquisition value of each solution of the behavior-

performance map and then choose the maximum value. Indeed, for the specific

behavior space in the example problem in this chapter, the discretized search space

of the behavior-performance map is small enough that an exhaustive exploration is

computationally tractable. We describe how we chose the value of the parameter

that controls the exploitation/exploration trade-off (κ) value in appendix D.2.4.

The pseudo-code of the entire algorithm is available in the algorithm 4, while

more details about BO can be found in chapter 2.4.

4.3.3 Experimental validation

We test the Intelligent Trial and Error algorithm on five different experimental

setups in order to evaluate, not only its overall performance over different situa-

tions, but also to determine which of its components contribute to the observed

performances.

In our two first experiments, we evaluate the performance of our algorithm

on two physical systems: (1) our hexapod robot (see appendix A.1) and (2) on

a robotic arm with 8 degrees of freedom (see appendix B.1). The first objective

of these experiments is to show that the algorithm allows these robots to cope

with a large variety of damage situations. Among these situations, the hexapod

robot suffers from a damaged, broken, or missing legs, and the robotic arm has

joints broken in 14 different ways. The second objective of these experiments is

to illustrate that our algorithm can be applied to many different types of robot,

provided that they can execute the same task in different ways.

The three other experiments are performed in simulation and aim to gather

extensive data to analyse the different properties of the Intelligent Trial and Error

algorithm. We first investigate how the performance of the algorithm is altered when

we deactivate one of its subcomponents or replaced it with an alternative algorithm

from the literature. The goal of this experiment is to highlight the components

of the algorithm that contribute the most to its performance. In particular, this

experiment shows how our algorithm competes against state-of-the-art algorithms.

In a second experiment, we consider another major challenge in robotics: adapting

to new environments. In particular, we demonstrate how the Intelligent Trial and

Error algorithm can help our robot to learn to walk on a slopped terrain. In our

last experiment, we show that the choice of the behavioral descriptor, which may

seem to be a critical parameter of the algorithm, does not affect the performance

of the algorithm. Concretely, we test our algorithm with 12 different behavioral

characterizations, including randomly choosing the 6 dimensions of the description

among 63 possibilities and show that the performance of the algorithm remains

unchanged.
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Algorithm 4 The Intelligent Trial and Error Algorithm. Notations are described

in the appendix D.2.1

procedure Intelligent Trial and Error Algorithm

Before the mission:

Create behavior-performance map

⊲ (via the MAP-Elites algorithm in simulation)

while In mission do

if Significant performance fall then

Adaptation Step (via M-BOA algorithm)

procedure MAP-Elites Algorithm
(P ← ∅, C ← ∅) ⊲ Creation of an empty behavior-performance map

(empty N-dimensional grid).

for iter = 1→ I do ⊲ Repeat during I iterations

(here we choose I = 40 million iterations).

if iter < 400 then

c
′ ← random_controller() ⊲ The first 400 controllers are generated randomly.

else ⊲ The next controllers are generated using the map.

c← random_selection(C ) ⊲ Randomly select a controller c in the map.

c
′ ← random_variation(c) ⊲ Create a randomly modified copy of c.

x
′ ←behavioral_descriptor(simu(c′)) ⊲ Simulate the controller and

record its behavioral descriptor.

p′ ←performance(simu(c′)) ⊲ Record its performance.

if P(x′) = ∅ or P(x′) < p′
then ⊲ If the cell is empty or if p′ is better than

the current stored performance.

P(x′)← p′ ⊲ Store the performance of c
′ in the behavior-performance map

according to its behavioral descriptor x
′.

C (x′)← c
′ ⊲ Associate the controller with its behavioral descriptor.

return behavior-performance map (P and C )

procedure M-BOA (Map-based Bayesian Optimization Algorithm)
∀x ∈ map: ⊲ Initialisation.

P (f(x)|x) = N (µ0(x), σ2
0(x)) ⊲ Definition of the Gaussian Process.

where

µ0(x) = P(x) ⊲ Initialize the mean prior from the map.

σ2
0(x) = k(x, x) + σ2

noise ⊲ Initialize the variance prior (in the common case,

k(x, x) = 1).

while max(P1:t) < α max(µt(x)) do ⊲ Iteration loop.

χt+1 ← arg maxx(µt(x) + κσt(x)) ⊲ Select next test (argmax of acquisition function).

Pt+1 ← performance(physical_robot(C (χt+1))). ⊲ Evaluation of xt+1

on the physical robot.

P (f(x)|P1:t+1, x) = N (µt+1(x), σ2
t+1(x)) ⊲ Update the Gaussian Process.

where

µt+1(x) = P(x) + k
⊺
K

−1(P1:t+1 −P(χ1:t+1)) ⊲ Update the mean.

σ2
t+1(x) = k(x, x) + σ2

noise − k
⊺
K

−1
k ⊲ Update the variance.

K =







k(χ1, χ1) · · · k(χ1, χt+1)
...

. . .
...

k(χt+1, χ1) · · · k(χt+1, χt+1)







+ σ2
noiseI ⊲ Compute

the observations’ correlation matrix.

k =
[

k(x, χ1) k(x, χ2) · · · k(x, χt+1)
]

⊲ Compute the x vs. observation

correlation vector.
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4.3.3.1 Experiments on the physical hexapod robot

Methods In this first experiment, we evaluate the Intelligent Trial and Error

algorithm on our hexapod robot that needs to walk as fast as possible (see appendix

A.1). The robot’s performance is recorded thanks to a visual odometry algorithm,

which records the position of the robot in real time and average its velocity after 5

seconds of execution (see appendix D.2.2). The behavior-performance maps used in

this experiment are the ones generated in the previous chapter (see section 3.3.2.2),

which contain approximately 13,000 different gaits that are governed by a controller

with 36 real-values (see appendix A.2.2). The behavior-performance maps have 6

dimensions, where each dimension is the proportion of time the ith leg spends in

contact with the ground (i.e. the duty factor) (Siciliano and Khatib, 2008) (see

section 3.3.2.2).

We test the adaptation abilities of our robot in six different conditions: un-

damaged (Fig. 4.9a:C1), four different structural failures (Fig. 4.9a:C2-C5), and

a temporary leg repair (Fig. 4.9a:C6). Like in the previous experiments with the

T-Resilience algorithm, we compare the walking speed of resultant gaits with a

widely-used, classic, hand-designed tripod gait (Siciliano and Khatib, 2008) (see

appendix A.2.2). For each of the 6 damage conditions, we ran our adaptation step

5 times for each of 8 independently generated behavior-performance maps (with

the default “duty factor” behavioral description), leading to 6 × 5 × 8 = 240 ex-

periments in total. We also ran our adaptation step 5 times on 8 independently

generated behavior-performance maps defined by an alternate behavioral descrip-

tion which consider the orientation of the body (see appendix D.2.2) on two damage

conditions (Fig. 4.9b-c), leading to 2× 5× 8 = 80 additional experiments. The im-

plementation details of the behavioral descriptors, the performance function and

the stopping criterion can be found in appendix D.2.2. A video of the typical

results obtained with the Intelligent Trial and Error algorithm is available here:

https://youtu.be/T-c17RKh3uE

Results When the robot is undamaged (Fig. 4.9a:C1), our approach yields dy-

namic gaits that are 30% faster than the classic reference gait (Fig. 4.9b, median

0.32 m/s, 5th and 95th percentiles [0.26; 0.36] vs. 0.24m/s), suggesting that In-

telligent Trial and Error is a good search algorithm for automatically producing

successful robot behaviors, putting aside damage recovery. In all the damage sce-

narios, the reference gait is no longer effective (~0.04 m/s for the four damage

conditions, Fig. 4.9b:C2-C5). After Intelligent Trial and Error, the compensatory

gaits achieve a reasonably fast speed (> 0.15m/s) and are between 3 and 7 times

more efficient than the reference gait for that damage condition (in m/s, C2: 0.24

[0.18; 0.31] vs. 0.04; C3: 0.22 [0.18; 0.26] vs. 0.03; C4: 0.21 [0.17; 0.26] vs. 0.04;

C5: 0.17 [0.12; 0.24] vs. 0.05; C6: 0.3 [0.21; 0.33] vs. 0.12).

These experiments demonstrate that Intelligent Trial and Error allows the robot

to both initially learn fast gaits and to reliably recover after physical damage. On

the undamaged or repaired robot (Fig. 4.9: C6), Intelligent Trial and Error learns

https://youtu.be/T-c17RKh3uE
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a walking gait in less than 30 seconds (Fig. 4.9c, undamaged: 24 [16; 41] seconds,

3 [2; 5] physical trials, repaired: 29 [16; 82] seconds, 3.5 [2; 10] trials). For the

five damage scenarios, the robot adapts in approximately one minute (66 [24; 134]

seconds, 8 [3; 16] trials). It is possible that for certain types of damage the prior

information from the undamaged robot does not help, and could even hurt, in

learning a compensatory behavior (e.g. if the map does not contain a compensatory

behavior). We did not find such a case in our experiments with the hexapod robot,

but we did find a case with our robotic arm in which the prior information provided

little benefit (see next experiment).

We investigated how the behavior-performance map is updated when the robot

loses a leg (Fig. 4.10 and 4.11)). Initially the map predicts large areas of high

performance. During adaptation, these areas disappear because the behaviors do

not work well on the damaged robot. Intelligent Trial and Error quickly identifies

one of the few, remaining, high-performing behaviors (Fig. 4.10 and 4.11).

Figure 4.9: (A) Conditions tested on the physical hexapod robot. C1: The

undamaged robot. C2: One leg is shortened by half. C3: One leg is unpowered. C4:

One leg is missing. C5: Two legs are missing. C6: A temporary, makeshift repair

to the tip of one leg. (B) Performance after adaptation. Box plots represent

Intelligent Trial and Error. The central mark is the median, the edges of the box

are the 25th and 75th percentiles, the whiskers extend to the most extreme data

points not considered outliers, and outliers are plotted individually. Yellow stars

represent the performance of the handmade reference tripod gait (see appendix

A.2.2). Conditions C1-C6 are tested 5 times each for 8 independently created

behavior-performance maps with the “duty factor” behavior description (i.e. 40

experiments per damage condition). Damage conditions C1 and C3 are also tested

5 times each for 8 independently created behavior-performance maps with the “body

orientation” behavior description. (C) Time and number of trials required

to adapt. Box plots represent Intelligent Trial and Error. (D) Robotic arm

experiment. The 8-joint, planar robot has to drop a ball into a bin. (E) Example

conditions tested on the physical robotic arm. C1: One joint is stuck at 45

degrees. C2: One joint has a permanent 45-degree offset. C3: One broken and

one offset joint. A total of 14 conditions were tested (Fig. 4.12). (F) Time and

number of trials required to reach within 5 cm of the bin center. Each

condition is tested with 15 independently created behavior-performance maps.

⇒
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Figure 4.10: How the behavior performance map is explored to discover a

compensatory behavior (normalized each iteration to highlight the range

of remaining performance predictions). Colors represent the performance

prediction for each point in the map relative to the highest performing prediction

in the map at that step of the process. A black circle indicates the next behavior

to be tested on the physical robot. A red circle indicates the behavior that was just

tested (note that the performance predictions surrounding it have changed versus

the previous panel). Arrows reveal the order that points have been explored. The

red circle in the last map is the final, selected, compensatory behavior. In this

scenario, the robot loses leg number 3. The six dimensional space is visualized

according to the inset legend.
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Figure 4.11: How the behavior performance map is explored to discover a

compensatory behavior (non-normalized to highlight that performance

predictions decrease as it is discovered that predictions from the simu-

lated, undamaged robot do not work well on the damaged robot). Colors

represent the performance prediction for each point in the map relative to the high-

est performing prediction in the first map. A black circle indicates the next behavior

to be tested on the physical robot. A red circle indicates the behavior that was just

tested (note that the performance predictions surrounding it have changed versus

the previous panel). Arrows reveal the order that points have been explored. The

red circle in the last map in the sequence is the final, selected, compensatory be-

havior. In this scenario, the robot loses leg number 3. The six dimensional space

is visualized according to the inset legend. The data visualized in this figure are

identical to those in the previous figure: the difference is simply whether the data

are renormalized for each new map in the sequence.
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4.3.3.2 Experiments on the physical robotic arm

Methods The same damage recovery approach can be applied to any robot, such

as a robotic arm. We tested 14 different damage conditions with a planar, 8-

joint robotic arm, which has to release a ball into a target bin (Fig. 4.9d-f and

Fig. 4.12). The behavior-performance map’s behavioral dimensions are the x, y

position of the end-effector. To show that the map-generating performance measure

can be different from the ultimate performance measure, and to encourage smooth

arm movements, the performance measure during map-generation is minimizing

the variance of the 8 specified motor angles (see appendix B.1). During adaptation,

performance is measured as distance to the target.

For each of the 14 damage scenarios, we replicated experiments on the physical

robot with 15 independently generated behavior-performance maps (210 runs in to-

tal). We also replicated control experiments, which consist of traditional Bayesian

optimization directly in the original parameter space (i.e. without behavior-

performance maps), 15 times for each of the 14 damage conditions (210 runs in

total). For both the experimental and control treatments, each experiment in-

volved 30 evaluations on the physical robot (31 if the initial trial is counted). In

many cases, not all 30 evaluations were required to reach the target, so we report

only the number of trials required to reach that goal. The implementation details

of the behavioral descriptors, the performance function and the stopping criterion

can be found in appendix D.2.3.

Results After running the MAP-Elites algorithm for 20 million evaluations, each

of the 15 generated maps contain more than 11, 000 behaviors (11,209 [1,1206;

1,1217] behaviors, Fig. 4.12c).

In all the generated maps, the regions of different performance values for behav-

iors are arranged in concentric shapes resembling cardioids (inverted, heart-shaped

curves) that cover the places the robot can reach (Fig. 4.12c). The black line drawn

over the shown map corresponds to all the positions of the end-effector for which all

the degrees of freedom are set to the same angle (from −π/4 to +π/4), that is, for

the theoretically highest achievable performance (i.e. the lowest possible variance

in servo angles). The performance of the behaviors tends to decrease the further

they are from this optimal line. This result illustrates how MAP-Elites is able to

find both a large variety of solutions but also the optimal ones.

Like with the hexapod robot, our approach discovers a compensatory behavior in

less than 2 minutes, usually in less than 30 seconds, and with fewer than 10 trials

(Fig. 4.9f and Fig. 4.12). The adaptation results (Fig. 4.12e) show that the

Intelligent Trial and Error algorithm manages to reach the goal of being less than

5 cm from the center of the bin for all the runs in all the tested scenarios except

two (scenarios 11 & 12). For these two scenarios, the algorithm still reaches the

target 60% and 80% of the time, respectively. For all the damage conditions, the

Intelligent Trial and Error algorithm reaches the target significantly more often than

the Bayesian optimization algorithm (p < 10−24). Specifically, the median number
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of iterations to reach the target (Fig. 4.12f) is below 11 iterations (27.5 seconds)

for all scenarios except 11 and 12, for which 31 and 20 iterations are required,

respectively. When the robot is not able to reach the target, the recorded number

of iterations is set to 31, which explains why the median number of iterations for

the Bayesian optimization algorithm is equal to 31 for most damage conditions.

For all the damage conditions except one (scenario 11), the Intelligent Trial and

Error algorithm used fewer trials to reach the target than the traditional Bayesian

optimization algorithm.

If the robot is allowed to continue its experiment after reaching the 5 cm radius

tolerance, for a total of 31 iterations (Fig. 4.12g), it reaches an accuracy around

1 cm for all the damage conditions except the two difficult ones (scenarios 11 and

12). This level of accuracy is never achieved with the classic Bayesian optimization

algorithm, whose lowest median accuracy is 2.6cm.

Scenarios 11 and 12 appear to challenge the Intelligent Trial and Error algorithm.

While in both cases the success rate is improved, though not substantially, in case

11 the median accuracy is actually lower. These results stem from the fact that

the difference between the successful pre-damage and post-damage behaviors is so

large that the post-damage solutions for both scenarios lie outside of the map.

This illustrates a limit of the proposed approach: if the map does not contain a

behavior able to cope with the damage, the robot will not be able to adapt. This

limit mainly comes from the behavioral descriptor choice: we chose it because of

its simplicity, but it does not capture all of the important dimensions of variation

of the robot. More sophisticated descriptors are likely to allow the algorithm to

cope with such situations. On the other hand, this experiment shows that with a

very simple behavioral descriptor, using only the final position of the end-effector,

our approach is able to deal with a large variety of different target positions and is

significantly faster than the traditional Bayesian optimization approach (Fig. 4.12d,

maximum p-value over each time step < 10−16), which is the current state of the

art technique for direct policy search in robotics (Lizotte et al., 2007; Tesch et al.,

2011; Calandra et al., 2014; Kober et al., 2013).
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Figure 4.12: Intelligent Trial and Error works on a completely differ-

ent type of robot: detailed data from the robotic arm experiment. (A)

The robotic arm experimental setup. (B) Tested damage conditions.

(C) Example of behavior performance maps (colormaps) and behaviors

(overlaid arm configurations) obtained with MAP-Elites. Left: A typi-

cal behavior-performance map produced by MAP-Elites with 5 example behaviors,

where a behavior is described by the angle of each of the 8 joints. The color of

each point is a function of its performance, which is defined as having low variance

in the joint angles (i.e. a zigzag arm is lower performing than a straighter arm

that reaches the same point). Right: Neighboring points in the map tend to have

similar behaviors, thanks to the performance function, which would penalize more

jagged ways of reaching those points. That neighbors have similar behaviors justi-

fies updating predictions about the performance of nearby behaviors after a testing

a single behavior on the real (damaged) robot. (D) Performance vs. trial num-

ber for Intelligent Trial and Error and traditional Bayesian optimization.

The experiment was conducted on the physical robot, with 15 independent replica-

tions for each of the 14 damage conditions. Performance is pooled from all of these

14 × 15 = 210 experiments. (E) Success for each damage condition. Shown

is the success rate for the 15 replications for each damage condition, defined as the

percentage of replicates in which the robot reaches within 5 cm of the bin center.

(F) Trials required to adapt. Shown is the number of iterations required to

reach within 5 cm of the basket center. (G) Accuracy after 30 physical trials.

Performance after 30 physical trials for each damage condition (with the stopping

criterion disabled).

⇐

4.3.3.3 The contribution of each subcomponent of the Intelligent Trial

and Error Algorithm

Methods The Intelligent Trial and Error Algorithm relies on three main concepts:

(1) the creation of a behavior-performance map in simulation via the MAP-Elites

algorithm, (2) searching this map with a Bayesian optimization algorithm to find

behaviors that perform well on the physical robot, and (3) initializing this Bayesian

optimization search with the performance predictions obtained via the MAP-Elites

algorithm: note that the second step could be performed without the third step

by searching through the MAP-Elites-generated behavior-performance map with

Bayesian optimization, but having the initial priors uniformly set to the same value.

We investigated the contribution of each of these subcomponents by testing five

variants of our algorithm : in each of them, we deactivated one of these three

subcomponents or replaced it with an alternative algorithm from the literature.

We then tested these variants on the hexapod robot. The variants are as follows:

• Variant 1 (MAP-Elites in 6 dimensions + random search): evaluates the ben-

efit of searching the map via Bayesian optimization by searching that map

with random search instead. Each iteration, a behavior is randomly selected
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from the map and tested on the robot. The best one is kept.

• Variant 2 (MAP-Elites in 6 dimensions + Bayesian optimization, no use of

priors): evaluates the contribution of initializing the Gaussian process with the

performance predictions of the behavior-performance map. In this variant, the

Gaussian process is initialized with a constant mean (the average performance

of the map: 0.24 m/s) at each location in the behavior space and a constant

variance (the average variance of the map’s performance: 0.005 m2/s2). As is

customary, the first few trials (here, 5) of the Bayesian optimization process

are selected randomly instead of letting the algorithm choose those points,

which is known to improve performance (Calandra et al., 2014).

• Variant 3 (MAP-Elites in 6 dimensions + policy gradient): evaluates the

benefit of Bayesian optimization compared to a more classic, local search

algorithm (Kober et al., 2013; Kohl and Stone, 2004); there is no obvious way

to use priors in policy gradient algorithms.

• Variant 4 (Bayesian optimization in the original parameter space of 36 di-

mensions): evaluates the contribution of using a map in a lower-dimensional

behavioral space. This variant searches directly in the original 36-dimensional

parameter space instead of reducing that space to the lower-dimensional (six-

dimensional) behavior space. Thus, in this variant no map of behaviors is

produced ahead of time: the algorithm searches directly in the original, high-

dimensional space. This variant corresponds to one of the best algorithms

known to learn locomotion patterns (Lizotte et al., 2007; Calandra et al.,

2014). In this variant, the Gaussian process is initialized with a constant

mean set to zero and with a constant variance (0.002m2/s2). As described

above, the five first trials are selected from pure random search to prime the

Bayesian optimization algorithm (Calandra et al., 2014).

• Variant 5 (Policy gradient in the original parameter space of 36 dimensions):

a stochastic gradient descent in the original parameter space (Kohl and Stone,

2004). This approach is a classic reinforcement learning algorithm for loco-

motion (Kober et al., 2013) and it is a baseline in many papers (e.g. (Lizotte

et al., 2007)).

It was necessary to compare these variants in simulation because doing so on the

physical robot would have required months of experiments and would have repeat-

edly worn out or broken the robot. We modified the simulator from the previous

experiments (section A.1: Simulator) to emulate 6 different possible damage con-

ditions, each of which involved removing a different leg. For variants in which

MAP-Elites creates a map (variants 1, 2 and 3), we used the same maps from the

previous experiments (the eight independently generated maps, which were all gen-

erated with a simulation of the undamaged robot): In these cases, we launched ten

replicates of each variant for each of the eight maps and each of the six damage

conditions. There are therefore 10×8×6 = 480 replicates for each of those variants.
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For the other variants (4 and 5), we replicated each experiment 80 times for each

of the six damage conditions, which also led to 80× 6 = 480 replicates per variant.

In all these simulated experiments, to roughly simulate the distribution of noisy

odometry measurements on the real robot, the simulated performance values were

randomly perturbed with a multiplicative Gaussian noise centered on 0.95 with a

standard deviation of 0.1.

We analyze the fastest walking speed achieved with each variant after two different

numbers of trials: the first case is after 17 trials, which was the maximum number

of iterations used by the Intelligent Trial and Error Algorithm (Fig. 4.9, maximum

17 trials, median 6 trials), and the second case is after 150 trials, which is approxi-

mately the number of trials used in previous work (Kohl and Stone, 2004; Lizotte

et al., 2007; Calandra et al., 2014).

Results After 17 trials on the robot, Intelligent Trial and Error significantly out-

performs all the variants (Fig. 4.13b, p < 10−67, median Intelligent Trial and Error

performance: 0.26 [0.20; 0.33] m/s), demonstrating that the three main components

of the algorithm are needed to quickly find high-performing behaviors. Among the

investigated variants, the random search in the map performs the best (Variant 1:

0.21 [0.16; 0.27] m/s), followed by Bayesian optimization in the map without prior

(Variant 2: 0.20 [0.13; 0.25] m/s), and policy gradient in the map (Variant 3: 0.13

[0; 0.23] m/s). Variants that search directly in the parameter space did not find any

working behavior (Variant 4, Bayesian optimization: 0.04 [0.01; 0.09] m/s; Variant

5, policy gradient: 0.02 [0; 0.06] m/s).

There are two reasons that random search performs better than one might expect.

First, the map only contains high-performing solutions, which are the result of the

intense search of the MAP-Elites algorithm (40 million evaluations in simulation).

The map thus already contains high-performing gaits of nearly every possible type.

Therefore, this variant is not testing random controllers, but is randomly selecting

high-performing solutions. Second, Bayesian optimization and policy gradient are

not designed for such a low number of trials: without the priors on performance

predictions introduced in the Intelligent Trial and Error Algorithm, the Bayesian

optimization process needs to learn the overall shape of the search space to model

it with a Gaussian process. 17 trials is too low a number to effectively sample six

dimensions (for a uniform sampling with only two possible values in each dimension,

26 = 64 trials are needed; for five possible values, 56 = 15, 625 samples are needed).

As a consequence, with this low number of trials, the Gaussian process that models

the performance function is not informed enough to effectively guide the search.

For the policy gradient algorithm, a gradient is estimated by empirically measuring

the partial derivative of the performance function in each dimension. To do so,

following (Kohl and Stone, 2004), the policy gradient algorithm performs 15 trials

at each iteration. Consequently, when only 17 trials are allowed, it iterates only

once. In addition, policy gradient is a local optimization algorithm that highly

depends on the starting point (which is here chosen randomly), as illustrated by
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Variant 1 MAP-Elites none -Random Search

Variant 2 MAP-Elites none -Bayesian Optimization
Variant 3 MAP-Elites none -Policy Gradient

Variant 4 none none Lizotte et al. (2007)Bayesian Optimization
Variant 5 none none Kohl et al. (2004)Policy Gradient

Figure 4.13: The contribution of each subcomponent of the Intelligent

Trial and Error Algorithm. (A) Adaptation progress versus the num-

ber of robot trials. The walking speed achieved with Intelligent Trial and Error

and several “knockout” variants that are missing one of the algorithm’s key compo-

nents. Some variants (4 and 5) correspond to state-of-the-art learning algorithms

(policy gradient: Kohl and Stone (2004); Bayesian optimization: Lizotte (2008);

Tesch et al. (2011); Calandra et al. (2014)). The bold lines represent the medians

and the colored areas extend to the 25th and 75th percentiles. (B, C) Adaptation

performance after 17 and 150 trials. Shown is the the speed of the compen-

satory behavior discovered by each algorithm after 17 and 150 evaluations on the

robot, respectively. For all panels, data are pooled across six damage conditions

(the removal of each of the 6 legs in turn).
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the high variability in the performance achieved with this variant (Fig. 4.13b).

