JQ/2HBb iBQM 2i bBKmH iBQM /2b /BbTQbBIi
/| Mb H2b biQ+F :2b /2 /2+?2ib > /IBQ +iE
umK2M; w? M;

hQ +Bi2 i?Bb p2 bBQM,

umK2M; w? M;X JQ/2HBDb iBQM 2i bBKmH iBQM /2b /BbTQbBiB7b /2 p2M
“/BQ +iB7bX 1[m iBQMb mt /G Bpd2b T "iB2HH2b (K i?X S)X ILa- kyR8

> G A/, i2H@yRkdjR93
2iiTh,ff? HXBM B X7 fi2H@yRkdjR93
am#KBii2/ QM kk 62# kyRe

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X


https://hal.inria.fr/tel-01273148
https://hal.archives-ouvertes.fr

UNIVERSITE NICE SOPHIA ANTIPOLIS - UFR Sciences

Ecole Doctorale en Sciences Fondamentales et Appliquees &EA

THESE

pour obtenir le titre de
Docteur en Sciences
de 'UNIVERSITE Nice Sophia Antipolis

Discipline : Matlematiques

pesente et soutenue par

Yumeng ZHANG
Mocklisation et simulation des dispositifs de
ventilation dans les stockages de dechets
radioactifs

These dirigee par Thierry GOUDON et Roland MASSON
soutenue le 17 cecembre 2015

Jury :

Mme CHAINAIS Claire Rapporteur

ERN Alexandre Rapporteur

GALLOU ET Thierry Examinateur
GOUDON Thierry  Directeur de trese
MASSON Roland Co-directeur de trese
TRENTY Laurent Examinateur

<=<=<£<X






Mogklisation et simulation des dispositifs de ventilation dans | es
stockages de achets radioactifs

Resune : l'objectif de cette these est de fournir des moceles et deoutils de simulation
pour cecrire lesechanges de masse entre les circuits dentikation (galeries) et les milieux
poreux des ouvrages souterrains d'enfouissement des dtshnuckaires. La mocklisation
prend en compte le couplagea l'interface poreux-galeriatee lesecoulements liquide gaz
compositionnels dans le milieu poreux constituant le stoage et lesecoulements gazeux
compositionnels dans le milieu galerie libre.

Dans le chapitre 1 onetudie trois dierentes formulations de lecoulement gaz liquide
compositionnel dans le milieu poreux dont on montre leqwalence du point de vue des
transitions de phases. Ces formulations sont compaeesmeriquement sur des cas tests
1D puis 3D disceti®es en espace par le schema Vertex Appxonate Gradient (VAG).

Le Chapitre 2 se concentre sur un mockle eduit couplant Eecoulements diphasiques
compositionnels 3D en milieu poreux et lecoulement mondgsique compositionnel 1D
dans la galerie. Il suppose que I'extension longitudinale ¢a galerie est grande par rapport
a son dianetre. Le mockle poreux prend aussi en compte leshanges entre un eseau de
fractures discetes de co-dimension 1 et le milieu matriei environnant. Le screma VAG
estetendu a n de prendre en compte le couplage entre leseglements 3D dans la matrice,
2D dans le eseau de fractures discetes et 1D dans la gaker La convergence de cette
discetisation estetudee dans le cas du moctle lireare monophasique stationnaire ainsi
gue dans le cas d'un mocele non lireaire couplant lequabn de Richardsa lecoulement
1D monophasique ou de type traceur dans la galerie. Diergs cas tests correspondant
au jeu de donrees Andra sont pesenes.

Le chapitre 3 ceveloppe un algorithme de point xe pour esudre le couplage entre
les ecoulements gaz liquide dans le milieu poreux et leotement gazeux libre dans la
galerie. Cet algorithme repose sur la compehension desuptages forts et faibles dans
le syseme. Il consistea esoudre, dans une premerewpe, lecoulement dans le milieu
poreux coupk aux equations de convection di usion sur ls fractions molaires dans la
galeriea vitesse »e. Dans une deuxeme etape, connasant le ux totala l'interface,

il esout les equations de Navier Stokes pour ceterminerd vitesse et la pression dans
la galerie. Cet algorithme estetude sur dierents cas tests poss par I'Andra et les
solutions obtenues sont compaeesa celles du moceledeit du chapitre peedent. Pour
cela, lepaisseur de la couche limite visqueuse en conaation d'eau dans la galerie est
approctee par une approximation diagonale basse fequea de l'operateur de Steklov
Poincae assocea lequation de convection di usion a vitesse »e dans la galerie.

Mots-cks : schage convectif, stockage des dechets radioactifsgcoulement diphasique
compositionnel en milieu poreux, ecoulement monophasigucompositionnel libre, cou-
plage desecoulements en milieux poreux et libre, sctemaslume ni, schemas gradients,
analyse nunerique.



Modelling and simulation of ventilation devices in nuclear waste
geological repositories

Abstract : the objective of this thesis is to develop models and algtiins to simulate
e ciently the mass exchanges occuring at the interface be®en the nuclear waste deep
geological repositories and the ventilation excavated dafies. To model such physical
processes, one needs to account in the porous medium for trewv of the liquid and
gas phases including the vaporization of the water comporten the gas phase and the
dissolution of the gaseous components in the liquid phasen the free ow region, a
single phase gas free ow is considered assuming that theuiid phase is instantaneously
vaporized at the interface. This gas free ow has to be comptienal to account for the
change of the relative humidity in the free ow region which ks a strong feedback on the
liquid ow rate at the interface.

In chapter 1, three formulations of the gas liquid compositnhal Darcy ow are studied.
Their equivalence from the point of phase transitions is stam and they are compared
numerically on 1D and 3D test cases including gas appeararar&d liquid disappearance.
The 3D discretization is based on the Vertex Approximate Gradnt (VAG) scheme and
takes into account discontinuous capillary pressures.

In chapter 2, a reduced model coupling a 3D gas liquid compisnal Darcy ow in a
fractured porous medium, and a 1D compositional free gas ois introduced. The VAG
discretization is extended to such models taking into accouthe coupling between the
3D matrix, the 2D network of fractures and the 1D gallery. Itsconvergence is studied
both for the linear single phase stationary model and for a nolinear model coupling
the Richards equation to a single phase 1D ow or a 1D tracer agtion in the gallery.
Di erent test cases with Andra data sets are presented.

In Chapter 3, a splitting algorithm to solve the coupling betveen the gas liquid com-
positional Darcy ow in the porous medium and the gas compdsinal free ow in the
gallery is developed. The idea is to solve, in a rst step, thporous medium equations
coupled to the convection di usion equations for the gas mat fractions in the gallery
at xed velocity and pressure in the gallery. Then, the totalmolar normal ux at the
interface is computed and used in the second step of the algom to compute the ve-
locity and pressure in the gallery solving the Navier Stokegjeations. This algorithm is
tested on several 2D test cases and the solutions obtained artompared with the ones
obtained by the previous reduced model. To that end, the gasatar fraction boundary
layer thickness used as a parameter in the reduced model isnputed based on a low
frequency diagonal approximation of a Steklov Poincae fye operator for the stationary
convection di usion equation at xed velocity.

Keywords : convective drying, nuclear waste geological repositorgas liquid composi-
tional Darcy ow, gas compositional free ow, coupling Darg and free ow, nite volume
scheme, gradient scheme, numerical analysis.
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Introduction

Contexte de ktude etetat de l'art

L'objectif de ce travail est de fournir des mockles et des tils de simulation pour cecrire
lesechanges de masse et denergie entre les circuits detdation et les milieux poreux des
ouvrages souterrains d'enfouissement des cechets nagkes. Ce travail visea contribuer,
par I'experimentation nunerique, a I'anelioration de la connaissance du comportement
des gaz dans les phases d'exploitation, eement constiifi du Dossier d'Autorisation de
Construction du Stockage (DAC).

La gure 1 montre une repesentation de levolution de la temperature et de I'humidie
relative de I'air au sein d'un quartier du stockage sur la pgode d'exploitation de 100 ans.
Le eseau de ventilation qui setend sur une longueur cunte d'une centaine de kilorretres,
respecte les grands principes de fractionnement et de maatitt qui lui conkrent une
incependance de la ventilation visa-vis (i) des activiess de travaux et d'exploitation
nuckaire et (ii) des dierentes zones de stockage.



Figure 1: Evolution des conditions d'environnement en amofaval de quartiers de stock-
agea 10 ans, 20 ans, 60 ans et 100 ans (hypothese de quadi@naintenus ouverts et
venties).



Figure 2: lllustration des interactions hydraulique et hydique entre l'al\eole et la galerie
d'aces localiees au niveau de la teéte d'alweole.

Un premier objectif est de pedire sur une telle duee lewlution de la temperature et
de I'humidie relative (leea la fraction molaire d'eau (H,0)) dans le eseau de galeries
et d'aleoles de stockage et de contrbler la qualie dedir a n de proeger 'homme et
I'environnement de tout risque operationnel pendant la phse d'exploitation. Un autre
objectif est de pedire la cesaturation (et le casecheant la resaturation) des argilites mais
aussi des composants cimentaires induite par la ventilatiocau voisinage de l'interface
entre le stockage et les galeries (cf. Figure 2).

Les ptenonrenes physiques mis en jeu font partie de la prebtatique plus cererale
du chage ou de levaporationa l'interface entre un mileu poreux et un milieu libre. lIs
font intervenir principalement

lesecoulements diphasiques liquide gaz dans le milieu pax avec prise en compte
de la composition des phases, de la di usion dispersion desmposants dans les
phases liquide et gazeuse, et de la gestion de l'apparitionde la disparition des
phases (typiquement apparition de la phase gaz et dispadti de la phase eau).

lecoulement de la phase gazeuse dans le milieu libre (ga¢s de ventilation dans
notre cas) avec prise en compte de la composition avec di asi mokculaire ou
turbulente des composants dans la phase gaz. La phase liguiest pas prise en
compte car l'on suppose qu'elle se vaporise instantarentenl'interface entre le
milieu poreux et le milieu libre. On verra que la di usion engyeral turbulente joue
un réle essentiel sur le taux devaporation du liquidea 'interface.

La thermiquea la fois dans le milieu poreux et dans le milielibre.

La mecanique dans le milieu poreux lee aux e ets thermiges eta la desaturation.



La moctlisation du schage intervient dans de nombreusesitres applications comme
par exemple la fabrication de matriaux de construction @ion, briques), les proeds
de fabrication alimentaire, I'entretien des surfaces estieures des batiments historiques,
I'interaction sol atmosphkere ... On revoita [25] pour uneliste exhaustive. Une par-
ticularie leea l'application aux dispositifs de vent ilation dans les stockages de dechets
nuckaires est que l'on s'ineresse a I'e et du couplagesur levolution du milieu libre,
notamment le suivi des fractions molaires dans les galeriedors qu'en gereral dans les
probemes de schage la moctlisation est exclusivemefacalise sur levolution du milieu
poreux. Notamment, les cas accidentels d'une ventilationikde ou nulle qui vont a priori
accro'tre I'e et du couplage sur le milieu libre ne sont papris en compte dans les moceles
de ®chage habituels.

Dans cette these, on se concentre sur les seulsechangesmesse en supposant dans
une premereetape lesecoulements isothermesa tempature constanteT, identique dans
le milieu poreux et dans le eseau de galeries.

Une repesentation sctematique 2D du probeme coupk esdonree Figure 3 qui
repesente le milieu poreux P, la galerie 9, linterface poreux galerie . Y qgurent
egalement les inconnues principales du mockle decoutgent en milieu poreux ¢';s'; c)
qui cecrivent la phase liquide et ©9; s%; c?) qui decrivent la phase gazeuse, ap est la
pression de la phase = |;g, s est sa fraction volumique ou saturation et sa compo-
sition molaire (avec typiquement les deux composants eauat potentiellement pesents
dans les deux phases). Les variables de lecoulement de tjaze sont nokes (u; p; ¢ avec
la vitesseu du gaz, sa pressiom et sa fraction molairec (avec typiquement les mémes
composants eau et air que dans le milieu poreux).

Figure 3. Geonetrie sctematique 2D du probeme coupk avec le milieu poreux P, la
galerie 9, l'interface , ainsi que les inconnues principales du maae decoulement gaz
liquide poreux et du mockle decoulement gazeux libre.

Si il existe de nombreux travaux sur le couplagea l'interfee entre unecoulement de
Darcy et unecoulement libre dans le cas d'un seul uide, on tuve peu de ekrences
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sur la mocelisation du couplage d'un mockele diphasique emilieu poreux avec un moctle

monophasique en milieu libre. Or la physique qui gouverne dernier type de couplage est
tes dierente du cas monophasique. Typiquement, dans leeas du couplage diphasique -
monophasique les variations de la pressigndans la galerie sont en gereral faibles et ont
peu d'e et sur le milieu poreux. On verra que le comportementhysique du syseme est

plutot piloe au premier ordre par le couplage entre gross modo lequation de Richards

dans le milieu poreux (qui ne simule pas directement la phagazeuse) et lesequations
de convection di usion des composants gazeux dans le miliore.

Le mocele qui nous servira de ekrence dans le cadre dettethese est celui pro-
pos par [48, 49]. Quelques simpli cations seront faitesqur tenir compte de la faible
pernmeabilie du milieu poreux dans les stockages.

Les phases gazeuse et liquide dans le milieu poreux et gagedans le milieu libre sont
supposgees constitiees d'un ensemble unique de composanbe C. Typiquement il s'agira
du composant eau pesent sous forme liquide et sous formepear, et de composants
gazeux pouvant se dissoudre dans la phase liquide commaea 'l CO,, le N,.

Les moctles consiceees dans cette these prennent enropte les lois suivantes:

Moctle poreux: loi de Darcy gereralisee pour les ecoutments des phases gaz et
liquide, loi de diusion des composants dans les phases lide et gazeuse, prise
en compte des changements de phase mocklies par les Idgjullibre thermody-
namique.

Mockle gaz libre: equations de Navier Stokes compositiomfies, on supposera pour
simpli er lecoulement incompressible, la turbulence s& prise en compte par un
mocele RANS (Reynolds Averaged Navier Stokes) avec un mocelergple de turbu-
lence algebrique pour le calcul de la viscosie et de la dusion turbulentes, di usion
mokculaire et turbulente des composants dans le gaz [9,]19

Conditions de couplage a l'interface: elles expriment smh [48, 49] la continuie
des ux de chaque composant en tenant compte de I'hypothesge vaporisation
instantaree de la phase liquide a l'interface, la continie des fractions molaires
de la phase gaz et lequilibre thermodynamique liquide gazDans notre cas, la
loi de Beavers Joseph [7] sera remplaee par un glissement du fait de la faible
pernmeabilie du milieu poreux. On regligera aussi en préique le saut de pression de
gaz qui cerive de la continuie de la composante normale dia contrainte normale.

La plupart des moceles nuneriques de ®chage simulent ebkusivement le domaine
poreux, la prise en compte de lecoulement (et de la thermigg) dans le domaine libre
etant eduitea des coe cients de transfert convectif de masse (et de chaleur) cetermires
par des corelations en fonction des caraceristiques déecoulement. Comme indiqle
dans le ecent article de syntlese [25], ces approches dmmt une bonne approximation
du taux devaporation dans le cas decoulements et de gaeetries simples mais elles sont
dans de nombreux cas insu santes car elles ne prennent pas eompte les variations
spatiale et temporelle des coe cients de transfert conveift Dans notre cas ai on cherche



a mockliser les variations de compositions (et de tempature) dans le eseau de galerie,
oNn ne pourra pas a priori s'en contenter.

Depuis une dizaine d'anrees, on voit dans la literature d chageemerger des moctles
simulant \eritablement les deux ecoulements et leur coupge. Deux types d'approches
ressortent de l'article [25]. La premere repose sur un cplage quentiel de type Dirichlet
Neumann entre les ecoulements diphasique poreux et gaz kblke plus souvent simuks
par deux codes distincts. Comme indiqwe dans [26, 24] ce ®pde couplage conduit
a l'utilisation de pas de tempsa lechelle de lecoulement du gaz libre, tes petits par
rapporta lechelle de temps du milieu poreux. Cette instdilie est due au fort couplage
non lireaire entre la fraction molaire d'eaua l'interface et la pression de liquide (donc le

ux de liquide) a l'interface par la relation dequilibre thermodynamique. En pratique,

il est par exemple indique dans [26, 24], au un algorithme=quentiel est utilie, un pas
de temps de l'ordre de A s et 100 h de temps CPU pour quelques jours de simulations.
Ce type d'approche n'est bien s0r pas viable dans notre ca&.n de pouvoir simuler une
periode de 100 ans, il faut un algorithme capable de traitedes pas de tempsa lechelle
du milieu poreux avec unecoulement quasi stationnaire dana galerie.

Alternativement de nombreux travaux utilisent un algorithme compétement implicite
qui esout I'ensemble du syseme coupk par un algorithre de Newton global apes une
discetisation en temps implicite. Le plus souvent un sobur lireaire direct creux est
utilie pour esoudre le syseme lireaire couplant toutes les inconnues du syseme. C'est
par exemple le cas de [6, 41, 48] et a priori des simulatiorealiees dans ComSol (voir
l'article de syntlese [25] qui pesente une liste de codgsour la simulation du schage
avec mention du type de couplage). Cette approche monolithie est colteuse en temps
calcul et n'exploite pas les dierents niveaux de couplageans le mockle.

Plan de la tlese

Formulation des moctles gaz liquide compositionnels en milieux por eux: Dans
ce chapitre 1 on se concentre sur letude comparative de foulations de lecoulement
gaz liquide compositionnel dans le milieu poreux. Ces mdes sont utiliees dans de
nombreuses applications notamment en geosciences commestockage du CQ@ dans des
aquikres salins, la production petrolere et gazere le stockage de gaz dans des eservoirs
ceologiques ou encore le stockage geologique profond deshets nuckaires.

Leur simulation repose sur une formulation adapte au colgge non lireaire entre la
conservation molaire des composants, la conservation dudwmoe et les lois de fermetures
hydrodynamique et thermodynamique. Une di cule majeure est la prise en compte des
changements de phase induits par les lois dequilibre thevodynamique. Plusieurs formu-
lations ontee proposees dans l'industrie petroler e (voir [18] et les ekrences assocees),
et plus ecemment dans le domaine de la moctlisation de la griation de gaz dans les
stockages geologiques profonds de cechets nuckairesir par exemple [1], [4], [11]).

Le principal objectif du chapitre 1 est de comparer trois fonulations desecoulements
gaz liquide compositionels en milieu poreux prenant en cotedes changements de phase.



La premere formulation dite a variables naturelles est ouramment utilisee dans la
communaue de la simulation des eservoirs petroliers dpuis les anrees 80 [20], [21]. Elle
est aussi connue sous le nom de formulation avec changementsgseme d'inconnues car
elle utilise un jeu de variables du syseme non lireaire dei par les pressionsp', p?, les
saturations s', s9 et les fractions molairex = (¢ )i2c des phases 2 Q a1 Q repesente
I'ensemble des phases pesentes en chaque point du domadspace temps. L'ensemble
Q qui prend en compte les changements de phase est typiquemdstérmire par un ash
regatif [59].

La seconde formulation aee introduite dans [45]. Son ava@age principal par rapport
a la formulation peedente est d'utiliser un jeu d'inconnues unique pour le syseme non
lireaire ck ni par les pressionsp, p?, les saturationss', s9, et les fugacies des composants
f = (fi)ioc. Dans cette formulation les fractions molaires des compaogsa dans chacune
des phases , = g;l sont exprimees comme des fonctions du vecteur des fugasit et
des pressiong?, p'. Les fractions molaires d'une phase absente sont ainsiatiies par
cellesa lequilibre avec la phase pesente conduisand un jeu unique d'inconnues. Un
autre avantage a priori est lea la formulation des changments de phase par le biais de
conditions de compementarieevitant ainsi le recoursa un ash regatif.

La dernere formulationetudee est une extension au cagompositionnel de la formu-
lation en pressions des phases introduite dans [4] dans ls d& deux composants. Cette
extension repose sur l'utilisation du vecteur des fugaesf dans I'esprit de la formula-
tion peedente. En plus de I'extension peedente dedractions molaires pour une phase
absente, la pression d'une phase absente estegalemergetiue par la pression faisant
apparatre la phase a vecteur des fugacies »ef. L'apparition ou la disparition d'une
phase est alors cetermiree par le graphe monotone inversk la pression capillaire et
n'implique aucune contrainte iregalie.

On commence par cetailler dans ce chapitre 1 les trois forrations en montrant leur
equivalence du point de vue des changements de phase sousagges hypotleses sur le
syseme thermodynamique qui correspondenta l'applicabn de la trese. Les avantages
et inconwenients de chacune des formulations sont aussisdues.

Ensuite, les trois formulations sont compaees nurnrerigement du point de vue de la
convergence non lireaire sur des cas tests 1D et 3D et poursdamilles de maillages de
tailles croissantes. La discetisation en espace des casts 3D repose sur le sckema Vertex
Approximate Gradient (VAG) introduit dans [32] pour lesequations de di usion en milieu
heerogene anisotrope sur des maillages polyedriquesCe scltema aeteetendu au cas des
ecoulements de Darcy multiphasiques compositionnels darj33] puis dans [35] pour la
prise en compte des pressions capillaires discontinues anterfaces entre dierents types
de roches.

Le premier cas test consicee est issu du benchmark Couplepropos par I'Andra
[50], [11] simulant la desaturation par succion de la baete geologiquea l'interface avec
la galerie de ventilation. Ce cas test est simuka la foisre geonretries 1D et 3D avec
dierents types de roches et prise en compte de I'anisotrog du milieu Callovo Oxfordien.

Le second cas test simule en 1D l'asechement d'un milieurpax satue de liquide par
injection d'un gaz sec qui peut par exemple subvenir au vaisige des puits d'injection



dans les stockages de GO Le troiseme cas test simule la migration du gaz dans un
bassin en geometrie 3D en pesence de deux barreres cHaires de facona comparer les
formulations sur des cas avec forts contrastes de capiltesi

Etude d'un mockle eduit 3D poreux - 1D galerie

Dans ce chapitre 2 onetudie un mocele eduit couplant legcoulements gaz liquide
compositionnels en milieu poreux avec unecoulement 1D dagycompositionnel dans la
galerie. On suppose pour cela que I'extension longitudieatie la galerie est grande par
rapporta son diametre. On supposera dans ce chapitre pouwsimpli er la pesentation
gue les phases sont constittees de deux composants, I'eaussforme liquide et gazeuse
et l'air pouvant se dissoudre dans la phase liquide. L'extsiona un mocklea N > 2
composants est imnediate en suivant la formulation en pregns des phases et fugacies
des composants du chapitre 1.

Le mockle poreux prend en compte lesechanges entre un &su de fractures discetes
et le milieu matriciel environnant, selon le moctle asympmitique consicee dans [2, 53,
12, 13] a1 les fractures sont repesenees comme des sacés de co-dimension 1. Les
pressions des deux phases seront consiccees continuag aterfaces entre les fractures
et la matrice, correspondanta une hypotlese de fractures'agissant pas comme des
barreres.

Le mockle coupk 3D pour la matrice, 2D pour les fractureste.D pour la galerie est for-
muk dans un jeu de variables unique correspondant aux pieens des deux phases, selon
la 3me formulation du chapitre 1 a1 les fugacies des dexicomposants sontelimirees par
la sommea 1 des fractions molaires de chacune des phasesdiSeetisation repose sur le
sclema VAG qui aeeetendue aux eseaux de fractures dscetes dans [12, 13]. Le scltema
VAG essentiellement nodal a l'avantage par rapport aux seimas nodaux classiques de
type Control Volume Finite Element (CVFE) [6] deviter le nel ange des dierents types
de roches dans les volumes de contrble sites aux interégc notamment matrice fractures.
Ce concept est icietendu au couplage entre le milieu poreex le milieu libre 1D avec une
discetisationa l'interface poreux galerie non recesairement conforme de facona pouvoir
mailler des eseaux de fractures gereraux.

A n d'introduire le moctle eduit et son cadre fonctionnel, on consicere tout d'abord
un probeme mocdele monophasique et stationnaire couplaresecoulements 3D matrice,
2D fractures et 1D galerie. On cecrit ensuite sa discetgtion par le schema VAG dont la
convergence est analyse dans le cadre des schemas gradientroduit dans [32], [29] et
icietendua notre probeme moctle.

Onetend ensuite dans la section 2.3 le mockle eduit et sdiscetisation au cas compo-
sitionnel. Le mockle compositionnel est aussi competsur le plan physique au paragraphe
2.4.3 par l'introduction d'une fraction molaire du gaza linterface poreux galerie et d'un
terme de diusion entre l'interface et la galerie mocklisat la couche limite de convec-
tion di usion. L'ordre de grandeur de cette di usiona l'in terface, le aux proprees de
lecoulement dans la galerie, joue un rble essentiel sur taux devaporation du liquidea
I'interface. Notons aussi que le moctle eduit de la secti2.3 correspond au cas d'un

10



coe cient de di usiona l'interface in ni.

Le chapitre 2 est articue comme suit: la section 2.2etudi le probkme monophasique
stationnaire avec la description du moctle et de son cadreagretrique et fonctionnel
au paragraphe 2.2.1, puis de sa discetisation par le sct®a VAG au paragraphe 2.2.3.
L'analyse de la convergence du scltema VAG est e ectiee auapagraphe 2.2.4 selon le
cadre des sclemas gradientsetendua notre moctle au pagraphe 2.2.2.

La section 2.3etend le mocele peedent et sa discetsation au cas desecoulements
compositionnels en utilisant un jeu d'inconnue unique dni par les pressions des phases.
Son comportement nunerique estetude dans la section 4.pour 3 cas tests avec notam-
ment une comparaison avec une solution stationnaire appfree et letude de I'in uence
de la diusiona l'interface. La section 2.5 donne deux exepies de cas tests incluant
respectivement 1 et 4 fractures.

Finalement la section 2.6 etudie la convergence par compecdu sctema VAG vers
une solution faible sur un mocele simplie couplant lequation de Richards dans le milieu
poreux avec unecoulement monocomposant de type Poiseeitians la galerie. La méme
analyse s'applique au couplage de lequation de Richardsex lequation 1D de convection
di usion sur la fraction molaire d'eau dans la galerie. Ce daier moctle est une assez
bonne approximation du mockle complet.

Etude du moctle 2D-2D et comparaison avec le moctle eduit

Letude du mockele eduit 3D poreux - 1D libre peedent nous a permis de bien
identi er le couplage fortement non lireaire entre la fration molaire d'eau convecee dans
la galerie de ventilation et la pression et le ux de liquide l'interface poreux galerie. Ce
couplage est lea lequilibre thermodynamique liquide gaza l'interface.

Le chapitre 3 dceveloppe un algorithme de point xe peserant ce couplage fort et
relaxant le couplage de la vitesse et de la pression dans ldega avec les inconnues du
milieux poreux et les compositions du gaz dans la galerie. tCdgorithme consiste a
esoudrea la premereetape du point xe lesequations du mocele poreux coupkes avec
lesequations de traceur sur les compositionsa vitesse ptession »ees dans la galerie. Le
ux totala l'interface calcuk lors de cette premeree tape sert dans une deuxemeetape

a esoudre lesequations de Navier Stokes pour ceterminela vitesse et la pression dans
la galerie.

A n de tester cet algorithme nous utilisons la con guration gonetrique simpliee 2D
de la gure 3. Dans le domaine poreux P, on consicere unecoulement de Darcy gaz
liquide compositionnel formuk dans le jeu d'inconnues pssions des phases et fugacies
des composants du chapitre 1. Dans le domaine galeri& de facona prendre en compte
la nature turbulente de lecoulement, on commence par caléer un pro | de vitesse tur-
bulent en utilisant un mockle de turbulence algebrique. @ pro | est solution stationnaire
unidirectionnelle du mocele RANS incompressible sans coggle avec le milieu poreux.
Une condition de type contrainte normale est imposee en sigtde la galerie qui permet de
donner la etrence de pression dans la galerie. Ce praul, est ensuite imposa l'entee de
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la galerie et fournit la viscosie et la di usion turbulente du moctle RANS incompressible
qui calcule la perturbation de la vitessau u; et la perturbation de pression lees au
couplage avec le milieu poreux. Les conditions de couplagdinterface sont issues de
[48, 49]. Elles expriment la continuie des ux de chaque aoposant en tenant compte de
I'nypothese de vaporisation instantaree de la phase ligdea l'interface, la continuie des
fractions molaires de la phase gaz et lequilibre thermodhamique liquide gaz. La loi de
Beavers Joseph est remplaee par un glissement nul du fait tefaible perneabilie du
milieu poreux et on peut en pratique regliger le saut sur lanession de gaz qui cerive de
la continuie de la composante normale de la contrainte nonale.

Le domaine est maile par une grille Caresienne conformet ra ree fortement a
l'interface de facona prendre en compte la couche limitelaminaire coe galerie et le
fort gradient de pression capillaire coe poreux. La disetisation en espace est un sctema
MAC pour lesequations de Navier Stokesa viscosie variale et un screma volume ni
cente aux maillesa la fois pour le mockle Darcy diphasige dans le domaine poreux et
pour lesequations de convection di usion sur les fractionmolaires du gaz dans la galerie.
Dans les deux cas, les ux de type di usion sont approches pain sclema deux points et
la partie convective utilise un screma amont d'ordre 1. La idcetisation en temps est de
type Euler implicite.

A n de comparer le moctle coupk 2D-2D au mockle eduit (ici 2D-1D) ceveloppe
au chapitre 2 il nous faut ceterminer lepaisseur de la coche limite introduite comme
parametre du mockle eduit au paragraphe 2.4.3. Cette @aisseur joue en e et un rble
essentiel sur l'ordre de grandeur du taux devaporation dliquidea l'interface. Le mockle
propos repose sur une approximation diagonale basseqigence d'un operateur de type
Steklov Poincae pour lequation de convection di usion stationnaire sur la fraction mo-
laire d'eau dans la galerie. La vitesse de convection este& par le pro | turbulent u;
incependant du temps. Ce calcul conduita uneepaisseur @ couche limite incependante
du temps et fonction de la coordonre« le long de la galerie.

A n devaluer la performance de l'algorithme de point xe et de comparer le moctle
2D-2D au mockle eduit 2D-1D trois cas tests sont consides. Le premier reprend grosso
modo les paranetres du cas test du paragraphe 2.4.2 avecedentes longueurs de galerie
et trois vitesses de ventilation (5, ®, 0.05 m s ). Le deuxeme cas test consicere une
galerie verticale avec deux types de roches et le troisentas test correspond a une
con guration de type ®chage avec un milieu poreux de pemabilie environ 1 Darcy et
des dimensions de l'ordre du netre.
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Chapter 1

Formulations of liquid gas
compositional Darcy ows with
phase transitions

Abstract : In this Chapter, three formulations of two phase composiihal Darcy ows
taking into account phase transitions are compared. The tdormulation is the so called
natural variable formulation commonly used in reservoir siulation, the second has been
introduced in [45] and uses the phase pressures, saturasand component fugacities as
main unknowns, and the third is an extension to general compitional two phase ows
of the pressure pressure formulation introduced in [4] in éhcase of two components. The
three formulations are shown to lead to equivalent de nitias of the phase transitions for
our gas liquid thermodynamical model. Then, they are compad numerically in terms
of solution and convergence of the Newton type non linear setvon several 1D and 3D
test cases including gas appearance and liquid disappearan The 3D discretization is
based on the Vertex Approximate Gradient (VAG) scheme [32] ahtakes into account
discontinuous capillary pressures.

1.1 Introduction

The simulation of two phase gas liquid compositional Darcyows is used in many ap-
plications such as the storage of carbon dioxide in saline wfgrs, the gas recovery in
petroleum reservoirs, the storage of gas in geological ieeés, or also the safety assess-
ment of geological radioactive waste disposals.

The numerical simulation of such models relies on a properfaulation coupling the
mole balance of each component belonging to the set of compots C, the pore volume
balance, and the hydrodynamical and thermodynamical lawsA major di culty is to
account for the phase transitions induced by the change of @be reactions assumed to
be at thermodynamical equilibrium. Many formulations havebeen proposed in the oil
industry (see [18] and the numerous references therein),damore recently for the mod-
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elling of liquid gas migration in deep geological formatiowaste disposal (see for example
[1, 4, 11, 37)).

The main objective of this Chapter is to compare three dieret formulations for
two phase gas @) liquid (1) compositional Darcy ows taking into account the phase
transitions.

The rst formulation is the so called natural variable formdation commonly used in
the reservoir simulation community and which has been intduced in [20], [21]. It is also
known as the switch of variable formulation since it uses atsef unknowns de ned by
the phase pressureg', p% the phase saturationss', s%, and the molar fractions of the
componentsc = (G )ioc in each phase 2 Q whereQ is the set of present phases at
each point of the time space domain. The s&), accounting for the phase transitions, is
typically obtained by a negative ash computation [59]. Ths formulation will be denoted
by PSC in the following.

The second formulation has been introduced in [45]. Its maiadvantage compared
with the previous one is to use a xed set of equations and a xkset of unknowns de ned
by the phase pressurep’, p?, the phase saturationss', s?, and the component fugacities
fi, 1 2 C. In this formulation the component molar fractionsc are expressed as functions
of the component fugacitied and of the phase pressures. It results that the component
molar fractions of an absent phase are naturally extended Itlye ones at equilibrium with
the present phase leading to a x set of unknowns and equatisn Another advantage is
that the phase transitions simply take the form of complemeary constraints which avoids
negative ash calculations. This formulation will be denoéd by PSF in the following.