The issues faced by Bayesian optimization and policy gradient are exacerbated

when the algorithms search directly in the original, 36-dimensional parameter space

instead of the lower-dimensional (six-dimensional) behavior space of the map. As

mentioned previously, no working controller was found in the two variants directly

searching in this high-dimensional space.

Overall, the analysis after 17 trials shows that:

• The most critical component of the Intelligent Trial and Error Algorithm is the

MAP-Elites algorithm, which reduces the search space and produces a map

of high-performing behaviors in that space: p < 5 × 10−50 when comparing

variants searching in the behavior-performance map space vs. variants that

search in the original, higher-dimensional space of motor parameters.

• Bayesian optimization critically improves the search, but only when it is ini-

tialized with the performance obtained in simulation during the behavior-

performance map creation step (with initialization: 0.26 [0.20; 0.33] m/s,

without initialization: 0.20 [0.13; 0.25] m/s, p = 10−96).

To check whether these variants might perform better if allowed the number of

evaluations typically given to previous state-of-the-art algorithms (Kohl and Stone,

2004; Lizotte et al., 2007; Calandra et al., 2014), we continued the experiments until

150 trials on the robot were conducted (Fig. 4.13c). Although the results for all the

variants improved, Intelligent Trial and Error still outperforms all them (p < 10−94;

Intelligent Trial and Error: 0.31 [0.26; 0.37] m/s, random search: 0.26 [0.22; 0.30]

m/s, Bayesian optimization: 0.25 [0.18; 0.31] m/s, policy search: 0.23 [0.19, 0.29]

m/s). These results are consistent with the previously published results (Kohl and

Stone, 2004; Lizotte et al., 2007; Calandra et al., 2014; Kober et al., 2013), which

optimize in 4 to 10 dimensions in a few hundred trials. Nevertheless, when MAP-

Elites is not used, i.e. when we run these algorithms in the original 36 dimensions

for 150 evaluations, Bayesian optimization and policy gradient both perform much

worse (Bayesian optimization: 0.08 [0.05; 0.12]; policy gradient: 0.06 [0.01; 0.12]

m/s). These results shows that MAP-Elites is a powerful method to reduce the

dimensionality of a search space for learning algorithms, in addition to providing

helpful priors about the search space that speed up Bayesian optimization.

Overall, these experiments demonstrate that each of the three main components

of the Intelligent Trial and Error Algorithm substantially improves performance.

The results also indicate that Intelligent Trial and Error significantly outperforms

previous algorithms for both damage recovery (Erden and Leblebicioğlu, 2008; Bon-

gard et al., 2006; Christensen et al., 2013; Mahdavi and Bentley, 2006; Koos et al.,

2013a) and gait learning (Hornby et al., 2005; Kohl and Stone, 2004; Barfoot et al.,

2006; Sproewitz et al., 2008; Koos et al., 2013c; Lizotte et al., 2007; Tesch et al.,

2011; Calandra et al., 2014; Kober et al., 2013; Yosinski et al., 2011).
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Figure 4.14: The Intelligent Trial and Error Algorithm is robust to envi-

ronmental changes. Each plot shows both the performance and required adap-

tation time for Intelligent Trial and Error when the robot must adapt to walk on

terrains of different slopes. (A) Adaptation performance on an undamaged

robot. On all slope angles, with very few physical trials, the Intelligent Trial and

Error Algorithm (pink shaded region) finds fast gaits that outperform the refer-

ence gait (black dotted line). (B) Adaptation performance on a damaged

robot. The robot is damaged by having each of the six legs removed in six differ-

ent damage scenarios. Data are pooled from all six of these damage conditions. The

median compensatory behavior found via Intelligent Trial and Error outperforms

the median reference controller on all slope angles. The middle, black lines repre-

sent medians, while the colored areas extend to the 25th and 75th percentiles. In

(A), the black dashed line is the performance of a classic tripod gait for reference.

In (B), the reference gait is tried in all six damage conditions and its median (black

line) and 25th and 75th percentiles (black colored area) are shown.

4.3.3.4 Robustness to environmental changes

Methods The map creation algorithm (MAP-Elites) uses an undamaged robot

on flat terrain. The previous experiments show that this algorithm provides useful

priors for damage recovery on a flat terrain. In this experiment, we evaluated, in

simulation, if the map created on flat terrain also provides a useful starting point

for discovering gaits for sloped terrains.

We first evaluated the effect slopes have on undamaged robots (Fig. 4.14a). We

launched 10 replicates for each of the eight maps and each one-degree increment

between −20◦ and +20◦, for a total of 10 × 8 × 41 = 3280 experiments. As in the

previous experiment, to roughly simulate the distribution of noisy odometry mea-

surements on the real robot, we perturbed performance values with a multiplicative

Gaussian noise centered on 0.95 with a standard deviation of 0.1.
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Results The results show that, when the slope is negative (descending), the In-

telligent Trial and Error approach finds fast gaits in fewer than than 3 trials. For

reference, a hand-designed, classic, tripod gait (see appendix A.2.2) falls on slopes

below −15◦ degrees. When the slope is positive (ascent), Intelligent Trial and Er-

ror finds slower behaviors, as is expected, but even above 10◦ the gait learned by

Intelligent Trial and Error outperforms the reference gait on flat ground. Overall,

for every slope angle, the controller found by Intelligent Trial and Error is faster

than the hand-designed reference controller.

We further evaluated damage recovery performance for these same slopes with the

same setup as Experiments S1 (6 damage conditions). We launched 10 replicates

for each damage condition, for 8 independently generated behavior-performance

maps, and each two-degree increment between −20◦ and +20◦ degrees. There are

therefore 480 replicates for each degree between −20◦ and +20◦, for a total of

480× 21 = 10080 experiments.

Intelligent Trial and Error is not critically affected by variations of slope between

−10◦ and +10◦ (Fig. 4.14b): for these slopes, and for all 6 damage conditions,

Intelligent Trial and Error finds fast gaits (above 0.2 m/s) in less than 15 tests on

the robot despite the slope. As expected, it finds faster gaits for negative slopes

(descent) and slower gaits for positive slopes (ascent). For slopes below −10◦ and

above 10◦, the algorithm performs worse and requires more trials. We can sup-

pose that these results likely are caused by the constraints placed on the controller

and the limited sensors on the robot, rather than the inabilities of the algorithm.

Specifically, the controller was kept simple to make the experiments clearer, more

intuitive, and more reproducible. Those constraints, of course, prevent it from per-

forming the more complex behaviors necessary to deal with highly sloped terrain.

For example, the constraints prevent the robot from keeping its legs vertical on

sloped ground, which would substantially reduce slippage. Nevertheless, the me-

dian Intelligent Trial and Error compensatory gait still outperforms the median

performance of the reference gait on all slope angles.

4.3.3.5 Alternate behavioral descriptors

Methods To create a map with MAP-Elites, one has to define the dimensions

of the behavioral space, i.e. the behavioral descriptors. The previous experiments

show that using a predefined behavioral descriptor (the proportion of time that each

leg of a hexapod robot is in contact with the ground, i.e. the duty factor) creates

a map that provides useful priors for damage recovery.

This section describes how we tested (in simulation) how performance is affected by

alternate behavioral descriptors, including descriptors that have a different number

of dimensions. We also evaluated how performance is affected if the behavioral

descriptors are randomly selected from a large list of potential descriptors. This

test simulates the algorithm’s performance if the behavioral descriptors are chosen

without insight into the problem domain.

The behavioral descriptors we tested are as follows:
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1. Duty factor (6-dimensional): This descriptor is the default one from the previ-

ous experiment. It corresponds to the proportion of time each leg is in contact

with the ground:

x =











∑

t
C1(t)

numTimesteps
...

∑

t
C6(t)

numTimesteps











(4.8)

where Ci(t) denotes the Boolean value of whether leg i is in contact with the

ground at time t (1: contact, 0: no contact).

2. Orientation (6-dimensional): This behavioral descriptor characterizes changes

in the angular position of the robot during walking, measured as the propor-

tion of 15ms intervals that each of the pitch, roll and yaw angles of the robot

frame are positive (three dimensions) and negative (three additional dimen-

sions):

x =





















1
K

∑

k U(ΘT (k)− 0.005π)
1
K

∑

k U(−ΘT (k)− 0.005π)
1
K

∑

k U(ΨT (k)− 0.005π)
1
K

∑

k U(−ΨT (k)− 0.005π)
1
K

∑

k U(ΦT (k)− 0.005π)
1
K

∑

k U(−ΦT (k)− 0.005π)





















(4.9)

where ΘT (k), ΨT (k) and ΦT (k) denote the pitch, roll and yaw angles, respec-

tively, of the robot torso (hence T ) at the end of interval k, and K denotes the

number of 15ms intervals during the 5 seconds of simulated movement (here,

K = 5s/0.015s ≈ 334). The unit step function U(·) returns 1 if its argu-

ment exceeds 0, and returns 0 otherwise. To discount for insignificant motion

around 0 rad, orientation angles are only defined as positive if they exceed

0.5% of π rad. Similarly, orientation angles are only defined as negative if

they are less than −0.5% of π rad.

3. Displacement (6-dimensional): This behavioral descriptor characterizes

changes in the position of the robot during walking. It is measured as the pro-

portion of 15ms intervals that the robot is positively or negatively displaced

along each of the x, y, and z axes:

x =





















1
K

∑

k U(∆x(k)− 0.001)
1
K

∑

k U(−∆x(k)− 0.001)
1
K

∑

k U(∆y(k)− 0.001)
1
K

∑

k U(−∆y(k)− 0.001)
1
K

∑

k U(∆z(k)− 0.001)
1
K

∑

k U(−∆z(k)− 0.001)





















(4.10)
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where [∆x(k), ∆y(k), ∆z(k)] denote the linear displacement in meters of the

robot during interval k, and K denotes the number of 15ms intervals during 5

seconds of simulated movement (here, K = 5s/0.015s ≈ 334). The unit step

function U(·) returns a value of 1 if its argument exceeds 0, and returns a

value of 0 otherwise. To ignore insignificant motion, linear displacements are

defined to be positive if they exceed 1mm, and are defined to be negative if

they are less than −1mm.

4. Total energy expended per leg (6-dimensional): This behavioral descriptor

captures the total amount of energy expended to move each leg during 5

seconds of movement:

x =









E1
ME

...
E6
ME









(4.11)

where Ei denotes the energy utilized by leg i of the robot during 5 seconds

of simulated movement, measured in N.m.rad. ME is the maximum amount

of energy available according to the servo model of the simulator, which for 5

seconds is 100 N.m.rad.

5. Relative energy expended per leg (6-dimensional): This behavioral descriptor

captures the amount of energy expended to move each leg relative to the

energy expended by all the legs during 5 seconds of simulated movement:

x =











E1
∑

i=1..6
Ei

...
E6

∑

i=1..6
Ei











(4.12)

where Ei denotes the energy utilized by leg i of the robot during 5 seconds of

simulated movement, measured in N.m.rad.

6. Deviation (3-dimensional): This descriptor captures the range of deviation of

the center of the robot frame versus the expected location of the robot if it

traveled in a straight line at a constant speed.

x =














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









(4.13)

where [x(t), y(t), z(t)] denote the position of robot’s center at time t, and

[xfinal, yfinal, zfinal] denote its final position after 5 seconds.
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The robot’s task is to move along the y-axis. Its starting position is (0,0,0).

The deviation along the x and z axes is computed as the maximum difference

in the robot’s position in those dimensions at any point during 5 seconds. For

the y axis, yfinal
5 corresponds to the average speed of the robot (the distance

covered divided by total time), therefore yfinal
5 × t is the expected position at

timestep t if the robot was moving at constant speed. The deviation from the

y axis is computed with respect to this “theoretical” position.

To obtain values in the range [0,1], the final behavioral descriptors are mul-

tiplied by 0.95 and then divided by 20 cm (these values were determined

empirically).

7. Total ground reaction force per leg (6-dimensional): This behavioral descrip-

tor corresponds to the amount of force each leg applies to the ground, mea-

sured as a fraction the total possible amount of force that a leg could apply

to the ground. Specifically, the measurement is

x =









F1
MF

...
F6

MF









(4.14)

where Fi denotes the ground reaction force (GRF) each leg i generates, aver-

aged over 5 seconds of simulated movement. MF is the maximum such force

that each leg can apply, which is 10N.

8. Relative ground reaction force per leg (6-dimensional): This behavioral de-

scriptor corresponds to the amount of force each leg applies to the ground,

relative to that of all the legs:

x =











F1
∑

i=1..6
Fi

...
F6

∑

i=1..6
Fi











(4.15)

where Fi denotes the ground reaction force (GRF) each leg i generates, aver-

aged over 5 seconds of simulated movement.

9. Lower-leg pitch angle (6-dimensional): This descriptor captures the pitch an-

gle for the lower-leg with respect to the ground (in a global coordinate frame),

averaged over 5 seconds:

x =











∑

t
ΘL

1 (t)

π×N1
...

∑

t
ΘL

6 (t)

π×N6











(4.16)
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where ΘL
i (t) is the pitch angle of lower-leg i (hence the L in ΘL

i ) when it is

in contact with the ground at time t, and Ni is the number of time-steps for

which lower-leg i touches the ground. The foot pitch angles are in range [0, π]

(as the leg can not penetrate the ground) and normalized to [0, 1].

10. Lower-leg roll angle (6-dimensional): This descriptor captures the roll angle

for the lower-leg with respect to the ground (in a global coordinate frame),

averaged over 5 seconds:

x =











∑

t
ΨL

1 (t)

π×N1
...

∑

t
ΨL

6 (t)

π×N6











(4.17)

where ΨL
i (t) is the roll angle of lower-leg i (hence L in ΨL

i ) when it is in

contact with the ground at time t, and Ni is the number of time-steps for

which lower-leg i touches the ground. The foot roll angles are in range [0, π]

(as the leg can not penetrate the ground) and normalized to [0, 1].

11. Lower-leg yaw angle (6-dimensional): This descriptor captures the yaw angle

for the lower-leg with respect to the ground (in a global coordinate frame),

averaged over 5 seconds:

x =











∑

t
ΦL

1 (t)+π

2π×N1
...

∑

t
ΦL

6 (t)+π

2π×N6











(4.18)

where ΦL
i (t) is the yaw angle of lower-leg i (hence L in ΦL

i ) when it is in contact

with the ground at time t,and Ni is the number of time-steps for which lower-

leg i touches the ground. The foot yaw angles are in range [−π, π] and are

normalized to [0, 1].

12. Random (6-dimensional): The random behavioral descriptor differs from the

other intentionally chosen descriptors in that it does not consist of one type of

knowledge, but is instead randomly selected as a subset of variables from the

previously described 11 behavioral descriptors. This descriptor is intended to

simulate a situation in which one has little expectation for which behavioral

descriptor will perform well, so one quickly picks a few different descriptor

dimensions without consideration or experimentation. Instead of generating

one such list in this fashion, we randomly sample from a large set to find the

average performance of this approach over many different possible choices.

For the random descriptor, each of the 6-dimensions is selected at random

(without replacement) from the 1×3+10×6 = 63 available behavior descriptor
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dimensions described in the previous 11 descriptors (1 of the above descriptors

is three-dimensional and the other 10 are six-dimensional):

x =









R1
...

R6









(4.19)

where Ri denotes the ith dimension of the descriptor, randomly selected uni-

formly and without replacement from the 63 available dimensions in behavior

descriptors 1-11.

It was necessary to compare these behavioral descriptors in simulation because doing

so on the physical robot would have required months of experiments and would have

repeatedly worn out or broken the robot. We modified the simulator from the pre-

vious experiments (section A.1) to emulate 6 different possible damage conditions,

each of which involved removing a different leg. The MAP-Elites algorithm, run

for 3 million iterations, was used to create the behavior-performance maps for each

of the behavioral descriptors (using a simulation of the undamaged robot). During

the generation of the behavior-performance maps, the behaviors were stored in the

map’s cells by discretizing each dimension of the behavioral descriptor space with

these five values: {0, 0.25, 0.5, 0.75, 1} for the 6-dimensional behavioral descriptors,

and with twenty equidistant values between [0, 1] for the 3-dimensional behavioral

descriptor. During the adaptation phase and like in the previous experiments, the

behaviors were used with their actual values and thus not discretized.

We independently generated eight maps for each of the 11 intentionally chosen

behavioral descriptors. Twenty independently generated maps were generated for

the random behavioral descriptor. We launched ten replicates of each descriptor for

each of the maps (eight for intentionally chosen behavioral descriptors and twenty

for random behavioral descriptor) and each of the six damage conditions. There are

therefore 10×8×6 = 480 replicates for each of the intentionally chosen descriptors,

and 10× 20× 6 = 1200 replicates for the random descriptor. In all these simulated

experiments, to roughly simulate the distribution of noisy odometry measurements

on the real robot, the simulated performance values were randomly perturbed with

a multiplicative Gaussian noise centered on 0.95 with a standard deviation of 0.1.

We analyze the fastest walking speed achieved with each behavioral descriptor after

two different numbers of trials: the first case is after 17 trials, and the second case

is after 150 trials.

Results The following results include 17 trials on the simulated robot, which was

the maximum number of trials required for Intelligent Trial and Error to find a

compensatory gait in the previous experiment. The post-adaptation performance

achieved with our alternate, intentionally chosen behavioral descriptors (numbers

2-11) was similar to the original duty factor behavioral descriptor (number 1) (Fig.

4.15a).
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Figure 4.15

All 11 alternate, intentionally chosen descriptors (numbers 2-11) led to a median

performance within 17% of the duty factor descriptor (median performance: 0.241

[0.19; 0.29] m/s). The difference in performance was effectively nonexistent with

the deviation descriptor (0.241 [0.14; 0.31] m/s), the total GRF descriptor (0.237

[0.15; 0.30] m/s), and the lower-leg roll angle descriptor (0.235 [0.14; 0.31] m/s).

The lowest performance was discovered with the relative GRF descriptor (16.7%

lower than the duty factor descriptor, 0.204 [0.08; 0.31] m/s). In terms of statisti-

cal significance, the performance achieved with the duty factor descriptor was no

different from the deviation (p = 0.53) and total GRF (p = 0.29) descriptors. With

all the remaining descriptors, the difference in performance was statistically signif-

icant (p < 10−3), but it did not exceed 0.04m/s. Additionally, the compensatory

behaviors discovered with all our 11 alternate, intentionally chosen descriptors were

always faster than the reference gait for all damage conditions.
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Figure 4.15: The Intelligent Trial and Error Algorithm is largely robust

to alternate choices of behavior descriptors. (A, B) The speed of the com-

pensatory behavior discovered by Intelligent Trial and Error for various choices of

behavior descriptors. Performance is plotted after 17 and 150 evaluations in panels

A and B, respectively. Experiments were performed on a simulated, damaged hexa-

pod. The damaged robot has each of its six legs removed in six different damage

scenarios. Data are pooled across all six damage conditions. The evaluated behav-

ior descriptors characterize the following: (i) Time each leg is in contact with the

ground (Duty factor); (ii) Orientation of the robot frame (Orientation); (iii) In-

stantaneous velocity of the robot (Displacement); (iv) Energy expended by the

robot in walking (Energy (Total), Energy (Relative)); (v) Deviation from a

straight line (Deviation); (vi) Ground reaction force on each leg (GRF (Total),

GRF (Relative)); (vii) The angle of each leg when it touches the ground (Lower-

leg angle (Pitch), Lower-leg angle (Roll), Lower-leg angle (Yaw)); and

(viii) A random selection without replacement from subcomponents of all the avail-

able behavior descriptors (i-vii) (Random). For the hand-designed reference gait

(yellow) and the compensatory gaits found by the default duty factor behavior de-

scriptor (green), the bold lines represent the medians and the colored areas extend

to the 25th and 75th percentiles of the data. For the other treatments, including the

duty factor treatment, black circles represent the median, the colored area extends

to the 25th and 75th percentiles of the data, and the colored circles are outliers.

To check whether our alternate, intentionally chosen behavioral descriptors lead

to better performance if allowed a higher number of evaluations, we extended the

experiments to 150 trials on the robot (Fig. 4.15b). After 150 trials, the differ-

ence in performance between the duty factor behavioral descriptor (0.277 [0.24;

0.34] m/s) and our alternate behavioral descriptors was further reduced. For all

but three alternate, intentionally chosen descriptors (displacement, total GRF and

lower-leg yaw angle), the median performance was within 4% of the duty factor

descriptor. The difference in performance was at ±3.6% with the orientation (0.274

[0.22; 0.32] m/s), total energy (0.274 [0.19; 0.33] m/s), relative energy (0.273 [0.20;

0.32] m/s), deviation (0.287 [0.21; 0.34] m/s), relative GRF (0.266 [0.15; 0.35] m/s),

lower-leg pitch angle (0.271 [0.21; 0.34] m/s) and lower-leg roll angle (0.268 [0.17;

0.34] m/s) descriptors. In the three remaining behavioral descriptors, displacement,

total GRF, and lower-leg yaw angle, the performance was 0.264 [0.18; 0.32] m/s,

0.299 [0.25; 0.35] m/s and 0.255 [0.18; 0.32] m/s, respectively (difference at ±7.8%

of duty factor descriptor in all three cases). In terms of statistical significance, the

performance achieved with the duty factor descriptor was barely statistically sig-

nificantly different from the deviation descriptor (p = 0.041). In all the remaining

descriptors, the performance difference was statistically significant (p < 10−2), but

no larger than 0.02m/s.
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Our random behavioral descriptor also performed similarly to the duty factor de-

scriptor. After 17 trials, the performance of M-BOA with the maps generated by

the random descriptor was 0.232 [0.14; 0.30] m/s (4.2% lower than the duty factor

descriptor performance). While the difference is statistically significant (p < 10−3),

the difference in performance itself was negligible at 0.01m/s. This difference in

performance was further reduced to 3.6% after 150 trials (random descriptor per-

formance: 0.274 [0.21; 0.34] m/s, duty factor description performance: 0.277 [0.24;

0.34] m/s, p = 0.002). Moreover, as with the intentionally chosen behavioral de-

scriptors, the compensatory behavior discovered with the random descriptor was

also faster than the reference gait.

These experiments show that the selection of the behavioral dimensions is not crit-

ical to get good results. Indeed, all tested behavioral descriptors, even those ran-

domly generated, perform well (median > 0.20 m/s after 17 trials). On the other

hand, if the robot’s designers have some prior knowledge about which dimensions of

variation are likely to reveal different types of behaviors, the algorithm can benefit

from this knowledge to further improve results (as with the duty factor descriptor).

4.3.4 Partial conclusion

These five experiments demonstrate that Intelligent Trial and Error allows the robot

to both initially learn fast gaits and to reliably recover after physical damage in

less than 2 minutes. The results prove that these capabilities are substantially

faster than state-of-the-art algorithms (Bayesian optimization and Policy Gradient).

Moreover, we saw that Intelligent Trial and Error can help robots to adapt to new

environments (e.g. differently sloped terrain) and that our results are qualitatively

unchanged when using different behavioral characterizations, including randomly

chosen behavioral descriptors. Finally we highlighted through these experiments

that reducing the high-dimensional parameter space to a low-dimensional behavior

space via the behavior-performance map is the key component for Intelligent Trial

and Error (standard Bayesian optimization in the original parameter space does

not find working controllers) and that other six-dimentional descriptors perform

similarly in simulation than those that have been applied on the physical robot.

While natural animals do not use the specific algorithm we present, there are par-

allels between Intelligent Trial and Error and animal learning. Damage recovery in

animals may occur without learning—for instance, due to the built-in robustness

of evolved control loops (Grillner, 2003)—but if such pre-programmed robustness

fails, many animals turn to learning (Wolpert et al., 2001). Like our robot, such

learning likely exploits an animal’s intuitions about how its intact body works to

experiment with different behaviors to find what works best. Also like animals

(Benson-Amram and Holekamp, 2012), Intelligent Trial and Error allows the quick

identification of working behaviors with a few, diverse tests instead of trying be-

haviors at random or trying small modifications to the best behavior found so far.

Additionally, the Bayesian optimization procedure followed by our robot appears

similar to the technique employed by humans when they optimize an unknown func-
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tion (Borji and Itti, 2013), and there is strong evidence that animal brains learn

probability distributions, combine them with prior knowledge, and act as Bayesian

optimizers (Pouget et al., 2013; Körding and Wolpert, 2004).