The last formulation is an extension to general compositiah two phase ow of the
pressure pressure formulation introduced in [4] in the casd two components. This
extension is based on the use of fugacities in addition to thpdhase pressures in the spirit
of [45]. In this formulation, thanks to the extension of the pase pressure inthe absence
of the phase byp for = I;g, and to the extension of the capillary functionp(s') by
its monotone graph, the phase transitions reduce t¢ = (p.) (g ©) and no longer
involve inequality constraints. This formulation will be denoted by PPF in the following.

In the subsequent section, the three formulations are detad and their equivalence is
shown to hold under some assumptions on the fugacities. Advages and drawback of
each formulation are also further discussed.

Then, in the numerical test section, the three formulationsre compared in terms of
non linear convergence on several 1D and 3D test cases witmiiges of re ned meshes.
The 3D spatial discretization is based on the Vertex Approxiate Gradient (VAG) scheme
which has been introduced in [32] for di usion problems in herogeneous anisotropic me-
dia. The VAG scheme has been extended to multiphase Darcy ewn [33] and in [35]
in order to take into account discontinuous capillary presses at the interfaces between
di erent rocktypes using a pressure pressure formulationlt is basically a nodal dis-
cretization with an improved treatment of the heterogeneies of the media and of the
hydrodynamic laws compared with usual Control Volume FiniteElement methods for
multiphase Darcy ows [42].

The rst test case is a Couplex benchmark proposed by Andra [R(J11] simulating
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the drying by liquid suction of the geological barrier at theinterface with the ventilation
gallery. It will be simulated both in 1D and in 3D taking into account two rocktypes and
the anisotropy of the media. The second test case is a 1D testse which simulates the
drying of a porous media saturated with the liquid phase by gainjection which can arise
for instance in the nearwell region of carbon dioxide storag The third test case simulates
the migration of gas in a 3D basin with two capillary barriersn order to compare the
compositional formulations with highly contrasted capikiry pressures.

1.2 Formulations of compositional liquid gas Darcy
OWsS

The liquid and gas phases denoted respectively bynd g are assumed to be both de ned
by a mixture of components 2 C among which the water component denoted by which
can vaporize in the gas phase, and a set of gaseous compongr2sC n feg which can
dissolve in the liquid phase. The number of components is agsed to be at least 2.

For the sake of simplicity, the model will be assumed to be ige@ermal with a xed
temperature T, and consequently the dependence of the physical laws on teeperature

will not always be speci ed in the following. We willdenotefpc = ¢ ;i 2 C the vector

of molar fractions of the components in the phase = g;l with ;.. ¢ =1, and by p¢
and p' the two phase pressures. The mass densities of the phasesiareoted by (p ;¢ )
and the molar densities by (p ;c ), = g;l. They are related by

X
(pic)= ¢Mi (p;c);
i2C
whereM;, i 2 C are the molar masses of the components. The viscosities oé thhases
are denoted by (p;c), =g;l
The hydrodynamical Darcy laws are characterized by the relige permeability func-
tions k, (s ), for both phases = g;l, and by the capillary pressure functiomp(s'), where

s, = |;g denote the saturations of the phases witB% + s' = 1.
Each componeni 2 C will be assumed to be at thermodynamical equilibrium betwee
both phases which is characterized by the equality of its fagitiesf, , = g;I if both

phases are present. The fugacities of the components in thesghase are assumed to be
given by Dalton's law for an ideal mixture of perfect gas

f9=cp%i2C: (1.1)

A correction of typef? = ¢?p% (p? Te) for more general gas mixtures could also be readily
taken into account. The fugacities of the components in thequid phase are assumed to
be given by Henry's law for the dissolution of the gaseous coonents in the liquid phase

f] = qH;(Te): j 2 Cnfeg; (1.2)
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and by Raoult-Kelvin's law for the water component in the ligid phase [22]

e p) |

—@RT (1.3)

fe= CePsat(Te)eXp
where psat(Te) is the vapor pressure of the pure water. It is assumed in thelfowing,
in order to prove rigorously the equivalence between the tbe formulations, that the
liquid molar density in f| depends only on the liquid pressur@', and possibly on the
temperature Te. It will be denoted by '(p') in the following.

1.2.1 Natural variable formulation (PSC)

A classical choice coming from the reservoir simulation conunity [20], [21] is given by
the set of unknowns of the hydrodynamical and thermodynamat laws de ned by

Q;p;p%s;s%c; 2Q;

where the discrete unknownQ denotes the set of present phases taking the following
possible values

Q=fl;ggorfggorflg:

Then, the model accounts for the mole balance of each compoheé 2 C with phase

velocities given by the Darcy laws and a Fickian di usion of tb components in each
phase. It is closed by the pore volume balans® + s' = 1, the capillary relation between

the two phase pressures, and the thermodynamical equilibm stating the equality of the

fugacities of the present phases. We obtain the followingstgm for the set of unknowns
p;p%sistc; 2Q

8 X X
@ s ¢ +div ¢V s Diyrc¢g =0;i2C;
20 2Q
Rg p' = p(s);
s =1;
2Q (1.4)
§ =0. 6,
G =1, 2Q;

i2C

fl d;p%hp =19 &9p%p ;i2Cif Q= fl;gg;
together with the Darcy laws for the phase velocities

ACODEN.

V = g; 2Q:

The system (1.4) must be closed by an equation for the set ofgsent phase€ which is
usually obtained by a negative ash computation [59] at xedphase pressureg'; p? and
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xed component total molar fractions
P S
Z = _LCI’ i 2 C:
20 S

The negative ash computes the gas phase molar fractio 2 R, possibly negative, and
the gas and liquid component molar fractiong? and ¢ at equilibrium such that

8
%= %G+ 9g;i2C
% G =1, =gl

i2C (1.5)

fldiphp =19 &p%p ;i2C

d 0d 0i2C:

Then, the set of present phase® is de ned by

5 Q=fliggand 92]0;1];
or
Q=flgand ¢ O (1.6)
3 or

Q=fggand 9 1

In other words, the negative ash computes the solutiore?, ¢, 9 satisfying the ther-
modynamical equilibrium and the component total mole balate, and the signs of the
phase molar fractions 9 and '=1 9 provide the criteria for the phase appearance or
disappearance.

Let us give below a simpler de nition of the setQ that will be used to show the
equivalence of the natural variable formulation with the two other formulations presented
in the next two subsections. ForQ = flg, let us de ne the component molar fractions
in the gas phase in equilibrium with the component molar fraons in the liquid phase
(note that €9 di ers in general from c9)

(

|
CI psat (Te) Psat (Te) gy l((r:j) RpT) : L7
(Te) (3.7)
gg q Zile)l- i 2 Cnfeg;

and, for Q = fgg, the component molar fractions in the liquid phase in equbrium with
the component molar fractions in the gas phase (note that di ers in general from c)
(
— (P p) .
é epsat (Te)exp 'FZD')??T !
d = pg :j 2Cnfeg:

(1.8)

Then, the coupled system (1.4)-(1.6) is equivalent to the stem (1.4) coupled with the
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following simpler conditions on the set of present phas€x

8
% Q= fl;ggands?> 0;s' > 0;
i2C (1.9)

i2C
Proof: Thanks to our assumptions on the fugacities, the negative sh reduces to the
following Rachford Rice equation for the molar fraction oftie gas phase? (see [59])

X X (K gz
e 9y = ) =
£ 9) izc(qq c) 1+ 9K D)

:O’

with coe cients

_ Hj(Te)
K= ~
forj 2 C nfeg and
_ Psar(Te) (P p)
Ke= o P TI(P)RT

depending only onp', p? and T.
Let us de ne
C=fi2Cjz60;K;61¢g:

If C=;, this is a degenerate case for which both phases cannot betidguished and
hence can be considered as present for both formulations.
If C6;, let us de ne

Kmax = max Kj; Kmin = min Kj;
i2C i2C
and
— l - — 1 .
0o~ 1 Kmaxl 1 1 Kmin .

To x ideas, we will consider the caseg < 0 and ; > 1, the extension to the two other
cases o 1> 1, 0r 4 o < 0 is not dicult. It results that the Rachford Rice
function f ' is strictly decreasing and admits a unique solution® such thatc,  0,i 2 C,
= g;l on the interval ] o; 1[.

In order to prove the equivalence of the system (1.6)-(1.4)itlv the system (1.9)-(1.4),
let us consider the three case® = fl;gg, Q = flg, Q = fgg.

First if Q = fl; gg, then according to the system (1.4), the equilibrium equatns are
already satis ed which means thatc = ¢ for = 1;g and

9g9

9-p___ - -
=Ig S
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It is then clear (assuming a positive total number of moleshiat the condition ¢ > 0 and
'=1 9> 0in (1.6) is equivalent tos? > 0 ands' > 0 in (1.9).

Next for Q = flg, let us prove that tp,e gas appearance criteria® > 0 in (1.6) is
equivalent to the gas appearance criteria ;,. € > 1 in (1.9). In such a case; = ¢
which implies that X

f°(0) = g L
i2C
Using the monotonicity off " and 02] o; 4[, it results that the gas appearance criteria
9> 0is equivalent to X
0=f"(9<f™0)= e 1
i2C
The proof of equivalence for the cas® = fgg is similar to the caseQ = flg.

The system (1.4)-(1.9)-(1.7)-(1.8) is discretized usingfally implicit Euler integration
in time and a nite volume discretization in space (see subsgon 1.3.3 for the detailed
example of the Vertex Approximate Gradient discretization) The mobility terms are
upwinded with respect to the sign of the phase Darcy ux, andraharmonic averaging is
chosen for the Fick ux terms s (see [5],[20],[21] ).

The non linear system arising from this discretization is $eed at each time step by
a Newton Raphson algorithm coupled with a xed point update ofthe set of present
phasesQ in each cell using (1.9)-(1.7)-(1.8). In order to reduce theize of the linear
system to #C equations and unknowns in each cell, the set of unknowns idigpd into
# C primary unknowns and remaining secondary unknowns. This lgfing is done cell
by cell depending on the set of present phases in the cell inchua way that the Schur
complement is well de ned (see [20],[21],[33]). For our threodynamical system, to x
ideas letj, denote the component with the largest Henry constanti;,, then our set of
primary unknowns is de ned by

8

< pg;s';(f;iZCnfjl;eg for Q= fl;gg;
p%;d;i 2 Cnfeg for Q= flg; (1.10)
p%; ;i 2 C nfeg for Q= fgg;

which garantees the invertibility of the closure laws w.r.t the secondary unknowns pro-
vided that |
()

Hj, 6 psai(Te)eXp W (for Q = fl;gg)

which should not physically arise.

The main advantage of this formulation is to use the naturalet of unknowns for the
hydrodynamical and thermodynamical laws and to extend to altge class of compositional
Darcy ow models ranging from immiscibility to full miscibility (see [33]). On the other
hand, its main drawbacks are an additional complexity to ddawith sets of unknowns
and equations depending on the s&€, and the use of a xed point algorithm to compute
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the set of present phase® at each point of the space time domain. The e ciency of
this formulation has mainly been shown for reservoir simui@n test cases with complex
thermodynamics, two and tri phase Darcy ows, but with usudly small capillary e ects

and the use of a reference pressure in the thermodynamicahtst laws rather than the
phase pressures. In the next section it will be assessed aondpared with the two other

formulations on test cases with both strong or weak capillgre ects.

1.2.2 Pressures, saturations and fugacities formulation (PSF)

We recall in this subsection the formulation introduced in45] using a x set of unknowns
de ned by the phase pressureg', p?, the phase saturationss', s9, and the component

fugacitiesf = f;;i 2 C . The component molar fractionsc of each phase = I;g are

assumed to be de ned as the unique solution denoted ley p?;p';f of the system
f. c;p%p =fi2¢C: (1.11)

If the phase is present, ies > 0, the functione p?% p';f will match with the compo-

nent molar fractionsc . If the phase is absent, the functiore p?% p';f will match with

the extension of the component molar fractions by those in etjbrium with the compo-
nent molar fractions in the present phase as in (1.7) and (9.8This extension is clearly
arbitrary for the conservation equations since the componemolar fractions are always
in factor of the saturation or the relative permeability of he phase both vanishing for an
absent phase. On the other hand, the choice of this extensiwill a ect the convergence
of the non linear solver to the solution. In our case, thanksotour assumptions on the
fugacities, we simply have the following expressions of tlextended component molar
fractions:

8
cef - fe (P o) .
% e'e pgpf = psat(Te)eXp (P)RT 7
. . —_ fj L "
g PhPif = gyl 2Cnfeg (1.12)
é & pipif = L |
e ] ’ pg’

T ¢ popif = Lij 2Cnfeg:

Note that the PSF formulation can be de ned for more general fyacity models provided
that the equationsf = f (c ;p?% p') can be inverted for both phases = g;I. Finally, the
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set of equations obtained in [45] for the set of unknowms, pY, ', s9, f is de ned by

X
s g +div eV s D;re =0;i2C;
=gl =gl
I+ s =
I
pg 5= pc(s X (1.13)
e!s—Ol d 0s 0
RC
qgsg—01 g 0s' O

i2C
with the Darcy phase velocities

V = MK rp g ; :g’|

Its equivalence with the previous formulation is readily otained in view of (1.7), (1.8)
and (1.9), and settingc = e ifs >0, =g;l.

The space and time discretization is the same as for the preus formulation, and
the non linear system arising at each time step is solved by ami-smooth Newton algo-
rithm (Newton-Min) adapted to complementary constraints (ge [44], [38]). This is one
advantage of this formulation to t into the semi-smooth Newbn framework. The other
advantage is to lead to a x set of unknowns and equations. Newvkeless, the choice of
the secondary unknowns to be eliminated from the linearizesi/stem using the closure
laws is also as above dependent on the set of present phases. dar thermodynamical
system, as for the PSC formulation, lef, denote the component with the largest Henry

constantH;,, then our set of primary unknowns is de ned by

p%;s:fi;i2Cnfj;eg if s> 0ands?> 0,

pY;fi;i 2 Cnfeg if ss=0o0rs?¥=0; (1.14)

which again garantees the invertibility of the closure lawsv.r.t. the secondary unknowns
provided that
()
'(P)RT
The next formulation goes a step further since it eliminatesll the inequality con-
straints, and leads to a x choice of the secondary unknowns the linear systems.

Hj 1 6 Psat (Te)eXp

1.2.3 Pressures, and fugacities formulation (PPF)

The aim of the following formulation is to avoid any inequaties in the set of equations
while taking into account phase transitions. This has beerchieved in [4] for a liquid gas
two components model taking into account the dissolution dhe gaseous components in
the liquid phase. We propose below an extension of this forfation to compositional two
phase ows with an arbitrary number of components.
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The starting point is the formulation (1.13) of the previoussection based on the
de nition of the extended component molar fractionse p?%p;f , = I;g(1.12). The

next step is to extend the de nition of the phase pressures deted by p in the absence
of the phase writing that X

e (p%@:f)=1; =g;l
i2C
This de nition clearly matches with the phase pressur@ if the phase is present and
de nes an extension of the phase pressure if the phase is aldsen
To deal with phase appearance and disappearance, one extetiie graph of the cap-
illary pressure curve by its monotone graph ie by

s = 1,p:2 [pe(1); 1 [
to deal with the single phase liquid - two phase gas liquid tresition, and by
s'=0; pc 2 [pe(0);+1 [

to deal with the single phase gas - two phase gas liquid tratish. We will denote by p;
the resulting monotone graph and its inverse b'. Then, the equation

s'=S'(¢ ) (1.15)

together with the de nition of the extended pressures su ceto account for the phase
transitions. More speci cally, we will show that the system

8
s9+ s =1;
% X PP = pe(s):
g (p%p;f) 1s =0; =1lg;

i2C X (1.16)

g e (@%pif) L =1lg;
i2C
' S 0 =1gq;
and the system
8
3 s9+ ¢ =1;

X
2 q(hEi®=1; =lg;

i2C

lead to equivalent conditions on the physical unknowns deed by both saturationss?,
s, the pressurep = p and the molar fractions

c =e(E;p;®=¢e (@%p;f)
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for the present phases = I;g such thats > 0. This de nition also species the
correspondance between the component fugacitiesand f€ in the sense that

f=f (c;p%p)
and

=1 (c;%P)

forall =1;g suchthats > 0.

Proof : For both systems, the saturations are such thag9 + s' =1ands¥ 0; s O
Hence we will consider the three cases corresponding togi> 0 ands?=1 s > 0; to
(i) s =1and s¥=0; and to (i) s =0and s¥=1:

(i) if both phases are presentis' > 0ands?=1 s > O;thenp = g;p?= p9;f = f€
and the equivalence of the conditions on the physical unknow for both systems is
clear.

(i) If the gas phase is absent i = 1; s9 = 0; the physical unknowns are de ned by
the pressyep' = g and the liquid molar fractionsc' = €(p% p’; 1 = €(p% p';f)
such that ,,. ¢ = 1: In other words, givenp' and ¢ such that ,.¢ =1, we
need to prove that the condition onc, p'

X |
fp%pif) 1
i2C
with p = p' + p(1) and f = f'(c; p% p'), is equivalent to the condition
s p)=1;

P
with p? and  such that = ,c €/(%; ;) = 1; © = f'(c; % p): The inequality
(% p;f) 1is equivalent to
i2C

X X
% p;f'(cdip%hp)) 1= %t e%p)):

i2C i2C

It is easy to check in our case that the function

X
'(uy= fup;f'(c;up))

i2C
is non increasing. Hence the latter inequality is equivalerb
o=+ pe(D);
and hence to 1 =S'(p p'):
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(iii) If the liquid phase is absent ies' = 0; s9 = 1; the physical unknowns are de ned
by the preﬁsurepg = pY, and the gas molar fraction? = €9(pY; pﬂ;ﬁ) = &9(pY; p';f)
such that . ¢/ = 1: In other words, givenp? and ¢? such that . ¢’ = 1, we
need to prove that the condition onc?, p?

X
dp%pif) 1

i2C
with p = p? pc(0) and f = f9(c?; p%; p'); is equivalent to the condition
s'(p® #)=0;
P
yith P and € such that . €(p%g;® = 1; € = f9(c% p% g): The inequality

d(p%p;f) 1is equivalent to
i2C

X X
d(p%pfoc%p%p)) 1= d(p%E;fU;p%E)):

i2C i2C

It is easy to check in our case that the function

X
g%u) = d(p%u;f(c;p%u)

i2C

is non increasing (the molar density of the liquid phase is nalecreasing w.r.t. the
liquid pressure). Hence the latter inequality is equivalento

p?  p(0) = pl ﬁ ;

ieto0=S'(p? p):

Finally we obtain the following system of equations for the $@f unknowns g?; g'; f

8 X X
@ s g +div eV s Dyre =0;i2C;
% X =gl =gl
(e e f)=1; (1.18)
: -
: d(p%p:f)=1;
i2C
where
8
2 Vv = &B)k rp g; =gl
5 s9+§=1; (1.19)
- =8 B
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The same discretization will be used for this formulation a®r the previous ones. The two
main advantages of this formulation are the absence of inagjity constraints to express
the phase transitions, and the x set of unknowns and equatis. In addition even the
choice of the secondary unknowns can be xed, choosing twoed fugacities (for instance
fe and f;, with the largest Henry constantH;, (Te) provided that the condition

()
Hj, 6 psat(Te)eXp W
is satis ed). This means that a classical Newton Raphson algthm can be used with
also a simpli ed computation of the Jacobian. On the other haah this formulation also
increases the non linearities due to the composition of fulans which might increase the
sti ness of the non linear systems.

1.3 Numerical comparison of the three formulations

In this section, the PSC, PSF and PPF formulations are compad in terms of solution
and of non linear convergence on 1D and 3D test cases. In aBtteases, a sub-relaxation
of the Newton type solver is used. The relaxation parameter computed at each Newton
iteration by prescribing a maximum variation of the saturaton for the PSF and the PSC
formulations while a maximum variation of the capillary presure is prescribed for the
PPF formulation.

Note that the norm of the residual is computed as the sum overlalomponents of the
I* norm of each component mole balance equation residual. Themlinear convergence
criteria is prescribed on the relative norm of the residual elned by the ratio of the
residual norm by the initial residual norm.

1.3.1 One dimensional test cases
Drying by suction

This test case proposed by Andra [50] models the drying of gegical radioactive waste
disposal at the interface between the ventilation galleryral the porous media initially
saturated with pure water. We consider an horizontal one diensional domain (QL), with
L = 10 m, representing the storage in the neighbourhood of theallery located at the
right end x = L. The temperature is xed at T, = 300 K for the sake of simplicity. The
rock is considered to be the Callovo-Oxfordian argillitesQOx) of homogeneous porosity
= 0:15 and permeabilityK = 5 10 2° m?. The relative permeabilities of the liquid
and gas phases, and the inverse of the capillary pressure deened by the following Van

Genuchten laws

8 i I |
> 0 if s <s;

ey — 1 if sf>1 s9;
k()= p_ , r (1.20)
s 1 @ (¢Hyrmm if & & 1 s
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8
> 0 if s9<s9;

o .
ki) = | 1 s> 1S (1.21)
: 1 s1 (shrm if ¢ s9 1 ¢
and
1
S'p)=s+(1 s )— (1.22)
1+ ()N
(s)=P, & ™ 1°"; (1.23)
with
S = s s .
1 8 s

and the parametersm=1:49,m=1 % the residual liquid and gas saturations, = 0:40,
s¥ =0, and P, = 15 10° Pa (see Figure 11).

Figure 1.1: Left: relative permeabilities of the gas and ligd phasek,; = g;I function
of the liquid saturation s'. Right: capillary pressurep. (in Pa) function of s'.

The liquid and gas phases are modeled as mixtures of two compats water denoted
by e and air denoted bya. Their thermodynamical laws are de ned by the constant
liquid molar density ' = 1000=0:018 mol.m 3, the perfect gas molar density 9 = Rp__li’
with R = 8:314 J.K Y.mol !, and the constant liquid and gas viscosities' = 10 2 Pa.s,
and 9=18:51 10 ° Pa.s. The vapor pressure is de ned by the correlation

13:7 5120

Psat(Te) =1:013 16e” ™ in Pa; (1.24)

and the Henry constant of the air component is set téd, = 6:467 18 Pa. The Fick
di usion coe cients are xedto D¢=DZ2=10 "m?s !, andD. =D, =310 °m?s ™.
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The initial and left end conditions are de ned by a liquid phaes' = 1 composed of
pure waterc, = 1, ¢, = 0 at the pressurep' = p}, = 40 1¢° Pa.

At the interface with the gallery, the gas is de ned by its prasurep? = p! = 10° Pa,
its temperature T, and its relative humidity

_
Psat (Te)

It results that the gas molar composition is given by

Q= —Hrpsagt(TE)' =1 &
PC

1 a e
Assuming that the liquid phase is present at the interface, wdeduce from the thermo-
dynamical equilibrium that

=0:5:

r

1 Cng:Ha(Te)
H,

pb=p 'RTelIn( )

and
st=S'( p)>sy:

Since the solution exhibits a steep liquid pressure gradieat the right end, the mesh will
be locally re ned aroundx = L using the following family of meshes. Let

Xr<L;r> 1 x < X <L

be given parameters for the de nition of the mesh. Numberingie cells from right to left,
the rst cell [xy;L] is of size x; = X,; with leftend x; = L X1; and we set for the
cell Xi+1;Xi],
Xi+1 = Xi;  Xjs1 = X; Xi+1 -
Let N, be the last indexi such that Xx; > x; and x; > 0, we set
hXN1|
X|

N, = ; N = Ni+ Ny

L XNl

and x; = ” fori = N;+1; “N.
In the following numerical experiments we will consider th& following meshes

N=27 with r=2; x; =10 3  x, =05

N =60 with r=1:4 X, =10 4 x, =0:5=2;

N =126 with r=1:2 X, =10 % X, =0:5=4; (1.25)
N =265 with r=1:1; X, =10 %  x, =0:5=8;

N =559 with r=1:05 x, =10 ’; x, =0:5=16

The simulation is run over the time interval (Q T) with T = 10 years, an initial time
step of 1 hour, and a maximum time step of 30 days.
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Figure 1.2 exhibits the gas saturation, and the extended gasa liquid pressuresg?,
g at di erent times obtained with the mesh N = 559 and the PPF formulation. A zoom
at the right end is exhibited in Figure 1.3 showing the steep gdient of the liquid and
gas pressures at a scale of say 0.1 mm which justi es the usehd exponentially re ned
meshes. Figure 1.4 exhibits the extended air molar fraction ithe gas phases at nal
time with and without Fickian di usion for the liquid and gas phases. In view of the
position of the gas front at timet = 10 years exhibited Figure 1.2 in blue located at
roughly x = 5:3 m, and of the position of the air front (pink curve) without d usion, we
clearly deduce that the gas appear by vaporization of the watt rst. This is con rmed if
the di usion is added in the liquid phase only (blue curve). ih that case, the air component
di uses in the liquid phase and the vaporization of the liqud makes it appear in the gas
phase. With the di usion in the gas phase only, the position othe air front (red curve)
matches with the position of the gas front showing the domimé di usion compared with
the Darcy convection. The green curve exhibits the case witlhi usion in both phases.
In that case the air is di used in the liquid phase and the exteded air molar fraction in
the gas phase at equilibrium with the liquid phase is non zero
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Figure 1.2: Gas saturation, and extended gas and liquid presss g%, p at timest = 1
day, 1 month, 6 months, 1 year, 2 years, 4 years, and 10 yeardaded with the mesh
N =559 and the PPF formulation.
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Figure 1.3: Extended gas and liquid pressurg®, g at the gallery boundary at times
t = 1 day, 1 month, 6 months, 1 year, 2 years, 4 years, and 10 yeanistained with the
meshN = 559 and the PPF formulation.

Figure 1.4: Extended air molar fraction in the gas phase in the four cases (i)D' =

D9=0m?2s %; (i) D'=0m?s 1, D9=10 "m?s %; (i) D'=310 °m?s 1, D9=10 7
m?s?®; (iv) D'=310 °m?s !, D9=0m?s ! at time t = 10 years obtained with the
meshN =559 and the PPF formulation.

At the interfaces between two phase and single phase regipdiserences could appear
especially on coarse meshes between the discrete solutiohthe PPF formulation and
of the PSC and PSF formulations due to the extension of the msurep in the absence
of the phase used in the PPF formulation. To check this, the solutions olatined with
the three formulations are compared on the coarse melsh= 27 in Figure 1.5. The three
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solutions are almost the same, and we have checked that thekt di erences are due to

the regularization of the Van Genuchen capillary pressureif the formulations PSF and

PSC to avoid an in nite derivative at s' = 1. This regularization uses a continuous linear
extension fors' > 1 with = 0:005. It is not required for the PPF formulation since
it only uses the inverse of the capillary pressure function.

Figure 1.5: Comparison of the gas volume, the number of molektbe air component,
and the output volume of liquid at time t = 10 years obtained with the meshiN =27 and
the three formulations PPF, PSF and PSC.

Convergence to a stationary analytical solution . a stationary solution can be com-
puted for this test case assuming no dissolution of the gassocomponenta, and no
Fickian di usion. This solution is de ned by
(

pL+ 5 o) x 2 [05xi];

pP(x) = X x
O O = VR S LR
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( P(x) x2[0;%];

P = pr; X 2]x;L];

and

a0 = B0 " @ =1 @,

where the position of the stationary gas front is given by

DR (- T L
| = | g )
P PL+ (PeL)
with
Per =  'RTelog(H,);
and Z

u
(= k(S'(u)du:
0
This solution has been used to test the numerical convergenof the discrete solu-
tions obtained by the 3 formulations, and no signi cant di erences have been observed
between the three formulations. Hence the results are exh#xdl in Figure 1.6 for the PPF
formulation only showing the spatial convergence of the me volume scheme.

Figure 1.6: Convergence of the discrete gas saturatisth and liquid pressurep’ obtained
at large times to the stationary analytical solutions for tle family of uniform meshes
N =50;100 200 500 1000 and the PPF formulation. The results obtained with thewo
other formulations are the same.

Comparison of Newton convergence : the three formulations are compared in Table
1.1 for all meshes in terms of number of time steps, of time ptehops, and total number
of Newton iterations. The stopping criteria for the Newton algrithm is chosen as before
to be the relative norm of the residual of both mole balance agtions to obtain the same
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criteria for all formulations, and is set to 10’. Note that a special treatment of the initial
guess for the Newton algorithm at initial time had to be used faall formulations in order
to obtain the convergence of the rst time step. This is due tdahe incompressibility of
the liquid pressure and to the boundary condition at the ponas media gallery interface
exhibiting a large negative value of the liquid pressure. Beally the initial guess must
anticipate the gas appearance at the right boundary.

N PPF PSF PSC

27 | 132/0/344 | 132/0/316 | 132/0/319
60 | 132/0/355 | 132/0/329 | 132/0/335
126 | 132/0/361 | 132/0/354 | 132/0/371
265 | 132/0/408 | 132/0/433 | 132/0/404
559 | 132/0/435 | 132/0/496 | 132/0/567

Table 1.1: Number of time steps, of time step chops, and totabmber of Newton iterations
for the three formulations PPF, PSF and PSC and for each mesh.

From Table 1.1, it is clear that the three formulations have sughly the same e ciency
in terms of Newton convergence except for the nest mesh for wh the PPF formulation
is clearly better than the PSC formulation, and slightly beter than the PSF formulation.
Note that the same behaviour has been observed for increasechd steps, as well as
without Fickian di usion, as well as for modi ed values of then parameter of the Van-
Genuchten laws.

Drying by gas injection

In order to further compare the three formulations, we conder a test case including gas
appearance and liquid disappearance by injection of a dry gat the right boundary with
an imposed gas pressung® = 50 10° Pa.

The porous media is the horizontal one dimensional domain;(0), with L = 1000 m
of homogeneous porosity = 0:15, and permeabilityK = 10 2 m2. The temperature is
xed to T, = 360 K.

The relative permeabilities and the capillary pressure aragain given by the Van
Genuchten laws (1.20), (1.21), (1.22) with parametera = 4, sl = 0:4, s? = 0, and
P, = 10° Pa. The capillary pressure is extended linearly ts' = 0 between ©';p.) =
(S'(peo); Peo) and (s';pe) = (0; 2 peo) with peo = 4P, to account for the liquid disap-
pearance.

The liquid and gas phases are still modeled as mixtures of watand air components
with the same molar densities, viscosities, and vapor press as in the previous test case.
The Henry constant for the air component is here xed toH, = 108 Pa, and the Fick
di usion can be neglected compared with the Darcy convectio

The initial and left end conditions are de ned by a pure watediquid phases = 1
of compositionc, = 1, ¢, = 0 and pressurep' = 40 10° Pa. At the right end, the gas
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phases? = 1 is injected with the compositioncd =5 10 4, =1 ¢ and the pressure
p? =50 10° Pa.

The mesh is uniform with the number of cells denoted by, and the simulation is run
over the time interval (0; T) with T = 40 years, an initial time step of 1 hour, a maximum
time step of 5 days until the gas reaches the left end, and a maxum time step of 1 year
in the remaining of the simulation.

Figure 1.7 exhibits the gas saturation front at di erent times obtained with the PPF
formulation with N = 100. The gas hydrodynamic front propagates from right to i at
the beginning of the simulation until it reaches the left endnext, the liquid saturation
decreases to values close to the residual saturation copesding to the immobility of the
liquid phase, and the liquid begins to disappear at a largeimbe scale by vaporization of
the water and air components in the injected dry gas.

Figure 1.7: Gas saturation at times = 1, 3, 6 months, andt = 1, 2, 5, 10, 20, 30, 40
years obtained with the mesiN = 100 and the PPF formulation .

The solutions obtained with the three formulations are as ithe previous test case
compared on the coarse medN = 20 in Figure 1.8 which exhibits no signi cant di er-
ences.
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Figure 1.8: Comparison of the gas volume and the number of mslef the air component
as a function of time obtained with the mesiN = 20 and the three formulations PPF,
PSF and PSC.

Comparison of Newton convergence : We compare as in the previous test case the
di erent formulations in Figure 1.2. The non linear stoppingcriteria is the same as in
the previous test case. The pressure pressure formulatio®P, includes a modi cation
of the Newton algorithm compared with the previous pressurergssure formulation here
denoted by PPFR. This modi cation forces the Newton iterates to pass by the phse
transition points

g’ ﬁ = pe(1) or p’ pl = pc(0)

once at each time step and in each cell if a phase transitionabserved at this cell at this
time step during the Newton algorithm. We observe a considdske improvement of the
Newton convergence using this trick although it remains legscient than the two other
formulations.

It seems that the pressure pressure formulation has di cules in that test case to
deal with the gas phase appearance which was not the case floe previous Andra test
case. It may be due to the fact that in the previous test casehé gas front is governed
by capillary e ects (well approximated by Richards equatia), while here it appears by
transport of the air component.

35



N PPF, PPF, PSF PSC

20 | 192/12/1500| 158/0/686 | 158/0/527 | 158/0/519
40 | 224/18/2324| 169/1/943 | 165/0/677 | 165/0/678
80 | 272/31/3562 | 170/1/1192 | 166/0/900 | 166/0/900
160 | 431/74/6702 | 197/9/2098 | 166/0/1339 | 172/2/1477

Table 1.2: Number of time steps, of time step chops, and totaumber of Newton iter-
ations for the three formulations PPF, PSF and PSC and for eactmesh. The pressure
formulation PPF, includes a modi cation of the Newton algorithm compared with he
previous PPF, pressure pressure formulation.