An additional parallel is that Intelligent Trial and Error primes the robot for cre-

ativity during a motionless period, after which the generated ideas are tested. This

process is reminiscent of the finding that some animals start the day with new ideas

that they may quickly disregard after experimenting with them (Derégnaucourt

et al., 2005), and more generally, that sleep improves creativity on cognitive tasks

(Wagner et al., 2004). A final parallel is that the simulator and Gaussian process

components of Intelligent Trial and Error are two forms of predictive models, which

are known to exist in animals (Ito, 2008; Bongard et al., 2006). All told, we have

shown that combining pieces of nature’s algorithm, even if differently assembled,

moves robots more towards animals by endowing them with the ability to rapidly

adapt to unforeseen circumstances.

4.4 Conclusion

In this chapter, we proposed to consider the question of damage recovery as a trial-

and-error learning problem. Indeed, learning appears to be a promising way for

robots to autonomously cope with damage conditions or environmental changes,

without requiring expensive sensors or engineers attempting to forecast all the sit-

uations robots may encounter and the corresponding contingency plans. However,

the review of the literature about learning algorithms, made in chapter 2 and in

the introduction of this chapter, illustrates that learning algorithms require most of

the time several hundreds of trial to learn a behavior, which make their application

challenging on physical robots. Through the algorithms presented in this chapter,

we show that combining simulation with physical tests is a successful approach to

reduce the number of trials required to learn new behaviors and to cope with the

reality gap problem.

We propose two different algorithms that are both based on the hypothesis that:

simulations of the intact robot provide useful information that allows damaged, phys-

ical robots to quickly adapt. The experimental results of these two algorithms show

that this hypothesis holds for a large set of damage situations and allows the al-

gorithms to require only a few dozen of physical trials. Situations in which this

hypothesis does not hold are likely to exist, but our experiments reveal that they

are rare. In chapter 6, we discuss in more details the situations in which no working

solutions can be found in the behavioral-performance maps.

With our first algorithm, T-Resilience, we proposed to consider damage situations

as a source of reality gap, which can be handled by the transferability approach.

This approach, which guides an evolutionary process toward solutions that work

similarly in simulation and in reality, allowed our robot to cope with a large variety

of damage situations in only 20 minutes and 25 physical trials. However, with

this algorithm, the majority of the learning time is spent to run the evolutionary
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algorithm in simulation for a dozen of generations between each trial and it requires

a significant computational power accessible to the robot.

Based on these first results, we designed our second algorithm, the Intelligent Trial

and Error algorithm, which uses pre-computed behavior-performance maps gener-

ated via an evolutionary algorithm to guide a policy search algorithm. Our method

allows robots to adapt to a large variety of situations in less than two minutes and a

dozen of trials. The videos of the experimental results show that the behaviors gen-

erated with this algorithm are more dynamic and insect like than those generated

with the T-Resilience. This observation stems from the ability of the Intelligent

Trial and Error algorithm to produce behaviors that are finely tuned in simulation

without slowing down the adaption process.

Our experiments revealed that the abilities of our robot to cope with a large variety

of situations come form large diversity of high-performing behaviors included in the

behavior-performance maps generated with MAP-Elites. This type of behavioral

repertoires is an effective way to encapsulate the creativity of evolutionary algo-

rithms by creating a smaller search space only filled by high-performing behaviors.

By seeding a Gaussian Process with the information contained in the maps, M-

BOA maximizes the usefulness of this source of knowledge and allows our robot

to adapt in less than 2 minutes. It also worth noting that M-BOA requires little

computational power and can run on an embedded computer or a smartphone, as

its main step consists in inverting a matrix.

In the next chapter, we will show how the Intelligent Trial and Error algorithm

can be extended to deal with three question or problems that commonly affect

robotic experiments: (1) transferring knowledge from one task to the next ones; (2)

dealing with solutions that cannot be evaluated on the physical robot and may hurt

the learning process; and (3) adapting prior knowledge (like behavior-performance

maps), that may be initially misleading in some circumstances, to maximize their

usefulness. With these extensions, the Intelligent Trial and Error algorithm aims

to become a generic framework that can be applied to many types of robot to allow

them to quickly learn a large variety of tasks.
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5.1 Introduction

In the previous chapter, we saw how the creativity of evolutionary algorithms can

be used to automatically discover vast varieties of behaviors. These range from

walking in every direction, to the numerous possible ways to walk in a straight

line. We also saw how this creativity can be combined with machine learning

algorithms (Support Vector Machines, (Cortes and Vapnik, 1995; Schölkopf and

Smola, 2002), and Bayesian Optimization (Mockus, 2013)) to allow our robot to

deal with unforeseen situations; like mechanical damages. However, these advances

are far from solving all the issues that usually affect learning experiments applied on

physical robots. During long term missions, like planet or deep ocean exploration

(Sanderson, 2010; Yoerger, 2008), autonomous robots have to use a large variety of

behaviors, to adapt each of these behaviors according to the encountered situations,

to deal with sensing problems, or to adapt to the inaccuracies of the information

that have been provided to the robot.

In this chapter, we will consider three aspects that often prevent robots from being

fully autonomous and robust in practical problems. In the following section, we

will present a method that allows robots to transfer knowledge between tasks. Such

ability is beneficial because the methods proposed in the previous chapter allow

the robot to adapt its behaviors to the current situation, but only one behavior

at a time. Consequently, the robot will have to repeat this process for all the

behaviors contained in its repertoire. This can make the adaptation process very

time consuming, even if it takes less than two minutes per behavior. Transferring

knowledge across tasks should reduce the required time to learn how to achieve the

subsequent tasks.

In the second part of this chapter, we will propose an extension of our Intelli-

gent Trial and Error algorithm to deal with solutions or behaviors that cannot be

evaluated. This may happen for various reasons, such as safety issues or sensor

limitations, and may result in missing data during the learning phase. Depending

on the way this missing data is handled, the learning performances can be dramat-

ically impacted. Our method allows the robot to be robust to missing data and

minimize its negative impact on learning performance.

In the third section of this chapter, we consider the use of prior information that is

not well-suited to the robot and may hurt the learning performance. For example,

using a forward model with a metric scale may mislead a robot that perceives its

position in pixels. However, when the prior information is initially not well-suited,

it does not mean that it does not contain any useful information. We propose an

extension of our algorithm to automatically adapt the prior information to maximize

their potential utility.

These three extensions of our framework will be evaluated individually with simu-

lated experiments in order to gather statistics and to demonstrate their benefits. In

the last part of this chapter, the entire framework will be evaluated on a physical

setup where all these improvements are required to be able to complete the robot’s

mission.
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5.2 Knowledge Transfer

5.2.1 Motivations

In order to accomplish their missions, which will become steadily more complex,

robots have to be able to perform not only a single task, but also a large variety of

them. For example, a legged robot has to be able to walk in every direction (see

chapter 3), or a robotic arm needs to be able to reach multiple targets. Moreover,

some of these tasks may depend on the current situation, or on unpredictable fac-

tors. The robot might also be confronted with additional tasks that have not been

anticipated. For example, a new bin can be added to the scene and the robotic

arm can be asked to reach it after having learned to reach the already present bins.

For these reasons, it is likely that the number of tasks or the tasks themselves are

unknown at the beginning of the robot’s mission.

As a consequence of this variety of tasks, in an unexpected situation (e.g., like after

mechanical damage), the robot will have to adapt not only one, but all its behaviors

to continue its mission. Even if fast adaptation is possible (see chapter 4), it seems

ineffective to re-learn (adapt) each behavior independently, as some knowledge can

be common between them. Transferring this knowledge from one learning phase

to another may improve the adaptation abilities of our robots and allow them to

learn new, unanticipated tasks faster. For example, the robotic arm could re-use

the information gathered when learning how to reach the first bin in order to reach

the second bin faster. Similarly, the hexapod robot could use the knowledge that

avoiding the use of certain legs allows it to walk forward, to learn how to walk

backward.

Knowledge transfer is a long-standing question in artificial intelligence that initially

emerged from classification problems, where information can be transferred from

one data set to others (Thrun and Pratt, 1998). In classification, some features can

be shared among different classes in different data sets (or classification scenarios).

For example, learning how to classify buses can be aided by features of cars, or mo-

torbikes by features of bicycles. After learning one of these instances, we can expect

to learn to recognize the second one quicker. This concept of transferring knowl-

edge has several names in the literature, for example, Transfer Learning (Taylor and

Stone, 2009; Taylor et al., 2007; Singh, 1992), Multi-Task Learning (Micchelli and

Pontil, 2004; Bonilla et al., 2007; Williams et al., 2009; Yu et al., 2005), or Contex-

tual Policy Search (Kupcsik et al., 2014). It also has several definitions, for example,

Taylor and Stone (2009) state that “the insight behind transfer learning is that gen-

eralization may occur not only within tasks, but also across tasks.” However, one

may argue that Knowledge Transfer is more than across-tasks-transfer; it can be

across environments (which may be considered as different tasks as well), or across

several robots. For example, in social learning (Galef and Laland, 2005) the source

of knowledge is not only the past experience of the agent, but also the experience

of the other individuals. Knowledge Transfer has been applied in several research

domains, for example, psychology, or ethology (Thorndike and Woodworth, 1901;



146 Knowledge Transfer, Missing Data, and Misleading Priors

Skinner, 1953; Billing, 2007; Galef and Laland, 2005), machine learning (classifica-

tion or regression) (Thrun and Pratt, 1998; Thrun, 1996), reinforcement learning

(Taylor and Stone, 2009; Konidaris and Barto, 2006), neural networks (Caruana,

1997; Shultz and Rivest, 2000), and robotics (Doncieux, 2013; Kupcsik et al., 2014;

Benureau and Oudeyer, 2013).

In spite of all these studies concerning the concept of knowledge transfer, several

questions remain open. In Pan and Yang (2010), the authors highlight three funda-

mental questions: “In transfer learning, we have the following three main research

issues: (1) what to transfer, (2) how to transfer, (3) when to transfer”. However,

from our point of view, one of the main questions may be “what is in common to

all the robot’s tasks or environments?” and the answer of this question would likely

solves the three previously exposed questions.

It is very likely that what is common to all the tasks is the robot itself. In most

robotics applications, the tasks can be expressed according to the robot’s state.

For example, reaching a target with a robotics arm means to place the robot’s end

effector at a particular location and walking forward can be expressed as moving the

center of mass of the robot. For robotics manipulation, the state of the robot can

include the state of the manipulated object. In the same way, all the observations

can be expressed as a part of the robot’s state.

Consequently, knowledge can be easily transferred if all the acquisitions are related

to robot’s state, and if all the tasks are expressed in terms of the robot’s state (as

in state-space control, Friedland (2012)). In other words, by building a generic

knowledge centered on the robot itself (the robot state function), all this knowledge

can be used for each tasks, contrary to the performance functions associated to the

tasks that are task specific (for example; the distance to a target).

In the following sections, we will present a simple way to integrate this knowledge

transfer ability in Bayesian Optimization (BO, see section 2.4) and in our Intelligent

Trial and Error algorithm (see chapter 4). While the presented method is fully

compatible with the Intelligent Trial and Error algorithm, in these sections, we will

only consider the traditional expressions of BO, in order to keep the equations as

simple as possible.

5.2.2 Principle

In the traditional Bayesian Optimization framework, like in most learning algo-

rithms (see chapter 2), the task (or problem) is formalized as a cost or reward

function that needs to be optimized. We can take the example of the robotic arm

reaching a target bin; its cost function is usually defined as the distance between

its gripper and the target (here expressed as a reward function that has to be

maximized, with x as a potential solution):

Reward(x) = −dist(Target− State(x)) (5.1)

The learning algorithm then performs several evaluations and uses the correspond-

ing observations of the reward values to train the GP that approximates the reward
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function (see fig. 5.1A). The acquisition function exploits this model of the reward

function to select the next potential solution that will be tested:

Observations = Reward(χ1:t)

Model(x) = GP (Observations) = R̃eward(x)

Acquisition(x) = UCB(Model(x)) = µ(x) + α.σ(x)

(5.2)

where GP stands for Gaussian Process and UCB refers to an acquisition function

(see section 2.4.3). χ1:t corresponds to the trials performed up to the time-step t.

We can observe that in this context the observations, the model and the acquisition

function depend on the “Target” variable. They are thus task-specific and need to

be changed each time the robot considers a different target.

When our robotic arm has to reach several targets, each of these targets corresponds

to a sub-reward function:

Rewardi(x) = −dist(Targeti − State(x)) (5.3)

Two alternatives can be considered to deal with these multiple targets. Probably,

the most common one is to consider all these targets as a single task (i.e., reaching

targets), for example by summing or averaging the sub-reward functions:

Reward(x) = − 1

N

N
∑

i=1

dist(Targeti − State(x)) (5.4)

The learning algorithm then searches for the solution (or the set of solutions) that

maximizes this global reward function. Nonetheless, in this case, the number of

targets and the targets themselves have to be known a priori to define this reward

function, which prevents the algorithm to precisely deal with unanticipated new

tasks. In some cases depending on the type of controller, the solutions may have

generalization abilities. For example, close-loop controllers that take in input a

target location, may be able to generalize over new targets after being trained on a

few predefined ones. However, in this case, the performance of the algorithm directly

depends on the generalization ability of the solutions, which is a long standing

question in machine learning (Cesa-Bianchi et al., 2004; Cohn et al., 1994).

The second alternative consists in considering the targets individually by their cor-

responding reward functions (Rewardi(x)). In this case, the robot has several tasks

to solve (because it has several reward functions) and these tasks can be initially

unknown and added during the robot’s mission. The method can be seen like sev-

eral learning processes running in parallel to solve independently all the tasks. In

this situation, the knowledge transfer across these learning processes can be very

beneficial, as it can allow the algorithm to achieve the new tasks faster. Unfortu-

nately, this transfer is impossible if we use the common BO framework presented

above (or most of other learning algorithms’ framework), because everything, from

the observations to the acquisition functions, is task-specific (i.e., relative to one

target).
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The method that we will introduce in the next section will rely on this second

alternative solution (that considers each target as an individual task) but we will

slightly change the traditional BO framework to make it robot-specific instead of

task-specific. By doing so, the algorithms will be able to solve all the tasks and to

transfer knowledge across them.

5.2.3 Method Description

As introduced before, the robot’s state function is the common part of all the robot’s

tasks. The main idea of our method is thus to transfer knowledge about this state

function instead of knowledge about the reward functions. This idea of state-based

knowledge transfer can be integrated into Bayesian Optimization by estimating the

robot’s state function via Gaussian Processes (see section 2.4.2). This model of the

state function, which is robot-specific, can be specialized according to a current

task in order to generate a model of the reward function of this task, which can

then be used to learn the task. This specialization of state function model can be

done for all the tasks that the robot has to address. The Bayesian Optimization

framework can easily handle these specializations by computing the reward function

in the acquisition function based on the mean of the Gaussian Process.

In state-based Bayesian optimization, the observations and thus the model (GP)

represent the robot state function (see fig. 5.1B). Based on this generic knowledge

about the robot, we can specialize the acquisition function according to the current

task (or target):

Observations = State(χ1:t)

Model(x) = GP (Observations) = S̃tate(x)

Acquisition(x) = UCB

(

Reward
(

Model(x)
)

)

= −dist(Target− µ(x)) + α.σ(x)

(5.5)

Here, only the acquisition function is specific to the tasks and needs to be changed

when the robot switches from one task to another. New tasks can be added by

changing the target variable too, and all the observations obtained so far will be

used to solve this new task. This method progressively builds up and refines the

model of the robot’s state function based on all the observations acquired during

each task, and uses this model to perform the tasks. This method thus builds and

exploits at the same time its model while learning to achieve the different tasks that

the robot accomplishes. Such an approach has already been used and proved to be

effective, for example in Kupcsik et al. (2014); Deisenroth and Rasmussen (2011).

However, in these studies, the built models are used to predict the step-based reward

(or state) values several time-steps ahead, which is computationally costly, and

they use these prediction to update the policy thanks to, for example, the REPS

algorithms (see section 2.3 and (Peters et al., 2010)). In this chapter, we propose to

use the model to directly update and compute the acquisition function of the BO

algorithm according to the current target. This methods is both computationally
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effective and easy to implement.

Figure 5.1 shows the differences between the standard reward-based BO and the

State-based BO. It also shows that some situations can be deceptive and how these

two different approaches handle this situation. According to its two observations,

the reward-based BO (fig. 5.1A) expects a growth of the reward function and thus

proposes to test a sample far from the actual position of the target. The state-based

BO deals easily with this situation because it obtains more information from the

observations. In this example, one observation says that the target is on the left,

the second says that the target is on the right, thus the algorithm knows that it has

to select a sample in between. This property may allow the algorithm to perform

better in some difficult situations, as it will be suggested by the experimental results

presented in this chapter.

This approach has several advantages. Firstly, it is able to consider on the fly

new tasks that have not been anticipated. For example, after having learned to

reach 20 targets, the robot can learn to reach an additional target randomly gen-

erated. When using algorithms that consider all the different targets as a single

task, this situation is typically handled by the generalization ability of the obtained

controllers, which may be ineffective when the task space is large and the number of

training targets low. An important aspect of our approach is that all observations

acquired when learning the previous tasks are used to learn the new ones, maximiz-

ing the knowledge transfer abilities of the algorithms. Moreover, nothing prevents

our approach to change its current task arbitrarily during the learning processes,

instead of considering them only consecutively. This ability may be useful if the

robot needs to improve its performance simultaneously on several tasks or if one

task becomes suddenly a priority. For example, if a walking robot learns to walk in

every direction, it can change its current task (i.e., the considered direction of the

movement) according to the situation, even if it has not reached a stopping criterion.

Typically, if the robot learns to walk forward as fast as possible, it will be useful for

the robot to change its target direction and start learning to turn before reaching an

obstacle, even if the maximum forward speed has not been reached yet. Secondly,

the computational cost of changing tasks or adding new ones is very low because the

same state function model is used for all the tasks and the task specification is only

needed when looking at the maximum of the acquisition function. Consequently,

no costly matrix inversion or hyper-parameter tuning is required when considering

different tasks. Lastly, the ability of the algorithm to progressively build its model

according to the tasks it has to solve makes the algorithm data efficient. This active

learning 1 property of our approach allows the model to be very accurate on regions

actually useful for the robot’s mission, instead of trying to model accurately the

1This property corroborates the observation from (Baranes and Oudeyer, 2013) saying that

sampling the goal space (goal babbling) is more efficient than sampling the motor space (motor

babbling), because of the potential high redundancy in the motor space. Indeed, several solutions

in the motor space may lead to the same state (or behavior), thus learning a mapping between

the entire motor space to the state space can be inefficient if the objective is to find only motor

solutions that complete the task.
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Figure 5.1: Differences between reward-based and State-based Bayesian Optimiza-

tion. (A) In reward-based Bayesian Optimization, the acquisition function (for

example UCB, see chapter 2.4.3) is computed based on the observations of the re-

ward function. (B) In State-based Bayesian Optimization, the acquisition function

is computed based on the observations of the state function, and it is specialized

according to the target location. Changing the task only requires changing the

target location without changing the state function model (i.e., the GP).
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entire state function of the robot that may contain useless regions.

Robots’ state is often expressed with multi-dimensional vectors. For example, the

state of the robotic arm can be the final position of the end-effector, which is

a 3 dimensional vector. However, in the vast majority of Bayesian Optimization

studies, the functions approximated with the Gaussian Process are scalar functions.

In the following sections, we will show how Gaussian Processes can be extended to

multi-dimensional regression in order to allow our method to be applied on multi-

dimensional state functions. In the experimental results section, we will show how

this method can be applied on our robotic arm to successively learn 20 randomly

generated targets and how it performs compared to traditional methods.

5.2.4 Multi-Channels Regression with Bayesian Optimization

5.2.4.1 Related works

In most of experiments that use Gaussian Processes (GP), GP are employed to ap-

proximate mono-dimensional functions, like reward or cost function (Lizotte et al.,

2007; Calandra et al., 2014; Kober et al., 2012; Martinez-Cantin et al., 2007, 2009):

f : Rn → R (5.6)

Nevertheless, the robots state functions are most of the time multi-dimensional

functions (for example the 3D position of the end effector of a robotic arm):

f : Rn → Rm (5.7)

For the remaining of this manuscript, we will distinguish the input space (Rn) and

the output space (Rm) by calling the dimensions of the output space “channel”.

In this section, we will demonstrate that Gaussian Processes can be extended to

deal with functions that have multi-dimensional input space and multiple output

channels.

There are two alternatives to achieve multi-channel regression with Gaussian Pro-

cesses: (1) Considering each channel separately and using on GP per channel, or (2)

considering all the channels together and using one single model for all the channels.

The first method, also known as multi-kriging (Williams and Rasmussen, 1996),

considers independently each channel of the function. It has, for example, been

used in Kupcsik et al. (2014) in which the authors used individual GP models

for each output channel in order to approximate states of the robot and the envi-

ronment. They applied their method on two robotic setups where robots had to

throw projectiles to distinct targets. Based on the acquired state function model,

their algorithm predicts the expected reward used afterward in a policy search algo-

rithm that efficiently learns robot skills. While, using independent GPs is relatively

straightforward, it suffers from a scalability problem. The computational cost will

be strictly proportional to the number of channels, as this approach requires com-

puting the inverse kernel matrix and to optimize the likelihood for each GP. For

some situations where a large amount of data (several hundreds) is required, the
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computational cost of one GP starts to be all but negligible and may prevent the re-

gression of multi-dimensional functions. In Kupcsik et al. (2014), the computation

time seems to represents one of the major obstacles that the authors addressed. For

example, they investigated the impact of using GPUs on the computational time

when sampling and computing predictions. The authors also investigated the use

of sparse Gaussian Processes (Snelson and Ghahramani, 2005; Quiñonero-Candela

and Rasmussen, 2005; Titsias, 2009) that are devoted to approximate the GPs by

reducing the size of the kernel matrix by selecting a few samples that represent all

the data set.

The second alternative consists in using a single model for all the channels, which

may allow data acquired about one channel to influence the other channels. This

link between the different channels can be useful when a strong correlation exists

between the channels. For example, when the channels are sampled independently,

the algorithm can infer the shape of the function in channels that are not well

sampled based on the samples coming from other channels. In Seeger et al. (2005),

the authors give the example of estimating the concentration map of Uranium. The

problem is that detecting uranium concentration is difficult, while detecting carbon

is easier. The idea was to sample more densely the concentration of carbon in order

to infer the concentration of uranium because these two “outputs” are strongly

correlated.

One method (Rasmussen and Williams, 2006) that exploits this correlation consists

in defining different covariance functions to deal with samples coming from the

different channels (ki,j(xi, xj)). One covariance function is used to compare samples

that come from the same channel (in this case i = j), while samples that come from

different channels (for example samples of uranium density and samples of carbon

density) are compared with a different covariance function (in this case i 6= j). We

can note that typically there is one covariance function of each channel (ki,i 6= kj,j)

and one covariance function for each couple of channels (ki,j 6= kj,k). Now, let

consider M different data sets, one for each channel i ∈ M , Di : {xi, yi}. The

observations from all channels are concatenated and processed together using the

standard Gaussian Process framework:
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P (f(x)i|DN , x) = N (µi
t(x), σi 2

t (x))

where :

µi
t(x) = µi

0 + ki⊺K−1(P1:t − µ0)

σi 2
t (x) = kii(x, x)− ki⊺K−1ki
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⊺
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⊺

(5.8)

P m
t represents the tth observation on the mth channel and µm

0 corresponds to the

initial mean value for the mth channel. The correlations between the different

channels are automatically inferred thanks to the different hyper-parameters of

each ki,j function that are autonomously defined by the log-likelihood optimization

(see chapter 2.4.2.2). This method is promising when the samplings differ from one

channel to the others (i.e., when xi 6= xj , Seeger et al. (2005)) because it allows the

algorithm to use data from the other channels to make more accurate predictions

on areas that have not been sampled in the considered channel. Unfortunately,

this approach also increases dramatically the computational cost, as the size of the

kernel matrix is equal to the total number of samples on all channels:

size(K) =
∑

i∈M

ti (5.9)

This growth of the kernel size directly impacts the computational cost of the algo-

rithm, as the complexity of the matrix inversion is O(n3). In the cases where all the

channels are sampled simultaneously (xi = xj and ti = tj ∀i, j ∈ M), this means

that the computation cost is multiplied by M3, M being the number of channels.