1.3.2 Three dimensional test cases

In this section, the Vertex Approximate Gradient (VAG) discretization is introduced for
the PPF and PSF formulation of our gas liquid compositional mdel. The discretization
takes into account discontinuous capillary pressures in aer to capture the saturation
jump at di erent rocktype interfaces. Then, the PSF and PPF brmulations combined
with the VAG discretization are compared on two 3D heterogerous test cases.

In both test cases, we consider the gas liquid thermodynaralcmodel described in
section 1.2 with the three components carbon dioxide)( air (a) and water (e) with Mo-
lar masseM. =44 gmol 1, M, =29 gmol !, M. =18 g mol %, a constant temperature
Te = 300 K, the constant liquid molar density ' = 1000=0:018 mol.m 3, the perfect gas
molar density 9 = Rp—fe, with R = 8:314 J.K Y.mol %, and the constant liquid and gas
viscosities ' = 10 2 Pa.s, and 9 = 18:51 10 & Pa.s. The vapor pressure is de ned by
the correlation psx(Te) = 1:013 16e'37 5120°T pa, and the Henry constants of the carbon
dioxide andair components are set tdH(Te) = 10° Pa, and H,(Te) = 6:467 10 Pa. No
Fickian di usion is considered.

Note that the PSC formulation is no longer considered in thisestion since it is very
close to the PSF formulation for our gas liquid thermodynamsal model as exhibited by
the 1D test cases.

1.3.3 Vertex Approximate Gradient discretization

The Vertex Approximate Gradient (VAG) discretization [32]is a nite volume discretiza-
tion of di usion problem adapted to general meshes and hetgenous anisotropic media.
It has been extended to multiphase Darcy ows in [33] for congsitional models, and to
two phase ows with discontinuous capillary pressures in §3 in order to take into ac-
count accurately the saturation jump at the interfaces beteen di erent rocktypes using
a pressure pressure formulation.

Let us consider a polyhedral mesh and denote Iy the set of cellsK, by V the set
of verticess, by Vi the set of vertices of each ceK 2 M , and by M ¢ the set of cells
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sharing the nodes. Let
Xp=R" RY
denote the vector space of degrees of freedom of the VAG sckeimcluding nodal and

cell unknowns. The VAG discretization builds uxesVk.s connecting each celK to its
verticess 2 Vi and de ned for anyup 2 Xp by

X s;s0
VK;s(uD) = TKY (UK USO);
SOZVK

where .

Tk = (T;;S )sis%2v
is a symmetric positive matrix depending on the geometry ofhe cell K and on the
permeability tensorK .

The control volumes of the VAG discretization on which the mie balance of each
component is written, are de ned at each celKk 2 M and at each nodes 2 V n Vp
excluding the nodes with Dirichlet boundary conditionsVp. The VAG discretization
does not use the geometry of these control volumes but onlyeus to de ne the fractions

k:s O distributing the volume of each celK 2 M to its nodess 2 V nVp, constrained
to satisfy the condition X
1 K:s 0:

s2V k NVp

In practice, the choice of the fractions «.s is done in order to avoid the mixing of dif-
ferent rocktypes at nodal control volumes. This choice of éhcontrol volumes improves
the discretization of heterogeneous test cases comparethwisual Control Volume Finite
Element (CVFE) approaches.

Let U denote the unknowns of the compositional model with
U= pp;f
for the PPF formulation (dropping the tilde for conveniency, and
U= p%p;s%s':f

for the PSF formulation. Let us denote byUx the cell unknowns, byUs the node un-
knowns, and let us set

Up =(U) amv
and

Po=(P) 2wy :

For conveniency in the notations, the physical laws in bothofmulations will be consid-
ered as fonctions o) and denoted byc, (U) (dropping the tilde), (U), (U),and (U).
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The VAG discretization of two phase Darcy ows can be adaptetb take into account
the jump of the saturations at di erent rocktype interfaces The capillary pressures and
relative permeabilities are assumed to be cellwise condtamd denoted respectively by
p(x;s') and k, (x;s ). The inverse of the monotone graph extension pf(x;:) is denoted
by S'(x;:). The PPF formulation has the advantage to work directly wih phase pressures
as primary unknowns which can be considered continuous atetient rocktype interfaces.
Then, following [35], it naturally leads to de ne the discrée saturations as follows:

sk = S'(xk;pk Pk); sk =1 sk forallK 2M ;
Skis = S'(xk;pg P sks=1 scsforalls2Vyg;K2M:

In the case of the PSF formulation, the saturations, ands;, = g;l, are primary
unknowns and one capillary pressure curve denoted bys(:) must be prescribed at each
nodes 2 V among the curvep:(Xk;:), K 2 M 5. If p(s' = 1) = 0 for all rocktypes (no
entry pressure), all rocktypes among those in the celis 2 M § can be chosen, otherwise,
one must choose one rocktype with the lowest entry pressuréhaen, in order to account for

the saturation jump at di erent rocktype interfaces, the discretization uses the following
saturations at the interfaces

Skis = S' XiiPes(Sy) 7 Sks=1 spforalls2Vi;K2M:

The discretization of the Darcy uxes combines the VAG uxes the above de nition
of the saturations, and a phase by phase upwinding of the mdity terms w.r.t. the sign
of the ux:

Vil s(Up) = & (Ue'e ke (Xk38gs ) Viss(Po) + 9 :sVkis(Zo)

with the upwindings
Uc if Vies(Pp) * 9 ksVkis(Zo) O

up
U's U, else;
SUp = s if Vics(Pp) + 9 k.sVks(Zp) O
Kis S«.s else;
with the average density
(Uc)+ (Us),
K;s ™ 2 ’

and the vector of the vertical coordinates at all d.o.fZp = (z ) owv

With these notations, the discrete mole balance of each compmmt i 2 C in each
control volume writes for both formulations: givenu® = ( U°) ovyv  at initial time, nd

Ug E(U“) vy forall timest", n =1, N such that
% X Nix (UR)  nix (Ug 1) X X dopny — A - )
(1 K;S) K tn tn 1 + VK;s(UD) =0;K2M;
X s2Vk nVp 1 X Zgg s2V
Nk s(UD Nik s(UD i
3 L Str), tn"K'lS( s ) Vil (U3)=0;82Vn\Vp;
K2M s =gl K2M
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with X

Nk (Uk) = (Uc)sk 6 (Uk);
)=(9;I
r]i;K; S(US) = (US)SK;sCi (Us);
:%|
K = (x)dx;

K
and speci ed Dirichlet boundary conditionsU{ for all s 2 V. The mole balance equations
are completed by the following local closure laws in each ¢mi volume 2M[VnV p

which write 8
g + ghn
g:n I;n
% X p Y

1;
Pe; (s);
s U 1 =0; =gl
i2c X
s 0 WU 1, =gl

i2C

for the PSF formulation, and
X
¢c(U)=1; =gl
i2C
for the PPF formulation.

The non linear system is solved at each time step using a NewtBaphson algorithm.
For the PSF formulation, a Newton-Min algorithm adapted to conplementary constraints
is used [38]. For the PPF formulation, a usual Newton algorith is used combined with
the same trick as in the 1D drying by gas injection test caserfing the Newton iterates to
pass through the phase transition points. In both cases, the dabian system is reduced
to its Schur complement by elimination of the local closureivs which involves the choice
of secondary unknowns amony. This choice depends on the present phases in the case
of the PSF formulation and is xed to two fugacities in the cas of the PPF algorithm.

Then, the cell unknowns are eliminated of the linear systemitiout any Il-in using
the cell equations and reducing the linear system to the noddanknowns only.

1.3.4 Drying by suction

The 1D test case is extended to a 3D geometry using a radial rhedf the domain (Q L)
(re;re) (0;2 ) in cylindrical coordinates withrg =2 m and ro =10 m, L = 100 m.
The mesh is exponentially re ned at the boundary of the gally r = rg to account for
the steep gradient of the capillary pressure at the interf@& We consider two rocktypes,
corresponding to the Excavation Damaged Zone (EDZ) of COxrfg < 3 m, and to the
COx shale forr > 3 m (see Figure 1.9). The relative permeabilities and capithapressures
are given by the Van-Genuchten laws (1.20), (1.21), (1.22)jth the parametersn = 1:49,
sl =0:4,s9=0, P, =15 10° Pa for COx, andn = 1:54,sl =0:01,s? =0, P, =2 10° Pa
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for EDZ. The porosities are constant for each rocktype and egl to = 0:15 for COX,
and = 0:3for EDZ. The¢ absolute permeability tensor is heterogeneswand anisotropic

0O O

with K = @0 0 A, in the x;y;z Cartesian coordinates where is the vertical
0 0 i

coordinate andx the direction of the Gallery, =5 10 2° m? for COx and = 10

m? for EDZ. Note that the principal directions of K are not aligned with the radial mesh
excluding the use of a Two Point Flux Approximation for this tes case.

The initial and external boundary (r = re) conditions are de ned by a liquid phase
s' = 1 composed of pure waterc, = 1, ¢, = 0, d. = 0 at the hydrostatic pressure
p=py 'gzwith p) =40 10° Pa. At the interface with the gallery, the gas is de ned
by its constant pressurep? = 10° Pa, and its relative humidity function of x along the
gallery

cp? X
H (x) = — =0:3+ —:
9% o™ 2L
The gas molar composition is given by
(x) = —HF(X)ESH(T‘*): 40 = o = =,

We deduce from the thermodynamical equilibrium that

1 AX)pP=Ha(Te) R(X)P?=Hc(Te)

pP(x)=p° 'RTelIn( H, (x) );

and

s'(x)= S'(p° p(x) >s;:
This variation of the relative humidity along the gallery mimics the coupling of the ow
in the gallery with the Darcy ow in the surrounding porous melia.

The simulation is run over a period of 20 years with an initiatime step of 1000 s and
a maximum time step of 30 days on the meshe&s n, n with

N=N=nN =n

and n = 20; 30;,40,50,60. The linear systems are solved using a GMRes iterative s
preconditioned by an ILUO preconditioner with the stopping Gteria 10 © on the relative
residual. The Newton stopping criteria is xed to 10° on the relative residual.

Figure 1.11 exhibits the convergence of the volume of gas anfdtiee liquid volumic
out ow in the gallery as a function of time for the family of meshes. The curves are
plotted for the PPF formulation only since no visible di erence is observed between both
formulations. Figure 1.10 exhibits a transversal cut of thenal solutionss? and s9c for
both formulations and for the meshn = 60, showing only slight di erences in the shape
of the fronts between both formulations.
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Figure 1.9: Radial mesh fon = 20 with the EDZ rocktype in red.

Figure 1.10: Transversal cut of% and of s9cg at nal time obtained on the meshn = 60
for the PPF formulation (left) and the PSF formulation (right).
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Figure 1.11: For each mesh = 20; 30; 40, 50, 60: volume of gas in the porous media as a
function of time, and volumic cumulative out ow of liquid in the gallery function of time.

Table 1.3 exhibits the numerical behavior of the simulatianfor each mesh and for both
the PPF and PSF formulations. It is clear that both formulations are very robust for this
test case in terms of Newton convergence with an advantage toet PPF formulation for
the nest meshes which con rms the results obtained in 1D.

formulation | mesh | N ¢ | Nchop | Nnewton | Nomres | CPU(S) | cpu
PPF n=20 | 279 0 2.36 16.3 644
PPF n=30 | 279 2.38 23.5 2527 | 1.12
PPF n=40 | 279 2.41 314 6850 1.16
PPF n=50 | 279 2.42 41.1 14311 | 1.10
PPF n=60 | 279 2.47 58.3 29338 | 1.31

PSF n=20 | 279 2.33 16.0 690
PSF n=30 | 279 2.48 21.9 2807 | 1.15
PSF n=40 | 279 2.57 29.3 7493 | 1.14
PSF n=50 | 279 2.7 40.9 21304 | 1.56
PSF n=60 | 279 2.87 79.7 46985 | 1.45

OO0 00|00 o|lo

Table 1.3: For each mesh and both formulations PPF and PSF: ndrar N ; of successful
time steps, numberNch, Of time step chops, numbeNyewion Of Newton iterations per
successful time step, numbeédgyres Of GMRes iterations by Newton iteration, CPU time
in seconds, and scaling of CPU time (py) by CPU  cells cPu .

1.3.5 Migration of gas in a basin with capillary barriers

The second test case is designed to assess the numerical biehaf the two formulations
PPF and PSF with discontinuous capillary pressures. We coider the migration of gas
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inabasin (QL) (O;L) (O;H) with L = H =100 m, including two capillary barriers.
We consider a 2D geometry exhibited in Figure 1.14 which can blescretized using a 2D
mesh (3D mesh with only one cell in the y direction), and a 3D genetry exhibited in
Figure 1.17 discretized using a 3D mesh. In both gures the baders are exhibited in red
and immersed in a blue drain. The permeabilities are isotrapand equal toK =10 2
m? in the drain and to K =10 * m? in the barriers. The porosity is setto = 0:1 on
the whole basin.

The initial and top boundary (z = H) conditions are de ned by a liquid phases' = 1
composed of pure watec, = 1, ¢, =0, c¢. =0 at the hydrostatic pressure

P=p ‘oz

with p, = 15 10° Pa. At the bottom boundary z = 0, x2+ y? 2%, the gas is injected
at the constant pressurep® = 16 10° Pa, and with the relative humidity

cgp’

Hy = =0:5:
' psat(Te)
The injected gas molar composition is given by
H\ Psat (Te) . 1 q.
Cg = %&e, Cg = Cg = 5 e,

and the saturation is xed to s = 0:8. All the remaining boundaries are impervious.
The capillary pressures exhibited in Figure 1.12 are given ltlge Corey laws

p(s) = 10%log(s);
in the drain, and by

410 1Clog(s) if ' si;
in the barrier with p., = 4:025 168 Pa and s} = e %925, The entry capillary pressure
pe = 4 10° Pa is chosen to be larger than the gravity load below the rst arrier but lower
than the gravity load below the second barrier. The relativgpermeabilities are given by
the Corey laws

k (s)=(s)5 =gl
with zero residual saturations.

In view of Figure 1.13, the reference rocktype for the PSF foutation is chosen to
be the barrier rocktype. The reverse choice leads to round e@rrors in the simulation
leading to a wrong solution (at in nite accuracy, both choies should be equivalent since
pe(s' = 1) = 0 for both rocktypes in this test case).

The simulation is run over a period of 40 days with an initial ime step of 0.02 days
and a maximum time step of 0.1 days on a family of topologicgliCartesian meshes of
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sizesn 1 n for the 2D geometry (see Figure 1.14), witm = 16; 32, 64; 128, and of
sizes for the 3D geometry (see Figure 1.17) with= 16; 32, 48. The linear solver and the
non linear and linear stopping criteria are the same as in thgrevious test case. If the
Newton non linear solver does not converge after 25 iteratignthe time step is choped
by a factor 2, while the time step is increased of a factor 1.2tar a converged time step
until it reaches the maximum time step.

Figure 1.15 (resp. 1.18) shows the gas saturatich at nal time obtained by the PPF
and PSF formulations on the di erent meshes for the 2D (resp3D) basin. Figure 1.16
(resp. 1.19) shows the volume of air dissolved in the liquichpse function of time for both
formulations and for the di erent meshes of the 2D (resp. 3Dbasin. The equivalence
between both formulations does not hold at the discrete lelvdue to discrete interfaces
between single and two phase regions. Indeed, the extensajrthe pressure of an absent
phase depending on the formulation, the uxes at such inteates can also depend on
the formulation if the upwinding is on the present phase sideOne can only expect that
the solutions obtained with both formulations will converg to the same solution when
the mesh is re ned. This convergence can be observed in Figare 15, 1.18, 1.16, 1.19
especially on the 2D basin using meshes up to= 128. On the 3D basin, we have not
been able to re ne the mesh further thann = 48 due to too large CPU time with the
PPF formulation. Nevertheless, the convergence seems alsg@ood way for the 3D basin.

Tables 1.4 and 1.5 exhibit the numerical behavior of both fowulations showing the
good behavior of the PSF formulation while the PPF formulatin requires much smaller
time steps to solve the non linear systems especially whenetimesh is re ned. This
has been obtained with the improvement of the Newton algorith imposing the Newton
iterates to pass though the phase transition points of the gph S'. Without this modi-
cation, the simulation ends before nal time with a time step lower than the minimum
time step xed to 10 # days even on the coarsest meshes.

Figure 1.12: Inverses of the monotone graphs of the capillgpyessure in the barrier and
in the drain.
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Figure 1.13:s3... =1 S Lan (Pebarrier (1 St

| drzlain . I barrier
Sbarrier (pc:drain (Sdrain )) function of Sdrain .

. 9 | -
)) function of s ., aNd Sparier =

Figure 1.14: 2D geometry of the Basin domain with the two barrs in red and the
surrounding drain. Mesh 16 1 16 of the basin.
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Figure 1.15: Gas saturatiors? above the threshold 10° at nal time for the PPF (left)
and PSF (right) formulations on the meshes 32 1 32,64 1 64,128 1 128 of
the 2D basin.
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Figure 1.16: Volume of air dissolved in the liquid phase in th2D basin function of time
for both formulations PSF and PPF and for the family of meshes

Figure 1.17: 3D geometry of the Basin domain with the two barrs in red and the
surrounding drain. Mesh 16 16 16 of the basin.
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Figure 1.18: Gas saturatiors? above the threshold 10° at nal time for the PPF (left)
and PSF (right) formulations on the meshes 16 16 16, 32 32 32,48 48 48 of
the 3D basin.
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Figure 1.19: Volume of air dissolved in the liquid phase in th@D basin function of time
for both formulations PSF and PPF and for the family of meshes

formulation | mesh | N ¢ | Nchop | Nnewton | Nomres | CPU(S) | cpu
PSF n=16 | 405 0 2.92 134 35

PSF n=32 | 405 0 3.77 21.6 217 1.32
PSF n=64 | 405 0 4.75 37.6 1480 | 1.38
PSF n=128 | 409 3 6.28 66.7 11820 | 1.50
PPF n=16 | 405 0 3.93 13.5 46

PPF n=32 | 408 2 7.70 20.0 421 1.60

PPF n=64 | 525 | 61 17.65 31.2 6252 | 1.95
PPF n=128 | 1175 297 23.78 49.4 98549 | 1.99

Table 1.4: For each mesim 1 n of the 2D basin and both formulations PPF and PSF:
number N  of successful time steps, numbé&¥cnhy, Of time step chops, numbeN yewton
of Newton iterations per successful time step, numbéigyres Of GMRes iterations by
Newton iteration, CPU time in seconds, and scaling of CPU tim¢ cpy) by CPU
cells cpu ,
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formulation | mesh | N ¢ | Nchop | Nnewton | Nomres | CPU(S) | cpu
PSF n=16 | 405 0 3.87 24.8 781
PSF n=32| 405 0 4.72 48.7 10296 | 1.24
PSF n=48 | 407 1 5.34 74.7 49170 | 1.29
PPF n=16 | 407 1 5.96 24.7 1146
PPF n=32| 717 | 151 15.3 43.4 54205 | 1.85
PPF n=48 | 1803| 472 16.1 56.5 | 543706| 1.90

Table 1.5: For each mesim  n n of the 3D basin and both formulations PPF and PSF:
number N  of successful time steps, numbé¥cnhy, Of time step chops, numbeN yewton
of Newton iterations per successful time step, numbéigyres 0f GMRes iterations by
Newton iteration, CPU time in seconds, and scaling of CPU tim¢ cpy) by CPU
cells cpu |

1.4 Conclusion

In this Chapter three formulations of compositional gas ligid two phase ows with phase
transitions have been shown to lead to equivalent de nitiomof the phase transitions. They
have been compared in terms of non linear solver convergearel solutions on di erent
1D and 3D test cases involving gas appearance and liquid gipgarance. The VAG
discretization has been used in 3D taking into account disetnuous capillary pressures
to capture accurately the saturation jump at di erent rocktype interfaces.

On the drying by suction 1D and 3D test cases, the three formations lead to quite
similar results with a better behavior of the PPF formulation on the nest meshes. On
the other hand the PPF formulation has severe diculties to ceal with the gas phase
appearance and liquid disappearance in the gas injectiorstecases, both in 1D and 3D.
This di culty is due to the degeneracy of the inverse of the cpillary function S' at the
phase transition pointss' = 1 and s' = 0. The Newton convergence has been improved
by forcing the Newton iterates to pass through these phase trsition points, nevertheless
it has not been su cient to obtain large enough time steps onhie gas injection test cases
especially when the mesh is re ned. This drastic di erencefdehaviour of the PPF
formulation between the two test cases is probably due to thiact that the gas front is
dominated by the capillary e ect and well approximated by the Richards equation for the
drying by suction test case, while it is more dominated by th8uckley Leverett equation
and the gravity or pressure gradient terms for the gas injeicin test cases.

All together, the PSF and PSC formulations clearly outperfan the PPF formulation
for compositional gas liquid Darcy ows on our set of numeral experiments.

50



Chapter 2

Coupling of a liquid gas
compositional 3D Darcy ow with a
1D compositional free gas ow

Abstract A model coupling a three dimensional gas liquid compositiah Darcy ow
in a fractured porous medium, and a one dimensional compaeital free gas ow is
presented. The coupling conditions at the interface betweedhe gallery and the porous
medium account for the molar normal uxes continuity for eab component, the gas liquid
thermodynamical equilibrium, the gas pressure continuityand the gas molar fractions
continuity. The fractures are represented as interfaces cbdimension one immersed in
the surrounding 3D porous medium, the matrix. Pressure canuity is assumed for both
phases at the interfaces between the fracture and the matriXhe spatial discretization is
based on the Vertex Approximate Gradient (VAG) scheme in the grous medium coupled
with a non conforming control volume nite element discretzation in the gallery. This
model is applied to the simulation of the mass exchanges atethnterface between the
repository and the ventilation excavated gallery in a nuckr waste geological repository.

2.1 Introduction

Flow and transport processes in domains composed of a porousdimm and an adja-
cent free- ow region appear in a wide range of industrial andnvironmental applications.
This is in particular the case for radioactive waste deep gegical repositories where such
models must be used to predict the mass and energy exchangesuoing at the inter-
face between the repository and the ventilation excavatedalieries. Typically, in this
example, the porous medium initially saturated with the ligiid phase is dried by suction
in the neighbourhood of the interface. To model such physicprocesses, one needs to
account in the porous medium for the ow of the liquid and gas lpases including the
vaporization of the water component in the gas phase and thesdolution of the gaseous
component in the liquid phase. In the gallery, a single phasggms free ow can be consid-
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ered assuming that the liquid phase is instantaneously vapped at the interface. This
single phase gas free ow has to be compositional to accouat the change of the relative
humidity in the gallery which has a strong feedback on the liggd ow rate at the interface.

In this Chapter we consider a reduced model coupling a gasuid Darcy ow in
the porous medium with a 1D free ow in the gallery. It assumeghat the longitudinal
dimension of the gallery is large compared with its diametefThe liquid and gas phases
are considered as a mixture of two components, the water coonent denoted bye which
can vaporize in the gas phase, and the gaseous comporestanding for air which can
dissolve in the liquid phase. The matching conditions at theporous medium gallery
interface are a simpli ed version of those proposed in [49] &king into account the low
permeability of the repository. In this case, it can be assued that the gas pressure, and
the gas molar fractions are both continuous at the interfacdn addition, following [49, 6],
the thermodynamical equilibrium between the gas and liquigghases is assumed to hold
at the interface.

The ow in the porous medium takes into account the mass exchges between a net-
work of discrete fractures and the surrounding 3D porous mean, the matrix. Following
[2, 53, 12, 13] we consider the asymptotic model for which tfieactures are represented
as interfaces of codimension one immersed in the matrix doma The pressures at the
interfaces between the matrix and the fracture network aressumed continuous corre-
sponding to a large ratio between the normal permeability dhe fracture and the width
of the fracture compared with the ratio between the permealdy of the matrix and the
size of the domain.

The coupled model is formulated in terms of a single set of umdwns used in the
matrix, in the fracture network and in the gallery correspoding to the liquid and gas
pressures. Its discretization is based on the VAG schemernmtluced in [32] for the single
phase Darcy ow, in [36] for compositional Darcy ows, and if12] for two phase Darcy
ows in discrete fracture networks. The VAG scheme is roughlspeaking a nite vol-
ume nodal approximation. Its main advantage compared withypical nodal nite volume
schemes such as Control Volume Finite Element (CVFE) methods][& to avoid the mix-
ing of di erent material properties inside the control volunes. This idea is here extended
to take into account the coupling with the 1D free gas ow usig a 1D nite element mesh
non necessarily matching with the porous medium mesh.

In order to introduce the reduced model and its functional $&ng, we rst consider
a model problem corresponding to a single phase Darcy ow qaing the 3D ow in the
matrix, the 2D ow in the fracture network and the 1D ow in the gallery. The VAG
discretization is also rst described for this model probla using a non conforming dis-
cretization between the porous medium domain and the galier This non conformity is
necessary to allow for fairly general meshes at the interac. The convergence analysis
of the VAG scheme is performed for the model problem using tlggadient scheme frame-
work introduced in [32] and [29].
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The outline of the Chapter is the following: section 2.2 deslwith the single phase
Darcy ow. The geometry and the functional framework is intoduced in subsection 2.2.1
and the VAG discretization of this model problem is descriltkin subsection 2.2.3. The
gradient scheme framework is extended to this model problemsubsection 2.2.2 in order
to perform the convergence analysis of the VAG discretizatn in subsection 2.2.4. Two
numerical examples are provided in subsection 2.2.5 to coamnp the numerical convergence
and the error estimates of subsection 2.2.4. Section 2.3 exdls the model and its VAG
discretization to compositional ows. The formulation of he model uses a single set of
unknowns corresponding to the gas and liquid pressures baththe porous medium and
in the gallery. Then, our discrete model is assessed numatig in section 2.4 on three test
cases without fractures including a comparison with an appxonate stationary solution.
A more advanced model is also tested in subsection 2.4.3 udihg on the gallery side a gas
molar fraction at the interface and a normal di usion term béween the interface and the
gallery modelling the concentration boundary layer in thesrit of [48, 49]. The previous
model corresponds to the limit when the diusion coe cient tends to in nity. Then,
section 2.5 gives two examples including 1 and 4 fractures.nglly, we prove in section
2.6 the convergence of the scheme to a weak solution for a dired model coupling the
Richards equation in the porous medium with the 1D Poiseudl ow in the gallery. This
analysis also applies to the coupling between the Richardguation and a 1D convection
di usion equation in the gallery at given velocity which is arather good approximation
of the full model.

2.2 Model problem

This section deals with a single phase Darcy ow coupling a 3Darcy ow in the matrix,

a 2D Darcy ow in the fracture network and a 1D Darcy (or Poiseile) ow in the
gallery. The coupling between the matrix and the fracture rtevork uses the reduced model
introduced in [2] where the pressure is assumed continuoustlae interface between the
fractures and the matrix. In addition, the pressure is alsossumed continuous at fracture
intersections. We refer to [12] for a detailed analysis of s1model including a complex
network of planar fractures. The coupling between the Darcyw in the fractured porous
medium and the Darcy 1D ow is obtained assuming the continty of the pressure at the
interface between the porous medium and the gallery. This piies in particular that the
pressure at the gallery porous medium interface depends pmn the x coordinate along
the gallery. In the physical framework of this thesis, this mdel problem corresponds to
the stationary state where only the gas is assumed presentthre porous medium.

2.2.1 Geometry and functional setting

Let! andS ! be two simply connected polygonal domains & and = (0 ;L) (! nS)
be the cylindrical domain de ning the porous medium. The exaated gallery corresponds
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to the domain (O;L) S and it will be assumed that the ow in the gallery depends only
on the x coordinate along the gallery. Let us denote by = (QL) @ Sthe interface
between the gallery and the porous medium and by the trace operator fromH () to
L2(). We de ne on the coordinate system ( x;s) wheres is the curvilinear coordinate
along@S

Let + = ,,, r andits interior + = ¢ n@; denote the network of fractures
i , 121, such that each ¢; is a planar polygonal simply connected open domain
included in a planeP; of R3. It is assumed that the angles of ¢,; are strictly smaller than
2 ,that ¢\ ¢ =; foralli6j,andthat {\ @= ;.
Foralli?2l, letus set
8
% i = @t _ _
o= i\ ;] 21 nfig;
iop = i\(@n);
E i = i\ g
' N = in( j2infig i [ i;D[ i; );
and 8 S
3 = gi2t s
D — giz21 D>
N — 92| ;N s

()21 1i6j ij)N( ol )i
We refer to Figure 2.1 for an illustration of the notations in asimpli ed Cartesian geom-
etry.

Figure 2.1: Simpli ed Cartesian geometry with the porous madm domain , the gallery
(O;L) S, the interface , and 3 fractures ¢, i =1; ; 3, their boundaries v, 1.,
>N, 2D, 2 ,and their intersection .
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The spaceH?!( ) L?( ¢) is de ned as the subspace of functions with restriction
to ¢ in HY( ) forall i 2 I, and with continuous trace at fracture intersections. Let
us de ne the trace operators fromH?!( ;) to L?( ) and from H() to L?( ), both
denoted by  for convenience. Let; denote the trace operator fromH () to L?( ¢).

The space of solutions is de ned as follows

V=Ffu2HY() j fu2H'( ¢); u2HY();;@u =0g:

Note that in the above de nition of the spaceV, the fact that u 2 H1() and that
fu2 HY( ), u 2 HY() implies that fu= u. Keeping the same notation for

convenience, the trace operator mapsV to H(0;L). The subspace oV taking into

account homogeneous Dirichlet boundary conditions faron p, = @ n, for ;uon
b, and for u at x =0 and x = L, is denoted by

VP=fu2Viju=0on p; fu=0on p; u(@= u(L)=0g;

and endowed with the Hilbertian norm
Z Z Z,

kukyo = jr u(x)jfdx+  jrju(x)jfd (x)+  j@u (x)j%dx

f 0

=

wherer denote the tangential gradient operator. The following desity result is needed
for the convergence analysis.

Lemma 2.2.1 The smooth function subspace 6f° de ned by Cl, = C* () \ Vlisa
dense subspace &f°.

Proof : the proof is similar to the one presented in [13].

Let us de ne the following function space for the uxes.

8 _
q=(dm;Gr;G) 2 Hgiy( n 1) L) * L3O;L)j
% ?ere exists r¢(q);rq(q) 2 Lz(zf) L2(0; L) such that

NN ©

W= (Um rv+vdiv(gm)dx+ (g 1 sv+re(q) v)d (x) L ¢ (21

+  (@vV)+ rg(q) v)dx=0forall v2 V° ,
0

The uniqueness of r¢ (q);rq(q) is clear using liftings fromCZ (0;L) and from C ( + ),

i 21, to Cly. The function spaceW is an Hilbert space endowed with the following
scalar product: for all p;q) 2 W W
Z

hp;qiw = Pm Om +div(pm)div(gm) dx
2 .
+ Pr ds + re(p)re(q) d (x)+ ) Pgty + rg(P)rg(q) dx:
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Let ; 2 A denote the connected components ofn . Forall i 2 |, we can de ne
the two sides of the fracture ; and the corresponding unit normal vecton; at ;
outward to the sides . Each side corresponds to the subdomain; 2 A with possibly

+

i = . Forall gm 2 Hyj,( n),let gmj - n;j denote the two normal traces at

the fracture ; and let us de ne the jump opleratorH div( n) !'D q ¢;)inthe sense
of distributions by

|[qm ni]l = (qmj . n|+)J fi +(CImj i n; )J i :

In order to de ne a \smooth" function gubspace oW, we need to consider the set of
points (Rx)k2s such that®y 2 (O;L) and (fReg @3\ ds6 0. Then,forallk2 S , we
denote by Hy the Heaviside step function on (L) such that Hc(x) = 0 if x < R and
He(X) =1 0f x> R

For all 2 A let us denote byC} ( ) the set of functions' such that for all

x 2, there existsr > 0 such that for all connected component of the domain
fx 2 Ryjjxj<rg\ ,onehas j 2 C! (H)d
Then we set

9
% —(glgqxog)zqu 2CH( ) 2A5q6), 2CH ()i hi20; %

qu i n d|(X) Hk(x) 2 Cl [O l—])
i21 (fRg @3\ i
E quf, n,=0on ;qgij, n ,=0o0n n;i2l E

where, for alli 2 |, we denote byn , the unit vector normal to ; outward (and tangent)
to ;. Note that the de nition of W incorporates the physical assumption that the sum
of the normal uxes at fracture intersections as well as thearmal ux at the immersed
fracture boundary  vanish.

Lemma 2.2.2 The function spaceCy, is a dense subspace ¥ .

Proof : To prove that C}, is a subspace ofV, we need to check for alg 2 C} that
re(q);rg(q) satisfying (2.1)isinL?( ) L?(0;L). Letus consider the functionr; (q) 2

L2( ) such that
re(a)j  =div (dij ;) [Am nil (2.2)

foralli 2 I, where div, is the tangential divergence operator on¢; . Letrq(q) 2 DYO; L)
be de ned by

Z, Z, z x Z
. rg(q)'dx = . 0y @'dX (dm n)'d (x) (@rj  n)dl(x) (2.3)
i21 i;
for all ' 2 C? (O;L), using implicitly the extension' (x) = ' (x) for all x 2 . From

the de nition of CJ,, we deduce thatrg(q) 2 L?(0;L). Using that C} (0O;L) is dense in
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H3(O;L), that v 2 H}(O;L) for all v 2 VO and integration by part, it is easy to check
that q and the above de ned functions'; (q) and rq(q) satisfy (2.1).