Moreover, here we only consider the inversion of the kernel matrix; the optimiza-

tion of the hyper-parameters is even more impacted in this method. The number

of hyper-parameters is multiplied by M ∗ (M + 1)/2 (or M2 if ki,j = kj,i) increasing

the complexity, and the required time, of the likelihood optimization. These points

show clearly that this method cannot be extended to a large number of channels

(scalability problem). Several works try to mitigate this limitation thanks to com-

putational approximations of the kernel matrix (Micchelli and Pontil (2004); Seeger

et al. (2005); Boyle and Frean (2005)).
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This approach of multiple covariance functions for multi-tasks and knowledge trans-

fer has inspired several works using various techniques to combine the covariance

functions. For example, Boyle and Frean (2005) define two covariance functions,

one for the auto-covariance (i.e., from the same channel) and another for the cross-

covariance (i.e., between two different channels). Bonilla et al. (2007) use a Kro-

necker product to combine covariance functions and then tune an inter-task covari-

ance matrix thanks to likelihood optimization. This technique has been employed

to control a robotic arm in different payload context to reach different targets

(Williams et al., 2009; Yeung and Zhang, 2009)

5.2.4.2 Fast multi-Channels regression

In this chapter, our objective is to extend the abilities of our algorithms without

losing in computational speed. We decided to use a single model for all the channels,

but, in order to mitigate the scalability issue and reduce the computational cost,

the regression is achieved by using the same kernel matrix and the same hyper-

parameters for each channel and only changing the initial mean function and the

observations according to the considered channel. This approach is equivalent to

having one GP per channel but, in this case, the GPs share the same kernel matrix

and hyper-parameters. Because the vast majority of the computational cost comes

from the hyper-parameter optimization and the inversion of the kernel matrix, shar-

ing these components over the GPs makes the computational cost independent of

the number of channels. This method can consequently be applied on functions

with a large number of channels, but it makes the assumption that every channel

can be approximated using the same hyper-parameters. For the experiments of this

chapter, we validated this assumption by independently modeling each channel with

different GPs (first alternative) and comparing the hyper-parameters obtained after

likelihood optimization. The results (not presented in this manuscript) showed that

the hyper-parameters converged to the same values. One of our hypotheses that

may explain why this assumption holds in our case is that the channels are sam-

pled simultaneously (each sampled point provides information for all the channels),

which is not always possible (see the uranium mapping example exposed before).

Another hypothesis is that, in our experiment, the two channels are likely to be

similarly influenced by each observation, as the variations of the X or Y coordi-

nates are likely similar. For example, with a one degree of freedom robot, the X/Y

coordinates correspond to L ∗ cos(θ), L ∗ sin(θ), which show the same variations

(with an offset of π/2).
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From a mathematical point of view, this approach can be formulated by:

P (f(x)|Pc1:t, x) = N (µt(x), σ2
t (x)I)

where :

µt(x)⊺ = µ0 + k⊺K−1(Pc1:t − µc0)

σ2
t (x) = k(x, x)− k⊺K−1k

K =









k(χ1, χ1) + σ2
noise · · · k(χ1, χt)

...
. . .

...

k(χt, χ1) · · · k(χt, χt) + σ2
noise









k =
[

k(x, χ1) k(x, χ2) · · · k(x, χt)
]

⊺

Pc1:t =









P x
1 . . . P z

1
...

. . .
...

P x
t . . . P z

t









µc0 =









µ0

...

µ0









µ0 =
[

µx
0 . . . µz

0

]

(5.10)

The main differences with the classic Gaussian Process expression (see section 2.4.2)

are in blue. The idea consists in changing the P1:t vector, which usually contains

the scalar observation when the approximated function has a single channel, into

a matrix where each line represents a multi-dimensional observation. We call this

matrix Pc1:t. The mean constant is also extended into a matrix in order to set

the initial mean at different values according to the channel. Each line of µc0 is

identical and contains the initial mean value of the each channel (µ0). Thanks to

these two modifications, the mean function of the GP outputs a line vector gathering

all channels of the approximated functions in one vector.

Usually, vectors are represented in column. The previous expression can be adapted

in order to output column vectors simply by transposing the expression:

P (f(x)|Pc1:t, x) = N (µt(x), σ2
t (x)I)

where :

µt(x) = µ0
⊺ + (Pc⊺1:t − µc0

⊺)K−1k

σ2
t (x) = k(x, x)− k⊺K−1k

(5.11)

This method is completely scalable to the number of channels and has a negligi-

ble impact on the computation cost. This aspect will allow us to model multi-

dimensional robot state function and transfer knowledge from one task to another.

5.2.4.3 Likelihood Optimization of Multi-Channels models

The hyper-parameters of a multi-channels Gaussian Process can be automatically

determined in the same way as with standard Gaussian Processes by using the log-

likelihood optimization (see chapter 2.4.2.2 and Rasmussen and Williams (2006)).
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As a reminder, here is the original log-likelihood expression:

log p(P1:t | χ1:t, θ) = −1

2
(P1:t − µ0)⊺K−1(P1:t − µ0)− 1

2
log | K | −n

2
log 2π

(5.12)

Our multi-channels GP can be decomposed on several independent mono-channel

GPs, one for each channel (see the previous section). Based on this observation,

we can compute the likelihood of the multi-channels model as the product of the

likelihood of each channel. The log operator and the matrix representation of the

different observation over all the channel (Pc1:t) allows the expression to be similar

to the original one (equation 5.12):

log p(P1
1:t . . . PM

1:t | χ1:t, θ) = log
∏M

k=1 p(Pk
1:t | χ1:t, θ)

=
∑M

k=1 log p(Pk
1:t | χ1:t, θ)

= −1

2
tr((Pc1:t − µc0)⊺K−1(Pc1:t − µc0))

−M

2
log | K | −n ∗M

2
log 2π

(5.13)

The differences are depicted in blue in the final expression. According to our knowl-

edge, the trade-off between data-fit term and the complexity penalty defined in

Rasmussen (1996) is not perfect and may lead to over-learning phenomenon usually

counterbalanced with cross validation (see chapter 2.4.2.2). One of the differences

between the equations 5.12 and 5.13 consists in multiplying by M the term that reg-

ulates the model complexity (Rasmussen and Williams, 2006) in order to conserve

the same trade-off. Interestingly this modification did not provide the expected

results during our preliminary experiments, most likely because of early conver-

gence to local maximum during the log-likelihood optimization. A modification

that reduces the complexity penalty will systematically be more interesting (for the

optimization process) than a modification that improves the data-fit term because

it is very unlikely that this modification improves in the same way all the channels

(to get a improvement multiplied by a factor of M). Consequently, the optimiza-

tion process will be attracted by the local maximum that tends to have the simplest

models. For this reason we decided for our experiments to remove this M factor in

the likelihood expression, which leads to this simplified expression:

log p(Pc1:t | χ1:t, θ) = −1

2
tr((Pc1:t − µc0)⊺K−1(Pc1:t − µc0))

−1

2
log | K | −n

2
log 2π

(5.14)

The gradient of this expression can be easily computed as the sum of the gradient
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of the different data-fit terms (one observation vector per channel):

∂

∂θj
log p(Pc1:t | χ1:t, θ) =

1

2

∑M
k=1(Pk

1:t − µk
0)⊺K−1 ∂K

∂θj
K−1(Pk

1:t − µk
0)

−1

2
tr

(

K−1 ∂K

∂θj

)

=
1

2

∑M
k=1 tr

(

(αkαk⊺)
∂K

∂θj

)

− 1

2
tr

(

K−1 ∂K

∂θj

)

where αk = K−1(Pk
1:t − µk

0)

=
1

2
tr

(

(K−1∑M
k=1

(

(Pk
1:t − µk

0)(Pk
1:t − µk

0)⊺
)

K−1)
∂K

∂θj

)

−1

2
tr

(

K−1 ∂K

∂θj

)

(5.15)

The structure of Pc1:t, which is composed of one column of observations for each

channel, allows the expression to be simplified thanks to this equality:

M
∑

k=1

Pk
1:tP

k⊺
1:t = Pc1:tPc⊺1:t (5.16)

With this simplification, the gradient of the log-likelihood is exactly the same as

the original expression of standard GP but with the matrix representation of the

observations (Pc1:t, see the previous section):

∂

∂θj
log p(Pc1:t | χ1:t, θ) =

1

2
tr

(

(αα⊺ −K−1)
∂K

∂θj

)

where α = K−1(Pc1:t − µc0)

(5.17)

5.2.5 Experimental Validation

We evaluate the performance improvement provided by the knowledge transfer abil-

ity of our algorithm on the second setup of the robotic arm (see appendix B.2). In

this experiment, the robot has to sequentially reach 20 targets defined in the cam-

era’s image, by using the same controller as in the previous chapter (see chapter 4

and appendix B.3), which only defines the final angular position of the eight joints.

The robot state is defined as the X and Y coordinates of the laser point in the

camera’s image. The aim of this experiment is to show that transferring the obser-

vations acquired when learning to reach one target decreases the number of trials

required to reach the subsequent targets.

The relative position of the targets has a strong impact on the learning perfor-

mances: learning to reach a target close to the previous targets can be particularly

easy, while learning to reach a target in an area never explored can be a challenging

task. Moreover, the order of the target has an impact too: if the first target is really
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difficult to reach and requires intensively exploring the search space, the subsequent

targets will greatly benefit from this initial step. In order to have experimental re-

sults that are not impacted by these factors, we decided to completely randomize

the targets’ position and to perform a large number of replicates to gather statistics.

Unfortunately, performing a very high number of replicates is materially impossible

on the physical robot, thus we run these experiments only in simulation. In the last

section of this chapter, we will evaluate our algorithm and its additional features

details on the physical robot.

In order to ensure that all the targets are actually reachable by the robot, the

targets are randomly generated following this procedure: The targets are first ran-

domly generated in the reachable space of the robot and are defined by two polar

coordinates chosen between ±0.9× π/2 for the angular position and between 10%

and 90% of the robot’s total length for the distance. We selected these values in

order to remove the borders of the reachable space that may be too difficult to be

reached. If these two coordinates were selected through a uniform random distri-

bution, the target locations will not be uniform in the Cartesian space (they will be

more concentrated close to the center of the reachable space). For this reason, we

used the square root of the random variable used for the radius coordinate. This

procedure allows the target to be evenly spread over the reachable space of the

robot. These random targets are then multiplied by a transformation matrix to

define them in pixels and in the camera’s frame (see appendix B.2). The values of

the parameters used for these experiments can be found in appendix C.4.

5.2.5.1 Reference Experiments

In addition to the experimental validation of our algorithm, we implemented three

reference algorithms:

• Random Search

• Traditional Bayesian Optimization (BO)

• State-based Bayesian Optimization (without knowledge transfer)

These algorithms allow us to highlight the impacts of sub-part of the proposed

method on the robot’s learning abilities.

The first reference algorithm is a naive random search, where random joint positions

are successively generated until reaching the desired target. This experiment aims

at showing that this task cannot be solved without a minimum of learning skills.

The second reference algorithm is the usual Bayesian Optimization algorithm where

the performance function is the distance between the position of the gripper (at

the end of the motion) and the target. Because all the techniques presented in

this chapter are based on Bayesian Optimization, this experiment will be used

as a reference when comparing the performance of the proposed algorithms. The

third reference algorithm consists in using the State-Based Bayesian Optimization

algorithm, presented in this section, but without knowledge transfer between each
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target (the observations are discarded). This experiment will show how modeling

the robot’s state, instead of the performance function, affects the results. The

benefits provided by the knowledge transfer will be highlighted by comparing our

approach to all the considered reference experiments that do not transfer knowledge

between each target.

We assumed at the beginning of this chapter that the active learning ability of our

approach, which makes it focus on regions that are useful for the robot’s mission,

is likely to improve its data efficiency. We evaluate this aspect with two other

reference algorithms:

• A pre-trained Gaussian Process (GP)

• The PILCO algorithm (Deisenroth and Rasmussen, 2011)

The pre-trained GP is constructed with 151 samples covering all the motor space

and is then used to make the robot reach the targets. The 151 samples, which

correspond to the maximum number of samples allowed for the other methods, are

generated thanks to a BO algorithm that only considers the standard deviation

of the GP in the acquisition function (i.e., pure exploration). This automatically

evenly distributes the samples to minimize the uncertainty over all the motor space.

Once these 151 samples have been generated and a GP trained, this model is used

to select one behavior that is the most likely to reach the current target. In this

experiment, the robot can perform only one trial to reach the target, but it relies

on a model built with 151 samples. This experiment evaluates the generalization

ability of the trained GP.

The PILCO algorithm is a model-based, data-efficient policy search approach, which

uses GPs to actively build a forward model of the robot (typically, the dynamic

model of the robot). The algorithm updates its policy via a gradient-based opti-

mization based on the predictions provided by the model. The policy is then tested

on the robot and the resulting observations are used to improve the model. This

process is then repeated until the robot reaches the desired state.

PILCO is designed to be a "step-based algorithm" (see section 2.3), whereas in this

thesis we consider tasks for which we can only evaluate the reward (and possibly

the state) at the end of each episode. Assessing the robot’s reward or state at the

end of each trial allows us to use inexpensive tracking systems (for instance, the

simple tracking used in the present experiments, see appendix B.2) and/or on-board

sensing. In addition, in experiments with the hexapod robot, the complete state

would need to be described by many variables (at least 42 if we only consider the

position and velocity of the six legs and the main body), which makes it hard to

learn. In order to compare directly PILCO with our approach, we configured it

to be an “episode-based algorithm” by setting the prediction horizon to 1 step2.

2It is very likely that PILCO would requires fewer trials (episodes) to reach the goal if it could

rely on the data of the intermediate states of each episode, typically at each time step. However,

this would not respect the constraints of our experimental setup and it is likely that the performance

of Intelligent Trial and Error algorithm would also be improved if each trial provides more data.
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With this modification, PILCO and our approach are relatively similar: 1) they

both build a model that predicts the robot’s final state according to the commands

(or the corresponding parameters) that are executed; 2) they both select the next

trial based on a reward function that combines the predictions of the model and

the goal; 3) each trial on the robot generates data that is used to improve the

model. However, they differ in the way the policy is updated. While our approach

updates the policy parameters by maximizing the acquisition function, with a global

optimization approach (CMAES, with different starting points and several restarts),

PILCO maximizes the expected reward (which is equivalent to our performance

function) based on the gradients provided by the reward function, the model and

the controller. This gradient-descent starts from the current policy and makes the

policy update thus more “local” than ours. The implementation of this reference

algorithm is based on the MATLAB-code provided by Deisenroth et al. (2013a).

The algorithm is applied on the same (virtual) experimental setup as the other

algorithms, and the parameters are set to their default value. The employed policy

type is based on the linear controller, but with no input (i.e., by only using the

controller’s bias), which is equivalent to the open-loop controllers used in the other

experiments.

5.2.5.2 Results

The algorithms consider that the target has been reached when the laser point (from

the laser pointer attached on the gripper, see appendix B.3) is within a radius of

50 pixels, which roughly corresponds to 3.3 centimeters. The maximum number of

attempts to reach one target is limited to 151. Each experiment is replicated 200

times.

We analyze how many iterations are required to reach one (random) target (see

Fig. 5.2 A). The random search algorithm is able to reach the target in only 43%

of the replicates and 75% of these replicates require more than 40 trials to reach

the target (unsuccessful replicates are stopped after 151 trials). The traditional BO

and the state-based BO experiments perform much better and are not statistically

different (p-value=0.75), the classic Bayesian algorithm is successful in 96.5% of

the replicates and the State-Based Bayesian Optimization is successful in 99% of

them (see Fig: 5.3). The median number of required trials for these two reference

experiments is respectively 20 and 20.5 trials.

This first comparison shows that the modifications we made to model the robot

state function instead of the performance function has no effects on the learning

performance of the algorithm. We can also hypothesize that the small success rate

improvement is due to the additional information provided by modeling the robot

state as presented in the previous section (section 5.2.3).

After this first target, the algorithms have to reach subsequently 19 additional

targets (for a total of 20 targets). We consider the cumulative number of trials

required to reach every target because the number of trials to reach one specific

target is clearly influenced by the number of trials, the location and the difficulty
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Figure 5.2: The benefits of transferring knowledge. (A) Number of trials required

to reach the first target. The results of State-based BO with transfer (that are not

shown in this pannel) are similar to the State-based BO because we consider here

only the first target. (B) Cumulative number of trials required to reach subsequently

each of the 20 targets. (C) Number of trials required to reach each target when using

knowledge transfer. The decrease of the number of trials shown here is due to the

knowledge transfer between each task. The middle, solid lines represent medians,

while the colored areas extend to the 25th and 75th percentiles. The experiment

has been replicated 200 times in simulation for each of the 4 tested algorithms.
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of the previous targets. For example, reaching a new target can require a large

number of trials if the algorithm performed few trials before and it can require very

few trials if the search space has been extensively explored before trying to reach

this new target. Recording the cumulative number of trials and performing multiple

replicates of the experiments reduce these biases in the presented results. For each

new target, the number of required trials contains both the number of trials used to

reach this new target but also the number of trials required to reach all the previous

targets (see Fig 5.2 B).

Before actually starting the learning process, 10 random trials are performed in

order to initialize the algorithm’s model. This kind of procedure is customary when

algorithms start from scratch (Lizotte et al., 2007; Calandra et al., 2014; Cully

et al., 2015). However, in the number of trials reported in this chapter, we only

consider trials that have been intentionally chosen and the 10 initial random trials

are not taken into account. Indeed, there is no certainty that these samples have

participated in the success of the algorithm and counting them may artificially

penalize the learning speed of the reference algorithms. This is why, we chose to

ignore these samples in our comparison to prove that the performance differences

between our algorithm and the reference ones are not induced by this artificial

initialization procedure.

The reference experiments do not transfer knowledge between each target, for this

reason the cumulative number of trials required to reach the targets is a linear

progression with the slope corresponding to the number of trials to reach the first

target (see Fig. 5.2 A). Like for the first target, the classic Bayesian Optimization

algorithm and the State-based Bayesian Optimization algorithm perform very sim-

ilarly. When knowledge transfer is enabled, the State-based Bayesian Optimization

clearly shows a large improvement of its learning abilities. While about 600 trials

(median: 606 trials for State-based BO and 587.5 trials for BO) are required to

reach the 20 targets without transfer, this number falls to a median of 191 trials

with the State-based Bayesian Optimization with Knowledge Transfer. For the last

targets, the additional number of trials to reach new targets becomes very low:

more than 75% of the 200 replicates reach the targets in one shot between the 12th

and 20th targets (Fig. 5.2 C). The remaining 25% are likely to require more trials

because of the reasons exposed before (e.g., dependency to the prior experiences,

relative position of the targets).

The conclusion that can be drawn from these experimental results is that the mod-

ification of standard Gaussian Processes that allows the algorithm to model the

multi-dimensional (or channel) robot state function has little impact on the opti-

mization performance. Moreover, this modification allows the algorithm to trans-

fer knowledge from one task to another and this significantly (p-value< 10−66,

Wilcoxon rank sum test) reduces the time needed to achieve next tasks.
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Figure 5.3: Reaching the first target. A) Success rate for reaching the first target

with the five compared algorithms. B) Comparison of the number of trials required

to reach the first target. The experiment has been replicated 200 times in simulation

for each of the tested algorithms.
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5.2.5.3 Comparison with PILCO and with a pre-trained GP

In the control experiment using a pre-trained GP, the robot is allowed to perform

only one trial to reach the target, but it relies on a model built with 151 samples.

Like in the previous experiments, this experiment has been replicated 200 times

with the same random targets as before. The results (see Fig: 5.3A) show a success

rate of only 4%, which illustrates how the active learning ability of our approach

significantly improves its performances. It may appear surprising that the random

search performs better than this “pre-trained GP” alternative. The reason is that

only the single trial of this alternative approach is taken into account. This means

that even if some of the 151 trials performed to build the model reached the targets,

the algorithm has to select again a point that will reach the target, which appears to

be difficult. One explanation of this difficulty can be the inaccuracies of the model

that appear when the model tries to cover the entire search space. This aspect is

highlighted by the success rate of the other tested algorithms, which select their

next trial in an active fashion (i.e., based on the previous trials and the observed

performance).

With active learning approaches, the success rate is significantly higher: 85% for

PILCO, 96.5% for the traditional BO, and 99% for the State-based BO. All these

differences are statically significant with the p-values< 10−4 (based on the Fisher’s

exact test) (except between traditional BO and State-based BO, p-value=0.1747),

and show that using active learning approaches, which focus on regions that are

useful for the robot’s mission, is more effective than building global models.

While our approach has a better success rate than PILCO, we can see that PILCO

requires about two times less trials than the other approaches to reach the first tar-

get (see Fig: 5.3B, median: 10 trials for PILCO versus 20.5 trials for State-based

BO, p-value= 10−5). We can hypothesize that this performance difference comes

from the way that the policies are updated, since the generation of the model is

very similar in these two approaches. The policy update process of PILCO, which

is more “local” than our approach, is likely an advantage in the experimental setup

that we consider in this chapter because it is relatively smooth and convex and thus

suitable for gradient-based approaches (e.g., classic visual servoing techniques can

be used to solve the task, Espiau et al. (1992)). Moreover, the high redundancy

of the robot leads to not only one solution, but rather an hyper-plan of solutions

(i.e., several different configurations lead the robot to the desired location). This

variety of solutions does not affect PILCO, as it will reach the closest configuration

according to its starting policy, but does affect our approach because the global

exploration of the acquisition function (here, UCB) tends to simultaneously investi-

gate all the possible alternatives, which is likely to slow the process down. However,

this advantage in this particular setup may be a disadvantage in other ones, typi-

cally those with local extrema. Finally, we can also hypothesize that the relatively

low success-rate of PILCO compared to State-based BO is due to unlucky initial-

izations of the GP that may make PILCO start too far from a good solution. It

would be interesting to perform the same kind of comparison on more challenging
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experimental setups to see how the differences between these two approaches are

affected.

5.3 Missing Data

5.3.1 Motivations

When performing experiments, some behaviors cannot be properly evaluated on

the physical robot. This can happen for different reasons: (1) The robot may

be outside the sensor’s range, for example when the robot is not visible from the

camera’s point of view, making it impossible to assess its performance. (2) The

sensor may return intractable values (infinity, NaN,...). A typical situation where

this kind of illogical values may occur is when the SLAM algorithm diverges and is

unable to infer the robot’s position. (3) The behavior may fail a sanity check, which

is executed before running the behavior on the robot and prevent the behavior from

damaging the robot. A classic sanity check can be to check if a behavior is likely

to produce self-collisions when it’s applied on a robotic arm. For example, this

check can be performed in simulation before testing the behavior in reality. All

these situations generate missing data about the behaviors’ performance and this

represents a significant problem that may impact the algorithms’ results.

While it is very likely that most of experiments are affected by these situations,

the way the authors deal with them are unfortunately rarely specified. Moreover,

making the hypothesis that it is always possible to evaluate a behavior is a strong

limitation for the robot’s autonomy and in this case should be clearly mentioned in

research articles.

5.3.2 Principle

Different solutions exist to deal with missing data. The simplest way consists in

redoing the evaluation. This may work, but only if the problem is not deterministic,

otherwise the algorithm will be continuously redoing the same, not working, eval-

uation. A second solution consists in assigning a very low value to the behavior’s

performance, like a punishment. This approach will work with evolutionary algo-

rithms because the corresponding individual will very likely be removed from the

population in the next generation. By contrast, this approach will have a dramatic

effect on algorithms using models of the reward function, like Bayesian Optimiza-

tion, as the models will be completely distorted. Figure 5.4 B shows how setting a

missing data to zero affects the estimated reward function in a Bayesian optimiza-

tion process. With these model based algorithms, another solution may be to set

the missing data to the value previously predicted by the model, but the drawback

of this approach is that it will attach the model to a potentially wrong value (see

Fig. 5.4 C).

These different methods to deal with missing data do not fit well with the Bayesian

Optimization framework. For this reason we propose in this section a new approach,



166 Knowledge Transfer, Missing Data, and Misleading Priors

(Unknown) Reward Function

Acquisition Function

Estimated Reward

Function

Next Sample

Initial ModelA

B

Sample

Sample with missing data

Missing data set to a punishment value

C Missing data set to previous prediction

Figure 5.4: Common ways to deals with solutions that cannot be evaluated. (A)

Initial model, the performance of the “next sample” cannot be assessed. The two

other sub-panels show the impact of commonly used techniques to deal with missing

data. (B) Samples with missing data receive a punishment value (here 0), distorting

the model as a consequence. (C) Samples with missing data receive the value

previously predicted by the model, fixing it to a potentially wrong value.
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compatible with Bayesian Optimization, which preserves the model’s stability. The

overall idea is to encourage the algorithm to avoid regions around behaviors that

could not be evaluated, which may contain other behaviors that are not evaluable

too, but without providing any performance value, which is likely to increase the

model’s instability.

The behaviors’ attractiveness is defined based on the acquisition function (see sec-

tion 2.4.3), which is mainly governed by the expected performance and variance

around this prediction, which represents how much the search space has been ex-

plored in the behavior’s vicinity. As shown in the previous section, most of model in-

stabilities come from attempts to change the expected performance. Consequently,

our idea consists in providing to the algorithm the information that a behavior has

already been tried, in order to reduce its variance, but without fixing the expected

performance to a hazardous value.

5.3.3 Method Description

In order to provide the information that some behaviors have already been tried, we

propose to define a blacklist of samples. Each time a behavior cannot be properly

evaluated, this behavior is added into the blacklist (and not in the pool of tested

behaviors). Because the performance value is not available, only the behavior’s

location in the search space is added to the blacklist. In other words, the blacklists

are a list of samples with missing performance data.

Thanks to this distinction between valid samples and blacklisted ones, the algorithm

can consider only the valid samples when computing the mean of the Gaussian

Process and both valid and blacklisted samples when computing the variance. By

ignoring blacklisted samples, the mean will remain unchanged (Fig. 5.5 B) and free

to move according to future observations (Fig. 5.5 C). By contrast, the variance

will consider both valid and blacklisted samples and will “mark” them as already

explored (Fig. 5.5).

The mathematical formulation of this idea is relatively straightforward. The mean

equation, µt(x), remains unchanged, while the kernel of the variance equation,

σ2
t (x), is extended to the blacklisted samples (bl). Note that, while the mathe-

matical description is given based on the classic Bayesian Optimization algorithm

for reading convenience, this idea is fully compatible with the previously described

multi-channel Bayesian Optimization algorithm and the Intelligent Trial and Error

algorithm.
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(Unknown) Reward Function

Acquisition Function

Estimated Reward

Function

Next Sample

A

B

Sample

Blacklisted Sample

C

Figure 5.5: Blacklist principles. (A) Initial model (the same as Fig. 5.4). (B)

The variance around the blacklisted sample is reduced but the mean of the model

remains unchanged. (C) After testing another solution, the model can adapt to the

new observation because the performance value predicted for the blacklisted sample

is not fixed.
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P (f(x)|P1:t, x) = N (µt(x), σ2
t (x))

where :

µt(x) = µ0 + k⊺K−1(P1:t − µ0)

σ2
t (x) = k(x, x)− kbl

⊺Kbl
−1kbl

Kbl =

























k(χ1, bl1) · · · k(χ1, bln)

K
...

. . .
...

k(χt, bl1) · · · k(χt, bln)

k(bl1, χ1) · · · k(bl1, χt) k(bl1, bl1) + σ2
noise · · · k(bl1, bln)

...
. . .

...
...

. . .
...

k(bln, χ1) · · · k(bln, χt) k(bln, bl1) · · · k(bln, bln) + σ2
noise

























kbl =
[

k(x, χ1) · · · k(x, χt) k(x, bl1) · · · k(x, bln)
]

(5.18)

This representation uses the same definitions as in equation 5.19 in section 2.4 and

changes are depicted in blue to highlight how to add the blacklist of samples.

The extension of the kernel matrix increases the computational cost of this method,

as this second matrix needs to be inverted too and is larger than matrix used for

the mean. However, this addition cost can be significantly mitigated by using the

block-wise inversion theorem (Press et al., 1996):

[

A B

C D

]−1

=

[

A−1 + A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

]

(5.19)

This theorem says if we known A−1 then computing the inverse of the global matrix

only requires computing the inverse of this expression (D − CA−1B) (depicted

in blue in the previous equation). In our case this is very useful, as the A−1 is

the inverse of the mean’s kernel matrix (thus already inverted) and the size of

(D−CA−1B) is equal to the number of black listed samples, which is likely to be

notably lower than the number of correct samples. Consequently, thanks to this

theorem, computing the variance of the GP with blacklist only additionally requires

to inverse a small matrix and to perform a few matrix products.

5.3.4 Experimental Validation

We replicated the experiment from the previous section (section 5.2.5) but in this

section each sample evaluation has a 5% chance to fail, generating missing data.

This experiment is also replicated 200 times for each compared algorithms.

We first evaluated the impact of these missing data on the learning algorithms when

they are handled with “punishment values”. In this experiment, the punishment

values are set to −1500 pixels (corresponding roughly to −1 meter) for the reward

based algorithm and [−1500;−1500] for the stated based algorithms.

We take as a reference point the total number of trials required to reach the 20

targets when there are no missing data (i.e., the 5% chance that it occurs is dis-



170 Knowledge Transfer, Missing Data, and Misleading Priors

N
u
m

b
e
r 

o
f 

tr
ia

ls
 r

e
q
u
ir

e
d

to
 r

e
a
c
h

 2
0

 t
a
rg

e
ts

Bayesian Optimization (BO)

State-Based BO

State-Based BO with Transfer

No missing data

Blacklisted samples

Punished samples

111111 1

0

200

400

600

800

1000

1200

1400

1600

1800

Figure 5.6: Impact of missing data on the learning performance. For the three

tested algorithms we compared the total number of trials required to reach 20

targets. Each trial has a 5% chance to fail and to generate missing data. For each

algorithm, the number of trials for the experiments without missing data is plotted

for reference and the approach using blacklists of samples or punishment values are

compared. The experiment has been replicated 200 times in simulation for each of

the 3 tested algorithms and their 3 variants.
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Figure 5.7: Blacklists of samples do not affect the learning performance. (A)

Number of trials required to reach the first target. (B) Cumulative number of trials

required to reach subsequently 20 targets. (C) Number of trials required to reach

each target. The decrease shown here is due to the knowledge transfer between each

task. The middle, solid lines represent medians, while the colored areas extend to

the 25th and 75th percentiles. Both experiments have been replicated 200 times in

simulation for each of the 5 tested algorithms.

abled). Theoretically, this number should increase by about 5% if the missing data

are well managed. The results show, as expected, that the punishment values have

a important impact on the number of trials (Fig. 5.6). For all the tested algo-

rithms (standard Bayesian Optimization (BO), state-based BO, and state-based

BO with knowledge transfer), the number of trials increases by about 50% (BO:

43.3%, state-based BO 48.3%, state-based BO with knowledge transfer 72.3%, all

these differences are statistically significant: p-values< 10−28) while when the miss-

ing data are handled with blacklists this number of trials only increases by about 3%

(BO: 6.9%, state-based BO 3.6%, state-based BO with knowledge transfer −1.6%,

the two first increases are statistically significant, p-values <0.02 but not the last

one, p-values=0.35).

This experiment demonstrates that using blacklists of samples to deal with missing

data minimizes their impact on the learning performances. When comparing the

results of algorithms using blacklists (Fig. 5.7) and those without missing data

(Fig. 5.2), the differences are very subtle. For example, thanks to the knowledge

transfer, our algorithm is able to reach the 20 targets in less than 200 trials (median:
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197 trials, 5th and 95th percentiles: [123; 316] trials when there are some missing

data, versus 191 [107.5; 324.5] trials when there is no missing data). Moreover,

the ability to reach in one shot the targets after some previous experiments is

preserved. In this case, after the 14th target, more than 75% of the replicates reach

the targets in one shot. The only difference may be the performance difference

between the standard BO and the State-based BO, which seems to be larger than

in the previous experiment. Nevertheless, this difference is not statically significant

(when computing the p-value point by point for all the 20 targets, the p-value varies

between 0.015 and 0.95).

Solutions that cannot be evaluated and which generate missing data is a problem

that impacts most of experiments using real robots and represents one of the nu-

merous problems that prevent learning algorithms from being widely applied on

physical setups. Throughout these experiments, we showed that using blacklists

of samples is a computationally efficient and easy way to setup way to cope with

this issue. While the experiments presented in this section are only performed in

simulation in order to perform a large number of replicates, the last section of this

chapter presents an experiment in which the whole framework of our algorithm,

including the use of blacklists but also additional features presented in the next

section, are evaluated on the physical robot in order to show its benefits in a real

context.

5.4 Misleading Priors

5.4.1 Motivations

As we showed in chapter 4, using priors is one of the key components to achieve fast

adaptation. On the one hand, if well chosen, these priors can guide the search and

provide various information about the search space and/or reduce the search space.

On the other hand, if not well chosen, these priors may be misleading and hurt the

learning performances. For example, the forward kinematic model of the robot arm

is typically a knowledge that can easily be given a priori to the robot, but which

may be misleading for several reasons: (1) they may be not well aligned with the

actual search space, like when forward model is defined based on the robot’s frame

while observations are computed based on the camera’s frame. (2) Another reason is

when units differ: if the forward model is given in meters while the observations are

in pixels, the unknown conversion between these two sources of knowledge prevent

the algorithm from relying on the forward model. (3) The worst situation is when

the priors are strictly uncorrelated with the task, for example if we provide to the

robot arm priors about the hexapod robot. (4) When the robot is damaged, the

priors may also be misleading, as they do not take into account the current situation

of the robot. All these examples show how potentially useful prior knowledge can

become more misleading than helpful.
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5.4.2 Principle

In this section, we present a method that allows the algorithm to autonomously

adapt these priors to exploit all their potential usefulness or in the worst situation to

disregard them. In most of the examples exposed in the previous paragraph, priors

contain meaningful information, which cannot be used to solve the task because of

conversion or alignment problems.

To address these problems, our idea consists in transforming the priors’ information

to let them match with the acquired observations. One of the most common ways

to transform data is to use linear transformations or, when the data are multi-

dimensional, transformation matrices. Moreover, the information provided by the

priors can be extended to homogeneous coordinates (or projective coordinates) in

order to implement translations thanks to usual transformation matrices. The al-

gorithm will autonomously determine the adequate transformation according to

the observations by maximizing the likelihood of the Gaussian Process (see section

2.4.2.2). This method will allow the robot to maximize the benefits provided by

the prior information or in the worst cases to mitigate their negative impacts.

5.4.3 Method Description

State-based Bayesian Optimization (see section 5.2.2) allows us to model functions

that have multiple output channels. A consequence of this multi-dimensionality is

that the prior knowledge should also have outputs with multiple channels. These

multi-channels priors can easily be extended to homogeneous coordinate by in-

creasing the number of output dimensions by one and by fixing the value of this

additional dimension to 1. With this extension, usual transformation matrices will

be able to scale, rotate, translate and even disregard (with a null matrix) the in-

formation provided by the priors. These matrices (here named Tr) can be added

directly in the traditional GP formulation in which the prior (µ(x)) is a vector:

P (f(x)|P1:t, x) = N (µt(x), σ2
t (x))

where :

µt(x) = Tr

[

µ0(x)

1

]

+ k⊺K−1

(

P1:t −
(

Tr

[

µ0(χ1:t)

1

])⊺)

σ2
t (x) = k(x, x)− k⊺K−1k

µ0(x) =









µ1
0(x)
...

µn
0 (x)









µ0(χ1:t) =
[

µ0(χ1) . . . µ0(χt)
]

Tr =
[

θ1
T r θ2

T r . . . θn+1
T r

]

(5.20)

While the presented equation only considers the modifications that should be added

to the original GP framework, this technique is fully compatible with all those

presented in this chapter and can be combined into a generic framework that allows
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robots to autonomously transfer knowledge between tasks, deal with missing data

and to adapt the provided priors. For example, this expression can be extended to

state-based BO:

P (f(x)|Pc1:t, x) = N (µt(x), σ2
t (x)I)

where :

µt(x) = Tr

[

µ0(x)

1

]

+

(

Pc⊺1:t −Tr

[

µ0(χ1:t)

1

])

K−1k

σ2
t (x) = k(x, x)− k⊺K−1k

µ0(x) =









µ1
0(x)
...

µn
0 (x)









µ0(χ1:t) =
[

µ0(χ1) . . . µ0(χt)
]

Tr =









θ1,1
T r θ1,2

T r . . . θ1,n+1
T r

...
. . .

...

θp,1
T r θp,2

T r . . . θp,n+1
T r









(5.21)

The transformation matrix’s coefficients are considered as additional hyper-

parameters of the model and automatically tuned, online, by maximizing the likeli-

hood of the model according to the observations. The likelihood expression remains

unchanged (see equation 5.14) and its derivative according the weights of the trans-

formation matrix (θT r) is defined as:

∂

∂θT r
log p(P1:t | χ1:t, θ) = tr

(

(Pc1:t − µ0)⊺K−1 ∂

∂θT r

(

Tr

[

µ0(χ1:t)

1

]))

(5.22)

The derivative in this equation can be easily computed, as it involves only a linear

combination of the matrix coefficient and the mean vector. This leads to a simple

expression of the gradient if we consider that vector θT r contains all the coefficients

of the matrix sorted line by line.

∇θT r

(

Tr

[

µ0(χ)

1

])

=















M(χ)⊺ 0 . . . 0

0 M(χ)⊺
...

...
. . . 0

0 . . . 0 M(χ)⊺















where :

M(χ) =

[

µ0(χ)

1

]

(5.23)

The ability to adapt the priors and thus the model to the observations has several

interesting properties. First, the transformation matrix will adapt globally the prior

over all the search space (e.g. it will find the right alignment and the right scale

factor) and the Gaussian Process will then correct itself locally to take into account
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local phenomenon or small inaccuracies (e.g. damage situations or inaccuracies

between the priors and the reality). Second, the algorithm has the possibility to

ignore the provided priors by setting all the weights of the transformation matrix

to zero or to very low values. This will be done autonomously when the likelihood

optimization will suggest that a model with a null matrix is the best way to match

the acquired observations. This is an interesting feature as it allows us to provide

several sources of prior knowledge and let the algorithm decide which one, or which

combination of these priors is actually the most helpful.

This last property share some similarities with what Rasmussen and Williams (2006)

(Chapter 2.7) describe in their book. Based on the works from O’Hagan and King-

man (1978) and from Blight and Ott (1975), the authors show how to use the

likelihood optimization to determine a vector that is involved in a scalar product

with another vector, which is composed by the outcomes of several mean functions.

Compared to this approach, the technique presented in this section takes advan-

tage of the multi-channel property introduced previously in this chapter in order

to use transformation matrices and homogeneous coordinates instead of a scalar

product. Moreover, this section aims to show examples where these techniques can

be practically useful.

5.4.4 Experimental Validation

We continue to use the same robotic arm experimental setup (in simulation) to

evaluate this additional extension of our algorithm. For this experiment, the robot

has access to its forward model as a prior knowledge. Concretely, the forward model

is a function that takes as argument the joints’ position of the robot and outputs

the corresponding position of the gripper projected on the ground. Because the

robot has 8 degrees of freedom, the forward model is defined as f : R8 → R2.

In this case, the prior does not reduce the problem dimensionality. The forward

model outputs the position in meter and according to the robot’s base frame, while

the observations and the targets are computed in pixel defined in the camera’s

base frame. These differences of reference frame and scale factor make it difficult

to exploit the information provided by the priors and they may be, in the worst

situations, more misleading than helpful (see the following result section).

The algorithm adapts its prior thanks to a 2 x 3 transformation matrix included

in the model as presented before. This matrix has two lines because the robot

state function has two channel (the X and the Y coordinates of the gripper) and

three columns in order to perform rotations and translations of the coordinates

that are outputted by the forward model. These outputs are extended by one ad-

ditional dimension to turn these coordinates into homogeneous coordinates. There

are consequently 6 hyper-parameters that have to be optimized by the likelihood

optimization (in addition to the other hyper-parameters for the kernel function,

see section 2.4.2.2). All the hyper-parameters of the model are determined after

the initialization procedure and re-computed after each trial in order to take into

account the new data.
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In simulation, the virtual robot and its forward model match perfectly and this

makes the task particularly easy. In this case, the algorithm only needs to infer the

right transformation matrix thanks to a few samples and then it can rely on the

forward model to reach every target in “one shot”. The results show that this is

successfully achieved only based on the 10 random trials perform at the beginning

of the experiment to initialize the model (see the following results section). To

increase the task difficulty, we consider situations in which the robot is damaged

to show the ability of the algorithm to globally adapt the priors but also to locally

adapt its model according to the damage. In addition to the situation in which

the robot is intact, four damage conditions are tested in simulation (see Fig. 5.9

C). In the considered situations, the robot’s joint can be affected in two ways: (1)

the joint can be stuck at a particular position (here, 45°) and does not respond

to any received command; (2) the joint has a permanent 45° offset, meaning that

the position reached by the motor will always be displaced by 45° according to the

received command (in this case, the motor is still able to move). We apply these

two types of damage on two different joint locations: (1) close to the base and (2)

close to the gripper. The location of the altered joint may influence the difficulty

of the task.

In this experiment, all the features detailed previously are combined to allow the

robot to transfer knowledge, face missing data and adapt its prior knowledge. Like

in the previous experiment of this chapter, the experiments are replicated 200 times

(for each tested algorithms), each trial has a 5% chance of generating missing data

(and being blacklisted). The target is considered as being reached when the distance

between gripper and the target is lower than 50 pixels. In total, the robot will

have to reach subsequently 20 targets in order to show that the knowledge transfer

abilities remains preserved after these additional changes of the algorithm. The

values of the parameters used for these experiments can be found in appendix C.4.

5.4.4.1 Results

In a first experiment, we investigated the benefits of adapting the priors. We consid-

ered 3 variants of the State-based BO algorithm: (1) without priors, (2) with raw,

not adapted priors (using the “raw” information provided by the forward model) and

(3) with adapted priors (the information from the forward model is autonomously

adapted thanks to transformation matrix in the model). The influence of these

different priors is characterized by the number of samples (or trials) required to

reach the first target. In this experiment the notion of knowledge transfer is not

taken into account because we are considering only one target. Consequently, the

compared algorithms will show the same results as their variant using knowledge

transfer.

Contrary to our expectations, the raw prior does not hurt the learning performances

of our algorithm (see Fig. 5.8). It is even the opposite, as the median number of

trials required to reach the target is lower with the raw priors than with no priors at

all (14 trials with raw priors versus 21 trials without priors), but this difference is not
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Figure 5.8: The benefits of autonomously adapting the prior knowledge. The

number of trials required to reach one target is depicted according to the use of

priors that may be misleading. When the algorithm has the ability to autonomously

adapt it priors, the target is reached almost every time in one shot thanks to the

initial 10 random samples of the initialization procedure (not counted in the number

of trial) that were enough to infer the right transformation of the priors.

statistically significant (p-value = 0.08). Moreover, the success rate is better when

the algorithm does not use any prior (99.5% without priors version 95.5 with raw

priors). This phenomenon can likely be explained by the fact that the forward model

outputs values in meters that are relatively small (lower than 1 meter) compared

to the observations in pixels (several hundreds of pixels) and that these different

sources of information are added regardless their units. Consequently, after the 10

random trials that initialize the model, the prior is completely neglected and is just

considered as noise by the model. It is likely that in the opposite situation, i.e., if

the priors are several orders of magnitude larger than the observations, the learning

performance may be dramatically affected.

When the algorithm is able to autonomously adapt its prior according to the obser-

vations, the actual benefits of the prior are revealed: the priors allow the algorithm

to reach each target in almost one trial (median in 1 trial, 5th and 95th percentiles

in [1; 3] trials). The fact that the robot is able to reach the first target in one trial

shows that the algorithm is able to autonomously infer the correct transformation

to adapt the priors in less than the 10 first random trials (performed during the

initialization of the model, and not counted in the total of required samples plotted

in the figures, see section 5.2.5.2).

When the robot has to reach several targets sequentially, the results are similar

(see Fig. 5.9). Like in the previous experiment, as long as the robot remains intact,

the priors allow the algorithm to reach each target in almost one trial (see Fig.
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Figure 5.9: The benefits of using prior information. (A) Cumulative number of

trials required by the intact robot to reach 20 targets. (B) In this case, the robot

is damaged in four different ways defined in (C). The middle, solid lines represent

medians, while the colored areas extend to the 25th and 75th percentiles. Both

experiments have been replicated 100 times for each of the 5 tested algorithms and

for each of the damage situations.
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5.9 A). The first target is reached in one trial (median in 1 [1; 3] trials) while

reaching subsequently the 20 targets requires 24 trials (24 [17.5; 30] trials). It

is possible to reach 20 targets in less than 20 trials when a movement previously

executed reached the currently considered target. In other words, when the robot

has reached a position, which is afterward specified as a target (or within the 50

pixels radius), the algorithm considers that it already achieved its task, because it

already has a solution for this task and move on the next target. This is why the

5th percentile of the results presented in this experiment needs only 17.5 trials to

reach 20 targets.

The benefits provided by the priors, when they are well adapted, are clearly visible

in this experiment. All the compared approaches, which do not use priors, require

significantly more time to reach the 20 targets, for example the State-based BO with

Transfer needs 202 trials in median (202 [136.5; 307] trials, p < 2.4× 10−34), which

is one order of magnitude slower than the same algorithm but with the adapted

priors.

When the robot is damaged, the task is more challenging for the variant using

prior knowledge. In this situation, the prior (here the forward model) is even more

inconsistent according to the reality, because, in addition to the orientation and

scale problem, the model does not take into account the damage. Nevertheless,

the results show that the priors remain useful, as the algorithm requires about 2.5

times less trials3 to reach the 20 targets than the same variant but without using

the priors (80 [44.4; 148.2] trials for State-based BO with Transfer and Priors versus

185 [105.4; 309.4] trials for State-based BO with Transfer, see Fig. 5.9 B).

With this additional feature that adapts the prior information to the acquired ob-

servations, our algorithm is able to maximize the utility of the priors and accomplish

its missions significantly faster. In our experiments, we showed that our algorithm

is able to turn a forward model initially useless into a valuable tool to reach the

targets instantaneously. We also showed that this new feature does not alter the

robot’s ability to deal with damage situations. In the following section, we will

show that these results hold with the physical robot its inherent inaccuracies.
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Algorithm 5 State-Based BO with Transfer, Priors and blacklists

for i < Ninit do

χ← Random

eval_solution(χ)

Optimization_Log-Likelihood

while Remains_target do

T← Select_target(State_space)

∀x ∈ Search_space:

P (f(x)|Pc1:t+1, x) = N (µt+1(x), σ2
t+1(x)I)

χ← arg maxx

(

− dist
(

T− µt+1(x)
)

+ κσt(x)

)

eval_solution(χ)

Optimization_Log-Likelihood

procedure eval_solution

Pc← state( physical_robot(C (χ)))

if Pc 6= ∅ then

χt+1 ← χ

Pct+1 ← Pc

else

bln+1 ← χ

5.5 Evaluation on the physical robot

5.5.1 The whole framework

In this last section, we evaluate the whole framework of our state-base BO with

Transfer, Priors and blacklists algorithm. This framework is summarized in the

pseudo-code 5. For reading convenience, the mathematical notation are reported

in the appendix D.3

Behind the term P (f(x)|Pc1:t+1, x), the algorithm gathers all the features presented

previously: (1) the state-base BO defined in the equation 5.11 and which allows the

algorithms to transfer knowledge from the previous tasks to the following ones, (2)

the use of blacklists of samples introduced in equation 5.18 and (3) the automatic

adaptation of the priors that can be found in equation 5.21. The optimization

of the log-likelihood follows the equations 5.17 for the kernel’s hyper-parameters

3It is important to mention that in this experiment, contrary to those presented in the previous

chapter, the priors do not reduce the search space. This explains why the reduction of the number

of trials decreases “modestly” (2.5 times) in this experiment while it decreased by an order of

magnitude in the previous chapter. We decided to use the forward model as a prior knowledge

instead of a behavior-performance map because the very fast adaptation abilities provided by the

maps make the benefits provided by the new features introduced in this chapter less visible. For

example, the number of trials decreases from 6 to 4 after transferring knowledge. Is it thanks to

the knowledge transfer that it decreased or just because of the variability of the results (especially

important in these experiments)? The higher difficulty of these experiments, which do not use

behavior-performance maps, allows the results to be unambiguous.



5.5. Evaluation on the physical robot 181

and 5.22 for the coefficient of the transformation matrix (the matrix is visible in

appendix D.3). The values of the parameters used for the experiments presented in

this chapter can be found in appendix C.4.

The Remains_target function returns true while a target remains to be reached

and the Select_Target selects one target in the remaining ones. This last function is

called at the beginning of every iterations, which allows the algorithm to switch his

current target as soon as need, depending on external constraints. In our experiment

the robot changes his target only after reaching its current one. However, we can

imagine situations in which the robot may need to change its target more frequently.

For example, a robot learning to walk in every direction, have to change its current

target (i.e. walking direction) according on appearance of obstacles, even if it did

not managed to completely reach its target yet. Such strategy is fully possible with

the algorithm presented in this chapter, and may, for example, allow robots to learn

to walk and in the same time avoid obstacles, and thus removes the obligation to

replace the robot at its initial position between each trial, like it is customary in

the literature.

5.5.2 Experimental setup

For this last experimental validation, we apply our algorithm on the physical robot

arm (see Appendix B.2) and evaluate its performance on the same task than the

previous experiments performed in simulation (reaching subsequently 20 targets).

The reality through the looseness of the robot’s joints, the inaccuracies of the video

camera and the different light conditions adds another layer of difficulty in the

task. In this situation, the blacklists of samples are particularly useful, as several

situations make it impossible to assess the location of the laser point. For example,

the laser point can be outside the camera’s range (see Fig. 5.10 A-B) or hidden by

an obstacle (here a structure pillar, see Fig. 5.10 C-D). Moreover, light conditions

may affect the tracking system, like when the laser point is in the shadow of the

arm (the celling lamp is placed on the top of the setup).

Another reason that makes it impossible to evaluate samples is the sanity check of

auto-collisions that may fail. Before executing any behavior on the physical robot,

a sanity check is launched to verify, in simulation, that no auto-collisions occur (For

this sanity check, the simulation takes into account the undergoing damage4). If the

sanity check fails, the behavior is not tested on the physical robot and the sample

is blacklisted. This procedure is required to be able to perform several replicates of

the experiment without repeatedly worn the robot. The artificial 5% chance that a

sample becomes blacklisted, used in the simulated experiments, is disabled in this

experiment because there are already too many reasons for blacklisting samples.

In this real context, the ability to adapt the prior is also mandatory to be able

to deal with the different sources of information: the targets are defined in the

4While not realistic, this sanity check is useful to perform a large number of replicates and to

prevent to worn out or break the robot during the experiments. Moreover, the algorithm could

work identically without this sanity check.
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Webcam viewOverview

A B

C D

Figure 5.10: Two examples of situation where the laser point is not visible. (A-B)

The laser point is too close from the camera and consequently outside the camera’s

range. (C-D) The laser point is hidden by the pillar of the structure.