From the Riesz representation theorem, for any linear form 2 W¢ there exista,, 2
L2(), Am2L2() % a 2L2( ¢), Af 2L2( ¢)? 1 a52 L%0;L) and Ay 2 L?(0;L) such
that for all q 2 W

z z

h; giwew = (Om Am+ am div(gm))dx + (g As + re(g)ar)d (x)
Z f (2.4)
+ . (yAg + rg(0)ag)dx:

Let us assume thath; giwow = 0 for all g 2 C,. Then, in order to prove the density
of Ck in W, it suces to prove that a, 2 V%, Ay = ram, & = fam, Ay = I &,
3, = am and Ay = @ay. From Lemma 8 in [13], it is already known thata, 2 H?(),
a 2 HY()with a,=0on@n, & =0on p,anda = tam,Am =" an, A = &.

Taking g = (0;0; qy) in (2.4) with gy 2 C* ([0; L]), it follows that ag 2 H(0; L) with
Ay = @ag. Next setting g = (qm;0;0) in (2.4) with qmj 2 C( )forall 2A,it
follows from the de nitions (2.3) and (2.2) ofry(q) and r; (q) that

z

(@m n)(am agd (x)=0;
which implies thatag = an,.

Model Problem

In the matrix domain n ; (resp. in the fracture network ), let us denote byK ,, 2
Lt () @ 9 (resp. Ki 2 L* ()@ D (@ D) the permeability tensor such that there exist

m _m>0(esp. ¢ _; > 0)with
i P (Km(X) ;) i j%forall 2R%x2

(resp. j j> (K¢(x) ;) ¢jj*forall 2R* 5x2 ).

We denote byd; 2 L ( ¢) the width of the fractures assumed to be such that there
existdy df > Owithd, di(x) o forallx2 ;.

Let us also denote by 4 2 L* (O; L) the pressure drop parameter in the gallery such
that there exist 7y _4 > O with _ g(x)  Tgforall x2 (O;L).

Let gm 2 L?(), o 2 L?( ¢), and gq 2 L?(0; L) denote respectively the source terms
in the matrix, in the fracture network, and in the gallery. L us consider the linear model
coupling a single phase Darcy ow in the fractured porous man with a single phase
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1D Darcy ow in the gallery: nd u2 V°andq = (gm;0ds;q) 2 W such that

8 .
div(dm) = Om;
% re(Q) = digrs
rg(d) = jSjdy
Om = Knruy; (2.5)
% o = GKiroopuy;
_ IS )
- o} = —@u:
g
Its variational formulation amounts to nd u 2 V° such that
Z Z
Knrurvdx+ dKir sur ¢vd(x)
Z, . f
S
v+ Plgua vadx (2.6)
z 0 79 zZ,

= Onvdx+ drgxr fvd(X)+ jSjgy v dx:
f 0

for all v 2 V°. The existence and uniqueness of a solution to (2.6) is relgdobtained
from the Poincae inequality and the Lax Milgram theorem.

2.2.2 Gradient scheme discretization of the model problem

The gradient scheme framework has been introduced in [329] to analyse the conver-
gence of numerical methods for linear and nonlinear secondier di usion problems. As
shown in [29], this framework accounts for various conformg and non conforming dis-
cretizations such as Finite Element methods, Mixed and Mixe#lybrid Finite Element
methods, and some Finite Volume schemes like symmetric MPFAgktex Approximate
Gradient (VAG) schemes [32], and Hybrid Finite Volume (HFV) schems [31]. Let us
also refer to [10] for an alternative general framework basen the concept of compatible
discrete operator for the discretization of di usion probéms on polyhedral meshes.

In this subsection, the gradient scheme framework is extead to the model problem
2.2.1. 1t will be used in subsection 2.2.4 to perform the coekgence analysis of the VAG
discretization introduced in subsection 2.2.3.

A gradient discretization D of (2.6) is de ned by a vector space of degrees of freedom
Xp, its subspace associated with homogeneous Dirichlet bouangl conditions X 3, and
the following set of linear operators:

Three discrete gradient operators:
rDm:XD! Lz() d,er :Xp ! Lz( f)d 1,anerg:XD! LZ(O,L)

Three function reconstruction operators:
Dm :Xp ! LZ(), D¢ :Xp! LZ( f)and Dy : Xp ! LZ(O,L)
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The vector spaceXp is endowed with the semi-norm

NI

kVDkD = kl’ DmVDkEZ() d + kl‘ Df VDkEz( f)d 1 + kl’ DgVDkEZ(O;L) ,

which is assumed to de ne a norm oX 3. Next, we de ne the coercivity, consistency,
and limit conformity properties for sequences of gradientiscretizations.

Coercivity : Let Cp > 0 be de ned by

k DmVDkLZ() + Kk D¢ VDkLZ( ‘) + Kk DgVDkLZ(O;L)
max :
06 vp 2X 2 kvp Kp

2.7)

Then, a sequence of gradient discretization®(),,n is said to be coercive if there exists
Cp > OsuchthatCpi  Cp forall | 2 N.

Consistency : For all u2 V%andvp 2 X3 let us de ne

Sp(U;vp) = kr p,vp I UK 2(ya+ KrpVp T tUK 2 ya 1+ Kr pVp @ UKL 20y
+ Kk Dm VD UkLZ() + Kk D¢ VD kaLZ( 0) + Kk Dy VD u kLZ(O;L);
(2.8)
and
Sp(u) = min Sp(u;Vvp): (2.9)
vp2X3

Then, a sequence of gradient discretization®(),, is said to be consistent if for all 2 V°
one has limy +; Spi(u)=0:

Limit Conformity : For all g = (gm;0s; Q) 2 W and vp 2 X3, let us de ne
z

Wp(g;vp) = (dm T VD + D, Vo div(gm))dx
i

+  (9r rp,Vo *re(Q) b, Vp)d (X) (2.10)
Zi

+ (%" pgVp + rg(d) pyVp)dx:
0

and

Wo(q) = max JWD(qm;qf;Cb;VD)J:

2.11
08vp2X 3 kVDkD ( )

Then, a sequence of gradient discretization®()»y is said to be limit conforming if for
allq2 W one has limy .1 Wpi(q) =0:
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Application to 2.2.1

The gradient discretization of (2.6) with homogeneous Dithlet boundary conditions is
de ned by: up 2 X3 such that
Z Z
Kml p,Up I p,Vp OX + diK¢r p,Up I p,Vp d (X)
f
+Z Ljijr Upl p,Vp dX
DgYD! DgVD (2.12)
L 9 z Z,

On bpnVD OX+  digr p, Vo d (X)+  jSjgy p,Vp dX;
f 0

for all vp 2 X3. Using the gradient scheme framework, we can state the follmg
propositions providing the well posedness and the error estates for (2.12).

Proposition 2.2.1 Let D be a gradient discretization of(2.6). Then (2.12) has a unique
solution up 2 X§ satisfying the a priori estimate
Co

kUD kD - —
min(_y,; _¢ 0 ; J%J)

kgmkiz() + kdrgrkiz( ) + jSjkggkizo)

Proof : For any solution up 2 X3 of (2.12), settingvp = up in (2.12), and using the
Cauchy Schwarz inequality, the de nition (2.7) of Cp, and the assumption thatk:kp
de nes a norm onX3, we obtain the a priori estimate and hence the uniqueness and
existence of a solution.

Proposition 2.2.2 Error estimates . Let u 2 V° be the solution of (2.6) and let us
set (dm:;0r; ) = ( Kmr u; dKsr u; j%"@u) 2 W. Let D be a gradient dis-
cretization of (2.6), and letup 2 X3 be the solution of (2.12). Then, there existCy; C,
depending only on m, 1, f, s, G, o, ’%‘ ’%‘ and Cs; C4 depending only orCp, m,

“mv fs 1 G, dy, B B such that one has the following error estimates:
—9

C1Sp(u) + CoWp (Qm; ar ; Og);

8
% kru r p,upkezya+kr ur pUpkez ye1+KQU r pUpKi.2p;)
% k Dm UD Uk|_2() + k D; Up kaLZ( ‘) + ku DQUDkLZ(O;L)

CsSp(u) + C4Wp (Om; a5 O)-
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Proof : Using the de nition of Wp and the de nition of the solution up of (2.12), we
obtain that for all vp 2 X §

Z Z
] Kmlrpo,Vo (rur p up) dx + di (X)K¢r p,vo (r fu r p,up) d (Xx)
A S f
+ B v @u robup) dx k VokoWo (gm:ar; p):
0 g

Let us introducewp 2 X3 de ned as
Wp = argminVszgSD(u;vD);

and let us set in the previous estimate, = wp  Up. Applying the Cauchy Schwarz
inequality, we obtain the rst estimate. In addition, from the de nition of Cp, we have
that

k Dm (WD UD)kLZ() + Kk D¢ (WD UD)kLZ( f)"‘ k Dg(WD UD)kLZ(O;L) CDkWD UDkD;

which proves the second estimate using the de nition ofrp .

2.2.3 VAG Discretization of the model problem

The VAG discretization [32] is a nite volume discretization of di usion problem adapted
to general meshes and heterogenous anisotropic media. Ihexe extended to our model
problem coupling the 3D Darcy ow in the porous medium, the 2DDarcy ow in the
fracture network and the 1D Darcy ow in the gallery.

On the porous medium side, we follow the discretization inbduced in [12] accounting
for general fracture networks. At the interface between tle porous medium and the
gallery, a non conforming discretization is considered tdlew for fairly general meshes at
the interface. A simple matching condition is used by impasg the jump ofu to vanish at
the nodes on the porous medium side located at the interface This simple strategy is
shown in subsection 2.2.4 to preserve the optimal order ofro@rgence provided that the
meshes in the gallery and in the porous medium satisfy comydatity conditions which
are not very restrictive in practice (see Proposition 2.2)3

Alternatively, we could investigate the use of a mixed formation with Lagrange mul-
tipliers at the interface in the spirit of Mortar methods [8] to avoid such condition on
the meshes. The main advantage of our approach is to avoid thelution of a saddle point
problem and to easily extend to compositional models.

We consider a conforming polyhedral mesh of the domain . LeM denote the set
of cellsK, V the set of verticess, E the set of edges, and F the set of faces , of the
mesh. We denote by the set of vertices of each ceK 2 M , by M ¢ the set of cells
sharing the nodes, by V the set of nodes and bye the set of edges of the face 2 F .
The setM s the set of cells shared by the face 2 F. We denote byV = V\ the
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set of nodes belonging to the boundary of the gallery, and by, = V\ p the set of
Dirichlet boundary nodes. In the following, for ad dimensional domainA, jAj will denote
the Lebesgued-dimensional measure oA.
It is assumed that for elgch face 2 F, there exists a so-called \centre" of the face
— 1 i i
X suchthatx = Cardwv) sv Xs The face is assumed to be star-shaped w.r.t. its

centrex which means that the face matches with the union of the triangles .. de ned
by the face centrex and each of its edge 2 E .

The porous medium mesh is assumed to be conforming with respé& the fracture
network as well as with the boundary@. In particular, there exists F ., F such that

Let us denote byF |, . the set of fracture faces sharing the nodg2 vV , = V\ ;.

A nite element 1D mesh is de ned in the gallery (QL) by the set of nodal points
0= Xg< <Xm < Xme1 < < Xm+1 = L and we sethm+% = Xm+1 Xm] for all
m=0; T My

The P; nite element nodal basis de ned on this 1D mesh is denoted by,,, m =
0; ‘my + 1.

Setting X, 1 = ImTIms forallm=1; ;mye 1, andx; =0, Xp, .1 = L, we de ne
the my 1D cellsky, = (X, %;xm+%).

The previous discretization is denoted by). Let us de ne the vector space

Xp,=fww 2R;vs2R;v 2R;K 2M ;s2V; 2F g

of degrees of freedom (d.o.f.) located at the cell centremdture face centres, and at the
nodes of the porous medium mesh, and the vector space

Xpy = fvm 2 Rim=0; ymy +1g;

of d.o.f. located at the nodal points of the gallery ((L) (see Figure 2.2).
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Figure 2.2: Simpli ed Cartesian geometry with the d.o.f. loated at the cell centres,
fracture face centres, nodes of the porous medium mesh, aridree nodal points of the
gallery (O;L).

The extension of the VAG discretization [32] to our coupled odel is based on con-
forming Finite Element reconstructions of the gradient opetors on , on ¢, and on
(0;L), and on non conforming piecewise constant function recdngtions on , on ¢,
and on (QL).

Forall 2F,letus rstdenethe operator I :Xp ! R such that

1 X

I (vp) = W(V) Vs,
s2V
which is by de nition of x a second order interpolation operator at poink .

Let us introduce the tetrahedral sub-mesil = fTx.. ;e2E; 2Fg;K 2 Mg of
the porous medium mesh, wher&y... is the tetrahedron de ned by the cell centerxg
and the triangle . For a givenvp, 2 Xp,, we de ne the function tvp, 2 CO() as the
continuous piecewise a ne function on each tetrahedron of such that +vp, (Xk) = Vk,

TVD,(S)= Vs, TtVp,(X )=V ,and tvp,(X o)=1ov)forallK 2M ,s2V, 2F
and °2FnF

f?

£

The nodal nite element basis of +Xp, isdenotedby , 2M[V[F | such that
(X )= .oforal ; °2M[V[F .
Then, we de ne for allvp, 2 Xp, the following gradient operators
I b, Vb, :XDp ! Lz() d such thatr Dm VD, = r TVD,, (213)
in the matrix, and
I b Vp, : Xp, ! L2( ¢)® *suchthatr p,vp, =1 ¢ 1Vp,: (2.14)
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in the fracture network. In the gallery, the gradient operadr r p, from Xp, to L2(0;L)
is de ned by
Vm+1

—meor all X 2 (Xm;Xm+1);m=0; TMmy: (2.15)

r DgVDg(X) = h .
m+ 1

In addition to these conforming gradient operators, the VAG&iscretization uses non
conforming piecewise constant reconstructions of functis from Xp_ into L?() and
L2( ¢), and from Xp, into L2(O;L).

Let us introduce the following partition of each celK 2 M

_ [ [
K

=1-_K I

K;s
sV n(Vo [V [V )

Then, we de ne the function reconstruction operator in the ratrix

v forallx2!k: K2M;

vs forallx2!gs s2Ven(Mp[V [V [);K2M: (2.16)

bm VD, (X) =

Similarly, let us de ne the partition of each fracture face 2 F | by

[ [

=T s

s2V n(\p [V )
and the function reconstruction operator in the fracture nevork by

v forallx2!; 2F ; (2.17)

Ds VD, (X) = ve forallx2!.s;s2V n(\p[V ); 2F :

In the gallery, the reconstruction operator is de ned by
Dy VD, (X) = Vi for all x 2 (x, 13 X %); m=1; ;my: (2.18)

Note that p, Vvp, does not depend owvs fors2V [V | and that p,vp, does not
depend onvs for s2V \V . This property of the operators p, and p, avoids the
mixing of the matrix and fractures in the control volumes loated at nodess 2 V ., as
well as the mixing of the porous medium and the gallery in cordl volumes located at
nodess 2 V . This is a crutial property to extend the VAG discretizationto the composi-
tional model taking into account the highly contrasted matdal properties or the di erent
models in the gallery, in the fractures, and in the matrix.

Finally, let us de ne the interpolation operator P reconstructing the valueus at point
xs for s2V as a function of the vector of d.o.fup, 2 Xp, in the gallery:

Mg +1
Psup, = m;sUm,
m=0
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with s = m(Xs). From this de nition of Ps, we can de ne the vector spaceXp of
discrete unknowns as the following subspace ¥b, Xp,

XD:f(VDp;VDg)ZXDp XngVS: PSVDg forall s2V g
Its subspace with homogeneous Dirichlet boundary conditis is denoted by
X3 =1fvw 2 Xpjvs=0Tforall s2Vp; and vy = Vp,+1 = 0Q: (2.19)

The previous gradient and function reconstruction operats will be applied on vectors of
Xp keeping the same notations for convenience sake.

The VAG gradient discretization is de ned by the vector spae of d.o.f. (2.19), by
the discrete gradient operators (2.13), (2.14), (2.15), dnby the function reconstruction
operators (2.16), (2.17), (2.18). Then, the VAG discretizeon of the model problem (2.6)
is directly given by (2.12).

In order to write the equivalent nite volume formulation of (2.12), let us de ne for
all up 2 Xp the matrix uxes

X 0
Vk: (up) = Te (ug U o); (2.20)
2 x

connecting each celK toitsd.of. 2 g with ¢ =V [ (Fk\F ,)and

Similarly, the fracture uxes de ned by

X 0
V.q(up) = T35 (u Uso); (2.21)
v

connect each fracture face to its nodess 2V where
Z

TS = kKer s 1 ¢ sod (X):

On the gallery side, we similarly de ne for allup 2 Xp the uxes
Viim +1(Up) = Trp 1(Um U ); (2.22)
connectingm to m+ 1 for all m =0; :my, where

jsi “omn dx

T = :
2 hfm% Xm g(x)

m+
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Let us set for the source terms in the matrix
Z Z

1
Omk = JI_KJ Ik On ()3 G = ksl "kis

Om (X)dX;

and .5 = "”'i—f‘ forall s2Vk n(V\p [V [V ,)and K 2 M . Similarly, we set in the
fracture network
1 z 1 z
% =i di ()gr (X)d (X);  G;; s = i

dr (x)gr (x)d (x);

§ -

and 5=l foralls2V n(Vp[V )and 2F

Then, the variational formulation (2.12) is equivalent to nd up 2 X3 satisfying the
discrete conservation equations in the porous medium

8 X X o
Vi; (up) =(1 K s)IKjOmk ; K 2M
)% K X s2Vk n(Vp [V [V {) X
V. s(Up) Vi; (up)=(1 9% 2F
sZVX K 2M X s2V n(Vp [V )
Vk;s(Up) = ksiKigmk; si s2Vn(Vo [V [V ); (2.23)
KM s KM s
Vk; s(Up) V. s(up)
K2M s o 2F s
= vl 1% 582V  n(Vp [V );
2F s
coupled with the conservation equations in the gallery fan =1; ;my
Xm+l:2_ ]
Vm;m +1 (UD) Vm Im (UD) = Jslgg dX
Xm 1=2
+ m;s VK;S(UD) + V; s(UD) :
s2V K2M s 2F .o

f

2.2.4 Convergence analysis of the VAG discretization of the
model problem

It will be assumed for the convergence analysis that the falyiof tetrahedral submeshes
T of the porous medium domain is shape regular. Hence we codsr the mesh shape
regularity parameter

hr

T =MaX —;
T2T T
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and the mesh size
ht = max ht;
T

wherehr denotes the diameter of the tetrahedrom and 1 the diameter of the insphere
of T. For the 1D mesh in the gallery we set

hp, = max h

1.
¢ m=0; ;mx«

m+ 1

Let us de ne the linear mapping_Dg from X3 to H3(0;L) such that

mg +1
DyVD = Um m(X)
m=0
and let us recall that
o, = @ p,:

Lemma 2.2.3 For all vp 2 Xp one has the estimate
k tvb  pyVpkiz( @@9(hr + hoy)Kr b VoKL 2(;):

Proof : Let us consider the pointsx, 2 (O;L), k =0; ;N such thatxo =0, xy = L,
Xk+1 Xk = hy for all k = 0; N  2,and 0< Xy Xy 1 hy. We consider
the overlapping decomposition of de ned by &y;Xk+2) @Sork=0; ;N 2. Let
k2f0;, ;N 2gbegiven,andletussemy =argmaxfm2f0; ;my+1gjXx Xm0,
My, = argminfm 2 f O; My +10jXks2 Xm@, and FX=f 2F | [Xk; Xk+2]
@38. Then, it follows that

k TVD _nglg(kEZ()

X - - - 2
i max Vg min Vin
2f Koo Mo 2f KMo
k2f 0, N 2gjmag>mpg+d gk ke kS me M Mek

X ka 1 V )
. 1 V

2hr (2hr +2hp,)i@$ Jmh—ml
K2f 0; N 2gjmay>m 14 +1 My m+ 3

: X jVmer  Vmj? . 5
4ht (2ht +2hp)j@$ Tho. 8j@ it (hr + hpy)kr p VpKiz(g:y:

1
m=0 m+ 3

Lemma 2.2.4 For all vp 2 Xp, there exists a constanC depending only on the fracture
network and on the domain such that

Kk f TVD _DgVDkLZ( ) C(hT + hDg)kr DgVDkLZ(O;L):
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Proof : the set is the union of a nite number of segments depending only ory and
. Let us consider such a segment denoted b{;xs,], and let us de neE, x,, = fe2

Eje [XgiXs]g mp=argmaxim2f0; ;my+1gjXs, Xmgandm,=argminfm 2
fO,  ;my+19gjXs, Xm0, Mmi(e) =argmaxfm2f0; ;my+1gjXs Xm; 8S2Veg
and my(e) =argminfm 2f0; ;my+1gjXs Xm; 852 Vg. It follows that

- 2
Kk f TVD X DgVDkLz(Xsl;XSZ)

IE] max Vim min Vi
_ m2f mi(e); ;m2(e)g m2f mi(e); ;mz(e)g
e2Ex s1Xsp jmz(e)>m 1(e)+1

X mé(e) 1 v v 0
i Bl (v +2ho)
€2Eyq x5y iM2(€>M 2(+1  mi(e) m* 3
me 1 ij+l ijz ~ ) .
2hT (hT + 2hDg) hm—1 = 2hT(hT + 2hDg)kr DgVDkLZ(O;L)'
m=my *3

For all u 2 C@o, let us de ne Pp,u 2 Xp, such that (Pp,U)m = U (Xm) for all m =
0, ;my+1,and Pp,u2 Xp, such that (Pp,u)s = u(xs) forall s2V, (Pp,u) = u(x )
forall 2F ., (Pp,u)xk = u(xx)forall K 2M .

Let us also de ne for allu 2 C\l,o, Ppou 2 X§ such that (Ppu)s = u(xs) foralls2 vnV ,
(Pou) =u(x )forall 2F ., (Pou)x = u(xg) forall K 2M , (Ppu)s = Ps(Pp,u) for
alls2V ,and (Ppbu),m = u(Xy) forall m=0; my + 1.

Lemma 2.2.5 For all u2 Cl,, there exists a constanC(u; 1) depending onu and
such that

h
Kr o, Pou 1 ukizgya  C(u; 1) hr + hp, n;gx(m) ’

N|=

whereh = maxsyy jXs XmgliXs Xm(sea] =~ With m(s) 2 f0; ;myg such that
Xs 2 [Xm(s);xm(s)+l ]
Proof : From Lemma 3.2 of [14], there exist two constant§(u) and C( 1) such that

X X 2
kr o, (Pou  Po,u)kZz, s C( 1) diam( ) u(xs) P s(Pp,u)

2F S%/
C(1)C(u)  h*diam( ):
2F

It is classical fromP; nite element approximation that there exists a constantC( t;u)
such thatkr p, Pp,u r ukzy« C( 7;u)hr. Combining the two previous estimates,
we obtain the estimate of Lemma 2.2.5.
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Lemma 2.2.6 For all u2 Cl,, there exist a constantC(u; 1) depending onu and
such that

. he .
kr Ds Ppu r kaLZ( ()d 1 C(U, T) hT + hDg eZIrE-n\%Xf (W) )
%
where he = MaXsyy, jXs  XmgliXs Xm(sea] ~ With m(s) 2 f0; ;myg such that
Xs 2 [Xm(s);xm(s)+1 ]

Proof : From Lemma 3.2 of [14], there exist two constant€(u) and C( 1) such that

X X 2
kr o, (Pou  Pp,u)kf, o1 C(7) u(xs) P s(Pp,u)
e2E \E fizve
C( 7)C(u) he:

e2E \E

It is classical fromP; nite element approximation that there exists a constantC( 1;u)
such thatkr p, Pp u r fUk 2¢ ye 1 C( 7;u)hr. Combining the two previous esti-
mates, we obtain the estimate of Lemma 2.2.6.

Lemma 2.2.7 For all u 2 C},, there exist a constantC(u; 1) depending onu and
such that

1
k Dm PDU Uk|_2() + k Dy PDU kaLz( ) C(U, T) hT + thgh-|2-

Proof : Let us prove for example the estimate for the matrix functio reconstruction
operator. From Lemma 3.2 of [14], we have the estimates

X X 2
k r(Pou  Pp,u)kz;  C(1) diam( ) u(xs) P s(Pp,u)
2F S?(/
C( 1)C(u) h*diam( )3:
2F

The proof follows from a classicaP; nite element approximation and Lemma 3.3 of [14].

The following Lemma follows from classicdP; nite element estimates.

Lemma 2.2.8 For all u2 C},, there exists a constanC(u) depending onu such that
k Dg Ppu u kLZ(O;L) + kr Dg Ppu @ u kLZ(O;L) C(U)hDg:

The following Lemma, which provides an estimate of the corssency error for smooth
solutions, directly follows from Lemmas 2.2.5, 2.2.6, 272.2.2.8.
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Lemma 2.2.9 For all u2 Cl,, there exists a constanC(u; 1) depending onu and
such that

h
Sp(u) C(u; 1) hy + hDg(l"'mz%X(m))
whereh = maxsyy jXs XmgliXs Xmer] — With m(s) 2 f0; ;Myg such that
Xs 2 [Xm(s);xm(s)+1 ]

N

Rem_ark 2.2.1 To obtain the rst order estimate of Lemma 2.2.9, it su ces that u is
C2(K) for each cellKk 2M and u 2 C?([Xm;Xm+1]) forall m=0; ;my. From the
de nition of W, and since the solution satis ey = SI@ u, in order to obtain such a

smoothness on the solution, one should clearly include the poiRisk 2 S in the 1D
mesh of(0; L).

We now state in the following Lemma an estimate of the conforitg error for uxes in
Cy -

Lemma 2.2.10 For all g = (gm;0s;q) 2 Cy, there exists a constan€(q; ) depending
on g and 1 such that

Wp(q) C(a; 7)(hrt + hp,):
Proof : Let q = (gm;0ds;q) be in CJ,. Let us de ne for all vp 2 X3
Z

Wp(g;Vp) = (dm r TVp+ 71Vp div(gm))dx
+ (g r ¢ tvo+ri(q) ¢+ TVp)d (X)

+ (@ b,V + rg(q) p,Vo)dx:
0
Using integration by parzt, we can derive that

Wp(q;vp) = (sz nN( tvo  peVp)d (x)
X _
+ (qu fii n |)( f TVD DgVD)dl(X):
i21 i;

It follows from Lemmas 2.2.3 and 2.2.4 that there exists a cstant C(q) such that

Wp(g;vp)  C(a)(hr + hp,)kr p,VpKi2p:):
Next, from Lemma 3.4 of [14] it follows that there exist€(q; 1)

jWp(a;vo) Wp(a;vp)j C(a; v)(hr + hp,)kvpkp;
Combining the two previous estimates, we can conclude theqmf of Lemma 2.2.10.

We can now state the main result of this section.
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Proposition 2.2.3 Let us consider a family of discretizationgD');,n such that there
exist constants ,  with 1 and max ¢ | (m) for all 1 2 N, where

N

h =max jx X ji X X i
Y JXs m(s)” S m(s)+l]

with m(s) 2 f 0, ;Myg such thatXs 2 [Xm(s); Xm(s)+1 ], @nd such thatlimy, .1 hyi =0
and limy; 4+1 hDg| =0.

Then, the corresponding family of VAG discretizations de ned in subsection 2.2.3 is
coercive, consistent and limit conforming in the sense of subsection 2.2.2 and hence con-
vergent.

Proof : The coercivity follows from Proposition 9 of [13] and fromhe classical estimate
K pyVboKL2(0:L) Lzkr pyVDKL2(0;L) fOr all vp 2 X 3. The consistency derives from Lem-
mas 2.2.9 and 2.2.1 and the limit conformity from Lemmas 210 and 2.2.2.

Remark 2.2.2 If the mesh is conforming at the interface in the sense that for all
s 2V there existsm 2 f O; ;my + 19 such thatxs = X, then one hash =0 for all
2 F in the previous proposition.

In addition, if the discretization is conforming in the sense that 1 Xp V and
by = 1, then, the terms in Lemmas 2.2.3 and 2.2.4 vanish. This is the case if, in
addition to the previous condition onV , denoting byV,, the set of nodes alon@ix,g
@S= fs;; s, 0in cyclic order, all the edgegsy;Sk+1), k=1; ;kn 1and(sg,S1)
belong toE.

2.2.5 Numerical examples

In order to ease the mesh generation, we consider in both testses the simpler geometry
of Figure 2.1 for which the porous medium is de ned by the domai = (0 ;1)3 and the
gallery is de ned by the domain (Q1) ( 1;0) (O;1) with longitudinal axis x. The
porous medium gallery interface is dened by =(01) f 0g (0;1).

For the rst test case the porous medium contains a single frage ; = f0:59
(0;1) (0;1) orthogonal to the axisx of the gallery (see Figure 2.3). Both the matrix and
the fracture are considered homogeneous and isotropic aned setk ,, = | anddi K¢ = 1.

Let us choose the functioru 2 V de ned by

H 1.
ycosi + y + z) + oSty jf x 7

uxiy;z) = ycos(l X+ y+ z)+ eoslt XV jf x> 2

The function u is solution of (2.5) (with non homogeneous Dirichlet bounag conditions
and right hand sides obtained fronu), if the ux

1
Qm;Qi;CQy = T u;r fu;, —@u
g
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is in the spaceCy,. We can check that this condition is satis ed for a constant lwice of
g > 0 dened by
2 sin(3)e”s)

sin(3)e®  sin() +sin(1)’

g:

The convergence of the VAG scheme to this solution is tested two families of meshes
(see Figure 2.3). The rst family is a family of uniform Cartegan meshes of the domain
of sizesn n nwith n=2;4;8;16 32 64;,128. The second family is the family of
tetrahedral meshes of the domain taken from the FVCA6 3D bencimark [34]. In both
cases the 1D mesh in the gallery contains the poirt= % and is uniform in both intervals
(0; 1) and (%; 1) with a total number of points roughly equal to 1.2 times thepower one
third of the number of cells of the mesh of the domain . We havehecked, for this choice
of the 1D mesh, that roughly 95 percent of the nodes of are natatching with the
nodes of the 1D mesh.

In all test cases, the linear system obtained after elimin@n of the cell and Dirichlet
unknowns is solved using the GMRes iterative solver with thgtopping criteria 10 ° and
a maximum Krylov subspace dimension xed to 1000 (not attaied in our tests). The
GMRes solver is preconditioned by ILUT [54], [55] using the tesholding parameter 10%.

The convergence of the sum of the relative?lerrors in the matrix, fracture and gallery
for the function and gradient reconstructions as a functiomf the number of degrees of
freedom after elimination of the cell and Dirichlet unknownss plotted in Figure 2.4.
Tables 2.1 and 2.2 exhibit in addition the number of unknownisefore and after elimination
of the cells and Dirichlet nodes, the number of non zero elente of the reduced Jacobian,
the CPU time in seconds for the linear solve and the order of meergence for the function
and gradient reconstructions. The order of convergence isroputed w.r.t. the number of
cells to the power one third.

We can checked that we obtain as expected for both families mieshes a rst order of
convergence for the gradient reconstructions. A second erdof convergence is obtained
for the function reconstructions which is classicaly bettehan the obtained error estimate.
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Figure 2.3: For the rst test case: third Cartesian mesh and st tetrahedral mesh of the
porous medium domain with one fracture orthogonal to the glary axis x.

Figure 2.4: For the rst test case and both families of Cartean and tetrahedral meshes:
sum of the relative L2 errors in the matrix, fracture and ga#ry for the function recon-
structions (u) and the gradient reconstructions (Grad) as dunction of the number of
degrees of freedom after elimination of the cell and Diriakti unknowns.
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mesh| cells | d.o.f. | red. d.o.f.| nzjac | erroru | errorr |orderu |orderr | cpu(S) | cpu
1 8 43 18 72 0.11 0.27 2.710%
2 64 211 74 852 291072 0.11 1.94 1.2 6.210% ] 0.40
3 512 | 1316 499 9.2k |7.310°%|3.710°2 2.0 1.7 1.110%|1.38
4 4k 9.2k 3.9k 90k [1.810°%[1.2107? 2.0 1.5 0.12 |1.16
5 32k | 69k 32k 798k | 4.610%|4.710°3 2.0 14 1.14 |1.08
6 262k | 540k 258k 6721k | 1.2104]2.210°3 2.0 11 10.3 | 1.05
7 | 2097k| 4260k| 2081k | 55182k|2.910°|9.410% 2.0 1.2 102 | 1.10

Table 2.1: For the rst test case and the family of 7 Cartesianmeshes: number of cells
(cells), number of unknowns (d.o.f.), number of unknowns t&fr elimination without Il in

of the cells and Dirichlet nodes (red. d.o.f.), number of norero elements in the reduced
Jacobian (nz jac), L2 error for the function reconstructiongerror u), L2 error for the
gradient reconstructions (errorr ), order of convergence for the function reconstructions
(order u), order of convergence for the gradient reconstructionsr@er r ), cpu time in
seconds for the linear solution (cpu), and scaling of cpu ten( ¢,,) by cpu  cells e,

mesh| cells | d.o.f. | red. d.o.f.| nzjac| erroru | errorr |orderu |orderr | cpu(s) | cpu
1 1.3k | 1.8k 275 2.6k | 8.410° 0.20 50103
2 11k | 13k 1.8k 23k [1.910%]8.910°? 2.1 1.2 55102 |1.12
3 100k | 120k 16k 231k |45104(3.9102%2| 1.95 11 0.72 | 117
4 220k | 260k 35k 513k [2.510%[2.810°2 2.2 1.2 1.7 1.09
5 428k | 505k 68k 1012k][ 1.810%4]2.2102 1.6 11 3.5 1.09
6 794k | 933k 125k 1889k[ 1.1104[1.8102 2.4 1.0 7.0 1.12
7 | 1175k| 1379k| 185k 2810k| 8.010°[ 1.6 102 2.3 1.2 11 1.15
8 | 1592k| 1864k| 250k 3815k| 6.710°|1.4102| 1.85 1.3 15 1.02

Table 2.2: For the rst test case and the family of 8 tetrahedremeshes: number of cells
(cells), number of unknowns (d.o.f.), number of unknowns t&r elimination without Il in

of the cells and Dirichlet nodes (red. d.o.f.), number of norero elements in the reduced
Jacobian (nz jac), L2 error for the function reconstructiongerror u), L2 error for the
gradient reconstructions (errorr ), order of convergence for the function reconstructions
(order u), order of convergence for the gradient reconstructionsr@er r ), cpu time in
seconds for the linear solution (cpu), and scaling of cpu ten( ¢,,) by cpu  cells e,

The second test case consider a single fracture = (0;1) (0;1) f 0:5g parallel
to the axis x of the gallery (see Figure 2.5). The families of meshes are aiped from
the previous ones by rotation and the 1D mesh in the gallery isniform with the same
number of nodes as in the previous test case.