Figure 5.11: The reachable space of the robot, in white, has been determined by

recording the position of the laser point when moving the arm while it is completely

unfold. The white region has then been contracted by 10 pixels to remove points

that may be too difficult to be reached (the border of the reachable space). Based on

the resulting reachable area, depicted in white, a k-meansSeber (1984) algorithm has

been used to evenly spread 20 targets. The order of the target has been generated

randomly and is displayed in this picture.
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Figure 5.12: Learning to sequentially reach several targets with a real robot. The

total number of trials required to reach 20 targets is depicted. For the intact robot,

the same algorithm is launched but without prior knowledge in order to show the

benefits it provides. The algorithm is also tested on four damage conditions.

camera’s frame (in pixel), the position of the laser is also assessed in the camera’s

frame (in pixel) but the forward model, used as a prior, is based on the robot’s

base frame and computed in meters (like in the previous experiments). Note that

in this experiment, the camera is placed in an arbitrary position and orientation

that allow it to perceive the entire scene.

We apply the State-based BO with Transfer and Priors on the physical robot and

we consider both the intact robot and the four damage situations (see Fig. 5.9 C).

The experiment is replicated 10 times per situation. For comparison, the State-

base BO with Transfer (but without Priors) is also tested on the physical robot.

This reference experiment is only tested on the intact robot because it requires

a significantly larger number of trials and consequently a larger amount of time

to reach the 20 targets. We conducted 10 replicates of this reference experiment.

Because the number of replicates is lower than in the previous experiments (it is

materially challenging to perform more replicates), the targets are predefined and

always the same for all the runs (see Fig. 5.11). This removes the variability

coming from the random selection of the targets, but imposes relation between the

different targets. For example, reaching the second target after the first one will

be particularly easy (see Fig. 5.11), while the third one will probably not benefit

from any knowledge acquired previously. In order to perform several replicates, the

radius of the targets has been extended to 75 pixels (corresponding approximately

to 5 centimeters) to slightly reduce the learning time.
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5.5.3 Experimental Results

The experimental results (see Fig. 5.12) show that the proposed algorithm allows

the robot to quickly reach the 20 targets, even when damaged. When the robot is

intact and uses its forward model as a prior, it reaches the 20 targets in about 55

trials (54.5 [33; 107] trials corresponding to 4.9 [2.9; 12.7] minutes) while without

the prior it requires about 170 trials (171 [126; 288] trials and 29.9 [14.0, 170.8]

minutes). Like in the previous experiment in simulation, the use of prior allows the

robot to divide by about three the number of required trials. By contrast, it requires

twice more trials to reach the 20 targets in reality than in simulation (medians: 24

versus 54.5 trials). This comes from the differences between the theoretical forward

model and real robot (i.e., reality gap problem, Koos et al. (2013b)). While in

simulation, the virtual robot and the forward model match perfectly, the looseness

of the robot and the inaccuracies of the cameras make the physical system notably

different from the forward model.

When the robot is damaged, the number of trials increases modestly (median over

the 4 damage conditions: 84 trials versus 54.5 trials when intact). Globally, when

the robot is damaged, it requires in median 8.1 [ 5.0; 24.2] minutes to adapt to the

situation and reach the 20 targets. The situations with blocked motor seems to be

more challenging than the other damage conditions, regardless the location of the

damage. It is likely that the algorithm uses its ability to transform its priors in

order to integrate the permanent offset. It also worth noting that even when the

robot is damaged, the algorithm with priors reaches the 20 targets faster than the

algorithm that does not use the priors on the intact robot. Globally, the robot needs

in average between 55 and 85 trials to reach the 20 targets while being damaged or

just to cope with the reality gap problem.

The results present two outliers that may come from a problem during the learning

process. For example, if a motor is blocked or overheats, it switches to a security

mode and stops functioning. Such problem that occurs during the learning process

is dramatic because it makes the previous observation outdated, as they do not

consider the current condition of the robot. A possible way to mitigate this problem

could be add a time stamp on the samples, which can then be taken into account

when computing the covariance matrix. With this information about the acquisition

time, recent samples will more strongly influence the model than older ones.

5.6 Conclusion

In this chapter we presented improvements that allow the intelligent trial and error

algorithm (mainly its adaptation step, using the Model-based Bayesian Optimiza-

tion) to be applied to more complex scenarios or to cope with additional problems.

In particular we described how Gaussian Processes can be extended to model multi-

channel functions and we propose to define the tasks (or the targets) in the state-

space of the robot instead of using score or performance functions. This allows

the algorithm to transfer knowledge between different tasks. While this technique
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has no impact on the learning performance when considering a single task, the

knowledge transfer ability that it provides reduced the time required to achieve the

subsequent tasks. We also proposed a way to deal with solutions that cannot be

tested on the system, for different reasons like when it is impossible to measure the

performance or when a sanity check fails and prevents from executing the solution

on the robot. These situations generate missing data that are often a conundrum

when porting a learning algorithm on a physical robot and which can have dramatic

effects on the algorithms’ performance. We proposed to use blacklists of samples

to make Gaussian Processes robust to these missing data. This technique does

not affect the learning performances compared to situations without missing data

and is computationally efficient. Finally, we presented how to add more flexibility

when using prior information. The previous chapter suggested that using such prior

knowledge is one of the keys to accelerate learning processes. Unfortunately, these

priors are not always provided in a form that maximizes the amount of information

that can be exploited. In this chapter we saw several examples of situation that

turn priors into misleading information, like scale factor problems. The proposed

technique allows the algorithm to automatically adapt the priors according to its

observations in order to maximize the potential information that can be exploited.

In the worst situations, the algorithm can also autonomously disregard its priors

and start learning from scratch.

We individually evaluated the benefits of all these features in simulation and applied

the algorithm with all these new features on a physical robotic arm that has to

subsequently reach several targets. All combined, these methods allow the system

to be very flexible and adaptive: without any calibration or configuration, the

robot is able to reach targets defined in the camera image, which is placed in an

arbitrary position. The robot autonomously adapts its prior information about

itself (forward model) and after a few trials reaches the first target. It then uses its

previous experiences to reach the subsequent targets faster until reaching them in

only one shot.

The presented algorithm is not specific to one kind of robot and it makes minimal

assumptions about its morphology or its capabilities. Consequently, the algorithm

can be employed with many different types of robot and may make them easier

to be deployed without requiring extensive calibrations or expensive repairs after

being damaged. For example, this algorithm might allow our hexapod robot to

adapt to damage situations while walking in every direction.
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Throughout this manuscript, we introduced three main concepts that allow robots

to adapt quickly in various situations thanks to learning algorithms that are both

fast and creative:

• Using simulations to learn faster: combining simulations and tests on physical

robots is an efficient way to reduce the time required to learn a behavior.

• Gathering collection of solutions into Behavioral Repertoires: the creativity of

evolutionary algorithms can be encapsulated in Behavioral Repertoires, which

gather large collections of both high performing and diverse solutions that are

sorted according to their behavior (via the behavioral descriptor).

• Exploring the information provided by Behavioral Repertoires: Bayesian Op-

timization (with the extensions introduced in the previous chapter) can em-

ploy the information contained in the behavioral repertoire to rapidly explore

it and find an adequate behavior according to the situation.

In the following sections, we will discuss the limitations of each of these concepts

and give examples of situations in which our methods may be difficult to apply.

We will propose improvements that may mitigate these limitations and potentially

increase the abilities of robots. In particular, we will show that several of the

concepts presented in this manuscript and some of the improvements that we will

propose share similarities with observations made in neuroscience about the learning

processes that happen in mammals’ brain. We will also highlight the links between

our approaches and the field of developmental robotics, which takes inspiration

from the cognitive development of infants and aims to allow robots to autonomously

develop their own representations, to discover their environment and to learn new

skills to be able to face new situations (Lungarella et al., 2003).
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6.1 Using simulations to learn faster

Our experiments show that using the simulation is a promising approach to speed up

learning processes. Indeed, behaviors can be evaluated faster in simulation than in

reality and several behaviors can be evaluated in parallel, which is impossible when a

single robot is available. However, behaviors found in simulation often do not work

as expected in reality because learning (evolutionary) algorithms tend to exploit

inaccuracies of the simulation to artificially boost their performance (Jakobi et al.,

1995; Boeing and Braunl, 2012; Koos et al., 2013b). Across all this manuscript,

we hypothesize that there exist behaviors that work similarly in simulation and in

reality, even when the simulation and the reality differ significantly, like in damage

conditions. Our experimental results illustrate that this hypothesis holds in at

least all the scenarios we tested (see experiments in section 4.3.3.1). Nonetheless, it

may exist situations in which this hypothesis is wrong. For example, manipulation

tasks can be difficult to model in simulation because they often involve complex

interactions. Another example is when the simulated environment is very different

from the real one. Typically, it is unlikely to find a behavior that would allow a

robot to climb stairs in reality if the simulation only relies on a flat ground.

To address this problem, we can imagine to allow the robot to progressively create,

refine or enhance the simulator based on its experience in order to make it as close as

possible to the reality. The algorithm presented by Bongard et al. (2006) (see section

4.1.2), which uses simple tests on the physical robot to infer its morphology, is a

method that can typically be used to improve the simulator. Based on the behaviors

executed during the robot’s mission and corresponding observations, the algorithm

can modify the simulation parameters (e.g., the robot’s virtual morphology, the

parameters of the virtual environment) to reproduce the observations in simulation

or define the actions that have to be performed the following day to remove the

ambiguities. With this updated self-model, the robot may more efficiently continue

its mission and gather additional data that will be used afterward to further improve

the self-model.

The algorithm presented by Schmidt and Lipson (2009) is another example of poten-

tially useful algorithm that can be used to create a simulator from scratch based on

the robot’s experience. This approach uses a multi-objective genetic programming

algorithm to infer the equations that explain the observed data. The algorithm

outputs a set of equations that correspond to different trade-offs between simplicity

and accuracy of the equations. For example, it has been used to infer the equations

of physics that drive the movements of a double pendulum. A similar approach can

be used to let robots build their own simulators by discovering the laws of physics

and the consequences of their actions. Nonetheless, while it is possible to automat-

ically designing a simulator based on noisy observations for simple systems like a

double pendulum, doing the same with complex systems like legged or humanoid

robots remains a serious challenge (Zagal et al., 2009).

The concept of replaying the robot’s actions in simulation is similar to what seems

to occur in the brain of mammals during sleep periods. Indeed, it has been observed
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that some neural activities that occurred during awake periods are replayed during

the night (Wilson and McNaughton, 1994; Peyrache et al., 2009). For example,

it has been observed with some birds (the Zebra finch) that the pattern of neural

activity produced while the bird is awake and singing, is reproduced while the

bird is sleeping (Dave and Margoliash, 2000). As pointed out by Derégnaucourt

et al. (2005), this observation “suggests the possibility of song rehearsal during

sleep”. The same observation has been made with place cells in rats’ brain. These

cells, which fire depending on the rat’s location (O’keefe and Nadel, 1978; Moser

et al., 2008), produce the same pattern of activity during spatial experiments and

during the following sleep periods (Wilson and McNaughton, 1994; Skaggs and

McNaughton, 1996a; Louie and Wilson, 2001; Peyrache et al., 2009; de Lavilléon

et al., 2015). These experiments suggests that rats are replaying during their dream

the path they followed when they were awake.

Moreover, a large number of studies revealed evidences that these replays during

sleep periods play an important role in the developmental learning of both ani-

mals and humans (Derégnaucourt et al., 2005; Peigneux et al., 2004; Maquet et al.,

2000; Gais and Born, 2004; Hobson and Pace-Schott, 2002). For example, Derég-

naucourt et al. (2005) show that a deterioration in structure of the zebra Finch’s

song happens after night-sleep, and is followed by a rapid improvement after intense

morning singing with a significant variation in the song structure. In de Lavilléon

et al. (2015), the authors artificially produced rewarding stimulation in mice’s brain

during activity replays of place cells in order to create artificial memories. The pro-

duced place-reward association incited the mice to move to this location the follow

day even if they never received rewards in reality. All these studies suggest that

replaying actions or events during off-line periods (like dreams) appear to be impor-

tant parts of the learning process of animals and humans. We can thus imagine that

similar strategies may be instrumental to improve the cognitive abilities of robots.

It is interesting to note that replays of neural activities occur not only during sleep

periods, but also during awake periods: before the task (Diba and Buzsáki, 2007;

Dragoi and Tonegawa, 2011) and after the task (Foster and Wilson, 2006). While

re-activations after the experience (for example, spatial experience) are supposed to

play a role in the evaluation the behaviors, like in a reinforcement learning process,

the pre-activations may suggest that the brain is “simulating” the states the animal

may encounter in order to improve its anticipation or planning abilities (Diba and

Buzsáki, 2007; Ferbinteanu and Shapiro, 2003; Jeannerod, 2001). There are also

several observations that suggest that the brain is using neural simulation in order

to “provide the self with information on the feasibility and the meaning of potential

actions” (Jeannerod, 2001). It has been observed that these replays or pre-plays are

compressed in time by a factor up to 6 or 7 (Euston et al., 2007; Diba and Buzsáki,

2007; Skaggs and McNaughton, 1996b). These properties shares similarities with

our algorithms (Both the T-Resilience and the Intelligent Trial and Error) that first

evaluate solutions in simulation before executing them in reality and take advantage

of the time compression provided by the simulation.
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6.2 Gathering collections of solution into Behavioral

Repertoires

In the chapter 4, we showed that the dimensionality reduction and the information

provided by the behavior-performance maps are the two key factors that allow our

robots to adapt quickly. We presented two algorithms that generate such behavioral

repertoires: TBR-Evolution and MAP-Elites (see chapter 3). These two algorithms

require the users to define the dimensions of the behavioral space in which he

is interested in seeing variation in. This choice is critical because it influences

the types of solution that can be discovered by the algorithms. For example, in

a first experiment, we defined the behavioral descriptors as the X/Y position of

the robot at the end of its movement. The behavioral repertoires produced with

this configuration then contained turning behaviors, as turning allows the robot to

reach new locations (see section 3.3.2.1). In a second experiment, we defined the

behavioral descriptor as the proportion of time that each leg touches the ground, and

in this case, the resulting repertoires contained behaviors that walk in a straight line

(see section 3.3.2.2). The performance function also plays an important role in the

types of solution produced by the algorithms. For instance, the walking behaviors

that walk on a straight line, mainly emerged because the performance function

promoted behaviors with a high forward walking speed. Even if the algorithms that

employ the behavioral repertoires (like the Intelligent trial and Error) can be robust

to the different behavioral descriptors (see experiments in section 4.3.3.5), selecting

the most appropriate behavioral descriptor or performance function remains an

open question or requires knowledge from an expert.

While our concept of behavioral repertoires comes from robotics (i.e., how to learn

several actions, like walking in every direction, see chapter 3), we can note that some

evidences suggest that animals may have a form of behavioral repertoire encoded

brain into their brain. For example, it has been shown (Graziano, 2006; Graziano

and Aflalo, 2007) that primates use different regions of their cortex for different

primitive actions: the excitation of different areas of a monkey’s brain makes the

animal execute different primitive actions, like grasping or hand-mouth interactions.

Moreover, in Graziano and Aflalo (2007), the authors underline that “One way to

describe the topography of the cerebral cortex is that ‘like attracts like.’The cortex is

organized to maximize nearest neighbor similarity or local continuity.” These two

properties are similar to those of behavioral repertoires, which contain several low-

level behaviors (that can be regarded as “primitive”) that are arranged according to

their similarities (behaviors with similar behavioral descriptors are closely located

in the repertoire).

From a higher level perspective, we can observe that the way our algorithms build

behavioral repertoires shares similarities with what happen in the development of

infants. In order to discover the relation between their movements and their percep-

tions, infants perform repeatedly analogous behaviors. This natural developmental

process is called “body babbling”. In Meltzoff and Moore (1997), the authors explain
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“what is acquired through body babbling is a mapping between movements and the

organ-relation end states that are attained.” They define organ-relation end states

as the relative position of the organs that can be can be monitored via propriocep-

tion. The authors illustrate this notion with the example of infants that perform

vocal babbling to learn the mapping between the movement of their tongue, mouth

and lips to the auditory consequences.

A direct parallel can be drawn between Behavioral Repertoires and body babbling.

The mapping between movements and perceptions acquired through body babbling

is analogous to a Behavioral Repertoires, which maps the parameter values (that

define the performed movements) to the corresponding behavioral descriptors (that

define the corresponding perceptions). The way both of these mapping are gener-

ated is also similar. The behavioral repertoires and infants’ internal mapping are

both construct by performing random movements.

The concept of body babbling has been particularly studied in the field of devel-

opmental robotics (Lungarella et al., 2003; Demiris and Dearden, 2005; Saegusa

et al., 2009; Baranes and Oudeyer, 2013; Rolf et al., 2010). The presumed central

role of body babbling in the development of infants makes it a promising tool for

developmental robotics. In particular, it has been recently opposed two models of

babbling: (1) motor babbling and (2) goal babbling. The main difference between

these two concepts is that instead of randomly exploring the motor space, like in

motor babbling, goal babbling focuses the exploration around particular goals (de-

fined in the goal space). Several studies showed evidences that the body babbling

of infants is likely goal-directed (Rolf et al., 2010; Von Hofsten, 2004).

Goal-directed babbling has been successfully implemented in robotics (Baranes and

Oudeyer, 2013; Rolf et al., 2010), typically to allow robotic arms to autonomously

discover their inverse kinematic model. For example, the “SAGG-Random” algo-

rithm1 (for Self-Adaptive Goal Generation) (Baranes and Oudeyer, 2013) randomly

selects a goal in the goal space and the robot uses a progressively built model to

reach the goal. Each failed attempt is used to refine the model and allows to the

robot to become more accurate. Once the goal is reached, another goal is selected

and the process repeats. The objective of the algorithm is to build a model that

allows the robotic arm to reach any possible point of its reachable space from any

initial condition.

In order to explore the goal space, the robot has to know what is a “goal” among

its sensory space. Indeed, the sensory space of often larger than the goal space,

which makes the link between goals and observations nontrivial. For example, in

reaching tasks with a robotic arm, the robot needs to know that a goal is defined by

the position of the target, while it can perceive the angular positions of his joints,

the applied torques and potentially much other information. The constraint of

1This algorithm is a variant of the SAGG-Robust Intelligent Adaptive Curiosity. In this al-

gorithm, the goal, instead of being randomly selected, is selected via a heuristic (an artificial

curiosity) that select the goal that is expected to maximize the learning progress of the robot. In

this discussion we consider only the “random” variant because this algorithm is relatively similar

to MAP-Elites.
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pre-defining the goal space contrasts with the objectives of developmental robotics,

as this field aims to allow robots to discover on their own their abilities and in

particular the main structures present in their perception.

Moreover, a goal space is likely to contain goals that are unrealizable, like the points

outside the reachable space of the robot (Baranes and Oudeyer, 2013). Such goals

may mislead goal-babbling approaches, which may spend some time trying to reach

these impossible targets. The probability of selecting an unrealistic goal is likely to

increase with the size of the goal or sensory space. For example, if the sensory space

is the image of the robot’s camera, then the dimensionality of the sensory space is

equal to the number of pixels times the number of color that each pixel can display.

Randomly selecting a goal in such sensory space corresponds to randomly selecting

the color of each pixel. It is then impossible for a robot to find a movement that

generates this type of perception. This is a typical example of a goal space that

cannot be handled with traditional goal-babbling approaches without providing a

noticeable amount of prior-knowledge (i.e., how to extract goals from the images).

While both TBR-Evolution and MAP-Elites can be considered as body-babbling

approaches, they cannot be categorized neither as a motor babbling nor as goal

babbling approach but rather as a combination of these two types of approach.

The exploration of the search space, while performed in the parameter/motor space

(only the parameter values are altered by the algorithms), is focused on particular

regions of the behavioral or goal space. TBR-Evolution focuses on novel behav-

iors and MAP-Elites focuses on elites ones (those that are both diverse and high-

performing). While the notion of behavioral descriptor is related to the notion of

goal space (because both of them are subspaces of the sensory space), our algo-

rithms does not rely on randomly generated goals but rather on descriptors they

actually observed. Thanks to this property, both of the TBR-Evolution algorithm

and MAP-Elites can deal with misleading or large goal spaces. In our previous

example of the camera image, our algorithms will focus on behaviors that generate

images considered as enough interesting to be added into the repertoires (because

they are novel or an elite). These behaviors will then be modified in order to produce

potentially interesting variations of these images and thus progressively explore the

space of the possible images. These properties show that Behavioral Repertoires

and the algorithms used to generate them could be promising tools to study the

body babbling in developmental robotics

The ability of TBR-Evolution to focus on novel behaviors is also related to the

concept of intrinsic motivation. In Oudeyer et al. (2007), the authors defined an

intrinsic motivation as “the maintenance of an abstract dynamic cognitive variable”.

The novelty value of each behavior, computed thanks to the internal archive, is an

abstract variable that determines on which regions of the search space the algo-

rithm will focus. In this sense, the novelty search is similar to an artificial curiosity

because it fosters the algorithm to discover novel behaviors. The definition of ar-

tificial curiosity proposed by Oudeyer et al. (2007) states that it aims to maintain

at a maximal level the learning progress of the argent. In order to continuously

improve his knowledge, the robot is fostered to explore new situations. While the
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implementations of the Intelligent Adaptive Curiosity (introduced by Oudeyer et al.

(2007)) and the Novelty Search (Lehman and Stanley, 2011a) differ, we can observe

that both of them follow the definition of artificial curiosity. In addition to this link

between the Novelty Search and the artificial curiosity, the different similarities be-

tween our methods and developmental robotics that we highlighted in this section,

like the generation of behavioral repertoire and body babbling, suggest that evolu-

tionary computation can provide new concepts of tools to developmental robotics.

Such cross-fertilisation may be beneficial for both of these two research fields that

have some goals in common (e.g., automatically creating autonomous agents or

exploring unknown sensory-motor spaces, Lungarella et al. (2003); Lehman and

Stanley (2011b); Delarboulas et al. (2010); Baranes and Oudeyer (2013)).

6.3 Exploring the information provided by Behavioral

Repertoires

We saw in this manuscript that considering the behavioral repertoires as a new

search space is an effective method to reduce the number of required trials to learn a

behavior (see chapter 4 and 5). However, this approach imposes a strong hypothesis:

the solution of the problem should be in the repertoire, otherwise it cannot be found

by the algorithm. While we faced only one situation during our experiments in

which the solution was not in the repertoire (see section 4.3.3.2), this problem may

become more frequent if the behavioral space is not well chosen and if it does not

contain diverse enough solutions. This problem is another illustration of the fact

that the choice of the behavioral descriptors is critical.

In order to define the right behavioral descriptors, a typical method consists in

foreseeing the different situations the robot may have to face or the different be-

haviors it may need and to select a behavioral descriptor that embraces a large

variety of behaviors that may be useful to the robot. This procedure is similar to

the traditional method employed in engineering for damage recovery (see chapter

4), which attempts to foresee the different ways a robot can become damaged in

order to pre-design the different contingency plans of the robot. Compared to this

traditional approach, the advantage of behavioral repertoire-based adaptation is

that it works on an higher level, which makes easier to find a good solution that

works on a large variety of situation. Indeed, the Intelligent Trial and Error does

not require to precisely anticipate every situation the robot may face, but rather to

define, via the behavioral descriptors, a family of behaviors that is enough diverse

to contain promising solutions.

While we demonstrated that our approach works for a large variety of situations

and robots, we can imagine to mitigate this limitation with the same alternative

as the one we proposed to address the challenge of anticipating every situations:

we can let robots learn on their own the most adequate behavioral descriptors

based on their own experience. For example, and in addition to updating and

improving the simulation as suggested in section 6.1, the robot can employ the
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information gathered during the beginning of its mission in order to infer which are

the behavioral dimensions that provide most of potentially useful behaviors and then

re-generating or updating the repertoires according to this new behavioral space.

For example, the algorithm can select the behavioral descriptors that produce the

most diverse and high-performing collection of behaviors, or those that generate

the largest diversity of behaviors.

The generation of the new behavioral repertoires can be executed when the robot

is not active, for example during the night, or deported on a remote computing

facilities (on the cloud). Once behavioral repertoire generated, for instance the

day after, the robots may benefit from their improved source of knowledge to more

efficiently carry on their mission and continue to gather data that will be used the

following night. We can imagine that, via such alternation of active and passive

periods that improve both the simulators and the behavioral repertoires, the robots

can progressively become more robust and discover new behaviors or abilities.

This approach of day and night cycles shares several similarities with the restruc-

turings that occur during mammals’ dreams. As mentioned in beginning of this

discussion, actions or events experienced during the day are replayed in the brain

during the night, but dreams appear to be an important component of how the

memory in general, and motor skill in particular, are consolidated, structured and

re-structured (Gais and Born, 2004; Stickgold et al., 2001; Stickgold, 2005). In

particular, it has been shown that dreams are instrumental to find solutions to

problems, as commonly expressed by the concept of “sleeping on a problem” (Stick-

gold, 2005). For example, subjects are more likely to find a better solution to

cognitive, visual or motor tasks after sleep than after wakefulness (Wagner et al.,

2004; Stickgold et al., 2000; Walker et al., 2002; Huber et al., 2004). In the same

vein as bio-inspired robotics (Pfeifer et al., 2007), implementing dream-like pro-

cesses in robots that restructure their experience may allow them to become more

robust, effective and autonomous.

This concept of dreaming robots will be investigate in a European project that

started recently and which is named “DREAM: Deferred Restructuring of Experi-

ence in Autonomous Machines”. The goal of this project is to combine tools from

evolutionary computation or machine learning (like deep learning, LeCun et al.

(2015)) with observations in neuroscience or in Psychology in order to design devel-

opmental learning approach that takes inspiration from the cognitive development

of infants.
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Conclusion

Throughout this manuscript, we defined and evaluated a set of algorithms to make

robots able to deal with unforeseen situations (like a mechanical damage) by learn-

ing on their own an adequate solution. To achieve this objective, the proposed

learning algorithms attempt to combine both speed and creativity. These two prop-

erties are important because quickly finding a solution is critical in many situations,

for instance in search and rescue missions, and creatively discovering new solutions

allow the system to deal with truly unexpected situations.

In our review of the literature (chapter 2), we considered the Evolutionary Al-

gorithms and the Policy Search algorithms, which are the two main families of

learning algorithms used to learn low-level behaviors (motor skills). Evolutionary

Algorithms are more creative than most of optimization algorithms because they

are able to deal with large search spaces without being severely affected by local

optimums. The main drawback of these algorithms is that they usually require

several hundreds or thousands of evaluations to find a solution, which makes them

difficult to apply on physical robots. Conversely, Policy Search algorithms are fast

learning algorithms that are able to find solutions in about a hundred evaluations.

Nonetheless, this learning speed is mainly explained by the fact that Policy Search

algorithms are local search approaches, which need a good initialization procedure

(for example, via an human demonstration) and usually converge toward the closest

local optimum. This constraint limits the application of Policy Search algorithms

on autonomous robots that operate on remote sites, as in such condition no teacher

is available. At the end of our review, we presented the Bayesian Optimization

algorithm, which is one of the fastest Policy Search algorithms. This algorithm is

less affected by local optimums and does not need particular initialization proce-

dure. However, it is limited to small search spaces, which prevents the algorithm

to explore large search spaces to find creative solutions.

In this thesis, we proposed new algorithms that allow to combine the advantages

of these three families of algorithm and to mitigate their limitations. With our

algorithms, robots are able to adapt to many damage conditions in less than two

minutes (which corresponds to a handful of evaluations) and to learn how to achieve

20 tasks in less than 10 minutes.

We first proposed to use Evolutionary Algorithms to generate collections of poten-

tially useful behaviors in simulation. We called these collections “Behavioral Reper-

toires”. The main advantage of these behavioral repertoires is that they project

large parameter search space (with several dozens of dimension) into small behav-
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ioral spaces (with less than a dozen of dimension). In addition of being smaller and

thus easier to explore, the behavioral space generated by the behavioral repertoires

contains exclusively behaviors that are predicted to be high performing. As a sum-

mary, behavioral repertoires encapsulate the creativity of evolutionary algorithm

into small behavioral spaces that gather large collections of both high performing

and diverse solutions that are sorted according to their behavior (via the behavioral

descriptor).

We presented two algorithms, TBR-Evolution and MAP-Elites, that can be em-

ployed to generate behavioral repertoires (chapter 3). These algorithms generate

several hundreds or thousands of behaviors without requiring learning each of them

separately (with independent learning processes). We illustrated the abilities of our

algorithms in two experiments. In the first experiment, our hexapod robot learned

to walk in every direction, while in the second experiment, it discovered a large va-

riety of ways to walk by differently using its legs. In both of these experiments, the

proposed algorithms have been able to find large varieties of behaviors. Typically,

MAP-Elites found 1270 controllers that allow the robot to walk in every direction

and at different speeds and more about 13 000 different ways to walk on a straight

line.

While the generation of these behavioral repertoires is only feasible in simulation,

as it requires evaluating several million solutions, we showed that the information

contained in these collections of behaviors are instrumental to allow robot to adapt

to unforeseen situations like mechanical damage. Indeed, combining information

coming from a simulator with tests on physical robots is an efficient way to reduce

the time required to learn a behavior.

In particular, we presented the Intelligent Trial and Error algorithm (chapter 4),

which explores the behavioral repertoire via a Bayesian Optimization algorithm.

The Intelligent Trial and Error algorithm takes advantage of the creative solutions

contained in the repertoires and of the speed of Bayesian Optimization to exploit

the information contained in the repertoire to find an adequate behavior according

to the situation. Our experiments revealed that the proposed algorithm allows

robots to adapt to a large variety of damage situations in less than 2 minutes

(i.e., less than 15 trials) while several hours are usually required with traditional

learning methods (see chapter 2 and section 4.1.1). We first tested the algorithm

on a physical hexapod robot injured in five different ways. For all these damages

situations, the robot has been able to adapt in less than 2 minutes, even in the most

difficult scenario in which it lost two legs. We then illustrated the fact that this

algorithm is not specific to one type of robot by testing its performance on a robotic

arm. The results showed that the robot is able to adapt in less than 30 seconds

to the 14 damage scenarios tested. Moreover, we demonstrated that this algorithm

can also be used to adapt to environmental changes, like sloping ground. Finally,

we proved that the algorithm is robust to the choice of behavioral descriptor used

to create the behavioral repertoires, even if this aspect is particularly critical, as it

defines the types of solutions that will be found by the algorithm.

In the last part of this manuscript (chapter 5), we proposed three extensions of the
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Intelligent Trial and Error algorithm to make it able to deal with three problems

that often affect robotic experiments: (1) transferring knowledge from one task to

faster learn the following ones, (2) dealing with solutions that cannot be evaluated

on the robot, which may hurt learning algorithms and (3) adapting prior information

that may be misleading, in order to maximize their potential utility.

We first proposed to extend the Gaussian Processes, used in the Bayesian Opti-

mization, to allow the algorithm to transfer knowledge across different tasks. This

extension is based on acquiring the observation directly in the state space of the

robot instead of in its rewards space, because a reward is less informative than

a whole state. These enhanced acquisitions allow the algorithm to generalize its

knowledge over the different tasks the robot has to achieve. We evaluated this

property with a robotic arm that has to reach subsequently 20 targets and the re-

sults revealed that the information gathered while reaching the first targets allows

the robot to reach almost instantaneously the last ones.

With our second extension, we considered the problem of solutions that cannot be

evaluated on the robot, which may happen for different reasons (see section 5.3)

and may hurt the learning performance of the algorithms. We proposed to use a

blacklist of solutions, which allows the algorithm to be robust to the missing data

by avoiding problematic solutions. Our experimental validation showed that thanks

to this simple and computationally effective extension, these missing data do not

affect the learning performance of the algorithm.

The last extension of the Intelligent Trial and Error algorithm that we presented

in this manuscript allows the algorithm to maximize the usefulness of prior infor-

mation, for example provided by behavioral repertoires. Exploiting this source of

knowledge is one of the keys that explain the results of the Intelligent Trial and

Error algorithm (see section 4.3.3.3). However, it may happen that the information

contained in the behavioral repertoire is not expressed in a form that is not mean-

ingful for the algorithm. We proposed to make the algorithm able to autonomously

adapt, via an homogeneous transformation, the information provided by the prior

to make it match with the acquired observations and thus to maximize its potential

utility. Our experiments showed that with less than 10 random evaluations, the

algorithm has been able to infer the right transformation between a forward model

(expressed in meter in the robot’s base frame) and the observations of the loca-

tion of the robot’s gripper (expressed in pixel in the camera’s based frame, which

is placed in an arbitrary position close to the robot). Thanks to the discovered

relation between the forward model and the observations, the robot successfully

reached his targets always in the first trial.

With all these extensions, the Intelligent Trial and Error is designed to be a generic

algorithm that can be applied to many types of robot, to adapt to unforeseen

situation, to learn a large variety of actions, and to simultaneously improve the

robot’s performance on several tasks.

While all the algorithms presented in this manuscript stem from an engineering

perspective, several parallels can be drawn between them and observations made

on the neural activities in mammal’s brain (chapter 6). In particular, several ob-
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servations, like the pre-plays or replays of neural activities, suggest that the brain

uses a “neural simulation” of actions to gather information that is used to improve

its abilities. This neural process is similar to the main concept of our algorithms,

which execute actions in simulation to gather knowledge about their consequences

and to rapidly select the most promising behaviors that has to be tested in reality.

Moreover, the links between our algorithms and the research field of developmental

robotics suggest that Evolutionary algorithms may provide useful tools to this do-

main. For example, the Intelligent Trial and Error can be a valuable tool to generate

a goal-oriented babbling, via the MAP-Elites algorithm. The information gathered

thanks to this babbling can then be exploited to produce complex behaviors or to

generate high-level knowledge, like object affordances from the robot’s interactions

its environment. The Intelligent Trial and Error algorithm is also a promising sub-

strate to design active/passive cycles, which can take inspiration from day and night

cycles that appear to play an important role in the developmental learning of both

animals and humans.
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Appendix A

The Hexapod Experiments

A.1 The Hexapod Robot

Physical robot The robot is a 6-legged robot with 3 degrees of freedom (DOFs)

per leg (see Fig. A.1). Each DOF is actuated by position-controlled servos (MX-28

Dynamixel actuators manufactured by Robotis). The first servo controls the hor-

izontal (front-back) orientation of the leg and the two others control its elevation.

An RGB-D camera (Xtion, from ASUS) is fixed on top of the robot. Its data are

used to estimate the forward displacement of the robot via an RGB-D SLAM algo-

rithm1 (Dryanovski et al., 2013) from the robot operating system (ROS) framework2

(Quigley et al., 2009).

Simulator The simulator is a dynamic physics simulation of the undamaged 6-

legged robot on flat ground (Fig. 4.10). We weighted each segment of the leg and

the body of the real robot, and we used the same masses for the simulations. The

simulator is based on the Open Dynamics Engine (ODE, http://www.ode.org).

A.2 The Hexapod Genotypes and Controllers

A.2.1 The first version (24 parameters)

Genotype and parametrized controller The genotype is a set of 24 parameter

values defining the angular position of each leg joint with a periodic function γ of

time t, parametrized by an amplitude α and a phase shift φ (Fig. 3.2, right):

γ(t, α, φ) = α · tanh (4 · sin (2 · π · (t + φ))) (A.1)

Angular positions are updated and sent to the servos every 30ms. The main feature

of this particular function is that the control signal is constant during a large portion

of each cycle, thus allowing the robot to stabilize itself. In order to keep the “tibia”

of each leg vertical, the control signal of the third servo is the opposite of the second

one. Consequently, positions sent to the ith leg are:

• γ(t, αi
1, φi

1) for servo 1;

• γ(t, αi
2, φi

2) for servos 2;

1http://wiki.ros.org/ccny_openni_launch
2http://www.ros.org

http://www.ode.org
http://wiki.ros.org/ccny_openni_launch
http://www.ros.org
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Figure A.1: The hexapod robot, which is used to evaluate the performance of the

algorithms proposed in this manuscript.

• −γ(t, αi
2, φi

2) for servos 3.

The 24 parameters can each have five different values (0, 0.25, 0.5, 0.75, 1) and with

their variations, numerous gaits are possible, from purely quadruped gaits to classic

tripod gaits.

This controller is designed to be as simple as possible so that we can show the

performance of proposed algorithm in a straightforward setup. Nevertheless, our

algorithms do not put any constraint on the type of controllers and many other

controllers are conceivable (e.g. bio-inspired central pattern generators like Sproe-

witz et al. (2008) or evolved neural networks like in (Yosinski et al., 2011; Clune

et al., 2011)).

Reference controller Our reference controller is a classic tripod gait (Siciliano

and Khatib, 2008; Wilson, 1966; Saranli et al., 2001; Schmitz et al., 2001; Ding

et al., 2010; Steingrube et al., 2010). It involves two tripods: legs 1-4-5 and legs 2-

3-5 (Fig. 4.10). This controller is designed to always keep the robot balanced on at

least one of these tripods. The walking gait is achieved by lifting one tripod, while

the other tripod pushes the robot forward (by shifting itself backward). The lifted

tripod is then placed forward in order to repeat the cycle with the other tripods.

This gait is static, fast, and similar to insect gaits (Wilson, 1966; Delcomyn, 1971).

Table SA.1 shows the 24 parameters of the reference controller. The amplitude

orientation parameters (αi1) are set to 1 to produce the fastest possible gait, while

the amplitude elevation parameters (αi2) are set to a small value (0.25) to keep

the gait stable. The phase elevation parameters (φi2) define two tripods: 0.25 for

legs 2-3-5; 0.75 for legs 1-4-5. To achieve a cyclic motion of the leg, the phase

orientation values (φi1) are chosen by subtracting 0.25 to the phase elevation values
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Table A.1: Parameters of the reference controller.

Leg number 1 2 3 4 5 6

First joint

αi1 1.00 1.00 1.00 1.00 1.00 1.00

φi1 0.00 0.00 0.50 0.50 0.00 0.00

Two last joints

αi2 0.25 0.25 0.25 0.25 0.25 0.25

φi2 0.75 0.25 0.25 0.75 0.75 0.25

(φi2), plus a 0.5 shift for legs 1-3-5, which are on the left side of the robot. The actual

speed of the reference controller is not important for the comparisons made in this

manuscript: it is simply intended as a reference and to show that the performance

of classic, hand-programmed gaits tend to fail when damage occurs.

Random variation of controller’s parameters For the genotype mutation,

each parameter value has a 10% chance of being changed to any value in the set of

possible values, with the new value chosen randomly from a uniform distribution

over the possible values. For all the experiments, the crossover is disabled.

A.2.2 The second version (36 parameters)

Genotype and parametrized controller The angular position of each degree

of freedom is governed by a periodic function γ parametrized by its amplitude α,

its phase φ, and its duty cycle τ (the duty cycle is the proportion of one period

in which the joint is in its higher position). The function is defined with a square

signal of frequency 1Hz, with amplitude α, and duty cycle τ . This signal is then

smoothed via a Gaussian filter in order to remove sharp transitions, and is then

shifted according to the phase φ.

Angular positions are sent to the servos every 30 ms. In order to keep the “tibia” of

each leg vertical, the control signal of the third servo is the opposite of the second

one. Consequently, angles sent to the ith leg are:

• γ(t, αi1 , φi1 , τi1) for DOF 1

• γ(t, αi2 , φi2 , τi2) for DOF 2

• −γ(t, αi2 , φi2 , τi2) for DOF 3

This controller makes the robot equivalent to a 12 DOF system, even though 18

motors are controlled.

There are 6 parameters for each leg (αi1 , αi2 , φi1 , φi2 , τi1 , τi2), therefore each

controller is fully described by 36 parameters. Each parameter can have one of these

possible values: 0, 0.05, 0.1, ... 0.95, 1. Different values for these 36 parameters

can produce numerous different gaits, from purely quadruped gaits to classic tripod

gaits.

This controller is designed to be simple enough to show the performance of the

algorithms in an intuitive setup. Nevertheless, our algorithm will work with any
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Table A.2: Parameters of the reference controller.

Leg number 1 2 3 4 5 6

First joint

αi1 1.00 1.00 1.00 1.00 1.00 1.00

φi1 0.00 0.00 0.50 0.50 0.00 0.00

τi1 0.5 0.5 0.5 0.5 0.5 0.5

Two last joints

αi2 0.25 0.25 0.25 0.25 0.25 0.25

φi2 0.75 0.25 0.25 0.75 0.75 0.25

τi2 0.5 0.5 0.5 0.5 0.5 0.5

type of controller, including bio-inspired central pattern generators (Sproewitz et al.,

2008) and evolved neural networks (Yosinski et al., 2011; Clune et al., 2011, 2009;

Lee et al., 2013).

Reference controller With this version of the controller, our reference controller

is the same as before but with all the duty cycle parameters (τi) set to 0.5 so

that the motors spend the same proportion of time in their two limit angles. The

corresponding parameters are given in Table A.1.

Random variation of controller’s parameters Each parameter of the con-

troller has a 5% chance of being changed to any value in the set of possible values,

with the new value chosen randomly from a uniform distribution over the possible

values.
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The Robotic Arm experiments

B.1 The Robotic Arm:

First setup

Video
Camera

Robot

Bin

8
Joints

Figure B.1: The second robotic arm experimental setup.

Physical Robot The physical robot is a planar robotic arm with 8 degrees of

freedom (Fig. B.1) and a 1-degree-of-freedom gripper. The robot has to release a

ball into a bin (a variant of the classic “pick and place” task in industrial robotics).

To assess the position of the gripper, a red cap, placed on top of the gripper, is

tracked with a video camera. The visual tracking is achieved with the “cmvision”

ROS package, which tracks colored blobs (http://wiki.ros.org/cmvision). The

transformation between the robot’s frame and the camera frame is known and

provided to the algorithm to compute the position of the cap in the robot’s frame.

The eight joints of the robot are actuated by position-controlled servos manufac-

tured by Dynamixel. To maximize the reliability of the the arm, the type of servo

is not the same for all the joints: heavy-duty servos are used near the base of the

robot and lighter ones are used for the end of the arm. The first joint, fixed to

the base, is moved by two MX-28 servos mounted in parallel. The second joint is

moved by an MX-64 servo. The 3 subsequent servos are single MX-28s, and the 3

remaining servos are AX-18s. All the robot’s joints are limited to a motion range

http://wiki.ros.org/cmvision


232 The Robotic Arm experiments

of ±π/2.

Simulator The generation of the behavior-performance map is made with a sim-

ulated robot in the same way as for the hexapod experiment. For consistency with

the simulated hexapod experiments, we used the dynamic (as opposed to kinematic)

version of the simulator, based on the ODE library. Any joint configuration that

resulted in the arm colliding with itself was not added to the map.

B.2 The Robotic Arm:

Second setup

Physical Robot In the second setup of the robotic arm experiments, the robot

is identical to the one used in the fist setup (see appendix B.1), only the position

of the camera differs. In this setup, the camera is placed in an arbitrary position

which is unknown by the robot and the algorithm. Moreover, instead of tracking

a red cap, like in the initial setup, the camera tracks the red dot of a laser pointer

placed on the tip of the gripper (Fig. B.2).

This setup has been imagined to release several assumption usually made in visual-

servoing works (Espiau et al., 1992) and to show that learning strategies can be used

for this kind of task. First, the transformation between the robot’s frame and the

camera frame is not provided. Second, the camera does not track the robot itself,

but only the red dot projected on the ground by the laser pointer. This projection

adds another unknown transformation that the algorithm as to deal with and which

can be sometimes not strictly linear (uneven ground, dot not visible). Moreover, no

assumption about the camera’s quality is made, meaning that only the position of

the dot at the end of the movement is assess and not its trajectory. This constraint

prevent the algorithms from using most of gradient based approaches.

Simulator The simulator used for this second setup is identical to the one used in

the fist setup (see appendix B.1). In order to simulate the projection of the camera

placed in an arbitrary position, 3 random angles (θr, θp, θy) are used to compute a

roll/pitch/yaw rotation matrix:

rot =







cθy ∗ cθp −sθy ∗ cθr + cθy ∗ sθp ∗ sθr sθy ∗ sθr + cθy ∗ sθp ∗ cθr

sθy ∗ cθp cθy ∗ cθr + sθy ∗ sθp ∗ sθr −cθy ∗ sθr + cθy ∗ sθp ∗ cθr

−sθp cθp ∗ sθr cθp ∗ cθr







(B.1)

Where c and s stands for cos() and sin() respectively. Because the laser dot is

projected on the ground, the z coordinate of its position is always equal to zero and

because a camera is also a projection of the depth component, the previous matrix

can be reduced to its first 2x2 block:

rot =

[

cos(θy) ∗ cos(θp) − sin(θy) ∗ cos(θr) + cos(θy) ∗ sin(θp) ∗ sin(θr)

sin(θy) ∗ cos(θp) cos(θy) ∗ cos(θr) + sin(θy) ∗ sin(θp) ∗ sin(θr)

]

(B.2)
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The meter/pixel conversion is achieved by adding a scale factor before the matrix

that convert 1 meter into 1500 pixels.

Camera’s View

Camera

Laser

Laser Point

Figure B.2: The second robotic arm experimental setup.

B.3 The Arm Controller

Parametrized controller The controller defines the target position for each

joint. The controller is thus parametrized by eight continuous values from 0 to

1 describing the angle of each joint, which is mapped to the the total motion range

of each joint of ±π/2. The 8 joints are activated simultaneously and are driven to

their target position by internal PID controllers.

We chose this simple control strategy to make the experiments easy to reproduce

and highlight the contribution of Intelligent Trial and Error for damage recovery.

More advanced control strategies, for instance visual servoing (Siciliano and Khatib,

2008), would be more realistic in a industrial environment, but they would have

made it hard to analyze the experimental results because both Intelligent Trial and

Error and the controller would compensate for damage at the same time.

Randomly varying the controller’s parameters Each parameter of the con-

troller (section “Parametrized controller”) has a 12.5% chance of being changed to

any value from 0 to 1, with the new value chosen from a polynomial distribution as

described on p. 124 of (Deb, 2000), with ηm = 10.0.





Appendix C

Parameters values used in the

experiments

C.1 TBR-Evolution experiments

• Parameters used for the experiments on the virtual robot:

– TBR-Evolution, Novelty Search and NS with Local Competition exper-

iments:

∗ Population size: 100 individuals

∗ Number of generations: 10 000

∗ Mutation rate: 10% on each parameters

∗ Crossover: disabled

∗ ρ: 0.10 m

∗ ρ variation: none

∗ k:15

– “Nearest” and “Orientation” control experiments:

∗ Population size : 100 individuals

∗ Number of generations : 50 0000 (100 * 500)

∗ Mutation rate : 10% on each parameters

∗ Crossover : disabled

• Parameters used for the experiments on the physical robot:

– TBR-Evolution and the control experiment:

∗ Population size: 100 individuals

∗ Number of generations: 3 000 generations

∗ Mutation: 10% on each parameters

∗ Crossover: disabled

∗ ρ: 0.10 m

∗ ρ variation: none

∗ Transfer period: 50 iterations

∗ τ : -0.05 m
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C.2 T-Resilience experiments

• Population size: 100 individuals

• Number of generations: 1000

• Transfer frequency: every 40 generations

• Evaluation duration: 3 seconds

• Transferability threshold: 0.1 meter

C.3 Intelligent Trial and Error experiments

C.3.1 Experiments with the hexapod robot

Main parameters of MAP-Elites

• parameters in controller: 36

• parameter values (controller): 0 to 1, with 0.05 increments

• size of behavioral space: 6

• possible behavioral descriptors: {0, 0.25, 0.5, 0.75, 1}

• iterations: 40 million

Main parameters of M-BOA

• σ2
noise: 0.001

• α: 0.9

• ρ: 0.4

• κ: 0.05

C.3.2 Experiments with the robotic arm

Main parameters of MAP-Elites

• parameters in controller: 8

• controller parameter values: 0 to 1 (continuous)

• dimensions in the behavioral space: 2

• simulated evaluations to create the behavior-performance map: 20 million
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Main parameters of M-BOA

• σ2
noise: 0.03

• ρ: 0.1

• κ: 0.3

C.4 State-Based BO with Transfer, Priors and black-

lists

For all the experiments presented in chapter 5, we used the RPROP algorithm

(Riedmiller and Braun, 1993) to optimize the log-likelihood of the model and the

CMAES algorithm (Hansen, 2006) to find the maximum in the acquisition function.

The values of the algorithm’s parameters are the same for all the experiments and

are defined as:

• Kernel noise parameter: σ2
noise = 0.01

• Max number of iteration per target: 150

• Performance threshold to reach a target: 50px

(changed to 75 for experiments in reality)

• Number of initial random samples: 10

• UCB exploration parameter: κ = 20

• Number of RPROP iterations : 300

• Number of RPROP restarts: 10
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Other

D.1 Appendix for the T-resilience experiments

D.1.1 Implementation details for reference experiments

D.1.1.1 Local search

Our implementation of the local search (algorithm 6) starts from a randomly gen-

erated initial controller. A random perturbation c′ is derived from the current best

controller c. The controller c′ is next tested on the robot for 3 seconds and the cor-

responding performance value Freal(c
′) is estimated with a SLAM algorithm using

the RGB-D camera. If c′ performs better than c, c is replaced by c′, else c is kept.

For both the stochastic local search and the policy gradient method (section

D.1.1.2), a random perturbation c′ from a controller c is obtained as follows:

• each parameter c′
j is obtained by adding to cj a random deviation δj , uni-

formely picked up in {−0.25, 0, 0.25};

• if c′
j is greater (resp. lower) than 1 (resp. 0), it takes the value 1 (resp. 0).

The process is iterated during 20 minutes to match the median duration of the

T-Resilience (Table D.1; variant time). For comparison, the best controller found

after 25 real tests is also kept (variant tests).