Let us choose the functioru 2 V de ned by

ycosi + y + z) + €Sty jf z
ycosk+ y+1 z)+ ety jf z >

u(x;y;z) =

NN
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and setK , = 1 anddi K¢ =1, 4=1. Since the ux

m;Qe;Gg = T U;r U @Qu
is in the spaceC},, the function u is solution of (2.5) with non homogeneous Dirichlet

boundary conditions and right hand sides obtained from. The results exhibited in Figure
2.6 and in Tables 2.3 and 2.4 are similar than for the previousst case.

Figure 2.5: For the second test case: third Cartesian mesh andt tetrahedral mesh of
the porous medium domain with one fracture parallel to the diery axis x.
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Figure 2.6: For the second test case and both families of Casian and tetrahedral meshes:
sum of the relative L2 errors in the matrix, fracture and gad#ry for the function recon-
structions (u) and the gradient reconstructions (Grad) as dunction of the number of
degrees of freedom after elimination of the cell and Diriakti unknowns.

mesh| cells | d.o.f. | red. d.of.| nzjac | erroru | errorr |orderu |orderr | cpu (S) | cpu
1 8 43 18 87 0.10 0.26 2.810%
2 64 211 74 869 |25102|6.510°? 2.1 2.0 8.8104|0.55
3 512 1.3 499 9.3k [6.310°%|2210°2 2.0 15 95103 | 1.14
4 a4k 9.2k 3.9k 90k |1610°%|8910° 2.0 1.3 0.13 |1.27
5 32k | 69k 32k 798k | 4.010%|3.110°3 2.0 15 1.2 1.07
6 262k | 540k 258k 6723k [9.910%|1.410° 2.0 1.2 11 1.05
7 | 2097k| 4260k| 2081k | 55183k|2.510°|6.210% 2.0 11 104 | 1.08

Table 2.3: For the second test case and the family of 7 Cartasimeshes: number of cells
(cells), number of unknowns (d.o.f.), number of unknowns t&fr elimination without Il in

of the cells and Dirichlet nodes (red. d.o.f.), number of norero elements in the reduced
Jacobian (nz jac), L2 error for the function reconstructiongerror u), L2 error for the
gradient reconstructions (errorr ), order of convergence for the function reconstructions
(order u), order of convergence for the gradient reconstructionsr@er r ), cpu time in
seconds for the linear solution (cpu), and scaling of cpu ten( ¢,,) by cpu  cells e,
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mesh| cells | d.o.f. | red. d.o.f.| nzjac| erroru | errorr |orderu |orderr | cpu(s) | cpu
1 1.3k | 1.8k 275 2.6k | 5.810° 0.14 6.110°3
2 11k | 13k 1.8k 23k [1.4103%[6.610°? 2.0 11 6.2102]1.09
3 100k | 120k 16k 231k [3.810%[3.310°2 1.8 0.9 11 1.30
4 220k | 260k 34k 513k [2.110%[ 251072 2.3 11 1.8 0.62
5 428k | 505k 67k 1012k][ 1.6 104 ]2.1 102 1.2 0.8 3.9 1.16
6 794k | 932k 125k 1889k | 8.910°| 15102 2.8 14 7.0 0.95
7 | 1175k| 1378k| 185k 2809k | 6.210°|1.410° 2.7 0.55 10 0.91
8 | 1592k| 1864k| 250k 3815k| 5.410°|1.210° 1.5 1.6 16 1.55

Table 2.4: For the second test case and the family of 8 tetratiial meshes: number of cells
(cells), number of unknowns (d.o.f.), number of unknowns t&fr elimination without Il in

of the cells and Dirichlet nodes (red. d.o.f.), number of norero elements in the reduced
Jacobian (nz jac), L2 error for the function reconstructiongerror u), L2 error for the
gradient reconstructions (errorr ), order of convergence for the function reconstructions
(order u), order of convergence for the gradient reconstructionsr@er r ), cpu time in
seconds for the linear solution (cpu), and scaling of cpu ten( ¢,,) by cpu  cells e,

2.3 Extension to the Compositional Model

2.3.1 Compositional Model

Let = g;l denote the gas and liquid phases assumed to be both de ned bynature of
two components, the water component denoted bgwhich can vaporize in the gas phase,
and the gaseous componerd standing for air which can dissolve in the liquid phase.
The generalization to the case oN components is straightforward following Chapter 1.
Following [11] (see also Chapter 1 or [47] for the case dfcomponents), the gas liquid
Darcy ow formulation uses the gas pressur@’ and the liquid pressurep as primary
unknowns, denoted byU = ( p% p') in the following. In this formulation, the component
molar fractions of the gas and liquid phases are de ned by senfunctionsc (U) of the
phase pressures such that (U) + c,(U) = 1. Consequently the molar and mass densities,
as well as the viscosities can be de ned as functions dfand will be denoted by respec-
tively (U), (U), (U)for =g;l

In the matrix domain n ; let us use the following notations:

The saturationss are given by the functionsS,, (x;p;) of the capillary pressure
pe=p® P with S (x;pc) + S§(x;pe) = 1.

The relative permeabilities are denoted b, (x;s ) for = g;l.
The porosity is denoted by ,(x), and the permeability tensor byK , (x)

Similarly, in the fracture network ; let us use the following notations:
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The saturations are given by the functionsS; (x; pc) of the capillary pressure with
Si(x;pe) + SP(x;po) = 1.

The relative permeabilities are denoted by (x;s ) for = g;l.

The porosity is denoted by ¢ (x), the fracture width by d; (x), and the tangential
permeability tensor by K ¢ (x).

Following [12], it is assumed that both phase pressures arentinuous at the matrix

fracture interfaces such that the pressures in the fractuneetwork are de ned by ;p for

= g;l. Then, the Darcy velocities in the fracture network is obtaied for = g;I by
the reduced model

Kee OGS (1 (P P)))

Vi = ) di ()K¢(x) ' p (tU)g ;
whereg denote the gravity vector,g = g (g n)n) with n a unit normal vector to the
fracture. At fracture intersections , for = g;l, it is assumed that the pressures;s p

are continuous and that the normal uxes of the Darcy velocies V; sum to zero. At
the immersed fracture boundaries y, the normal ux of the Darcy velocity V; is also
assumed to vanish.

In the matrix domain, the Darcy velocities are classicaly deed by

_ ke OGSn(® P))
" (V)

\ Km(x) rp (U)g ;

for both phases = g;l.

In the gallery, the primary unknowns, depending only on the coordinate along the
gallery and on the timet, are the gas pressure and the gas molar fractionsc = ( C; Cy).
The gas ow model is de ned by a No Pressure Wave (NPW) [57] isothmal pipe ow
model. In connection with the previous model problem, we asse that the velocity in
the gallery is given by

w = ! Q@p;
g(X) ’
corresponding to a Poiseuille ow. A more general pressureop law such as the Forc-
cheimer law to x ideas

q
5+4 gJ@pJ @p

2 4 j@p’

with  4(x) > 0, 4(x) > O, will be considered in the discretization subsection 223.

At the interface between the gallery and the porous mediumhe coupling conditions
are an adaptation to a 1D con guration for the free ow to thos stated in [49]. Compared
with [49], the gas pressure jump pY at the interface is neglected since a small ow

w = h(@p) =
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rate between the porous medium and the gallery is assumed dwoethe low permeability

of the disposal. Hence the coupling conditions account rsof the continuity of the gas
phase pressurg@? = p. Second, as in [49], we impose the continuity of the gas molar
fractions c® = c¢. Third the thermodynamical equilibrium between the gas phse and the
liquid phase at the interface is assumed. All together, we dhin the following coupling
conditions at the interface

g

p
d( U);i = g a: (2.25)

Y
G
Using these coupling conditions (2.25), we can formulate tHED free ow model in the
gallery using the same unknowiJ as in the porous medium.
For = g;l,i = e;a let us denote the number of mole per unit matrix volume by
X
Nim (X;U) = (VSn(x;p°  P)g (V)
=gl

and the number of mole per unit fracture surface by

X
Nir (x; 1U) = (WS (P Pa (L)

=gl
For = g;l,i = e;a let us denote the mobility of the component in phase by

Kem (6 S (X509 P')
(V)

Mim (X;U) = (V)G (U)
in the matrix, and by

kr;f (X; Sf (X; f(pg pl)))
(+VU)

mis (X; fU)= (tU)g (V)
in the fracture network.

We can now state formally the formulation of the model couptg the 3D gas liquid
Darcy ow in the matrix domain, the 2D gas liquid Darcy ow in t he fracture network, and

the 1D free gas ow in the gallery. The model amountsto ndJ = (p%;p) 2 L2 O;T;V
L2 O;T;V and (ga;de) 2 L2(0; T; W)  L2(0; T; W) with ¢ = (Omi; i ;i) | = &€
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such that for all i = a;eone has
8 )
m @im (X; U) +div( gm;i) = 0
¢ 0f @i (X;U)+ re(qi) = 0;

X jSi@ °( U)d( U) +rg(qi) =0;
rni;m (X;U)Km rp (U)g = qm;i; (2 26)
X =gl :
M (X; fU)deKe 1 ¢p (+U)g =0,
=g .
S v veee = w;

together with initial conditions in the matrix, the fractur e and the gallery domains, as
well as Dirichlet boundary conditions at 5, p and at both sides of the gallery.

2.3.2 VAG discretization of the compositional model

The VAG scheme has been extended to multiphase Darcy ows iB¢] for compositional
models. In [35] it is adapted to the case of discontinuous dl@ry pressures using a phase
pressures formulation in order to take into account accuraty the saturation jump at the
interfaces between di erent rocktypes. This motivates thehoice of the phase pressures
as primary unknowns in our model. In [12] it is extended to thease of immiscible two
phase Darcy ows in discrete fracture networks coupling theow in the fractures with
the ow in the surrounding matrix. The current discretization combines ideas of [35] and
[12] and extend them to compositional models and to the coupd with the 1D free gas
ow.

Let us de ne Up = (p3;p5) 2 (Xp)? as the vector of the discrete unknowns of the
coupled model (2.26). The discretization of the Darcy matxi uxes for each component
i = e;acombines the VAG uxes and a phase by phase upwinding of the mitity terms
w.r.t. the sign of the ux

VK;;i (UD) = mi;m (XK;UK;?Jp) VK; (pD)+ g K; VK; (ZD) ,
foral K 2M , 2 , with the upwinding

U = Y if Vi (Pp)* 9k W (z0) O
K; U else;

the averaged density ,, = —*2 ) "and the vector of the vertical coordinates at all
dof.zp=(z; 2M[V[F ).
Similarly, the discretization of the Darcy fracture uxesbr 2 F

by

.»S2V isdened

V;;is (Up) = mys (X ;UP) Vis(Pp) + 9 . 5Vis(20)
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with the upwinding

P = U if V.s(pp)+ 9 .¢V:s(zp) 0
8 Us else;
and the averaged density . ; = —&25 (5],
The VAG uxes in the gallery (2. 22) are extended to the DarcyForchheimer law using
a one quadrature point formula as follows

Vi 1. (8) = 1IN oCtme )i o0t 1051 08 (i)

. P P
= JSIh  g(Xme1)i g(Xps 2); b0
2 2 hm+%

and the discretization of the Darcy-Forchheimer uxes for &h componenti = e;ais
de ned by

Vm;m+l;i(UD): g(Uu +1)qq(Uu +1)me+1(pD)
with the upwinding

Uup — Um; if Vm;m +1 (pgD) 0;
mim 1 Uns+1; else;

forall m=0; Tmy.

For N 2 N, let us consider the time discretizatiot® =0 <tl< <t 1<t <
tN = T of the time interval [0; T]. We denote the time steps by t" = t" t" ! for all
n=1, N

The initial conditions are given in the porous medium byu® = (p?. ;pl; ) for all

2M[F [ Vn(Vpb[V ) . Inthe gallery, they are de ned forallm=1; ;my by
p%;o = pigni;m ’ and plmoﬁ plnlm . R )

Letusset x« = , m(X)dx and = ¢ (X)df (X)d (x). The system of discrete
equations in the porous medium at time steg" accounts for the discrete molar con-
servation of each component = e;ain each control volumeK 2 M, 2 F ., and
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s2Vn(\p [V ),
8

o X ) D O UR) N oD
K;s) K tn
Y2V Vo IV )
+ Vil (US)=0;K 2M ;
=gl 2 «
L X nie (X ;UM nig (x ;UT D)
( iS) tn
X2 olV ) X
+ V.5 (Up) Vil (U5) =0; 2F ;
=g;l s2v K 2M
Nim (Xk ;3 UD)  Nim (X3 UD 1)
K;s K tn
K2is X .
Vi ((U3)=0;s2Vn(Vp [V [V ,);
=g;lK2M s
Nig (X ;UD)  nig (x ;U2 1)
;s tn
ZFXf ;s X ) X )
Vii's(UD) + Vig(Ug) =0;s2V , n(Vp [V );
=gl K2M ¢ 2F s

together with the Dirichlet boundary conditionsUZ = ( pg; p.) for all s 2 V. This system
is coupled to the equations in the gallery at time step’ accounting for the discrete molar
conservation of each componert= e;a

S(Un)e(Un)  9(Uq Hd(Us 1)
tn

JKm]

+ Vm;m +1;i (US) Vm 1;m;i (US)
X X X ; X .
=7 VAU T VW) im=1; my
s2V =g;l K2M ¢ 2F fis

and the Dirichlet conditions at both sides of the galleryyg = Up, Uy ., = UL.

2.4 Numerical experiments without fractures

To assess the coupled model and its discretisation, let usnsader in this section three
test cases all sharing the following setting.

Let ! and S be the disks of center O and radius respectively = 10 m and rg = 2
m. We consider a radial mesh of the domain (@) (! nS), L = 1000 m, exponentially
re ned at the interface of the gallery to account for the steep gradient of the capillary
pressure at the porous medium gallery interface. The poroogedium radial mesh matches
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at the interface with the 1D mesh of the gallery. The geomely of the porous medium
domain and of the gallery is shown in Figure 2.7.

Figure 2.7. Geometry of the test cases

In addition to the water componente, we consider the air gaseous component denoted
by a with the Henry constant H, = 6 10° Pa at the xed temperature T, = 300 K. The
gas molar density is given by 9(p%) = R"—i mol.m 3 with R = 8:314 J K ! mol !, and

the liquid molar density is xed to ' = 55555 mol.m 3. The phase viscosities are xed
to 9=18:5110°%Pa.s!and '=10 2 Pa.s . The mass densities are de ned by
X
= G M;

i2C

with the molar masses of the componentsl, = 29 10 3 Kg mol , M, = 18 10 3 Kg
mol . The fugacities of the water and air components in the gas pbaf 3 and f ¢ are
given by Dalton's law for an ideal mixture of perfect gas (1)1 The fugacities of the
components in the liquid phase are given by Henry's law (1.2pif the dissolution of
the air component in the liquid phase, and by Raoult-Kelvirs law (1.3) for the water
component in the liquid phase. The solutions of the equatisrf °(c%; p%; p') = f{(c’; p% p))
and _..G =1, = g;lleads to the following component molar fractions? and ¢ as
functions of U:
Ha P° . - P P,

8

3 g=Ha Pog ,
Ha  Bsat Ha  Bsat

§ (2.27)

Bsat | . _ Ha.
Cg:p_;tcle' Cg_P_:CIa'
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with the vapor pressure de ned by (1.24) and

p_p9

|
Bsat = Psat(Te)e 'Rre:

The porous medium is initially saturated by the liquid phasewith imposed pressure
Plic =40 10° Pa and compositioncl;,; =0, c,;,; = 1. Atthe external boundary r = r,
the water pressure is xed topl,; = pi,; , With an input composition ¢, ¢,; = 0, Ch.ex = 1.
On both sidesx =0 and x = L of the porous medium, zero ux boundary conditions are
imposed for all components. The initial condition in the gdéry is given byp,; = 10° Pa
and cCeinit IS de ned by the relative humidity

_ Ce;init Pinit

rinit —

0 (T2) 0:5:
We consider an input gas velocityi, depending on time (see Figures 2.9, 2.14), a xed
input water molar fraction Ce.in = Ceinit at the left side x = 0 of the gallery, and a
xed output pressure pout = Pinit at the right side x = L of the gallery (see Figure 2.8).
The relative permeabilities and capillary pressure in thegrous medium are given by the
Van-Genuchten laws (1.20)-(1.21)-(1.22). The Darcy Fortieimer parameters de ning the
pressure drop in the gallery are setto =0 and =10 * Kg.m *.

Figure 2.8: ;r) cut of the disposal and initial and boundary conditions oflte test case.

2.4.1 Comparison with an approximate stationary solution

In this rst test case, we consider a single rocktype in the pous medium de ned by
the parametersn = 1:49, s = 0:4, s¥ = 0, P, = 15 10° Pa of the Van-Genuchten
laws accounting for the Callovo-Oxfordian argillites (COx The permeability is assumed
isotropic with K, =5 10 2° m? the porosity is setto , = 0:15.

The simulation is run over a period of 10000 days with an indl time step of 100
seconds and a maximum time step of 50 days. The input velocity,, is xed to 1 m.s !
during the rst 4000 days, Q01 m.s ! during the next 4000 days, and 0 m.$ during the
remaining of the simulation (see Figure 2.9).
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Figure 2.9: Input velocity wi, as a function of time.

Approximate Stationary Solution

In order to validate the simulation, an approximate statiomry solution is computed for
each value of the input gas velocityi, . In this approximate model, the vaporization of
the water component is kept but the dissolution of air is negtted. The gravity is also
set to zero since the gravity forces are small compared withe capillary and pressure
gradient forces. The pressure drop along the gallery can @lbe neglected meaning that
the pressure in the gallery is equal ty,; . Last but not least, it is observed in the porous
medium that the longitudinal derivatives are small compare with the radial derivatives
due to the strong gradient of the capillary pressure at the pous medium gallery interface.
Hence they will be neglected in our approximate model. Thanke these assumptions,
the stationary solution can be reduced to a single ordinaryi érential equation (ODE)
for the water molar fraction in the gas phase along the gallerce(x).

From the above assumptions, the approximate stationary sgion U(x;r) depends
only onx and r and satisfy the following simpli ed system in the porous madm

8

< @@r g_lmer@@rpg + @@r l_lTIerr@@rpl =0; (2.28)
@@r mer@@ 9 =0:
From the coupling conditions, at the porous medium gallerynterfacer = rg, the gas
pressure is xed top9(x;rs) = p(x) = pinic and cd(x;rs) = c(x). From the thermody-
namical equilibrium of the water component at the interfacewe can compute the capillary
pressure at the interface as a function af(x) by the following formula:

_ [ Ce(X) Pinit
Ce(X)) = RTslIn ————
pe(Ce(X)) I =
X
Let us dene V, = a gg"ngmr@@rpg and the total velocity Vy = r Kmr@@P )

We can deduce by integration of (2.28) taking into account # boundary conditions
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PIX;rs) = Pinit, (X Ts) = Ce(X), AA(Xirs) =1 Ce(X), Pe(X;Ts) = pe(Ce(X)), P(X;11) =
Py, Co(X;r ) =1, ¢, (x;r;) =0, that V, = 0 and that V; depends only orx and is given
by the following function of c.(x):

I Z Pc(Ce(x))

Vi (X)) = % e Pt K W)y

Turning to the equations in the gallery, c.(x) and w(x) are solutions of the following
system of ODEs

8
% & 9Pt )W(X)ce(X) r—ZSzVT(Ce(X)):X 2 (O;L);
:

L 9(pni W)L (X)) =0;x2 (0;L);
Ce(0) = Cejin;
w(0) = wi,:

1 cein ).
1 ce(x)?

The second equation yieldsv(x) = wi,
to the following ODE for ce(x):

8x 2 (0;L) and the above system reduces

8
T G Tg T e X2
c(0) = Ceiin s

which is numerically integrated.

Numerical results

The numerical solution obtained with the mesh 80 50 80 is exhibited in Figures 2.10,
2.11 and 2.12x Figure 2.10 plots the average relative humigiin the gallery de ned
by He(t) = & o eUUED dx as a function of time. It also compares the numerical
stationary relative humidities obtained as a function oi for each value ofw;, with the
ones obtained with the approximate stationary analytical radel (2.29). A very good
match can be checked in Figure 2.10 for the three input veloms. Figure 2.11 plots as
a function of time the gas volume in the porous medium and theolumetric ow rates
at the porous medium gallery interface for both phases. Figeir2.12 plots the stationary
numerical liquid saturation at the porous medium gallery iterface (represented in the
gallery) and in the porous medium for each value of;,. At the opening of the gallery
at t = 0, we observe in Figures 2.10 an increase of the average rethumidity H, (t)
up to almost 095 in a few seconds due to a large liquid ow rate (see Figure 2)lat the
interface. Then, the ow rate decreases and we observe a drgiof the gallery due to the
ventilation at w;, =1 m.s ! down to an average relative humidity slightly aboveH i,

in a few days. Meanwhile the gas penetrate slowly into the pmus medium reaching a
stationary state with around 167 n? of gas in say 4000 days (see Figure 2.11). When the
input velocity is reduced to 001 m.s !, we observe rst a rapid increase oH, (t) in say
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100 days due to the reduced ventilation followed by a convemngce to a second stationary
state with H,(t) = 0:74 in the gallery and around 137 rhof gas in the porous medium.
Note in Figure 2.11 that the gas ow rate is entering in the porosi medium between say
4600 and 7000 days although the volume of gas in the porous noed is still decreasing.
This is due to a larger mass of air dissolved in the liquid phasntering into the gallery
than the mass of air entering into the porous medium in the ggshase. At equilibrium, at
time say between 7000 and 8000 days, the mass of air enterintp ithe gallery dissolved
in the liquid phase is compensated by the mass of air enterimgio the porous media in
the gas phase. Whenv,, is set to 0 m.s?, H,(t) reaches a value above 1 corresponding
to a negative capillary pressure and' = 1 at the interface and the gas disappears from
the porous medium in around 1400 days. The value above 1 of thedative humidity is
due to the fact that the model does not take into account the gpearance of the liquid
phase in the gallery side.

Figure 2.10: Stationary relative humidity in the gallery foreach value ofw;, compared
with its approximate \analytical" solution (left); average of the relative humidity in the
gallery as a function of time (right).
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Figure 2.11: Gas Volume in the porous medium as a function of ten(left); input and
output ow rates at the interface for the gas and liquid phases (right) as a function of
time (an input ow rate enters into the porous medium).

(@ wip =1m.s ! (b) wi, =0:01 m.st?

Figure 2.12: Stationary liquid saturations' obtained for w;,, = 1 m.s ! (a) and for
Wi, = 0:01 m.s?! (b). The bottom gures zoom the liquid saturation in the poras
medium below the threshold value ®9. In the gallery the liquid saturation corresponds
to the saturation at the interface function ofx.

Figure 2.13 exhibits the convergence of the volume of gas iretiporous medium as
a function of time and ofH, (t) for the ve dierent meshes 20 20 20, 40 40 40,
60 50 60,70 50 70and 80 50 80. Table 2.5 shows the numerical behaviour of the
simulations for these ve meshes. A rather good scalabilitgf the linear and nonlinear
solvers and of the CPU time w.r.t. the mesh size is obtained.h€ linear system is solved
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using the GMRES iterative solver preconditioned by ILUO, andhe linear and nonlinear
stopping criteria are xed to respectively 10° and 10 ° for the relative residuals.

mesh N t I\IChop I\INewton NGMRes CPU(S) CPU
20 20 20| 615 0 3.12 11.5 890
30 30 30| 615 0 3.12 15 3250 | 1.06
40 40 40| 615 0 3.12 19 8050 | 1.05
60 50 60| 615 0 3.15 24.5 17300 | 0.74
70 50 70| 640 6 3.27 57 105200| 5.86
80 50 80| 666| 10 3.35 77 135300| 0.94

Table 2.5: For each mesh : numbeNX . of successful time steps, numbé¥cpy, Of time
step chops, numbeNyewton Of Newton iterations per successful time step, numb®&gyres

of GMRes iterations by Newton iteration, CPU time in secondsand scaling of CPU time
( cpu) by CPU cells cpu ,

Figure 2.13: Average relative humidity in the galleryH, (t) (left) and gas volume in the
porous medium as a function of time (right) for the ve meshes

2.4.2 Heterogeneous anisotropic test case

This second test case considers two di erent rocktypes in ¢hporous medium. Forrg <
r<r, =3 m we consider a damaged rock with isotropic permeabiliti ,, =5 10 ¥ m?
and a porosity ,, = 0:15, and forr > r ; we consider the Callovo-Oxfordian argillites
(COx) with the same porosity ,, =0:15 and the anisotropic permeability de ned by

0 1
(2.30)
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with =510 2° m?in the x;y; z Cartesian coordinates where is the vertical coordinate
and x the direction of the Gallery. The Van-Genuchten parameterare de ned by n =

1:50, s, = 0:2,s? =0, P, =5 10° Pa in the damaged zone, and by = 1:49, s = 0:4,
s¢ =0, P, =15 1(° Pa in the COx region.

The simulation is run over a period of 20000 days with an indi time step of 100
second and a maximum time step of 1000 days. The input velocitvi, is xedto 1 m.s !
during the rst 3000 days, to @1 m.s ! during the next 3000 days, and to @1 m.s?
during the remaining of the simulation (see Figure 2.14). Allite other parameters of the
data set are the same as in the previous test case.

Figure 2.14: Input velocityw;, as a function of time.

As in the previous test case, the Figures 2.15, 2.16, and 2.1hiéx the numerical
solution obtained with the mesh 60 60 60. Figure 2.15 plots the relative humidity
in the gallery at the end of the simulation as a function ok, as well as the average
relative humidity H,(t). Figure 2.16 shows the gas volume in the porous medium as a
function of time, and the volumetric ow rates for both phase at the porous medium
gallery interface as a function of time. Figure 2.17 plots thkquid saturation at the end
of the simulation. Compared with the previous test case, arger volume of gas enters
into the porous medium due to the larger permeability of the @maged zone. The e ect
of the anisotropy along the vertical direction in the COx remn is also clear in the right
liquid saturation plot in Figure 2.17.
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Figure 2.15: Relative humidity in the gallery at the end of thesimulation (left); average
of the relative humidity in the gallery as a function of time (ight).

Figure 2.16: Gas Volume in the porous medium as a function of ten(left); input and
output ow rates at the interface for the gas and liquid phases (right) as a function of
time (an input ow rate enters into the porous medium).

Figure 2.17: Liquid saturations' at the end of the simulation. At the right, the liquid
saturation in the porous medium is plotted only below the theshold value @9. In the
gallery the liquid saturation corresponds to the saturatio at the interface function ofx.
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Figure 2.18 exhibits the convergence of the volume of gas inetiporous medium as
a function of time and ofH, (t) for the ve dierent meshes 30 30 30,40 40 40,
50 50 50,60 60 60and 70 70 70. Table 2.6 shows the numerical behaviour
of the simulations for these ve meshes with again a rather gd scalability of the linear
and nonlinear solvers and of the CPU time w.r.t. the mesh size

mesh N t NChop I\INeWton NGMRes CPU(S) CPU
30 30 30| 409 0 3.31 15 2200
40 40 40| 409 0 3.34 18 6800 | 1.31
50 50 50| 409 0 3.37 20 14050 | 1.08
60 60 60| 409 0 3.40 23 20100 | 0.65
70 70 70| 409 0 3.45 25 34700 | 1.18

Table 2.6: For each mesh : numbeN  of successful time steps, numbée¥cny, Of time
step chops, numbeNyewion Of Newton iterations per successful time step, numb®&gyres

of GMRes iterations by Newton iteration, CPU time in secondsand scaling of CPU time
( cpu) by CPU cellscru .

Figure 2.18: Average in space of the relative humidity in the dary (left) and gas volume
in the porous medium (right) as a function of time.

2.4.3 Model with gas molar fraction and di usion at the inter-
face

The previous model can be improved by the introduction of twgas molar fractions in
the gallery instead of a single one. The rst one corresponds the gas molar fraction
in the viscous boundary layer at the interface on the galley side. By the assumption
of continuity of the gas molar fraction, it is equal toc?( U). Outside of this boundary
layer, the second gas molar fraction is assumed to be congtamthe section of the gallery
thanks to a strong turbulent mixing. This second gas molar &ction is denoted byc
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which is now an additional independent unknown. Another addonal unknown is the
gas normal velocity at the interface denoted byv, with the normal oriented outward of
the porous medium (see Figure 2.19).

Figure 2.19: Main unknowns in the porous medium, at the inteatg;and in the gallery

for the previous model (left) and the new model (right) withzs = ,%, s dz.

The new system unknowns are the porous medium unknowbs2 L2 0; T;H?()

L2 0;T;HY() ,the gas molar fractions in the galleryc = (G )ioc with ¢ 2 L* (O;L)

(0;T) , as well as the gas normal velocity at the interface, 2 L* (O;T) . They
satisfy formally the porous medium equations (without fraitires)
8
< X m@im (X;U)+div(qmi) =0; 1 = a;e;
My (U)K 1 p (U)g = dmi; i = ae; (2.31)

:g;|

coupled with the following modi ed conditions at the interface

8
% Omi n= 9(C V) qg( U)(vn)" + Gi(Vn)
D9 ,
X +—(( V) ©);i=ae;
a(u=1; =gl (2.32)
% i2c 1 Z
9= Yp;00(z = dz);
p?=p  *(p;od( S . )
and the conservation equations along the gallery
8 z
% @ jSj %(p%oc + @)=  Omi Nds;i=aje;
i @s
S :
%;i = Bopsogc@pyi=ae (2.33)
9
g CI = 1!

where we have used the notatioa® = max(a;0) anda = min(a;0). The interface con-
ditions (2.32) account for the gas pressure continuity, ththermodynamical equilibrium,
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and the molar ux continuity. The gas pressure p9 at the interface assumes an hydro-
static pressure in the sectiors. In most cases, this hydrostatic correction can actually be
neglected.

Following [49], the molar ux continuity takes into account the two point di usion
ux D—g(q"( U) ¢) between the gas molar fraction at the interface?( U) and the mean
gas molar fractionc in the gallery, whereD?9 is the Fickian di usion coe cient set to
D9 = 2 10 ® m?s ! in the following tests. The parameter is a convection di usion
boundary layer thickness at the interface for the HO molar fraction in the gallery. It
depends on the velocity and on the turbulent di usion in the gllery. In practice, it can
be obtained using a diagonal approximation of the Steklov Hecae operator associated
to the stationary convection di usion equation in the galley (see in subsection 3.3.2 of
Chapter 3).

This di usion term is essential to allow the component molaruxes qn,; n at the
interface to take di erent signs (typically positive for the water component and negative
for the air component). Note also that the previous model is cevered at the limit when

goes to zero implying that c9( U) = c.

In the following tests, the in uence of the parameter on the solution of the previ-
ous test case is investigated for = 10 ;10 2;10 3;10 4,10 ® m. It is compared with
the previous model solution corresponding to ! 0". All the physical and numerical
parameters are the same than in the previous test case incing the input velocity wi,
(see Figure 2.14). The initial time step is changed tot = 0:1 s and the mesh size is
xed to 40 40 40. Itis clear from the numerical results exhibited in Figure 2.20, 2.21
and 2.22 that the larger , the higher the average relative humidity at the interfacethe
lower the output liquid ux at the interface, and the lower the average relative humidity
in the gallery. The convergence of the model for decreasingo the previous limit model
obtained for ! 0" is also checked.

The di erence between both models is also seen to be much largt small times when
the liquid ux at the interface is high due to the instantaneas opening of the gallery. At
larger times, once the liquid ux at the interface has su ciently decreased (the threshold
value depending on) both models roughly match. Table 2.7 exhibits the good numieal
behavior of the Newton solver for a large range of
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Figure 2.20: Gas volume in the porous medium as a function ofrte.

Figure 2.21: Average in space of the relative humidity at thenterface (left) and in the
gallery (right) as a function of time.
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Figure 2.22: Output liquid ow rates (left) and input gas ow rates (right) in the porous
medium as a function of time.

N t NChop I\INeWton NGMRes CPU(S)

10 1 | 464 0 3.26 11.9 7064
10 2 | 464 0 3.36 14.6 5971
10 3 | 464 0 3.43 15.6 7631
10 # | 464 0 3.55 16.5 6353
10 ° | 464 0 3.67 18.1 6630
0 | 464 0 3.71 19.7 6863

Table 2.7: For the mesh 40 40 40 and each value of : number N ; of successful
time steps, numberNch, Of time step chops, numbeNyewion Of Newton iterations per
successful time step, numbédgyvres Of GMRes iterations by Newton iteration, CPU time
in seconds.

2.5 Numerical experiments with fractures

2.5.1 Test case with 1 fracture

Let ! and S be the disks of center O and radius respectivelty = 15 m andrg =2 m.
We consider a radial mesh of the domain (@) (! nS), L = 100 m of sizen, = 40,
n, =30, n =32 in the cylindrical coordinatesx;r; . The porous medium radial mesh is
exponentially re ned at the interface of the gallery and maches at the interface with
the 1D mesh of the gallery.

The porous medium includes a single fracture dened by = 50 m, 2 [0;2 ),
r 2 (rs;r¢) with ry = 10 m. The mesh is uniform in thex and directions and is
exponentially re ned at the interface of the gallery to acount for the steep gradient of
the capillary pressure at the porous medium gallery interée. The mesh in the gallery is
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conforming with the porous medium mesh in the sense that, = ny, and that the points
Xm, m=0; ; my + 1 match with the x coordinates of the nodes along the direction
in the porous medium.

The thermodynamical laws are like in Section 2.4 for the xedemperature T, = 300
K. The Darcy Forchheimer parameters are set tog = 0 and 4 = 10 3 Kg.m *. The
relative permeabilities and capillary pressure are giverylthe Van-Genuchten laws (1.20)-
(1.21)-(1.22).

Two di erent rocktypes are considered in the matrix domain n ;. Forrg <r <
r, =3 m we consider a damaged rock with isotropic permeabiliti , =5 10 ¥ m? and
a porosity , = 0:15, and forr > r |, we consider the Callovo-Oxfordian argillites (COx)
with the same porosity , = 0:15 and the anisotropic permeability de ned by (2.30)
with =510 2 m2, The Van-Genuchten parameters are de ned by = 1:50, sl = 0:2,
s¥ =0, P, =5 10° Pain the damaged zone, and by = 1:49,s, =0:4,s? =0, P, = 15 1(°
Pa in the COx region. In the fracture ¢, the fracture width is equal todi = 0:01 m, the
porosity is set to ; = 0:3, the permeability is isotropic and set toK; = 10 ¥ m?, and
The Van-Genuchten parameters are de ned by = 4, sl =0, s? =0, P, =5 10° Pa.

The porous medium is initially saturated by the liquid phasewith imposed pressure
ply =40 10° Pa and compositionc,,,; =0, c,;,; = 1. At the external boundary r = r,
the water pressure is xed top' = pl,, with an input composition ¢, = 0, ¢, = 1. At
both sidesx = 0 and x = L of the porous medium, zero ux boundary conditions are
imposed. The initial condition in the gallery is given bypy = 10° Pa and ci,i de ned
by the relative humidity

_ Geini Pni _ A .2

H pini A 0:5:
We consider an input gas velocitywi, = 1 m.s !, a xed input water molar fraction
Ceo = Ceini at the left side x = 0 of the gallery, and a xed output pressurep. = pi, at
the right side x = L of the gallery. The simulation is run over a period of 20000 ga
with an initial time step of 0:1 seconds and a maximum time step of 1000 days.

At the opening of the gallery att = 0, we observe in Figure 2.25 an increase of the
mean relative humidity up to say 098 in a few seconds due to a large liquid ow rate at
the interface. Then, the ow rate decreases and we observe gyithg of the gallery due
to the ventilation at w;, = 1 m.s ! down to an average relative humidity slightly above
Hrini in a few tens days. Meanwhile the gas penetrates slowly intbe porous medium
reaching a stationary state with around 160 rhof gas in say 10000 days (see Figure 2.24).
As can be seen in Figure 2.23, the gas penetrates much deeper abhé much higher
saturation in the fracture than in the porous medium due to thenigher permeability and
to the lower capillary pressure in the fracture than in the pmus medium.
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Figure 2.23: One fracture test case: liquid saturatios' at the end of the simulation.
In the gallery the liquid saturation corresponds to the sattation at the interface as a
function of x.

Figure 2.24: One fracture test case: volume of gas in the matriin the fracture and in
the porous medium (matrix + fracture) as a function of time.
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Figure 2.25: One fracture test case: mean relative humidityr ithe gallery as a function
of time (equal to Q5 at initial time).

2.5.2 Test case with 4 fractures

We consider the same test case as the previous one but inchglé fractures de ned by
x=35m, 2][0;2),r 2 (rs;rs) for the rst fracture, by x = 65 m, 2 [0;2),

r 2 (rs;ry¢) for the second fracture, by = 4, r 2 (rs;r¢), X 2 (25;75) for the third one,
and by = 57, r2(rs;rs), X 2 (25;75) for the last one. The numerical results exhibited
in Figures 2.26, 2.27, 2.28 are similar to those of the prevetest case with, as expected,
a larger amount of gas in the fracture network, and a slightlyrigher relative humidity in
the transient phase.

Figure 2.26: Four fractures test case: liquid saturatios' at the end of the simulation.
In the gallery the liquid saturation corresponds to the sattation at the interface as a
function of x.
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Figure 2.27: Four fractures test case: volume of gas in the miat in the fracture and in
the porous medium (matrix + fracture) as a function of time.

Figure 2.28: Four fractures test case: mean relative humigliin the gallery as a function
of time (equal to Q5 at initial time).

2.6 Convergence analysis of a simpli ed model

In this section it is assumed that there is no fracture i.e. 1 = ;, and we consider the
following simpli ed model using the Richards approximatia in the porous medium and
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a single cgmponent equation in the gallery with linear presse drop.
g n@ 'SCuw)+div( 'V)=Q 2
s 1. . s
@isi ‘(P + @ —isi®p@p)=  'V' nds+Sjq;

g @s
AV —k'(:;gl(:;u))Km ru Mg p=g( ();

(2.34)

where we have used the notatio® (x;u) = S'(x; u). The only primary unknown in the
porous medium is the liquid pressure denoted hy. The liquid mass density is assumed
to be xed to M' ' whereM' is the molar mass of the liquid phase and' is considered
constant. The thermodynamical equilibrium at the interfae is accounted for by the
relation p = g( (u)) with g2 C}(R;R*), 0<gqq) o forall g2 R and for a given

constantc, > 0. The function g is a regularization for large positiveu of p = P (TE)e TR7e
for given constants 1 ¢, > 0andT, > 0. The molar gas density is set to9(p) = A ==— and

is truncated in the ux term such that ©(p) is assumed to be a non decreasmg function
in C}(R*;R*) bounded from below and above by two strictly positive conants and with
a bounded derivative.

Let us de ne the function space
U=fu2HY) j@u =0g;

and its subspaceJ®= U\ H 1D () with zero trace on . Let us also de ne the function
space
V=fu2Uju2HY) g

Let ¢( [0; T)) be the subspace of functions of C* [0;T] vanishing in a

neighbourhood oft = T, p and @! f 0;Lg, and such that@ = 0 in a neighbourhood
of . Given U2V, Upnirp 2 L2(), and Upig 2 L?(0;L) the variational formulation of

the simpli ed coupled model amounts to ndu2 L? 0;T;U withu u2L? O;T;U°

andg(u) g( u)2L2 0;T;H3() suchthatforall' 2C(  [0;T)) one has
8 z.Z y
m(X) 'S(x;u(x; )@ (x;t)dxdt m 'S (X; Uniep (X)) (X; 0)dx
20,7, Z,
iSi (g(u)(x1)@" (x;t)dxdt OJSi 9(9(Uinig )(x)) * (X; 0)dx

207 20 k'(X'S(u(X't)))
+ A K m(r u(x;t) M''g) ot (x;t)dxdt (2.35)

(x )JSJeg(g( u)(xn)@g(u)(x; )@ " (x t)dxdt
2,2 9 Z,

= Q(x;t)" (x;t)dx + iSja(x;t) " (x;t)dx dt:
0 0

We make the following additionalassumptions on the data
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It is assumed thatk! (x;s) is a measurable function w.r.t.x and continuous w.r.t.
s, and such that 0< kpmin ~ kl(X;S)  Kmax for all (x;s) 2 [0; 1].

S(x;u) 2 [0;1] for all (x;u) 2 R with S(x;u) = §(u) fora.e. x 2 ; and all
uz2R, whereS{ is a non decreasing Lipschitz continuous function with cotent Lg
gnd ((j)j23 is @ nite family of disjoint connected polyhedral open setsuch that

j23 i

It is assumed that there exists a constant.g, such that jS(x;v)  S(x;u)j
Lspig(v) g(u)j for all x 2 and (u;v) 2 R2.

The permeability tensorK r,, is a measurable function on the space of symmetric 3 di-
mensional matrices such that there exist @ _, mWith _j 2 (Kn(X); )
mj j? forall x 2 .

g2 LY (0;L)issuchthat0< _;,  ¢(x) ~4forall x2(0;L).
The porosity |, belongs toL.! () with 0 < o m(x) ,forallx2 .
It is assumed thatQ 2 L?(  (0;T)) and g2 L2((O;L) (O;T)).

Remark 2.6.1 The VAG discretization and convergence analysis detailed below for the
model (2.34) can be readily adapted to another simplied model coupling the Richards
equation in the porous medium to a 1D convection di usion equation for the water molar
fraction ¢ at given constant velocityw, constant di usion coe cient D¢ > 0, and at given
constant pressurep.

8
g m@ 'S(;u) +div( 'V')= Q; 7
Q(Sj *(p)ce) + @ jSj Up)(wee DO@ce) = 'V! nds+ jSjg;
@s (2.36)
' |

Kmru M''g; c=g( (u);

As for (2.34), the thermodynamical equilibrium at the interface is accounted for by
the relation c. = g( (u)) with g 2 C}(R;R*), 0< g¥g) ¢, forall g2 R and for
a given constantc, > 0. Here the functiong is a regularization for large positiveu of
Ce = psat—rfTE)eTTe for given constantsp > 0 and T, > 0.

The model (2.36) is a rather good approximation of the full model thanks to the weak
liquid in ow from the porous medium to the gallery.

2.6.1 \Vertex Approximate Gradient Discretization

We restrict ourself to the conforming case for whichtXp V andrp,= @ 1. ltis
obtained by assuming that

forall s2V there existsm 2 f 0; ;my +1g such that xs = X,
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denoting by V,, the set of nodes alondx,g @S- fs;; ;Sk,d in cyclic order,
all the edges $x;sk+1), k=1; ;kn 1 and (s, s1) belong toE.

For v 2 Xp, and a functionk 2 C°(R; R), we de ne k(v) 2 Xp as follows:k(v)s = k(Vs)
forall s2V andk(v)x = k(vg) forall K 2M .
Given u3 2 Xp and up 2 Xp, the discrete unknownsu?y 2 Xp at all time step n =

1; ;N are such that they satisfyud, up 2 X3 and the following discrete variational
formulation
S(x; ud(x)) S(x; ul (x
m( ) | ( Dm D( )) tn( Dm YD ( )) DmVD(X)dX
'— g g n 1
Co0UB)0)  * 00U IO\

(X S(X IDm UD(X))) m(r Do UB(X) Ml lg) r DmVD(X)dX (237)

JISI®( b,9(up) (X)) b g(Up)(X)r by Vo (X)dx
0 (X) Z,

Q(X;t) p,vo(x)dx+  jSja(x;t) pgVo(X)dx dt;
0

for all vp 2 XB.

2.6.2 Convergence analysis

Let 1 denote the insphere diameter of a given tetrahedrom 2 T, hy its diameter,
and hr = maxt,r hy. We will assume in the convergence analysis that the familyf o
tetrahedral submeshed is shape regular in the sense thaty = max+,r h—l is bounded
for the family of meshes. The following Lemmas are simple gutations of the Lemmas
already obtained in [14].

Lemma 2.6.1 There existCy; C, > 0 depending only on 1 such that for allup 2 Xp

K b, UpKiz2() Cik tupkiz() and K p,Upkizpry Cok  tupkizpu): (2.38)
We deduce from Lemma 2.6.1, the following discrete Poineamequalities.
Lemma 2.6.2 There existCs; Cs > 0 depending only on 1 such that for allup 2 X3

k Dm UDkLZ() C5kr Dm UDkLZ() 3 and Kk DguDkLZ(O;L) Cekr DguDkLZ(O;L):
(2.39)

Lemma 2.6.3 There existsC3 > 0 depending only on 1 such that, for allup 2 Xp,

K p,Up TUpKi 2(y + K p,Up TUpK2oy  Cs hrk tupky: (2.40)
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Lemma 2.6.3 imply in particular that there existsC > 0 depending only on 1 such that
k Dm UD Uk|_2() + k DguD Uk|_2(0;|_) C (l+ hT)k TUpD Uk\/ + hT kUkV .

Next, for any smooth function' 2 C! () such that @ =0 on , let us de ne the
projection Pp' on Xp by (Pp' )k ="' (Xk);K 2M ; (Pp' )s = ' (Xs);S2 V. We have
the following classical nite element approximation resul

Lemma 2.6.4 For all ' 2 C'() suchthat@ = 0 on |, there existsC(') > 0
depending only o and 1 such that

K' Pp' kV C(I )hT:

Let us setXp. = (Xp)N, and for all vp = (V8)n=1: n 2 Xp: ¢ let us de ne for all
n=1, N

b, tVo(X;t)= p,Vp(x) for all (x;t) 2 " "
pe: tYo(X;t) = pyvp(x) forall (x;t) 2 (O;L)  (t" *;t"];
T o (X;t) = VvB(x) for all (x;t) 2 t" Lt";

I oy tVo(X;t) =1 p,vp(x) for all (x;t) 2 t" Lt

[ by tVo(X;t) = 1 p,v(x) for all (x;t) 2 (O;L)  (t" %t"):
Let up = (up)n=1. N, the given solution to (2.37), we also de ne the functions
Sbm: (1) = S(X; b, tUp(X;1); Pog; (X)) = 9( by tUp(X;1));

and

(X; pnUB(X)) S(X; b,Up (X))
tn
p, 9(UB)(X)  o,9(up M)(x)
tl"l

pSp,; ((X;t) = S for all (x;t) 2 (t" "

for all (x;t) 2 (O;L) (t" :t"]:

pPpy; t(Xt) =

Let us set for allvp 2 X3
Z

AP PRVRPOE (G163 f(x; 0u U 100
RLE: (2.41)
= v n(x) ! DS:Dp; (X;1) b, Vo (x)dxdt;
ZUisi 0,0 0yg(ul B(X)
Ap,(Vp) = o2 D 9= D by Vb (X)dX

) RBle z tr (2.42)

" JS]
™ . RT. pPpg; t(X;t) b, Vo (Xx)dxdt;
th 2 e
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| . . n
BY (Vp) = (xS (x; ID"‘UD(X)))Km Fo Ub(x) M''g r o vo(x)dx

Zt” Z | ol .
K (X;Sp . )(X;t .

_ 1tn ki ( Dmit)( )Kmr ) Mg (2.43)

th 1
I p,, Vo (X)dxdt;
Z, 1
Bp, (Vo) = stj&“( pg 9(UB)(X))T 0, 9(UB)(X)r by Vo (X)dX
o 20z, (2.44)

= — = JSi®(,; (1)@ T: 19(Up)(X; 1) b,V (x)dxdt
t tn 1 0 g(X)

and
L ZnZ
Cp, (W) = o Q(x;t) p,, Vp(x)dxdt; (2.45)
tn 1
ZwZ,
Cp,(vp) = o jSia(x;t) p, Vo (x)dxdt; (2.46)
th 1.0

in such a way that the system (2.37) is equivalent to: ndip 2 Xp. ¢ with u}  up 2 X3,
n=1; ;N, such that

A, (Vo) + Ap (Vo) + Bp (Vo) + Bp (Vo) = Cp, (vb) + C5_(Vb); (2.47)
for all vp 2 X 3.

A priori estimates and existence of a discrete solution

Proposition 2.6.1 There exists at least one solutionp 2 Xp. ; to (2.37), and there
exists a constantC > 0 depending only on the data, ony, and onk p, U}  Uinitp Kiz2() ,
k Dgug Uinitg KL2(0:1), K TUp UKy such that any solutiorup 2 Xp. ( to (2.37) satis es

K g t9(Up)kis oiriezoiy + Kby tUpKizimiiz() (2.48)
+ kr pg; «9(Up)kizitiz)  Co '

Proof : We rst prove the a priori estimate (2.48). Let us set

X X X
T, = t"Ap, (Up); T2 = t"Ap,(Up); Ts= t"Ap,, (Up);
n=1 n=1 n=1
and
X X
Te = t"Ap,(up); Ts= t"(Cp, (up  up)+ Cp (up Up)):
n=1 n=1
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We also de ne

X Z (- n
Tz KOGSEG onUBCM e L u)x) on(ub Up)(X) d

, (2.49)
X KOGS X by U (X))

T, = t" | Km M'"'gr p,up(x) rop,(ud up)x)dx;
n=1
2.50
o z, (2.50)
Ty = t" . g(X)J'SJ'EE( D I(UB)(X))T by I(UB)(X)r py(up  Up)(X)dx;  (2.51)
n=1

in such a way that
T1+ T2+ T3+ T4= T5+ T6+ T7+ Tg:

Accumulation terms:  Firstly, using the assumption onS, the following estimate is a
straightforward adaptation from Lemma 3.1 of [35].

— L

Ty m o

K Do UK 2y (2.52)

Next, using 0 S(x;u) 1, we obtain the following estimate forTs

T5 I_m J Jk DmuDkLz(): (253)
From (2.18), we have that
jsj X X . n 1y
T2: RT Xm %Xm+%1(g(um) g(um ))um:
e n=1 m=1
Z Z,

Using G(u) = i vg{v)dv which veries G(b) G(a) = big(b) g(a)) (a(v) o(a)dv
and henceb(g(b()) g@) G(b G(aforall(a;h2R R, we obtair?that

ij X\I R H H n n 1yy.
T2 RT JXm %Xm+ %J(G(um) G(um ));
€ h=1 m=1
IS (G GWl):
RTe . m 3 m+ 5 m m7’7-
Z 4w
Remark that G(u) = g (v)dv, so that in view of assumption ong one has
9(0)
2
oW 9O w
2 max,2r gYV) W R ) 2’
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Therefore

iSj N 2 jSi max,2r gqVv) 02 .
T2 ZRTe mavaRgo(v) k Dgg(uD) g(o)kLZ(O;L) ZRTe k DguD kLZ(O;L)'
(2.54)
Turning to T, We obtain the estimate
JS] N 0 .
Te ﬁk peUpKiz)K pg(9(Up)  9(Up))Kize;y:
e

We deduce that

iS]

T
® RT,

max I’\I/‘IZ%XgO(V),l k DguDkLz(O;L) k Dgg(ug)kLZ(o;L)+ k DgugkLZ(O;L) X

(2.55)
Transport terms:  Thanks to the assumptions orK ,, and k! we obtain the following
estimates

| X
T3 _|kmin —m t"kr Dm (UB uD)kEZ() 3 (256)
n=1
and
I p— )(\I n n | | .p M
T2 —Kmax m t"kr p, (Up  Up)kiz¢y s Kr p,Upkizys+ M Yjgj j j i (2.57)
n=1

R
Xm+% dx - Xm+1  dx
xm 2 00 Dnetme 1 = Xpeg 909 and

From (2.15) and (2.18), settingbm;m% =

_ eg(g(u%))bmm+% + eg(g(unm+1 ))bm+1;m+%_
JXmXm+1] ’

Am +

N

form=0; :my we have that

XN Yx n n n n
T4 — JS] tn aT’m_%(g(um) g()l('lm;r(l))(um um+1)
n=1 m=0 JXmXm-+1]
. R (9(um)  9(UR+1))(Um  Ums1)
psor Ay P Xomea] '

n=1 m=0

We deduce that

jijminsz &I(v) X

T, — t"kr p,g(up k2.

4 o Max,zr gAV) . DgI\MD/BL2(05L)
ij eg X\I n ny2 1=2 X\I n 2 1=
— max (v) t"kr p,g(up)kizy) t"kr pyUpKizgy
—0 n=1 n=1
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Using Young's inequality we obtain that
iSi minyog &(v) X
2 gmaxr 9AV)

}Sig (Maxy2r gAV))(Maxyzr (V) X

2—9 minvZR eg(v) n=1

Ts

t"kr Dgg(UB)kEZ(o;L)
(2.58)

t°kr o UpKzgy )

Using the discrete Poincae inequalities of Lemma 2.6.2, wabtain the following esti-
mate of the source terms

)(\] 1 Z th
Tg Cs t"kr Dm (UB UD)kLZ() 3 tn kQ(, t)kLZ() dt
S t1 Z. (2.59)
+ C6JSj t"kr Dg(UB uD)kLZ(O;L) ? ) kQ(:;t)kLZ(o;L)dt .
n=1 t

Gathering the estimates (2.52),(2.54),(2.56), (2.58),(83),(2.55), (2.57), and (2.59),
and using Young's and Cauchy-Schwarz inequalities, we ctune the proof of the a priori
estimate (2.48).

To prove the existence of a solutiomg;n=1; ;N to (2.37), let us consider the one
parameter family of solutions obtained by settinggs" (x;u) = s'(x;u) +1 , €9 (p) =
®p)+(1 ) Jwithagiven §> 0,andg (u)= g(u)+(1 )u. Let us remark that
for all values of 2 [0; 1], the previous estimates still hold. Since for = 0, the system
(2.37) becomes linear, it results that it admits a unique sotion. By topological degree
argument (see e.g. [23]), we deduce the existence of at lease solution to (2.37) for
=1.

Space and time translates estimates
The function spacel?() L2(0; L) is equipped with the scalar product
z Z,

_ S
hu;p); (V; iz Lz = I auvdx + 15)

o RTe
For all (u;p) 2 L2() L2(0; L) we also de ne the dual semi-nornkuk 1.5 by

pgdx:

u;p); Vp, Vp)i| 2 2(0-
k(u;pk 1p = sup hu:p)i( o, kD ngD) L0 L*OL).
vp 2X 3 ;vp 60 T VDKv

(2.60)

Lemma 2.6.5 There exists a constantC > 0 depending only on the data, ont, and
onk p,UD  Unnip Kiz(y , K pyUY  Uinitg Kizgo:y, K TUp  uky such that any solution
Up 2 Xp. ¢ to (2.37) satis es the estimate

Z

K bSb,. t(51); pPog; (1) K2ppdt  C: (2.61)
0
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Proof : Using (2.37), we obtain that for allvp 2 X3

h SIDp; {(51"); pPog; t(5t") 5 DnVD: DgVD)iL2() L200L) =
(X 8'(X; b, UB (X))
|

Z\

Km( b, ud(x) M''g) r p, vp(x)dx

(X)J'SJ'&"( Dy I(UB)(X))T b 9(Up)(X)r b,y Vo (X)dX
0 7930z Z,

Q(X;t) b, Vp(x)dx + iSja(x;t) pyvb(x)dx dt:

tn tn 1 0

+

Using the discrete Poincake inequalities of Lemma 2.6.2, drthe assumption on the func-
tion g, we obtain the estimate

h bsp,; «(5t"); pPog; (") i( meVDi pVD)iL2() L2(0L)
'jgj J_J Kr b, VoKLz() s
1. .
+—]9) rglaxw(q) Kr p,9(up)Ki2(0:L)Kr pyVoKi2(0:)
—g
1 -

+Cs —o KQ(:;t)kpz(y dt kr p, Vpkiz() s
"Z

Ikmax_m kr Dm UBkLZ() 3+ Ml

) kQ(:;t)kLZ(o;L)dt kr DgVDkLZ(O;L):

th .
and the proof is achieved using Proposition 2.6.1 and the Cehy-Schwarz inequality.

Lemma 2.6.6 There exists a constantC > 0 depending only on the data, ont, and
onk p,Ud Ui Kiz(y » K pyUY  Uinitg Kizgo:y, K TUp  uky such that any solution
Up 2 Xp. ¢ to (2.37) satis es the estimate for all 2 R
Z
. TJS:JP; (Gt ) S:Jp; (GO + Kppg, t(5t+ ) pog; (5 KEagy, dt
C i
(2.62)
where pp,; ¢ and sljp; . are extended by zero outside of respectivgly;L) (0;T) and
0; 7).
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Proof : From the Lipschitz assumptions on the functionsS and g, and by de nition of

the semi-norm (2.60) we obtain the estimates
z
! m(X)jS:JP; (X t+ ) 5:3,); (X; 1)j%dx
" JS]

—. . - . . -2
+ . BTerDg, (X t+ ) ppg; (X t)j7dx
|

LSP ! m(X) S:Dp; t(X;t+ ) SDp; t(X;t)

Dp; t9(Up)(X;t+ ) pp; t9(Up)(X;t) dx
-S|
0 RTe

+ Pog; ((Xt+ ) ppg; t(Xt)

Dg; t9(Up)(X;t+ ) De; t9(Up)(X;t) dx
max L Lsp ksp,. ((5t+ ) sp. ((51)iPog; t(it+ ) Pog (K 1o
K 1, «9(up)(t+ ) 1, «9(up)(:ky
Using Young's inequality, we obtain that there exist<C such that for all 2 (0;T)
Z T

k§|3p; ((t+ ) S'Dp; {(50kzy + Kppg; t(Gt+ ) pog; (G Kz dt
0

C T
pﬁ 5 kS:D,); ((t+ ) S:Jp; () Pog; t(Gt+ ) pog; t( DK gpdt
p_—T
+C | K 1. 9(up)(;t+ ) 7; 19(up)(:; t)ky dt:

0

From BV properties of piecewise constant functions and frohemma 2.6.5, we obtain
that

Z
klep; (Ht+ ) Sle; (505 Ppg; t(t+ ) ppg; t(Dk gpdt
0 Z,
K bSp,; «(51); pPoy: t(:t) Kk gpdt
po_ T | , 1=2
T kK bpsp,; «(51); pPpg; t(iit) K™y pdt
_ 0
CpT :

Using 0 S(x;v) 1 as well as the boundedness &b ; t(:; K2y on [GT] from
Proposition 2.6.1, we conclude the proof of Lemma 2.6.6..

Lemma 2.6.7 Let fp 2 Xp; ¢ be dened byp; = g(up) 9(up), we denotefp,; + =
pe; tPb. There exists a constantC > 0 depending only on the data, ont, and on
K p,Ud  Uinicp Kiz¢) » K p,UR  Uinitg KLy, K tuUp  uky such that any solution
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Up 2 Xp: ¢ to (2.37) satis es the following estimate for all 2 R® and 2 R.
Z T
. kS:DP; {1+ 5t) S:Dp; t(:;t)kEZ(R3)+ KPpg: t(:+ it)  Poy; t(:;t)kEZ(R) dt
CGi+ii+hr)

(2.63)
wheresgp; . and fp,; ; are extended orR? (respectively onR) by zero.
Proof: Forany 2 R®wedenetheset =fx2 jx+ 2 g From Proposition
2.6.1 there exists a constan€ such that the following estimate holds for all 2 R® and
2 R: 7
T
K 1. up(C+ ;t) T: tUp (5 t)kE, ) dt
"z (2.64)
+ K T; tpD(:+ ;t) T, tpD(:;t)kEZ(R)dt .
0 . . . .
CGi+iji

We conclude the proof using Lemma 2.6.3 as well as Lipschitoperties and boundedness

of S.

Convergence

Lemma 2.6.8 Let (vW),,y be a sequence of functions ih?(0; T;U° such that there
existsC > 0 with kv®k, 2741y  C for all k 2 N. Then, there existsv 2 L?(0; T; U°)
such that

1. up to a subsequence

v *y in L2 (0;T)) and r viW* rv in L2(  (0;T)*:

2. up to the same subsequence

v =* v in L%(0;L) (O;T));

Proof : The proof of the rst statement is classical, see e.g. the pof of Lemma 5.1 in
[12]; moreoverv 2 L2(0; T;H*® ()). Next, there exists r 2 L2(0; T;L?(0;L)) such that
v *r in L2(0; T;L?(;L)). To conclude, let us prove that@v =0andr = v. For
all* 2 L%((O;L) (0;T))and 2 L*@S (0;T)), there exist 2 L?(0; T;Hgiy())
suchthat n="(x;t) (s;t) on . Hence, one has

Z.Z
(r vIO(x:t) ( x;t)+ vO(x;t)div ( x;t))dxdt
0Z.2,2
= (v @) (x;t) (x;t) (s;tydxdsdt:
0 0 @S
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Passing to the limit in this equality one obtains that
Z.Z
(r v(x;t) ( x;t)+ v(x;t)div ( x;t))dxdt
°Z,2,Z
= r(x;t)" (x;t) (s;t)dxdsdt;
0 0 @S
which implies that
Z.:72,.Z
(v(x;s;t) r(x;t))' (x;t) (s;t)dxdsdt=0;
0 0 @S

and hence that@v =0and v =r.

Theorem 2.6.1 LetD®, t"®:n=1; N® k2 N be a sequence of space time dis-
cretizations such that there exists> 0 with . Itis assumed thatimy, +; hyw =
0,and that t® =max,.,. N t"® tendstozerowhek! +1 ,and thatk Dgnk)ugm
Uinit:p kLz() , k ng)ug(k) Uinit,g kLZ(O;L)a k T ) Up (k) Uk\/ tends to zero wherk ! +1 .
Then, there exist a subsequence b2 N and a functionu 2 L?(0; T; V) solution of (2.35)
such that up to this subsequence

! I S(:;u) strongly in L3 (0;T));

Spo; 100

b®. wUpw *U weakly inL?( (0;T));

and
P, o ! 9(u) strongly in L2((0;L) (0;T)):

Proof : From Proposition 2.6.1, Lemma 2.6.8, and the convergenaezero ofk 1 Upw)
uky we deduce that there exista1 2 L?(0; T;U) with u u 2 L?(0;T;U°) such that up
to a subsequence 1. (wUpw * U weakly in L3( (0; 1)), T tUpw * U
weakly inL2((0;L)  (0;T)), and r 1. oUpw * r uweakly inL2( (0;T))3.

In view of Lemma 2.6.6, Lemma 2.6.7, and Lemma B.2 of [30], tkelmogorov-Fechet
theorem implies that there exist two functionss 2 L?(  (0;T))andp2 L?((0;L) (0;T))
such that up to a subsequencs’ngk); 0 I S strongly in L?( (0; T)) and pDék); OB
p strongly in L((O;L) (0;T)). The sequence 1. Ppw is uniformly bounded
in L2(0;T;HZ(0;L)), thus one can extract a subsequence @@ T o Ppr weakly
converging to some functiorpin L2((0;L) (0;T)). Let ' 2 L?(0;T;C! (R)) and let

T woPpw be extended by zero outside of (@), passing to the limit in

zZ.Z
(@ 1w, wbpow) O+ 700, woPprw@ (X;t) dxdt=0;
0 R
we obtain that z.Z

B (Xt)+ D@ (x;t) dxdt=0;

0 R
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and hence thatp} = @p and p 2 L2(0; T;H3(0;L)). From the convergence to zero of
K twUpw Uky and the assumptions org we deduce that there existg 2 L2((0; L)
(0; T)) such that p g( u) 2 L?(0;T;HZ(0;L)) and such that Pogo: o I pstrongly and
@ tw. wwPpw converges weakly to@p up to subsequence. Using the Minty's trick
stated in Lemma 3.6 of [35] one can show that= S(;;u) and p= g( u).

It remains to show that u is a solution to (2.35). We will drop the superscript K) in
the following for the sake of convenience. Lé&i( [0; T)) be the subspace of functions

‘' of C!  [0;T] vanishing att = T and on p and such that@ =0 on . Then,
let 2C( [0; T)) and consider the function (t)= Pp (:;t) 2 X 3.