Algorithm 6 Stochastic local search (T real tests)

c← random controller

for i = 1→ T do

c′ ← random perturbation of c

if Freal(c
′) > Freal(c) then

c← c′

new controller: c

D.1.1.2 Policy gradient method

Our implementation of the policy gradient method is based on Kohl and Stone

(2004) (algorithm 7). It starts from a randomly generated controller c. At each

iteration, 15 random perturbations c′i from this controller are tested for 3 seconds

on the robot and their performance values are estimated with the SLAM algorithm,
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using the RGB-D camera. The number of random perturbations (15) is the same

as in (Kohl and Stone, 2004), in which only 12 parameters have to be found. For

each control parameter j, the average performance A+,j (resp. A or A−,j) of the

controllers whose parameter value c′i
j is greater than (resp. equal to or less than)

the value of cj is computed. If A is not greater than both A+,j and A−,j , the control

parameter cj is modified as follows:

• cj is increased by 0.25, if A+,j > A−,j and cj < 1;

• cj is decreased by 0.25, if A−,j > A+,j and cj > 0.

Once all the control parameters have been updated, the newly generated controller

c is used to start a new iteration of the algorithm.

The whole process is iterated 4 times (i.e. 60 real tests; variant tests) with a

median duration of 24 minutes to match the median duration of the T-Resilience

(Table D.1). For comparison, the best controller found after 2 iterations (i.e. 30

real tests; variant time) is also kept.

Algorithm 7 Policy gradient method (T × S real tests)

c← random controller

for i = 1→ T do

{c′1, c′2, . . . , c′S} ← S random perturbations of c

for j = 1→ S do

A0 ,j = average of Freal(c
′i) for c′i such as c′i

j = cj

A+,j = average of Freal(c
′i) for c′i such as c′i

j > cj

A−,j = average of Freal(c
′i) for c′i such as c′i

j < cj

if A0,j > max(A+,j , A−,j) then

cj remains unchanged

else

if A+,j > A−,j then

cj = min(cj + 0.25, 1)

else

cj = max(cj − 0.25, 0)

new controller: c

D.1.1.3 Self-modeling process (Bongard’s algorithm)

Our implementation of the self-modeling process is based on Bongard et al. (2006)

(algorithm 8). Unlike the implementation of Bongard et al. (2006), we use internal

measurements to assess the consequences of actions. This measure is performed

with a 3-axis accelerometer (ADXL345) placed at the center of the robot, thus

allowing the robot to measure its orientation.
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Algorithm 8 Self-modeling approach (T real tests)

popmodel ← {m1, m2, . . . , mSmodel} (randomly generated or not)

empty training set of actions Ω

for i = 1→ T do
selection of the action which maximises variance of predictions in popmodel

execution of the action on the robot

recording of robot’s orientation based on internal measurements

addition of the action to the training set Ω

Nmodel iterations of MOEA on popmodel evaluated on Ω

selection of the new self-model

popctrl ← {c1, c2, . . . , cSctrl} (randomly generated)

Nctrl iterations of MOEA on popctrl in the self-model

selection of the new controller in the Pareto front

Robot’s model. The self-model of the robot is a dynamic simulation of the

hexapod built with the Open Dynamics Engine (ODE); it is the same model as the

one used for T-Resilience experiments. However this self-model is parametrized in

order to discover some damages or morphological modifications. For each leg of the

robot, the algorithm has to find optimal values for 5 parameters:

• length of middle part of the leg (float)

• length of the terminal part of the leg (float)

• activation of the first actuator (boolean)

• activation of the second actuator (boolean)

• activation of the last actuator (boolean)

The length parameters have 6 different values: {0, 0.5, 0.75, 1, 1.25, 1.5}, which

represents a scale factor with respect to the original size. If the length parameter

of one part is zero, the part is deleted in the simulation and all other parts only

attached to it are deleted too. We therefore have a model with 30 parameters.

Action set. As advised by Bongard (2007) (variant II), we use a set of actions

where each action uses only one leg. The first servo has 2 possible positions (1,2):

−π/6 and π/6. For each of these two positions, we have 3 possible actions (a,b,c)

as shown on Figure D.1. There are consequently 6 possible actions for each leg,

that is, 36 actions in total.

Parameters. A population of 36 models is evolved during 2000 generations. The

initial population is randomly generated for the initial learning scenario. For other
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Top view Front view

(1)

(2)

(a)

(b)

(c)

π/6

-π/6

-2π/3
π/6

π/6

Figure D.1: The six possible actions of a leg that can be tested on the robot: (1,a),

(2, a), (1,b), (2, b), (1,c), (2, c).

scenarios, the population is initialized with the self-model of the undamaged robot.

A new action is tested every 80 generations, which leads to a total of 25 actions

tested on the real robot. Applying a new action on the robot implies making

an additional simulation for each model at each generation, leading to arithmetic

progression of the number of simulation needed per generation. Moreover, 36× 36

additional simulations are needed each time a new action has to be selected and

transferred (the whole action set applied to the whole population). In total, about

one million simulations have been done per run ((25×26/2)×36×80+36×36×25 =

968400).

The self-modeling process is iterated 25 times (i.e. 25 real tests; variant tests)

before the optimization of controllers occurs, which leads to a median duration of

250 minutes on overall. (Table D.1). For comparison, the best controller optimized

with the self-model obtained after 25 minutes of self-modeling is also kept (i.e. after

11 real tests; variant time).

D.1.2 Validation of the implementations

To ensure that the observed poor performances are not caused by an implementation

error, the local search and the policy search have been tested in simulation with

higher numbers of evaluations. Each algorithm has been executed 40 times with

105 evaluations on the simulated hexapod robot, which is used as a self-model with

the T-Resilience algorithm. Results are depicted on Figure D.2.

These experiments in simulation demonstrate that the small number of evaluations

is the cause of the poor performances of these two algorithms in our experiments

(cases A to E). Walking controllers are achieved after about 1, 000 evaluations (me-
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(a) Local search.
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(b) Policy search.

Figure D.2: Performances obtained with the local search (a) and the policy search

(b) in simulation (40 runs; 105 evaluations). Thick black curves depict median

performance values, dark areas are delimited by first and third quartiles and light

areas by lower and upper bounds. Horizontal dashed lines depict the performance

of the reference controller in simulation. Figures on the right show the progression

of performance values during the first 100 evaluations. Median number of evalua-

tions used in our experiments on the robot for the tests and the time variants are

respectively depicted by vertical dashed lines and vertical solid lines. Local search

and policy gradient search are both able to find good controllers, provided that they

are executed during enough iterations.
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dian performance greater than 0.4 m). After 2 × 104 evaluations, both algorithms

converge to behaviors with good performances (figure D.2; median performances

0.66 m for local search and 0.50 m for policy search). These performances have

to be balanced with the high number of required evaluations that is most of the

time not feasible with a real robot and not compatible with our damage recovery

problem. In our experiments with the real robot (section 4.2.3), we only performed

between 25 and 60 evaluations, which is not enough for the algorithms to find effi-

cient controllers, even in simulation (figure D.2; median performances 0.23 m after

25 evaluations and 0.30 m after 50 evaluations for local search; 0.06 m after 30

evaluations and 0.13 m after 60 evaluations for policy search).

These results indicate that the poor performances observed with both algorithms

in our experiments (cases A to E) are mainly caused by low numbers of evaluations

performed on the robot.

D.1.3 Median durations and number of tests

Algorithms
Median duration Median number

(min.) of real tests

Local search 20 (10) 50 (25)

Policy search 25 (13) 60 (30)

T-Resilience 19 (19) 25 (25)

Self-modeling 25 (250) 11 (25)

Table D.1: Median duration and median number of real tests on the robot dur-

ing a full run for each algorithm, for the “time” variant. Number in parenthesis

correspond to the “tests” variant.

D.1.4 Statistical tests

Local search Policy search Self-modeling
Ref.

tests time tests time time tests

A 0.008 0.008 0.008 0.008 0.008 0.008 1.000

B 0.008 0.016 0.016 0.016 0.008 0.008 0.063

C 0.016 0.151 0.008 0.008 0.008 0.008 0.063

D 0.151 0.548 0.016 0.087 0.063 0.008 0.063

E 0.008 0.008 0.063

F 0.008 0.063 0.063

Table D.2: Statistical significance when comparing performances between the T-

Resilience and the other algorithms (Ref. corresponds to the reference gait). P-

values are computed with Wilcoxon rank-sum tests.



D.2. Methods for the Intelligent Trial and Error algorithm and
experiments 245

D.2 Methods for the Intelligent Trial and Error algo-

rithm and experiments

D.2.1 Notations

• c: Parameters of a controller (vector)

• x: A location in a discrete behavioral space (i.e. a type of behavior) (vector)

• χ: A location in a discrete behavioral space that has been tested on the

physical robot (vector)

• P: Behavior-performance map (stores performance) (associative table)

• C : Behavior-performance map (stores controllers) (associative table)

• P(x): Max performance yet encountered at x (scalar)

• C (x): Controller currently stored in x (vector)

• χ1:t: All previously tested behavioral descriptors at time t (vector of vectors)

• P1:t: Performance in reality of all the candidate solutions tested on the robot

up to time t (vector)

• P(χ1:t): Performance in the behavior-performance map for all the candidate

solutions tested on the robot up to time t (vector)

• f(): Performance function (unknown by the algorithm) (function)

• σ2
noise: Observation noise (a user-specified parameter) (scalar)

• k(x, x): Kernel function (see section “kernel function”) (function)

• K: Kernel matrix (matrix)

• k: Kernel vector [k(x, χ1), k(x, χ2), ..., k(x, χt)] (vector)

• µt(x): Predicted performance for x (i.e. the mean of the Gaussian process)

(function)

• σ2
t (x): Standard deviation for x in the Gaussian process (function)

D.2.2 Hexapod Experiment

Main Behavioral descriptor (duty factor) The default behavioral descriptor

is a 6-dimensional vector that corresponds to the proportion of time that each leg is

in contact with the ground(also called duty factor). When a controller is simulated,

the algorithm records at each time step (every 30 ms) whether each leg is in contact

with the ground (1: contact, 0: no contact). The result is 6 Boolean time series
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(Ci for the ith leg). The behavioral descriptor is then computed with the average

of each time series:

x =











∑

t
C1(t)

numTimesteps(C1)
...

∑

t
C6(t)

numTimesteps(C6)











(D.1)

During the generation of the behavior-performance map, the behaviors are stored

in the maps’s cells by discretizing each dimension of the behavioral descriptor space

with these five values: {0, 0.25, 0.5, 0.75, 1}. During the adaptation phase, the

behavioral descriptors are used with their actual values and are thus not discretized.

Alternate Behavioral descriptor (orientation) The alternate behavioral de-

scriptor tested on the physical robot (we investigated many other descriptors in

simulation: Supplementary Experiment S5) characterizes changes in the angular

position of the robot during walking, measured as the proportion of 15ms intervals

that each of the pitch, roll and yaw angles of the robot frame are positive (three

dimensions) and negative (three additional dimensions):

x =


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(D.2)

where ΘT (k), ΨT (k) and ΦT (k) denote the pitch, roll and yaw angles, respectively, of

the robot torso (hence T ) at the end of interval k, and K denotes the number of 15ms

intervals during the 5 seconds of simulated movement (here, K = 5s/0.015s ≈ 334).

The unit step function U(·) returns 1 if its argument exceeds 0, and returns 0

otherwise. To discount for insignificant motion around 0 rad, orientation angles are

only defined as positive if they exceed 0.5% of π rad. Similarly, orientation angles

are only defined as negative if they are less than −0.5% of π rad.

Performance function In these experiments, the “mission” of the robot is to

go forward as fast as possible. The performance of a controller, which is a set of

parameters (see appendix A.2.2: Parametrized controller), is defined as how far the

robot moves in a pre-specified direction in 5 seconds.

During the behavior-performance map creation step, the performance is obtained

thanks to the simulation of the robot. All odometry results reported on the physical

robot, during the adaptation step, are measured with the embedded simultaneous

location and mapping (SLAM) algorithmDryanovski et al. (2013). The accuracy

of this algorithm was evaluated by comparing its measurements to ones made by

hand on 40 different walking gaits. These experiments revealed that the median
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measurement produced by the odometry algorithm is reasonably accurate, being

just 2.2% lower than the handmade measurement (Supplementary Fig. D.3d).

Some damage to the robot may make it flip over. In such cases, the visual odom-

etry algorithm returns pathological distance-traveled measurements either several

meters backward or forward. To remove these errors, we set all distance-traveled

measurements less than zero or greater than two meters to zero. The result of

this adjustment is that the algorithm appropriately considers such behaviors low-

performing. Additionally, the SLAM algorithm sometimes reports substantially

inaccurate low values (outliers on Supplementary Fig. D.3d). In these cases the

adaptation step algorithm will assume that the behavior is low-performing and will

select another working behavior. Thus, the overall algorithm is not substantially

impacted by such infrequent under-measurements of performance.

Stopping criterion In addition to guiding the learning process to the most

promising area of the search space, the estimated performance of each solution

in the map also informs the algorithm of the maximum performance that can be

expected on the physical robot. For example, if there is no controller in the map

that is expected to perform faster on the real robot than 0.3m/s, it is unlikely that

a faster solution exists. This information is used in our algorithm to decide if it

is worth continuing to search for a better controller; if the algorithm has already

discovered a controller that performs nearly as well as the highest value predicted

by the model, we can stop the search.

Formally, our stopping criterion is

max(P1:t) ≥ α max
x∈P

(µt(x)), with α = 0.9 (D.3)

where x is a location in the discrete behavioral space (i.e. a type of behavior)

and µt is the predicted performance of this type of behavior. Thus, when one of

the tested solutions has a performance of 90% or higher of the maximum expected

performance of any behavior in the map, the algorithm terminates. At that point,

the highest-performing solution found so far will be the compensatory behavior that

the algorithm selects. An alternate way the algorithm can halt is if 20 tests on the

physical robot occur without triggering the stopping criterion described in equation

D.3: this event only occurred in 2 of 240 experiments performed on the physical

robot described in the main text. In this case, we selected the highest-performing

solution encountered during the search. This user-defined stopping criterion is not

strictly necessary, as the algorithm is guaranteed to stop in the worst case after

every behavior in the map is tested, but it allows a practical limit on the number

of trials performed on the physical robot.

Initiating the Adaptation Step The adaptation step is triggered when the

performance drops by a certain amount. The simplest way to choose that threshold

is to let the user specify it. Automating the selection of this value, and the impact of

triggering the algorithm prematurely, is an interesting question for future research

in this area.
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D.2.3 Robotic Arm Experiment

Behavioral descriptor Because the most important aspect of the robot’s be-

havior in this task is the final position of the gripper, we use it as the behavioral

descriptor:

behavioral_descriptor(simu(c)) =

[

xg

yg

]

(D.4)

where (xg, yg) denotes the position of the gripper once all the joint have reached

their target position.

The size of the working area of the robot is a rectangle measuring 1.4m×0.7m. For

the behavior-performance map, this rectangle is discretized into a grid composed of

20000 square cells (200× 100). The robot is 62cm long.

Performance function Contrary to the hexapod experiment, for the robotic

arm experiment the performance function for the behavior-map creation step and

for the adaptation step are different. We did so to demonstrate that the two can be

different, and to create a behavior-performance map that would work with arbitrary

locations of the target bin.

For the behavior-performance map generation step (accomplished via the MAP-

Elites algorithm), the performance function captures the idea that all joints should

contribute equally to the movement. Specifically, high-performance is defined as

minimizing the variance of the joint angles, that is:

performance(simu(c))) = −1

8

i=7
∑

i=0

(pi −m)2 (D.5)

where pi is the angular position of joint i (in radians) and m = 1
8

∑i=7
i=0 pi is the

mean of the joint angles. This performance function does not depend on the target.

The map is therefore generic: it contains a high-performing controller for each point

of the robot’s working space.

For the adaptation step (accomplished via the M-BOA algorithm), the behavior-

performance map, which is generic to many tasks, is used for a particular task. To

do so, the adaption step has a different performance measure than the step that

creates the behavior-performance map. For this problem, the predicted performance

measure is the Euclidean distance to the target (closer is better). Specifically, for

each behavior descriptor x in the map, performance is

P(x) = −||x− b|| (D.6)

where b is the (x, y) position of the target bin. Note that the variance of the joint

angles, which is used to create the behavior-performance map, is ignored during the

adaptation step.

The performance of a controller on the physical robot is minimizing the Euclidean

distance between the gripper (as measured with the external camera) and the target

bin:
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performance(physical_robot(C (χ))) = −||xg − b|| (D.7)

where xg is the position of the physical gripper after all joints have reached their

final position, b is the position of the bin, and C (χ) is the controller being evaluated

(χ is the position in simulation that controller reached).

If the gripper reaches a position outside of the working area, then the camera cannot

see the marker. In these rare cases, we set the performance of the corresponding

controller to a low value (−1 m).

For the control experiments with traditional Bayesian optimization on the phys-

ical robot, self-collisions are frequent during adaptation, especially given that we

initialize the process with purely random controllers (i.e. random joint angles).

While a single self-collision is unlikely to break the robot, hundreds of them can

wear out the gearboxes because each servo continues to apply a force for a period

of time until it determines that it cannot move. To minimize costs, and because we

ran 210 independent runs of the algorithm (14 scenarios × 15 replicates), we first

tested each behavior in simulation (taking the damage into account) to check that

there were no self-collisions. If we detected a self-collision, the performance for that

behavior was set to a low value (−1m).

Auto-collisions are much less likely with Intelligent Trial & Error because the

behavior-performance map contains only controllers that do not self-collide on the

undamaged, simulated robot. As a consequence, in the Intelligent Trial & Error

experiments we did not simulate controllers before testing them on the physical

robot.

Stopping criterion Because the robot’s task is to release a ball into a bin, the

adaptation step can be stopped when the gripper is above the bin. The bin is

circular with a diameter of 10 cm, so we stopped the adaptation step when the red

cap is within 5 cm of the center of the bin.

D.2.4 Selection of parameters

All of the data reported in this section comes from experiments with the simulated

hexapod robot, unless otherwise stated.

Selecting the ρ value For ρ between 0.1 and 0.8, we counted the number of

behaviors from the map that would be influenced by a single test on the real hexapod

robot (we considered a behavior to be influenced when its predicted performance

was affected by more than 25% of the magnitude of the update for the tested

behavior): with ρ = 0.2, the update process does not affect any neighbor in the

map, with ρ = 0.4, it affects 10% of the behaviors, and with ρ = 0.8, it affects 80%

of them. Additional values are shown in Supplementary Fig. D.3c.

The previous paragraph describes tests we conducted to determine the number of

behaviors in the map affected by different ρ values, but those experiments do not

tell us how different ρ values affect the performance of the algorithm overall. To



250 Other

a b

c

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8

ρ 
p
a
ra

m
e

te
r

C
o
v
a
ri
a

n
c
e
 k

e
rn

e
l 
o
u

tp
u
t

Distance

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

22.5

20

17.5

15

12.5

10

7.5

5

2.5

0

ρ parameter

P
e
rf

o
rm

a
n

c
e
 (

m
 /

 s
)

A
d
a
p
ta

ti
o
n
 T

im
e
 (

it
e
ra

ti
o
n
s
)

Real performance (m)

M
e
a
s
u
re

d
 p

e
rf

o
rm

a
n

c
e
 (

m
)

101.4%

97.8%

91.7%

100%

ρ parameter

P
ro

p
o
rt

io
n
 o

f 
a
ff
e
c
te

d
 s

o
lu

ti
o
n
s
 (

p
e
rc

e
n

t)

100

90

80

70

60

50

40

30

20

10

0
4.0 6.00 2.0 0.8

d

21 5.10 5.0 2.5 6.0 7.04.0 5.02.0 3.00.1 0.8

2.2

2

1.8

1.6

1.4

1.2

1

0.8

1.510.5 2

Figure D.3: The effect of changing the algorithm’s parameters. (a) The

shape of the Matérn kernel function for different values of the ρ pa-

rameter. (b) Performance and required adaptation time obtained for

different values of ρ. For each ρ value, the R-BOA algorithm was executed in

simulation with 8 independently generated behavior-performance maps and for 6

different damage conditions (each case where one leg is missing). (c) The num-

ber of controllers in the map affected by a new observation according to

different values of the ρ parameter. (d) The precision of the odometry

value. The distances traveled by the physical robot, as measured manually (“real

performance”) is compared to the measurements automatically provided by the

simultaneous location and mapping (SLAM) algorithm(“measured performance”).

The dashed black line indicates the hypothetical case where SLAM measurements

are error-free and thus are the same as manual measurements. In (b), (c) and (d),

the middle, black lines represent medians and the borders of the shaded areas show

the 25th and 75th percentiles. The dotted lines are the minimum and maximum

values. The gray bars show the ρ value chosen for the hexapod experiments in the

main text. See Supplementary Methods for additional details and analysis.
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assess that, we then repeated the experiments from the main paper with a set

of possible values (ρ ∈ [0.1 : 0.025 : 0.8]) in simulation (i.e., with a simulated,

damaged robot), including testing on 6 separate damage scenarios (each where

the robot loses a different leg) with all 8 independently generated replicates of

the default 6-dimensional behavior-performance map. The algorithm stopped if

20 adaptation iterations passed without success according to the stopping criteria

described in the main text and section D.2.2: Stopping criterion. The results reveal

that median performance decreases only modestly, but significantly, when the value

of ρ increases: changing ρ from 0.1 to 0.8 only decreases the median value 12%, from

0.25 m/s to 0.22 m/s (p-value = 9.3 × 10−5 via Matlab’s Wilcoxon ranksum test,

Supplementary Fig. D.3b). The variance in performance, especially at the extreme

low end of the distribution of performance values, is not constant over the range of

explored values. Around ρ = 0.3 the minimum performance (Supplementary Fig.

D.3b, dotted red line) is higher than the minimum performance for more extreme

values of ρ.

A larger effect of changing ρ is the amount of time required to find a compensatory

behavior, which decreases when the value of ρ increases (Supplementary Fig. D.3b).

With a ρ value lower than 0.25, the algorithm rarely converges in less than the

allotted 20 iterations, which occurs because many more tests are required to cover

all the promising areas of the search space to know if a higher-performing behavior

exists than the best-already-tested. On the other hand, with a high ρ value, the

algorithm updates its predictions for the entire search space in a few observations:

while fast, this strategy risks missing promising areas of the search space.

In light of these data, we chose ρ = 0.4 as the default value for our hexapod experi-

ments because it represents a good trade-off between a high minimum performance

and a low number of physical tests on the robot. The value of ρ for the robotic arm

experiment has been chosen with the same method.

Selection of the κ value For the hexapod robot experiments, we chose κ = 0.05.

This relatively low value emphasizes exploitation over exploration. We chose this

value because the exploration of the search space has already been largely performed

during the behavior-performance map creation step: the map suggests which areas

of the space will be high-performing, and should thus be tested, and which areas of

the space are likely unprofitable, and thus should be avoided.

For the robotic arm experiments, we chose κ = 0.3, which emphasizes exploration

more, because it experimentally leads to better results.

D.2.5 Running time

Computing hardware All computation (on the physical robots and in simu-

lation) was conducted on a hyperthreaded 16-core computer (Intel Xeon E5-2650

2.00GHz with 64Gb of RAM). This computational power is mainly required for

the behavior-performance map creation step. Creating one map for the hexapod

experiment took 2 weeks, taking advantage of the fact that map creation can easily
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be parallelized across multiple cores. Map creation only needs to be performed once

per robot (or robot design), and can happen before the robot is deployed. As such,

the robot’s onboard computer does not need to be powerful enough to create the

map.

For the hexapod robot experiment, the most expensive part of adaptation is the Si-

multaneous Localization And Mapping (SLAM) algorithmDryanovski et al. (2013);

Thrun et al. (2005); Dissanayake et al. (2001), which measures the distance trav-

eled on the physical hexapod robot. It is slow because it processes millions of 3D

points per second. It can be run on less powerful computers, but doing so lowers its

accuracy because fewer frames per second can be processed. As computers become

faster, it should be possible to run high-accuracy SLAM algorithms in low-cost,

onboard computers for robots.

The rest of the adaptation step needs much less computational power and can

easily be run on an onboard computer, such as a smartphone. That is because it

takes approximately 15,000 arithmetic operations between two evaluations on the

physical robot, which requires less than a second or two on current smartphones.

Measuring how long adaptation takes (hexapod robot) The reported time

to adapt includes the time required for the computer to select each test and the

time to conduct each test on the physical robot. Overall, evaluating a controller

on the physical hexapod robot takes about 8 seconds (median 8.03 seconds, 5th

and 95th percentiles [7.95; 8.21] seconds): 0.5-1 second to initialize the robot, 5

seconds during which the robot can walk, 0.5-1 second to allow the robot to stabilize

before taking the final measurement, and 1-2 seconds to run the SLAM algorithm.

Identifying the first controller to test takes 0.03 [0.0216; 0.1277] seconds. The time

to select the next controller to test increases depending on the number of previous

experiments because the size of the Kernel Matrix (K matrix, see Methods and

Supplementary Fig. 4), which is involved in many of the arithmetic operations,

grows by one row and one column per test that has been conducted. For example,

selecting the second test takes 0.15 [0.13; 0.22] seconds, while the 10th selection

takes 0.31 [0.17; 0.34] seconds.
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D.3 Notation for the State-Based BO with Transfer,

Priors and blacklists algorithms

µt+1(x) = Tr

[

µ0(x)

1

]

+

(

Pc⊺1:t −Tr

[

µ0(χ1:t)

1

])

K−1k

σ2
t+1(x) = k(x, x)− kbl

⊺Kbl
−1kbl

K =








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...

. . .
...
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








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