Next, settingvp = (t" 1) in (2.47), multiplying the left and right hand sides by t"
and summing ovem, we obtain that

X _ _ _ _
t" A, ( (" )+ AR ( (" )+ B ( (" )+ B ( (" 1)
n=1

= ¢, (@ )+ cs (" ):

First, using the chain rule and (T) = 0, we have that

)(\] )(\] Z tn Z
t"Ap,. ( (" Y= ! m(X)S'Dm; (D@ b, (H)(x)dxdt
n=1 = "
+ ' m()S'(X; b, UR(X)) b, (O)(X)dX:

We deduce from the strong convergence eﬁ,m; . to S(:;u), the strong convergence of
bm US tO Uinitp , @and the regularity of , that

W Z.2
t"AD( (" ) ! " n(X)S (X u(x; 1))@ (x;t)dxdt
n=1 70
+ ' (X)S (X Upniep (X)) (X; 0)dx:
Similarly, we have that
_ W e 2y iSj _
t"AR ( (" = =—Pp,; (X 1)@ p, (t)(x)dxdt
n=1 ’ -1 "1 0 RTe
, RTeg( pUp(X)) b, (0)(x)dx:

We deduce from the strong convergence pp ;  to g( u), the strong convergence of
b, U to Uinitg » and the regularity of , that
X - ZT8 s
t"AR,( (" ) = glu)(x )@ (x;t)dxdt
— e
- 0 o RT

L . -
1S] _ _
, R_Teg(uinit;g )(X)  (x; 0)dx:
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Turning to the di usion terms, we have from the weak convergee ofr 1. {up to r u,
the strong convergence of;, . , to S(:;u), the assumption onk;, and the regularity of
, that

X! _
t"Bg,, ( (1" 1)

Inzlz 4 k! (x; S (x; u(x; 1))
[ |

Km(r u(x;t) M''g) r (x;t)dxdt

0
Similarly, we deduce from the weak convergence @ 1. {Up to @g( u), the strong
convergence ofp,; ¢ to g( u), the assumption on®, and the regularity of , that

X\I tan _tn 1
p,( (t" 7))
nzlz T Z L

! JISI®g(u)(x )@y u)(x 1)@  (x;t)dxdt:

o o g(X

Turning to the source terms, from the regularity of , we obtain that

My _ _
t" Cp, ( (" )+ C,C (" 1Y)
n=lz 7 Z.7Z,
! Q(x;t) (x;t)dxdt+ 1Sja(x;t)  (x;t)dxdt:

0 0 0

2.7 Conclusion

A reduced model coupling the 3D gas liquid compositional Dey ow in the matrix, the
2D gas liquid compositional Darcy ow in the fracture netwok, and a 1D compositional
gas free ow has been proposed and applied to predict the masschanges occurring at
the interface between the repository and the ventilation evavated galleries. The model
takes into account the low permeability of the disposal to siplify the coupling conditions
and uses a No Pressure Wave approximation in the free ow donmai The VAG scheme
has been extended to the discretization of such model. It héise advantage compared
with classical CVFE approaches to avoid in a natural way the mirg of the porous and
free media properties inside the control volumes at the nosléocated at the interface. The
discretization has been validated on a single phase Darcy awodel problem as well as on
a compositional model using an approximate solution for th&tationary state. Finally, the
convergence of the VAG discretization to a weak solution hdmeen proved for a simpli ed
model coupling the 3D Richards approximation for the liquidpressure in the porous
medium and the Darcy approximation of the 1D gas pressure egfion in the gallery. In
the next chapter, the reduced model of subsection 2.4.3 ok compared in a 2D geometry
with a 2D-2D model using the Reynold Averaged Navier Stokes (RANSquations in the
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2D gallery with an algebraic turbulent model. To that end, tke molar fraction boundary
layer thickness of subsection 2.4.3 will be computed using a low frequencyadonal
approximation of a Steklov Poincae operator for the convaion di usion equation in the
gallery.
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Chapter 3

Coupling of a liquid gas
compositional 2D Darcy ow with a
2D compositional free gas ow

Abstract : In this Chapter, a xed point algorithm to solve the coupling between the gas
liquid compositional Darcy ow and the free gas ow is develped. This algorithm takes
advantage of the weak velocity and pressure perturbations the gallery induced by the
coupling with the porous medium. On the other hand it keeps ithe Newton solver the
strong coupling between the porous medium system and the eeation di usion equations
for the gas molar fractions in the gallery at xed velocity. The e ciency of the xed point
algorithm is assessed on a 2D model problem. The obtainedwmns are compared with
the solutions given by the reduced model presented in Chapt2. To this end, a model
to compute the molar fraction boundary layer thickness, wkh plays an essential role in
the quality of the reduced model, is proposed.

3.1 Introduction

The study of the reduced model in Chapter 2 has made clear thigag coupling between
the water molar fraction in the gallery and the liquid presste and ux at the porous
medium gallery interface. This strong coupling results fra the liquid gas thermodynam-
ical equilibrium at the interface.

This Chapter 3 develops a xed point algorithm which presems this strong coupling
and relaxes the coupling between, on the one hand, the velgcand the pressure in the
gallery, and, on the other hand, the porous medium unknownsd the gas molar fractions
in the gallery. The idea of this algorithm is to solve in the st step of the xed point
algorithm the porous medium equations coupled to the conwsan di usion equations
for the gas molar fractions in the gallery. Then, the total mar ux at the interface
is computed and used in the second step of the algorithm to cpote the velocity and
pressure in the gallery solving the Navier Stokes equations.
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Compared with fully coupled approaches such as the ones deped in [6, 41, 48], our
xed point algorithm has the advantage to lead to the non linar and linear solutions of
simpler sub-systems. Sequential algorithms, such as theesndescribed in [26, 24] (see
also the review [25]) are frequently used for solving dryingroblems. As mentioned in
[26, 24] they require a time step at the scale of the free ow @uto the strong coupling
between the water molar fraction in the gallery and the liqu pressure and ux at the
porous medium gallery interface. In our context this is of eose prohibited. In order to
simulate a period of say 100 years, we need to be able to usedisteps at the scale of the
porous medium with a quasi stationary computation of the fre ow at each time step.

The second objective of this chapter is to compare the solatis of the full model
and of the reduced model developed in Chapter 2 using a 1D mbde the free ow
domain. To this end, we need to derive a model for the gas mol&action boundary
layer thickness introduced in section 2.4.3. This paramet@lays an essential role on the
liquid evaporation rate at the interface. The proposed modés based on a low frequency
diagonal approximation of a Steklov Poincae type operatofor the stationary convection
di usion equation at xed velocity. It leads to a boundary layer thickness depending on
the longitudinal coordinate x along the gallery.

Figure 3.1: Free ow domain 9, porous medium domain P, interface , and remaining
boundaries for our 2D test case.

In order to assess the e ciency of the xed point algorithm am to compare the full
and reduced models, a simple 2D setting exhibited in Figurel3is used. In the porous
medium domain P, we consider a compositional liquid gas Darcy ow using thehase
pressures and component fugacities formulation of Chaptér In the gallery domain 9,
the turbulent nature of the ow is taken into account using analgebraic model leading to
the computation of a turbulent pro le. This longitudinal tu rbulent pro le is a stationary
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solution of the RANS model (Reynolds Averaged Navier Stokes, seg. [19, 9]) without
the coupling with the porous medium ow. Then, this turbulert pro le u; provides the
turbulent dynamic viscosity  and the turbulent di usion D, that are used to compute the
velocity, pressure and gas molar fraction in ¢ solving the RANS compositional model
at xed turbulent viscosity  and diusion D;. The turbulent viscosity and di usion
can be xed thanks to the small perturbation of the velocity ad pressure induced by
the coupling in the free ow region. Note also that the turbul@t di usion D; plays an
essential role in the liquid evaporation rate at the interfee.

The 2D domain is discretized using a Cartesian mesh conforgi at the interface
and re ned on both sides of the interface in order to take inb account the laminar
boundary layer on the gallery side and the strong liquid presrre gradient on the porous
medium side. The space discretization uses a Marker-And-C&WIAC) scheme for the
RANS model [40] and a cell centred nite volume scheme for the By ow in P and
for the convection di usion equations in 9. In both cases, the di usive uxes (Darcy
and turbulent di usion terms) are approximated by a two poirt ux and the convective
numerical uxes are obtained by a rst order upwind scheme. e time integration uses
an implicit Euler scheme.

Three test cases are considered. The rst test case is roughdpeaking the 2D-2D
version of the Andra test case presented in subsection 2.4.2hadi erent values for the
length of the gallery ranging from 25 m to 400 m and di erent iput velocities ranging
from 0:05 to 5 m s 1. The second test case considers a vertical gallery with twoetent
rocktypes along the direction of the gallery. The third testase goes away from the Andra
order of magnitudes by considering a porous medium with a mubigher permeability of
1 Darcy and spatial dimensions of order 1 meter.

The outline of the remaining of this Chapter is the following In Section 3.2, the
formulation of the coupled model is introduced using the pls& pressures and component
fugacities formulation in the porous medium. Then, the sgling algorithm is described.
In Section 3.3 the reduced model using a 1D model in the freewodomain is described
as well as the computation of the gas molar fraction boundatsgyer thickness. In Section
3.4, the 2D setting for our numerical experiments is detatieas well as the discretization
in the porous medium and in the gallery. Then, the results ofhe three test cases are
presented and discussed.

3.2 Formulation of the coupled model and xed point
algorithm

Let P denote the porous medium domain and 9 the free ow domain. The interface
between the two domains is denoted by =@ P\ @ 9.
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3.2.1 Formulation of the coupled model

Let = g;l denote the gas and liquid phases assumed to be both de ned byrixture
of components 2 C among which the water component denoted bg which can vaporize
in the gas phase, and a set of gaseous compongn C n feg which can dissolve in the
liquid phase. For the sake of simplicity, the model is assumi¢o be isothermal with a xed
temperature T.. Following Chapter 1, the gas liquid Darcy ow formulation wses the gas
pressurep?, the liquid pressurep'’, and the component fugacities = (f;)ioc as primary
unknowns, denoted byU = (p%p';f) in the following. In this formulation, following
[45], the component molar fractione = (G )ioc Of each phase = g;| are the functions
¢ (U) of U de ned by inversion of the equationd, (c ;p%p') = f;, i 2 C, wheref, is the
fugacity of the component in the phase . In addition, for = g;l, the phase pressurp
is extended in the absence of the phase in such a way that thesiire law ,- G (U) =1
is always imposed. The phase molar and mass densities, ad aglthe phase viscosities
are denoted in the following by respectively (p ;c), (p;c), (p;c)for = g;l
For the sake of simplicity, for = , ,or , we will still use the notation (U) for the
function (p ;c (U)).
Finally, we de ne the liquid saturation as the functionS'(x;p® p')ofp.= p° p de ned
by the inverse of the monotone graph extension of the capiiapressure functionpc(X; :),
and we setS9(x;:) =1 S !(x;:). This leads to the following set of equations for the
unknownsU in the porous medium

8 X

% @n;(x; U) +div m, ;U)K r p (U)g

=gl
X =0;i2C on P (0;T); (3.1)

2 ¢(UV=1;, =gl on P (0;T);

. i2C
with the number of mole of the component per unit pore volume de ned by

X
ni(x;U)= g (U) (VS (x;p? p);

=g

and the mobility of the componenti in phase de ned by

k. (;S (x;p°  p)).
(V) '

In the free ow domain it is assumed that the gas molar and masdensities are xed

which amounts to neglect the e ect of the pressure and molardction variations on the

gas densities. It is assumed that the coupling with the poresumedium induces a small
perturbation of a given stationary turbulent ow with velocity u; and pressuregy solution

of the following RANS model

(

m; (x;U) = ¢ (U) (V)

9div uy uy +div ( 9+ Y(rug+rtu) +rp= 9%on 9

3.2
div(uy)=0on 9 (3:2)
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with boundary condition u; = 0 at the interface . In (3.2), . is the turbulent viscosity
which is modelled e.g. using an algebraic turbulent model @ more advancedk
model. Note that this turbulent viscosity ; vanishes at the interface but is much larger
than 9 away from the viscous boundary layer. This turbulent ow is esponsible for
a turbulent di usion denoted by D; and typically given by D, = Si—; where S, is the
Schmidt number (see e.g. [9]) that will be assumed to be equallC in the following to
X ideas. This turbulent di usion, which is much larger than D¢ away from the viscous
boundary layer, plays an essential role in the order of magade of the evaporation rate.
The gas molar fraction of the uncoupled ow corresponds to #hinitial condition ¢ = cpjt
of the coupled ow.
The coupling of the free ow with the porous medium ow leads® the new gas velocity

u = uy + &, the new pressurep = p; + p, and the gas molar fractionc solutions of the
following RANS model

8

% 9%iv uy, w+w U +tu o

div ( 9+ ) ru+r'ew) +rp=0 on ¢ (0;T);
@ +div gu +div( (D9+DJr)=05i2C on ¢ (O;T);
% a=1 on ¢ (@)

(3.3)

i2C

Due to the small perturbation assumption, the turbulent vigosity . and di usion D, are
assumed in (3.3) to be given functions of independent ont, p, and c. A stationary
model for the momentum equation is used in (3.3) due to the miadarger porous medium
ow time scale than the free ow time scale. The component mal conservations in the
free ow domain are kept unstationary in order to ease the notinear solution of the
coupled system at the start of the simulation.

At the interface between the free ow domain and the porous nedium the coupling
conditions are an adaptation to those stated in [49]. The Bears Joseph condition at
the interface is replaced by a no slip condition due to the v permeability of the
porous medium. The remaining conditions are the continuityf the molar uxes for
each componeni 2 C assuming that the liquid phase is instantaneously vaporide the
continuity of the gas molar fractions, the continuity of the normal component of the
normal stress, and the gas liquid thermodynamical equilirm. We obtain the following
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interface conditions

8 1 X
= m; (x;U)K r p (Ug n
=g
=cgun D%c¢ ni2C on O;T);
S(U) = 6ii2C on  (O:T); (3.4)
g)(g: p+n U u ru+r'u)y n on ©:7); |
i2C

wheren denotes the unit normal vector at the interface oriented otward of the porous
medium domain. Note that in practice, the gas pressure jump p® at the interface can
be neglected since a small ow rate between the porous mediwand the free ow domain
is expected.

3.2.2 Fixed point algorithm

In [6, 41, 48] all the Darcy and free ow unknowns correspona in our case toU, u, p
and c are solved using a monolithic Newton algorithm at each time ep of a fully implicit
Euler time integration scheme. Given the complexity of theull system, this approach
naturally leads to di culties in solving the non linear and linearized systems.

Alternatively, many coupling strategies simply rely on a sagntial coupling algorithm
of Dirichlet Neumann type using typically two di erent codesfor the Darcy and free ows.
This type of sequential coupling algorithm leads to very sniigime steps due to the strong
coupling between the liquid pressurg' and the water molar fractionc, at the interface
which is induced by the thermodynamical equilibrium. For eample, in [26, 24], a time
step of Q1 s is reported resulting in roughly 100h of CPU time for a feways of simula-
tion. We refer to [25] for a recent review including a list ofades implementing sequential
or fully implicit coupling algorithms for the modelling of drying processes at the interface
between a porous medium and a free ow domain.

Our approach is rather to split the system in two simpler sulystems at each time
step of the fully implicit Euler time integration scheme. Ina rst step, for given u and
pin 9 the strongly coupled unknowndJ in P, cin 9 andu n at are computed
using a Newton algorithm solving the Darcy ow in the porous maium together with
the tracer equations in the free ow domain and part of the intrface conditions. The
gas velocityu and gas pressurg@ in 9 are then computed in a second step solving the
momentum and divergence free equations using step 1 norma&locity u n at the in-
terface . The two steps 1 and 2 are iterated, as a xed point @githm for the normal
velocity u n at the interface , until the stopping criteria k1 ioc GKL1 (9 IS
satis ed for a given accuracy . The convergence of this xed point method is expected
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to be very fast due to the weak coupling of the unknownd, ¢, andu n to the unknowns
u and p. We will see in the numerical Section 3.4 that, in practice he sequential version
of this algorithm, i.e. a single xed point iteration, su ce s to obtain a very accurate result.

We detail below the two steps of the xed point algorithm at a gven time step t"
between timestlg Landt", which are iterated until convergence of the gas molar fraons
such that k1 ioc GKLr ( oy . To xidea, an Euler implicit time integration is used
in both domains. The unknowns at timen are denoted with then superscript. The xed
point iteration count is denoted byk and the xed point algorithm is initialized with the
previous time step solution.

Step 1: it computes U™k in the porous medium,c™ in the free ow domain andu™< n
at the interface, at xed velocity u™ * and pressurep™ ! in the free ow domain, as
the solution of the system coupling the Darcy ow model

8
niGU™)  miG Ut )
% X , o .
+div m; (x; U)K r p™* (U™)g =0;i2C on P (5g
g X =gl
_ G (U™)=1; =gl on

i2C

with the tracer equations in the free ow model

Cin;k ol 1 ) .
—tnl +div ¢™u™ 1 +div( (D9+ Dy)r ¢™)=0;i2C; on 9; (3.6)
and the following subset of the interface conditions
S 1 X .1 ik HIHS n;k
= m; ;UMK r p™ (U™)g n
=g
=™ u™ n DI d™ n;i2cC on ;
U™y = ™*;i2cC on ; (3.7)
% Qg;n;k = pn;k 1+ n gun;k 1 un;k 1 g(r lJn;k 1+ r tun;k 1) n on :
¢ (U™=1 =gl on

i2C

Note that in (3.6) and (3.7), the normal gas velocityu™ n is used for the convective
ux at the interface and not u™ ' n,

Step 2: Given the normal gas velocityu™* n at the interface computed at step 1, step
2 computes the gas velocity™ = u; + &"¥ and the gas pressur@™* = p, + " as the
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solution at time t" of the following RANS model

8

3 9iv up e+ e oy + e gk

5 div ( 9+ (r & +r'e"™) +rp™* =0 on ¢ (3.8)
div(e™) =0 on 9

3.3 Reduced model

It is assumed to x ideas that the free ow domain is a cylindrcal domain of lengthL and
of sectionS with S an open simply connected subdomain d&&2. The free ow domain
isdened by 9=(0;L) S andthe interface by =(0;L) @S In the following,
denotes the trace operator on ands is the curvilinear coordinate along@ S

The reduced model is motivated by the large longitudinal diension compared with
the transversal dimensions of the free ow domain in radioéige waste geological storage
applications. It is assumed that the pressure and the longitudinal velocity u in the
section S depend only on the longitudinal coordinatex and on timet. The gas molar
fraction c is also assumed to depend only anand t. At the interface , the gas molar
fraction in the viscous boundary layer is given by?( U) from the gas molar fraction
continuity. The gas pressurep9 at the interface assumes an hydrostatic pressure in the
sectionS. In most cases, this hydrostatic correction can actually beeglected. Another
unknown is the gas normal velocity at the interface average® along @S It is denoted
by v, with the normal oriented outward of the porous medium.

3.3.1 Reduced 1D model in the free ow domain

The new system amounts to nd the porous medium unknownd(x;t)on P (0;T), and
the free ow domain unknownsu(x;t), c(x;t) on (O;L) (0;T) and v,(x;t) on 0;T)
satisfying the Darcy ow system (3.1), coupled with the folbwing modi ed system at the
interface

_g|
=1; =g;lon (0;T); (3:9)

Z

=p  9(p:9g(z J%jsdz); on  (T);

UG + o, + P@cu o
ig m, (x;U)K rp (Ug n;i2Con O; T);
|
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and with the conservation equations along the free ow domai

% @Q+@2&Ug(
1 m, (x;U)K rp (Ug nds;i2Con (OL) (0;T);
3

ISI % @s _, (3.10)
¢ =1lon(@O;L) (O;T):

x

i2C
To xideas the pressure drop is given by the Forchheimer mobtle ju+ 4juju)= @ p¥
with 4 Oand 4 0, g+ 4> 0.1In(3.9), we have used the notatiora®™ = max(a;0)

anda =min(a;0). The function > 0 corresponds to the molar fraction boundary layer
thickness that need to be modelled as discussed in the nexbsaction.

3.3.2 Molar fraction boundary layer thickness model

A simple choice of the boundary layer thickness is given by the following model. letL
denote the stationary convection di usion operator de nedfor all d 2 H( 9) by

Ld=div uid (D9+ Dyrd ;

recalling that div(u;) = 0 and that u; =0 on . We de ne the solution d of the following
stationary convection di usion equation given alconstant bundary conditiond;, 2 R on
9 =f0g S and a boundary conditiond 2 Hz() on :

8

5 Ld=0 on 9
d= on ;

2 d=d, on ¥;

rd n=0 on J,=fLg S:

(3.11)

Let us denote bySr the linear Steklov-Poincae operator such that for alld 2 H %()
Se(d dn)=71 dn2H 2();

and let us denote byM the linear compact operator fromH %() to H %() such that for

alld 2 Hz()
Z

M(d dn)= dn+ i d(:;y;z)dydz2 HY() :
IS| s
Then, we dene ford,, 2 R, d =d1 withd 2R,d, 6d,
R
_ d 5 Sd(:;y;z)dydz: (I M)
r dn Spl

where 1 denotes the function equal to 1 on . This de nition of is clearly independent
on the choice of botld andd;,. Also from the maximum principle, (x) > Oforallx 2 .
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From the maximum principle and the Fredholm alternative, tte linear operatorl M
. . 1 1
de nes a bijection fromH 2 () to H2z(). Hence we can de ne the operator

§p:Sp(| M) 1;

which relates the normal ux at to the di erence between the trace on and the section
mean values as follows
Z

r dn=Sp d — d(:y;2dydz :
P JSJS(y)y

. 1 . o —
In this framework, ~ clearly appears as a diagonal approximation of the operat&@p

which is built to be exact for constant boundary conditionso . A better approximation
could be obtained using a second order approximation of th@erator Sp following the
techniques used in Optimized Schwarz Methods [43].

It is more usual to relate the ux to the di erence between thetrace on and di,
using the Steklov Poincae operator. The diagonal appromiation 22 = D9S,1 of the
operator D9Sp is refered to as the Convective Mass Transfer Coe cienEMTC (see the
review [25] and the references there in for a discussion ab@MTCSs). In our context,
our choice has the advantage to take into account the coupgirof the interface conditions
with the 1D gas free ow.

3.4 Numerical tests

In order to assess the e ciency of the xed point algorithm am to compare the full
and reduced models, we consider in the following tests a sim®D setting with 9 =
©O;L) (O;Hy), P=(@O;L) (HyHp)and =(0 ;L) f H;g. Figure 3.1 exhibits the
two domains, the interface and the external boundariesp, ¥, 2, 3. and 3.

We consider the set of component§ = f e; ag wheree denotes the water component,
and a the gaseous air component with the xed Henry constanH, = 6 10° Pa. The

gas molar density is given by 9(p%) = Rp—i mol.m 3, and the liquid molar density is
xed to ' = 55555 mol.m 3. The phase viscosities are xed to 9 P 18:51 10 6 pPas?
and ' =10 2 Pa.s®. The mass densities are de ned by = i»c G M; with the

molar masses of the componentsl, = 29 10 3 Kg mol !, M, = 18 10 2 Kg mol 1.
The fugacities of the water and air components in the gas pragd and fJ are given by
Dalton's law for an ideal mixture of perfect gas (1.1). The fuagities of the components in
the liquid phase are given by Henry's law (1.2) for the dissdion of the air component in
the liquid phase, and by Raoult-Kelvin's law (1.3) for the wger component in the liquid
phase. The solution of the equatiori (c ;p% p') = f leads to the following component
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molar fractionsc, as functions ofU:

8
fe J ' fa
2 A0 e g SO (3.12)
e fa .
2 @(U) = 5 A= 5

The relative permeabilities and capillary pressure in thegrous medium are given by the
Van-Genuchten laws (1.20)-(1.21)-(1.22). In our numerit#ests, the stationary turbulent
pro le, corresponding to the velocity without the couplingwith the porous medium, is
obtained using the following Prandtl algebraic turbulent nodel for the turbulent viscosity
(see [56, 19, 9])

e= mNHUYI; Im(y) =0:41minfy; Hi y):

It leads to compute the solution (iy; p;) with u¢(y) = utéy) of the system
8
< div( ( 9+ Jru)+ @p =0 on 9
@p.= ° on 9 (3.13)
div(u) =0 on ¢9;

which reduces to the following Ordinary Di erential Equation (ODE) for u.(y)

( 9+ m)Zudul = «(Hi=2 y);
to be integrated betweeny = 0 and y = % by symmetry. The integration constant of
this ODE and the constant ; are obtained using the conditionss(0) =0 and
Zy,

H_1 , Ur(y)dy = Win;

wherew;, is the prescribed mean value of the input velocity. Using theub ow boundary
condition (3.14) speci ed below, the turbulent pressure ide ned by

(X Y) = Powr %9y  «(x L);

wherep,, is the out ow pressure fory = 0, and g = 9:8Im:s 2 is the gravity acceleration.
In our numerical tests, the turbulent di usion is related to the turbulent viscosity by

D(y) = t(g):

The porous medium is initially saturated by the liquid phasewith imposed pressureg,,
and compositionc,;,; = 0, C.i;; = 1 which combined with the equation c(Upi ) +
cd(Unit ) = 1 de nes the initial unknowns U . At the top porous medium boundary £,
a Dirichlet boundary condition is imposed equal to the inital condition Up = U . At
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both sides § of the porous medium, a zero normal ux boundary condition ismposed
for all components. The initial condition in the free ow donain is given by pi,; = 10°
Pa andceint =1 Caint de ned by the prescribed relative humidity

Ce;init Pinit

Psat(Te) .

At the boundary ?, the input molar fractions are set toc, = ¢y , and the stationary
turbulent pro le u¢(y) is imposed. At the boundary 2, the following out ow boundary
conditions are imposed

p (9+ «y)@u=p™ 9gy; @ =0; (3.14)

with pout = pinit - The usual gradient is used in this out ow condition rather han the
symmetric gradient in such a way that this condition can be d& ed by (u;p). The
di usive normal uxes are set to zero for all components 2 C on J,. At the bottom
boundary ¥, the velocity u is set to zero as well as the di usive normal uxes for all
componentsi 2 C.

Hrinit =

3.4.1 Finite Volume Discretization on a Cartesian mesh

The domain (QL) (O;H,) is discretized by a non uniform Cartesian mesh re ned at
both sides of the interface . A nite volume cell centered dscretization with a Two
Point Flux Approximation (TPFA) of the Darcy uxes and an upwind ing of the mobility
terms is used for the porous medium ow [52, 5]. For the free w, a staggered MAC
(Marker-And-Cell) scheme is used for the Navier Stokes equatis [40, 51, 58] combined
with a TPFA discretization of the di usion uxes.

TPFA discretization of Step 1

To write the discretization of the step 1 model, it is converint to use the following
unstructured mesh notations. LetM P (resp. M 9) denotes the set of cells of P (resp.

9). The set of edges of the mesh is denoted By M M P[M 9 stands for the set of
cells sharing the edge, and Ex denote the set of edges of thecdll 2M P[M 9. The
set of edge< is partitioned as follows:

EP, the set of interior edges of P with M = fK;Lg M Pforall 2E},

E’ the set of edges of P with M = fKg M Pforall 2EP with [=D orN,
E the set of edges of withM =fK;Lg K2MP L2M 9forall 2E,
EJ, the set of interior edges of 9 with M = fK;Lg M 9forall 2E},

E the set of edges of{ with M = fKg M 9forall 2E/,[= in;out;N.
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The set of discrete unknowns is denoted by = (pi;pk;fx) 2 R?, K 2 M P in the

porous medium, byck 2 RS, K 2 M 9 in the free ow domain, and byU = (p%;p ;f )2

R®2 and v, 2 R for all edges 2 E at the interface wherev,. is the normal gas
velocity oriented outward of the free ow domain.

Let k denote the mean porosity in the celK . Let xx = ( Xk ; Yk ) denote the centre
of the cellK andx =(x ;y ) the centre of the edge , and let T be the TPFA Darcy
transmissibility of the edge . The TPFA Darcy uxes at the interior edges 2 EP, of
the porous medium, oriented outward to the celK with M = fK;L g are de ned for

= g;l by
Uc + U
Vie (U;U)=T pc pt (%)Q(YK yu)
Similarly, at the edges 2 (E5 [E )\Ek, K 2M P, they are de ned for = g;| by

U + U
Vi (UU)=T pe p+ (Co)alk V)

Then, using an upwind approximation of the mobilities with espect to the sign of

each phase Darcy ux, we setforall 2EP,,M =fK;Lg

VK;;i (Uc;UL) = my (Xk U ) Vi (U U™ + my (s UV (U W) 500 (3.15)
and forall 2 (E5[E )\Ex,K2M?P
VK;;i (Uc;U )= my (s Uk Vi (U U D)™+ my (xs U D)V (UgsU) o0 (3.16)

The discrete conservation equations in the porous medium s for all cellsk 2 M P

8
% KjKj“i(XKiUQ;k) t:‘i(XK?UQ ) + X X VAR (VTS
X X =kg 2EP \Eg
+ Vi (U5 Up) + Ve (UZ5UM) =05 i2C (3.17)
% X 2ED\E k 2E \E g
¢ (K)=1; =gl

i2C
with jKj denoting the volume of the celK .

The normal gas velocities at the edges of the free ow domaimeagiven by the step 2
atthe xed point iteration k 1 and denoted forall 2 Ex nE,K 2M 9byu™k ! Ng. ,
where ng. is the unit normal vector at the edge outward to the cell K. The cell
pressuresp[‘g" ! for all K 2 M 9 are also given by the step 2 at the xed point iteration
k 1. The discretization of the tracer equation writes for all ells K 2 M ¢ and all
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componenti 2 C:

c;r?;k . 1
- ] U™ L g )AL UM e )+ TOE )
27, \Ek
+ T VR + QUM™)) jvik) + TP dU™) (3.18)
26 \E «
+ CInKkJ JUu™ N ) e JU™ T ng )+ TD(C’E&( Ciin )
ZE)Q(\EK
+ G UMt ong )T =0;
2E3, \E

wherej j is the length of the edge , TP is the diusion TPFA transmissibility of the
edge , and whereg = Pjﬁ;i 2 C stands for the normalized molar fractions.
]

The discrete conservation equations in the porous medium main (3.17) and in the
free ow domain (3.18) are coupled to the following interfae conditions written for all
edges 2E ,with M =fK;Lg, K2MP, L2M 9:

8

1 Xk
F W
=19
= QRN U™ ) TPEE UMY 2C (349
E =P H(n (fuu Stk
G(U¥)=1; =gl

i2C
with the gas pressure jumpii ( Su u 9r u)n)"k ! specied in step 2 below.

The coupled system (3.17-3.18-3.19) at each time stepand at each xed point it-
eration k is solved using a Newton algorithm. For all cellk 2 M P and for all edges
2 E both fugacitiesfe and f, can be eliminated from the non linear system using the

closure equationg, (U) + c,(U) =1, = g;lAlso, forall 2E , the normal velocity v,
is eliminated using the equation from (3.19)
X X . _
vk = ! Vi (UgH; Um):

1] ’ i2C =Ig

Using these eliminations, the Jacobian system to be solved atoch Newton iteration
reduces to CardinalC) equations and unknowns in each ceK 2 M P[M 9 and at each
edge 2 E . This linear system is solved using the sequential versiof the SuperLU
direct sparse solver [46], [27].
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MAC discretization of Step 2

It is convenient in order to write the MAC discretization of the RANS model (3.8) to
use the following structured mesh notations. The non unifar Cartesian mesh of 9 is
de ned by the set of N, + 1 points along the x axis

O0=x:1< <X 1<Xi+%< <XNX+%:L;

2

N[

and by the set ofN, + 1 points along they axis
O0=y1< <y; 1<y < <Yy,+21 = Ha
Let us set

;i=1 (Neand yy =y, Y 1) =10 Ny

T SIS S I . o Vet 5 g .
We also de nex; = —*5—=2,1i =1, Ny, andy; = —5—=,j =1; Ny and we
set
xi+%=xi+1 Xi;1=1; Ny 1, x%:xl x%; xNx+%=xNx+% XNy s
and

yj'+% = Yy Yi ;j =1, ;Ny 1; Y% =Y y%1 yNy+% = yNy+% YNy -

The discrete unknowns of the staggered MAC discretizationra the vertical edge
normal velocity perturbations

i1=0; NG =17 Ny
the horizontal edge normal velocities
Vij+1 TV =100 SNk =05 Ny
and the cell centred pressure perturbations
Pii; i =1; Nk j=1; Ny

The convective uxes are discretized using an upwind approration of the velocities
assuming in our case thati(y;) + 4, L Oandvy,: O.
Let us drop in the following equations then; k su?bscript for v; v and p-to simplify

the notations. The discrete system couples the discrete, T; momemtum conservation

equation in the cell &;;xi+1) (Y %;yﬁ%) foralli=1; ;Ny 1,j=1; ;Ny, and
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the boundary conditions forus
8

u—._'_;_. + ‘H-+§.-
S ) (H  * W(Y)))
N TR Y _
(ue(y;) + 5 (b 1yt ue(Y;))
1

+5 9 Xi+% (ut(yj +1=2) + ﬂi+%;j +1 )(Vi;j +1 * Vi ;j+%)

Sy (uy)+

2
(Ue(y; 1=2) + Hiy L DICE 1+ Mg %)
B.1.. W, 3. B, o1 B 1.
229+ () oy ” TRy X_I &
1 H "o (3.20)
9 i+ 2] i+1ij+1
+Yi(Bag B) T T (Yer) Xt Vo
itz

s R l7|'i+l;j 1
+H 9+ (Y, %)) Xjy 1 2 v :
J

e )Wy Vaages) ol

Bis L0 = Hiv Iinge1 = 0;

< N

j %)(Vi;j 1 Vi1 %):0;

Nx"’%;j u-Nx %,J
XN

bt
b =0; ( 9+ () YiBn, = 0;

X

the discretev;; , : momemtum conservation equation in the cellx %;XH%) (Y Yj+1)
foralli=1; ;ZNX; j =1, ;Ny 1, and the boundary conditions for:

8
v 1y t 8154
g . : 2 2 .
yj+% (ut(yj+%)+ 2 )V|;J+%
U’i 1 FH 1
21 izl
(v 1) + By e
V'i"+l+‘vi"+§ Vo1tV o1
9 . 173 1*3 L+ 3 i3
TR Ve Ve
V4l Vg4l V. 1 VoLt
3 iI+1j+3 N 1+ 3
+( 9+ t(yj+%)) yj+% X 1 + yj+% X 1
3 3 (3.21)
g Vil Vij+d
+ Xi(Bar By)+t20 7+ (Y1) X y
j+1

Vijg 1

g V'i;j+%
+2( 7+ (y))) Xi—y-
J
+ t(yj+%)(ui+%;j u'i+%;j+1) t(yj+%)(ui i b %;j+1):0;
Voj+3 =05 Vivered = Vne b
-0N- — k.
s =05 Vinye 1 = Uy gy

and the divergence free volume conservation equation in thell (x; 1 X4 %) v, LY+ %)
foralli =1; Ny, ] =1; Ny

N—r
I
o

Yi (ui+%;j & %;j)+ Xi(vi;j +1 (3.22)

=F
Nl
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The coupled system (3.20,3.21,3.22) is solved at each timepsn and at each xed point
iteration k using a Quasi Newton algorithm where the Jacobian matrix is appximated
by dropping the non linear part of the system. The main advamige of this approach is
that this approximate Jacobian does not depend on nor on k. Hence it is factorized
only once using a direct sparse linear solver and a forwarddkward sweep is performed at
each Quasi Newton iteration. In the above numerical experimes the sequential version
of the direct sparse solver SuperLU (see e.g.[27, 46]) isdise

Communications between step 1 and Step 1 sends to step 2 the normal velocitieéf;”(i)

at the interface where (i) is the one to one mapping between=1; ;N and the set
of edgesE . Step 2 sends to step 1 the normal velocities at the edgé% [E 5 [E ), as
well as the pressure jumps at (i), i =1; ;Ng
nk 1 nk 1
V-i;N y+ % V-i;N y % .

t nk 1 _ ik 1 \2
(n (% u  9ru+riun)ty = g(’\7‘i;l\|y+%) +2 9 o
y

which in practice can be neglected.

In the following numerical experiments the non linear stoppg criteria are xed to

newon = 10 7 for the relative 12 norm of the residual of the non linear system
(3.17-3.18-3.19),

quasiNewton = 10 © for the relative 12 norm of the di erence between two successive
Quasi Newton iterates of the non linear system (3.20,3.2123),

P
Fixedroint = 10 8 on k1 i-c Gki1 for the xed point iterations of the coupled
problem.

In practice, it will su ce to set the stopping criterias quasinewton @Nd Fixedpoint 1O respec-
tively 10 3 and 10 2 in order to obtain a good accuracy but our objective in the fadwing
tests is to assess the convergence of the Quasi Newton and FiReiht algorithms.

3.4.2 Andra test case with an horizontal gallery

The setting of this test case is exhibited in Figure 3.2. The pous medium domain

P=(0;L) (Hy;Hp), with H; =5 m and H, = 15 m, includes two rocktypes. The
concrete rocktype in the domain (fL) (Hi;H;+1) is de ned by the Van-Genuchten pa-
rametersn = 1:54,s! =0:01,s% = 0, P, = 2 10° Pa, the isotropic permeabilityK =10 18
m? and the porosity = 0:3. The COx rocktype in the domain (QL) (Hi+1;H,)is
de ned by the Van-Genuchten parametersy = 1:49,sl = 0:4,s¢ =0, P, = 15 10° Pa,
the isotropic permeability K =5 10 2° m?, and the porosity = 0:15. The initial and
top boundary liquid pressure in the porous medium is set tp,,, = 40 10° Pa, and the
temperature is xed to T, = 303 K both in the porous medium and in the gallery. The
initial and input relative humidity in the gallery is xed to H.,: = 0:5 and the ouput
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and initial pressure in the gallery topni: = Pour = 10° Pa.

In the following tests, we evaluate the in uence of the inputvelocity w;, and of the
length L of the gallery on the mean relative humidity in the gallery ad on the mean
evaporation rate at the interface. The input velocityw;, is set to Q05, Q5 or 5 m. s?,
and the length L is set to 25, 100 or 400 m. The simulation is run over a period of
200 years, chosen large enough to reach the stationary stdsee subsection 2.4.1 for a
description of the stationary state).

To assess the numerical convergence of the discrete sohsioa family of Cartesian
meshes are tested with increasing sizes sethix Ny =25 50, 50 100, 100 200,
and 200 400. All these meshes are uniform in thg direction and are re ned in the
direction y on both sides of the interface as well as at the COx and conde=rocktypes
interfacey = H; + 1. To x ideas, the sizes of the rst cells at both sides of thanterface

are setto to y, in the gallery side and toy, in the porous medium side with (y1; Yy 2)
in meters equal to (162 10 2;6:95 10 3), (7:09 10 3;3:06 10 %), (3:32 10 3;1:44 10 3),
and (1:61 10 3;6:96 10 %) for respectively the meshes 25 50, 50 100, 100 200, and
200 400. Note that, with these values ofy; on the gallery side, the meshes are re ned
down to the scale of the laminar boundary layer.

In order to understand the following numerical results, we eed to have in mind the
orders of magnitude at the interface of the molar fractionsvhich are such thatc, << c .,
cd << c Y, ¢ << c,, and of the molar gas and liquid Darcy uxes which are such tha
jV9 nj<< jv' nj.

It follows that, at the interface , the water component convective ux 9ceu n is small
compared to the water component diusive ux 9D9% ¢, n with a ratio roughly equal
to c.. This can be checked numerically in Figure 3.3 plotting the na@ water component
convective and di usion uxes at the interface as a functiorof time.

Using this remark, we can explain the shape of the mean evaptioa rate at the
interface as a function of time exhibited in Figure 3.9. It clssicaly includes two stages
characterized for the rst stage by a roughly constant evapgation rate followed for the
second stage by a decrease of the evaporation rate down to #tationary state. It is also
known that the evaporation rate of the rst stage weakly depeds on the properties of
the porous medium but the duration of the stage does dependa the porous medium
properties. This rst stage actually corresponds to a valuef the water component molar
fraction ¢ at the interface roughly equal topslgt (Te) (relative humidity H, equal to 1) due
to a relatively large water in ux in the gallery. Using this Dirichlet boundary condition
and the previous remark, the value of the water in ux can be naghly computed from the
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solution ¢, of the stationary convection di usion equation in the galley

8
E div uice (D9+ Dyrce =0 on ¢
p— Psa Te .
G= S on (3.23)
3 Ce = Cin on ¢;
' rc Nn=0 on oul N:

which roughly corresponds to the value observed in Figure 3a®%ay from a short transient
state. Once the porous medium is su ciently dried at the inteface, the water in ux starts
to decrease down to a much lower stationary state (case of gptboundary bringing water
in the porous medium). This decreasing phase correspondsthe second stage of the
drying process.

Similarly, as shown in Figure 3.8, after a rapid transient imrease, the relative humidity
in the gallery is roughly constant during the rst stage witha value which can be computed
from the solution ¢, of (3.23). Then, it decreases down to the stationary state dng the
second stage. An approximate value of the stationary relatwvhumidity in the gallery has
been computed in subsection 2.4.1.

These two stages of the simulation and the nal stationary stte can also be observed
in Figure 3.5 which shows at di erent times the gas saturatiom the porous medium and
the water molar fraction in the gallery.

Figures 3.6 and 3.7 show the velocitias, 4 and v = v at the rst stage of the drying
process. Itis observed that thex component of the velocity is slown down by the coupling
in a neighbourhood of the interface .

Figures 3.8, 3.9 exhibit the good convergence in space of tlas golume in the porous
medium, of the relative humidity in the gallery, of the mean gs velocity and of the mean
evaporation rate at the interface. Tables 3.1-3.5 show thaimerical behavior of the simu-
lations for various choices of the length of the gallery and of the input velocity w;, and
for the four meshes. We can observe a good scalability of theWden and Quasi Newton
non linear solvers and a good convergence of the xed poinerations with roughly two
or three xed point iterations by time step (see also Figure 3).

Finally, Figures 3.10-3.15 exhibit the comparison of the reiae humidity, the evap-
oration rate at the interface and the gas volume in the porousiedium obtained for the
2D-2D and the reduced 2D-1D models for various values of trenfgth L and of the input
velocity wi, . It is clear that the larger the length the better the approxmation provided
by the reduced model. In all cases, the reduced model provsde good order of magnitude
of all quantities of interest.

Figure 3.16 clearly shows that the solutions of the sequernitagorithm, obtained with
a single xed point iteration, and of the converged xed poin algorithm can hardly be
distinguished.
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Figure 3.2: Setting of the Andra test case with an horizontal diary.

Figure 3.3: Mean di usive and convective uxes of the water aonponent at the interface
as a function of time withL = 100 m, wi, = 0:5 m.s * and the mesh 100 200.
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P
Figure 3.4: Convergence of the residu&il ioc Gk ( oy Of the xed point iterations
for all time steps with L =100 m, w;, = 0:5 m.s ! and with the mesh 100 200 .
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(a) t = 0 day (b) t=1:9 10 * day

(c) t =0:15 day (d) t =1:1 days

(e) t =125 days (f) t =200 years

Figure 3.5: Gas saturation in the porous medium and water mal&action in the gallery
with L =100 m, wi, = 0:5 m.s ! and the mesh 100 200 at (a)t =0 day, (b) t =1:9 10 4
day, (c) t =0:15 day, (d)t =1:1 days, (e)t = 125 days, (f) t = 200 years.
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Figure 3.6: Perturbation u-of the x component of the gas velocity at the rst stage of the
drying process obtained withL = 100 m, w;, = 0:5 m.s ! and with the mesh 100 200.

Figure 3.7: Gas velocitieas (above) andv = v (below) at the rst stage of the drying
process obtained withL = 100 m, wi, = 0:5 m.s ! and with the mesh 100 200.
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Figure 3.8: For each mesh and for = 100 m, w;, = 0:5 m.s !: average of the relative
humidity in the gallery (left) and gas volume in the porous meéium (right) as a function
of time.

Figure 3.9: For each mesh and fdr = 100 m, wi, = 0:5 m.s *: average of the gas velocity
at the interface (left) and evaporation rate at the interfae (right) as a function of time.
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Figure 3.10: Comparison of the solutions obtained by the 2dizand 2d-1d models with
L = 25 m and the mesh 100 200: average of relative humidity in the gallery (left),
evaporation rate at the interface (right) as a function of tme.

Figure 3.11: Comparison of the solutions obtained by the 2dizand 2d-1d models with
L = 25 m and the mesh 100 200: gas volume in porous medium (left), average of the
gas velocity at the interface (right) as a function of time.
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Figure 3.12: Comparison of the solutions obtained by the 2dizand 2d-1d models with
L =100 m and the mesh 100 200: average of the relative humidity in the gallery (left),
evaporation rate at the interface (right) as a function of tme.

Figure 3.13: Comparison of the solutions obtained by the 2dizand 2d-1d models with
L =100 m and the mesh 100 200: gas volume in porous medium (left), average of the
gas velocity at the interface (right) as a function of time.
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Figure 3.14: Comparison of the solutions obtained by the 2dizand 2d-1d models with
L =400 m and the mesh 100 200: average of the relative humidity in the gallery (left),
evaporation rate at the interface (right) as a function of tme.

Figure 3.15: Comparison of the solutions obtained by the 2dizand 2d-1d models with
L =400 m and the mesh 100 200: gas volume in porous medium (left), average of the
gas velocity at the interface (right) as a function of time.
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Figure 3.16: Comparison of the solutions obtained by the xegoint (FP) and sequential
(Seq) algorithms with the mesh 100 200: average of the relative humidity in the gallery
(left), evaporation rate at the interface (right) as a functon of time.

We present in Tables 3.1 3.5 the numerical behavior of the simulations with di erent
choices ofL and w;, and for the four meshes:

L=25m,w, =5ms!?

meshes N t NChop NNeWton NPt NNVS CPU(S) CPU
25 50 | 123 0 504 | 239| 435 7.56
50 100 | 123 0 527 257 | 480 48.64 | 1.34
100 200| 123 0 552 277 | 525 | 388.47| 1.50
200 400| 123 0 582 287 | 552 | 3279.18| 1.54

Table 3.1: For each mesh: numbeN ; of successful time steps, numbe&¥cpop Of time
step chops, numbeMNyewon Of Newton iterations, numberNp,; of xed point iterations,

number Nyy s of quasi-newton iterations, CPU time in seconds, and scafjrof CPU time
( cpu) by CPU cellscru,

(i) L=1200 m, w;, =5m.s !
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meshes | N t NChop NNeWton NPt NNVS CPU(S) CPU
25 50 | 123 0 509 244 | 448 7.51
50 100 | 123 0 543 266 | 499 49.79 | 1.36
100 200| 123 0 564 284 | 538 | 409.81| 1.52
200 400| 123 0 593 290 | 556 | 4144.73| 1.67

Table 3.2: For each mesh: numbeN ; of successful time steps, numb&Mcpe, Of time
step chops, numbeMNyewion Of Newton iterations, numberNp; of xed point iterations,

number Nyy s of quasi-newton iterations, CPU time in seconds, and scafjrof CPU time
( CPU) by CPU cellscpu |

(i) L =100 m, wi, =0:5m.s?

meshes N t NChop NNeWton NPt I\INVS CPU(S) CPU
25 50 | 123 0 591 305| 590 8.60
50 100 | 123 0 636 315| 615 58.86 | 1.39
100 200| 123 0 690 324 | 634 | 486.11| 1.52
200 400| 123 0 753 343 | 661 | 4505.81| 1.61

Table 3.3: For each mesh: numbeN ; of successful time steps, numbéMcpep Of time
step chops, numbeMNyewon Of Newton iterations, numberNp; of xed point iterations,

number Nyy s of quasi-newton iterations, CPU time in seconds, and scafjrof CPU time
( cpu) by CPU cellscru .

(iv) L =400 m,w;, =5 m.s !

meshes N t NChop NNeWton NPt NNVS CPU(S) CPU
25 50 | 123 0 517 249 | 459 7.56
50 100 | 123 0 599 278 | 520 55.76 | 1.44
100 200| 123 0 628 292 | 553 | 460.47 | 1.52
200 400/| 123 0 652 291 | 557 | 5625.77| 1.81

Table 3.4: For each mesh: numbeN ; of successful time steps, numbeXcpop Of time
step chops, numbeMNyewon Of Newton iterations, numberNp; of xed point iterations,

number Nyy s of quasi-newton iterations, CPU time in seconds, and scafjrof CPU time
( cpu) by CPU  cellscru .

(v) L =400 m, wi, =0:05 m.s?
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meshes | N t NChop NNeWton NPt NNVS CPU(S) CPU
25 50 | 123 0 673 349 | 694 9.89
50 100 | 123 0 792 368 | 726 73.12 | 1.44
100 200| 123 0 864 383| 778 | 620.51| 1.54
200 400| 123 0 923 388 | 786 | 7262.62| 1.77

Table 3.5: For each mesh: numbeN ; of successful time steps, numb&Mcpo, Of time
step chops, numbeMNyewion Of Newton iterations, numberNp; of xed point iterations,

number Nyy s of quasi-newton iterations, CPU time in seconds, and scafjrof CPU time
( CPU) by CPU cellscpu |

3.4.3 Andra test case with a vertical gallery

We consider in this test case a vertical gallery of length = 400 m exhibited in Figure
3.17. The gallery is now de ned by 9=(0;H;) (O;L) with H; =5 m, and the porous
medium by P = (Hi;H,) (0;L) with H, = 15 m. The rst rocktype for y 200 m
is de ned by the parameters of the COx rocktype of the previaitest case. The second
rocktype is like the COx rocktype except that the permeabity is larger by a factor 100.

Figure 3.17: Setting of the Andra test case with a vertical gadty.

The objectives of this test case are the following. Since thliiration of the constant
evaporation rate stage depends on the permeability, this ¢&case with two di erent
permeabilities along the direction of the gallery should ébit a non constant evaporation
rate even during the rst stage of the drying process. Anotheconsequence is that the
assumption of a roughly constant water molar fraction alonthe direction of the gallery
which is used to compute the boundary layer thickness of theduced model should no
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longer be valid even during the rst stage of the drying pros. Hence it is a good test
case to challenge the reduced 2D-1D model.

The simulation is run over a period of 50 years with an initiatime step of 1 s and a
maximum time step of 10 years. The numerical solutions are tained with the meshes
Ny Nx=25 7350 143 100 283, which are re ned on both sides of the interface

as in the previous test case.

Figures 3.23-3.24 and 3.18 show as expected that the evapamatrate and the relative
humidity are no longer constant during the rst stage of the dying process due to the
heterogeneity of the permeability along the gallery. Figur&.20 also clearly shows the
in uence of the two di erent permeabilities along the galley on the evaporation rate and
on the desaturation of the porous medium. We see that the deseation front propagates
at di erent time scales in the two rocktype regions.

Figures 3.25-3.26 still exhibit a good match between the 2B2and the reduced 2D-1D
models. However, as expected, it is not as good as in the prexsdest case.

Figure 3.27 exhibits as previously that the solutions of theegjuential and converged
xed point algorithms are basically the same.

Tables 3.6-3.8 and Figure 3.19 exhibit, as in the previous tesase, the good numerical
behavior and scalability of the non linear solvers.

Figure 3.18: Mean di usive and convective uxes of water congnent at the interface as
a function of time with wi;, = 0:5 m.s ! and the mesh 100 283.
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P
Figure 3.19: Convergence of the residukl ioc GikL1 ( oy Of the xed point iterations
for all time steps with w;, =0:5 m.s ! and with the mesh 100 283.
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(a) t = 0 day (b) t =6:9 10 * day

(c) t=7:9 10 2 day (d) t =0:3 day

(e) t = 14 days (f) t =50 years

Figure 3.20: Gas saturation in the porous medium and water naolfraction in the gallery
with wiy, = 0:5 m.s ! and the mesh 100 283 at (a)t = 0 day, (b) t = 6:9 10 # day, (c)
t=7:9 10 3 day, (d) t = 0:3 day, (e)t = 14 days, (f) t = 50 years.
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Figure 3.21: Perturbationu-of the x component of the gas velocity at the rst stage of
the drying process obtained withw;, = 0:5 m.s ! and with the mesh 100 283.

Figure 3.22: Gas velocitiesl (above) andv = v (below) at the rst stage of the drying
process obtained withwi, = 0:5 m.s ! and with the mesh 100 283.
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Figure 3.23: For each mesh and for;, = 0:5 m.s !: average of the relative humidity in
the gallery (left) and gas volume in the porous medium (rightas a function of time.

Figure 3.24: For each mesh and fow,, = 0:5 m.s 1: average of the gas velocity at the
interface (left) and evaporation rate at the interface (rigpt) as a function of time.
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Figure 3.25: Comparison of the solutions obtained by the 2dizand 2d-1d models with
the mesh 100 283: average of the relative humidity in the gallery (left)evaporation rate
at the interface (right) as a function of time.

Figure 3.26: Comparison of the solutions obtained by the 2dizand 2d-1d models with
the mesh 100 283: gas volume in porous medium (left), average of the gadoaty at
the interface (right) as a function of time.
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Figure 3.27: Comparison of the solutions obtained by the xegoint (FP) and sequential
(Seq) algorithms with the mesh 50 143: average of the relative humidity in the gallery
(left), evaporation rate at the interface (right) as a functon of time.

We present in Tables 3.6 3.8 the numerical behavior of the simulations with di erent
choices ofw;, and for the three meshes:

(i) wip, =0:05m.s?

meshes N t I\IChop NNeWton NPt NNVS CPU(S) CPU
25 73 | 108 0 882 397 | 765 18.57

50 143 | 108 0 963 406 | 805 | 123.43| 1.39

100 283| 108 0 1054 | 407 | 810 | 1155.48| 1.63

Table 3.6: For each mesh: numbeN ; of successful time steps, numb&Mcpe, Of time
step chops, numbeMNyewon Of Newton iterations, numberNp; of xed point iterations,

number Nyy s of quasi-newton iterations, CPU time in seconds, and scafjrof CPU time
( cpu) by CPU  cellscru .

(i) wy, =0:5m.s?

meshes N t NChop NNeWton NPt NNVS CPU(S) CPU
25 73 | 108 0 759 328 | 619 15.63
50 143 | 108 0 857 359 | 662 | 106.65| 1.41
100 283| 108 0 960 362 | 685 | 936.90| 1.58

Table 3.7: For each mesh: numbeN ; of successful time steps, numb&dcpe, Of time
step chops, numbeMNyewon Of Newton iterations, numberNp; of xed point iterations,

number Nyy s of quasi-newton iterations, CPU time in seconds, and scafjrof CPU time
( cpu) by CPU  cellscru .
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(i) Wi, =5 m.s

meshes N t NChop NNeWton NPt NNVS CPU(S) CPU
25 73 | 108 0 595 278 | 539 12.59
50 143 | 108 0 648 278 | 540 85.77 | 1.41
100 283| 108 0 706 288 | 551 | 760.54 | 1.59

Table 3.8: For each mesh: numbeN ; of successful time steps, numbe¥cpep Of time
step chops, numbeMNyewion Of Newton iterations, numberNp; of xed point iterations,
number Nyy s of quasi-newton iterations, CPU time in seconds, and scagjrof CPU time
( cpu) by CPU cells cpu |

3.4.4 Drying test case

In this test case exhibited in Figure 3.28, we consider the dng by convection of an
homogenerous porous mediumP = (0;L) (Hq;Hp) with L =1 m, H; = 0.5 m,
H, = 1:5 m. The Porous medium is assumed to be closed at the lateralunadlaries
and at the top boundary . The rocktype is de ned by the Van-Genuchten parameters
n=4,s =s¥=0, P, =15 10° Pa, the isotropic permeability K = 10 2 m? and
the porosity = 0:15. The temperature is xed to a rather high valueT, = 333 K in
order to increase the liquid evaporation rate. Consequewtthe water molar fraction at
a relative humidity equal to 1 is not so small any more and the ater convection ux
at the interface is not so negligeable anymore compared withe water di usive ux as
exhibited in Figure 3.29.

The simulation is run over a period of 100 days with an initiatime step of 104 s and
a maximum time step of 1 day. The numerical solutions are oliteed with the meshes
Nx Ny=25 7350 143 100 283, which are, as for the rst test case, re ned on
both sides of the interface to capture the steep gradient othe liquid pressure on the
porous medium side and the laminar boundary layer on the gatly side.

Compared with the Andra test case of subsection 3.4.2, we cabserve two main
di erences. First, the comparison of the 2D-2D and reduced 2DD models exhibited in
Figures 3.36-3.37 shows as expected not such a good match lierrelative humidity. This
is due to the fact that the 1D ow assumption in the gallery is écourse no longer veri ed.
On the other hand the evaporation rate, the gas velocity anche gas volume still exhibit
a very good match. This shows that the approximation provideé by the boundary layer
thickness model is still good.

Second, the e ect of the gravity in the porous medium gas owsivery clear in Figure
3.31 which exhibits the gas rise up to the closed top boundarkor the horizontal Andra
test case, the e ect of the gravity was small due to the domima capillary forces.

Figures 3.34-3.35 show that the spatial convergence is alrasheived for the coarsest
mesh due to the strong re nement at the interface . Figure 3.8 exhibits as before that
the sequential algorithm provides basically the same ac@aay than the converged xed
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point algorithm. The numerical behavior given by Tables 3:3.10 is still very good. We

observe a small number of time step failures due to a non conyence of the Newton

solver at the rst step of the xed point algorithm. It could p robably be improved using

another formulation for the Darcy ow since, as shown in Chaer 1, the phase pressures
and component fugacities formulation is not very e cient wten the capillary forces are
not dominant.

Figure 3.28: Setting of the drying test case.

Figure 3.29: Mean di usive and convective uxes of water congnent at the interface as
a function of time with the mesh 100 283.
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P
Figure 3.30: Convergence of the residulal i-c GKL1 ( oy Of the xed point iterations
for all time steps with w;, = 10 m.s ! and with the mesh 100 283.
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(a) t =0 day (b) t =3:110 7 day

(c) t=2:9 10 2 day (d) t =0:11 day

(e) t =1 day (f) t =100 years

Figure 3.31: Gas saturation in the porous medium and water naslfraction in the gallery
with wi; = 10 m.s ! and the mesh 100 283 at (a)t = 0 day, (b) t = 3:1 10 ’ day, (c)
t=2:9 10 3 day, (d) t = 0:11 day, (e)t =1 day, (f) t = 100 days.
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Figure 3.32: Perturbation u-of the x component of the gas velocity at the rst stage of
the drying process obtained withw;, = 10 m.s ! and with the mesh 100 283.

Figure 3.33: Gas velocitiesl (above) andv = v (below) at the rst stage of the drying
process obtained withw;, =10 m.s ! and with the mesh 100 283.
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Figure 3.34: For each mesh and fon,, = 1 m.s !: average of the relative humidity in
the gallery (left) and gas volume in the porous medium (rightas a function of time.

Figure 3.35: For each mesh and fow,, = 1 m.s 1. average of the gas velocity at the
interface (left), evaporation rate at the interface (righ) as a function of time.
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Figure 3.36: Comparison of the solutions obtained by the 2dizand 2d-1d models with
the mesh 50 143: average of the relative humidity in the gallery (left)evaporation rate
at the interface (right) as a function of time.

Figure 3.37: Comparison of the solutions obtained by the 2dizand 2d-1d models with
the mesh 50 143: gas volume in porous medium (left), average of the gadoaty at the
interface (right) as a function of time.
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Figure 3.38: Comparison of the solutions obtained by the xegoint (FP) and sequential
(Seq) algorithms with the mesh 50 143: average of the relative humidity in the gallery
(left), evaporation rate at the interface (right) as a functon of time.

We present in Tables 3.9 3.10 the numerical behavior of the simulations with di ereh
choices ofw;, and for the three meshes:

(i) wp =1m.s?

meshes N t I\IChop NNeWton NPt NNVS CPU(S) CPU
25 73 | 215 2 1879 | 625| 1265 | 38.00
50 143 | 218 3 2767 | 675| 1390 | 334.00| 1.59
100 283| 233 7 4458 | 752 | 1562 | 4251.28| 1.85

Table 3.9: For each mesh: numbeN ; of successful time steps, numbeéMcpep Of time
step chops, numbeMNyewon Of Newton iterations, numberNp; of xed point iterations,

number Nyy s of quasi-newton iterations, CPU time in seconds, and scafjrof CPU time
( cpu) by CPU  cellscru .

(i) wy, =10 m.s !

meshes N t NChop NNeWton NPt NNVS CPU(S)
25 73 | 208 0 1446 | 551 | 1017 | 30.47
50 143 | 212 1 2233 | 593 | 1104 | 271.19| 1.60
100 283| 223 4 3561 | 643 | 1183 | 3485.42| 1.86

CPU

Table 3.10: For each mesh: numbeM ; of successful time steps, numbé¥cpo, Of time
step chops, numbeMNyewon Of Newton iterations, numberNp; of xed point iterations,

number Nyy s of quasi-newton iterations, CPU time in seconds, and scafjrof CPU time
( cpu) by CPU  cellscru .
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3.5 Conclusions

In this Chapter, a xed point algorithm has been introduced b solve the problem coupling
the liquid gas Darcy ow in the porous medium and the free gasow in the gallery. This
algorithm preserves the strong coupling between the waterafar fraction in the gallery
and the liquid pressure and ux at the interface, while it rehxes the weak coupling between
the porous medium and the velocity and pressure in the gallerA good convergence of
this xed point algorithm has been observed on Andra and dryig test cases in a simple
2D geometrical setting. This algorithm has the advantage oagpared with fully coupled
approaches [6, 41, 48] to lead to the non linear solutions afmgler sub-systems, and
to allow large time steps at the scale of the porous medium apposed to sequential
algorithms [26, 24].

This coupled model is compared with the reduced model of Chap 2 using an ap-
proximation of the gas molar fraction boundary layer thickess based on a low frequency
diagonal approximation of a Steklov Poincae operator. Th comparisons performed on
the 2D test cases show a very good match of the evaporation @adnd of the porous
medium gas volume. It also exhibits a good match of the relag humidity in the gallery
especially, as expected, for high ratios between the lengihd the diameter of the gallery.
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Conclusions et perspectives

Bilan des esultats obtenus

Uneetude comparative en 1D et 3D de trois formulations du metke gaz liquide composi-
tionnel en milieu poreux aee meree au chapitre 1 au termeale laquelle la formulation en
pressions des phases et fugacies aek retenue. Sur lemsdests Andraa e ets capillaires
dominants cette formulation s'awerea la fois performane et la plus simplea mettre en
oeuvre du fait de lI'absence d'iregalies dans les lois derffmetures et d'un jeu d'inconnues
unique incekpendant des phases en pesence. En revanchddamulation en variables na-
turelles et la formulation en variables pressions, saturians et fugacies sont clairement
plus robustes que la formulation en pressions des phasesugiacies dans les egimesa
pression capillaire non dominante. Ce travail a donre liea la publication [47].

Un mocktle eduit couplant lecoulement gaz liquide compgaitionnel 3D dans le milieu
poreux avec un mocele 1D de type \No Pressure Wave" dans la gaie de ventilation a
et propos au chapitre 1 sur la base du mockle ceveloppdans [49, 6]. Cette eduction
de dimension suppose lecoulement dans la galerie esself@éiment unidirectionnel comme
c'est le cas en egime de convection foree pour une longuwede galerie grande devant
son dianetre. Ce mockle eduit tient compte de la di usion des concentrations dans une
couche limitea l'interface poreux galerie par l'introdut¢ion d'une concentration de paroi
a l'interface et d'un terme de di usion entre la concentraion moyenne dans la galerie
et la concentrationa la paroi. Le mocele aet disceti® par le sclema VAG (Vertex
Approximate Gradient) de type Control Volume Finite Element. Ce sclema est adape
aux maillages polyedriques et aux milieux anisotropes etgte naturellement le nelange
des milieux galerie et poreux dans les volumes de contréel'interface. Les esultats
nuneriques obtenus donnent un ordre de grandeur sur le uxaealliquide a l'interface
poreux galerie conforme aux mesures dont dispose I'Andra. Uedension du mocele 3D-
1D et de sa discetisation est propose dans le cas de esex de fractures dans le milieu
poreux mocklises comme des surfaces de co-dimension 1. t@ail a donre lieua deux
publications dans des actes de conkrences internatioral[15], [17] eta une publication
soumisea M2AN [16].

Letude du mockle eduit 3D poreux - 1D libre peedent nous a permis de bien
identi er le couplage fortement non lireaire entre la fration molaire d'eau convecee dans
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la galerie de ventilation et la pression et le ux de liquidea l'interface poreux galerie. Ce
couplage est lea lequilibre thermodynamique liquidegaza l'interface. Un algorithme de
point xe est ceveloppe au chapitre 3 peservant ce coupage fort et relaxant le couplage
de la vitesse et de la pression dans la galerie avec les inc@msndu milieux poreux et
les compositions du gaz dans la galerie. |l consiste a \astre a la premere etape du
point xe lesequations du moctle poreux coupkes avec kequations de traceur sur les
compositionsa vitesse et pression »es dans la galerié.e ux totala l'interface calcue
lors de cette premere etape sert ensuitea esoudre lesquations de Navier Stokes pour
ceterminer la vitesse et la pression dans la galerie.

Le comportement nunerique de cet algorithme aetetude dans le cas d'un mocele
2D-2D utilisant dans la galerie un mocele RANS avec viscositet di usion turbulentes
obtenues par un mockle de turbulence algebrique.

Pour simpli er, on a utilie une discetisation en espacede type volume ni avec pres-
sions et compositions aux mailles et vitesses normales aagds. Le maillage est Caresien
(et conformea l'interface poreux galerie) et les ux sont éux points (scltema TPFA dans
le domaine poreux, et MAC sur maillages cecaks dans la gaie). Les esultats obtenus
montrent une convergence tes rapide du point xe du fait dda faible perturbation de la
vitesse du gaz dans la galerie lee au couplage avec ledement en milieu poreux.

Ce mocele 2D-2D aee compae avec le moctle eduit 2D-LD approximant en 1D
lecoulement dans la galerie. Pour cela, lepaisseur deoache limite pour la fraction
molaire d'eau est approchee par la esolution de lequabn de convection di usion sta-
tionnairea vitesse »e. Les esultats montrent que ce nockle eduit 2D-1D donne, par
comparaison au mocele 2D-2D, un tes bon ordre de grandewlu taux devaporation du
liquide, de la desaturation du milieu poreux, et de I'humidke relative dans la galerie.

Perspectives

Methodes de cecomposition de domaine . L'algorithme etude dans la trese a
l'inconwenient d'etre tes intrusif au sens ai il impli que la esolution coupke de lecoulement
diphasique dans le milieux poreux et desequations de trasedans la galerie. Il est impor-
tant pour la mise en oeuvre pratique de l'algorithme sous lafme de couplage de codes
detudier des approches permettant de cecoupler les calts dans les deux domaines. On
pourrait utiliser pour cela une nmethodologie de type cecmposition de domaineaelaborer
dans un premier temps sur le mockle simplie couplant lequation de Richards dans le
milieu poreuxa lequation du traceur sur la fraction molaire d'eau dans la galerie. Le bon
comportement du mocele 2D-1D nous portea croire qu'un algrithme de type Schwarz
optimise devrait tre e cace. Cet algorithme devra ensuie étreetendu au cas du couplage
avec le mockle diphasique compositionnel.

Extensiona des geonetries plus complexes . Le sclema TPFA + MAC mis en

oeuvre dans la trese a l'avantage d'étre simple et robusteais il est limiea des maillages
Caresiens. On pourraitetudier en combinaison avec la mthode de decomposition de
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domaine peedente des discetisations dans les domaas poreux et galeriea la fois non
coincidentesa l'interface et adapeesa des maillageslps gereraux dans chacun des deux
domaines.

Extensiona des physiques plus complexes . Une autre perspective est detendre
letude des algorithmes de couplagea des moctles plus cqiexes que celuietude dans
la trese.

Une premere extension physiquea consicerer est celle deouplage du mockle Darcy
diphasique - Navier Stokes avec la conservation de leneegi la fois dans le milieu poreux
et dans la galerie. Lesechanges thermiques jouent en e ehuble important dans le
stockage et ont une forte in uence sur les prenonenes deporationetudes.

Une autre question plus ouverte en terme de mocklisation eapparition de la phase
liquide a l'interface lors de l'arrét de la ventilation non prise en compte par le mocele
actuel. Une facon de traiter partiellement ce probeme cosistea remplacer les conditions
d'interface par des conditions de type Signorini de facoa laisser passer le trop plein de
liquide dans la galerie dans le cas ai la phase gaz devientusze en eau.
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